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SUMMARY 

This thesis presents the topic of minimum bias designs in response 

surfaces with a view toward organizing the material and illustrating it 

in a comprehensive manner stressing interrelationships among various 

modern design criteria. In particular, it examines the assumptions which 

have been made concerning minimum bias designs and certain aspects of the 

results obtained. 

The research also develops other traditional criteria and stresses 

the importance of rotatability to modern design criteria. Application of 

two traditional criteria, orthogonality and uniform precision, to cer

tain minimum bias rotatable designs was demonstrated by the writer to 

have no meaning, since they are mutually exclusive relationships. 

The major thrust of this research was directed at deriving a 

method to apply minimum bias estimation to the problem of estimating the 

slope of a response surface. This was accomplished for the case of a 

single factor. Simple design applications were also demonstrated. These 

results closely parallel previous work with minimum bias estimation and 

demonstrate the superiority of minimum bias estimation to least squares 

estimation for designs which seek to minimize integrated mean square 

error. 
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CHAPTER I 

INTRODUCTION 

Since its inception in the late 1940's and early 1950's by George 

E. P. Box and K. B. Wilson, response surface methodology has come into 

widespread prominence because of the simple yet effective manner in 

which these techniques may be used to experimentally determine optimum 

conditions for some process or phenomenon. Initial applications were in 

the field of chemistry and chemical engineering, although in recent years 

response surface methodology has been applied in tool life wear deter

mination, food stuff production, education, econometrics, and traffic 

control. 

Implicit in the concept of response surface methodology is the 

assumption that there exists a smooth functional relationship between the 

characteristic of interest, called the response, and the independent vari

ables which influence this response. It is further assumed that such a 

function can be adequately represented by a low-order polynomial within 

the area of potential interest. 

Suppose the experimenter is interested in exploring the functional 

relationship 

where T] is the response, the §^' s are the independent factors which in

fluence the response, e is the random experimental error, and the function 

(1.1) 
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f is usually of an unknown form. In the experimental design literature, 

the function f is usually called a response surface. The experimenter 

decides that the actual relationship can be approximated by a graduating 

polynomial such as 

y(5) - g(I.§) - g(51.52.....5p.P1.P2»---»Pp> + e>P - k ^- 2> 

over some specified region of interest, where ^ is a vector of unknown 

parameters. 

Typically, the experimenter will fit an estimated response surface 

by estimating the unknown parameters in Equation (1.2). This will require 

that at least k observations on the response at various levels of the 

independent variables be taken and some procedure used to compute estimates 

of say This fitted model may now be written as 

y(p = y = g(I,|) (1.3) 

In estimating the parameters, it is usually possible to control 

the levels of the independent variables Thus the experimenter is 

faced with the problem of choosing these levels, or a problem of experi

mental design. Experimental designs for estimating the unknown parameters 

in a model such as Equation (1.2) are often called response surface de

signs . 

The fitting of the graduating polynomial can be treated as a par

ticular case of multiple linear regression. The N sample levels of the 

| and the associated response y can be represented as 



3 

h i ^21 • • 5 P I 

^12 ^22 • • h i 

« 1 3 

5 2N 

y3i 

As was indicated above, the actual plan of experimental levels in the §'s 

is called the experimental design. 

In much of the work which follows, it is convenient to adopt the 

scaling convention that the design levels are coded such that 

N 
2 

Xiu = N, (1.5) 

and (i = 1,2,3,..,,p) 
N 

If the actual value of the u level of the variable i is denoted by 

5. , then the corresponding coded value is 

where 

and 

(1.6) 
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The least squares estimators of the P^, say P^, are chosen so as 

to minimize the sum of the squares of the deviations 

N 
L - Y eT - e 'e (1.7) V 2 

i4i 1 - -

It is well known that 

or 

Y - Xg_ + e , (1.8) 

Y - X§_ = e . (1.9) 

Substituting into (1.7) and expanding one obtains 

L - Y'Y - 2g/X'Y + g/X'X £ , (1.10) 

and taking the partial derivative of L with respect to P 

|| = -2X/Y + 2(X'X) £ . (1.11) 

Setting the partial derivative equal to zero and solving for £ yields 

£ = (X'X)"1 X'Y (1.12) 

Of course, the usual assumptions of multiple linear regression must hold, 
2 

that is E(£) * 0 and Var(0 • a 1^ . 

It is now possible to estimate each of the model parameters and 

obtain a fitted equation of the response surface. Also, one may test 

various hypotheses about the parameters in the model (1.8). This is dis

cussed extensively in Graybill (13). 
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There are two different objectives which influence the choice of a 

response surface design; that of estimating the model parameters and that 

of estimating the response surface itself. Of course, the appropriate 

strategy for investigation is heavily dependent upon the experimenter's 

own knowledge of the important variables; on the one hand he may know 

the entire functional form of the true surface, while at the other extreme 

he may not know which variables are pertinent to the investigation. This 

situation will lead the experimenter into screening experiments to gain 

some insight into these important factors. 

Concurrent with the development of response surface designs, Box 

(2) sought to develop requirements for the evaluation of these experimental 

designs. An experimental design should be such that it 

1. allows the graduating polynomial to estimate the response sur

face throughout the region of interest, 

CM insures that y is as close as possible to T|, 

3. gives good detectability of "lack of fit," 

4. allows transformations to be fitted, 

5. allows experiments to be performed in blocks, 

6. allows designs of increasing order to be built up sequentially, 

7. provides an internal estimate for error, 

8. is insensitive to wild observations, 

9. requires a minimum number of observations, 

10. provides patterning of data allowing for visual appreciation, 

11. insures simplicity of calculation, and 

12. behaves well when errors occur in the settings of the control-
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lable factors (§'s). 

Requirements two and three provide the primary impetus for modern 

criteria in experimental design. While satisfying these requirements, 

modern experimental design criteria deal with the second objective of 

response surface design, that of estimating the response surface itself. 

In particular, if one considers the squared differences between the true 

model and the fitted surface, then this error measurement can be divided 

into two components; a bias component due to model inadequacy, and a 

variance component due to sampling error. Box and Draper were instru

mental in developing designs which attempt to minimize this squared 

error. The topic of modern design criteria is a major area of study in 

the recent response surface literature and will form the basis for this 

investigation. 

Nature of This Investigation 

The objective of this investigation involves the analysis of modern 

criteria for response surface design. These concepts have been largely 

developed by Box, Draper, and other writers, and are alternatives to the 

"classical" criteria of rotatability, uniform precision, and minimum 

variance. 

The first objective is to discuss, analyze, and develop modern 

design criteria with a view toward organizing this material and present

ing it in a comprehensive manner stressing the interrelationships be

tween these criteria. The second objective will be to apply the concept 

of minimum bias estimation due to Karson et al. (17) to the problem of 

estimating the slope of a response surface. The final objective will be 
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to integrate modern design criteria with other traditional criteria such 

as rotatability, uniform precision, etc. in order to more fully explain 

and differentiate important characteristics for their application. 
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CHAPTER II 

LITERATURE SURVEY 

A survey of the pertinent literature, along with some of the sim

pler concepts of minimum bias designs will be presented in this chapter. 

However, because of their importance, a detailed presentation of funda

mental concepts will be developed in the following chapters along with 

descriptions, extensions, and applications to specific response surface 

designs. 

The Work of Box and Wilson 

The concept of response surface methodology can be traced to Yates 

(19) in 1935. Further work in its development can be attributed to 

Hotelling (15) in 1941 and Friedman and Savage (12) in 1947. The origi

nal paper by Box and Wilson (6) in 1951 introduced little in the way of 

statistical or analytical techniques but rather introduced a simple but 

ingenious technique aimed at problem solving, coupled with some well 

known mathematical and statistical techniques. The real merit of the 

original work was in the field of experimental design. 

As was indicated previously, Box and Wilson used the method of 

least squares to estimate the coefficients of the fitted polynomial, but 

quickly realized the inadequacy of the factorial design when estimating 

quadratic and higher order coefficients. As an alternative to this design, 

Box and Wilson proposed the Central Composite Design (CCD) to overcome 
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two major obstacles which were inherent in the older 3 factorial designs; 

that is, significantly reducing the number of trials when compared with 

the factorial design, and secondly obtaining an important increase in the 

precision when estimating the coefficients of the quadratic and higher 

order terms of the approximating polynomial. 

The central composite design is in reality a 2^ factorial or suit

able fraction thereof, augmented by additional points to allow estimates 

of the coefficients of the higher order polynomial. For the case of 

three variables the design matrix is given by 

xl X2 X3 
,

1
1

1
1 

:i' 

0 0 0 
-a 0 0 
+a 0 0 
0 -cv 0 
0 +0i 0 
0 0 
0 0 

(2.1) 

where (-1, +1) represent the coded levels of the independent variables, 

("*CY, +CY) represent axial points of a cube and (0,0,0) represents center 

points of the design. Figure 1 gives a geometric illustration of the 

three variable CCD. In general, the p variable CCD consists of a factor

ial portion (usually a 2^ or a suitable fraction thereof), an axial por

tion with 2p observations, and n center points. 
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Figure 1. Three Variable Central Composite Design 
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In order to locate the region of the optimum, when remote from 

the initial starting conditions, Box and Wilson used a 2? factorial 

design (or a suitable fraction thereof) to fit a first order polynomial 

and moved along the direction of greatest slope. When it appeared that 

near optimal conditions had been reached, the authors used the Central 

Composite Design to fit a second order polynomial and located the station

ary point by calculus methods. If the stationary point indicated a max

imum or minimum, the optimum conditions were thought to have been deter

mined. This approach gave the experimenter added insight into the exper

imental process and also some appreciation for the type of response sur

face involved. Box and Wilson further demonstrated that the method con

verged rapidly on the optimum and would lead the experimenter to an effi

cient empirical exploration of the system. 

In the early years of the development of response surface designs, 

it was always assumed that the problem of choosing a "best" design would 

be interpreted as choosing a design whereby the coefficients (p) of the 

controllable factors, could be estimated with minimum variance. For a 

first order model, this criterion necessitated the choice of a diagonal 

(X'X) matrix, or an orthogonal experimental design. For higher-order 

polynomials, it may not always be clear how the design must be chosen. 

Box and Hunter's Criteria 

A second criterion for a "best" design was proposed by Box and 

Hunter (5), whereby overall response is based upon the joint consideration 

of the accuracy of the response coefficients. This paper was the first 

to place attention on estimating the response surface itself as such, 
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rather than on simply estimating the parameters of the model. This design 

criterion is called a "rotatable" design. The concept of rotatability 

requires that all points equidistant from the center of the experimental 

design have a common variance. That is, for any k-dimensional design, 

the variance of the estimated response is a function of distance only. 

The variance contours are simply spheres centered at the origin. 

A secondary benefit, but of great importance is the significant 

reduction in the treatment combinations which will provide precise esti

mates of the polynomial coefficients. Coupled with the natural benefit 

of rotatability, which allows the experimenter to overcome the problem of 

orientation of the response surface with respect to some predetermined 

axis in the design of the experiment, this new design criterion provided 

a great breakthrough over previous designs. 

To this point, the problem of "bias," or the lack of fit of the 

graduating polynomial to the true surface has not been mentioned, and in 

fact, it has been assumed that the experimenter had complete knowledge 

of the surface to be approximated. Of course, this is really not the case 

at all. If in fact the terms of higher order are not negligible, Box 

and Hunter (5) sought to choose a design which gives some protection 

against bias from higher order terms, while still giving a high degree of 

precision near the center of the design. This criterion, called uniform 

precision, causes the variance at the center of the design to be equal to 

the variance at some arbitrary distance, usually p = 1, where 
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The value of p depends upon the scaling convention. 

It would seem appropriate at this point to digress momentarily 

to develop some of the concepts of rotatability and uniform precision and 

their associated underlying definitions because of their fundamental 

importance to response surface design. The moment matrix of a design is 

given by N ''"X̂  where N is the total number of runs specified by the 

design. For a first order design the moment matrix is 

where 

N^X'X = 

[1] 

x l x 2 . . 

[1] [2] [k] 

[11] [12] [lk] 

[22] [2k] 

[kk] 

(2.3) 

N 
[i] = 1/N I x i u 

[ij] = 1/N 

u=l 

N 
Y x. x. 
L I U J U 

u=l 

The quantities [i] and [ij] are called first and second order design 

moments, respectively. Hence one sees that the moment matrix is just a 

matrix containing the design moments. The elements of N'^X'X in (2.3) 
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can be easily verified by obtaining the sums of squares and products in 

the appropriate X fX matrix. For a second order model one may verify that 

x l x 2 
2 

Xl 
2 

x 2 X 1 X 2 

[1] [2] [11] [22] [12] 

[11] [12] [111] [122] [112] 

[22] [112] [222] [122] 

[1111] [1122] 

[2222] 

[1112] 

[1222] 

[1122] 

where, as before 

[1122] = 1/NY x? x 2 

' L 1 U J U 

N 

I 
u=l 

N [llll] = l/N^T X ± 

u=l 1 

4 
iu 

The inverse N(X fX) ^ is called the precision matrix and contains elements 

which are related to the variances and covariances of the model coeffi

cients. 

Box and Hunter further demonstrated that a necessary and suffi-
th 

cient condition for a d order design to be rotatable is that the 

moments of order up to 2d be of the form: 
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6, 6 N R, i, v2 VI M - i v u i w2 u
P 

\l 2 p PJ = N I x l u x 2 u , . . . , X pP = u=l 

x . n (6.) ! 
6 i=l 1 

26/2 S n (*6.)I i=l •L 

(2.5a) 

for all 6. (6. is an index) even and 

6n 6 N 
IV1, 2 UPL M-L V 1 
L1 2 ••••• P J = N 2 XLU u=l pu (2.5b) 

if any 6̂  odd where 6 = .E^^. Here Xg represents the design moment. 

For first order designs, it can be shown that an orthogonal design is also 

rotatable. However, this is not the case for a second order design. It 

is easily seen that [ll] and [22], from (2.5) have the value X^, and [llll] 

and [2222] have the value 3X, . Further [1122] has the value X The 
4 4 

moment matrix for a second order rotatable design is given by 

N"1(X»-X) = 

0 

0 

3* 

"2 

0 

0 

X 4 

3X, 

X 1 X 2 

(2.6) 
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It is important to note that the fourth moments [iiii] have the value 

3X^, and the fourth moments [iijj] have the value X^. From (2.6) it can 

be seen that there is a certain amount of flexibility in choosing a value 

for X^. The parameter X^ = [iijj] can be conveniently altered without 

loss of rotatability. In certain designs this may be accomplished by 

adding center points to the basic design configuration. Box and Hunter 

sought to give some protection against higher order bias while still 

giving a high degree of precision near the center of the design. This 

new criterion fixed the value for X^ and gave a "uniform precision" rota-

table design. Box and Hunter further demonstrated that X^ could be 

chosen so as to give an orthogonal second order design. 

Minimization of Mean Square Error 

In examining the criteria of rotatability and uniform precision, 

Box and Draper (3) considered a more careful appraisal of the effective

ness of the design, and in particular, requirements two and three of Box's 

ideal design. They developed a new criterion--minimization of the mean 

square error over the region of interest. 
A 

If y (5) denotes the response estimated by the approximating poly

nomial, we desire to choose the design matrix D so> that the expected 
A 2 

squared difference E{y (g) - T](§)} will be minimized over the region of 

interest R. It is convenient as before to transform the independent var

iables to a new set of variables x-, x_,...x in such a way that the cen-
1 2 p J 

ter of interest becomes the origin of the x !s and are scaled relative to 

one another. Thus the measure of effectiveness becomes 
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E{y (x) - 1l(x)}2 (2.7) 

where y (x) and T|(x) represent the approximating polynomial and the true 

surface, respectively. This difference, when averaged over the region R, 

is 

q [ R E { ? (x) - Tl(x)}2 dx (2.8) 

where 

Q ' 1 = [ dx . 

Since it is important to be able to compare designs which do not contain 

equal numbers of points, our overall measure of effectiveness becomes 

3 = ^ 1 E{? (x) - H(x)}2 dx . (2.9) 

Thus J is simply the expected value of the squared difference between the 

true surface and the fitted model over the region R and normalized with 

respect to the number of observation and the variance. Now 

[y (x) - T)(x)} = {y (x) - E[y (x)]} + {E[y (x) ] - T)(x)}, (2.10) 

and substituting (2.10) into (2.9) one obtains 

J = he J E ^ <x> - E t f <x>] + E t y <*>3 - i i < x ) } 2 d x < 2 - u > 
a R 
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which can be rewritten as 

J = ^ [ J E{y (x) - E[y (x)]} 2 dx 
a R 

+ f (E[y (x)] - 11(x)}2 dxl . (2.12) 
R 

The first integral is simply the variance of y(x) and the second integral 

is the bias. Thus 

with the corresponding obvious notation. 

Box and Draper were thus able to show that the criterion of inte

grated mean square error was simply composed of two components--bias and 

variance. They ultimately obtained the somewhat surprising conclusion 

that the optimal design for a situation in which both bias and variance 

occurred would be nearly the same as if the variance component were 

ignored and the experiment were designed to minimize the bias alone. 

Further work into the criterion of minimum integrated mean square 

error evaluated the assumptions which were made by Box and Draper in 

their original article. In a second article (4) they established a more 

generalized model for integrated mean square error, over some new general 

region, say 0, as 

J = V + B, (2.13) 

Integrated Mean Square Error and Rotatability 

(2.14) 
o 
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where 

J w(x) dx = 1 

and 

r 0 in R the region of interest 
• GO = { 0 elsewhere 

The quantity w(x) is a weight function which gives more weight to error 

at one point than at another point, and one sees that Equation (2.8) is a 

special case of (2.14). 

In this second article Box and Draper also examine the choice of 

region of interest--a spherical region or a cuboidal region. Box and 

Draper chose to deal with the spherical region of interest, first because 

it was probably the most frequently encountered and second because it 

lent itself to the important property of rotatability. Box and Draper 

were able to show that designs which minimize bias were rotatable designs 

which depend on the order of the true function and the order of the grad

uating polynomial. 

Box and Draper further concluded that as the experimenter expects 

less and less effect from the bias of the approximating polynomial, more 

and more center points should be added and the spread of the experimental 

points along their respective axes should be made as large as possible 

from the origin, and they should include points outside the region of 

interest. 
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Cuboidal Regions 

Draper and Lawrence (8) continued the research into the assumptions 

made by Box and Draper regarding the region of interest. They chose to 

explore the concept of a cuboidal region of interest. Draper and Law

rence were able to construct designs utilizing this particular region of 

interest, but these designs did not enjoy any of the other useful proper

ties such as rotatability. Further work by Draper and Lawrence (9) 

included the choice of a "wrong" region on the part of the experimenter. 

For example, if one chose a spherical design and the region was in fact 

cuboidal or vice versa. It was found that each design (with one rare 

exception) worked best over its own particular region of interest. 

Weighted Regions of Interest 

A second assumption explored by Draper and Lawrence (10) was the 

use of a uniform weight function throughout the region of interest. In 

this article Draper and Lawrence point out and prove general conditions 

for minimization of bias. An unpublished theorem by Mallows (as refer

enced by Draper and Lawrence (17)) shows that bias can be minimized by 

choosing the moments of the design such that they will equal the moments 

of the weight function. This is equal to the sum of the order of the 

fitted polynomial plus the order of the surface against which bias is to 

be guarded. 

Draper and Lawrence assumed that interest varied according to the 

distribution of a symmetric multivariate weighting function over the par

ticular region of interest. This concept has an inherent appeal to the 

experimenter because now the total interest was not focused about the 
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center of the design, but some weight was given to clusters which might 

appear at the periphery. The authors developed rotatable designs which 

give additional flexibility to the spherical weight function designs. 

Other Recent Work 

Recently there have appeared several other articles which deal 

with related aspects of modern response surface designs. Herzberg (14) 

examined the behavior of the variance function of the difference between 

two estimated responses. She developed rotatable designs with this cri

terion in mind, but did not consider the problem of bias. She assumed 

a total knowledge of the order of the surface on the part of the experi

menter. Herzbergfs research concluded that the variance function is a 

function of the distance of the two points from the origin (the design 

center) and the angle subtending the two points at the origin. When 

the variance function is considered alone, for second-order rotatable 

designs, the second and fourth design moments should be made as large 

as possible. 

A more recent article by Davies (7) uses the criterion of Box and 

Draper to investigate the relationship between the response and the exclu

sion of certain independent variables, both in the design portion of the 

experiment and in the analysis portion of the experiment. Davies gives 

further guidelines regarding the exclusion of these design factors and 

discusses certain criteria for the exclusion of these variables. These 

criteria are highly dependent upon an intimate knowledge of the process 

on the part of the experimenter and upon previous experimentation. 



22 

Minimum Bias Estimation by Design 

The last three articles, which form the primary basis for the 

thrust of this research, also concern minimum bias designs. The original 

article by Karson, Manson, and Hader (17) provides a new dimension to the 

principle of minimization of integrated mean square error. Rather than 

using the concept of least squares estimation to minimize bias, the authors 

proceed to minimize bias by design. The authors demonstrate that the case 

of least squares estimation is a special case of minimization of bias by 

design. Once bias has been minimized, the authors then minimize variance 

subject to the criterion of minimum bias and develop designs using both 

criteria. The real advantage for minimum bias estimation by design is 

that it gives values of integrated mean square error which are approxi

mately equal for a wide range of design parameters and other factors. 

Karson (16) in a later article examines the original criterion 

and introduces a protection criterion for designs in which higher order 

terms have been omitted. The criterion introduced gives a constant estim

ator for the difference between the true surface and the graduating poly

nomial consistant with minimum bias estimation. 

Estimation of the Slope of a Response Surface 

In a recent paper by Atkinson (1), an application of Box and Dra

per 's criterion with a view toward estimating the slope of a response 

surface is given. The author assumes that the emphasis is upon the dif

ferences in response rather than upon the estimation of the highest 

response as is most often the case. Atkinson concludes by showing that 

designing experiments to estimate the slope of a response surface in any 
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direction is equivalent to designing the experiment to obtain precise 

estimates of the slopes, strictly along the axes of the independent 

variables. 

Atkinson contrasts his designs for estimating slope with rotatable 

designs. His designs depend upon the region of interest, but are not 

necessarily centered upon the region. On the other hand, the rotatable 

design must be centered upon the region of interest and must be scaled 

according to that region. 
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CHAPTER III 

MINIMUM BIAS DESIGNS 

As was demonstrated in the preceding chapter, minimizing integrated 

mean square error provided an additional area of investigation in the 

evaluation of response surface designs. The overriding importance of 

bias in comparison with variance is borne out by the work of Box and 

Draper who demonstrated that only when the variance contribution is at 

least six times the bias is there any significant difference in J, in 

comparison with the all-bias design. Most previous response surface 

designs considered only the criterion of variance. 

In order to more fully develop an appreciation for an analysis of 

modern criteria in response surface designs, the development of the con

cepts behind minimum bias designs shall be considered in more detail. 

It has already been demonstrated that the integrated mean square error, 

J, is composed of a bias component, B, and a variance component, V. A 

useful demonstration at this point might be the development of rotata

bility, orthogonality, and uniform precision with this type of design. 

It would seem appropriate to assume that the experimenter is attempting 

to fit a quadratic response surface, but that the true function can be 

best described by a cubic polynomial. 

A brief introduction to the topic of bias is important to under

standing further concepts in this area. One can assume that the model 
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to be fitted is of order d^ and of the form 

where 

2 2 

x^ = Cl, x^,..., x^, x^,..., *~\£> ^ x 2 ' * * *' Xk-lXk"^ (3.1a) 

h = Cb 0,b r..., b k, b n , . . . , b k k , b 1 2,..., b k - 1 b k ] (3.1b) 

but in actuality the true form is of order d 2 and is represented by 

y " + £ 2 6 - 2 + « (3.2) 

where xj and 0^ are as in (3.1) and 

» r 3 2 2 3 2 2 3 2 

x_2 3 8 Lx^, x^x 2, . .., x^x k > x 2 > x 2x^,. .., x 2x k,..., xk> xk xl* 

2 
•••» xk xk-l ,••• , X 1 X 2 X 3 ' x

1
x 2 x 4 » " - » xk-2 xk-l xk J 

6.2
 = ^ P 1 H ' P 1 2 2 ' " # ' Plkk' P222' * 2 l l " " 9 P2kk*' *'' Pkkk* ( 3' 2 b> 

Pkll ,••• , Pkk-lk-l ,••• , P123' P124 ,••• , Pk-2k-Up 

Now the matrix X-̂  *-s °f t n e form 
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r 2 2 
, xll , x21*''* , xkl , xll ,•'' , xkl , xll x21'*'* , xk-l,l Xk,l 

i 2 2 

i ,x 1 2,x 2 2,... .x^.x^,... » x
k2 , x12 x22' * *' ' xk-l,2 xk,2 

2 2 
1 , X1N , X2N' *'' , XkN , XlN' *' * , XkN , XlN X2N'''' '^-l.N^.N 

(3.3) 

The matrix X 2 is given by 

*2 = 

3 2 
X l l , x 1 ; L x 2 1 , . 

X 1 2 , X 1 2 X 2 2 , > 

2 3 2 2 3 
, xll xkl , x21 , x21 xll'''' >x2l\V ' * , Xkl, 

2 3 2 2 3 
, x12 Xk2 , X22 , X22 X12'* *' , x22 xk2'' * * , Xk2, 

3 2 2 3 2 2 3 
XlN , XlN X 2 i r *'' ̂ l N ^ N ' ^ N ' ^ N ^ N ' * * * ' ^ I A N ' * * * , XkN' 

(3.4) 

xkl Xll'''' , xkl Xk-l, 1'''' , xll x21 x31'''' , xk-2, l V l , l xk, 1 
2 2 

xk2 x12'''' , Xk2 Xk-l,2'' *' , X12 X22 X32'''' , Xk-2,2 Xk-l,2 Xk,2 

2 2 
XkN Xk2'*'' '"klft-l,N»''' , X1N X2N X3N' *' * , Xk-2,N Xk-l,N\,N 

The problem is to estimate jj^. By the method of least squares, one ob

tains from (1.12) 

&1 = ( x ^ ) ^ ^ ! • (3.5) 
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Taking expectation 

t v\ ~1 E(i x) = E[(X'X) X ^ (3.6) 

= • (3-7) 

From (3.2), the true value of E(Y), upon substituting into (3.5) is 

E(£ x) = (XjXp'^X^) I X + i^)'1^1^) I 2

 ( 3 ' 8 ) 

= I X + (X{X1)"1(X{X2
) ^2 ( 3 ' 9 ) 

= £ x + A £ 2 (3.10) 

where A = (X^)" 1(X|X 2) is called the "alias" matrix. Equation (3.10) 
A 

indicates the extent of biasing in the coefficients Jĝ  from higher order 

terms. 

It can be seen that the variance function for the fitted model can 

be written as 

Var (y) = Var (xj^) (3.11) 

= x{ (Var (3.12) 

= a 2 x{ ( X ^ ) " 1 * ! (3.13) 

or Var (y/ a
2) = x" (XjX^" 1^ (3.14) 

The integrated variance from (2.12) can now be written as 
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V = N 0 J xjQCjxp" 1^ dx (3.15) 
R 

Also, the bias at a point (x^,x2,...,x^) can be written using the results 

of (3.10) as 

Elx j f i ! - feji! + xja 2)] = x{(&! + M 2 ) " " * 2 I 2
 ( 3 ' 1 6 ) 

= xjApy x^p 2 , (3.17) 

and the bias portion of J, from (2.12), becomes 

B = J . x ^ £ 2 ) 2 dx (3.18) 
a R 

= J I 2 ( A 1 ^ - x 2) (x^A - x 2) £ 2 dx (3.19) 
a R 

Equation (3.19) can be rearranged as 

Q _ 1 B = ~ [l 2 A* (J xxxj dx) Aft2 - 2£ 2 (J x22S{ d x ) M 2 (3-20> 

+ ft* (I *2̂  dx) ft J 
It can be seen that the derived expressions for V and B are quite general 

and are valid for any d^ and any d 2 > d^. If the region R is assumed to 

be a unit hypersphere, i.e., the region defined by 
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xj £ 1 , (3.21) 
i=l 

the variables can be scaled to conform to this region and then integrals 

of the form 

X l x 0 x p dx (3.22) J R 1 2 p -

must be evaluated in (3.20). For the region as defined above, the inte

gral (3.22) can be shown to be 

6, 6 

writing (3.15) as 

I 0 if any 6^ odd; 

/ 6 i + 1 \ / 8 2 + 1 \ r V \ R ( — ) R (—)-••• R(-V) 
P (6+1) , 

R I Y ^ 2 - + i ] 
1=1 

for all 6. even. 
I 

ft 

£ N 

- 1 V = Z I c i j f x.x! dx , 
i=i j=i JR^-J " 

(3.23) 

(3.24) 

where c1*' is the ij1"" element of the precision matrix N(X|X^)"'L and the 

term X q is assumed to be unity, then for i ^ j from (3.21) 

.th -1 
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R 

and for i = j = (1,2,..., p) 

J xiXj dx = p . 

J R 1 J - r + 1) 

i/2 ( n ) p / 2 

There are exactly p-1 functions of the form r(l/2) in the numera

tor. From (3.21), in a similar manner, it is easily seen that 

0 •i = r d x = imZm! = M ^ _ ( 3 . 2 6 ) 

At this time, consider the case of the second order central com

posite design. From (3.25) and (3.26) the second moment is simply 

[ii] = Q J x 2 d x = -r^r , (3.27) 

the fourth pure design moment is 

[iiii] = Q J X * dx = P W P / ' 6 ^ ) ( 3 . 2 8 a ) 

R * r <?f) 

(p+2)(p+4) > 
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and the fourth moment of the region 

[iijj] = CI [ x 2 x 2 dx = 0 W = T-kr-x , (3.28b) 
J J R I J - RC2^) (p+2)(p+4) 

which agrees with the principle that, for a rotatable design, the fourth 

mixed moment is one-third the fourth pure design moment. Thus the moments 

required for'this design have been shown, but as yet J, the quantity of 

interest, has not been minimized. 

At this point, it is appropriate to return to (3.15) and (3.18) 

and develop the concept of minimum integrated mean square error. Define 

the matrices of the design moments 

M u = N " 1 ^ ^ ) , (3.29a) 

-12 = N"1<2{22

) ' (3.29b) 

and -22 = N " 1 ( - 2 - 2 ) ' (3.29c) 

which follow from the definition of moment matrices in (2.4). Further, 

define matrices of the region R as 

14X1 * J -1-1 d - (3.30a) 

% 2 ~ J -1-2 d - (3.30b) 

^22 = J -2-2 d - (3.30c) 
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These integrals can further be defined as moment matrices of a uniform 

probability distribution over the region of interest R. 

Substituting (3.15) and (3.20) into the original expression for J 

and using the above definitions, one obtains 

The variance is represented by the first term and bias by the second term. 

In choosing the design matrix D in such a manner that J is minimized, one 

sees that the variance portion of (3.31) does not depend on ^ a t all, 

but depends only on D while the bias portion depends on both D and £ 2« 

Thus minimization of J depends on the assigned value of g^* 

It can be shown that the minimum integrated mean square bias error 

which can be achieved is 

This quantity has an intuitive appeal to the experimenter, since this 

means that 

J = Tr [ U n MjJ] + ^ - Ji^ lk12> + <&[\ ' *12 ' Hi ±12> ' ( 3 * 3 1 ) 

(3.32) 

Q*n m 1 2 - ^[\ u 1 2 r % 1 <M-j m 1 2 - U l 2 ) = 0 (3.33) 

and that 

-11 -12 % 1 ^12 ' (3.34) 
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or 
Design moments through 
order 2d, (d. = 2) (3.35) 

-12 1*12 
Design moments through order 
5, for d = 2 and d = 3 (3.36) 

This is simply a statement that the moments of the design should be equal 

to the moments of the region up to and including order (d^ + . For a 

second order design protecting against cubic bias, this implies that the 

design moments through order five must be equal to the corresponding mo

ments of the region R, along with the requirements of (3.27), (3.28a), and 

(3.28b), the necessary moments for a rotatable design. 

As was pointed out previously, designs from this class which mini

mize J where both bias and variance are contributors have design param

eters which are very close to those which minimize J if bias were con

sidered alone. By restricting oneself to rotatable designs with fifth 

moments equal to zero, designs which minimize J can be developed. Box 

and Draper (4) present curves which give values of \^ and X for those de

signs which minimize J, where V/B ranges from 0 to ». \ is defined as 

\^/\^* * n these curves, zero represents the all-variance design (true 

surface and fitted model are the same) and infinity the all-bias design 

(no experimental error) for values of p running from one to five, where 

p represents number of factors. 

An Example Design 

In this section, a rotatable central composite design is given 
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which systematically protects against both bias and variance. Table 1 

presents, for the case p = 2, the number of center points, n Q, together 

with the corresponding values of the design parameters, x, correspond

ing to the design moments, \ 2
 a n c* ^* Here again, CY represents the dis

tance of the axial points from the center of the central composite de

sign and x the side length (see Fig. 1). 

Table 1. Parameter Values for * 
a CCD When p = 2 

o \ X 

0 0.628 1.500 0.628 0.888 
1 0.578 1.688 0.613 0.867 
2 0.505 1.875 0.565 0.799 
3 0.583 2.063 0.684 0.967 
4 0.627 2,250 0.768 1.086 
5 0.663 2.438 0.846 1.196 
6 0.696 2.625 0.921 1.303 
7 0.727 2.813 0.996 1.408 
8 0.757 3.000 1,070 1.514 
9 0.785 3.188 1.145 1.619 
10 0.813 3.375 1.220 1.725 
11 0.840 3.563 1.295 1.832 
12 0.867 3.750 1.371 1.939 

After Box and Draper, reference 4. 

From Table 1, it can be seen that, as one expects less effect from 

bias, more center points are added to the design, and points are placed 

further from the origin, even outside the region of interest. On the other 

hand, if bias is thought to be large and variance is thought to be small, 



35 

the region of interest is contracted and only a small number of center 
2 

points is used to provide an estimate of a . 

The experimenter should use a design with large values of \ 2 

bias is considered to be relatively unimportant; on the other hand, if 

uncertainty arises regarding the adequacy of the second order model, 

smaller values of \ and \ should be selected. 

Minimization of Integrated Mean Square Error, Orthogonality, 

and Uniform Precision 

It would seem appropriate as a logical extension to the criterion 

of minimization of rotatable integrated mean square error designs (MMSE) 

to develop the dual criteria of MMSE and orthogonality or MMSE and uni

form precision, as an alternative to MMSE alone. The attempt to incor

porate these ideas will be for the Central Composite Design (CCD) with 

p = 2. The basic requirements for orthogonality must still hold, in 

other words, the fourth pure design moment must be equal to unity. The 

value of the design moments, although basically set by choice of the de

sign points, can be altered by the addition of center points to the cen

tral composite design, the design moments are directly related to x, the 

length of the side of the cube (see Fig. 1), and the number of center 

points added. At the same time, to maintain rotatability, the axial 

points must be related to the side length of the cube as follows 

a = 2 1 / / 2 p x (3.37) 

* 
Once again a represents the distance from the center of the CCD 

to the axial points. 
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The design moments are 

X 2 = (2* + 2 1 / 2 ( P + 2 ) ) x 2/N (3.38) 

X = 3X 4/X 2 - 3N/(2 + 2 l / 2 * ) 2 (3.39) 

where 
+ 2p + n (3.40) o 

It would seem that one could easily determine a value for n for which 
o 

X, = 1: however, the value of X/ reaches a minimum between n = 17 and 4 4 o 
n = 18, at which point \. ~ 1.55. At this point, the value of the 

second moment is equal to unity. Thus it can be seen that the concept of 

minimum bias designs with orthogonality and minimum bias designs with 

uniform precision have no meaning. The same argument holds for designs 

of p = 3, 4, 5. 

It is important to note the following points about what has been 

developed above. As more and more center points are added, the moments 

are altered and become smaller and begin to take the form of an all-

variance design. Secondly, the number of center points required for 

orthogonality or uniform precision becomes completely out of proportion 

to the rest of the design, lastly, as one attempts to gain orthogonality 

for the design, design points are placed outside the region of interest, 

which may be a poor experimental strategy. 

o 
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CHAPTER IV 

MINIMUM BIAS ESTIMATION OF THE SLOPE OF A RESPONSE SURFACE 

Application of the criterion of minimization of bias by design 

alone due to Karson et al. (16) will be presented in the following para

graphs. This criterion will be applied to the problem of estimating the 

slope of a response surface. Previous development in the field has 

tended to emphasize the absolute response rather than differences in 

response. If differences are important, this implies that estimation of 

the local slope may also be of interest. Thus one sees the importance 

of the topic. 

Minimization of Bias 

The concept of minimum bias estimation will be developed and then 

applied to estimating the slope of a response surface. Once again, 

assume that the true form of the response surface can be represented as 

a function 

Tl - / ( 5 1 , § 2 . . . . , § k) + e - (4.1) 

which has been transformed into variables x,, x0,..., x such that the 
1» 2 p 

variables become the origin of the x's and are scaled relative to each 

other (see Equation 1.6). This polynomial is of degree d 2 and of the 

form 
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11 (x) = x ' ^ + x£P 2 (4.2) 

but for some reason the experimenter has chosen to deal with an approxi

mating polynomial of the form 

y(x) * x'b^ (4.3) 

This polynomial is of degree d^ (d«. > d^). As was demonstrated in Chapter 

III, to minimize bias alone, the experimenter had to satisfy the necessary 

and sufficient condition 

&[Xl)~lX[X2 * ^11 ^12 ( 4 , 4 ) 

where is as defined earlier, and X_2 is the matrix of values taken by 

the variables x 2 (the omitted portion of the model), and 

^11 " I„ -1-1 d - ( 4 , 5 ) 

I ^ 2 dx-^12 

As an alternative to the traditional method of least squares esti

mation, Karson e_t al_. (16) proposed the concept of minimum bias estimation, 

The polynomial which best approximates the true surface is given by (4.2) 

and the fitted model by (4.3). It is desired to minimize the bias compo

nent of (2.12), that is 
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B = J {E [y(x)] - T](x)}2 dx (4.6) 
a R 

where the quantity E [y(x)] is a polynomial of degree d^, say 

E [y(x)] = x ^ (4.7) 

Substituting into (4.6) one obtains 

B - ^ J [x» (a - - x ^ 2 ] 2 dx (4.8) 
a R 

= ^rl [^1 " &i> ' («! - &!> - 2(% " I V x! x2 £ 2
 ( 4 ' 9 ) 

a R 

+ 0 £ x 2x^ £ 2 dx] 

a R 

Define the quantity 

^22 * J -2-2 d - * ( 4 * U ) 

Using this definition along with the definitions of (4.5), one obtains 
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b = - t " V tn (2i " ii> " - *12 &2 ( 4 a 2 ) 

a 

+ £ 2 t 2 2 & 2] • 

Differentiating this expression with respect to the vector and equat

ing to zero yields 

g|; - 2 * n ("x - &i> " 2 t l 2 I 2 - 0 (4.13) 

and solving for 

or 
a. = Aft , 

where 

A = (I : l i 1 2 ) , (4.15) 

and 

I' - (£{ : t 2> • 

Here A is the identity matrix augmented by the product of two matrices 

which contain the moments of the region R. Thus the necessary and suffi

cient condition for minimum bias estimation is that 

E [y(x)] - xjAft (4.16) 

or 
E (b x) » Aft . (4.17) 
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One may write as a linear transformation of the observations, say 

b_x - T'Y . (4.18) 

Since E (Y) = Xp and E (b^) ~ A3; therefore, T 1 must satisfy the relation

ship 

T'X - A (4.19) 

where 

X - (Xx : X 2> . 

One can readily see that the necessary and sufficient conditions of equa

tion (4.4) are satisfied as a special case by least squares estimation if 

T' = ( X ^ ) " 1 X . (4.20) 

Thus the minimum bias, from (4.12), is simply 

Min {B} = i p' [ t 2 2 - t J 2 t-j tt } P 2 . (4.21) 
o 

Estimating the Slope of a Response Surface 

This principle may be applied to the problem of estimating the 

slope of a response surface, which was solved by Atkinson (1) using the 

traditional method of least squares. At this time it must be pointed out 

that the development of this topic will be directed at the special case of 

a single variable; however, later discussion will demonstrate its applica-
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tion to the multivariable case. 

The true surface can be represented by a polynomial of degree d^ 

71(x) = xjp^ + x ^ + x^. 3 (4.22) 

For this problem, the vectors and x^ a r e vectors which contain only 

the elements of degree d^ for vector x^ and d^ - 1 for vector x^. All 

other elements are contained in vector xj. The fitted model is repre

sented by a polynomial of degree d^ - 1 (which can be easily extended to 

d 3 - k) 

y(x) = xjb^ + x£b 2 (4.23) 

The slope of the true surface is simply the derivative 

^ M l = d . £ + d ^ £ , ( 4 . 2 4 ) 

where d^ represents all constants arising from the differentiation of the 

polynomial, d^ is the coefficient of the highest order term, 

£-i = ( p r p n » P m » - - - » Pd 3-i )» a n d & n " ( p d 3
) # 1 1 1 6 s l o p e o f t h e f i t t e d 

model is 

where d^ is as defined previously and ^ • (b^, b^t ^m*"** b^ 
Now the expected value of this polynomial is a polynomial of degree 
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d 3 - 2, say 

From Equation (4.6) it can be seen readily that the bias of the slopes is 

a R 

Substitution of (4.24) and (4.26) into (4.27) yields 

B = ̂  J [x{ (d20fx - d 2P x) - d 3x' ^J2 dx . (4.28) 
G R 

Expanding 

B = J [ < d 2 % " ' W ^ l - P ( d 2 % " d2^I } " 2 ( d 2 ^ 1 ( 4 - 2 9 ) 

a R 

" d ^ ) ' (^x') ( d ^ j ) + ( d 3 i I I ) ' (x2x^) ( d 3 £ n ) ] dx . 

Substitution from Equation (4.5) and (4.11) for their appropriate inte

grals yields 

B - -V<D

22!i " D26-IV til (D2% " D2^I) " 2(D2^1 " D 2^i r ( 4 * 3 0 ) 

a 

*12 (d3B.ll> + W3i.i1> ' *22 ̂ I I * 

http://W3i.i1
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Differentiating (4.30) with respect to and equating to zero yields 

= 0 = 2 t n d 2 ( d ^ - d ^ ) - 2 t u d 2 d 3 & I I , (4.31) 

or 

% - &I + q ^il *12 &II • ( 4 - 3 2 ) 

By taking the second derivative of B with respect to o^, one can see that 

B is minimized since is positive definite. 

Or 

o^ = A|3 , (4.33) 

where 

and p' = (g£ : g ^ ) . (4.35) 

One quickly notes the similarity of these results to Karson1s con

ditions for minimum bias estimation of a response surface. In fact, 

these results differ by a constant multiplier and the loss of the origi

nal intercept term, which is now the term corresponding to the linear 

coefficient. 

Similarly, extension of these results to the case of multiple 

factor designs means simply that differentiation of Equation (4.20) will 

yield a matrix of coefficients. The direction in which the slope is to 

be estimated must also be considered. Examples of the single factor de

sign will be discussed in Chapter V. 
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CHAPTER V 

DESIGNS FOR USE IN PRACTICE 

Presentation of a single factor design for use in practice is 

made. This design is representative of the various criteria that have 

been discussed in previous chapters. At the same time, an attempt will 

be made to integrate these criteria with each other and to gain further 

insight into the application of these designs. 

Box and Draper's Criterion (3) 

Once again assume the true conditions are represented by 

71 (x) = P Q + 3 x x + P 1 ] X
2 , (5.1) 

and the fitted model is 

y(x) • b + b.x o 1 (5.2) 

The design matrix is 

(5.3) 
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The region of interest R is the segment of the real line from -1 to 1. 

If one assumes that the design is symmetric about the midpoint of the 
N 

interval R, then E x = 0. From Equation (2.12) the integral J can be u=l u 
written as 

J = — I - \ \ [Var b + x 2 Var b j dx + [ [ E (y(x)) - 0 (5.4) 
L U L - O 1 *J - O 

a -1 -1 

- 3 xx - P u x 2 ] 2 dx } 
Q = [ dx = 2 (5.5) 

J - l 

2, 
The variance portion of J can be evaluated immediately as Var b = A /N 

2 

and Var (b^) = A /(N[ll]) where [ll] is evaluated as in Equation (2.3). 

Therefore, the integrated variance is 

V = 1/2 
1 2 

(1 + x /[ll]) dx (5.6) 
-1 

= 1 + 1/3 [11] . (5.7) 

In order to evaluate the bias portion of J, one must recall the 

expression for the alias matrix from Equation (3.10). The matrices 

and X_2 are given by 
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1 , 

1 , x, 

1 > *H 

and X„ = 

x 

2 

(5.8) 

The alias matrix A = ( X J X ^ ^ X j ^ is 

A = 
1/N 0 

0 1/(N[11]) 

N[ll] 

N[lll] 
(5.9) 

or 

[11] 

[111]/[11] 
(5.10) 

Therefore E(b ) = B + [11] 0 o o 11 (5.11) 

and E(b 1) = P x + {[111]/[11]} P n (5.12) 

Now using Equations (5.2), (5.11), and (5.12) 

E [y(x)] = p Q + P xx + p n {[11] + [lll]x/[ll]} . (5.13) 

From Equation (5.4) the bias portion of J can now be written as 

B = 
N P n rl 2 2 

ii {[11] + [lll]x/[ll] - x 2 } 2 dx 
2a -1 

(5.14) 
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N p CCll]2 - 2/3 [11] + 1/5 + [111]2/(3[11]2)} (5.15) 
a 

Once again it can be,seen that B is minimized with respect to the third 

moment by making this moflient equal to zero. Thus 

N P 2 , 
J - 1 + 1/(3[11]) + |i {([11] - 1/3)* + 4/45} (5.16) 

a 

Therefore, one sees that, if the experimenter suspects substantial bias 

in y(x), B should be minimized, whereas, if the bias is expected to be 

negligible, the second moment should be made as large as possible. Bias 

can be minimized by making [ll] = 1/3. 

A Three Point Design 

Suppose it is desired to allocate N trials, where N is divisible 

be three, at three levels, x = 0 and x = ± a. From the discussion above, 

we know that if bias is suspected one should make the second moment equal 

to one-third. Therefore, 

N/3 N/3 N/3 

*£i a 2 +&° + i (- ) 2]- i / 3 ' 
2/3 a 2 = 1/3 , 

a 2 « 1/2 , 

or a - 0.707 . 

(5.17) 

(5.18) 
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Therefore space the observations at x s ± 0.707. 

Minimum Bias Estimation and the Three Point Design 

In applying this criterion, it will be assumed that the true sur

face can be represented as 

Tl(X) = P Q + 0 ^ + 0 N X ' 
(5.19) 

and the fitted model as 

y(x) - b Q + b xx (5.20) 

The familiar X, Y, and (X'X)"^" matrices are 

and 

X = (Xx : X 2 ) -

(X'X) -1 

-a 

0 
-2 

-a 

-a 

1/2 a 

Y = 

(3/2)a -4 

(5.21) 

(5.22) 

From Equations (5.4) and (3.25), each of the following quantities can be 

evaluated 
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0 1/3 

1/3 ' ^12
 = 

0 1/3 ' ^12
 = 

0 
_ 

Therefore 

- = I : & U *22 

and from Equation (4.18) 

*22 = [1/5] 

1 0 

0 1 

1/3 

0 

(5.23) 

(5.24) 

b_x = T'Y = A(X'X)" 1X ,Y (5.25) 

6a' 

1 2(3a -1) 

-3a 0 3a 
4 

r i 

L y3j 
(5.26) 

From Equation (5.25) 

E(b x) = Ap 

or 

P 0 + 0 + l/30 u 

0 + 0 + 0 

E[y(x)] « P Q + 1/3 P n + 0 x 

(5.27) 

(5.28) 

From Equation (4.21) 

Min B N -1 
"2 &11 ( ^ 2 " ̂ 12^1li^l2 ) h i o 
3 4 fl2 
1 45 Pll 

(5.29) 
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which is independent of a. Solving for the variance function, 

Therefore 

Var y(x) = Var (xjb^) = ^xjT/Tx^ (5.30) 

= ^xjACX'X)" 1^'^ (5.31) 

v _ N 0 J1 ..... % , , n 3 . 1 

and 

Var y(x) dx * 3 - -=j + — , (5.32) 
a" 2a 2a^ 

3 1 12 2 J = 3 - ~j H =V + f3„ (5.33) 
2a z 2a* 45a 1 1 

Using the method of least squares for the same three point design, it can 

be seen that the bias is 

2 
* 3 P11 f4a4 4a 2 l\ ... 

B = — 9 " + 5/ ' ( 5 * 3 4 ) 

a 

The variance function is 

* 1 
V = 1 + -i- (5.35) 

2a Thus 2 

" J 7 7 ^ " ~ + 5 / • ( 5- 3 6 ) 

In the following two figures, a graphical presentation will be made 

using minimum bias estimation and least squares estimation, utilizing the 

three point design. Now from the results of (5.16), it was seen that the 
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a 

Figure 2. V and V versus a (after Karson 
et al. reference 17) 



Figure 3. B and B versus a (after Karson 
et al. reference 17) 
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minimum bias was achieved, using the method of least squares, at a = 

0.707; however, looking at Figure 3, it is seen that a has no effect 

on bias when using minimum bias estimation and is, in fact, independent 

of bias. At the same time, examining Figure 2, it can be seen that, in 

the vicinity of a = \J2/3, minimum bias can still be obtained while 

achieving a smaller J. This means that minimum bias estimation gives 

values of integrated mean square error which are approximately equal for 

a wide range of the design parameter, a. 

Minimized Bias of the Slope Using Minimum Bias Estimation (MBE) 

Application of (MBE) to the problem of estimating slope can be 

demonstrated for the single factor three point design. The true model is 

71 (x) = PQ + Pxx + Pnx2 + Pulx3 , (5.36) 

and the fitted model is represented by a second order surface 

y(x) = b Q + bjX + b n x 2 . (5.37) 

The derivatives of the true surface and the fitted model are 

^x^3 88 h + 2Piix + 3Pm

x2 > <5-38> 
and 

Stj&Q. b, + 2b„x . dx 1 11 
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The X, Y, and (X'X)" 1 matrices are as follows 

1 -a 2 
a y i 

X = (X x : X 2 ) = 1 0 0 I = ?2 
1 a 2 

a - y 3 . 

(5.39) 

1 0 -a" 2 

( X ' X ) " 1 = 0 l/2a" 2 0 
-2 (3/2)a -a 0 (3/2)a - 4 

The area and region moments from (5.24) are given by 

1 0 1/3* 
Q " 1 = 2 , y, n = • Hl2 

= , tL 2 2 -

„° 1 / 3. , 0 a 

From Equation (4.29), the A matrix is 

A F T d 3 -1 1 0 : 1/2' 
A = [l 2 : T% til tl2j " 0 1 0 

tL 2 2 = [1/5] (5.40) 

(5.41) 

Substituting Equation (4.29) into (4.27) one obtains 
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Min B = { d t i 2 ) . t n d 3 ( T - J T I 2 ) & N (5.42) -1 

" 2 d 3 < * U *12> ' & I L *12 d 3 & I I + d 3 I I I *22 d 3 

Substituting for the appropriate values yields 

Min B = \ = { 9 P 2
U [ 1 / 3 0] 

" 1 0 " \/3' 

_ 0 1/3 0 
- 1 8 0 111 ( 5 . 4 3 ) 

[1/3 0] 
1 / 3 
0 

+ 9 P M [ I / 5 ] } = - T J P I H > 

which again is independent of a. The variance can be obtained as 

A 

Var { d^ x
X )-*} - ^ d 2 x { 1'Tx^d, ( 5 . 4 4 ) 

= a 2 d ^ A(X'X)" 1 A , x 1 d 2 

V . - ^ J 1 V . { % A . } D . - 3 . I I + » ( 5 . 4 5 ) 
a -1 a 8a 

Atkinson's Criterion to Estimate Slope (1) 

This problem will demonstrate the method of least squares to the 

problem of estimating slope. Once again the true surface will be repre-
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sented by the polynomial of Equation (5.36) and the fitted model by the 

polynomial of Equation (5.37). The slopes of these surfaces are repre-

sented by Equations (5.38). Again it can be seen that E(b^) is 

E(b*) = P x + O ^ X x ) " 1 X { X 2 P 2 . (5.46) 

Rewriting in matrix notation gives 

{<j[y(*)]j = (5.47) 

The minimized bias can be written as 

a R 

The (X'X ) - 1 and (XjX̂ ) matrices are given by 

(5.48) 

-1 
1/N 0 

0 1/N[11] 
( X { X 2 ) = 

N[ll] 

N[lll] 

where [ll] = I ) 2 2 

N ^ Xl * 3 a for N = 3. 

Now 

(5.49) 

E M E ( B ^ + D 2 B U X ) 

- P R + 2 [ L L ] P M + D . X { P U • + 2 IjgjL P U J , 

(5.50) 
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and substituting into (5.48) yields 

B* - j\ h + 2tll]pm + 2xpu + 4x W pm " pi (5-51) 

a -l 

- 2pnx - 3fSmx2}2 dx • 
Subtracting and expanding yields 

1 2 
B* = 4 P?n f UCll]2 + 16x[lll] + 16 x 2 (5.52) 

a 1 1 1 J-l L [ll] 2 

- 12x2[ll] - 24x 3 ^jfj + 9x 4] dx . 

Integrating (5.52), substituting for [ll], and setting the third moment 

to zero yields 

* N Q 2 /16 4 8 2 ̂  9\ 3 fl2 [~/4 2 \2 ^ 41 «... 
= ^ P l l l l T a - 3 a + 5 / S - 2 Plll LU a "V +sJ(5-53) 

a a 

From Equations (5.4) and (5.7), the variance can be obtained as 

a -1 a 

A graphical presentation of the two designs demonstrates that, in 

a similar manner to Karson!s original article, the least squares estima

tion of the slope of a response surface is a special case of minimizing 

bias by direct estimation. 
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In Figure 4, V and V are plotted against a. At the same time, 

it can be seen that V* = V except at the point a = \J 3/4, the minimum 

value achieved by least squares estimation where V = V . In a similar 

manner, a plot of B versus B as a function of a indicates that, for 

minimum bias estimation, minimum bias is achieved for any value a ^ 0. 

At the same time, B reaches a minimum at a = \J 3/4, the value achieved 

by least squares estimation. Thus combining the knowledge of both graphs 

it can be seen that 

j = V + B = J * ( a = \FJ/Z) (5.55) 

on the interval \/ 3/4 = a ^ 1. At the same time, it must be pointed out 

that minimum V is not achieved until a = y7 6 which is outside the region 

of interest, i.e., x.̂  = 1. Consequently, the only limitation on the de

sign is the inherent design limitation defined by the region of interest. 

The last situation that will be considered is the estimation of 

the slope where the true surface is quadratic and the fitted model is 

linear; that is, 

Tl(x) = 0 Q + p^x + P u x 2 (5.56) 

y(x) - b Q + b^x . 

The slopes of the fitted model and the true surface are 

(5.57) 

(Continued) 
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Figure 5. B and B versus a 
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dx 

The and X^ matrices are given by 

1 , x. 

1 , X , 

1 • 

and *2 = 

X 

2 

(5.58) 

Using least squares estimation, the alias matrix obtained is 

A = ( x ^ ) " 1 x[a2 
(5.59) 

Thus 

E(b x) = P x + ([111]/[11]) p n (5.60) 

From Equation (5.4), the bias portion of J can be written as 

B = ^j- J1 {P x + ([111]/[11]) P N - P 1 - 2 P n x } 2 dx . 
a -1 

^ f £(Cm]/[ll]) P 
a -1 

n - 2 P u x } dx . 

(5.61) 

(5.62) 

Examining the equation above, one sees that, if the design is 

centered at the point where the slope is estimated, the bias term is zero, 

since the third moment is zero. This was pointed out by Atkinson (1) and 
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he developed designs which are not centered at the point of slope esti

mation. 

Using MBE with the same true surface and fitted response, the 

slopes are as shown in (5.57). The expected value of is some poly

nomial of degree zero, say o^. The problem is to minimize B with respect 

to o^. From (5.4) the bias portion of J can be written as 

B = 2 
N O " 1 

a -1 

Rewriting this equation 

{or - (0 X + 2 P n x ) } 2 dx . (5.63) 

- J ai " Pi> " n̂*}2 dx • <5-64> 
Expanding yields 

B = I [(ai ' pi)2 * Hai " pi)x pn + 4f3nxii] dx • (5' 
o -1 

65) 

Looking at Equation (5.65), it can be seen that the term 4(c^ - 0^) xp-j^ 

is zero since from (3.23) this integral is zero if any 6^ odd. 

Differentiating (5.65) with respect to gives 

= 2(a- - p.) - 0 or a. - p. . (5.66) d 1 1 1 1 

This simply means that the least squares estimator is equivalent to the 

MBE. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of Results 

This thesis discusses an approach to minimum bias designs for 

response surface methodology. Three important areas of minimum bias 

designs were considered: 1) organization of the topic of minimum bias 

designs and presenting it in a comprehensive manner; 2) integration of 

modern and classical design criteria to more fully explain and differen

tiate characteristics of importance; 3) application of minimum bias esti

mation to the problem of estimating the slope of a response surface. 

A detailed development and explanation of the assumptions of Box 

and Draper was presented to demonstrate the importance of each assumption 

to each type of minimum bias designs. At the same time, development of 

rotatability was considered in detail because of its fundamental impor

tance to basic assumptions for minimum bias designs as well as its basic 

importance in the development of additional criteria in minimum bias 

designs. 

Minimum bias designs were also examined with the purpose of devel

oping additional design criteria to include orthogonality and uniform 

precision. However, these were shown to be mutually exclusive concepts. 

The development and examination of minimum bias estimation was considered 

in great detail. An extension of minimum bias estimation to estimate the 
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slope of a response surface was developed and applied to a three point 

design. Within this context it must be pointed out that designs for esti

mating the slope of a response surface seem somewhat limited since the 

method degenerates into a least squares estimation procedure in linear 

models, which is probably the most frequently encountered case on the part 

of the experimenter. 

Conclusions 

The conclusions derived from this study are the following: 

1. A literature survey revealed the importance of the assumptions 

surrounding each criterion of modern response surface design. This study 

clearly demonstrates the importance of rotatability to modern design cri

teria and its application to new areas of response surface design. 

2. Rotatable minimum bias designs with uniform precision or orthog 

onality are mutually exclusive categories. Although moments were achieved 

which are somewhat near these criteria, the corresponding cost in terms 

of additional experiments and the spread of the design, outside the re

gion of interest, are in most cases undesirable. 

3. The superiority of minimum bias estimation to the traditional 

method of least squares estimation was mathematically and pictorially 

demonstrated for a single variable, with regard to integrated mean square 

error as a design criterion for response surface designs. This technique 

allows the experimenter to select a considerable range for the design 

parameter over which the integrated mean square error is approximately 

equal. This allows the experimenter further design flexibility to satisfy 

other design criteria. 
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Recommendations for Further Study 

Although the concept of estimation of slope was developed in detail, 

there appear to be many areas of potential research which remain open, 

both related to modern design criteria as well as other topics of basic 

interest in response surface methodology. The following is a brief out

line of recommendations for further research in the area. 

1. Develop a protection criterion for minimum bias estimation of 

slope. Based upon the protection criteria developed by Karson (16) for 

estimation of response surfaces as well as the developments of this study, 

this would seem to be a feasible topic for further development. 

2. Does minimum bias design lend itself to the development of 

other design criteria, such as the protection criterion developed by 

Karson? Potentially this topic is the area of greatest importance; how

ever, the topic would be the most difficult to develop. 

3. Apply Karson1s minimum bias estimation to spherical weight 

functions and develop design criteria for this type of response surface 

design. 

4. A relatively unknown article by Nelder (18) concerning inverse 

polynomials and their application to response surface methodology pro

vides a wide area for new further research in response surfaces. Can 

rotatability for this type of design be demonstrated? How does this de

sign affect minimum bias design and "lack of fit"? 

5. Develop further types of approximating polynomials to be uti

lized for response surface design. If this is feasible, what character

istics of item 3 above can be applied to these designs? 



67 

BIBLIOGRAPHY 

Literature Cited 

Atkinson, A. C. 1970. "The Design of Experiments to Estimate the 
Slope of a Response Surface," Biometrika, 57, 319-328. 

Box, G. E. P. 1968. "Experimental Design: Response Surfaces," 
International Encyclopedia of the Social Sciences, Vol. 5, 254-259. 

Box, G. E. P. and Draper, N. R. 1959. "A Basis for the Selection 
of a Response Surface Design," Journal of the American Statistical 
Association, 54, 622-654. 

, 1963. "The Choice of a Second 
Order Rotatable Design," Biometrika, 50, 335-352. 

Box, G. E. P. and Hunter, J. S. 1957. "Multifactor Experimental 
Designs for Exploring Response Surfaces," Annals of Mathematical 
Statistics, 28, 195-241. 

Box, G. E. P. and Wilson, K. B. 1951. "On the Experimental 
Attainment of Optimum Conditions," Journal of the Royal Statistical 
Society, (Series B ) , 13, 1-41. 

Davies, P. 1969. "The Choice of Variables in the Design of Exper
iments for Linear Regression," Biometrika, 56, 55-63. 

Draper, N. R. and Lawrence, W. E. 1965. "Designs which Minimize 
Model Inadequacies: Cuboidal Regions of Interest," Biometrika, 
52, 111-118. 

, 1966. "The Use of Second-Order 
'Spherical' and 'Cuboidal' Designs in the Wrong Regions," Bio
metrika, 53, 596-599. 

' , 1967. "Sequential Designs for 
Spherical Weight Functions, Technometrics, 9, 517-529. 

Fisher, R. A. 1935. The Design of Experiments, Edinburgh: Oliver 
and Boyd. Chap. 6. 

Friedman, M. and Savage, L. J. "Planning Experiments Seeking 
Maxima," Techniques of Statistical Analysis, New York: McGraw-
Hill, 1947. 



68 

BIBLIOGRAPHY (Continued) 

13. Graybill, F. A. An Introduction to Linear Statistical Models, 
Vol. 1, New York: McGraw-Hill, 1961. 

14. Herzberg, A. M. 1967. "The Behavior of the Variance Function of 
the Difference between Two Estimated Responses," Journal of the 
Royal Statistical Society, (Series B) 29, 174-179. 

15. Hotelling, H. 1941. "Experimental Determination of the Maximum 
of a Function," Annals of Mathematical Statistics, 12, 20-45. 

16. Karson, M. J. 1970. "Design Criterion for Minimum Bias Estima
tion of Response Surfaces," Journal of the American Statistical 
Association, 65, 1565-1572. 

17. Karson, M. J., Hader, R. J., and Manson, A. R. 1969. "Minimum 
Bias Estimation and Experimental Design for Response Surfaces," 
Technometries, 11, 461-475. 

18. Nelder, J. A. 1966. "Inverse Polynomials: A Useful Group of 
Multi-factor Response Functions," Biometrics, 22, 128-141. 

19. Yates, F. 1935. Journal of the Royal Statistical Society, 
Suppl., 2, 181. 

Other References 

Atkinson, A. C. and Hunter, W. G. 1968. "The Design of Experiments for 
Parameter Estimation," Technometrics, 10, 271-89. 

Cochran, W. G. and Cox, G. M. 1957. Experimental Designs. John Wiley 
and Sons, Inc., New York, Chapter 8A. 

Davies, 0. L. 1954. The Design and Analysis of Industrial Experiments. 
Hafner, New York, Chapter 11, 495. 

David, H. A. and Arens, B. E. 1959. "Optimal Spacing in Regression 
Analysis," Annals of Mathematical Statistics, 30, 1072-1081. 

Draper, N. R. and Hunter, W. G. 1969. "Transformations: Some Examples 
Revisited," Technometrics, 11, 23-40. 

Frankel, S. A. 1961. "Statistical Design of Experiments for Process 
Development of MBT," Rubber Age, 89, 453-61. 

Hartley, H. 0. 1959. "Smallest Composite Designs for Quadratic Response 
Surfaces," Biometrics, 15, 611-624. 



69 

BIBLIOGRAPHY (Concluded) 

Herzberg, A. M. 1966. "Cylindrically Rotatable Designs," Annals of 
Mathematical Statistics, 37, 242-247. 

Herzberg, A. M. and Cox, D. R. 1969. "Recent Work on the Design of Ex
periments: A Bibliography and a Review," Journal of the Royal 
Statistical Society, (Series A), 29-67. 

Hill, W. J. and Hunter, W. G. 1966. "A Review of Response Surface 
Methodology: A Literature Survey," Technometrics, 8, 571-590. 

Kussmaul, K. 1969. "Protection Against Assuming the Wrong Degree in 
Polynomial Regression," Technometrics, 11, 677-682. 

Myers, R. H. 1971. Response Surface Methodology, Allen and Bacon, Rock 
leigh, N. J. 


