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central claims

the study of cognition, emotion, & social interaction has greatly benefitted from

• observational & experimental methods

• analytical approaches (e.g., think alouds, code and count)

• instrumentation (e.g., eye tracking, fMRI)

• traditional computational models (e.g. EZ Reader, SWIFT) 

(machine-learned) computational models can take us even further

• essential when there are no adequate theoretical or mechanistic accounts

• essential when there is too much data or when data is too complex

• can provide (with caveats) insights into underlying phenomena

• can promote change via dynamic intervention or after-action reflection

• the art lies in how they are constructed

• phenomenon must be studied in ecologically valid contexts (including lab)

• grounded in but not overly constrained by theoretical accounts



research approach – unapologetically pluralistic

observational & 
experimental 

research

multimodal 
measurement & 
computational 

modelingreal-time, closed-
loop intelligent 
technologies



intersection of psychological & computing sciences

psychological sciences

cognitive psychology 

affective science

learning sciences

social psychology

team science

discourse processes

psychological sciences
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major research areas & timeline

Research Area

YEAR 

(2002-

2025)

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Computational Models of Cognition

Intelligent Environments

Emotions, Learning, & Affective Computing

Attention-Aware Computing & Eye Tracking

Non-cognitive Traits & Measures

Conversational Learning Technologies

Online & Virtual Learning

Wearable Sensing in the Wild

Collaboration & Collaborative Interfaces

Neurophysiological Computing



illustrative projects

exploring the eye-mind link during reading

multimodal, multiparty modeling of collaborative discourse



exploring the 

eye-mind link

during 

reading



a multicomponential view of attention
D’Mello, 2016

Direction of attention

Content of 

thoughts

Focal activity Elsewhere

Goal-related Overt attention

Focused attention

Alternating attention

Divided attention

Covert attention

Help seeking

Concentrating (appearing 

disengaged)

Goal-unrelated Covert inattention

(mind wandering)

Tune outs

Zone outs

Overt inattention

Off-task

Distracted



mind 

wandering 

during 

learning

• meta analysis 

of 25 studies 

from 2787 

learners

• mind wandering 

is frequent

(30% of the 

time)

• & negatively

correlates (r = 

-.28) with 

outcomes 



• Text difficulty will increase mind wandering

(Feng, D’Mello, & Graesser, 2013, Psych Bull & Review)

• Perceptual difficulty will decrease mind wandering 

(Faber, Mills, & D’Mello, 2017, Psych Bull & Review)

• Providing situational model will suppress MW

(Kopp, Mills, & D’Mello, 2016, Psych Bull & Review)

• Activation of current concerns will increase mind 

wandering 

(Kopp, Mills, & D’Mello, 2015, Consciousness & Cognition)

• Mind wandering will engender perceptual decoupling 

(Mills, Graesser, Risko, & D’Mello, JEP General)

• Event boundaries should disrupt mind wandering 

(Faber, Radvansky, & D’Mello, Cognition)

• Consumption of modalities will decrease mind wandering 

(Kopp & D’Mello, 2015, Applied Cognitive Psychology)

• Re-reading (re-watching) will increase mind wandering 

(Phillips et al., 2016, QJEP)theoretical model & experimental research



sample study: content of mind wandering

content of 
thought & 

trigger“LouvreTRIGGER” → “the Louvre” →”haha last time I 

was in the Louvre I threw up in front of the Mona 

Lisa” → “I wonder how strange the people looking 

at this data will think I am” → “Maybe I should [not] 

have admitted this after all”



eye tracking as a window into the mind



automated mind wandering detection

main findings

• model is moderately accurate (r = .400 

with respect to self-reports)

• precision (72.2%); recall (67.4%)

• predicts learning outcomes (r = -.374)

• robust to missing data

• fewer, longer fixations & fewer horizontal 

saccades signal mind wandering
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real-time intervention (D’Mello et al., 2017; Mills, et al., 2020)
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out of the lab and into the wild (Hutt et al., 2019; in press)

key findings

• first study demonstrating valid 

eye tracking data collection & 

modeling in classrooms

• attention-aware intervention show 

learning benefits in some contexts



video-based detection (Bosch & D’Mello, 2020; in review)

key findings

• computer models have fair accuracy 

(AUROC of 0.6)

• they tie with aggregate of 9 human 

judges, but outperform up to 3 humans

• fusion of computer + 3 humans best



estimating gaze features from video (Hutt & D’Mello in prep)

key findings

• video- and eye-tracker features correlate (rs .41-

75 for lab; .21-.23 for classroom)

• both yield similar accuracies for restricted features 

but not full feature set

• results can be improved with some training data 

containing eye gaze and video



exploring the eye-brain-mind link during reading

attentional 

focus

mental model

local text 

processing

re-engaging

engaging

comprehension 

monitoring

Inference 

generation

error detection & 

repair

skimming

mind-

wandering insufficient 

monitoring

elaboration outcomes

moderation by text, task, learner
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how to promote deep conceptual 

learning via rich socio-collaborative 

learning experiences for all students?
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in our vision, AI is viewed as a social, collaborative partner that helps 

both students and teachers work and learn more effectively, 

engagingly, and equitably
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theoretical framework - principles & conjectures

Natural social 

interaction (e.g., 

language, 

gestures,) will 

deepen 

engagement 

with AI partners

Conjecture 3

Collaborative 

problem-solving 

and critical 

thinking are 

ripe for AI-

based 

facilitation and 

support

Conjecture 2

There is a need 

to 

fundamentally 

rethink the role 

of technology 

to support 

collaborative 

learning in 

classrooms

Conjecture 1

Students’ voice, 

inclusion, equity, 

and social 

justice are 

central aspects 

of meaningful 

learning 

experiences

Principle 3

Developing 

collaborative 

problem solving 

and critical 

thinking skills 

will broaden 

participation in 

the STEM 

workforce

Principle 2

Deep 

conceptual 

learning is 

constructive, 

interactive and 

situated in 

authentic, 

collaborative 

activities

Principle 1
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we will integrate AI-education in science & tech courses to 

provide measurable learning outcomes

Disciplinary practices

Inquiry learning & 

academically productive 

talk

Ethics & Society

Nature, behavior, power, 

and consequences of AI 

systems

Domain Knowledge

STEM and AI- content 

knowledge

21st Century skills

Collaborative problem 

solving & and critical 

thinking

Motivation & Affect

Interest, curiosity,  and 

self-efficacy in AI, AI-

education, and STEM

Empowerment

Students empowered to 

contribute to an AI-based 

workforce
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iSAT blends foundational and use-inspired research with broadening participation, workforce 

development, & community engagement (led by Sidney D’Mello PI)

Strand 1: Advances in multimodal 

machine learning, natural language 

processing, and knowledge 

representation (co-led by Martha 

Palmer & Ross Beveridge)

Strand 2: Advances in theories, 

interaction-paradigms, and 

orchestration frameworks for 

student-AI teaming (co-led by 

Sadhana Puntambekar & Leanne 

Hirshfield)

Strand 3: Advances in inclusive co-

design to empower diverse 

stakeholders to envision, co-create, 

critique, and apply AI technologies

(co-led by William Penuel & 

Tamara Sumner)

Community Hub provides services to integrate participants 

and partner organizations and is led by a full-time 

coordinator
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1. Colorado State U.

2. U. of Colorado Boulder

3. U. of California, Santa 

Cruz

4. U.  of California, 

Berkeley

5. Brandeis U.  

6. Worcester Polytechnic 

Institute

7. Georgia Tech

8. U. of Illinois at Urbana 

Champaign

9. U. of Wisconsin-

Madison

Denver Public Schools

St. Vrain Valley Schools

we unite 29 researchers from 14 research areas with partners 

from academia, K-12, and industry network affiliates
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5,000 diverse K12 

students from two school 

districts (>60% 

underrepresented 

groups)

70 

teachers

750 

undergraduates 

from nine 

universities

parents & 

community 

stakeholders

29 researchers from 9  

partner research 

universities

postdocs, 

graduate, 

& 

undergrad 

students

K12 & 

development 

partners

industry

network  

affiliates

we will engage a large and diverse community
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our mission

● Develop foundational theories & AI technologies for 

creating next-generation collaborative learning environments 

composed of diverse student-AI teams.

● Grow a diverse workforce of the future by engaging 5,000 

middle/high school students in innovative AI education 

through AI-enabled pedagogies.

● Serve as a national nexus point for empowering diverse 

stakeholders to envision, co-create, critique, and apply 

student-AI teaming in their communities.

Foundational 

theories/

technologies
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The Institute will promote deep 

conceptual learning via rich socio-

collaborative learning experiences 

for all students (both in-person & 

remotely)



computational methods provide a 

unique opportunity to advance basic 

understanding of human functioning 

and enhance human potential

summary



team

postdocs: Kaitlin Bainbridge, Rosy Southwell, 

Brandon Booth, Guojing Zhou

phd students: Robert Bixler, Emily Jensen,  Nicholas Hunkins

Megan Caruso, Samuel Pugh

masters students: Tellie Umada, Arjun Rao, Shree Krishna Subburaj

undergraduate students: Cooper Steputis, Sierra Rose, 

Anissa Becerra, Julianna Harris

thank you

past members

Stan Franklin, Barry Gholson, Scotty Craig, Max Louwerse, 

Jeremiah Sullins, Rana el Kaliouby, Barry Kort, Rob Reilly, 

Ashish Kapoor, Holly White, Tanner Jackson, Brent Morgan, 

Bethany McDaniel, Kristy Tapp, Evie Johnson, Brandon King, 

Patrick Chipman, Natasha Velaga, Karl Fike, Kimberly Vogt, 

Lydia Perkins, Rosaire Daigle, Rebekah Combs, A K M 

Mahbubur Rahman, Ally Dobbins, Nia Dowell, Melissa Gross, 

Jacqueline Kory, Matthew Hunter, Shi Feng, Hallie Burgess, Eric 

Roth, Jonathan Cobian, Jennifer Neale, Amber Strain, Blair 

Lehman, Jon Savakus, Casey Hall, Tera Joyce, Yuxuan (Ethan) 

Chen, Melissa Rogers, Jennifer Wu, Thomas Behrens, Timothy 

Pusateri, Catherine Carothers, Luke Garrison, Kristopher Kopp, 

Abigail Walsh, Rosalyn Tan, Xinyi (Cindy) Wang, Grace Hills, 

Huili Chen, Shelby White, Disha Waghray, Connor Sullivan, 

Nathan Blanchard, Caitlin Mills, Nigel Bosch, Jianjan (Ivy) 

Wang, Mae Raeb, Eugene Choi, Jessica Hardey, Jacob Beiter, 

Kendyll Kraus, Samantha Scaglione, Taylor Kovacs, Patrick 

Donnelly, Myrthe Faber, Joseph Grafsgaard, Connor Cook, 

Catherine Spann, Aruna Gunda, Mary Jean Amon, Zachary 

Keirn, Julie Gregg, Lucca Eloy, David Blair, Kristina Krasich, 

Cathyln Stone, Conner Sinjem, Hana Vrzakova, Margo 

Gardner, Caroline Reinhardt, Erin Clarke, Angela Stewart, 

Stephen Hutt
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