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We report an experimental observation of strong variations of quality factor and mode splitting among whispering-
gallery modes with the same radial order and different azimuthal orders in a scattering-limited microdisk resonator.
A theoretical analysis based on the statistical properties of the surface roughness reveals that mode splittings for
different azimuthal orders are uncorrelated, and variations of mode splitting and quality factor among the same
radial mode family are possible. Simulation results agree well with the experimental observations. © 2012 Optical
Society of America
OCIS codes: 230.3990, 140.3945.

Microdisk resonators are among the key building blocks
in integrated photonic circuits. Compact and high-
quality-factor (high-Q) microdisk resonators have been
demonstrated in silicon-on-insulator (SOI) platforms
[1,2]. In such high-index-contrast material systems, the
intrinsic Q is mainly limited by scattering loss due to
imperfect sidewalls and absorption loss due to unpassi-
vated surface states. Furthermore, the sidewall rough-
ness would lift the degeneracy of two otherwise
degenerate whispering-gallery modes [i.e., the clockwise
(CW) and counterclockwise (CCW) modes], resulting in
mode splitting in the resonance spectrum [1].
In this letter, we report an experimental observation

that in a high-Q silicon microdisk resonator, the mode
splitting can exhibit strong variations over the same ra-
dial mode family (i.e., resonant modes with the same ra-
dial order and different azimuthal orders). We also
observe variations in the intrinsic Q of these modes,
which are experimentally found to be scattering-loss lim-
ited. While the variation in the intrinsicQ has been briefly
mentioned in [3], a detailed investigation of the underly-
ing mechanism is still missing. These variations are dis-
tinct from the well-understood results for microspheres
with the presence of a single scatterer, which show quite
uniform splittings and scattering losses for resonant
modes with different azimuthal orders [4]. To explain
the experimental observations, we develop a theoretical
analysis based on the statistical properties of the sidewall
roughness. The analysis shows that mode splittings for
resonant modes with different azimuthal orders are un-
correlated; therefore, strong variations among a family
of modes with the same radial order are possible. From
the same analysis, the variation of the corresponding in-
trinsic Q can also be understood.
The 10 μm radius microdisk resonator studied here is

fabricated on an SOI wafer with a 220 nm thick silicon de-
vice layer. As shown by the scanning-electronmicrograph
(SEM) in Fig. 1(a), the microdisk resonator is pulley-
coupled to a 450 nm wide bus waveguide with a coupling
lengthof 6μm[5]. The linear transmission response shown
in Fig. 1(b) implies that different radial mode families are

excited. To identify them, we track the resonance wave-
length dispersion and compare the measured group in-
dices to theoretical values. The black lines shown in the
inset of Fig. 1(b) are the simulated group indices for the
lowest five radial TE modes (electric field parallel to the
microdiskplane)using an in-housemicrodiskmodesolver
based on the three-dimensional (3-D) FEM implemented
in the Comsol environment. The red and green squares
correspond to the measured group indices for the

Fig. 1. (Color online) (a) SEM of a 10 μm radius microdisk
resonator; (b) transmission of the microdisk resonator at low
input power (solid black) and fitting curves for the second-
order (dotted red) and fifth-order (dotted green) radial modes;
the inset shows the group index comparisons between the finite
element method (FEM) simulation (solid black) for the lowest
five radial TE modes and the measured ones (with the red and
green squares corresponding to the resonances marked by the
dotted red and green curves, respectively) from Fig. 1(b);
(c) curve-fitting results for the second-order mode around
1509.3 and 1519.6 nm; (d) extracted splitting Q (Qβ, dotted line
with squares), intrinsic Q (Qi, cross), and scattering Q (Qss, so-
lid line with circles) for the second-order (red, right) and fifth-
order (green, left) radial modes, respectively. The vertical axis
is shown using the logarithmic scale.
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resonances marked by the dotted red and green curves in
Fig. 1(b), which are identified to be the second- and fifth-
order radial modes, respectively. Based on the mode-
splittingmodel developed in [1], curve fitting is performed
to extract the splittingQ (Qβ) and intrinsicQ (Qi) for these
resonances. Two such examples are shown in Fig. 1(c) for
two neighboring resonances for the second-order radial
mode, with the black curves being the experimental data
and the dotted red curves being the fitted data. We show
the extracted splitting and intrinsic Q for the second- and
fifth-order radial modes in Fig. 1(d), where for each radial
mode family strong variations in the splittingQ andmilder
variations in the intrinsic Q for different azimuthal orders
are observed. The variation of the mode splitting is also
evident from Fig. 1(c), as for the two neighboring second-
order radialmodes,onehasastrongmodesplitting and the
other has a negligible mode splitting.
To understand the source of variations of the intrinsicQ

among different azimuthal orders, we perform scattering-
and absorption-loss measurements. In silicon resonators,
when the input power is not too high to generate a signifi-
cant amount of free carriers, two-photon absorption
(TPA) prevails other nonlinear processes. This has two
implications. First, the intrinsic cavity loss increases lin-
early with the cavity energy. Second, as the TPA power is
converted to heat, the resonance wavelength undergoes a
redshift, which can be used to extract the linear absorp-
tion as well as the scattering loss contributions [3].
Figure 2(a) shows the transmission scans for the second-
order radial mode around 1509.3 nm at different input
power levels. The increase of the extinction ratio with the
input power indicates the operation in the overcoupled
regime. The nonlinear cavity loss, as shown in the inset
of Fig. 2(b), has a linear dependence on the cavity energy,
confirming that TPA is the dominant nonlinear process.
From the resonance wavelength shift, as shown in
Fig. 2(b), the linear absorption loss is inferred to be 25%
of the total intrinsic loss. Same measurements are re-
peated for all the resonances shown in Fig. 1(d), and
the extracted scatteringQ (Qss) is plotted inFig. 1(d).Gen-
erally, scattering loss contributes more than 70% to the

total intrinsic loss, and within the measurement accuracy
the variation of the intrinsicQ among the azimuthal orders
can be mostly attributed to the variation of the scattering
Q, while the linear absorption Q is fairly uniform [3].

To explain the experimental observation that the mode
splitting and scattering loss vary over different azimuthal
orders, a theoretical analysis is needed. In a straight
waveguide, the sidewall roughness Δr�x� is character-
ized by its autocorrelation function, which is usually
approximated as

hΔr�x�Δr�x0�i � σ2 exp
�
−

jx − x0j2
L2
c

�
; (1)

where histands for the ensemble average, x is the direc-
tion along the waveguide, σ is the roughness standard
deviation, and Lc is the correlation length [1]. In a micro-
disk, because of the periodic boundary condition, Δr�x�
can be expanded in terms of periodic harmonics along
the disk perimeter as

Δr�ϕ� � 1
2π

X
n

F�kn�eiknRϕ; (2)

F�kn� �
Z

2π

0
Δr�ϕ�e−inϕdϕ; (3)

where R is the radius of the disk, ϕ is the azimuth, and
F�kn� is the Fourier component of Δr�ϕ� with kn � n∕R
[n � �1;�2;…F�k0� � 0]. Extending the statistical
property imposed by Eq. (1) to microdisk resonators
(x � ϕR), we obtain

hF�kn�F��km�i �
2π3∕2�σ2Lc�

R
exp

�
−

�
knLc

2

�
2
�
δ�n −m�;

(4)

which shows that the values of [F�kn�] (n > 0) are statis-
tically independent random variables {to ensure Δr�ϕ� is
real, F�k

−n� � �F�kn���}. Each resonator is one possible
realization of [F�kn�], and Eq. (4) is valid when the en-
semble averaging is performed for many independently
fabricated resonators under the same condition. How-
ever, Eq. (4) also shows, for one specific resonator,
the values of [F�kn�] are very unlikely to be equal (for
different n), and variations among [F�kn�] are almost cer-
tain. As shown by the mode-splitting model in [1], the
mode splitting for resonant mode with azimuthal order
m is proportional to jF�k2m�j, which provides the mo-
mentum compensation needed to couple the CW and
CCW modes. Because of the independence of [F�kn�]
(n > 0), different azimuthal modes can exhibit uncorre-
lated splittings. Strong variation of splitting Q as ob-
served in Fig. 1(d) is thus possible if [F�kn�] (n > 0)
values have large amplitude fluctuations.

The scattering loss is calculated using the volume cur-
rent method [1]. Using the exact form ofΔr�ϕ� in Eq. (1),
we obtain the far-field vector potential A as

Az;m�r; θ;ϕ� � C0Ez;m�R; 0�
X
n

F��km�n��ieiϕ�−n

× Jn�k0R sin�θ��; (5)

Fig. 2. (Color online) (a) Transmission scans of the second-
order radial mode around 1509.3 nm at various input power le-
vels; (b) measured, thermally induced wavelength shift Δλth
(square) versus the relative input power along with a fit (solid
line) for normalized linear absorption γ0la (linear absorption loss
normalized to the cold-cavity loss) based on the model in [3].
The inset shows the measured, normalized nonlinear absorp-
tion γ0nla (shown by square, which is the nonlinear absorption
loss normalized to the cold-cavity loss) versus the relative cav-
ity energy along with a linear fit (solid line). The input power is
the power sent from the testing laser, and the circulating power
inside the resonator is approximated to be around 50 mW at
1 mW input power in our characterization setup.
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Aϕ;m�r; θ;ϕ� �
1
2
C0Eϕ;m�R; 0� ×

X
n

F��kn�m�i�ieiϕ�−n

× fJn−1�k0R sin�θ�� − Jn�1�k0R sin�θ��g; (6)

with

C0 �
−iωhδn2R

4πc2
�
e−ik0r

r

�
; (7)

where Ez;m�R; 0� [Eϕm�R; 0�] is the unperturbed domi-
nant electric field of the azimuthal order m at the disk
edge for TM (TE) polarization; i �

������
−1

p
; h is the disk slab

thickness; ω is the optical frequency; δn2 is the refractive
index perturbation due to the scattering center; c is the
speed of light in vacuum; k0 is the wave vector in the sur-
rounding medium; and Jn�x� is the Bessel function of the
first kind of order n of x. The coordinate variables r, θ, ϕ,
and z are graphically defined in Fig. 3(a). Note that in
Eqs. (5) and (6) the contribution of F�km�n� is weighed
by Jn�x�, whose value is only significant when jnj < jxj.
As a result, only a limited number of F�km�n� effectively
contribute to the scattering loss (jnj < k0R). This is the
so-called phase-matched radiation [6]. The limited sum
of [F�kn�] in Eqs. (5) and (6) cannot average out the var-
iation among [F�kn�], resulting in variations of the scat-
tering loss for different azimuthal orders.
To verify the above qualitative discussion, we model

[F�kn�] by assuming a Gaussian distribution for its ampli-
tude and uniform distribution for its phase as

F�kn��
��������������������������������������������������������������
2π3∕2�σ2Lc�

R
exp

�
−

�
knLc

2

�
2
�s
× �cos�α�

�sin�α�Nn�0;1��exp�2πiUn�0;1�� �n>0�; (8)

where [Nn�0; 1�] are independent random variableswith a
normal distribution with a zero mean and a unit variance
and [Un�0; 1�] are independent random variables with a
uniform distribution in the interval (0, 1). The parameter
α is introduced to account for the amplitude variations of
[F�kn�]. The independent uniformly distributed phase
terms exp�2πiUn�0; 1�� will ensure the independence of
[F�kn�], as required by Eq. (4). Substituting [F�kn�] into
Eq. (2), the splitting Q can be obtained from the mode-
splitting model developed in [1]. The scattering Q, on the
other hand, can be calculated from Eq. (6) following the

straightforward radiation-loss computation. The electric
fieldEϕm�R; 0� is evaluated from the 3-DFEMsimulations,
followed by a subsequent averaging along the vertical di-
mension of the slab. The FEM simulations show that, for
the first few order radial modes, the normalized electric
fields at the sidewall are almost the same. Therefore,
the radial mode order will not be distinguished in the fol-
lowing simulation example. The surface roughness para-
meters σ and Lc and the amplitude variation parameter α
are fitted to generate close results to the experimental
data. The simulation results are shown in Fig. 3(b), with
σ � 2 nm, Lc � 160 nm, and α � 0.5π. Figure 3(c) plots
the autocorrelation function of the surface roughness
with these parameters. Comparing Fig. 3(b)with Fig. 1(d),
similar variational patterns in both splittingQ and scatter-
ing Q are observed. Note that because of the random nat-
ure of [F�kn�], as illustrated by Eq. (8), Fig. 3(b) is just one
possible result. Different simulation runs will generate si-
milar but not exactly the same outcomes. This in fact
closely mimics the real fabrication, which produces reso-
nators with comparable but rarely identical perfor-
mances. In Fig. 3(b), we have also plotted the case with
α � 0 and the randomphase term inEq. (8) removed (with
other parameters being the same). This corresponds to
the examplementioned at the beginning, namely, amicro-
sphere with a single scatterer, where [F�kn�] values are
strongly correlated in phase and amplitude {[F�kn�] are
equal in this case}. The resultant mode splitting and scat-
tering loss are fairly uniform, as expected.

In conclusion, we have experimentally observed and
theoretically explained the variations of mode splitting
and scattering loss among the same radial mode family of
a high-Q microdisk resonator. Unlike the single-scatterer
case, the randomly distributed multiple scatterers pre-
sent in the microdisk sidewall follow a stationary statis-
tic, which leads to independent mode splittings and
variations in the scattering loss. This result is important
for the fundamental understanding of the high-Q micro-
disk resonators as well as for many applications. For ex-
ample, it explains the fact that in practice the very high Q
value is observed only for one particular azimuthal order,
while Q of the rest of modes in the same radial mode fa-
mily can be more than 30% less [2]. When working with
multiple azimuthal orders such as four-wave mixing, the
designer should be aware of such variations to avoid un-
expected results.
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Fig. 3. (Color online) (a) Schematic of the volume current
method for scattering loss calculation; (b) simulated scattering
Q (solid red linewith circles) andsplittingQ (solid green linewith
squares) for α � 0.5π in Eq. (8). The red and green dotted lines
correspond to the scattering and splittingQ, respectively, for the
case with α � 0 and no phase variation in Eq. (8). The vertical
axis is shownusing the logarithmic scale. (c)Theautocorrelation
function of the sidewall roughness with parameters used in (b).
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