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Abstract 

Previously, we have introduced an anticipatory robot that 
could generate a cognitive map while simultaneously 
localizing itself relative to it. Inspired by recent 
hippocampal researches, there, we demonstrated that the 
robot could exhibit anticipatory behavior if episodic 
memories that encode both spatial/nonspatial stimuli and 
behavioral actions are adequately utilized. In this paper, we 
will propose various ways to improve the previous method. 
For example, to address the computational complexity 
problem observed in the previous method, we will 
incorporate a new internal state variable inspired by the 
somatic marker hypothesis (a biological premise that 
speculates the role of emotional responses in our brain in 
terms of memory and decision making). Furthermore, we 
conjecture that this framework for anticipation can be even 
extended farther for a robot to deal with a novel situation 
(i.e., improvisation). We will discuss the concept of our 
improvisational robot in terms of anticipatory failures and 
their possible solutions. 

Introduction 

Recently in robotics, substantial efforts have been invested 
on critical applications such as military [1-3], nursing [4, 
5], and search-and-rescue [6, 7]. These applications are 
critical in a sense that these robots may directly deal with 
human lives in life-or-death situations, and they are 

therefore required to rapidly make highly intelligent 
decisions. The intelligence we are looking for in this type 
of situations is the ability to anticipate and improvise. 

Anticipation here means that the robot can assess the 

current situation, predict the future consequence of the 
situation, and execute an action to have desired outcome 
based on the assessment and the prediction. On the other 

hand, improvisation is performed when the consequence of 
the situation is not fully known [8]. In other words, it is the 
ability to deal with a novel situation based on knowledge or 

skill being acquired before (i.e., Piaget’s intelligence [9]). 

 How can we make a robot anticipate and/or improvise? 

Here, we seek clues from how our own brains work. Like a 

human infant, a brand-new robot, unwrapped from a 

shipping box, may not be ready yet to perform anticipation 
or improvisation. However, after having interactions with 
the real world for a certain period of time, we conjecture 
that the robot should eventually be able to figure out how 
to anticipate and/or improvise by reasoning the current 
situation based on relevant episodes that the robot has 
experienced in the past. Naturally, in order for the robot to 
recall relevant episodes, they have to be stored in some 
form of memory. In particular, we are interested in an 
episodic memory, a form of memory that contains 
information associated with a particular episode of 
experience, and it is stored in a way that the episode can be 
traced back and recalled in later time [10]. Given a 
sufficient framework to process a current episode of 
experience, store it as an episodic memory, and recall and 
utilize relevant past episodes for an ongoing situation, the 
primary hypothesis here is that extended exposure to the 
real world and interactions with it should help a robot 
improve its ability to anticipate (i.e., provide better 
assessments of the current situation, formulate better 
predictions of the future consequence of the situation, and 

execute better actions based on the assessment and 
prediction). Furthermore, our supposition here is that, even 
if the anticipation fails, the robot should still be able to take 

an appropriate action to reach its goal state because the 
episodic memory should be also utilized for improvisation. 
 In this paper, we will first highlight the computational 

steps involved in our anticipatory robot, which was 
originally introduced in [11]. We will discuss about the 

limitations of the previous approach and suggest possible 
solutions to them. We will then describe a newly proposed 

improvisational robot in terms of anticipatory failures. 
Finally, the conclusions and future work are discussed at 
the end. 



Anticipatory Robot 

As mentioned above, an anticipatory robot should assess 

the current situation, predict the future consequence of the 

situation, and execute an action to have desired outcome 

based on the assessment and the prediction. The concept of 
an anticipatory robot may be best represented by Rosen’s 

diagram (Figure 1). Rosen [12] proposed the notion of 

anticipatory systems in order to analyze how adaptive 

living organisms work. The labels S, M, and E in the figure 

stand for object system, model, and effector, respectively. 

More specifically, S represents some dynamical system that 

interacts with the environment. For example, the system 

could be a microorganism, animal, or even an economy of 

some country. M is a model of S. Given a current state of S 

and an environment, M foretells what state S is likely to 

reach in the future. E is the effector that can interact with S 

or the environment in order to influence the future state of 

S. According to Rosen [12], the function of the anticipatory 

system is to: (a) Do nothing if M expects that S is likely to 

stay in a “desirable” state; or (b) activate E to correct the 

“trajectory” of S if M forecasts that an unwanted outcome is 
imminent. One of the important properties of the 
anticipatory system is that, unlike a reactive system that 
executes actions simply as a response to a current state 
(stimuli), the system reacts to a state that is expected to 
happen in the future. 
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Figure 1: Anticipatory system. M = Model, E = 

Effector, and S = Object System. (Diagram 

reproduced from [12].) 

 In [11], we introduced an anticipatory robot that 
generates a cognitive map while simultaneously localizing 

itself relative to it. Here, the cognitive map is Rosen’s M 
(model). More specifically, we regarded the cognitive map 

as a set of links (or relations) that connects discrete 
episodic memories; episode here means a sequence of 

event representations, with each event characterized by a 

particular combination of spatial and nonspatial stimuli 

and behavioral actions, according to the definition by 

Eichenbaum et al. [13] (neuroscientists) who investigated 
the formation of episodic memories within the 

hippocampus. 

 Expressing this formally in the context of robotics, the 

relationships between the episode (E) and a sequence of 

events (e) can be described by Equation 1: 

 ) , ... , ,( 21 neeeE =  (1) 

where n is the number of events in the episode. 
Furthermore, the event that encodes spatial/nonspatial 
stimuli and behavioral actions can be denoted as: 

 } ,{ iii uze =  (2) 

where z is the readings from all sensors onboard, u is a set 
of motor commands, and i is some instant. Treating e as a 
basic entity of a world representation (including both 
sensory and behavioral contents), in [11], we demonstrated 
that a robot could exhibit anticipatory behavior if this 
representation was adequately utilized. The subsequent 
subsections illustrate the four steps that involves in the 
computation of an anticipatory robot. 

Step 1: Event Sampling 

First, our assumption here is that any perception or 
interaction that a robot has with the environment is 
potentially useful for future anticipation. However, 
remembering all sensor readings and motor commands in 
its lifetime is not feasible as its size can easily exceed the 
capacity of the physical memory. In this work, we 
employed a simple reinforcement learning algorithm 

(TD(λ) [14]) to accomplish temporal abstraction of 
incoming data. 
 At every time cycle, every current sensor reading is 
predicted by Equation 3: 

 1 −=′
ttt wr ε  (3) 

where r′ is a single predicted sensor value (i.e., r ∈ z), w is 

a weight-vector, ε is a vector that includes readings from all 
onboard sensors and behavioral commands being executed 

at the instant (i.e., ε = {z, u}). At each measurement, the 
predicted value is compared against the actual value and 

the weight is updated via TD(λ) update rule [14] (Equation 
4): 
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Here, α is a learning rate, λk
 is an exponential weighting 

factor, and the gradient ∇r′k is a partial derivative of r′k 

with respect to the weights; because of Equation 3, ∇r′k  is 

simply ε. Hence, Equation 4 can be rewritten as Equation 
5: 
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In Figure 2, differences between predicted and actual 
sensor readings (after being root-mean-squared) are plotted 
against the time step when a simulated robot moved from 
one end of the hallway to the other (from left to right). As 
can be observed from the figure, the spikes of the errors 
appear to capture salient (or distinctive) features for the 



robot, such as the presence of doors and the corridor 
junction. The peak of each spike is, here, considered as an 
occurrence of a new event (e), and the sensor readings and 
behavior commands of the instant are stored in the event. 
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Figure 2: Error of the predicted sensor readings 

(simulation) and the environment. 

 Recall that an episode is a sequence of events 
(Equation 1). The question is what event starts a new 
sequence, and what event ends it (i.e., “when does an 
episode start and end?”). Our current proposition is to 
incorporate the robot’s internal state in this context. 
However, in this (previous) study, the start and end points 
of an episode were arbitrary chosen by a human operator. 

Step 2: Episode Recollection 

In order to predict the future consequence of the current 
event, past episodes that are relevant to the current 
situation are gathered in this step. Let us use set C to 
denote the collection of all episodes that the robot has 
experienced before (Equation 6): 

 }, ... ,,{ 21 NEEEC =  (6) 

N is the number of accumulated episodes. It should be 
noted that C was referred to as cognitive map in [11]. The 
collection of relevant episodes (Mrel) is a subset of C that is 
compiled by the following rule: 

 })(|{ relrel trueEfCEEM =∧∈∀=  (7) 

where frel is a filtering function that returns true if the input 
episode is relevant to the current situation. While our 
current proposal is to utilize the robot’s internal state to 
determine what episode is relevant, in this study, frel was 
always set to return true (i.e., Mrel = C). 

Step 3: Event Matching 

In this step, exactly what event in the past episode 
corresponds to the current event is determined by a generic 
Bayes filter. In other words, the probability of the current 
event being same as a past event given a history of sensor 
readings and motor commands is computed. By applying 
the Bayes rule, the Markov assumption, and the law of the 

total probability, the posterior probability is solved by 
Equation 8 (see [11] for its derivation): 

∫
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Here, p(zi,|ek) and p(ek|ui,ek–1) are the sensor and motion 
models, respectively. Note that the Bayes filter is 
recursively computed using previous posterior 
probabilities. Figure 3 shows two possible outcomes of 
how the posterior probability could be distributed over an 
episode. The first case is when the posterior probability is 
distributed around the average value and never exceeds a 

predefined threshold (Θ). In this case, we consider that 
none of the events in the episode matches with the current 
event. The second case is when the posterior probability 
does exceed the threshold. We refer to the event that 
generates the greatest distinct peak in the graph as a 
matching event (or localized event). In other words, the 
localized event is determined by the following equation: 
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Figure 3: Posterior Probability Distribution over an 

Episode: (a) no matching event was found; (b) a 

matching event was found (e146). 

 It should be noted that, at each computational cycle, 
the posterior probability is evaluated for all episodes 
collected in Step 2. In other words, if there are N episodes 
in Mrel (Equation 7), there would be at most N localized 
events at the end of each computational cycle. 

Step 4: Behavior Selection 

At this point, the robot knows what past event is relevant to 
the current situation. The next step is to decide what action 
to take in order to bring itself to a desired state (i.e., 

Rosen’s E (Effector)). Imagine that, for example, there is a 
T-maze environment, and a red ball sits at its right arm of 
the maze. In [11], we proposed an anticipatory behavior 
that could guide the robot to the location of the ball by 
backtracking events in the episode. As shown in Figure 4, if 



one of the events in the episode is known to have perceived 
the target object (the red ball), the robot attempts to follow 
a virtual path from the current event to the target object by 
executing the motor commands stored in the events 
between them. (Alternatively, the virtual path may be 
viewed as intention in the Belief-Desire-Intention (BDI) 
architecture [15].) 
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Figure 4: Following the virtual path from the current 

event to the target object. 

Expressing this formally, let us denote the sensor readings 
and motor commands stored in event e as z[e] and u[e], 

respectively (i.e., {z[e], u[e]} ⊂ e). Let us also define el and 
ex as the event to which the robot localized to (found in 
Step 3) and the event at which the target object (object-X) 
was perceived, respectively. The output of the anticipatory 
behavior can be then computed by Equation 10: 
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where rx is the sensor reading that corresponds to detection 
of object-X. 

Preliminary Experiment and Results 

In [11], the above anticipatory behavior was referred to as 
Traject-Path-To-X, and its feasibility was empirically 
evaluated in simulation. Figure 5 shows the behavioral 
assemblage (Search-X) that combines Traject-Path-To-X 
with other essential behaviors for the maze navigation 
(Explore and Avoid-Static-Obstacle). Two conditions were 
prepared for this experiment. In the first condition, the 
robot was trained to visit both arms in the T-maze by 
following predefined waypoints (the target object was 
placed at only one of the arms), and subsequently Search-X 
was executed to see if the robot would actually reach to the 
target object. The second condition was similar to the first 
one except that Traject-Path-To-X was disabled within 
Search-X.  
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Figure 5: Behavioral Assemblage of Search X 

 Figure 6 shows the results of the experiment (after 64 
tests). Having a statistically significant difference (F1,126 = 
18.986, p < 0.00003), this experiment proved that the 
anticipatory behavior was indeed effective. However, 
limitations of this approach were also identified. In the next 
section, we discuss those and possible solutions. 

 
Figure 6: T-Maze Experiment Results from [11] 

Improving Anticipation 

The previous approach possessed some limitations. For 
example, it was observed that the computation time of each 
step increased drastically as the events were being 
accumulated. This predisposition is definitely undesirable 
for our anticipatory robot because it has to be able to make 
prompt decisions even after working in the environment for 
an extended period of time. We speculate that this problem 
is caused by our computational scheme in which full 
posteriors for the entire episodes in its memory are 
computed at every step (i.e., frel in Equation 7 always 
returned true.). Our proposition here is to improve frel by 

introducing new internal state variables: namely, desire (δ) 

and introspection (π). Furthermore, the question of how an 
episode should be segmented (i.e., “when does an episode 
start and end?”) is also expected to be solved by these 
variables. The details of these internal state variables are 
explained below. 

Desire. Recall that, in the previous approach, the robot 
could find its way to the goal autonomously, but the goal 
itself (object X) was set by an operator. Here, we propose a 
mechanism for the robot to automatically acquire its own 
goal at any given time based on its internal state: desire. 
The concept of desire is similar to a goal state in AI. It is 
the state that a robot desires to be at. However, as noted by 
Rao and Georgeff [15], while the goal state has to be 
believed by the robot that it is attainable, the desired state 
is not restricted by such a constraint. Furthermore, while a 
goal state in AI often is some symbolically describable 
world (e.g., robot-has-bananas), our desire is represented 
in the form of sensor readings (we also call it “sensation”). 
For example, the robot may have a gripper, and a tactile 
sensor on the gripper may be able to sense if a ball is 
grabbed or not. When the robot wants to grab a ball at 
some point, the exact perceptual state of the tactile sensor 



for grabbing the ball (“ball grabbing” sensation) becomes a 

desire. A desire (denoted with symbol δ) can be formally 
described by the following set: 

 } ,{ αδ z=  (11) 

where z is sensor readings, and α is a scalar indicating the 

magnitude of the desire. It should be noted that the α value 

can be negative (that is when δ is the state that the robot 
does not want to be at). Furthermore, depending on the 
circumstances, the robot may seek multiple desires at the 
same time. Let D be a set that contains all possible desires 
of the robot. Let us also suppose that there is a function 
(fdes) that frequently updates the contents of D based on the 
current sensor readings (Equation 12): 

 ),( 1des iii zDfD −=  (12) 

For example, if a sensor indicates that the battery voltage is 

running low, fdes could increase the α value for the “battery 

charging” desire (δbattery-charging) in D. If the battery-charging 

is attained, the α value may be reset to zero. All desires that 

have non-zero α are considered to be active, and they are 
compiled as a new set (d) by the following rule (Equation 
13): 

 }0|{ ≠∧∈∧∈∀= αδαδδ iiiii Dd  (13) 

Later in this paper, we show how d can be used to enhance 
frel, the filtering function for selecting relevant episodes. 

Introspection. Above, we introduced the concept of desire 
to make the robot acquire its own goal. On the other hand, 
the concept of introspection is introduced here to provide 
the robot means to self-examine whether the current state is 
actually desirable or not. Such judgment should certainly 
be reflected by the status of the currently sought desires 
(d). However, other factors, such as survival of the robot or 
safety of humans, should be also taken account. For 
example, even if the desire is being satisfied (because the 
robot is getting closer to the goal), if the robot violently 
hits a human pedestrian, the robot should regard such a 
state as appalling. 
 In our proposed approach, the status of introspection is 

quantified by a single scalar variable (π), which can be 

either positive or negative. The value of π is adjusted by a 
function (fint) that takes the current sensor readings and 

desire as well as the previous π value as its inputs 
(Equation 14): 

 ),,( 1int iiii dzf −= ππ  (14) 

As mentioned above, there are two factors that could affect 

the adjustment of the π value: namely, desire and innate 
wiring (Equation 15): 

 innatedesire1 ππππ ∆+∆+= −ii  (15) 

The first factor (∆πdesire) relates to how much the current 

desires are being satisfied. The second factor (∆πinnate) 
relates innate wiring that specifies what types of 
perceptions are considered to be positive or negative for 

the robot. For example, a reading from a voltage meter can 
be considered as positive if it indicates that the battery is 
fully charged. On the other hand, if the tactile sensor 
reports that the robot is violently hitting some object, the 
perception may be considered as negative. We refer to this 
mapping as innate wiring since these rules are 
preprogrammed. Suppose we describe the innate wiring 

with a set (φ): 

 } ,{ αφ z=  (16) 

As in δ (Equation 11), z is the sensor readings, and α is a 
scalar indicating the magnitude of the mapping (which can 

be positive or negative). Let Φ be the set that contains all φ 
being preprogrammed in the robot. Equation 14 can be then 
implemented by the following equation (Equation 17): 
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where z[δ], α[δ], z[φ], and α[φ] are z∈δ, α∈δ, z∈φ and α∈φ, 
respectively; and fL is a function that returns the likelihood 
of a sample (specified in the first input parameter) given a 
measurement (specified in the second input parameter).  
 Recall that, in Equation 2, an event was a set of sensor 
readings and motor commands. In our newly proposed 
approach, the introspection value at the instant of sampling 
is also included in the event (Equation 18): 

 } , ,{ iπiii uze =  (18) 

As discussed below, by being embedded in events (and 
hence in episodes), the introspection value should provide 
additional contextual information that would guide the 
robot to make better decisions (i.e., used as part of a 
heuristic function). 
 It is probably worth mentioning here that the notion of 
including the introspection value inside the event was 
inspired by Damasio’s somatic marker hypothesis [16, 17]. 
In human brains, emotional responses are known to be 
generated by an element called amygdala. The emotional 
responses could be triggered by, for example, loud noise or 
fearful facial expression. Damasio [16] (neuroscientist) 
conjectures that some of the emotional responses are 
converted into new somatic signals (e.g., pain/pleasure) via 
the hypothalamus (hormonal) or brainstem/spine (neural). 
The somatic signals then arrive at the somatosensory cortex 
in the parietal lobe. Before entering the hippocampus, 
different sensory signals in the cortex are assembled at the 
transitional cortex, forming a uniform representation, which 
Damasio refers to as “dispositional representation” (which 
corresponds to our event e). Hence, the emotionally 

induced somatic signals (which corresponds to our π) from 
the somatosensory cortex are also embedded in the 
dispositional representation. The main point of Damasio’s 
hypothesis is that the embedded somatic signals or somatic 

markers in the dispositional representation are very crucial 
upon when we make decision based on the past experience; 
the somatic markers prioritize the memory, so that 
irrelevant memories are filtered out upon recollection. To 



test the hypothesis, Damasio [17] and recently Bar-On et 
al. [18] have conducted experiments using human subjects, 
and showed that patients with lesions in the neural circuit 
involving the somatic marker are prone to make poor 
judgments. 

Improving frel. In this section, we show how the internal 
state variables (desire and introspection) can be used to 
improve frel, the filtering function that selects relevant 
episodes in Equation 7. First, we revise the representation 
of an episode (Equation 1) by incorporating a desire: 

 )},...,,(,{ 21 neeeE δδ =  (19) 

This implies that episodes are indexed in the context of 
desires. In other words, a new episode starts recording 
events when a new desire becomes active (detected by 
monitoring d in Equation 13); the episode ends when the 
desire becomes inactive. In should be noted that, since a 
robot can seek multiple desires simultaneously, multiple 
episodes (sharing same events) may be compiled at the 
same time. For example, if a “ball grabbing” sensation and 
a “battery charging” sensation are simultaneously sought by 
a robot, two separate sets of episodes would be produced 
(e.g., Eball-grabbing and Ebattery-charging).  
 Given the new representations of an event (Equation 
18) and episode (Equation 19), improved frel can be 
described by the following equation (Equation 20): 
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where fL is the same likelihood function as in Equation 17 

except that the parameters for the likelihood function (e.g., 

standard deviation) is explicitly specified (c); ][ i
z δ  is the 

sensor readings of δi in the current desire set (Equation 13); 

z[E] is the sensor readings of δ that is a member of Eδ 

(Equation 19); θδ and θπ are predefined thresholds; and 

∆π[E] is the difference of the π values between the first and 

last events in E (i.e., the progress of the introspection value 

through out the episode). In other words, if the desire 

associated with this past episode is not related to any of the 

currently sought desires, it is rejected; if there is no 

indication that this episode can contribute to boost the π 

value, it is also rejected by the filter. 

Improvisational Robot 

Improvisation is to make, invent, or arrange offhand [19]. 
As Calvin [20] points out, improvisation relates to what 
Piaget [9] called intelligence. Piaget suggested that 
intelligence is the ability to deal with a novel situation 
based on knowledge/skill being acquired before. Such 
intelligence would allow animals to deal with progressively 
more complex problems as base knowledge/skill 
accumulates. There are at least two noteworthy studies 
conducted on improvisation in the context of AI: one by 
Agre [8] and the other by Anderson [21] (both for their 

dissertations). Anderson considers improvisation as part of 
a control problem (referring to it as “intelligent control”). 
Conceptually, improvisation is similar to classical AI 
planning as both suggest a plan of action that should 
achieve a predefined goal [22]. However, it has a clear 
distinction. Agre [8], for example, points out that 
improvisation is performed when the consequences of the 
actions are not fully known. In other words, in classical AI 
planning, the information regarding the state space is given 
to the agent (its main concern is to find a correct sequence 
of actions). On the other hand, the idea behind 
improvisation in AI is that the agent would need to 
constantly consult with its memory in order to find a 
suitable action for the time being because computing every 
contingency in the world is not feasible (i.e., the agent has 
to ignore some part of the state space). Anderson [23] for 
instance utilizes domain knowledge in the form of 
constraints to help the agent narrow down its options or 
limit the search space. The constraints may also provide 
additional alternative options that the agent otherwise 
would have ignored. In other words, the constraints 
influence how the agent retrieves relevant actions from its 
memory. If the situation is within a familiar domain, some 
“routine response” can be applied quickly; Anderson [21] 
refers to this case as weak improvisation. On the other 
hand, if the situation is totally novel, it requires strong 
improvisation (i.e., “deeper reasoning” is necessary upon 
choosing the action). Anderson farther suggests that 
delaying execution of the action (or “deliberation”) may 
help the agent explorer better alternatives, but it could also 
compromise the end result if any underlying assumption 
being made is time dependent. 
 In our view, one of the common denominators that the 
processes of anticipation and improvisation for a robot 
share is that they are both goal-oriented. In other words, 
whether the consequences of the actions are fully known or 
not, the mission of the robot is to reach its desired state. 
Hence, our supposition here is that the same infrastructure 
for anticipation that allows a robot to recollect and exploit 
relevant episodes to seek its desire can be straightforwardly 
extended for improvisation by adding a mechanism that 
could: 1) recognize failures of anticipation, and 2) recover 
from such failures. In the following sections, we explain the 
concept of our improvisational robot in terms of the 
anticipatory failures and their possible solutions. 

Failure of Episode Recollection 

Recall the second step in anticipation where relevant 
episodes (Mrel) for the current situation are collected using 
the filtering function (frel). While frel could help reducing 
exhaustive computation of the Bayes filter in the next step 
(Event Matching), we conjecture that overly restrictive frel 
may leave Mrel as an empty set (i.e., no past episode is 
considered to be relevant). As shown in Equation 20, there 

are three parameters (c, θδ, and θπ) that affect the outcome 
of frel; we consider these parameters as constraints for 

improvisation. c and θδ determine how close the currently 



active desire is to the one stored in the episode in question. 
More specifically, c is the input to the likelihood function 
(fL) that determines the shape of the probability 

distribution, and θδ is a threshold that determines how 
much the output of fL has to be in order for the two desires 
to be considered same. If, for example, we want our 
improvisational robot to indiscriminately accept more 

episodes, lowering the θδ value may suffice. On the other 
hand, if we want the robot to selectively relax the constraint 
for a particular sensor, the contents of c may be adjusted 
(e.g., to accept balls with any color instead of just red 
balls). Furthermore, progress of the introspection value 

during the episode (∆π[E]) also influences the outcome of 

frel. A high θπ value means that only highly rewarding 
episodes are opted. However, in some instances, the robot 
may not be able to afford itself to be too fastidious (e.g., 
time critical situations); hence, the decision may have to be 

made based on less attractive episodes by lowering θπ. 

Failure of Event Matching 

Anticipatory failures could be also caused by failures in the 
event matching step. In other words, anticipation can fail if 
the robot fails to localize itself to any of the events in the 
past episode. Recall that the shape of the posterior 
probability distribution of e determines the outcome of the 
localization (Equation 9); if the posterior probability never 

exceeds the threshold (Θ), localization cannot be attained. 

Here, we hypothesize that no localization implies: (1) Θ 
was too restrictive, or (2) the Bayes filter actually identified 
that none of the events in the episode was relevant to the 
current event. It should be noted that distinguishing these 
two cases is not necessary straightforward. Nevertheless, 

the first case should be solved by simply lowering the Θ 
value. On the other hand, the second case perhaps requires 
deeper reasoning (strong improvisation). One possible 
solution for this is to introduce an intermediate desire 
(goal). For example, suppose that the robot is in a living 
room, and the battery-charging desire suddenly becomes 
active. However, it fails to localize to any of the past 
episodes for battery-charging (Ebattery-charging) perhaps 
because the battery charger is located in a dining room. In 
this case, what we wish our improvisational robot to 
recognize is that, if it goes to the dining room, the battery 
can be charged. Notice, however, that our robot does not 
have the high-level concept of dining room because the 
information about the world is represented only in the form 
of sensor readings (z). In order to generate a plan of action 

in this framework, intermediate desires (d′) are compiled 
by the following rule (Equation 21): 

}),(|{ '][][L degiiii zzfEeDd
i

θδδ δ ≥∧∈∧∈∀=′  (21) 

where Eg is the episode that contains a real goal (e.g., 

Ebattery-charging in the example above); fL is the same 

likelihood function mentioned in Equations 17 and 20; ][ i
z δ  

and ][ez  are z∈δ and z∈e, respectively; and θd′ is a 

predefined threshold. In other words, the intermediate 

desires are collected from D (all possible desires) if their 

sensor readings are same as the ones in any of the events 

that belong to Eg (according to the likelihood function). 

The intermediate desires (d′) are then sought by the robot 

with the exactly same way it seeks the normal desires (d). 

Conclusion and Future Work 

In this paper, we proposed various ways to improve our 
previous model of an anticipatory robot. For example, in 
order to solve the computational complexity problem, 
incorporation of new internal state variables was suggested. 
In particular, the concept of desire was introduced to make 
the robot automatically acquire its own goal and partition 
the episodic memories based on the goals. On the other 
hand, by embedding in the representation of an event, 
introspection was introduced to serve as part of the 
heuristic function, deciding what past episodes are worth 
paying attention to for the current situation. 
 Furthermore, we conjectured that our anticipatory 
robot can be straightforwardly extended for an 
improvisational robot. By adjusting the constraints for the 
heuristic function, our supposition here is that the robot 
should be able to recover from anticipatory failures and 
improvise its actions based on the new constraints. 
Moreover, the concept of intermediate desires was also 
formulated in order to overcome the situations when strong 
improvisation is necessary. 
 In order to test the above hypothesis, empirical 
experiments are ought to be conducted next. In particular, 
we must evaluate: (1) if the internal state variables actually 
help reducing the overall computational time; (2) how 
adjustment of the constraints for the heuristic function 
affects the robot’s improvisation; and (3) how effectively 
the intermediate desires help the robot to deal with a totally 
novel situation.  
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