
iSPCG: Incremental Subgraph-Preconditioned Conjugate Gradient
Method for Online SLAM with Many Loop-Closures

Yong-Dian Jian and Frank Dellaert

Abstract— We propose a novel method to solve online SLAM
problems with many loop-closures on the basis of two state-
of-the-art SLAM methods, iSAM and SPCG. We first use
iSAM to solve a sparse sub-problem to obtain an approximate
solution. When the error grows larger than a threshold or the
optimal solution is requested, we use subgraph-preconditioned
conjugate gradient method to solve the original problem where
the subgraph preconditioner and initial estimate are provided
by iSAM. Finally we use the optimal solution from SPCG to
regularize iSAM in the next steps. The proposed method is
consistent, efficient and can find the optimal solution. We apply
this method to solve large simulated and real SLAM problems,
and obtain promising results.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) refers to
the problem of localizing a robot in an unknown environment
while simultaneously building a consistent map. Being able
to efficiently solve SLAM in large and complex environments
are important for many tasks in autonomous mobile robotics
such as navigation and planning [1], [2]. Here we are
interested in solving online SLAM problems with many loop-
closures, which are common when the robot has long-range
sensors, e.g., cameras, and explores in large open space.

Modern SLAM methods often formulate SLAM as a
graph-based optimization problem [3], [4], [5]. The state-
of-the-art online SLAM methods stem from incremental
smoothing and mapping (iSAM) [6], and hierarchical op-
timization (HOG-Man) [7]. Yet these methods do not scale
well when there are many loop-closures because they aim
to incrementally or hierarchically factorize the information
matrix which is expensive for these problems.

Many techniques have been proposed to efficiently solve
SLAM problems with many loop-closures. Methods based
on graph sparsification aim to reduce the problem size by
discarding redundant edges, marginalizing redundant ver-
tices, or using convex optimization techniques, but they
lead to either inconsistent estimate or high computational
complexity [8], [9], [10], [11], [12], [13], [14]. Iterative
methods have been used to solve the SLAM problems with
many loop-closures, but they either assume all measurements
are available in advance or require good initialization to
obtain good results [15], [16], [17], [18], [19], [20], [21].

In this paper, we propose a new method, incremental
subgraph-preconditioned conjugate (iSPCG) method, to ef-

The authors are affiliated with the Georgia Institute of Technology, USA
{ydjian@gatech.edu, dellaert@cc.gatech.edu},
and they acknowledge the support from the National Science Foundation
Award 11115678 ”RI: Small: Ultra-Sparsifiers for Fast and Scalable
Mapping and 3D Reconstruction on Mobile Robots”.

x1 x2

(a)

x1 x2

x3

(b)

x1 x2

x3

x4

(c)

x1 x2

x3x4
(d)

Fig. 1: Illustration of the iSPCG method on a simple graph.
The solid factors belong to the subgraph while the dashed
factors correspond to the remaining part. (a) Initially the
graph is still sparse. Hence all factors belong to the subgraph,
and iSAM can solve it very efficiently. (b) There is one
loop-closure constraint, but leaving it out of the subgraph
does not introduce significant error. (c) There are more loop-
closures, but this time leaving them out of the subgraph leads
to unsatisfactory results. Hence SPCG is invoked to optimize
the entire graph. (d). The solution obtained from SPCG are
used to regularized iSAM in the next iterations.

ficiently solve online SLAM problems with many loop-
closures. The main idea is to use iSAM to incrementally
solve a sparse subgraph to obtain an approximate solution.
When the error grows larger than a threshold or the optimal
solution is requested, the subgraph-preconditioned conjugate
gradient method (SPCG) [20], [21] is applied to solve the
entire graph to obtain a locally optimal solution. We note that
the subgraph preconditioner and the initial estimate for SPCG
are provided by iSAM. Then we use the optimal solution
from SPCG to regularize iSAM’s estimates in the following
steps. Unlike previous work which might lead to information
loss or inconsistent estimate [9], [10], [13], [14], we show
that iSPCG can be consistent, efficient and optimal.

This paper has the following contributions: (1) We propose
iSPCG to efficiently solve online SLAM problems with
many loop-closures by combining two state-of-the-art SLAM
methods. (2) We provide a theoretical analysis of iSPCG and
show that it can provide consistent and optimal estimate.
(3) We apply iSPCG to solve large-scale simulated and real
SLAM problems and obtain promising results.



II. SLAM

A. Formulation

Here we review SLAM formulation to facilitate the ex-
position. We define θ = {θi}ni=1 as the state variables
(e.g., robot poses), and Z = {zj}mj=1 as the measurements
(e.g., odometry and loop-closure). The goal is to obtain the
maximum a posteriori (MAP) estimation

θMAP(Z) = argmax
θ

P (θ)P (Z | θ). (1)

Assuming the variables are independent, and the measure-
ments are conditionally independent, we can factorize the
right-hand side of (1) into

P (θ)P (Z|θ) ∝
n∏
i=1

P (θi)

m∏
j=1

P (zj | θj) (2)

where θj denotes the variables of the jth measurement.
The SLAM problem can also be formulated with the factor

graph representation [22] where each vertex denotes a state
variable, and each factor (edge) is represented by the squared
error term associated with a probability density function in
(2). More specifically, we assume prior and measurement
models are Gaussian, defined by

P (θi) ∝ exp(−‖gi(θi)‖2Γi
) (3)

P (zj | θj) ∝ exp(−‖hj(θj)‖2Ψj
). (4)

where gi(·) denotes the prior model over the ith variable
and hj(·) denotes the model of the jth measurement. In
both models, we assume zero-mean and normally distributed
noise with covariance matrices Γi and Ψj respectively. Here
‖e‖Σ =

√
eTΣ−1e denotes the Mahalanobis distance. By

substituting the probability densities in (2) with the functions
in (3) and (4), and taking negative logarithm, we obtain the
following factor graph representation for the SLAM problem

θMAP(Z) = argmin
θ

n∑
i=1

‖gi(θi)‖2Γi
+

m∑
j=1

‖hj(θj)‖2Ψj
(5)

= argmin
θ

m+n∑
k=1

‖ek(θk)‖2Σk
(6)

where ek(·) is a function θk with covariance matrix Σk.

B. Nonlinear Optimization

We show how to solve (6) with nonlinear optimization [4],
[5]. The function in (6) is generally non-convex and has no
closed-form expression to compute the global optimum, but
assuming we have some initial estimates of the variables,
we can find a local optimum by using any nonlinear least-
squares optimization algorithm (e.g., the Gauss-Newton or
the Levenberg-Marquardt algorithm) [23]. The key is to
apply first-order Taylor expansion to linearize the function

ek(θk) ≈ ek(θ0
k) + Jk∆θk (7)

where Jk is the Jacobian matrix of ek(·) with respect to θk
at the linearization point θ0

k:

Jk =
∂ek(θk)

∂θk

∣∣∣∣
θ0k

. (8)

If we set (7) to zero, then we obtain Jk∆θk = −ek(θ0
k)

which is linear in ∆θk. Repeating this procedure for all of
the ek(·) functions, we can derive a linear system

A∆θ = b (9)

where A is a rectangular matrix whose kth (block) row
contains the Jacobian matrix Jk in (8), and b is a vector
whose kth (block) row equals −ek(θ0

k). Equation (9) can
be considered as a linearized version of the SLAM problem
whose graph structure is represented by the sparsity pattern
of A. Hereafter we will refer to (9) as the linear system or
the Gaussian factor graph of a SLAM problem, and refer
to A as the Jacobian matrix, refer to Λ = ATA as the
information matrix.

In batch scenario, we assume an initial estimate and all of
the measurements are available, so we typically iteratively
solve (9) to update the current estimates until convergence.
Yet in online SLAM problems, the measurements are not
available at once but come in sequentially. Intuitively, the
techniques designed for batch scenario can be applied to
solve online problems, e.g., fixed-lag smoothing or periodic
global optimization, but their performance are suboptimal.

C. Incremental Smoothing and Mapping

iSAM aims to solve online SLAM problems by performing
fast incremental updates of the square root information
matrix when new measurements are added [24]. Recently, it
has been shown that Bayes trees provide a better understand-
ing of the matrix factorization and allows incremental re-
ordering and just-in-time relinearization [6]. These desirable
properties make iSAM one of the state-of-the-art methods
for online SLAM problems. Generally speaking, iSAM can
achieve constant computational complexity when the robot
is exploring the environment, but the performance degrades
when there are many loop-closures because iSAM will have
to frequently reorder the Bayes Tree as well as update the
corresponding conditional densities.

D. Subgraph-Preconditioned Conjugate Gradient Method

To efficiently solve SLAM with many loop-closures, the
subgraph-preconditioned conjugate gradient (SPCG) method
has been proposed [20], [21]. The main idea is to combine
the advantages of direct and iterative methods by identifying
a sparse subgraph and then solve it with direct methods to
build a prior probability density to precondition the original
problem. Using a sparse subgraph has the advantage that
solving the sub-problem and applying the preconditioner
can both be performed efficiently. Yet as a batch technique,
SPCG requires good initial estimates to obtain good results.



III. INCREMENTAL SPCG
We present the incremental subgraph-preconditioned con-

jugate gradient (iSPCG) method that combines two state-
of-the-art techniques, iSAM and SPCG, to efficiently solve
online SLAM problems with many loop-closures. In SLAM,
a loop-closure refers to an event that the robot recognizes a
previously mapped area. Loop-closures are essential to limit
the growth of uncertainty and improve the estimate.

First we use iSAM to incrementally solve a sparse sub-
graph to obtain an approximate solution. When the error
grows larger than a threshold or the optimal solution is
requested, we apply SPCG [20], [21] to solve the entire graph
to obtain the optimal solution. We note that the subgraph
preconditioner and the initial estimate for SPCG are provided
by iSAM. Then we use the optimal solution from SPCG to
regularize iSAM’s estimate in the following steps. The detail
of each step will be explained in the following sections.

A. Solving Subgraphs with iSAM

Considering a SLAM problem as a factor graph G =
(V,E), where V denotes the robot poses, and E denotes
the measurements (factors). We incrementally separate the
graph into two parts: the subgraph part H = (V,EH) and
the constraint part C = (V,EC). Then we use iSAM to
incrementally solve the subgraph part, and constantly keep
an approximate solution. To evaluate the quality of the
approximate solution, we compute the normalized chi-square
error on the subgraph part χ2

H , on the constraint part χ2
C and

on the entire graph χ2
G, respectively. If the error is small, i.e.,

χ2
G ≤ τg and

χ2
C

χ2
H

≤ τr, (10)

where τg and τr are thresholds, we accept iSAM’s solution
and proceed to the next iteration.

We note that this approximation scheme is efficient if the
subgraph is sparse because the associated Bayes Tree and
conditional densities can be updated efficiently.

B. Solving Original Graphs with SPCG

If iSAM’s approximate solution leads to high error or the
optimal solution is requested by the user, we apply SPCG
to solve the entire graph with iSAM’s solution as the initial
estimate and iSAM’s factorization of the approximate infor-
mation matrix as the subgraph preconditioner. Since iSAM
typically provides good initial estimates, and the subgraph
preconditioner can effectively reparametrize the problem,
SPCG will converge in a few iterations. Consequently, we
will obtain a locally optimal solution.

C. Regularizing iSAM with SPCG’s Solutions

Finally, we have to inform iSAM with the optimal solution
from SPCG, otherwise iSAM will drift again in the next
iterations. To this end, we add prior factors to the subgraph

ep(θk) =
1

2
‖θk − θspcgk ‖2Σk

∀ k = 1, 2, ..., n (11)

where θspcgk denotes SPCG’s solution of the kth variable,
Σk is the covariance matrix of the prior factor, and n is the

Algorithm 1: One step of the iSPCG algorithm
Input: Gt−1 is the current factor graph, and Ht−1 is a

subgraph of Gt−1. Ft denotes new factors.
Output: new estimate θt
1. split Ft = FH

t

⋃
FC
t into subgraph and constraints parts

2. use iSAM to solve the new subgraph Ht = Ht−1

⋃
FH
t

3. if iSAM’s solution θisamt is acceptable then return θisamt

4. use SPCG to solve the new graph Gt = Gt−1

⋃
Ft with

θisamt as the initial estimate
5. use SPCG’s solution θspcgt to regularize iSAM hereafter
6. return θspcgt

number of variables. Note that these prior factors only exist
in iSAM and will not affect the optimal solution, and they
will be replaced after next invocation of SPCG. The key steps
of iSPCG are illustrated with a simple example in Fig. 1 and
summarized in Algorithm 1.

IV. THE CONSISTENCY OF ISPCG

Here we prove a sufficient condition that iSPCG is
consistent. The consistency of an online SLAM method
is important because it can prevent us from being over-
confident about the current estimates and therefore help us
make conservative data association in the SLAM frontend.
While previous work used convex optimization techniques
to enforce the consistency [25], [12], here we show that the
proposed method can be proved to be consistent.

We start by defining the notion of consistency:

Definition 1 (Consistency). The estimate of the mean and
covariance Σ of Gaussian random variables is consistent if

E[µ̂− µ] = 0 (12)

Σ̂ � Σ (13)

where (µ,Σ) denote the true values, and (µ̂, Σ̂) denote the
estimate [26].

Proving (12) is typically simple due to the Gaussian
assumption and the central limit theorem. Therefore, we
focus on proving (13). We need the following four lemmas
to prove the consistency of iSPCG.

Lemma 2. Suppose X and Y are symmetric and positive-
definite matrices, then X � Y if and only if ρ(X−1Y) ≤ 1,
where ρ(·) denotes the largest eigenvalue [27, p.471].

Lemma 3. Suppose X and Y are positive-definite matrices.
If X � Y, then X−1 � Y−1.

Proof. Since X � Y, according to Lemma 2, we know
ρ(X−1Y) ≤ 1. Since ρ(X−1Y) = ρ(YX−1), therefore we
obtain ρ(YX−1) ≤ 1 and then X−1 � Y−1.

Lemma 4. Given a real symmetric matrix X ∈ Rn×n, and
its eigenvalues {λi}ni=1, then the eigenvalues of (X+ tI) are
{λi + t}ni=1.

Proof. Suppose vi is the ith eigenvector of X, then we obtain
(X + tI)vi = Xvi + tIvi = λivi + tvi = (λi + t)vi



(a) (b) (c)

Fig. 2: The bird’s-eye views of (a) a Blockworld problem with 1,000 robot poses (yellow) and 10,000 constraints (blue), (b)
the ”Lab02” problem, and (c) the ”Cubicle02” problem.

Lemma 5. Solving a subgraph leads to consistent estimates.

Proof. Consider rearranging the Jacobian matrix in (9) into

A =

[
AH

AC

]
(14)

where AH denotes the Jacobians associated to the subgraph,
and AC denotes that of the remaining part. Suppose Λ =
Σ−1 denotes the information matrix, we need to prove
that ΣH � Σ. From (14), we can see that Λ − ΛH =
ATA−AT

HAH = AT
CAC � 0. Therefore, Λ � ΛH . Using

Lemma 3, we can obtain ΣH = Λ−1
H � Λ−1 = Σ.

Lemma 6. Adding the regularization terms in (11) to a
subgraph maintains the consistency if Σk = t−1I and t ≤
λmin(ΛC), where λmin(·) denotes the smallest eigenvalue.

Proof. The information matrix of the regularized subgraph is
(ΛH+tI). To prove the lemma, we need to show Λ � (ΛH+
tI). We can see that Λ− (ΛH + tI) = (ΛH +ΛC)− (ΛH +
tI) = (ΛC−tI). Suppose the eigenvalues of ΛC are {λi}ni=1.
Using Lemma 4, we know the eigenvalues of (ΛC − tI) are
{λi− t}ni=1. Since t ≤ mini λi, we know λi− t ≥ 0, for all
i. Hence (ΛC − tI) � 0 and Λ � (ΛH + tI).

Corollary 7. iSPCG gives consistent and optimal estimates.

Proof. The discussion can be splitted into two parts: (1) For
the iSAM part, using Lemma 5, we know that using iSAM
to solve a subgraph always leads to consistent estimates.
Moreover, using iSAM to solve a regularized subgraph also
leads to consistent estimates if we assign the covariance
matrices according to Lemma 6. The solution from iSAM is
close to optimal in the sense that the normalized chi-square
error is always smaller than a predefined threshold. (2) For
the SPCG part, the estimates are both consistent and optimal
because they are obtained by solving the original graph.

Note that in Lemma 6 we assume the linearization points
for both the subgraph and the original graph are identical, but
this assumption is not always true for nonlinear SLAM prob-
lems. Nevertheless, the difference between two linearization
points is bounded because iSAM would relinearize whenever
there are sufficient changes in the current estimates.

V. RESULTS

We conducted experiments to evaluate the accuracy, speed
and scalability of iSPCG, and compare it with iSAM [6]
on simulated and real datasets. For iSPCG, we used a
subgraph consisting of the odometry chain of the robot
poses plus n randomly selected edges, where n is the
number of robot poses. Such a simple choice has shown its
effectiveness in [21]. The thresholds in (10) are empirically
set to τg = 10−2 and τr = 5.0 respectively. We also used
the inverse iteration method [28] to estimate the smallest
eigenvalue to determine the proper covariance matrices of
the regularization terms in (11). For iSAM, we used the
implementation in GTSAM [29] with default parameters. We
ran all of the experiments with single thread on a PC with
an Intel Core i7 CPU.

A. Simulated Datasets

To facilitate the comparison, we generated a number of
synthetic Blockworld problems, simulating a robot traversing
a block world. The bird’s-eye view of this problem is
illustrated in Fig. 2a. For each robot pose, we added various
number of constraints to its closest neighbors, and these
measurements are contaminated by zero-mean and normally
distributed noise.To make the SLAM problem well-posed,
we attached a prior factor to the first robot pose.

1) Accuracy: We evaluated the accuracy of different
solvers on a Blockworld problem with 1,000 poses and 20,000
measurements, and showed the results in Fig. 3. Note that
”iSAM-full” means using iSAM to solve the entire graph,
while ”iSAM-subgraph” means using iSAM to solve the
subgraph as in iSPCG. In Fig. 3a, we can see that both
iSPCG and iSAM-full can achieve lower errors because they
both aim to solve the original problem. Yet iSAM-subgraph
consistently has larger errors because it only used part of the
information. Moreover, in some of our trials, we observed
that iSAM-subgraph cannot solve the problems.

2) Timing: We also evaluated the running time of different
solvers on the same dataset, and reported the results in
Figs. 3b and 3c. We can see that iSAM-full quickly becomes
expensive because of many loop-closures, which makes it
unsuitable for large-scale problems. iSAM-subgraph is very



(a) (b) (c)

Fig. 3: The results on a synthetic Blockworld dataset with 1,000 poses and 20,000 measurements. (a) The normalized chi-
square error. (b) The processing time per time step. (c) The cumulative processing time.

(a) (b)

Fig. 4: The results on Blockworld datasets with different number of loop-closures.

efficient but it also leads to higher errors or potentially wrong
solutions. By combining the advantages of iSAM and SPCG,
iSPCG can be more than two times faster than iSAM-full and
also obtain high-quality solutions.

Notably, from Fig. 3b, we can see that iSPCG periodically
has a spike, which is undesirable for online applications. We
observed that this happened when the solution of iSAM is
unsatisfactory and SPCG has to be invoked to optimize the
full graph. One way to resolve this problem is by splitting
iSPCG into two threads: one thread running iSAM in the
frontend, and the other thread running SPCG in the backend.
In addition, we observed that there is a tradeoff between
the quality of solutions obtained from iSPCG as well as the
efficiency of iSPCG. That is, the smaller the thresholds τg
and τr, the better solutions we obtain, but the more often we
have to run to solve the full graphs. How to automatically
determine these thresholds is another interesting question.
We plan to explore these two directions in future work.

3) Scalability: We evaluated the performance of different
solvers on Blockworld datasets with various number of loop-
closures. We reported the tenth percentile, the median and

the ninetieth percentile over twenty trials of the final errors
and total processing times in Fig. 4.

We can see that iSAM-full consistently achieves lower
errors as in the previous experiments because it aims to solve
the original problem. iSAM-full is also efficient when the
number of loop-closures is small, but quickly becomes ex-
pensive when the number of loop-closures increases, which
makes it unsuitable for large-scale problems.

For iSAM-subgraph, since it aims to solve a sparse sub-
problem, its efficiency is always good and independent of
the number of loop-closures. Yet we observed that its error
is not only consistently higher than that of iSAM-full and
iSPCG, but also increases with the number of loop-closures.
These properties also make iSAM-subgraph unsuitable for
obtaining high-quality solutions.

For iSPCG, it can provide high-quality solutions, and also
be up to four times faster than iSAM-full. These properties
make iSPCG a better choice for large-scale SLAM problems
with many loop-closures.



TABLE I: The timing results on real datasets in seconds.
The ”Ratio” column indicates the ratio between the number
of measurements to the number of poses, which can be an
indicator of the difficulty of the problem.

Name Poses Measurements Ratio iSPCG iSAM

Killian 1,941 3,995 2.1 4.6 3.1

Intel 910 4,454 4.9 2.0 1.1

Lab02 1,998 15,505 7.8 17.5 18.1

Cubicle02 1,998 33,234 16.6 69.2 441.6

TABLE II: Comparison between different methods for
SLAM problems with many loop-closures.

Method Efficient Consistent Optimal

iSAM × ◦ }
Marginalization × ◦ }
Vertex removal ◦ × ×
Edge removal (subgraph) ◦ ◦ ×
Chow-Liu tree approx. ◦ × ×
Convex optimization × ◦ ×
iSPCG ◦ ◦ ◦

B. Real Dataset

We also evaluated the performance of iSPCG and iSAM
on four real datasets. The ”Killian” and ”Intel” datasets are
publicly available. The ”Lab02” and ”Cubicle02” datasets are
collected by the authors with a Videre STOC camera in an
open office environment, where the camera constantly visits
the same place to create many loop-closure constraints. We
used the vocabulary tree technique [30] implemented in [31]
to generate loop-closure constraints. The latter two datasets
can be downloaded from the authors’ website.

From the results in Table I, we can see that iSAM is more
efficient when the SLAM problems do not have many loop-
closures, i.e., the ratio between the number of measurements
to the number of poses is low. We observed that iSAM is up
to two times faster in ”Killian” and ”Intel” datasets. However,
when the ratio becomes larger, iSPCG starts to show its
advantages. On the ”Cubicle02” dataset, we observed that
iSPCG is 6.3 times faster than iSAM. We omitted the
normalized chi-square errors because both method achieve
similar errors for all datasets.

VI. RELATED WORK

Solutions to the online SLAM problem have been well-
studied in literature. Here we focus on recent results of pose
graph optimization [3], [4], [5], and refer the readers to [1]
and [2] for the developments of filtering-based methods.

One of the main challenges to SLAM methods is scalabil-
ity. In this paper, we addressed the scalability to the number
of loop-closures. Many techniques have been proposed and
they can be divided into the following categories.

The first category aims to build an intermediate represen-
tation of the problem so that the estimate can be obtained ef-

ficiently, e.g., incremental smoothing and mapping [24], [6],
and hierarchical optimization [7]. Although these methods
are efficient for sparse problems, they do not scale well when
there are many loop-closures. The main reason is that they all
aim to factorize the information matrix which is expensive
for large-scale problems. Nevertheless, the concepts of these
techniques are useful, and therefore we design our method
based on one of the state-of-the-art methods in this category.

The second category aims to sparsify the robot poses.
Earlier work selects keyframes or skeleton graphs [32],
[8]. Although these techniques can effectively downsize
the problem, they typically lead to information loss and
inconsistent estimation. Recent work marginalizes redundant
robot poses and induces additional constraints (pseudo loop-
closures) between the adjacent poses [9], [10], [11], [12],
[33]. These techniques can effectively reduce the number of
poses and may lead to consistent estimation, but the graphs
after marginalization typically become more dense than the
original graphs. This implies that marginalization has to stop
at some point because it would eventually become expensive
due to the increasing size of the associated clique. Therefore
one still has to solve a graph with many loop-closures in the
end, which is the place the proposed method can be applied.

The third category aims to sparsify the loop-closures.
This process can be guided by thresholding the number of
loop-closures per robot pose [9], thresholding the expected
information gain [10], locally approximating with a Chow-
Liu tree in the information matrix [13], [14]. Yet these
techniques lead to either information loss or inconsistent
estimate, which is suboptimal. Consistent edge sparsification
methods have been proposed, but they require solving a con-
vex optimization problem, which might be too expensive for
large-scale problems [12]. In contrast, the proposed method
constantly solves a regularized sparse subgraph, which can
be done efficiently, and also proven to be consistent.

The fourth category aims to reparametrize the problem so
that the solution can be obtained faster. Incremental pose
reparametrization over the odometry chain or a spanning
tree of the graph has been used to improve the convergence
speed of the stochastic gradient descent method [18], [19].
Using sparse subgraphs to reparametrize (precondition) the
SLAM problems has been shown to be able to effectively
improve the convergence speed of the conjugate gradient
method [20], [21]. Yet these techniques are designed for
batch SLAM problems. Notably, Sibley et al. [34] showed
that using relative pose parametrization makes it possible to
incremental solve SLAM in constant time.

iSPCG combines the advantages of the first, the third
and the fourth categories and is a consistent and efficient
method for online SLAM problems with many loop-closures.
The solutions are close to optimal in the iSAM steps and
optimal in the SPCG steps. The comparison between the
above methods is summarized in Table II.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a new method, iSPCG, to efficiently solve
online SLAM problems with many loop-closures. To sum



up, iSPCG has the following advantages: (1) iSPCG is
efficient because it combines the advantages of two state-of-
the-art SLAM methods, iSAM and SPCG. The iSAM part
is efficient because it only has to solve sparse subgraphs.
The SPCG part is also efficient because it scales well to
the number of loop-closures, utilizes the subgraph precon-
ditioners and initial estimate provided by iSAM, and only
being invoked whenever necessary. Finally, iSPCG used the
optimal solution from SPCG to regularize iSAM in the next
steps. (2) We proved that iSPCG can be consistent, while
in previous work such property is usually not guaranteed
or has to be enforced by convex optimization techniques.
Although the data association problem is not addressed
in this paper, the consistency of iSPCG actually can help
make conservative data association in the SLAM frontend.
(3) iSPCG aims to find the optimal solution because it does
not discard any measurements. We applied iSPCG to solve
large SLAM problems and obtained promising results.

There are several directions for future work. The first is
to design a new metric to evaluate the quality of a subgraph
for iSPCG, and then use this metric to design an algorithm
to incrementally find good subgraphs. Intuitively, this metric
should consider the computational complexity of using iSAM
to solve the subgraph, the quality of the approximate estimate
obtained from iSAM, and the quality of subgraph precon-
ditioner for SPCG. The second is to derive more versatile
sufficient conditions to guarantee the consistency of iSPCG.
The third is to develop an algorithm to automatically decide
the thresholds in iSPCG. The algorithm should consider the
tradeoff between the quality of the solutions obtained from
iSAM and the time spent on running SPCG. At last, we
would like to improve the efficiency of iSPCG by utilizing
multiple cores on modern CPUs. Similar to the idea in
PTAM [32], we can split iSPCG into two threads: one thread
running iSAM to obtain the current estimates in the frontend,
and the other thread running SPCG to obtain the optimal
estimates in the backend.

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and
Mapping (SLAM): Part I The Essential Algorithms,” Robotics &
Automation Magazine, Jun 2006.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and
Mapping (SLAM): Part II State of the Art,” Robotics & Automation
Magazine, Sep 2006.

[3] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, pp. 333–349, Apr 1997.

[4] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing,” Intl. J. of
Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[5] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2011.

[6] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental Smoothing and Mapping Using the Bayes
Tree,” Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb 2012.

[7] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” Intelligent Transportation Systems Magazine,
IEEE, vol. 2, no. 4, pp. 31–43, 2010.

[8] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment
to real-time visual mapping,” IEEE Trans. Robotics, vol. 24, no. 5,
pp. 1066–1077, 2008.

[9] E. Eade, P. Fong, and M. E. Munich, “Monocular graph slam with
complexity reduction,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), October 2010.

[10] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose slam,” IEEE Trans. Robotics, vol. 26, no. 1, pp. 78–93, 2010.

[11] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), May 2013.

[12] G. Huang, M. Kaess, and J. J. Leonard, “Consistent sparsification for
graph optimization.”

[13] H. Kretzschmar, C. Stachniss, and G. Grisetti, “Efficient information-
theoretic graph pruning for graph-based SLAM with laser range
finders,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2011.

[14] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph slam,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), May 2013.

[15] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent
maps by relaxation,” in IEEE International Conference on Robotics
and Automation, 2000.

[16] A. Howard, M. Matarić, and G. Sukhatme, “Relaxation on a mesh:
a formalism for generalized localization,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2001.

[17] U. Frese, P. Larsson, and T. Duckett, “A Multilevel Relaxation
Algorithm for Simultaneous Localisation and Mapping,” IEEE Trans.
Robotics, vol. 21, no. 2, pp. 196–207, April 2005.

[18] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in Proc. of IEEE International
Conference on Robotics and Automation, 2006.

[19] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Proc. of Robotics: Science and Systems
(RSS), 2007.

[20] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe, “Subgraph-
preconditioned Conjugate Gradient for Large Scale SLAM,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2010.

[21] Y.-D. Jian, D. Balcan, I. Panageas, P. Tetali, and F. Dellaert,
“Support-Theoretic Subgraph Preconditioners for Large-Scale SLAM,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2013.

[22] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[23] J. Nocedal and S. Wright, Numerical Optimization. Springer Verlag,
1999.

[24] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
Smoothing and Mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, Dec 2008.

[25] J. Vial, H. Durrant-Whyte, and T. Bailey, “Conservative sparsification
for efficient and consistent approximate estimation,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2011.

[26] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-
cations to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2001.

[27] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[28] L. Trefethen and D. Bau, Numerical linear algebra. SIAM, 1997.
[29] “GTSAM https://collab.cc.gatech.edu/borg/gtsam.”
[30] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary

tree,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2006.

[31] C. Beall, B. Lawrence, V. Ila, and F. Dellaert, “3D reconstruction of
underwater structures,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2010.

[32] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” in IEEE and ACM Intl. Sym. on Mixed and Augmented
Reality (ISMAR), Nara, Japan, 2007.

[33] N. Carlevaris-Bianco and R. M. Eustice, “Long-term simultaneous
localization and mapping with generic linear constraint node removal,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
November 2013.

[34] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle
adjustment,” in Robotics: Science and Systems (RSS), 2009.


