georgia institute of technology PROJECT ADMINISTRATION	OFFICE OF DATA SHEET	RACT ADMINISTRATION
	X ORIGINAL	REVISION NO.
Project No. E-21-F03 R6194-0A0	GTRC/G稱	DATE $9 / 4$ / 86
Project Director: Dr. Kent R. Davey	School/XX	
Sponsor: Office of Naval Research, Arlington, VA		

Type Agreement: Contract N00014-86-K-0532

Award Period: From 7/1/86	To $9 / 30 / 87$	(Performance) 11/30/87	(Reports)
Sponsor Amount:	This Change	Total to Date	
Estimated: \$		\$ 60,000	
Funded: \$		\$ $\quad 60,000$	

Cost Sharing Amount: $\$$ \qquad Cost Sharing No: \qquad
Title: Target Discrimination by the Prediction and Analysis of Natural Resonances

\qquad

Includes Subproject No.(s) N/A

Project Director(s) K_R. Davey
GTRC / SKK

Sponsor Office of Naval Research. Arlington. VA

Title Target Discrimination by the Prediction and Analysis of Natural Resonances

Effective Completion Date: $9 / 30 / 87$ (Performance) 11/30/87

Grant/Contract Closeout Actions Remaining:

None

X Final Invoice or Final Fiscal Report

X Closing Documents
X Final Report of Inventions Questionnaire sent to P.I. -
X. Govt. Property Inventory \& Related Certificate
\square Classified Material Certificate

\qquad

Continues Project No. \qquad Continued by Project No.

COPIES TO:

Project Director

Research Ad̄ministrative Network
Research Property Management
Accounting
Procurement/GTRI Supply Services
Research Security Services
Reports Coordinator (OCA)
Legal Services

Library

GTRC
Research Communications (2)
Projact File
Other $\begin{gathered}\text { Duane Hutchison } \\ \text { Angela DuBose }\end{gathered}$
Russ Embry

Year to Date Report on

Electromagnetic Scattering from Dielectric Bodies Using the Resonance Technique

Contract E21-F03

June 1987
by

Kent Davey

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250

The objective of this research is target identification. Specifically, we wish to predict an object's shape and composition from its scattering signature. When a dielectric object is interrogated by a short time radar pulse, the reflected signal has two components. One component decays rather slowly in time and oscillates at a very high frequency. The second component decays rapidly in time and has a low real frequency component. That part of the scattered signal which decays slowly in time is thought to be related directly to the composition of the object. That part of the signature which decays more rapidly, having the slower real frequency component, is thought to be linked to the object's shape. We have sought to address this thesis by examining the scattering off a dielectric coated circular cylinder. Of particular interest is the degree to which the effects of shape and composition are separated in the location of the complex resonance poles. The results to date do not show clear separation of the two effects, i.e., shape and composition. It is thought that it may be necessary to examine a ray solution of the backscattered field from the dielectric coated cylinder via the Watson transformation in order to more accurately predict the scattering field near resonance. This is necessitated by the slow convergence of the terms composing the eigenfunction solution. Consider an infinitely long, perfectly conducting circular cylinder of radius "a" coated with a homogeneous dielectric layer of thickness T. The dielectric material has a relative dielectric constant ε_{r}. The cylinders are illuminated with a plane wave (of $e^{j \omega t}$ time suppressed). The geometry of the problem is illustrated in Figure 1. Both the transverse electric and transverse magnetic cases will be listed below. In the transverse electric case, the incident magnetic field is parallel with the axis of the cylinder, whereas in the transverse magnetic case, the incident electric field is parallel to the axis of the cylinder.

The eigenfunction solution for the far zone backscattered field can be written as follows:
where

$$
\begin{equation*}
U_{z}^{s}=\sqrt{\pi} \frac{\overline{2}}{\sqrt{j k_{0} \rho}} \frac{k_{0} \rho}{j \pi / 4} \sum_{n=0}^{\infty} \varepsilon_{n}(-1)^{n_{A}} n \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& A_{n}=-\frac{N(n)}{D(n)}=-\frac{J_{n}^{\prime}\left(k_{0} b\right)+G_{n} J_{n}\left(k_{0} b\right)}{H_{n}^{(2)^{\prime}}\left(k_{0} b\right)+G_{n} H_{n}^{(2)}\left(k_{0} b\right)} \tag{2}\\
& G_{n}=-\frac{1}{\sqrt{\varepsilon_{r}}} \frac{J_{n}^{\prime}(k b) N_{n}^{\prime}(k a)-J_{n}^{\prime}(k a) N_{n}^{\prime}(k b)}{J_{n}(k b) N_{n}^{\prime}(k a)-J_{n}^{\prime}(k a) N_{n}(k b)}, T E \tag{3a}\\
& G_{n}=-\sqrt{\varepsilon_{r}} \frac{J_{n}(k a) N_{n}^{\prime}(k b)-N_{n}(k a) J_{n}^{\prime}(k b)}{J_{n}(k a) N_{n}(k b)-N_{n}(k a) J_{n}(k b)} . T M \tag{3b}
\end{align*}
$$

In the above equations, $k_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}}, k=k_{0} \sqrt{\varepsilon_{r}}$, and $b=a+T_{0} \quad N_{n} H_{n}(2)$ are the cylindrical Bessel functions, and $J_{n^{\prime \prime}}^{\prime \prime} N_{n^{\prime}}^{\prime} H_{n}^{(2)}$ are the derivatives taken with respect to the argument.

Using the usual Watson's transformation technique, the eigenfunction solution can be cast into a ray solution. Without presenting the details, the final expressions for the far-zone backscattered field is given by

$$
\begin{equation*}
\sigma_{z}^{s}-\sigma_{z}^{G O}+\sigma_{z}^{S W} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbb{U}_{z}^{G O} \sim \frac{e^{-j k_{0} \rho}}{\sqrt{\rho}} R \sqrt{\frac{b}{2}} e^{j 2 k_{0}^{b}} \tag{5}\\
& R=\neq \frac{j \tan (k t)-\sqrt{\varepsilon_{r}}}{j \tan (k t)+\sqrt{\varepsilon_{r}}} \quad T E \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
v_{z}^{S W} \sim \frac{e^{-j k_{0} \rho}}{\sqrt{\rho}} 4 e^{-j \frac{\pi}{4}} \sum_{\ell=1}^{\infty}\left(-\frac{N(v)}{\frac{\partial}{\partial v} D(v)}\right)_{v=v_{\ell}} \frac{e^{-j v_{\ell} \pi}}{1-e^{-j v_{\ell} 2 \pi}} \tag{7}
\end{equation*}
$$

In the above, $U_{z}^{G O}$ is the geometrical-optic field, R is the reflection coefficient for a planar grounded slab illuminating with an normally incident plane wave, and $U_{z}^{S W}$ is the contribution from two surface waves as illustrated in Figure 1. In (7), v_{l} are the roots of the transcendental equation

$$
\begin{equation*}
D\left(v_{\ell}\right)=H_{v_{\ell}}^{(2)}\left(k_{0} b\right)+G{ }_{v_{\ell}}^{H}{ }_{v_{\ell}}^{(2)}\left(k_{0} b\right)=0 \tag{8}
\end{equation*}
$$

The factor $\left[1-e^{-j v_{\ell} 2 \pi}\right]^{-1}$ appearing in (7) results from the fact that all the multiply encircling surface waves are included in the analysis. The factor is important and is needed to predict the resonance phenomena.

We have concentrated to date on equation (3a). We've sought the complex roots for k, the wave number, using the following technique. Let C denote a closed contour in the complex z plane containing n zeros $z_{j}(j=1,2, \ldots, n)$ of the analytic function $f(z)$. Then from Cauchy's integral

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c} z^{p} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{n} z_{j}^{p} \equiv s_{p} \tag{9}
\end{equation*}
$$

where p is any non-negative integer. In particular, if $p=0$, then the integral (9) furnishes an estimate of the number, n, of zeros within C. The integral (9) is also evaluated with $p=1,2, \ldots, n$ to give sums s_{p}. If the number of zeros is small (say $n<4$), these are used with Newton's formulae to produce a polynomial of degree n (with leading coefficient one) having the same roots within C as $f(z)$. Specifically, the polynomial is written as

$$
\begin{equation*}
P_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k} \tag{10}
\end{equation*}
$$

with $a_{n}=1$ The coefficients a_{k} for $k=n-1, n-2, \ldots, 1,0$ are evaluated using the recurrence relations

$$
\begin{equation*}
(n-k) a_{k}+s_{1} a_{k+1}+s_{2} a_{k+2}+\ldots+s_{n-k} a_{n}=0 \tag{11}
\end{equation*}
$$

The low order polynomial equation $P_{n}(z)=0$ is solved by a standard technique (in our case, Müeller's method) to give numerical estimates $\left\{z_{i}^{\prime}\right\}$ of the actual set of zeros $\left\{z_{i}\right\}$. The differences $\left\{z_{i}-z_{i}\right\}$ are due predominantly to quadrature errors. The estimates $\left\{z_{i}^{\prime}\right\}$ are then refined by a further application of the Newton Raphson method, this time to the original function $f(z)$.

Figures 2-4 illustrate the change in the complex roots as the thickness of the dielectric coating is varied. Figures 5-7 illustrate the movement of the complex poles as the relative dielectric constant of a coating is varied, keeping the thickness fixed. In all figures, equation (1) is solved keeping the first four terms of the series.

In each case, the arrows show the progression of the complex wavenumber "k" poles from thinest coating (or smallest dielectric constant) to thickest coating (or largest dielectric constant). The abseissa represents the real part of the wavenumber k, the ordinate represents the imaginary part. As expected, the roots are always symmetric about the imaginary axis. The real part shows the resonance frequency while the imaginary part yields the damping rate. The $n=0,1,2,3$ roots are designated respectively by squares, triangles, diamonds, and x's. Except for a few exceptions of thickness changes, the general trend is that the resonance wave becomes less damped as the thickness increases and as the dielectric constant increases. For the same changes the resonance frequency decreases. This can be understood from
the fact that in both cases, surface waves are more strongly trapped by the presence of the coating, and as a consequence, the surface waves creep along the cylinder surface with less attenuation. There does not appear to be an easy way to separate out the effects of shape and composition from the graphs.

Thus, it appears that both the composition and the shape affect the position of these poles. However, the series of equation (1) converges quite poorly when the product $k_{o} b$ is not small. This is of course the motivating force behind the Watson transformation. With the scattered field expressed according to equation (7). this solution convergers very rapidly. It is thought that a better prediction of the complex resonances can be realized through the solution of (7) and (8). We will attempt to seek that solution using the asymptotic formula for the Hankel function below.

$$
\begin{equation*}
\mathrm{H}_{\ell}^{(2)}(k \mathrm{p}) \approx \frac{2}{\sqrt{\pi\left(k^{2} p^{2}-v_{\ell}^{2}\right)}} \exp \left[i\left(\sqrt{k^{2} p^{2}-v_{\ell}^{2}}-v_{\ell} \cos ^{-1} \frac{v_{\ell}}{k_{p}}-\frac{\pi}{4}\right)\right] \tag{12}
\end{equation*}
$$

This will be the center of our attention for the next three months of the contract period.

The method is based on a technique suggested by Delves and Lyness (Math. Computations, 21. 1967, p. 543). Let C denote a closed contour in the complex z plane containing n zeros $z_{j}(j=1,2, \ldots, n)$ of the analytic function $f(z)$. Then from Cauchy's integral

$$
\begin{equation*}
-\quad \frac{1}{2 \pi i} \int_{C} z^{p} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{f^{\prime}=1}^{n} z_{j}^{p} \equiv \delta_{p} \tag{13}
\end{equation*}
$$

where p is any non-negative integer. In particular, if $p=0$, then the integral (13) furnishes an estimate of the number, n, of zeros within C. The
integral (13) is also evaluated with $p=1,2, \ldots, n$ to give sums s_{p}. If the number of zeros is small (say $n<4$), these are used with Newton's formulae to produce a polynomial of degree n (with leading coefficient one) having the same roots within C as $f(z)$. Specifically, the polynomial is written as

$$
\begin{equation*}
P_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k} \tag{14}
\end{equation*}
$$

with $a_{n}=1$. The coefficients a_{k} for $k=n-1, n-2, \ldots, 1,0$ are evaluated using the recurrence relations

$$
\begin{equation*}
(n-k) a_{k}+s_{1} a_{k+1}+s_{2} a_{k+2}+\ldots+s_{n-k} a_{n}=0 \tag{15}
\end{equation*}
$$

The low-order polynomial equation $P_{n}(z)=0$ is solved by a standard technique (in our case, Müller's method) to give numerical estimates $\left\{z_{i}^{\prime}\right\}$ of the actual set of zeros $\left\{z_{i}\right\}$. The differences $\left\{z_{i}-z_{i}^{\prime}\right\}$ are due predominantly to quadrature errors. The estimates $\left\{z_{i}^{\prime}\right\}$ are then refined by a further application of the Newton/Raphson method, this time to the original function $f(z)$.

$$
H_{v_{\ell}}^{(2)}(k p) \cong \sqrt{\frac{2}{\pi\left(k^{2} p^{2}-v_{\ell}^{2}\right)^{1 / 2}}} \exp \left[i\left(\sqrt{k^{2} p^{2}-v_{\ell}^{2}}-v_{\ell} \cos ^{-1} \frac{v_{\ell}}{k p}-\frac{\pi}{4}\right)\right]
$$

FIG 1 SCATTERING OFF A DELECTRIC COATED CYLNDER

Figure 2. Complex wavenumber (k) poles with $\varepsilon_{r}=1.15$ for thickness ratios $\mathrm{b} / \mathrm{a}=1.1,1.15,1.2$. Plotted are modes $\mathrm{n}=0,1,2,3$ as squares, triangles, diamonds, and x's, respectively. Arrows designate pole changes.

Figure 3. Complex wavenumber (k) poles with $\varepsilon_{r}=2.56$ for thickness ratios $b / a=1.1,1.15,1.2$. plotted are modes $n=0,1,2,3$ as squares, triangles, diamonds, and x 's, respectively. Arrows designate pole changes.

Figure 4. Complex wavenumber (k) poles with $\varepsilon_{r}=4.0$ for thickness ratios $\mathrm{b} / \mathrm{a}=1.1,1.15,1.2$. Plotted are modes $\mathrm{n}=0,1,2,3$ as squares, triangles, diamonds, and x's, respectively. Arrows designate pole changes.
$\square=$ reboundo

Figure 5. Complex wavenumber (k) poles for thickness ratio $b / a=1.2$ with dielectric constants $\varepsilon_{r}=1.15$, 2.56, 4.0.

Figure 6. Complex wavenumber (k) poles for thickness ratio $b / a=1.15$ with dielectric constants $\varepsilon_{r}=1.15,2.56,4.0$.

GEORGIA INSTITUTE OF TECHNOLOGY

 SCHOOL OF ELECTRICAL ENGINEERING ATLANTA. GEORGIA 30332Dr. Michael Morgan Office of Naval Research 800 North Quincey Street, Code 1114 SE Arlington, VA 22217-5000

RE: Final Report, Contract N00014-86-K-0532
Project No. E-21-F03
Dear Dr. Morgan:
The subject report is forwarded in conformance with contract specifications.
Should you have questions or comments regarding this report, please call me at 404-894-2961.

```
Sincerely,
i
Kathy Knighton
Research Administrator
```

Enclosures

Final Report on
 Radar Target Discrimination Using the Resonance Technique

Contract E21-F03

October 1987

by
Kent Davey
School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0250

Abstract

The intent of the research was to investigate the possibility of determining an object's shape and composition given its scattering signature. When an object is interrogated by a short time sequence R p pulse, the frequency and characteristic decay of the resonance signal dictate the complex frequency poles (the frequency yielding us the real part of the pole and the characteristic decay the imaginary part). The research for this project is divided into two areas. First, given an object, what are the complex resonance poles and how can they be efficiently numerically computed? Second, how feasible is the inverse problem; that is, can the shape and composition be inferred easily once the poles are known?

The program was tasted on a dielectric coated cylinder. Based on the scattering equations for the wedge, the complex poles were calculated using an integral technique coupled with the Muller algorithm for obtaining complex zeros of a polynomial. The roots were compiled for various thicknesses of the coating and dielectric values. A program was then written to predict the best least squares approximation to a cylinder's thickness and dielectric coating given its complex poles.

The results indicate that unlike the acoustic world, the complex electromagnetic scattering poles do not separate in terms of shape dependent and composition dependent poles. The determination of these parameters in a generalized inverse is thus very difficult, especially when multiple geometric and composition factors are involved.

INTRODUCTION

The objective of this research is target identification. The specific goal is to predict an object's shape and composition from its scattering signature. When a penetrable object is interrogated by a short time sonic pulse, the reflected signal has two components. One component decays rather slowly in time and oscillates at a very high frequency. The second component decays rapidly in time and has a low real frequency component. That part of the scattered signal which decays slowly in time is thought to be related directly to the composition of the object. That part of the signature which decays more rapidly, having the slower real frequency component, is thought to De linked to the object's shape.

It is suggested that this phenomenon also occurs at radar frequencies in electromagnetic scattering. We have sought to address this thesis by examining the scattering off a dielectric coated circular cylinder. Of particular interest is the degree to which the effects of shape and composition are separated in the location of the complex resonance poles. The results to date do not show clear separation of the two effects. i.e.. shape and composition. It may be necessary to examine a ray solution of the backscattered field from the dielectric coated cylinder via the watson transformation in order to more accurately predict the scattering field near resonance. This is necessitated by the slow convergence of the terms composing the eigenfunction solution. Nevertheless, given a set of complex poles, it is possible to give a least squares prediction of the object shape and composition. This is shown for the thickness and dielectric constant of a dielectrically coated cylinder.

Consider an infinitely long, perfectly conducting circular cylinder of radius "a" coated with a homogeneous dielectric layer of thickness T (Figure 1). The dielectric material has a relative dielectric constant ε_{r} * The cylinders are illuminated with a plane wave (of $e^{j \omega t}$ time dependence suppressed). The geometry of the problem is illustrated in Figure 1. Both the transverse electric and transverse magnetic cases will be listed below. In the transverse electric case, the incident magnetic field is parallel with the axis of the cylinder, whereas in the transverse magnetic case, the incident electric field is parallel to the axis of the cylinder.

The eigenfunction solution for the far zone backscattered field can be written as follows:

$$
\begin{equation*}
U_{z}^{s} \approx \sqrt{\frac{2}{\pi}} \frac{e^{j k_{o} p}}{\sqrt{k_{0} \rho}} e^{j \pi / 4} \sum_{n=0}^{\infty} \varepsilon_{n}(-1)^{n_{A}} n_{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{n}=-\frac{N(n)}{D(n)}=-\frac{J_{n}^{\prime}\left(k_{0} b\right)+G_{n} J_{n}\left(k_{o} b\right)}{H_{n}^{(2)^{\prime}}\left(k_{0} b\right)+G_{n} H_{n}^{(2)}\left(k_{o} b\right)} \tag{2}\\
& G_{n}=-\frac{1}{\sqrt{\varepsilon_{r}}} \frac{J_{n}^{\prime}(k b) N_{n}^{\prime}(k a)-J_{n}^{\prime}(k a) N_{n}^{\prime}(k b)}{J_{n}(k b) N_{n}^{\prime}(k a)-J_{n}^{\prime}(k a) N_{n}(k b)}, T E \tag{3a}\\
& G_{n}=-\sqrt{\varepsilon_{r}} \frac{J_{n}(k a) N_{n}^{\prime}(k b)-N_{n}(k a) J_{n}^{\prime}(k b)}{J_{n}(k a) N_{n}(k b)-N_{n}(k a) J_{n}(k b)}, T M \tag{3b}
\end{align*}
$$

In the above equations, $k_{o}=\omega \sqrt{\mu_{0} \varepsilon_{0}}, k=k_{0} \sqrt{\varepsilon_{r}}$, and $b=a+T . \quad N_{n}, H_{n}^{(2)}$ are the cylindrical Bessel functions, and $J_{n^{\prime}}{ }^{\prime} N_{n^{\prime}}, H_{n}^{(2)}$ are the derivatives taken with respect to the argument.

Using the usual Watson's transformation technique, the eigenfunction solution can be cast into a ray solution. The final expressions for the farzone backscattered field is given by

Figure 1. Scattering off a dielectric coated cylinder.

$$
\begin{equation*}
U_{z}^{s}-U_{z}^{G O}+U_{z}^{S W} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{z}^{G O} \sim \frac{e^{-j k_{o} \rho}}{\sqrt{\rho}} R V^{\frac{b}{2} e^{j 2 k_{o}^{b}}} \underset{j \tan (k t)+\sqrt{\varepsilon_{r}}}{I \tan (k t)-\sqrt{\varepsilon_{r}}} T E \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{z}^{S W} \sim \frac{e^{-j k_{o} \rho}}{\sqrt{\rho}} 4 e^{-j \frac{\pi}{4}} \sum_{2=1}^{\infty}-\frac{N(v)}{\frac{\partial}{\partial v} D(v)} e_{v=v_{\ell}}^{1-j v_{\ell} \pi} \tag{7}
\end{equation*}
$$

In the above, $U_{z}^{G O}$ is the geometrical-optic field, R is the reflection coefficient for a planar grounded slab illuminating with an normally incident plane wave, and $U_{z}^{S W}$ is the contribution from two surface waves as illustrated in Figure 1. In (7), v_{ℓ} are the roots of the transcendental equation

$$
\begin{equation*}
D\left(\nabla_{\ell}\right)=H_{v_{\ell}}^{(2)}\left(k_{0} b\right)+G_{v_{\ell}} H_{V_{\ell}}^{(2)}\left(k_{0} b\right)=0 \tag{8}
\end{equation*}
$$

The factor $\left[1-e^{-j v_{\ell} 2 \pi}\right]^{-1}$ appearing in (7) results from the fact that all the multiply encircling surface waves are included in the analysis. The factor is important and is needed to predict the resonance phenomena. Equation (3a) received the bulk of attention in this research.

INTEEGRAL TECHRIOUS FOR DETERMINING COMPLEX POLES

The method is based on a technique suggested by Delves and Lyness [13]. We seek the complex roots for k, the wave number, using the following technique. Let C denote a closed contour in the complex z plane containing n
zeros $z_{j}(j=1,2, \ldots, n)$ of the analytic function $f(z)$. Then from Cauchy's integral theory

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c} z^{p} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{n} z_{j}^{p} \equiv s_{p} \tag{9}
\end{equation*}
$$

where p is any non-negative integer. In particular, if $p=0$, then the integral (9) furnishes an estimate of the number, n, of zeros within C. The integral is also evaluated with $p=1,2, \ldots, n$ to give sums s_{p}. If the number of zeros is small (say $n \leqslant 4$), these are used with Newton's formula to produce a polynomial of degree n (with leading coefficient one) having the same roots within C as $f(z)$. Specifically, the polynomial is written as

$$
\begin{equation*}
p_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k} \tag{10}
\end{equation*}
$$

with $a_{n}=1$. The coefficients a_{k} for $k=n-1, n-2, \ldots, 1,0$ are evaluated using the recurrence relations

$$
\begin{equation*}
(n-k) a_{k}+s_{1} a_{k+1}+s_{2} a_{k+2}+\ldots+s_{n-k} a_{n}=0 \tag{11}
\end{equation*}
$$

The low order polynomial equation $p_{n}(z)=0$ is solved by a standard technique (in our case, Müeller's method) to give numerical estimates $\left\{z_{i}^{\prime}\right\}$ of the actual set of zeros $\left\{z_{i}\right\}$. The differences $\left\{z_{i}-z_{i}\right\}$ are due predominantly to quadrature er rors. The estimates $\left\{z_{i}^{\prime}\right\}$ are then refined by a further application of the Newton Raphson method, this time to the original function $f(z)$.

RESOLTS

Figures 2-4 illustrate the change in the complex roots as the thickness of the dielectric coating is varied. Figures 5-7 illustrate the movement of the complex poles as the relative dielectric constant of the coating is varied, keeping the thickness fixed. In all figures, equation (1) is solved keeping the first four terms of the series.

In each case, the arrows show the progression of the complex wavenumber "k" poles from thinest coating (or smallest dielectric constant) to thickest coating (or largest dielectric constant). The abscissa represents the real part of the wavenumber k, the ordinate represents the imaginary part. As expected, the roots are symmetric about the imaginary axis. The real part shows the resonance frequency while the imaginary part yields the damping rate. The $n=0,1,2,3$ roots are designated respectively by squares, triangles, diamonds, and x 's. Except for a few exceptions of thickness changes, the general trend is that the resonance wave becomes less damped as the thickness increases and as the dielectric constant increases. For the same changes the resonance frequency decreases. This can be understood from the fact that in both cases, surface waves are more strongly trapped by the presence of the coating, and as a consequence, the surface waves creep along the cylinder surface with less attenuation. There does not appear to be an easy way to separate out the effects of shape and composition from the graphs. Additional calculations were performed after modifications to the Bessel function routines regarding the expressions used for comuting derivatives. Figures 8-10 give a closer examination of the effect of dielectric and coating thickness changes on the poles keeping the $n=0$ term only. Here the relative dielectric constant is varied from 4-100 for three thicknesses. The effect of

Figure 2. Complex wavenumber (k) poles with $\epsilon_{\mathrm{r}}=1.15$ for thickness ratios $\mathrm{b} / \mathrm{a}=1.1,1.15$, 1.2.
Plotted are modes in $\mathrm{n}=0,1,2,3$ as squares, triangles, diamonds, and $\mathrm{x}^{\prime} \mathrm{s}$
respectively. Arrows designate changes.

Figure 3. Complex wavenumber (k) poles with $\boldsymbol{\epsilon}_{\mathrm{r}}=2.56$ for thickness ratios $\mathrm{b} / \mathrm{a}=1.1,1.15$, 1.2.
Plotted are modes in $n=0,1,2,3$, as squares, triangles, diamonds, and x^{\prime} s respectively. Arrows designate changes.

Figure 4. Complex wavenumber (\mathbf{k}) poles with $\epsilon_{\mathrm{r}}=4.0$ for thickness ratios $\mathrm{b} / \mathrm{a}=1.1,1.15,1.2$.
Plotted are modes in $\mathrm{n}=\mathbf{0 , 1 , 2 , 3}$ as squares, triangles, diamonds, and x 's
respectively. Arrows designate changes.

Figure 5. Complex wavenumber (k) poles for thickness ratios $b / a=1.2$, with dielectric constants $\epsilon_{\mathrm{r}}=1.15,2.56,4.0$.

Figure 6. Complex wavenumber (k) poles for thickness ratios $b / a=1.15$, with dielectric constants $\epsilon_{\mathrm{r}}=1.15,2.56,4.0$.

Figure 7. Complex wavenumber (k) poles for thickness ratios $b / a=1.1$, with dielectric constants $\epsilon_{\mathrm{r}}=1.15,2.56,4.0$.

Figure 8. Complex wavenumber $\left(k_{o}=\omega \sqrt{\mu_{0} \epsilon_{0}}\right)$ poles for coating thickness $b / a=1.05, \epsilon_{r}=4 \ldots 100$. Mode $\mathrm{n}=0$ is plotted only - first 3 poles.

Figure 9. Complex wavenumber $\left(k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}\right)$ poles for coating thickness $b / a=1.10, \epsilon_{T}=2.56 \ldots 100$. Mode $\mathbf{n}=0$ is plotted only - first 3 poles.

Figure 10. Complex wavenumber ($\mathrm{k}_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}$) poles for coating thickness $\mathrm{b} / \mathrm{a}=1.15, \epsilon_{\mathrm{r}}=2.56 \ldots 100$. Mode $\mathbf{n}=0$ is plotted only - first $\mathbf{3}$ poles.
varying thickness for three dielectric constants is shown in Figures 11-13. In both sets, on the second quadrant redundant roots are omitted. Except for very large dielectric constants, it appears that the effects of thickness and dielectric composition cannot be easily separated.

TARGET DISCRIMINATION

Given the apparent linkage of coating thickness and composition effects, there are two approaches that might be followed in pursuing the inverse problem. The first is to formulate a relationship based on the above curves between the complex roots and the thickness and dielectric constant.

$$
\begin{align*}
& z_{1}=f_{1}\left(\varepsilon_{r}, t h\right) \\
& z_{2}=f_{2}\left(\varepsilon_{r}, t h\right) \tag{12}\\
& z_{3}=f_{3}\left(\varepsilon_{r}, t h\right)
\end{align*}
$$

where the subscripts on the roots designate the order of the roots. The inverse solver would then have the task of minimizing the functional

$$
\begin{align*}
& S=\left(z_{1} \text { measured }-f_{1}\left(\varepsilon_{r}, \text { th }\right)\right)\left(z_{1} \text { measured }-f_{1}\left(\varepsilon_{r}, t h\right)\right)^{*} \\
& +\left(z_{2} \text { measured }-f_{2}\left(\varepsilon_{r}, t h\right)\right)\left(z_{2} \text { measured }-f_{2}\left(\varepsilon_{r}, t h\right)\right)^{*} \\
& +\left(z_{3} \text { measured }-f_{3}\left(\varepsilon_{r}, t h\right)\right)\left(z_{3} \text { measured }-f_{3}\left(\varepsilon_{r}, t h\right)\right)^{*} \\
& +\ldots . \tag{13}
\end{align*}
$$

using a steepest descent or nonlinear optimization technique. Another alternative is to simply compute a priori a table of roots for an array of

Figure 11. Complex wavenumber $\left(k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}\right)$ poles for coating thickness $\epsilon_{\mathrm{r}}=4, \mathrm{~b} / \mathrm{a}=1.05 \ldots 1.2$. Mode $\mathbf{n}=0$ is plotted only - first $\mathbf{3}$ poles.

Figure 12. Complex wavenumber ($\mathrm{k}_{\mathrm{o}}=\omega \sqrt{\mu_{\mathrm{o}} \epsilon_{\mathrm{o}}}$) poles for coating thickness $\epsilon_{\mathrm{r}}=15, \mathrm{~b} / \mathrm{a}=1.04 \ldots$.2.2. Mode $\mathrm{n}=0$ is plotted only - first 3 poles.

Figure 13. Complex wavenumber $\left(k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}\right)$ poles for coating thickness $\epsilon_{r}=100, \mathrm{~b} / \mathrm{a}=1.04 \ldots 1.2$. Mode $\mathbf{n}=0$ is plotted only - first 3 poles.
dielectric and thickness values. The task of the inversion algorithm degenerates to finding a least squares optimal fit for the measured pole pairs with those pole pairs in the table. Such a table for the dielectric coated cylinder along with the algorithm for determining the most likely dielectric/ thickness pair are listed in the Appendices.

FUTURE WORR/CONCLUSIONS

The separation of composition and shape effects on the resonance scattering poles is not a simple task in the electromagnetic world. Because their effects cannot be isolated, sophisticated optimization schemes must be employed to realize target discrimination capability. This has been accomplished for the dielectric coated cylinder via the series expansion field expression appropriate for this problem [1]. However, the series of equations in (1) converge quite poorly when the product $k_{o} b$ is not small. This is of course the motivating force behind the Watson transformation. With the scattered field expressed according to equation (7), this solution convergers very rapidly. It is thought that a better prediction of the complex resonances can be realized through the solution of (7) and (8). This solution could be sought using the asymptotic formula for the Hankel function in (14),

$$
\begin{equation*}
H_{v_{\ell}}^{(2)}(k p) \stackrel{2}{\approx} \frac{2}{\pi\left(k^{2} p^{2}-v_{\ell}^{2}\right)} \exp \left[i\left(\gamma \overline{k^{2} p^{2}-v_{\ell}^{2}}-v_{\ell} \cos ^{-1} \frac{v_{\ell}}{k p}-\frac{\pi}{4}\right)\right] \tag{14}
\end{equation*}
$$

and might well shed additional light on the target discrimination problem.

1. Nan Wang, "Electromagnetic Scattering from a Dielectric Coded Cylinder," IEEE Transactions on Antennas and Propagation, vol. AP-33, no. 9, p. 960, September 1987.
2. R. Kastner and R. Mittra, ${ }^{\text {m }}$ A Spectral-Iteration Technique Analyzing Scattering from Arbitrary Bodies, Part 1: Cylindrical Scatterers with E-Wave Incidents," IEEE Transactions on Antennas and Propagation, vol. AP-31, no. 3. p. 499, May 1983.
3. H. Uberall and G. Gaunaurd, "The Physical Content of the Singularity Expansion Method," Applied Physics Letters, vol. 39, no. 4, p. 362, August 1981.
4. G. Gaunaurd and A. Kalnins, "Resonances in the Sonar Cross Sections of Coded Spherical Shelves," International Journal of Solid Structures, vol. 18, no. 12, pp. 1083-1102, 1982.
5. G. Gaunaurd, "Sonar Cross Section of a Coded Hollow Cylinder in Water," Journal of Acoustic Society of America, vol. 61, no. 2, p. 360, February 1977.
6. C. Chuang, F. Liang, and S. Lee, "High Frequency Scattering from an Open Ended Semi-Infinite Cylinder," IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 6, p.770, November 1975.
7. C. Eftimiu and P. Huddleston, "Cylindrical Eigencurrents," IEEE Transactions on Antennas and Propagation, vol. AP-31, no. 2, p. 325, March 1983.
8. J. Roumeliotis, J. Fikioris, and G. Gounaris, "Electromagnetic Scattering from an Eccentrically Coded Infinite Metallic Cylinder," Journal of Applied Physics, vol. 51, no. 8, p. 4488, August 1980.
9. A. Bhattacharyya and S. Tandon, "Radar Cross Section of a Finite Planar Structure Coded with a Lossy Dielectric," IEEE Transactions on Antennas and Propagation, vol. AP-32, no. 9, p. 1003, September 1984.
10. Reuben Eaves, Electromagnetic Scattering from a Conducting Circular Cylinder Covered with a Circumferentially Magnetized Ferrite," IEEE Transactions on Antennas and Propagation, vol. AP-24, no. 2, p. 190, March 1976.
11. G. Gaunaurd, H. Uberall, and P. Moser, Mesonances of Dielectrically Coded Conducting Spheres and the Inverse Scattering Problem," Journal of Applied Physics, vol. 52, no. 1, p. 35. January 1981.

12: G. Gaunaurd and H. Uberall, "Electromagnetic Spectral Determination of the Material Composition of Penetrable Radar Targets," Nature, vol. 287, no. 5784, pp. 708-709. October 1980.
13. Delves and Lyness, Math Computations 21. 1967. p. 543.

APPENDICES

These appendices show programs and additional results in the project. Appendix A is the Fortran program used to perform the root integral of the Hankel and Bessel functions in (1) using (9) and then a Muller solver on (11). Appendix B is the algorithm to refine these roots using a Newton Raphson procedure

$$
z^{k}=z^{k-1}-\frac{f\left(z^{k}\right)}{f^{\prime}\left(z^{k}\right)}
$$

Appendix C is the algorithm to locate the optimum least squares thickness/ dielectric combination given an arbitrary set of pole locations. Appendix D shows the table of roots associated with various combinations of thickness and dielectric constant, used in Appendix C.

APPENDIX A

ALGORITHIM TO PRRFORM THE ROOT INTEGRAL (9)

PROGRAM MAIN(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
$P I=\operatorname{ACOS}(-1$.

8 NPTS=96
WRITE(*,*) 'INPUT N:
$\operatorname{READ}(*, *) \mathrm{N}$
WRITE(*,*) 'INPUT ER:'
$\operatorname{READ}(*, *) \operatorname{ER}$
$A=1$
WRITE(*,*) 'INPUT A/B RATID'
$\operatorname{READ}(*, *) \mathrm{B}$
10 WRITE (6,*)'INPUT LOWER AND UPPER RANGE ALONG REAL AXIS' $\operatorname{READ}(5, *) \times 1, \times 2$
WRITE(6,*)'INPUT LOWER AND UPPER RANGE ALONG IMAG. AXIS' $\operatorname{READ}(5, *) \mathrm{Y} 1, \mathrm{Y} 2$
$S U M=(0 ., 0$.
CALL CINTE(PART,Y1,Y2, X2,NPTS,1,0,N,KO,A,B,ER)
SUM $=$ SUM + PART
C EVALUATE SECOND LINE INTEGRAL WITH Y (IMAGINARY) FIXED.
CALL CINTE (PART, X1, X2, Y2,NPTS, $2,0, N, K O, A, B, E R$)
SUM $=$ SUM + PAR T
C EVALUATE THIRD LINE INTEGRAL WITH X (REAL) FIXED AND
C EQUAL TO LOWER BOUND.
CALL CINTE(PART, Y1, Y2, X1,NPTS, $3,0, N, K 0, A, B, E R)$
SUM $=S U M+P A R T$
C EVALUATE FOURTH LINE INTEGRAL WITH Y (IMAG.) FIXED AND
EQUAL TO THE LOWER BOUND.
CALL CINTE(PART, X1, X2, Y1,NPTS, $4,0, N, K O, A, B, E R)$
$S U M=S U M+P A R T$
C
SUM $=$ SUM / CMPLX ($0.0,2 * P I$)
WRITE (6,*)'AN APPROXIMATION TO THE \# OF ROOTS=',SUM
WRITE($6, *$)'ENTER GUESS FOR NUMBER OF ROOTS OR'
WRITE(6,*)'ENTER "O" TO CHANGE REGION OF INTEGRATION'
READ (5,*)NZER
C \quad NZER $=\operatorname{INT}(0.3+\operatorname{REAL}(\operatorname{SUM}))$
C IF (AIMAG(SUM).GE.0.3) NZER=0
IF (NZER.EQ.O) GOTO 10

```
    DO 20 I=1,NZER
C PERFORM THE SAME PROCEDURE AS BEFORE TO EVALUATE THE
C LINE INTEGRAL EXCEPT INCREMENT THE POWER OF THE
    EXPONENT ON KO IN THE INTEGRAL.
    CALL CINTE(PART,Y1,Y2,X2,NPTS,1,I,N,KO,A,B,ER)
    S(I)=PART
C
    CALL CINTE(PART,X1,X2,Y2,NPTS,2,I,N,KO,A,B,ER)
    S(I)=S(I)+PART
    CALL CINTE(PART,Y1,Y2,X1,NPTS,3,I,N,KO,A,B,ER)
    S(I)=S(I)+PART
C
    CALL CINTE(PART,X1,X2,Y1,NPTS,4,I,N,KO,A,B,ER)
    S(I)=S(I)+PART
C
    S(I) =S(I)/CMPLX(0.0,2*PI)
    WRITE(6,777)I,S(I)
    777 FORMAT(3X,I2,8X,2(F12.5))
    20 CONTINUE
C
C***********************************************************
C IN THE APPROXIMATION.
    AR(NZER+1)=(1.,0.0)
    K=NZER-1
    KNT=K+1
    40 IF(K.LT.0) GOTO 60
    PART=(0.0,0.0)
    DO 50 JS=1,NZER-K
    PART=PART+S(US)*AR(KNT+US)
    50 CONTINUE
    AR(KNT)=(-1.,0)*PART/(NZER-K)
    K=K-1
    KNT =K+1
    GOTO 40
6 0 \text { CONTINUE}
C
    WRITE (6,78)
    78 FORMAT(8X,'COEFFICIENTS OF THE POLYNOMIAL APPROXIMATION')
        WRITE (6,81)
    81 FORMAT(3X,'N',22X,'AR(N)')
    DO }80\textrm{I}=1,NZER+
    WRITE(6,79)I-1,AR(I)
    79 FORMAT(3X,I2,8X,2(F12.5))
    80 CONTINUE
    CALL THE SUBROUTINE TO EVALUATE THE COEFFICIENTS OF
    THE NEW POLYNOMIAL.
    CALL ZROOTS(AR,NZER,ROOTS,.TRUE.)
    WRITE(6,*)'SUBROUTINE ZROOTS COMPLETED'
    WRITE(6.*)
    WRITE(6,*)
    WRITE(6,129)
129 FORMAT(3X,'EVALUATION OF FUNCTION AT APPROXIMATE ROOTS')
```

```
    WRITE(6,*)
    WRITE(6,128)
    128 FORMAT(2X,'#',15X,'ROOT',27X,'DENO(ROOT)')
    DO 130 I=1,NZER
    WRITE(6,131)I,ROOTS(I),DENO(N,ROOTS(I),A,B,ER)
131 FORMAT(2X,I2,3X,2(F12.5),5X,2(F12.5))
130 CONTINUE
    WRITE(*,*)'ENTER "1" TO MODIFY D_FUNCTION : '
    READ(*,*)MODIFY
    IF(MODIFY.NE.1) GOTO }15
    DO 140 I=1,NZER
    MODOC=0
135 IF(CABS(DENO(N,ROOTS(I),A,B,ER)).GE.0.0000001) THEN
    MODOC=MODOC+1
    WRITE(*,*)'NUMBERS OF MODIFYING :`,MODOC
    DENOO = DENO(N,ROOTS(I),A,B,ER)
    NEWKO = ROOTS(I) + (0.0005,0.0005)
    DENO1 = DENO(N,NEWKO,A,B,ER)
    NEWKO = ROOTS(I) - (0.0005,0.0005)
    DENO2 = DENO(N,NEWKO,A,B,ER)
    DELKO = DENOO / ((DENO1-DENO2)/(0.001,0.001) )
    RODTS(I) = ROOTS(I) - DELKO
    WRITE(*,*)'KO :`,ROOTS(I)
    WRITE (*,*)'D_FUNCTION :',DENO(N,ROOTS(I),A,B,ER)
    GOTO }13
    END IF
140 CONTINUE
    DO 142 I=1,NZER
    WRITE(6,131)I,ROOTS(I),DENO(N,ROOTS(I),A,B,ER)
142 CONTINUE
```

```
150 WRITE(6,*)'TRY AGAIN? (YES=1)'
```

150 WRITE(6,*)'TRY AGAIN? (YES=1)'
READ(5,*)ITEST
READ(5,*)ITEST
IF(ITEST.EQ.1)GOTO 08
IF(ITEST.EQ.1)GOTO 08
STOP
STOP
END
END
SUBROUTINE CINTE(PART,FIRS,SECO,CNST,NPTS,IDENT,NP,N,KO,A,B,ER)
C THIS SUBROUTINE EVALUATES THE LINE INTEGRALS.
C EACH ROOT AND WEIGHTING ARE USED TWICE. IF IT
C IS THE SECOND TIME A ROOT IS BEING USED, IT IS
C MADE NEGATIVE.
DIMENSION ROOT(48),AC(48)
COMPLEX KO,DENO,PART,TEMP,TEMP2,J,JDE,JDOUDE
, Y,YDE, YDOUDE,H2, H2DE, H2DOUDE,G,GDE,DENODE
PART=(0.0,0.0)
ITWO=0
IMAX=48
INOM=48
DO 30 I=1,NPTS

```
C
C
```

 ROOTJ=ROOT(ITOP)
 ACJ=AC(ITOP)
 IF(ITOP.EQ.ITWO) ROOTJ=-ROOTU
 T=((SECO-FIRS)*ROOTJ+ SECO+FIRS)/2
 C IF IT HAS AN IDENTIFIER OF A PATH \#1 OR PATH \#3 THEN
X (REAL) IS FIXED AND IT WILL INTEGRATE ALONG Y (IMAG.).
IFIIDENT.EQ.1.OR.IDENT.EQ.3) THEN
KO=CMPLX(CNST,T)
ELSE
KO=CMPLX(T,CNST)
ENDIF
C
TEMP=K0**NP
TEMP=TEMP*DENODE(N,KO,A,B,ER)
TEMP2=DENO(N,KO,A,B,ER)
IF(TEMP2.EQ.(0.0,0.0)) TEMP2=(1.E-20,1.E-20)
TEMP=TEMP/TEMP2
TEMP=TEMP*ACJ
PART=PART+TEMP
ITWO= I TOP
ITOP=IMAX-INT(I/2)
CONTINUE
IF(IDENT.EQ.2.OR.IDENT.EQ.3) PART=PART*(-1.,0.)
IF(IDENT.EQ.1.OR.IDENT.EQ.3) PART=PART*(0., 1.)
PART=PART*(SECO-FIRS)/2
RETURN
DATA AC /.0325506145,.0325161187,.0324471637,
C .0323438226,.0322062048,.0320344562,.0318287589,.0315893308,
C . . 313164256,.0310103326,.0306713761,.0302999154,.0298963441,
.02946 109,.0289946142,.0284974111,.0279700076,.0274129627,
.0268268667,.0262123407,.0255700360,.0249006332,.0242048418,
.0234833991,.0227370697,.0219666444,.0211729399,.0203567972,
.0195190811,.0186606796,.0177825023,.0168854799,.0159705629,
.0150387210,.0140909418,.0131282296,.0121516047,.0111621021,
.0101607705,.0091486712,.0081268769,.0070964708,.0060585455,
C .0050142027,.0039645543,.0029107318,.0018539608,.0007967921/
DATA ROOT /.0162767448,.0488129851,.0812974955,
C .1136958501,.1459737147,.1780968824,.2100313105,.2417431562,
.2731988126,.3043649444,. 3352085229, .3656968615,. 3957976498,
.4254789884,.4547094222,.4834579739,.5116941772,.5393881083,
.5665104186,.5930323648,.6189258401,.6441634038,..66871831,
.6925645366,.7156768123,.7380306437,.7596023412,.7803690439,
.8003087441,.8194003107,.8376235112,.8549590334,. 8713885059,
.8868945174, . 9014606353,.9150714231,.9277124567,.9393703398,
.9500327178,.9596882914,.9683268285,.9759391746,.9825172636,
.9880541263,.9925439003,.995981843,.9983643759,.9996895039/
END

```

\section*{СССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС}
```

COMPLEX FUNCTION J(N,Z)
COMPLEX Z
CALL BSSLU(Z,N,J)
RETURN
END

```
```

 COMPLEX FUNCTION JDE(N,Z)
 COMPLEX Z,U
 N1=N-1
 JDE=J(N1,Z) - N * J(N,Z) / Z
 RETURN
 END
 COMPLEX FUNCTION UDOUDE(N,Z)
 COMPLEX Z,J,UDE
 JDOUDE = -J(N,Z) - JDE(N,Z)/Z + J(N,Z)/(Z*Z)
 C IF N <> 1, THIS TERM MAY NEED MODIFY.
RETURN
END
COMPLEX FUNCTION Y(N,Z)
COMPLEX Z
CALL BSSLY(Z,N,Y)
RETURN
END
COMPLEX FUNCTION YDE(N,Z)
COMPLEX Z,Y
N1=N-1
YDE = Y(N1,Z) - N*Y(N,Z)/Z
RETURN
END
COMPLEX FUNCTION YDOUDE (N,Z)
COMPLEX Z,Y,YDE
YDOUDE = -Y(N,Z) - YDE (N,Z)/Z +Y(N,Z)/(Z*Z)
RETURN
END
COMPLEX FUNCTION H2(N,Z)
COMPLEX Z,AI,J,Y
AI= (0,1)
H2=J(N,Z) - AI * Y(N,Z)
RETURN
END
COMPLEX FUNCTION H2DE(N,Z)
COMPLEX Z,H2
N1=N-1
H2DE= H2(N1,Z) - N * H2(N,Z) / Z
RE TURN
END
COMPLEX FUNCTION H2DOUDE(N,Z)
COMPLEX Z,H2,H2DE
H2DOUDE = -H2(N,Z) - H2DE (N,Z)/Z + H2(N,Z)/(Z*Z)
C IF N<> 1, THIS TERM MAY NEED MODIFY.
RETURN
END

```
```

 COMPLEX FUNCTION G(N,KO,A,B,ER)
 COMPLEX KO,J,Y,JDE,YDE,KA,KB,GDIV
 KA = KO * SQRT(ER) * A
 KB = KO * SQRT(ER) * B
 G= -SQRT(ER) * (J(N,KA)*YDE(N,KB)
 -Y(N,KA)*JDE(N,KB))
 GDIV = J(N,KA)*Y(N,KB) - Y(N,KA)*J(N,KB)
IF(GDIV.EQ.0) GDIV = (1.E-20,1.E-20)
G=G/GDIV
RETURN
END
COMPLEX FUNCTION GDE(N,KO,A,B,ER)
COMPLEX KO, J,Y,JDE, JDOUDE, YDE, YDOUDE,KA,KB,DENOG,NUMOG,FIR,SEC
KA = KO * SQRT(ER) * A
KB = KO * SQRT(ER) * B
NUMOG = J(N,KA)*YDE (N,KB)
NUMOG = NUMOG - Y(N,KA)*JDE(N,KB)
DENOG = J(N,KA)*Y(N,KB) - Y(N,KA)*J(N,KB)
IF(DENOG.EQ.0) DENOG=(1.E-20,1.E-20)
FIR = JDE (N,KA)*YDE (N,KB)*SQRT(ER)*A+J(N,KA)*YDOUDE(N,KB)

+ *SQRT(ER)*B
FIR = FIR - YDE (N,KA)*JDE (N,KB)*SQRT (ER)*A
FIR = FIR - Y(N,KA)*JDOUDE(N,KB)*SQRT(ER)*B
FIR = FIR * DENOG
SEC = JDE (N,KA)*Y(N,KB)*SQRT(ER)*A+J(N,KA)*YDE (N,KB)*SQRT(ER)*B
SEC = SEC - YDE (N,KA)*J(N,KB)*SQRT(ER)*A
SEC = SEC - Y(N,KA)*JDE (N,KB)*SQRT(ER)*B
SEC = SEC * NUMOG
GDE = -(FIR -SEC) * SQRT(ER) / (DENOG*DENOG)
RETURN
END
COMPLEX FUNCTION DENO(N,KO,A,B,ER)
COMPLEX KO,KOB,H2,H2DE,G
KOB = KO * B
DENO = H2DE(N,KOB) +G(N,KO,A,B,ER)*H2(N,KOB)
RETURN
END
COMPLEX FUNCTION DENODE(N,KO,A,B,ER)
COMPLEX KO,KOB,H2,H2DE,H2DOUDE,G,GDE
KOB = KO * B
DENODE = H2DOUDE(N,KOB)*B + GDE(N,KO,A,B,ER)*H2(N,KOB)
+ + G(N,KO,A,B,ER)*H2DE(N,KOB)*B
RETURN
END
СС
SUBROUTINE LAGUER(AR,M,X,EPS,POLISH)
COMPLEX AR(30),X,DX,X1,B,D,F,G,H
COMPLEX SQ,GP,GM,G2,ZERO
LOGICAL POLISH
PARAMETER (ZERO=(0.,0.),TINY=1.E-15.MAXIT =100)
IF(POLISH) THEN
DXOLU=CABS(X)
NPOL=0
ENDIF

```
```

 DO 12 ITER=1,MAXIT
 B=AR(M+1)
 D=ZERO
 F=ZERO
 DO 11 J=M, 1,-1
 F=X*F+D
 D=X*D+B
 B=X*B+AR(J)
 1 1
IF(CABS(B).LE.TINY) THEN
DX=ZERO
ELSE IF(CABS(D).LE.TINY.AND.CABS(F).LE.TINY) THEN
DX=CMPLX(CABS}(B/AR(M+1))**(1./M),0.
ELSE
G=D/B
G2=G*G
H=G2-2.*F/B
SQ=CSQRT((M-1)*(M*H-G2))
GP=G+SQ
GM=G-SQ
IF(CABS(GP).LT.CABS(GM)) GP=GM
DX=M/GP
ENDIF
XI=X-DX
IF(X.EQ.X1) RETURN
x=x1
IF(POLISH) THEN
NPOL =NPOL+1
CDX=CABS(DX)
IF(NPOL.GT.9.AND.CDX.GE.DXOLD) RETURN
DXOLD=CDX
ELSE
IF(CABS(DX).LE.EPS*CABS(X)) RETURN
ENDIF
12 CONTINUE
WRITE(6,*)'TOO MANY ITERATIONS'
RETURN
END
SUBROUTINE ZROOTS(AR,M,ROOTS,POLISH)
PARAMETER (EPS=1.E-6,MAXM=30)
COMPLEX AR(30),ROOTS(M),AD(MAXM),X,B,C
LOGICAL POLISH
DO 11 J=1,M+1
AD(J)=AR(J)
11 CONT INUE
DO 13 J=M, 1,-1
X=CMPLX(0.,0.)
CALL LAGUER(AD,U,X,EPS,.FALSE.)
IF(ABS(AIMAG(X)).LE.2.*EPS**2*ABS(REAL(X)))
\#X=CMPLX(REAL (X),0.)

```
```

 ROOTS(U)=x
 B=AD(J+1)
 DO 12 JJ=J,1,-1
 C=AD(JJ)
 AD(JJ)=B
 B=X*B+C
 12 CONTINUE
13 CONTINUE
IF(POLISH) THEN
DO 14 J=1,M
CALL LAGUER(AR,M,ROOTS(J),EPS,.TRUE.)
14 CONTINUE
ENDIF
DO 16 J=2,M
X=ROOTS\U
DO 15 I=J-1,1,-1
IF(REAL(ROOTS(I)).LE.REAL(X)) GOTO 10
ROOTS(I+1)=ROOTS(I)
15 CONTINUE
I=0
10 ROOTS (I+1)=X
16 CONTINUE
RETURN
END

```

\section*{APPENDIX B}

\section*{ALGORITHM TO REFINE TEE ROOHS FOUND FROM}

\section*{THE ROOT IATEGRAL ALGORITHM IX APPENDIX A}
```

 PROGRAM MAIN(INPUT,OUTPUT)
 COMPLEX KO,J,JDE, JDOUDE,Y,YDE,YDOUDE,H2,H2DE,H2DOUDE,G,GDE
 + ,DENO,DENODE,KA,KB,DENOO,DENO1,DENO2,NEWKO,DELKO
 WRITE(*,*) 'INPUT N'
 READ(*,*) N
 WRITE(*,*) ' INPUT ER '
 READ(*,*) ER
 A=1
 WRITE(*,*) ' INPUT B/A RATIO
 READ(*,*) B
 DO 10 I I = 1, 100
 WRITE(*,*) 'INPUT (KO.RE,KO.IM) '
 READ(*,*) KO
 WRITE(*,*) K0
 FORMAT(2F35.7)
 KA= KO*SQRT(ER)
 KB=K0*B*SQRT(ER)
 WRITE(*,*)'ENTER " 1" TO MODIFY D_FUNCTION
 WRITE(*,*)'ENTER :
 READ(*,*)MODIFY
 IF(MODIFY.EQ.O) GOTO 10
 MODOC=0
 15 IF(CABS(DENO(N,KO,A,B,ER)).GE.0.0000001) THEN
MODOC=MODOC+1
WRITE(*,*)'NUMBERS OF MODIFYING :',MODOC
DENOO = DENO(N,KO,A,B,ER)
NEWKO = KO + (0.0005,0.0005)
DENO1 = DENO(N,NEWKO,A,B,ER)
NEWKO = KO - (0.0005,0.0005)
DENO2 = DENO (N,NEWKO,A,B,ER)
DELKO = DENOO / ((DENO1-DENO2)/(0.001,0.001))
KO = KO - DELKO
WRITE(*,*)'KO :',K0
WRITE(*,*)'D_FUNCTION :',DENO(N,KO,A,B,ER)
GOTO }1
END IF
10 CONT INUE
STOP
END
COMPLEX FUNCTION U(N,Z)
COMPLEX Z
CALL BSSLJ(Z,N,U)
RETURN
END
COMPLEX FUNCTION JDE(N,Z)
COMPLEX Z,J
N1=N-1
UDE=J(N1,Z) - N * J(N,Z) / Z
RETURN
END
COMPLEX FUNCTION UDOUDE(N,Z)
COMPLEX Z.J.JDE
JDOUDE = -J(N,Z) - JDE(N,Z)/Z + J(N,Z)/(Z*Z)
IF N<> 1, THIS TERM MAY NEED MODIFY.
RETURN
END

```
```

COMPLEX FUNCTIDN Y(N,Z)
COMPLEX Z
CALL BSSLY(Z,N,Y)
RETURN
END
COMPLEX FUNCTION YDE(N,Z)
COMPLEX Z,Y
N1=N-1
YDE = Y(N1,Z) - N*Y(N,Z)/Z
RETURN
END

```
```

CDMPLEX FUNCTION YDOUDE(N,Z)

```
CDMPLEX FUNCTION YDOUDE(N,Z)
COMPLEX Z,Y,YDE
COMPLEX Z,Y,YDE
YDOUDE = -Y(N,Z) - YDE (N,Z)/Z + Y(N,Z)/(Z*Z)
YDOUDE = -Y(N,Z) - YDE (N,Z)/Z + Y(N,Z)/(Z*Z)
RETURN IF N<> 1, THIS TERM MAY NEED MODIFY.
RETURN IF N<> 1, THIS TERM MAY NEED MODIFY.
RETURN
RETURN
END
END
CDMPLEX FUNCTION H2(N,Z)
COMPLEX Z,AI,J,Y
AI= (0,1)
H2=J(N,Z) - AI * Y(N,Z)
RETURN
END
COMPLEX FUNCTION H2DE(N,Z)
COMPLEX Z,H2
N1=N-1
H2DE=H2(N1,Z) - N * H2(N,Z)/ Z
RETURN
END
COMPLEX FUNCTION H2DOUDE(N,Z)
COMPLEX Z,H2,H2DE
H2DOUDE = -H2(N,Z) - H2DE(N,Z)/Z + H2(N,Z)//Z*Z)
                IF N<> 1, THIS TERM MAY NEED MODIFY.
RETURN
END
COMPLEX FUNCTION G(N,KO,A,B,ER)
COMPLEX KO, J,Y,JDE,YDE,KA,KB,GDIV
KA = KO * SQRT(ER) * A
KB = KO * SQRT(ER) * B
G= -SQRT(ER) * (J (N,KA)*YDE(N,KB)
+ - Y(N,KA)*JDE(N,KB) )
GDIV = J(N,KA)*Y(N,KB) - Y(N,KA)*J(N,KB)
IF(GDIV.EQ.0) GDIV = (1.E-20,1.E-20)
G=G/GDIV
RETURN
END
COMPLEX FUNCTION GDE(N,KO,A,B,ER)
COMPLEX KO,J,Y,JDE,JDOUDE,YDE,YDOUDE,KA,KB,DENOG,NUMOG,FIR,SEC
KA = KO * SQRT(ER) * A
KB = KO * SQRT(ER) * B
NUMOG = J(N,KA)*YDE (N,KB)
NUMOG = NUMOG - Y(N,KA)*JDE(N.KB)
DENOG = J (N,KA)*Y(N,KB) - Y(N,KA)*J(N,KB)
```

```
    IF(DENOG.EQ.0) DENOG=(1.E-20,1.E-20)
    FIR = UDE(N,KA)*YDE(N,KB)*SQRT(ER)*A+ U(N,KA)*YDOUDE(N,KB)
+ *SQRT(ER)*B
    FIR = FIR - YDE (N,KA)*JDE (N,KB)*SQRT(ER)*A
    FIR = FIR - Y(N,KA)*JDOUDE (N,KB)*SQRT(ER)*B
    FIR = FIR * DENOG
    SEC = JDE (N,KA)*Y(N,KB)*SQRT(ER)*A+J (N,KA)*YDE (N,KB)*SQRT(ER)*B
    SEC = SEC - YDE (N,KA)*J(N,KB)*SQRT (ER)*A
    SEC = SEC - Y(N,KA)*JDE (N,KB)*SQRT (ER)*B
    SEC = SEC * NUMOG
    GDE = -(FIR -SEC) * SQRT(ER) / ( DENOG*DENOG )
    RETURN
    END
    COMPLEX FUNCTION DENO(N,KO,A,B,ER)
    COMPLEX KO,KOB,H2,H2DE,G
    KOB = KO * B
    DENO = H2DE(N,KOB) +G(N,KO,A,B,ER)*H2(N,KOB)
    RETURN
END
    COMPLEX FUNCTION DENODE (N,KO,A,B,ER)
    COMPLEX KO,KOB,H2,H2DE, H2DOUDE,G,GDE
    KOB = KO * B
    DENODE = H2DOUDE(N,KOB)*B + GDE(N,KO,A,B,ER)*H2(N,KOB)
+ +G(N,KO,A,B,ER)*H2DE(N,KOB)*B
RETURN
END
```


APPENDIX C

ALCORITHM TO SEARCH A TABLE OF COAIPLEX ROLES FOR THE LEAST SQUARES OPTIMAL CHOICE OP THE CYIGINDER COATIEG THICKNESS AND DIELECTRIC CONSTANF

VAR

ERABRATIO : ARRAY [1..92,1..2] OF REAL; ROOTS : ARRAY [1..92,1..3,1..2] OF REAL; TABLE,RESULT, ORDER : ARRAY [1..5,1..2] OF REAL; GIROOT : ARRAY [1..3,1..2] OF REAL; LOOP,L1,L2,L3 : INTEGER;
DIFFVALUE : REAL; FIVAR : TEXT;

PROCEDURE SETUP;
VAR I1,I2 : INTEGER;
BEGIN
FOR I1 $:=1$ TO 5 DO BEGIN
TABLE [I1,1] := 0;
TABLE [I1,2] := I $1 * 100$;
END:
END ;

PROCEDURE READ_KNOWN_ROOTS;
VAR
I1,I2 : INTEGER;
BEGIN
ASSIGN(FIVAR, 'REFEREN');
RESET(FIVAR);
FOR I1 := 1 TO 92 DO
BEGIN
READ(FIVAR, ERABRATIO[I1,1],ERABRATIO[I1,2]);
END;
ASSIGN(FIVAR, 'GROROOT');
RESET(FIVAR);
FOR I1 $:=1$ TO 92 DO
BEGIN
FOR I2 $:=1$ TO 3 DO
BEGIN
READ(FIVAR,ROOTS[I1, I2, 1], ROOTS[I1, I2, 2]);
END;
END;
END; (* ENDS THE READING, ROOTS[44,3,2] FILLED. *)

PROCEDURE READ_GIVEN_ROOTS;
VAR I 1 : INTEGER;
BEGIN
FOR I:1 := 1 TO 3 DO
BEGIN
WRITE('INPUT ',I1,'ST GIVEN ROOT.RE :=');
READLN(GIROOT[I1,1]):
WRITEI'INPUT ', I1,'ST GIVEN ROOT.IM :=');
READLN(GIROOT(11,2]);
END:
END;

```
PROCEDURE SEARCH1(INDEX,VALUE :REAL);
VAR I1,I2,POINTER,COUNTS : INTEGER;
BEGIN
    COUNTS := 1;
    FOR I1 := 1 TO 5 DO
    BEGIN
    IF VALUE > TABLE[I1,2] THEN COUNTS := COUNTS+1;
    END;
    FOR I2 := 4 DOWNTO COUNTS DO
    BEGIN
    POINTER := I2 + 1;
    TABLE[POINTER,1] := TABLE[I2,1];
    TABLE[POINTER,2] := TABLE[I2,2];
    END;
    TABLE[COUNTS,1] := INDEX;
    TABLE[COUNTS,2] := VALUE;
END; (* ENDS THE SEARCHING OF SEQUENCE FOR ONE ROOTS *)
PROCEDURE CALCU_DIFF_SEARCH;
VAR
    I1,I2,POINTER : INTEGER;
    DIFF,COMP_DIFF : REAL;
BEGIN
    FOR I1 := 1 TO 5 DO
    BEGIN
        POINTER := TRUNC(TABLE [I1,1]);
        DIFF := 0;
        FOR I2 := 1 TO 3 DO
        BEGIN
        DIFF := SQR (ROOTS[POINTER,I2,1] - GIROOT[I2,1]) +
                        SQR (ROOTS[POINTER,I2,2] - GIROOT[I2,2]) + DIFF;
        END;
        RESULT[11,1] := POINTER;
        RESULT[I1,2] := DIFF;
        WRITELN(I1,RESULT[I1,1],RESULT[I1,2]);
        END;
        FOR I 1 := 1 TO 5 DO
        BEGIN
        COMP DIFF := 1000;
        FOR I'2 := 1 TO 5 DO
        BEGIN
        IF COMP_DIFF > RESULT[I2,2] THEN
        BEGIN
            POINTER := 12;
                COMP_DIFF := RESULT[12,2];
        END:
    END;
    ORDER[I1,1] := RESULT[POINTER,1];
    ORDER[I1,2]:= RESULT[POINTER,2];
    RESULTIPOINTER,2] := 2000;
END; (* ENDS THE ORDERING OF THE 5 DIFFERENCES *)
```

```
    FOR I1 := 1 TO 5 DO
    BEGIN
        WRITELN(I1,ORDER[I1,1],ORDER[I1,2]);
    END;
END;
```

```
PROCEDURE NAMEIT;
VAR
    I1,I2,I3 : INTEGER;
BEGIN
    WRITELN('GIVEN ROOTS :`);
    FOR I1 := 1 TO 3 DO
    BEGIN
        WRITELN('(', I1,')',GIROOT[I1,1],GIROOT[I1,2]);
    END;
    WRITELN;
    FOR I1 := 1 TO 3 DO
    BEGIN
        I3 := TRUNC( ORDER[I1,1] );
        WRITELN(I1,'ST CLOSE ROOTS; ER = ',ERABRATIO[I3,1],
                                'A/B RATIO =',ERABRATIO[I3,2]);
        FOR I2 := { TO 3 DO
        BEGIN
            WRITELN('(',I2,')',ROOTS[I3,12,1],ROOTS[I3,I2,2]);
        END;
        WRITELN;
    END;
END;
```


BEGIN
SETUP;
READ_KNOWN_ROOTS;
FOR LOOP : $\equiv 1$ TO 10 DO
BEGIN
READ_GIVEN_ROOTS:
FOR ${ }^{-} 1$: $=-1$ TO 44 DO
BEGIN
DIFFVALUE : $\begin{aligned}= & \operatorname{SQR}(\operatorname{ROOTS}[L 1,1,1]-\operatorname{GIROOT}[1,1]) \\ & +\operatorname{SQR}(\operatorname{ROOTS[L1,1,2]-\operatorname {GIROOT}[1,2]);}\end{aligned}$
SEARCH1(L1,DIFFVALUE);
END;
CALCU_DIFF_SEARCH:
NAMEIT;
WRITELN;WRITELN('SEARCH AGAIN');
END;
END.

APPENDIX D

TABLE OF ROOFS ($n=0$) FOR VARIOUS COMBINATIONS OF CYLIIRIDER COATING THICKNESS (b/a) AND DIELECTRIC CONSTANT (Gs)

ER	: $=$	$2.56000000000000 \mathrm{E}+000$			
B/A RATIO	: $=$	$1.08000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$1.22710000000000 E+001$	ROOT. IM	$=$	$5.73130000000000 E+000$
ROOT. RE	: $=$	$3.68140000000000 E+001$	ROOT. IM	$=$	$5.72840000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$6.13585000000000 E+001$	ROOT.IM	: $=$	$5.72810000000000 E+000$
ER	: $=$	$2.56000000000000 \mathrm{+}+000$			
B/A RATIO	: $=$	1. $1000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$9.81630000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$4.58700000000000 E+000$
ROOT. RE	: $=$	$2.94511000000000 E+001$	ROOT. IM	: $=$	$4.58300000000000 E+000$
ROOT.RE	: $=$	$4.90870000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$4.58300000000000 \mathrm{E}+000$
ER	: $=$	$2.56000000000000 \mathrm{~F}+000$			
B/A RATIO	: $=$	1. $12000000000000 E+000$			
ROOT. RE	: $=$	$8.17970000000000 \mathrm{+}+000$	ROOT. IM	: $=$	$3.82350000000000 E+000$
ROOT. RE	: $=$	$2.45420000000000 E+001$	ROOT. IM	:	$3.81940000000000 E+000$
ROOT. RE	=	$4.09050000000000 E+001$	ROOT. IM	: $=$	$3.82000000000000 \mathrm{E}+000$
ER	: $=$	$2.5600000000000 E+000$			
B/A RATIO	: $=$	1. $1500000000000 E+000$			
ROOT. RE	: $=$	$6.5430000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$3.06100000000000 E+000$
ROOT. RE	: $=$	$1.96330000000000 E+001$	ROOT. IM	: $=$	$3.05600000000000 E+000$
ROOT. RE	: $=$	3.27240000000000 t 001	ROOT. IM	$=$	$3.05521000000000 \mathrm{E}+000$
ER	: $=$	$2.56000000000000 \mathrm{E}+000$			
B/A PATIO	: $=$	1.20000000000000E+000			
ROOT. RE	: $=$	$4.90590000000000 E+000$	ROOT. IM	: $=$	$2.29870000000000 \mathrm{E}+000$
ROOT. RE	$=$	$1.47240000000000 E+001$	ROOT. IM	:	$2.29230000000000 E+000$
ROOT. RE	: $=$	$2.45421000000000 E+001$	ROOT. IM	: $=$	$2.29160000000000 \mathrm{E}+000$
ER	: $=$	$4.00000000000000 \mathrm{E}+000$			
B/A RATIO	$=$	$1.0500000000000 E+000$			
ROOT. RE	: $=$	$1.57073500000000 E+001$	ROOT. IM	: $=$	$5.49528000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$4.71233900000000 \mathrm{E}+001$	ROOT. IM	:	$5.49346000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$7.85394000000000 \mathrm{E}+001$	ROOT.IM	: $=$	$5.49325000000000 \mathrm{E}+000$
ER	: $=$	$4.0000000000000 E+000$			
B/A RATIO	: $=$	$1.06000000000000 E+000$			
ROOT. RE	: $=$	$1.30893600000000 E+001$	ROOT. IM	:	$4.58026800000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.92225000000000 E+001$	ROOT. IM	: $=$	$4.57793000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$6.54494100000000 \mathrm{E}+001$	ROOT. IM	: $=$	$4.57769000000000 \mathrm{E}+000$
ER	: $=$	$4.00000000000000 E+000$			
B/a RATIO	: $=$	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$9.81660000000000 E+000$	ROOT. IM	: $=$	$3.43671000000000 E+000$
ROOT. RE	:	$2.94515400000000 E+001$	ROOT. IM	: $=$	$3.43365000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$4.90868200000000 E+001$	ROOT. IM	:	$3.43340000000000 \mathrm{E}+000$
ER	: $=$	4. $00000000000000 \mathrm{E}+000$			
B/A RATIO	: $=$	1. $1000000000000 E+000$			
ROOT. RE	: $=$	$7.85280000000000 \mathrm{E}+000$	ROOT . IM	: $=$	$2.75087000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.35608400000000 \mathrm{E}+001$	ROOT. IM	:	$2.74712000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.92692100000000 E+001$	ROOT. IM	: $=$	$2.74675000000000 \mathrm{E}+000$
ER	: $=$	$4.00000000000000 E+000$			
B/A RATIO	: $=$	1.12000000000000E +000			
ROOT.RE	: $=$	$6.54348000000000 E+000$	ROOT. IM	$=$	$2.29386000000000 \mathrm{E}+000$
ROOT. RE	: $=$	1.96336500000000E+001	ROOT. IM	: $=$	$2.28946000000000 E+000$
ROOT.RE	: $=$	$3.27241000000000+001$	ROOT. IM	: $=$	$2.28903000000000+000$

ER	:	$4.00000000000000 \mathrm{E}+000$			
B/A RATIO	: $=$	1.15000000000000E+000			
ROOT. RE	:	$5.23394000000000 E+000$	ROOT. IM	: $=$	$1.83714000000000 E+000$
ROOT. RE	: $=$	$1.57063700000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.83184000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.61789300000000 E+001$	ROOT. IM	: $=$	$1.83132000000000 \mathrm{E}+000$
ER	:	$4.0000000000000 E+000$			
B/A RATIO	: $=$	$1.20000000000000 E+000$			
ROOT. RE	: $=$	$3.92401000000000 E+000$	ROOT. IM	:	1.38091000000000E+000
ROOT. PE	: $=$	1.17789200000000E+001	ROOT.IM	: $=$	1.37428000000000E+000
ROOT. RE	: $=$	$1.96336600000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.37364000000000 E+000$
ER	: $=$	$6.00000000000000 E+000$			
B/a Rario	:	$1.04000000000000 E+000$			
ROOT. RE	: $=$	$1.60314000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$4.42640000000000 E+000$
ROOT. RE	: $=$	$4.80953000000000 E+001$	ROOT.IM	: $=$	$4.42500000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$8.01592000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$4.42450000000000 E+000$
ER	: $=$	$6.00000000000000 \mathrm{E}+000$			
b/A RATIO	: $=$	$1.05000000000000 E+000$			
ROOT. RE	: $=$	$1.28250000000000 \mathrm{E}+001$	ROOT.IM	: $=$	$3.54190000000000 \mathrm{E}+000$
ROOT. RE	=	$3.84760000000000 \mathrm{E}+001$	ROOT.IM	: $=$	$3.54000000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$6.41272000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$3.54000000000000 E+000$
ER	: $=$	$6.00000000000000 E+000$			
B/A RATIO	: $=$	$1.06000000000000 E+000$			
ROOT. RE	: $=$	$1.06873000000000 \mathrm{E}+001$	ROOT.IM	: $=$	$2.95240000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.20630000000000 E+001$	ROOT.IM	: $=$	$2.95000000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$5.34390000000000 E+001$	ROOT.IM	: $=$	2.94980000000000E+000
ER	: $=$	$6.00000000000000 E+000$			
b/a Ratio	: $=$	$1.08000000000000 E+000$			
ROOT.RE	: $=$	$8.01510000000000 \mathrm{E}+000$	ROOT.IM	: $=$	$2.21600000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.40471000000000 E+001$	ROOT.IM	: $=$	$2.21270000000000 E+000$
ROOT. RE	: $=$	$4.00790000000000 \mathrm{+} 001$	ROOT.IM	: $=$	$2.21240000000000 E+000$
ER	: $=$	$6.00000000000000 E+000$			
B/A RATIO	: $=$	1.10000000000000E+000			
ROOT. RE	: $=$	$6.41155000000000 E+000$	ROOT. IM	: $=$	$1.77416000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$1.92373300000000 \mathrm{E}+001$	ROOT.IM	: $=$	$1.77033000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.20631900000000 E+001$	ROOT. IM	: $=$	$1.77020000000000 \mathrm{E}+000$
ER	: $=$	$6.00000000000000 E+000$			
B/A RATIO	: $=$	1.12000000000000E+000			
ROOT. RE	: $=$	$5.34241000000000 E+000$	ROOT. IM	: =	$1.47993000000000 \mathrm{E}+000$
ROOT. RE	:	$1.60307900000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.47546000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.67191100000000 E+001$	ROOT. IM	: $=$	$1.47505000000000 \mathrm{E}+000$
ER	: $=$	$6.00000000000000 E+000$			
B/A RATIO	: $=$	1. $1500000000000 E+000$			
ROOT:RE	: $=$	$4.27306000000000 E+000$	ROOT. IM	: =	1.18597000000000E+000
ROOT.RE	: $=$	$1.28241700000000 E+001$	ROOT. IM	: $=$	1.18062000000000E+000
RDOT. RE	: $=$	$2.13750000000000 E+001$	ROOT. IM	: $=$	$1.18013000000000 \mathrm{E}+000$
ER	: $=$	$6.00000000000000+000$			
B/A RATIO	: $=$	1.20000000000000E+000			
ROOT. RE	:	$3.20330000000000 E+000$	ROOT. IM	: $=$	8.92400000000000E-001
ROOT. RE	: $=$	$9.61740000000000 E+000$	ROOT. IM	: $=$	8.85800000000000E-001
ROOT. RE	: $=$	$1.60310000000000 E+001$	ROOT. IM	: $=$	8.85200000000000E-001

ER	:	$8.0000000000000 E+000$			
B/A RATIO	: $=$	$1.04000000000000 E+000$			
ROOT. RE	: $=$	$1.38837000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$3.26780000000000 E+000$
ROOT. RE	=	$4.16517000000000 E+001$	ROOT. IM	: $=$	$3.26620000000000 E+000$
ROOT. RE	: $=$	$6.94198000000000 E+001$	ROOT. IM	: $=$	$3.2660000000000 \mathrm{E}+000$
ER	: $=$	$8.00000000000000 E+000$			
B/A RATIO	:	$1.05000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	1.11068000000000E+001	ROOT. IM	: $=$	$2.61510000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.33212000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.61300000000000 E+000$
ROOT. RE	: $=$	$5.55358000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.61290000000000 \mathrm{E}+000$
ER	: $=$	$8.00000000000000 E+000$			
B/A RATIO	: $=$	$1.06000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$9.25540000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$2.18010000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.77675000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.17760000000000 \mathrm{E}+000$
ROOT. RE	:	$4.62797000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.17740000000000 \mathrm{E}+000$
ER	: $=$	$8.0000000000000 \mathrm{E}+000$			
B/A RATIO	:	$1.08000000000000 \mathrm{E}+000$			
ROOT. RE	:	$6.94410000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$1.63660000000000 E+000$
ROOT. RE	: $=$	$2.08254000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.63340000000000 \mathrm{E}+000$
ROOT. RE	:	$3.47096000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.63310000000000 \mathrm{E}+000$
ER	: $=$	$8.00000000000000 E+000$			
B/A RATIO	: $=$	$1.10000000000000 \mathrm{E}+000$			
ROOT. RE	:	$5.55238000000000 \mathrm{E}+000$	ROOT.IM	: $=$	$1.31075000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$1.66601000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.30690000000000 E+000$
ROOT. RE	: $=$	$2.77675200000000 E+001$	ROOT. IM	: $=$	$1.30657000000000 \mathrm{E}+000$
ER	: $=$	$8.00000000000000 E+000$			
B/A RATIO	:	1.12000000000000E+000			
ROOT. RE	: $=$	$4.62641000000000 \mathrm{E}+000$	ROOT. IM	:	$1.09373000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$1.38830600000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.08926000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$2.31394200000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.08887000000000 \mathrm{E}+000$
ER	:	$8.00000000000000 E+000$			
B/A RATIO	: $=$	1.15000000000000E+000			
ROOT. RE	: $=$	$3.70230000000000 E+000$	ROOT. IM	:	$8.71640000000000 \mathrm{E}-001$
ROOT. RE	: $=$	1.11060400000000E+001	ROOT. IM	$=$	$8.71640000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.85112900000000 E+001$	ROOT. IM	: $=$	$8.71180000000000 \mathrm{E}-001$
ER	:	$8.00000000000000 E+000$			
B/A RATIO	: $=$	1.20000000000000E+000			
ROOT. RE	: $=$	$2.77360000000000 \mathrm{E}+000$	ROOT. IM	:	6.60600000000000E-001
ROOT. RE	: =	$8.32900000000000 \mathrm{E}+000$	ROOT. IM	$=$	$6.54100000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.38831000000000 \mathrm{E}+001$	ROOT. IM	$=$	6.53500000000000E-001
ER	: $=$	$1.00000000000000 \mathrm{E}+001$			
E/A RATIO	: $=$	$1.04000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$1.24179000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.59060000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$3.72544000000000 \mathrm{E}+001$	ROOT. IM	:	$2.58895000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$6.20910000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$2.5889900000000 \mathrm{E}+000$
ER	: $=$	$1.0000000000000 E+001$			
B/A RATIO	: $=$	$1.05000000000000 E+000$			
ROOT. RE	:	$9.93413200000000 E+000$	ROOT. IM	: $=$	$2.07330000000000 E+000$
ROOT. RE	: $=$	$2.98034000000000 E+001$	ROOT. IM	: $=$	$2.07130000000000 E+000$
ROOT. RE	: $=$	$4.96727000000000 E+001$	ROOT. IM	:=	$2.07110000000000 \mathrm{E}+000$

ER B/A RATIO	$:=$ $:=$	$\begin{aligned} & 1.00000000000000 \mathrm{E}+001 \\ & 1.06000000000000 \mathrm{E}+000 \end{aligned}$			
ROOT. RE	: $=$	$8.27820000000000 E+000$	ROOT. IM	:	$1.72860000000000 E+000$
ROOT. RE	: $=$	$2.48360000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.72610000000000 \mathrm{E}+000$
ROOT. RE	: $=$	$4.13938000000000 E+001$	ROOT. IM	: $=$	$1.72590000000000 E+000$
ER	: $=$	$1.00000000000000 E+001$			
B/A RATIO	: $=$	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$6.20820000000000 E+000$	ROOT.IM	: $=$	1.29796000000000E+000
ROOT. RE	: $=$	$1.86268000000000 E+001$	ROOT. IM	:	$1.29480000000000 E+000$
ROOT. RE	: $=$	$3.10452000000000 E+001$	ROOT.IM	: $=$	$1.29450000000000 E+000$
ER	: $=$	$1.00000000000000 E+001$			
B/A RATIO	: $=$	1.10000000000000E +000			
ROOT. RE	: $=$	$4.98270000000000 E+000$	ROOT. IM	: $=$	$1.04554000000000 E+000$
ROOT. RE	: $=$	$1.49078300000000 E+001$	ROOT. IM	: $=$	$1.03160000000000 E+000$
ROOT. RE	: $=$	$2.48367200000000 E+001$	ROOT. IM	: $=$	$1.03618000000000 E+000$
ER	: $=$	$1.00000000000000 E+001$			
B/A RATIO	: $=$	1.12000000000000E + 000			
ROOT. RE	:=	4.13778000000000E+000	ROOT. IM	: $=$	8.67590000000000E-001
ROOT. RE	: $=$	$1.24173800000000 \mathrm{E}+001$	ROOT. IM	: $=$	$8.63500000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$2.06965300000000 \mathrm{E}+001$	ROOT. IM	: $=$	$8.63120000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 E+001$			
B/A RATIO	: $=$	$1.1500000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$3.30930000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$6.96290000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$9.93350000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$6.91030000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.65570000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$6.90500000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.20000000000000 E+000$			
ROOT. RE	: $=$	$2.48037000000000 \mathrm{E}+000$	ROOT. IM	: $=$	5.24960000000000E-001
ROOT. RE	: $=$	$7.44957000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$5.18610000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.24174000000000 \mathrm{E}+001$	ROOT. IM	: $=$	5.18060000000000E-001
ER	: $=$	$1.20000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.04000000000000 E+000$			
ROOT. RE	: $=$	$1.13359000000000 E+001$	ROOT. IM	: $=$	2.14620000000000E+000
ROOT. RE	: $=$	$3.40085000000000 E+001$	ROOT. IM	: $=$	2. $14451000000000 E+000$
ROOT. RE	: $=$	$5.66811000000000 \mathrm{E}+001$	ROOT. IM	: $=$	2.14436000000000E+000
ER	: $=$	$1.20000000000000 E+001$			
B/A RATIO	: $=$	$1.05000000000000 \mathrm{+}+000$			
ROOT. RE	: $=$	$9.06850000000000 E+000$	ROOT. IM	$=$	$1.71780000000000 E+000$
ROOT. RE	: $=$	$2.7206700000000 \mathrm{E}+001$	ROOT. IM	$=$	$1.71570000000000 E+000$
ROOT. RE	: $=$	$4.53450000000000 \mathrm{E}+001$	ROOT. IM	:	$1.71550000000000 \mathrm{E}+000$
ER	: $=$	$1.20000000000000 E+001$			
B/A RATIO	: $=$	$1.0600000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$7.55690000000000 \mathrm{E}+000$	ROOT. IM	$=$	$1.43230000000000 E+000$
ROOT. RE	: $=$	$2.26721000000000 E+001$	ROOT. IM	: $=$	1.42985000000000E+000
ROOT. RE	: $=$	$3.77872000000000 E+001$	ROOT. IM	: $=$	$1.42964000000000 \mathrm{E}+000$
ER	: =	$1.20000000000000 E+001$			
B/A RATIO	: $=$	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$5.66720000000000 E+000$	ROOT. IM	: $=$	$1.07573000000000+000$
ROOT. RE	: $=$	$1.70038300000000 E+001$	ROOT. IM	$=$	$1.07265000000000 \mathrm{+}+000$
ROOT.RE	:	$2.83402800000000 E+001$	ROOT. IM	: $=$	$1.07229000000000 \mathrm{+}+000$

ER
B/A RATIO ROOT. RE ROOT. RE ROOT. RE

ER
B/A RATIO ROOT. RE
ROOT. RE
ROOT. RE
ER R RATIO
B/A
ROOT. RE
ROOT.RE ROOT. RE

ER
B/A RATIO
ROOT.RE
ROOT. RE
ROOT. RE
ER
B/A RATIO
ROOT. RE
ROOT. RE
ROOT. RE
ER RATIO
B/A RAT
ROOT. RE
ROOT. RE
ROOT. RE
ER
B/A RATIO
ROOT. RE
ROOT. RE
ROOT.RE
ER
B/A RATIO
ROOT. RE
ROOT. RE
ROOT.RE
ER
B/A RATIO
ROOT.RE
ROOT. RE
ROOT. RE
$:=1.20000000000000 \mathrm{E}+001$
$:=1.10000000000000 \mathrm{E}+000$
$:=4.53321000000000 \mathrm{E}+000$
$:=1.36028300000000 \mathrm{E}+001$
$:=2.26720800000000 \mathrm{E}+001$
$:=1.20000000000000 \mathrm{E}+001$
$:=1.12000000000000 \mathrm{E}+000$
$:=3.77707000000000 E+000$
$:=1.13354600000000 \mathrm{E}+001$
$:=1.88932600000000 \mathrm{E}+001$
$:=1.20000000000000 \mathrm{E}+001$
$:=1.15000000000000 E+000$
$:=3.02071000000000 E+000$
$:=9.06802000000000 E+000$
$:=1.51144000000000 E+001$
$:=1.20000000000000 E+001$
$:=1.20000000000000 \mathrm{E}+000$
$:=2.26391000000000 E+000$
$:=6.80048000000000 \mathrm{E}+000$
$:=1.15534800000000 \mathrm{E}+001$
$:=1.50000000000000 E+001$
$:=1.04000000000000 E+000$
$:=1.01391000000000 \mathrm{E}+001$
$:=3.04181000000000 E+001$
$:=5.06971000000000 \mathrm{E}+001$
$:=1.50000000000000 \mathrm{E}+001$
$:=1.05000000000000 \mathrm{E}+000$
$:=8.11110000000000 \mathrm{E}+000$
$:=2.43344000000000 \mathrm{E}+001$
$:=4.05576000000000 \mathrm{E}+001$
$:=1.50000000000000 \mathrm{E}+001$
$:=1.06000000000000 E+000$
$:=6.75900000000000 E+000$
$:=2.02785000000000 \mathrm{E}+001$
$:=3.37979000000000 E+001$
$:=1.50000000000000 \mathrm{E}+001$
$:=1.08000000000000 \mathrm{E}+000$
$:=5.06880000000000 \mathrm{E}+000$
$:=1.52087000000000 \mathrm{E}+001$
$:=2.53483000000000 \mathrm{E}+001$
$:=1.50000000000000 \mathrm{E}+001$
$:=1.10000000000000 E+000$
$:=4.05445000000000 E+000$
$:=1.21667300000000 E+001$
$:=2.02785200000000 E+001$

B/A RATIO
RGOT. RE
ROOT. RE
ROOT. RE
$:=1.50000000000000 \mathrm{E}+001$
$:=1.12000000000000 \mathrm{E}+000$
$:=3.37808000000000 E+000$
$:=1.01387300000000 E+001$
$:=1.68986400000000 E+001$

ROOT.IM $:=8.62040000000000 \mathrm{E}-001$
ROOT.IM $:=8.58220000000000 \mathrm{E}-001$
ROOT.IM $:=8.57900000000000 \mathrm{E}-001$

ROOT.IM $:=7.19750000000000 \mathrm{E}-001$
ROOT.IM $:=7.15350000000000 \mathrm{E}-001$
ROOT.IM $:=7.14970000000000 \mathrm{E}-001$

ROOT.IM	$:=5.77690000000000 \mathrm{E}-001$
ROOT.IM	$:=5.72500000000000 \mathrm{E}-001$
ROOT.IM	$:=5.72060000000000 \mathrm{E}-001$

ROOT.IM $:=4.35910000000000 \mathrm{E}-001$
ROOT.IM $:=4.29710000000000 \mathrm{E}-001$
ROOT.IM $:=4.29710000000000 \mathrm{E}-001$

ROOT.IM $:=1.70720000000000 \mathrm{E}+000$
ROOT.IM $:=1.70550000000000 \mathrm{E}+000$ ROOT.IM $:=\quad 1.70534000000000 \mathrm{E}+000$

ROOT.IM $:=1.36660000000000 \mathrm{E}+000$
ROOT.IM $:=1.36450000000000 E+000$
ROOT.IM $:=1.36430000000000 E+000$

ROOT.IM $:=1.13960000000000 E+000$
ROOT.IM $:=1.13720000000000 \mathrm{E}+000$
ROOT.IM $:=1.13700000000000 E+000$

ROOT.IM $:=8.56190000000000 \mathrm{E}-001$
ROOT.IM $:=8.53040000000000 \mathrm{E}-001$
ROOT.IM $:=8.52780000000000 \mathrm{E}-001$

ROOT.IM $:=6.86380000000000 \mathrm{E}-001$
ROOT.IM $:=6.82600000000000 \mathrm{E}-001$
ROOT.IM $:=6.82280000000000 \mathrm{E}-001$

ROOT.IM $:=5.73340000000000 \mathrm{E}-001$
ROOT.IM $:=5.68990000000000 \mathrm{E}-001$
ROOT.IM $:=5.68630000000000 \mathrm{E}-001$

ER	: $=$	$1.50000000000000 E+001$			
B/A RATIO	: $=$	$1.15000000000000 E+000$			
ROOT. RE	:	$2.70149000000000 E+000$	ROOT. IM	=	$4.60490000000000 E-001$
ROOT. RE	: $=$	$8.11067000000000 E+000$	ROOT. IM	: $=$	$4.55420000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.35187300000000 \mathrm{E}+001$	ROOT. IM	: $=$	4.54980000000000E-001
ER	: $=$	$1.5000000000000 E+001$			
B/A RATIO	: $=$	$1.20000000000000 E+000$			
ROOT. RE	: $=$	$2.02445000000000 E+000$	ROOT.IM	: =	$3.47900000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$6.08250000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$3.41880000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.01387600000000 E+001$	ROOT. IM	: $=$	3.41350000000000E-001
ER	: $=$	$2.50000000000000 E+001$			
B/a RATIO	: $=$	$1.04000000000000 E+000$			
ROOT. RE	: $=$	$7.86536000000000 E+000$	ROOT. IM	:	$1.01556000000000 \mathrm{E}+000$
ROOT.RE	: $=$	$2.35617500000000 E+001$	ROOT. IM	: $=$	$1.01390000000000 \mathrm{E}+000$
ROOT.RE	: $=$	$3.92698000000000 \mathrm{E}+001$	ROOT. IM	: $=$	$1.01370000000000 E+000$
ER	:	$2.50000000000000 E+001$			
B/A RATIO	: $=$	$1.05000000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$6.28270000000000 E+000$	ROOT.IM	$=$	8.13260000000000E-001
ROOT. RE	: $=$	$1.88493000000000 E+001$	ROOT. IM	:	8.11200000000000E-001
ROOT. RE	: $=$	$3.14158000000000 \mathrm{E}+001$	ROOT.IM	: $=$	8.11000000000000E-001
ER	: $=$	$2.50000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.06000000000000 E+000$			
ROOT. RE	: $=$	$5.23530000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$6.78500000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.5707700000000 \mathrm{E}+001$	ROOT.IM	: $=$	$6.76090000000000 \mathrm{E}-001$
ROOT. RE	:	$2.61798000000000 \mathrm{E}+001$	ROOT. IM	: $=$	6.75900000000000E-001
ER	: $=$	$2.50000000000000 E+001$			
B/A RATIO	: $=$	$1.0800000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$3.92595000000000 \mathrm{E}+000$	ROOT. IM	: $=$	5.10310000000000E-001
ROOT. RE	: $=$	1.17806000000000E+001	ROOT. IM	: $=$	$5.07230000000000 \mathrm{E}-001$
ROOT. RE	:	$1.96347200000000 \mathrm{E}+001$	ROOT. IM	: $=$	5.06980000000000E-001
ER	: $=$	$2.50000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.10000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$3.14014000000000 E+000$	ROOT. IM	: $=$	$4.09600000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$9.42429000000000 \mathrm{E}+000$	ROOT. IM	: $=$	4.05950000000000E-001
ROOT. RE	:	$1.57077000000000 \mathrm{E}+001$	ROOT. IM	: $=$	4.05640000000000E-001
ER	: $=$	$2.50000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.12000000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$2.61610000000000 \mathrm{E}+000$	ROOT. IM	: $=$	3.42580000000000E-001
ROOT. RE	: $=$	$7.85340000000000 \mathrm{E}+000$	ROOT. IM	: $=$	3.38440000000000E-001
ROOT. RE	: $=$	$1.30896000000000 \mathrm{E}+001$	ROOT.IM	: $=$	3.38090000000000E-001
ER	: $=$	$2.50000000000000 \mathrm{E}+001$			
B/A RATIO	:	1.15000000000000E+000			
ROOT. RE	: $=$	$2.09187000000000 \mathrm{E}+000$	ROOT. IM	: $=$	2.75700000000000E-001
ROOT. RE	: $=$	$6.28246000000000 \mathrm{E}+000$	ROOT. IM	: $=$	2.70970000000000E-001
ROOT. RE	: $=$	$1.04715500000000 \mathrm{E}+001$	ROOT. IM	: $=$	2.70560000000000E-001
ER	: $=$	$2.50000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.20000000000000 \mathrm{E}+000$			
ROOT.RE	:=	$1.56720000000000 E+000$	ROOT. IM	$=$	$2.09000000000000 \mathrm{E}-001$
ROOT. RE	$\therefore=$	$4.71140000000000 E+000$	ROOT. IM	: $=$	$2.03530000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$7.85344000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$2.03020000000000 \mathrm{E}-001$

B/A RATIO ROOT. RE ROOT. RE ROOT. RE ER
B/A RATIO ROOT. RE ROOT. RE ROOT. RE

ER

B/A RATIO
ROOT. RE
ROOT. RE
ROOT. RE
ER
B/A RATIO ROOT.RE ROOT. RE ROOT.RE

ER
B/A RATIO ROOT.RE ROOT.RE ROOT.RE

ER

B/A RATIO ROOT.RE ROOT.RE ROOT. RE

ER
B/A RATIO ROOT.RE ROOT.RE ROOT. RE

ER
B/A RATIO
ROOT. RE
ROOT.RE
ROOT. RE
ER
B/a RATIO
ROOT. RE
ROOT. RE
ROOT. RE
ER
B/A RATIO ROOT.RE RSJT.RE ROOT.RE

$:=4.00000000000000 E+001$
$:=1.04000000000000 E+000$
$:=6.20873000000000 \mathrm{E}+000$
$:=1.86272000000000 \mathrm{E}+001$
$:=3.10455000000000 \mathrm{E}+001$
$:=4.00000000000000 \mathrm{E}+001$
$:=1.05000000000000 \mathrm{E}+000$
$:=4.96670000000000 \mathrm{E}+000$
$:=1.49017000000000 E+001$
$:=2.48363500000000 \mathrm{E}+001$
$:=4.00000000000000 E+001$
$:=1.06000000000000 \mathrm{E}+000$
$:=4.13870000000000 E+000$
$:=1.24180000000000 \mathrm{E}+001$
$:=2.06969000000000 \mathrm{E}+001$
$:=4.00000000000000 \mathrm{E}+001$
$:=1.08000000000000 E+000$
$:=3.10341000000000 \mathrm{E}+000$
$:=9.31335000000000 \mathrm{E}+000$
$:=1.55226000000000 E+001$
$:=4.00000000000000 \mathrm{E}+001$
$:=1.10000000000000 E+000$
$:=2.48207000000000 \mathrm{E}+000$
$:=7.45054000000000 \mathrm{E}+000$
$:=1.24180000000000 E+001$
$:=4.00000000000000 E+001$
$:=1.12000000000000 \mathrm{E}+000$
$:=2.06769000000000 E+000$
$:=6.20863000000000 E+000$
$:=1.03482500000000 E+001$
$:=4.00000000000000 E+001$
$:=1.15000000000000 \mathrm{E}+000$
$:=1.65311000000000 \mathrm{E}+000$
$:=4.96669000000000 \mathrm{E}+000$
$:=8.27848000000000 \mathrm{E}+000$
$:=4.00000000000000 \mathrm{E}+001$
$:=1.20000000000000 \mathrm{E}+000$
$:=1.28320000000000 E+000$
$:=3.72470000000000 \mathrm{E}+000$
$:=6.20867000000000 E+000$
$:=6.00000000000000 \mathrm{E}+001$
$:=1.04000000000000 \mathrm{E}+000$
$:=5.06930000000000 \mathrm{E}+000$
$:=1.52090000000000 E+001$
$:=2.53485000000000 E+001$
$:=6.00000000000000 E+001$
$:=1.05000000000000 E+000$
$:=4.05517000000000 E+000$
$:=1.21672000000000 \mathrm{E}+001$
$:=2.02788000000000 E+001$

ROOT.IM $:=6.32170000000000 \mathrm{E}-001$
ROOT.IM $:=6.30500000000000 E-001$ ROOT.IM $:=6.30370000000000 \mathrm{E}-001$

ROOT.IM	$:=5.06520000000000 \mathrm{E}-001$
ROOT. IM	$:=5.04500000000000 \mathrm{E}-001$
ROOT.IM	$:=5.04320000000000 \mathrm{E}-001$

ROOT.IM $:=4.22870000000000 \mathrm{E}-001$
ROOT.IM $:=4.20500000000000 \mathrm{E}-001$
ROOT.IM $:=4.20300000000000 \mathrm{E}-001$

ROOT.IM $:=3.18500000000000 \mathrm{E}-001$ ROOT.IM $:=3.15540000000000 \mathrm{E}-001$ ROOT.IM $:=3.15290000000000 \mathrm{E}-001$

ROOT.IM	$:=$
ROOT.IM	$:=$
ROOT.IM	$:=$
$2.560490000000000 \mathrm{E}-001$	
$2.5229000000000 \mathrm{E}-001$	
(1)	

ROOT.IM $:=2.14510000000000 \mathrm{E}-001$
ROOT.IM $:=2.10640000000000 \mathrm{E}-001$ ROOT.IM $:=2.10290000000000 \mathrm{E}-001$

ROOT.IM $:=1.73070000000000 \mathrm{E}-001$ ROOT.IM $:=1.68710000000000 \mathrm{E}-001$ ROOT.IM $:=1.68310000000000 \mathrm{E}-001$

ROOT.IM $:=1.31730000000000 \mathrm{E}-001$
ROOT.IM $:=1.26800000000000 \mathrm{E}-001$
ROOT.IM $:=1.26340000000000 E-001$

ROOT.IM $:=4.20860000000000 \mathrm{E}-001$
ROOT.IM $:=4.19220000000000 \mathrm{E}-001$
ROOT.IM $:=4.19100000000000 E-001$

ROOT.IM $:=3.37450000000000 \mathrm{E}-001$
ROOT.IM $:=3.35460000000000 \mathrm{E}-001$
ROOT.IM $:=3.35300000000000 E-001$

ER	: $=$	$6.00000000000000 E+001$			
B/A RATIO	:	$1.06000000000000 E+000$			
ROOT. RE	: $=$	$3.33901000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$2.81940000000000 \mathrm{E}-001$
ROOT. RE	: =	$1.01392400000000 \mathrm{E}+001$	ROOT. IM	: $=$	2.79640000000000E-001
ROOT. RE	: =	$1.68989600000000 \mathrm{E}+001$	ROOT. IM	: $=$	2.79450000000000E-001
ER	: $=$	$6.00000000000000 E+001$			
B/A RATIO	: $=$	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$2.53360000000000 \mathrm{E}+000$	ROOT.IM	: $=$	2.12720000000000E-001
ROOT. RE	: $=$	$7.60430000000000 \mathrm{E}+000$	ROOT. IM	: $=$	2.09900000000000E-001
ROOT. RE	: $=$	$1.26742000000000 E+001$	ROOT.IM	: $=$	2.09600000000000E-001
ER	: $=$	$6.00000000000000 E+001$			
B/A RATIO	: $=$	$1.10000000000000 E+000$			
ROOT. RE	: $=$	$2.0262000000000 \mathrm{E}+000$	ROOT. IM	: $=$	1.71320000000000E-001
ROOT.RE	: $=$	$6.08333000000000 \mathrm{+}+000$	ROOT. IM	: $=$	1.68065000000000E-001
ROOT.RE	=	$1.01392500000000 \mathrm{E}+001$	ROOT. IM	: $=$	1.67770000000000E-001
ER	: $=$	$6.00000000000000 E+001$			
B/A RATIO	: $=$	$1.12000000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$1.68779000000000 \mathrm{E}+000$	ROOT. IM	: $=$	1.43790000000000E-001
ROOT. RE	: $=$	$5.0693000000000 \mathrm{E}+000$	ROOT. IM	: $=$	1.40200000000000E-001
ROOT. RE	: $=$	$8.44930000000000 \mathrm{E}+000$	ROOT. IM	: $=$	1.39860000000000E-001
ER	: $=$	$6.00000000000000 \mathrm{E}+001$			
B/A RATIC	: $=$	1. $1500000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$1.34918000000000 E+000$	ROOT. IM	: $=$	1.16330000000000E-001
ROOT. RE	: $=$	$4.05524000000000 E+000$	ROOT. IM	:=	1.12360000000000E-001
ROOT.RE	: $=$	$6.75934000000000 \mathrm{E}+000$	ROOT. IM	: $=$	1.11960000000000E-001
ER	: $=$	$6.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.2000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$1.01030000000000 \mathrm{E}+000$	ROOT.IM	: $=$	8.89000000000000E-002
ROOT. RE	: $=$	$3.04110000000000 E+000$	ROOT.IM	: $=$	8.45400000000000E-002
ROOT.RE	: $=$	$5.06935000000000 E+000$	ROOT.IM	: $=$	$8.40700000000000 \mathrm{E}-002$
ER	: $=$	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.04000000000000 E+000$			
ROOT. RE	: $=$	$4.39005000000000 \mathrm{E}+000$	ROOT.IM	: $=$	3.15640000000000E-001
ROOT. RE	: $=$	$1.31714000000000 E+001$	ROOT.IM	: $=$	3.14000000000000E-001
ROOT.RE	: $=$	2.19520000000000E+001	ROOT. IM	: $=$	3.13900000000000E-001
ER	: $=$	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.0500000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$3.51180000000000 E+000$	ROOT. IM	: $=$	2.53250000000000E-001
ROOT. RE	: $=$	$1.05371000000000 E+001$	ROOT. IM	: $=$	2.51310000000000E-001
ROOT.RE	: $=$	$1.75619500000000 \mathrm{E}+001$	ROOT.IM	: $=$	2.51140000000000E-001
ER	: $=$	$8.00000000000000 E+001$			
B/A RATIO	: $=$	$1.06000000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$2.92614000000000 E+000$	ROOT.IM	: $=$	2.11740000000000E-001
ROOT.RE	: $=$	$8.78080000000000 \mathrm{E}+000$	ROOT. IM	: $=$	2.09510000000000E-001
ROOT.RE	: $=$	$1.46349300000000 \mathrm{E}+001$	ROOT.IM	: $=$	2.09320000000000E-001
ER	: $=$	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$2.19395000000000 E+000$	ROOT. IM	: $=$	1.60000000000000E-001
ROOT. RE	: $=$	$6.58550000000000+000$	ROOT.IM	=	1.57290000000000E-001
ROOT. RE	: $=$	$1.09761300000000+001$	ROOT. IM	: $=$	1.57050000000000E-001

ER	: $=$	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	1.10000000000000E+000			
ROOT.RE	: $=$	$1.75445000000000 E+000$	ROOT.IM	: $=$	1.29070000000000E-001
ROOT. RE	: $=$	$5.26830000000000 E+000$	ROOT.IM	: $=$	$1.25980000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$8.78084000000000 E+000$	ROOT.IM	: $=$	1.25690000000000E-001
ER	: $=$	$8.00000000000000 E+001$			
B/A RATIO	=	$1.12000000000000 E+000$			
ROOT. RE	:	$1.46132000000000 E+000$	ROOT.IM	: $=$	1.08550000000000E-001
ROOT.RE	: $=$	$4.39012000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$1.05130000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$7.31730000000000 E+000$	ROOT.IM	: $=$	1.0479000000000 E-001
ER	: $=$	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.15000000000000 \mathrm{E}+000$			
ROOT.RE	: $=$	$1.16802000000000 E+000$	RODT.IM	: =	8.79800000000000E-002
ROOT. RE	:	$3.51190000000000 \mathrm{E}+000$	ROOT. IM	: $=$	8.42900000000000E-002
ROOT. RE	: $=$	$5.85375000000000 E+000$	ROOT. IM	: $=$	8.39100000000000E-002
ER	: =	$8.00000000000000 \mathrm{E}+001$			
B/A RATIO	: $=$	$1.20000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	8.74460000000000E-001	ROOT. IM	: $=$	$6.75000000000000 \mathrm{E}-002$
ROOT. RE	:	$2.63360000000000 E+000$	ROOT.IM	: $=$	6.34800000000000E-002
ROOT. RE	: $=$	$4.37017000000000 \mathrm{E}+000$	ROOT. IM	$=$	6.30400000000000E-002
ER	: $=$	$1.00000000000000 \mathrm{E}+002$			
B/A RATIO	: $=$	$1.04000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$3.92650000000000 \mathrm{E}+000$	ROOT. IM	: $=$	2.52640000000000E-001
ROOT. RE	: $=$	$1.17808600000000 E+001$	ROOT. IM	: $=$	$2.51050000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.96349000000000 \mathrm{E}+001$	ROOT.IM	: $=$	$2.50910000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO	: $=$	$1.05000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$3.14090000000000 \mathrm{E}+000$	ROOT. IM	:	$2.02830000000000 \mathrm{E}-001$
ROOT.RE	: $=$	$9.42464000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$2.00930000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.57078800000000 E+001$	ROOT.IM	: $=$	$2.0076000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO	: $=$	$1.06000000000000 \mathrm{E}+000$			
ROOT. RE	: $=$	$2.61710000000000 E+000$	ROOT. IM	: $=$	1.69700000000000E-001
ROOT.RE	: $=$	$7.85381000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$1.67500000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$1.30899000000000 E+001$	ROOT. IM	: $=$	$1.67330000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO	:	$1.08000000000000 E+000$			
ROOT. RE	: $=$	$1.96210000000000 E+000$	ROOT. IM	: $=$	1.28400000000000E-001
ROOT. RE	: $=$	$5.89020000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$1.25800000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$9.81735000000000 \mathrm{E}+000$	ROOT. IM	: =	1.25550000000000 E-001
ER	: $=$	$1.00000000000000 E+002$			
E/A RATIO	: $=$	1. $10000000000000 E+000$			
ROOT. RE	: $=$	$1.56900000000000 E+000$	ROOT. IM	: $=$	$1.03730000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$4.71210000000000 E+000$	ROOT. IM	: $=$	$1.00787000000000 \mathrm{E}-001$
ROOT. RE	: $=$	$7.85383000000000 \mathrm{E}+000$	ROOT.IM	: $=$	$1.00502000000000 \mathrm{E}-001$
ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO	:	1.12000000000000E+000			
ROOT.RE	:=	$1.30700000000000 \mathrm{+}+000$	ROOT. IM	: $=$	8.70000000000000E-002
ROOT.RE	:=	$3.92700000000000 E+000$	ROOT. IM	: $=$	8.41000000000000E-002
ROOT. RE	: $=$	$6.54479000000000 E+000$	ROOT. IM	: $=$	8.38000000000000E-002

ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO		$1.15000000000000 \mathrm{E}+000$			
ROOT. RE	$=$	$1.04440000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$7.09400000000000 \mathrm{E}-002$
ROOT.RE	:	3.14112000000000E+000	ROOT. IM	: $=$	6.74900000000000E-002
ROOT.RE	=	$5.23575000000000 \mathrm{E}+000$	ROOT. IM	: $=$	$6.71200000000000 \mathrm{E}-002$
ER	: $=$	$1.00000000000000 E+002$			
B/A RATIO	: $=$	$1.20000000000000 \mathrm{E}+000$			
ROOT. RE	:=	$7.81800000000000 \mathrm{E}-001$	ROOT. IM	: $=$	5.46000000000000E-002
ROOT. RE	: $=$	$2.35570000000000 E+000$	ROOT. IM	:	$5.09000000000000 \mathrm{E}-002$
ROOT. RE	: $=$	$5.49760000000000 \mathrm{E}+000$	ROOT. IM	:	$5.03000000000000 \mathrm{E}-002$

