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SUMMARY

This thesis presents theoretical investigations of triplet superfluidity (triplet su-

perconductivity) in quasi-one-dimensional organic conductors and ultra-cold Fermi gases.

Triplet superfluidity is different from its s-wave singlet counterpart since the order param-

eter is a complex vector and the interaction between fermions is in general anisotropic.

Because of these distinctions, triplet superfluids have different physical properties in com-

parison to the s-wave case. The author discusses in this thesis the interplay between triplet

superconductivity and spin density waves in quasi-one-dimensional organic conductors, and

proposes a coexistence region of the two orders. Within the coexistence region, the in-

teraction between the two order parameters acquires a vector structure, and induces an

anomalous magnetic field effect. Furthermore, the author analyzes the matter-wave inter-

ference between two p-wave Fermi condensates, and proposes a polarization effect. For a

single harmonically trapped p-wave Fermi condensate, the author also shows that the ex-

pansion upon release from the trap can be anisotropic, which reflects the anisotropy of the

p-wave interaction.
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CHAPTER I

INTRODUCTION

1.1 Brief History of Superfluidity

The original observation of the phenomenon known as superfluidity in liquid Helium-4 was

made in 1938 by Kapitza in Moscow [1], and Allen and Misener in Cambridge [2]. Stimu-

lated by measurements that seemed to show that below a characteristic temperature (∼2.17

K, known as the lambda temperature) the heat flow was not simply proportional to the tem-

perature gradient, Kapitza, as well as Allen and Misener, decided to measure the resistance

to the flow of liquid helium clamped in narrow channels and subjected to a pressure drop.

They found that liquid Helium-4 flowed so easily below the lambda temperature that the

viscosity would be at least a factor of 1500 smaller than its value above the lambda tem-

perature. It was this peculiar behavior for which Kapitza coined the term superfluidity [1].

Only a few months after the experimental observations, Fritz London suggested that the

anomalous properties of liquid helium below the lambda temperature (the so-called He-II

phase) could be related to the degeneracy of particles obeying Bose statistics at low temper-

atures [3]. This low temperature degeneracy was first studied by Bose [4] and Einstein [5] in

non-interacting gases. They found that below a critical temperature which depends on the

mass and density, a finite fraction of all the atoms (and at zero temperature, all of them)

should occupy a single quantum state. This quantum degeneracy is known nowadays as

Bose-Einstein condensation (BEC). Very soon thereafter Laszlo Tisza [6] pushed the idea a

step further by suggesting that the anomalous flow behavior seen in the He-II phase could

be qualitatively understood within a “two-fluid” model in which the “condensate” (i.e.,

those atoms which occupy the single quantum state) behaves like a frictionless liquid, while

the rest behaves like an ordinary liquid.

This qualitative “two-fluid” model was improved by Lev Landau [7] in a seminal paper

published in 1941. In this paper, Landau classified the excitations of the Bose liquid into

1



two types: sound waves or “phonons” with linear dispersion relation (ε = cp, c is the speed

of sound), and “rotons” which corresponds to rotational motion. In order to understand

the flow and thermodynamic properties of He-II, Landau assumed that it consisted of two

components: the “superfluid” component, which was the part of the liquid that remained

in its ground state, and a “normal” component, which corresponded to excitations. The

superfluid component was conceived as carrying zero entropy and having irrotational flow,

while the normal component behaved like any other viscous liquid. From these minimal

postulates Landau derived a theory of two-fluid hydrodynamics, which explained, and most

remarkably predicted many experimental results quantitatively.

Needless to say, Landau’s theory of two-fluid hydrodynamics provided a landmark in the

understanding of superfluidity. However, the theory is phenomenological in the sense that

both the properties of the superfluid component and the nature of the excitation spectrum

were postulated in an intuitive way instead of being derived from a microscopic model.

Along this path, F. London [3] suggested that the superfluidity in 4He might be related to

BEC, but microscopic calculations were lacking until the seminal paper published in 1947 by

N. N. Bogoliubov [8]. In that paper, Bogoliubov considered a dilute gas of atoms obeying

Bose statistics and interacting via an interatomic potential, which was weakly repulsive.

Assuming the existence of BEC in such an interacting Bose system, he showed that the

energy spectrum for large momentum p corresponded approximately to the simple excitation

of free atoms from the condensates [ε(p) = p2/2m], while at smaller momenta it had precisely

the phonon-like form ε(p) = cp postulated by Landau. However, in Bogoliubov’s work there

is no obvious trace of the second, “roton” branch of the excitation spectrum postulated by

Landau.

While Bogoliubov’s results were very suggestive, they referred to a dilute system, which

was rather far from the condition in real-life liquid helium. This gap is filled in 1956 by

Feynman and Cohen [9], who predicted that the excitation spectrum of real liquid He-

II should crossover from the “phonon-like” behavior at small momenta to a “roton-like”

form ε(p) = ∆ + (p − p0)2/2m at larger momenta. Actually, this dispersion relation first

postulated by Landau was seen in neutron scattering experiment of the early 1950s [10].
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Another key point in Bogoliubov’s paper was that he assumed a priori that an interacting

Bose system would undergo BEC like the non-interacting ideal Bose gas. However, the

interacting Bose problem is far more complicated then he assumed. First, for a general

Bose system, there is no systematic method (at least to my knowledge) to predict whether

there would be macroscopic occupation of any quantum state at zero temperature, i.e., the

zero-temperature phase diagram of 4He of interacting strength is still an open question. In

fact, one can start from the BEC state of the non-interacting ideal Bose gas and perform

perturbation theory in the interatomic interactions to derive a finite value (generally less

than 100%) of the condensate fraction in thermal equilibrium. However, this approach is

apparently limited. Another question is why, given that macroscopic occupation occurs, it

occurs only in a single quantum state. It can be shown that at least within the Hartree-

Fock approximation, macroscopic occupation of more than one state is always energetically

unfavorable provided the effective low-energy interaction is repulsive, as is believe to be the

case for 4He. However, For the case of an attractive interaction the problem is complicated.

All the above theoretical progresses, as well as other important advances made there-

after, provide the our current understanding of the liquid Helium-4 below the lambda tem-

perature. However, that is not the end of the story. In 1972 it was discovered that the light

isotope of helium (3He) possesses two anomalous phases (known as 3He-A and 3He-B) below

the temperature of 3 mK [11, 12]. Each of the two phases displays most of the properties

expected of a superfluid, so these phases are collectively described as “superfluid helium-3”.

In this case, since the 3He atom obeys Fermi rather than Bose statistics, the mechanism of

superfluidity cannot be simply BEC as in 4He. Rather, just as in metallic superconductors,

the fermions pair up to form ”Cooper pairs”, having characteristic size which is much larger

than the typical interatomic distance.

The connection between superfluidity and superconductivity was initially suggested be-

fore the discovery of superfluid 3He, and was clearly stated in F. London’s two-volume book

“Superfluidity” (1950), where both superfluidity and superconductivity are discussed [13].

Very soon after the papers of Bardeen, Cooper, and Schrieffer (1957) [14] and Bogoliubov

(1958) [15] where a microscopic theory of superconductivity is proposed, it was realized that
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the phenomenon of Cooper pairing should not be restricted to electrons but could well occur

in other highly degenerate systems of fermions, e.g., liquid 3He. However, since 3He atoms

are neutral, they could not show anomalous electrical properties like the zero resistance and

Meisner effect in superconductors; but they should show the corresponding anomalous mass

flow properties, i.e., the superfluidity. Moreover, the BCS theory of electrons in supercon-

ductors describes pairs with relative angular momentum zero, while in 3He this would be

prevented by the strong hard-core repulsions, and therefore Cooper pairing was likely to

be in a state with finite angular momentum. Such a state would have an anisotropic pair

wave function and thus anisotropic properties. This expectation was proved soon after the

discovery of the A and B phases of superfluid 3He, and further experimental investigation

strongly supported the idea that the Cooper pairs are in a triplet state, instead of a singlet

state in the ordinary BCS theory of superconductors. In this triplet state, the Cooper pairs

have an additional internal degrees of freedom, as well as their center-of-mass degree of

freedom. For instance, they possess total spin S = 1 and also ”intrinsic” orbital angular

momentum L = 1, 3..., which corresponds to p-wave, f -wave, etc. The corresponding or-

der parameter thus acquires a vector form. This internal degree of freedom is absent for

the Cooper pairs in conventional superconductors with L = S = 0. However, it was sug-

gested that a triplet state can be found in some unconventional superconductors including

ruthenates and organic conductors, which will be discussed next.

1.2 Triplet Superconductors

After the discovery of superfluid liquid 3He in the early 1970’s the search for triplet super-

conductivity was intensified. Experimentalists and theorists have looked at several possibil-

ities including heavy fermion, oxide, and organic superconductors. Here, I concentrate on

organic superconductors of the Bechgaard salt family. Excellent reviews exist in the litera-

ture regarding triplet superconductivity in heavy fermion [16, 17], and oxide (Sr2RuO4) [18]

systems.

Just after the discovery of the first organic superconductor (TMTSF)2PF6 by Jerome

et al. [19] in 1980, it became clear that quasi-one-dimensional (quasi-1D) organic materials
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(TMTSF)2X and (TMTTF)2X (where X = PF6,ClO4 . . . is an anion), known as Bechgaard

salts, were very unusual materials. A couple of years later, it was found that superconduc-

tivity in these compounds was rapidly destroyed by non-magnetic defects [20, 21, 22, 23, 24].

Soon after these experiments, Abrikosov [25] pointed out that the strong suppression of the

critical temperature in the presence of non-magnetic defects could be reasonably explained

under the assumption of triplet pairing. This initial suggestion by Abrikosov was later rein-

forced by Gorkov and Jerome [26] in their analysis of upper critical field measurements by

Brussetti et al. [27], and Ishiguro et al. [28]. Gorkov and Jerome suggested that the upper

critical field along the a direction Ha
c2 seemed to exceed the Pauli paramagnetic limit [29, 30]

µBHP (T = 0) ≈ 1.84Tc(H = 0) by a factor of 2. This opened the possibility of triplet super-

conductivity, because the spin-orbit coupling in these systems was too small to account for

a large violation of the Clogston limit. Further experimental evidence of unusual behavior

in these systems was reported in 1987 by Takigawa et al. [31]. They reported the absence

of the Hebel–Slichter peak [32] in the proton spin-lattice relaxation time (1/T1) data of

(TMTSF)2ClO4 and a 1/T1 ∝ T 3 temperature dependence in the region of Tc/2 < T < Tc.

These early results were interpreted by Hasegawa and Fukuyama [33] as evidence for the

existence of zeros of the superconducting order parameter on the quasi-1D Fermi surface.

Hasegawa and Fukuyama also emphasized that these early experiments probed essentially

the orbital part of the order parameter, and could not directly distinguish between singlet

or triplet pairing.

An early suggestion by Lebed [34], Burlachkov, Gorkov and Lebed (BGL) [35], and later

by Dupuis, Montambaux, and Sá de Melo (DMS) [36], indicated that singlet and triplet

pairing in quasi-1D superconductors could be tested in a measurement of upper critical

fields. These authors found that the upper critical field for a triplet superconductor would

exceed substantially the Pauli paramagnetic limit and produce a reentrant phase at high

fields. This reentrant phase has increasing critical temperature with magnetic field, and is

paramagnetic instead of diamagnetic [37, 38]. Lee et al. [39] started a systematic experi-

mental search for triplet superconductivity in (TMTSF)2ClO4 via resistive measurements

of Hc2(T ) for fields parallel to the b′ direction. Their results suggested (i) the survival of
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superconductivity beyond the Pauli paramagnetic limit, and (ii) possible reentrant super-

conductivity at high magnetic fields without a magnetic superconductor [40]. Intrigued by

these exciting possibilities, Lee et al. [41] decided to explore the phase diagram of another

quasi-1D superconductor, the sister compound (TMTSF)2PF6.

Unlike (TMTSF)2ClO4, (TMTSF)2PF6 is not superconducting at ambient pressure,

instead it undergoes a metal–insulator transition at 12 K. The insulating phase can be

suppressed through the application of hydrostatic pressure above 5 kbar. The system

then becomes superconducting with a maximum Tc around 1.2 K. (Various insulator–

superconductor transition pressures were reported by different groups, due to experimental

details of pressure cell calibration.) Keeping an optimized pressure of 6 kbar (or 9 kbar

from another experimental group [19]) in order to maximize the superconducting critical

temperature, Lee et al. [41] established that the upper critical fields along the a and b′

directions (i) present a strong upward curvature, (ii) well exceed the Pauli paramagnetic

limit, and (iii) have an unusual anisotropy inversion around 1.6 T. In addition to these up-

per critical field measurements, Belin and Behnia [42] measured the thermal conductivity

of (TMTSF)2ClO4 at zero and low magnetic fields. The thermal conductivity seemed to

be exponentially activated at low temperatures indicating the existence of a full gap in the

quasiparticle excitation spectrum. Assuming that similar physics holds for (TMTSF)2ClO4

and (TMTSF)2PF6, these initial experiments combined were suggestive of a triplet super-

conducting phase with a fully gapped quasiparticle excitation spectrum.

After these experiments further theoretical studies were necessary to explain the experi-

mental data. From the observation of a strong upward curvature inHc2(T ) for (TMTSF)2ClO4

and (TMTSF)2PF6 when the magnetic field was applied along the b′ direction, it seemed

natural to make a connection to the theory of Klemm, Luther, and Beasley (KLB) [43]. In

this theory, the strong upward curvature of Hc2 when a magnetic field is aligned parallel to

the layers in a layered superconductor is explained by a temperature-induced dimensional

crossover (TIDC). The upward curvature is most pronounced when spin-orbit scattering is

severe (γso = τsoTc 	 1), and the interlayer coupling is weak, r ≥ 1, with r = 2c/πξ⊥(0).

The theory of KLB was applied successfully to layered superconductors [44] such as TaS2,
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TaSe2, and NbSe2. However, this theory may not be applicable to the (TMTSF)2X system,

where the layer spacing c ≈ 13.5 Å is smaller than the coherence length ξ⊥(0) ≈ 20 Å.

In addition, spin-orbit effects are very small in (TMTSF)2X (X = ClO4,PF6) leading to

γso ≈ 100 (see References [45, 46, 28]), a value at least three orders of magnitude too large.

Furthermore, the KLB theory does not include the effects of the quantum (“Landau”) level

structure in the electronic motion, which are thought to be very important for the exis-

tence of superconductivity in (TMTSF)2X [34, 35, 36, 38] at high magnetic fields and low

temperatures.

Although the Hc2(T ) measurements in (TMTSF)2ClO4 [39] and (TMTSF)2PF6 [41]

suggest a triplet pairing state in quasi-1D Bechgaard salts, the singlet possibility cannot be

completely ruled out, since no reentrant phase has been observed for these materials. The

absence of the theoretically predicted reentrant phase in high magnetic fields could also

suggest an spatially inhomogeneous s-wave singlet state discussed by DMS [36], Dupuis

and Montambaux (DM) [47], and Dupuis [37], like the one discussed by Larkin and Ov-

chinikov [48], and Fulde and Ferrel [49] (LOFF). However, Lebed [50] showed that the LOFF

state in quasi-1D superconductors is paramagnetically limited for magnetic fields applied

along the b′ axis when a more realistic dispersion relation was used. Thus it seems that

a triplet state should be favored at least at intermediate and high magnetic fields when

considered in competition to singlet (s-wave) spatially inhomogeneous states like the LOFF

state.

The triplet state is also favored by Knight shift measurements in (TMTSF)2PF6 for

a magnetic field applied along the b′ axis [51]. These experiments implied that the spin

susceptibility is essentially the same as the normal state value. Following these experimental

results, Lebed, Machida and Ozaki (LMO) [52] implicitly assumed strong spin-orbit coupling

and proposed that the triplet order parameter d(k) at zero magnetic field is frozen into

the crystalline lattice in such a way to produce, at zero temperature, χb′(0) = χn, and

χa(0) 	 χn, where χn is the normal state uniform susceptibility. A different proposal

assuming weak spin-orbit coupling was suggested by Duncan, Vaccarella and Sá de Melo

(DVS) [53], and Duncan, Cherng and Sá de Melo (DCS) [54], where the spin susceptibility
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tensor and other thermodynamic quantities were calculated for various order parameter

symmetries within the orthorhombic group [although (TMTSF)2PF6 is really a triclinic

crystal]. The support for a weak spin-orbit coupling theory in these systems is rooted in the

fact that the heaviest element in the material is selenium, and early estimates for the spin-

orbit coupling strength are several orders of magnitude smaller [55] than the values required

to fit the critical temperature of (TMTSF)2PF6 [52, 56], for instance, at low magnetic fields.

Based on this analysis, DVS and DCS concluded that the fully gapped triplet state 3B3u(a)

(“px-wave”) would produce an experimentally measured spin susceptibility always close to

χn, which implies that the diagonal components of the uniform spin susceptibility tensor

are χa = χb′ = χc∗ ≈ χn, for magnetic fields strong enough to overcome the pinning effect.

The full nature of the superconducting state in Bechgaard salts is yet to be revealed.

There are pending issues that still need to be addressed. For instance, the exact symmetry

of the superconducting order parameter and the pairing mechanism for superconductivity

are still not understood. In a recent effort, Kuroki, Arita and Aoki (KAA) [57] examined

the influence of charge and anisotropic spin fluctuation exchanges in the pairing stabil-

ity for (TMTSF)2PF6, and proposed an f -wave triplet state with d-vector perpendicular

to the quantization axis. In contrast, Shimahara [58] proposed a nodeless d-wave state

for (TMTSF)2ClO4 based in part on the thermal conductivity measurements of Belin and

Behnia [42]. These two proposals, combined with the suggestions of triplet superconduc-

tivity of Lebed [34], BGL [35], and DMS [36], add to the debate about the symmetry

of order parameter and the mechanism of superconductivity in quasi-1D Bechgaard salts.

Prima facie the symmetry of the order parameter should be the same for both compounds,

given the strong electronic and structural similarities. However, there are neither thermal

conductivity measurements in (TMTSF)2PF6 nor NMR experiments in (TMTSF)2ClO4

up to now, and direct evidence from phase sensitive experiments like the ones performed

in high-Tc cuprate superconductors [59, 60, 61] is still lacking. In order to fulfill this gap,

Sengupta et al. [62], and Vaccarella, Duncan and Sá de Melo (VDS) [63] suggested that tun-

neling experiments (both single and paired electron processes) could be used to distinguish

order parameter symmetries. Although there was a recent attempt to perform tunneling
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experiments in (TMTSF)2ClO4 bi-crystals [64], a direct comparison is still hard to make.

The issue of the angular dependence of the upper critical field is another important

question. LMO [52] proposed that the anisotropy inversion in the upper critical fields

seen in (TMTSF)2PF6 was due to a d-vector flop transition when an external magnetic

field was applied along the a direction. However, a theoretical estimate [54] gives a value

of the flopping field to be about 0.22 T, nearly one order of magnitude smaller than the

anisotropy inversion field H∗ ∼ 1.6 T observed experimentally [41]. Furthermore, NMR

experiment [65] also suggested that the flop transition should happen at a magnetic field

H < 1.43 T < H∗. Another possibility is that the anisotropy inversion in (TMTSF)2PF6

was due to the disappearance of closed orbits present only for fields along the a direction, and

to a reduction in the degeneracy of states when open-orbit contributions start to dominate.

In this case, the anisotropy inversion would be purely orbital in nature, instead of a spin

effect as proposed by LMO [52]. However, the angular dependence of the upper critical field

of Bechgaard salts in the a-b′ plane at high magnetic fields has not been calculated yet.

In addition to the symmetry of superconducting states in Bechgaard salts (TMTSF)2ClO4

and (TMTSF)2PF6, there are more recent experimental works which suggest a possible co-

existence region of spin density waves (SDW) and superconductivity in (TMTSF)2PF6.

Some earlier measurements [66, 67] indicated the presence of an inhomogeneous state in

the vicinity of critical pressure Pc. Specifically, Azevedo et al.[66] found that the quenching

of the SDW state was a slow function of pressure from measurements of the Knight shift

in 77Se. This was interpreted as an indication of the coexistence of the SDW and metallic

states. Lee et al. [67] assumed the presence of macroscopic domains of superconducting and

insulating SDW states to explain an unusual upper curvature of Hc∗
c2 (T ). Recently, trans-

port measurements by Vuletić et al. [68] and Kornilov et al. [69], and a simultaneous NMR

and electrical transport measurements by Lee et al. [70] in (TMTSF)2PF6 all suggest an

“inhomogeneous” coexistence region of SDW and Metal (Superconductivity) orders. This

coexistence region can be related to existing theoretical proposals. For instance, strictly

one dimensional theories invoking SO(4) symmetry [71] or negative interface energies [72]

have allowed for coexisting triplet superconductivity and SDW. However, Zhang and Sá
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de Melo [73] showed that these theories are not directly applicable to three-dimensional

but highly anisotropic Bechgaard salts, where the SO(4) symmetry is absent, and negative

interface energies are not necessary conditions for the coexistence.

Setting other Bechgaard salts aside, I believe it is fair to say that the observation of

unusual behavior in the upper critical fields [41] and the measurement of the spin suscep-

tibility [65, 51] in (TMTSF)2PF6 strongly suggest the existence of a non-uniform triplet

pairing superconducting state in a magnetic field. This state would reduce at zero field to a

triplet phase similar to A-phase [74] of superfluid 3He, apart of course from the group theo-

retical differences concerning lattice and time reversal in a magnetic field [53, 54]. However,

as mentioned above, experiments in these systems are hard to perform so that quantitative

comparisons between theoretical and experimental results are still lacking. In fact, this

obstacle exists in nearly all solid state or condensed matter systems, where the degrees of

freedom of a typical sample are around 1019 ∼ 1023 and the controllability is very lim-

ited. However, recent experimental realization of Bose and Fermi condensates have allowed

for studies of very clean strongly correlated systems with much higher controllability in

comparison to standard solid state systems, as will be discussed next.

1.3 Superfluidity in Ultra-Cold Atomic Gases

Although superfluidity in 4He, 3He and superconductors have been extensively studied after

their discoveries, a direct observation of BEC in a controllable laboratory system was not

made until 1995. BEC was firstly observed in dilute gases of alkali metal atoms [75, 76], and

later in dilute hydrogen gases [77], which were confined in magnetic and optical traps. More

recently, Fermi superfluids were also realized in ultra-cold alkali gases [78, 79, 80, 81, 82],

and were extensively studied.

1.3.1 Bose Systems

The techniques for trapping and cooling atoms had been developed and improved gradually

since 1980s (see review articles by Chu [83], Cohen-Tannoudji [84], and Phillips [85]). With

current technology, the typical maximum densities of atoms in traps range from ∼ 1011 to

∼ 1016 cm−3, which is many orders of magnitude less than the atomic density of 4He-II

10



(about 2 × 1022 cm−3). Moreover, the atomic masses of the alkalis are much higher than

for helium, especially for heavy alkali atoms 39K and 87Rb. Considering the BEC critical

temperature Tc for an ideal Bose gas [86]

Tc =
2π�

2

kbm

( n

2.612

)2/3
, (1.1)

one expects Tc values 106 − 108 times smaller than that for 4He. In other words we expect

Tc ∼ 10 nK − 1 µK. It is remarkable that the techniques for cooling and trapping atoms

with lasers and magnetic traps can now achieve such ultra-low temperatures in laboratory.

Alkali metal and hydrogen atoms are in the first column of the periodic table. They

have a single valence electron in the outermost s-orbital, for example 1s for hydrogen, 2s

for lithium, 3s for sodium, 4s for potassium, or 5s for rubidium. The other electrons are

in completely full shells (except for H), and as a result they have a total orbital angular

momentum and total spin of zero. The only other contribution to the total spin of the atom

is the nuclear spin. Thus, if the nuclear isotope is one with an odd number of protons and

neutrons it will have a net half-integer spin. For example, 7Li, 23Na, and 87Rb all have

I = 3/2 nuclei. In these cases, the total spin of an atom, which is the sum of the nuclear

spin and the valence electron spin, will be an integer. According to the sum rule of two

angular momenta, the total spin of these alkali atoms is either F = 2 or F = 1. If we can

prepare the gas such that only one of these types of states is present, then this will be a gas

of identical Bose particles. On the other hand, if atoms in both F = 2 and F = 1 quantum

states are present, then this is effectively a mixture of two different species of bosons, since

the two types of atoms are distinguishable from each other.

In order to see how the alkali atoms can be confined in a magneto-optical trap we must

understand how the atom interact with electric and magnetic fields. For the interaction

with electric fields, the most important effect one needs to consider (in the regime where

most experiments are performed) is dipole interaction between the laser field and the electric

dipole moment it induces on the atom. Considering only one excited state (usually 2p or

3p for alkali atoms and 2s for hydrogen) and ignoring the fine and hyperfine structures, the
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change in energy of the atom in the laser field can be expressed as [87]

∆Elaser(r) =
I(r)
I0

Γ2

∆
, (1.2)

where I(r) and I0 are laser intensity at position r and infinity, respectively. Here, Γ = �/τ

is the inverse of the excited state life-time τ , and

∆ = �ω − (Enp − Ens) (1.3)

is the detuning of the ns → np transition frequency. Therefore, a region of high laser

intensity provides an attractive potential for ∆ < 0 and a repulsive potential for ∆ > 0.

Using two counter-propagating laser beams, one can produce a potential that varies on the

scale of half the lase wavelength, i.e., ∼ 3000 Å.

For the interaction with magnetic fields, the energy levels of atoms can also be affected

via the hyperfine-Zeeman interactions. For definiteness, here I consider only the alkali atoms

who have an spin I = 3/2 nucleus. For the states with maximum total spin F = 2, there are

five different states labeled by their z-component of total spin given by quantum number

MF = 2, 1, 0,−1,−2. The wave functions corresponding to these states are [88]

|F = 2,MF = 2〉 =
∣∣∣∣32 , 12

〉
,

|F = 2,MF = 1〉 =
1
2

[√
3
∣∣∣∣12 , 12

〉
+

∣∣∣∣32 ,−1
2

〉]
,

|F = 2,MF = 0〉 =
1√
2

[∣∣∣∣12 ,−1
2

〉
+

∣∣∣∣−1
2
,
1
2

〉]
,

|F = 2,MF = −1〉 =
1
2

[√
3
∣∣∣∣−1

2
,−1

2

〉
+

∣∣∣∣−3
2
,
1
2

〉]
,

|F = 2,MF = −2〉 =
∣∣∣∣−3

2
,−1

2

〉
, (1.4)

where the notation |mI ,mS〉 is used to denote the state where the nuclei is in state mL and

the electron is in state mS . Similarly, there are three different states with total spin F = 1,

corresponding to MF = 1, 0,−1 with the wave functions

|F = 1,MF = 1〉 =
1
2

[∣∣∣∣12 , 12
〉
−

√
3
∣∣∣∣32 ,−1

2

〉]
,

|F = 1,MF = 0〉 =
1√
2

[∣∣∣∣12 ,−1
2

〉
−

∣∣∣∣−1
2
,
1
2

〉]
,

|F = 1,MF = −1〉 =
1
2

[∣∣∣∣−1
2
,−1

2

〉
−

√
3
∣∣∣∣−3

2
,
1
2

〉]
. (1.5)
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In zero magnetic field the F = 2 and F = 1 states have slightly different energies due to

the weak hyperfine interaction between the nucleus and the valence electron, while within

each group the states with different MF values are degenerate. The application of a finite

magnetic field produces the Zeeman coupling which split these degenerate states as shown

in the second term of the following effective Hamiltonian,

H = AÎ · Ŝ + gµBŜzBz, (1.6)

where A is the hyperfine interaction, g is the gyromagnetic factor of the valence electron,

µB = e�/2me is the Bohr magneton, and Bz is the magnetic field which is assumed to be

along the z-direction. In writing this Hamiltonian the Zeeman coupling to the magnetic

moment of the nucleus was neglected, since it is much smaller than that of the valence

electron. The energies of the various hyperfine states of this Hamiltonian are given as

functions of the magnetic field B. It is convenient to choose the zero of energy to be the

average of zero-field E(F = 2) and E(F = 1) energies, and it is not difficult to show that the

zero-field splitting E(F = 2) − E(F = 1) is 2A. By introducing a characteristic hyperfine

“crossover” field Bhf = A/|µB |, the energies of the various levels are given as follows [89]

MF F E(B)

2 2 A(1 +B/Bhf),

1

{
2

1

}
±A[1 +B/Bhf + (B/Bhf)2]1/2,

0

{
2

1

}
±A[1 + (B/Bhf)2]1/2,

−1

{
2

1

}
±A[1 −B/Bhf + (B/Bhf)2]1/2,

−2 2 A(1 −B/Bhf),

(1.7)

where the plus sign corresponds to F = 2 and the minus sign to F = 1. A graph of these

eigenvalues versus B is shown in Fig. 1.1.

This magnetic field dependence of the energies can be exploited in a magnetic atom

trap. Since a magnetic field B(r) is curl-free and divergence-free in a region of free space,
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Figure 1.1: The energies of different hyperfine states as a function of magnetic field.

(i.e., no source present), it is forbidden that the magnitude of the magnetic field to have a

global maximum or minimum. Furthermore, the magnetic analog of Earnshaw’s theorem

forbids the magnitude of |B(r)| to have a local maximum. Fortunately, nothing forbids

the occurrence of a local minimum, and various methods can be used to provide such a

minimum, for example, the “time-orbiting potential” and Ioffe-Pritchard traps [90, 91].

Thus, if we prepare an atom in a quantum state such as (F = 2, MF = 2), then it will lower

its energy by moving toward a region of smaller magnetic field and thus be attracted into

the magnetic trap, which will appear to the atom as a local minimum in potential energy.

Notice that this potential well is only a local minimum, so atoms which have too much

kinetic energy, that is, are too “hot”, will not be bound by the trap and will escape; while

atoms have less kinetic energy, that is, are “cold”, will be bound.

Up to date, most non-laser-assisted magnetic traps used in BEC experiments have axial

symmetry and a finite offset field, i.e., with an appropriate choice of a cylindrical polar

coordinate system the magnitude of field has the form

|B(r)| = B0 +
1
2
αρ2 +

1
2
βz2. (1.8)

Furthermore, in most BEC experiments the fields used are much less than Bhf in the relevant

region of space. Then it is usually legitimate to linearize Eq. (1.7) in B, leading to

E(B) ≈ ±
[
A+

1
2
|µB |MFB

]
, (1.9)
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where the +(−) sign refers to the F = 2 (F = 1) states. Thus in a field configuration of

the form (1.8), the states (F = 2, MF = −2,−1) and (F = 1, MF = 1, 0) will be expelled

from the trap. On the other hand, the states (F = 2,MF = 2, 1, 0) and (F = 1,MF = −1)

will be attracted to the origin and are called “low-field seekers” [89].

Unlike the ideal Bose gas, the alkali atoms in a magneto-optical trap do interact with

each other. In fact the interactions can be quite strong, since the atoms strongly repel

each other at short distances. Also, at large interatomic distances there is a van der Waals

attraction force between the atoms, which would eventually lead trapped atoms to bind

together into atomic clusters. But fortunately the rate at which this happens is very slow,

since collisions between the atoms are almost entirely two-body collisions between pairs of

atoms, and these elastic collisions cannot form bound states. Binding can only be possible in

a three-body collision in which one pair of atoms could form a bound state, while the excess

kinetic energy is carried off by the third atom. However, in a typical BEC experiment,

the trapped Bose gas is so dilute that the three-body process is extremely rare, and it is

possible to maintain the atoms in the trap for a reasonably long time from a few seconds

to a few minutes. For comparison, experiments are usually done in a micro-second scale,

which is much shorter than the system’s life-time.

On the other hand, the two-body collisions between particles are not entirely negligible.

First, it is important to note that the two-body collisions do not allow transitions between

the different hyperfine quantum states in Fig. 1.1. Therefore particles prepared in one of the

low-field seeker states will remain in the same state. Second, the interparticle interactions

contribute to the overall potential energy of the atoms in the trap, and have non-trivial effect

on the BEC properties [92]. Finally, pairwise interparticle interactions are also necessary

to establish thermal equilibrium within the timescale of the experiment.

The interatomic pair interactions can be treated by the standard scattering theory [93].

In the limit where the interaction range is much smaller than the interparticle separation,

which is valid in most BEC experiments, the interaction potential can be approximated by

a Dirac-delta function

V (r1 − r2) ≈ gδ(r1 − r2). (1.10)
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Here, g is the characteristic strength and can be expressed in terms of the two-body s-wave

scattering length as through the relation

g =
4πas�

2

m
. (1.11)

An amazing experimental achievement is that this interatomic interactions can be tuned [94,

95]. Thus, the ultra-cold alkali gases are ideal laboratory systems to study theoretical

problems. For example, a phase transition to the highly-correlated Mott insulator state

was observed through studies of quantum gases in optical lattices [96]. This controllability,

however, is rarely existed in solid state materials.

1.3.2 Fermi Systems

More recently, the techniques used to create alkali BECs were applied to Fermi systems.

To create a Fermi gas of atoms, the same cooling techniques as those used to achieve BEC

were applied to particles obeying Fermi statistics. For instance, the isotopes 6Li and 40K

are commonly used in current experiments. However, due to the Fermi statistics the s-wave

collisions required for evaporative cooling are not present at ultra-cold temperatures in a

gas of identical fermions. The solution to this problem was to introduce a second particle

for the evaporative cooling, either another state of the fermionic atom or another species

of particles. The first gas of fermionic atoms to enter the quantum degenerate regime was

created at JILA in 1999 using 40K [97]. In the next couple of years, many more Fermi gas

experiments followed using a variety of cooling techniques [98, 99, 100, 101, 102, 103, 104,

105, 106].

After the realization of ultra-cold Fermi gases, the next goal was to achieve superfluidity

of paired fermions. In conventional superconductors, the s-wave pairing process happens

between spin-up and spin-down electrons with the same Fermi energy. Presumably, the same

pairing process could also occur with the creation of a two-component atomic gas with equal

Fermi energies. Such a two-component gas can be realized using an equal mixture of alkali

atoms in two different hyperfine states. Thus, s-wave superfluidity could emerge if the

temperature of this two-component gas was cold enough as well as the interaction strength

between fermions is sufficiently attractive. However, for typical interactions within the
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temperature required to reach the superfluidity was far too low compared to the achievable

temperature at that time. In order to overcome this experimental difficulty, Stoof et al.

noted that the interaction between 6Li atoms was large compared to typical values (|a| ≈

2000a0), as well as attractive, bringing the BCS transition temperature closer to realistic

temperatures [107, 108]. It was then recognized that a type of scattering resonance, known

as a Feshbach resonance, could allow arbitrary changes in the interaction strength [109, 110,

111].

Feshbach resonances were first predicted theoretically in the 6Li and in the 40K sys-

tems [112, 113], and were observed experimentally by many groups [114, 115, 116, 117]. Us-

ing these s-wave Feshbach resonances, experimentalists can reversibly convert Fermi gases

into systems of diatomic molecules [118, 119, 120, 121]. The observation that these molecules

were surprisingly long-lived created many opportunities for further study [119, 120, 121,

122]. Eventually, condensates of these diatomic molecules were achieved [78, 79, 80, 81, 82],

and were extensively studied including measurements of collective excitations [123, 124, 125],

thermodynamic properties [104, 81, 126, 127], the nature of the pairs [82, 128, 129], and

the vortex structure [130].

In addition to the condensate of s-wave paired fermions, which is in analogy to the

conventional superconductors, in principle, Fermi systems can also form another kind of

condensate corresponding to unconventional superconductors. For instance, the fermions

can be paired through the non-zero angular momentum channel such as p-wave (L = 1)

and d-wave (L = 2), and possibly form a p-wave or d-wave Fermi condensate. As in

the s-wave case, the Feshbach resonance for p-wave pairing was observed in 6Li and 40K

systems [117, 131, 132, 133, 134]. For Feshbach resonances currently tried, the molecules

were not long-lived and atom losses were significant due to dipole interaction and three

body processes. However, other unexplored Feshbach resonances may show less dramatic

losses and lead to the possibility of surpassing these experimental difficulties.

Although p-wave Fermi condensates are not available so far, there exists already some

theoretical investigations about this “unconventional” superfluidity in ultra-cold Fermi
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gases. For instance, it was shown that the so-called BCS–BEC evolution becomes a sec-

ond order phase transition in p-wave (and actually all non-zero angular momentum) Fermi

condensates, while it is only a crossover in the s-wave case [135, 136, 137, 138, 139, 140].

The research of ultra-cold Fermi gases is partially motivated from the idea of creating a

very clean strongly correlated Fermi system with the controllability which is absent in solid

state samples. In principle the density and two-fermion interactions can be fully controlled,

and as a result, physics properties can be studied as a function of density and interaction

strength. Further details of ultra-cold Fermi gases would be described in Chap. 2.

1.4 Summary

Superfluidity, superconductivity and Bose-Einstein condensation are among the most fas-

cinating phenomena in nature. Their strange and often surprising properties are direct

consequences of quantum mechanics. However, while most other quantum effects only ap-

pear in matter on the atomic or subatomic scale, superfluids and superconductors show the

effects of quantum mechanics acting on the bulk properties of matter on a large scale. In

essence they are macroscopic quantum phenomena. As discussed in the previous sections,

superconductivity, superfluidity in 3He, and in atomic Fermi condensates have a great deal

in common with each other. Therefore, I will denote these phenomena by the same term

“superfluidity” throughout this thesis, as used in the title.

Although for systems discussed in this thesis (quasi-one-dimensional superconductors

and interacting Fermi gases), superfluidity, superconductivity and BEC of paired fermions

are related phenomena, it should be stated clearly that BEC and superfluidity are actually

independent concepts. In particular, it can be shown that BEC in an ideal Bose gas (no

interaction) is not a superfluid. When there are no interactions the critical velocity for

superfluid flow is zero. It is only when the interactions are finite that it becomes possible

to sustain a true superfluid state, for example, to have a liquid that can flow with zero

viscosity and sustain persistent currents which are unaffected by external perturbations.

On the other hand, it is well known that superfluidity can be held in two-dimensional

systems (Berezinskii-Kosterlitz-Thouless phase [141, 142, 143]), where a true BEC cannot
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appear.

In this thesis, I will discuss superfluidity in quasi-1D organic conductors and atomic

Fermi condensates, where the fermion pairing happens most likely in the triplet channel.

As we shall see, this “unconventional” superfluid behaves very differently from the singlet

BCS state. For quasi-1D organic conductors, I will discuss the possibility of coexistence

of spin density waves and triplet superconductivity. For atomic Fermi gases, I will show

the polarization effect of matter-wave interference, and the anisotropy of a single cloud

expansion.

The overall plan of the thesis is as follows. In Chapter 2, I present a general back-

ground about superconductivity and introduce the singlet BCS pairing and the general-

ized triplet unconventional pairing states. Some of the experimental evidence in favor of

triplet superconductivity in quasi-1D organic conductors are discussed in Chapter 3, to-

gether with theoretical investigations about the possibility of a coexistence phase of spin

density waves and triplet superconductivity in Bechgaard salt (TMTSF)2PF6. Furthermore,

I discuss triplet superfluidity in atomic Fermi gases, especially emphasize the polarization

effect in matter-wave interference and anisotropic expansion in p-wave Fermi condensate in

Chapter 4. Finally, conclusions are presented in Chapter 5, while some detailed technical

information are included in Appendices.
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CHAPTER II

BACKGROUND

The microscopic description of superfluid Fermi liquids dates back to 1957, when J. Bardeen,

L. Cooper, and J. Schrieffer [14] created the successful theory of superconductivity (hereafter

labeled by the BCS theory). This theory is based on Cooper’s theorem about the instability

of the ground state of an electron gas with an arbitrarily small attraction against formation

of bound states. In many superconductors, the attraction between electrons is sufficient to

overcome the direct Coulomb repulsion because a retardation effect generated by interaction

between electrons and vibrations of the crystal lattice (phonons). This attractive interaction

is almost isotropic, so that Cooper pairs are formed in a state with zero orbital angular

momentum (s-wave pairing). This situation is quite different in superfluid 3He, where

Cooper pairing might be due to the interaction between nuclear spins of Helium-3 atoms

and fluctuations of the liquid magnetization (paramagnons). The interaction mediated by

paramagnons is essentially anisotropic and leads to formation of Cooper pairs with orbital

angular momentum L = 1 (p-wave pairing). For atomic Fermi gases confined in magneto-

optical traps, the interaction strengths in s-wave and p-wave channels can be controlled in

laboratory, so that singlet and triplet paired Fermi superfluidity can be selectively created in

principle. In this chapter, I will introduce the Cooper problem, the pairing states in singlet

and triplet channels, and the Ginzburg–Landau theory of a generalized BCS Hamiltonian.

2.1 Cooper Pairing

Although the nature of attraction between particles may vary considerably, Cooper pairing

is a common mechanism responsible for formation of superfluid states in various Fermi

systems. The basic idea is that even for a very weakly attractive interaction, the ground

state of two fermions above the Fermi sea is unstable against the formation of a bound

state. This instability manifests itself as a negative pair binding energy ∆ < 0.
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Following Cooper [144], I consider the quantum mechanical problem of two electrons at

zero temperature. I suppose that the two electrons interact via the potential V (r1 − r2)

independent of their spins, and the presence of other electrons, which occupy all the states

below the Fermi energy EF , manifests themselves only through the Pauli exclusion principle.

In order to determine the energy levels and the orbital part of the pair wave function

Φ(r1, r2), one has to solve the Schrodinger equation

− �
2

2m
(∇2

1 + ∇2
2)Φ(r1, r2) + V (r1 − r2)Φ(r1, r2) = (∆ + 2EF )Φ(r1, r2). (2.1)

The solution of this equation can be simplified by transforming the problem first to the

center-of-mass and relative coordinates

R =
1
2
(r1 + r2), r = r1 − r2, (2.2)

and by assuming that the pair wave function is separable

Φ(r1, r2) → Φ(R, r) = Λ(R)ψ(r). (2.3)

The Schrodinger equation thus becomes[
− �

2

2M
∇2

R − �
2

2m0
∇2

r + V (r)
]

Λ(R)ψ(r) = (∆ + 2EF )Λ(R)ψ(r), (2.4)

where M = 2m is the pair mass and m0 = m/2 is the reduced mass. Furthermore, if

the center of mass is assumed to be at rest, i.e., if the constituent electrons have opposite

momenta k and −k, the coordinate R in the wave function Φ can be omitted, and the

equation (2.4) can be simplified to[
− �

2

2m0
∇2

r + V (r)
]
ψ(r) = (∆ + 2EF )ψ(r). (2.5)

Here, I introduce the momentum representation of the wave function

ψ(r) =
A

(2π)3

∫
d3keik·rg(k), (2.6)

where A is the volume of space over which ψ(r) is defined (i.e., the volume of the sample).

Substituting this momentum representation into Eq. (2.5), one has
∫
d3k

[
�

2k2

m
− ∆ − 2EF

]
eik·rg(k) +

∫
d3keik·rV (r)g(k) = 0. (2.7)
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The resulting integral equation is then multiplied by e−ik′·r and integrated over spatial

coordinate, leading to

(2π)3
[

�
2k2

m
− ∆ − 2EF

]
g(k) +A

∫
d3k′V (k − k′)g(k′) = 0. (2.8)

The interaction potential

V (k − k′) =
(2π)3

A

∫
d3re−i(k−k′)·rV (r), (2.9)

which is a function of the momentum difference, and can be expanded in terms of the

spherical harmonic Y�m�
(k̂) with the orbital angular momentum � and its z-component m�:

V (k − k′) =
∞∑

�=0

V�(k, k′)
�∑

m�=−�

b�m�
Y�m�

(k̂)Y ∗
�m�

(k̂′). (2.10)

Here, V�(k, k′) is assumed to be attractive within a thin layer over the Fermi surface of

thickness ε� 	 EF ,

V�(k, k′) =

⎧⎪⎨
⎪⎩

−V�, for EF < �
2k2/2m, �2k′2/2m < EF + ε�

0, otherwise.
(2.11)

Therefore, the integration over d3k′ in Eq. (2.8) is performed over a thin shell region on

the Fermi surface,

A

∫
d3k′ → ρ02π2

∫ ε�

0
dε′

∫
dΩ′, (2.12)

where

ρ0 =
mkF

2π2�2
(2.13)

is the density of states (DOS) at the Fermi level per spin. Thus, the Schrodinger equation

(2.8) becomes

[
�

2k2

m
− ∆ − 2EF

]
g(k) − ρ0

∫ ε�

0
dε′

∫
dΩ′

4π

∞∑
�=0

V�

�∑
m�=−�

b�m�
Y�m�

(k̂)Y ∗
�m�

(k̂′)g(k′) = 0.

(2.14)

If the interaction is isotropic, as assumed in the original Cooper problem and conventional

superconductors, the expansion coefficient b�m�
= 1 is a constant. Thus, one can easily

verify that each value of the orbital angular momentum � corresponds to a specific eigenstate

22



{g�(k),∆�} determined by Eq. (2.14). In fact, by substituting the pair wave function in

the same spherical harmonic basis

g(k) =
∞∑

�=0

g�(k) =
∞∑

�=0

�∑
m�=−�

a�m�
(k)Y�m�

(k̂) (2.15)

in equation (2.14), and using the orthonormal property of the spherical harmonics∫
dΩ′
4π

Y ∗
�m�

(k̂′)Y�′m′
�
(k̂′) = δ��′δm�m

′
�
, (2.16)

one obtains [
�

2k2

m
− ∆� − 2EF

]
g�(k) − ρ0V�

∫ ε�

0
dεg�(k) = 0. (2.17)

Therefore,

g�(k) =
ρ0V�

∫ ε�

0 dεg�(k)
2ε− ∆�

. (2.18)

By integrating the left-hand and right-hand sides of the above equation over ε, we get

1 = ρ0V�

∫ ε�

0

dε

2ε− ∆�
=
ρ0V�

2
ln

∆� − 2ε�
∆�

. (2.19)

Thus, one can obtain the result for binding energy

∆� =
−2ε�

exp (2/ρ0V�) − 1
< 0, (2.20)

indicating the existence of a bound state whose energy is a function of the interaction

strength in a specific orbital angular momentum channel. Notice that if the interaction is

anisotropic, the expansion coefficient b�m�
can be different for various m� channels given a

fixed �. In such a case, one can easily verify that each set of values of (�, m�) corresponds

to a specific solution of ∆�m�
determined by Eq. (2.14).

Cooper pairing of two electrons above the Fermi sea in continuum systems discussed

above, can be generalized to a similar problem of two electrons in a crystal lattice. In this

case, the electron dispersion relation ε(k) is no longer the free electron value �
2k2/2m, and

the electron interaction must acquire the symmetry of the crystal lattice. In this case, the

interaction potential V (k − k′) in Eq. (2.9) can be expanded with respect to a suitable

basis in the lattice:

V (k − k′) =
∑
Γ

VΓ(k, k′)
dΓ∑
j=1

bΓj φ
Γ
j (k)φΓ∗

j (k′), (2.21)
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where VΓ(k, k′) = −VΓ < 0 within a thin layer above the Fermi surface, and is zero every-

where else. Here, φΓ
j (k)’s are basis functions of an irreducible representation labeled by Γ

which belongs to the crystal lattice symmetry group, and dΓ is the dimension of the span

of {φΓ
j (k)}. By expanding the pair wave function in this basis

g(k) =
∑
Γ

dΓ∑
j=1

aΓ
j φ

Γ
j (k), (2.22)

and using the orthonormal property of φ’s

A

(2π)3

∫
d3kφΓ

i (k)φΓ∗
j (k) = δij , (2.23)

one can obtain a similar result of binding energy as in Eq. (2.20), indicating the existence

of a bound state of electron pairs in a crystal lattice provided an arbitrarily weak attractive

interaction between electrons.

2.2 Spin Structure of Paired States

In the previous section, I discussed the orbital part of the pair wave function g(k). Next, I

include the spin component and write the overall pair wave function of a general state as∗

Ψαβ(k) = g(k)χαβ , (2.24)

where χαβ is the spin wave function of a pair consisting of fermions with spin α and β.

Because of Fermi statistics, this pair wave function Ψ must be antisymmetric under particle

permutation, i.e., Ψαβ(k) = −Ψβα(−k). Furthermore, in superconductors where Cooper

pairs are composed of electrons with spin 1/2, the spin component of a pair wave function

can be characterized by its total spin S = 0 (singlet) or S = 1 (triplet). In principle, the spin

wave function can also be a superposition of singlet and triplet states, however this option

is not discussed in this thesis since all systems considered here have a definite spatial parity.

Therefore, for pairing in the spin singlet channel, the spinor χαβ = −χβα is antisymmetric

and consequently g(k) is even in momentum space such that g(k) = g(−k); while for pairing

in the spin triplet channel, the spinor χαβ = χβα is symmetric and consequently g(k) is

∗By writing the interaction potential in this form, I implicitly assumed that the electron spin orbit
coupling in the crystal lattice is weak (zero).
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odd in momentum space such that g(k) = −g(−k). These two cases will be introduced in

Sections 2.2.1 and 2.2.2, and their generalization to pseudo-spin space is discussed in Section

2.2.3. For simplicity, I will discuss in this section only Fermi systems in the continuum, as in

the original Cooper problem. The analysis of singlet and triplet superconducting states in

crystal lattices can be found in other references, such as the wonderful books by Ketterson

and Song [145], and by Mineev and Samokhin [146].

2.2.1 Singlet Pairing

The spin wave function of a pair of fermions with spin 1/2 are constructed from one-particle

spin wave functions

| ↑〉 =

⎛
⎜⎝ 1

0

⎞
⎟⎠ and | ↓〉 =

⎛
⎜⎝ 0

1

⎞
⎟⎠ , (2.25)

which are eigenstates of the one-particle operators ŝ2 and ŝz. The spin wave function

corresponding to singlet pairing electrons has the form

χαβ = | ↑↓〉 − | ↓↑〉 =

⎛
⎜⎝ 0 1

−1 0

⎞
⎟⎠ = i (σy)αβ , (2.26)

where σy is one of the Pauli matrices. Therefore, the total wave function Eq. (2.24) of a

singlet pair becomes

Ψαβ(k) =
∑

�

g�(k)i (σy)αβ =
∑

�

�∑
m�=−�

a�m�
(k)Y�m�

(k̂)i(σy)αβ, (2.27)

where the summation of � runs over the values 0, 2, 4, · · · , corresponding to the respec-

tive pairing states labeled by letters s, d, g, · · · , as is traditional in atomic physics. In

general, the superconducting states due to Cooper pairing with different orbital angular

momenta � and its z-component m� have different critical temperatures. At a given tem-

perature, the most energetically favorable state among them is realized, so that it is the

only state needs to be taken into consideration. In such a case, we label the system by

its orbital angular momentum state, e.g., s-, and d-wave superconductors. The complex

function
∑�

m�=−� a�m�
Y�m�

(k̂) in the equation above is defined as the superconductor order

parameter. Notice that in this definition, the order parameter may be in general a function
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of k̂ (anisotropic), and a function of k.† For s-wave (� = 0) superconductors, only one

state characterized by a00 is possible, while for d-wave (� = 2) superconductors, the order

parameter depends on a set of five coefficients {a2,−2; a2,−1; a2,0; a2,1; a2,2}, hence there ex-

ist several possible phases distinguished by the configuration of a2m�
’s, such as dxy-phase,

dx2−y2-phase, and linear combinations of them.

2.2.2 Triplet Pairing

In the case of triplet state of a fermion pair (S = 1), the wave functions correspond to pairing

in three different spin channels, which are symmetric under the particle permutation

| ↑↑〉 =

⎛
⎜⎝ 1 0

0 0

⎞
⎟⎠ , Sz = 1, (2.28a)

| ↑↓〉 + | ↓↑〉 =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠ , Sz = 0, (2.28b)

| ↓↓〉 =

⎛
⎜⎝ 0 0

0 1

⎞
⎟⎠ , Sz = −1. (2.28c)

The total wave function of a pair is a linear superposition of the three states

Ψαβ(k) =
∑

h1(k)| ↑↑〉 + h2(k) (| ↑↓〉 + | ↓↑〉) + h3(k)| ↓↓〉 =

⎛
⎜⎝ h1(k) h2(k)

h2(k) h3(k)

⎞
⎟⎠ , (2.29)

where hi(k) are the amplitudes of states with Sz = 1, 0, and −1, respectively. The

expression above can be written in another form by using symmetric matrices iσσy =

(iσxσy, iσyσy, iσzσy), leading to

Ψαβ(k) = i [d(k) · σ] σy = i [dx(k)σx + dy(k)σy + dz(k)σz ]σy

=

⎛
⎜⎝ −dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

⎞
⎟⎠ . (2.30)

The amplitudes hi(k) and the components of the d(k) vector are related by

h1 = −dx + idy, h2 = dz, h3 = dx + idy. (2.31)

†In some references and the following discussions in this thesis, the order parameter can also be defined
equivalently by the complex coefficients a�m�

. The present definition is chosen here in order to show explicitly
the anisotropy of order parameter.
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The dj components can be expanded in terms of the spherical harmonics

dj(k) =
∑

�

�∑
m�=−�

γj
�m�

Y�m�
(k̂), (2.32)

where the summation of � runs over the values 1, 3, · · · , corresponding to the p-, f -, · · ·

wave superconducting states, respectively.

The d(k) vector is defined as the superconductor order parameter and from its structure

it is clear that the orientation of d(k) is intimately related to the spin components of the

paired electrons. For example, for p-wave symmetry with � = 1, the order parameter d(k)

is expressed as a set of nine complex functions γj
1m�

with j = x, y, z and m� = −1, 0, 1.

Thus, there exist many possible phases of a p-wave triplet superfluid distinguished by the

configurations of the vector order parameter d(k), such as A-phase, B-phase, and polar-

phase of 3He [74].

2.2.3 Pseudo-spin Space

Unlike Cooper pairs composed of spin-1/2 electrons in superconductors with weak spin-orbit

coupling, Cooper pairs in superfluids are composed of other fermions whose total angular

momentum in general can be different from 1/2. For instance, the nuclear spin of 40K atoms

is I = 4, and the electron spin is S = 1/2. Then it can be shown that the lowest two energy

states in 40K systems are |F = 9/2, Fz = −9/2〉 and |F = 9/2, Fz = −7/2〉, which both

have the total angular momentum F = 9/2. Thus, the total angular momentum and its

z-component of Cooper pairs of 40K atoms can be obtained through the addition of angular

momenta, leading to the following possible states:

|F = 9/2, Fz = −9/2〉 + |F = 9/2, Fz = −9/2〉 ⇒ |J = 9, Jz = −9〉,

|F = 9/2, Fz = −9/2〉 + |F = 9/2, Fz = −7/2〉 ⇒

⎧⎪⎨
⎪⎩

|J = 9, Jz = −8〉

|J = 8, Jz = −8〉,

|F = 9/2, Fz = −7/2〉 + |F = 9/2, Fz = −7/2〉 ⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|J = 9, Jz = −7〉

|J = 8, Jz = −7〉

|J = 7, Jz = −7〉,
(2.33)
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where J and Jz are the pair angular momentum and its z-component, respectively. There-

fore, the previous classification of the spin structures of Cooper pairs of spin 1/2 fermions

into singlet and triplet states based upon angular momentum is no longer directly applica-

ble.

However, it should be emphasized that the angular momentum and its z-component are

not essential for the definition of singlet and triplet states. For instance, consider a Fermi

system with fixed parity composed of fermions in two states (or even of two species) labeled

by 1 and 2. If the wave function of Cooper pairs is even or odd in coordinate space, then it

must be antisymmetric or symmetric under interchanging of the label 1 ↔ 2, respectively.

The former case corresponds to the antisymmetric combination as |12〉−|21〉, while the latter

case corresponds to a mixture of three possible symmetric combinations |11〉, |12〉 + |21〉,

and |22〉. The labels 1 and 2 can be defined as pseudo-spin to emphasize the analogy of

Cooper pairs of electrons. Thus, the two possible pairing states can be denoted by the

singlet and triplet states in pseudo-spin space, respectively. This classification of singlet

and triplet states in pseudo-spin space is also used in the literature of superconductors in

solids with strong spin-orbit coupling. In such a case, the electron spin becomes a “bad”

quantum number, but electron states are still doubly degenerate (because of the Kramers

degeneracy due to the time reversal symmetry), which allows the classification in pseudo-

spin space [147]. In the following discussion, I may use the name “spin” for both real spin

and pseudo-spin, and even use the notation | ↑〉 and | ↓〉 to denote fermions in state 1 and 2,

respectively. This notation unifies the general physics of triplet superfluidity in completely

different systems.

2.3 Superfluidity as a Many-body Problem

The Cooper’s problem introduced in Section 2.1 describes the idea of fermion pairing which

helps to explain superconductivity and superfluidity. However, that discussion involves

only a system of two interacting fermions, while superconductivity and superfluidity are

certainly interacting many-body problems. Therefore, the solution of the Cooper’s problem

can not be applied directly to understand superconductivity and superfluidity. In fact, its
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generalization to many-body systems is not trivial. This section provides a brief derivation

of the diagonalization of the many-body Hamiltonian, the order parameter equations, and

the Ginzburg–Landau theory.

2.3.1 Hamiltonian and Effective Theory

To describe the instability of the normal state towards a superconducting state, I consider

the minimal Hamiltonian of an ensemble of Fermi particles including only the pair attraction

between particles with opposite momenta, which is the kind of interaction essential for

superconductivity:

H =
∑
k

ξkc
†
kαckα +

1
2

∑
k,k′

Vαβ,γδ(k,k′)c†kαc
†
−kβck′γc−k′δ, (2.34)

where c†kα and ckα are creation and annihilation fermionic operators of linear momentum

k and spin (pseudo-spin) α. The first term in the Hamiltonian is the non-interacting

contribution where ξk = εk−µ is the fermionic dispersion shifted by the chemical potential.

The second term is interaction contribution, where Vαβ,γδ(k,k′) is the interaction potential

between fermions. Notice that the summation convention concerning repeated spin (pseudo-

spin) indices is used throughout the thesis unless specified.

In the absence of spin-orbit coupling, the attractive potential can be separated as

Vαβ,γδ(k,k′) = V (k,k′)Λαβ,γδ . (2.35)

In a Fermi system with a spherical Fermi surface, the function V (k,k′) can be expanded in

spherical harmonics

V (k,k′) =
∞∑

�=0

V�(k, k′)
�∑

m�=−�

b�m�
Y�m�

(k̂)Y ∗
�m�

(k̂′). (2.36)

However, in many systems, the expansion of V (k,k′) in terms of spherical harmonics with

different � contains only one interaction component V� which is responsible for the highest

critical temperature (see Section 2.2.1). Furthermore, as in the BCS theory, it is assumed

that the function V (k,k′) is a negative constant −V� when the two vectors k and k′ are in

a thin layer near the Fermi surface, and is zero otherwise.
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The spin dependence of the interaction potential is expressed in terms of the matrices

which are antisymmetric under permutation of indices αβ (γδ) for even � (corresponding to

s-, d-, g-· · · orbital wave symmetries):

Λαβ,γδ = vαβv
†
γδ, (2.37)

where vαβ = (iσy)αβ and v†γδ = (−iσ†y)γδ , and symmetric for odd � (corresponding to p-, f -,

· · · orbital wave symmetries):

Λαβ,γδ = vαβ · v†
γδ (2.38)

where vαβ = (iσσy)αβ and v†
γδ = (−iσ†yσ†)γδ.

In Fermi systems subjected to a crystal or optical lattice where the invariance under

the point symmetry operation is essential, spherical harmonics in Eq. (2.36) are no longer

a suitable basis. Thus, the pair interaction takes a different form

Vαβ,γδ(k,k′) =
∑
Γ

VΓ(k, k′)Λαβ,γδ

dΓ∑
j=1

bΓj φ
Γ
j (k̂)φΓ∗

j (k̂′), (2.39)

where VΓ(k, k′) = −VΓ < 0 within a thin layer above the Fermi surface, and is zero every-

where else. As discussed in Section 2.2.1, usually there exists one interaction VΓ correspond-

ing to a given irreducible representation Γ which gives the highest critical temperature. The

functions Λαβ,γδ for even and odd representations are given by equations (2.37) and (2.38),

respectively.

The instability of the Fermi system described by the Hamiltonian (2.34) against forma-

tion of Cooper pairs can be taken into account by the grand partition function expressed

as the trace over fermion states

Z = Tre−βH, (2.40)

where β = 1/kBT . From now on, natural unit will be used throughout the thesis, where

the reduced Planck’s constant, the Boltzman’s constant, and the speed of light are equal

to 1 (� = kB = c = 1). Using the functional integral expression [148], the grand partition

function can be represented as

Z =
∫

BC
ΠkD[c†kα(τ), ckα(τ)]e−

∫ β
0

dτ
[∑

k c†kα(τ) ∂
∂τ

ckα(τ)+H
(
c†kα(τ),ckα(τ)

)]
, (2.41)
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where the functional integration is over fermionic fields c† and c with the anti-periodic

boundary condition (BC) ckα(β) = −ckα(0), and τ is the imaginary time [149].

Notice that the exponent of the integrand Eq. (2.41) has quartic term in the fields

c† and c, due to the presence of the interacting contribution in the Hamiltonian (2.34).

Thus the integration can not be evaluated explicitly. One way to solve this problem is to

group the non-interacting part of H(c†, c) together with the other quadratic terms in the

exponent and to develop a perturbation series in which the exponential of the interacting

part of H(c†, c) is expanded as a Taylor series. This gives rise to a series of integrals of the

products of a Gaussian times polynomials which may be evaluated using Wick’s theorem. In

this perturbation procedure, each term in the Taylor series can be represented by a Feynman

diagram and such diagrams can be constructed from a systematic set of rules even without

doing the algebraic expansion. However, this perturbation theory is valid only when the

interaction is weak. Here, I will introduce another method through which the exponent

in the integrand of Eq. (2.41) containing the quartic terms of fields can be written as an

integral over quadratic terms using a transformation introduced by Stratonovich [150] and

Hubbard [151]. Since this thesis concentrates on triplet superfluidity, I will only discuss the

triplet pairing state.

For a triplet pairing state of a Fermi system in crystal or optical lattices with weak

spin–orbit coupling, it is convenient to introduce a vector bosonic field

Bj(τ) =
1
2

√
bΓj

∑
k′
φΓ∗

j (k̂′)(v†)γδck′γ(τ)c−k′δ(τ), (2.42a)

B†
j(τ) =

1
2

√
bΓj

∑
k

φΓ
j (k̂)(v)αβc

†
kα(τ)c†−kβ(τ), (2.42b)

where j = 1, · · · , dΓ runs over all linearly independent basis functions φΓ
j of an irreducible

representation Γ. Then the integrand of Eq. (2.41) corresponding to quartic terms of the

exponent can be written as

Q = exp

⎡
⎣−1

2

∫ β

0
dτ

∑
k,k′

Vαβ,γδ(k,k′)c†kαc
†
−kβck′γc−k′δ

⎤
⎦

= exp

⎡
⎣2VΓ

∫ β

0
dτ

dΓ∑
j=1

B†
j(τ) ·Bj(τ)

⎤
⎦ . (2.43)
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However, for a pair of conjugate vector bosonic operators ∆j and ∆†
j , the following func-

tional Gaussian integral holds

Q =
C

2VΓ

∫
BC

ΠjD[∆†
j(τ),∆j(τ)]e

∫ β
0 dτ

∑dΓ
j=1

[
− 1

2VΓ
∆†

j(τ)·∆j(τ)+B†
j (τ)·∆j(τ)+∆†

j(τ)·Bj(τ)
]
,

(2.44)

where ∆j and ∆†
j are the auxiliary vector (bosonic) Hubbard–Stratonovich fields, and C

is a constant. Here, the functional integral is over bosonic field operators with periodic

boundary conditions (BC) ∆j(β) = ∆j(0). Substituting this result back into Eq. (2.41)

and inverting the order of fermionic (c) and bosonic (∆j) integrations, the grand partition

function takes the form

Z =
∫

BC
ΠjD[∆†

j(τ),∆j(τ)] exp

⎡
⎣− ∫ β

0
dτ

1
2VΓ

dΓ∑
j=1

∆†
j(τ) ·∆j(τ)

⎤
⎦

×
∫

BC
ΠkD[c†kα(τ), ckα(τ)] exp

[
−

∫ β

0
dτ

∑
k

T (k, τ)

]
, (2.45)

where

T (k, τ) = c†kα (∂τ + ξk) ckα − 1
2

dΓ∑
j=1

√
bΓj φ

Γ∗
j (k̂)

[
∆†

j · (v†)αβ

]
ckαc−kβ(τ)

−1
2

dΓ∑
j=1

√
bΓj φ

Γ
j (k̂) [(v)αβ ·∆j] c

†
kα(τ)c†−kβ(τ). (2.46)

Here, the prefactor C/2VΓ in Q is dropped out since a multiplicative constant in partition

function will not affect thermodynamic properties.

Notice that the integrand T (k) is only quadratic in fermionic fields, hence the functional

integral of c and c† can be performed by the Gaussian integral formula. Recalling that c

and c† are complex Grassmann variables, we have

∂

∂τ

(
c†kαckα

)
=

(
∂τ c

†
kα

)
ckα + c†kα (∂τ ckα) = −ckα

(
∂τc

†
kα

)
+ c†kα (∂τckα) (2.47)

However, the term on the left-hand side vanishes upon integration with respect to τ due to

the antiperiodic boundary conditions of fermionic fields c. Thus, we have

∫ β

0
dτc†kα∂τckα =

∫ β

0
dτckα∂τ c

†
kα =

∫ β

0
dτ

[
1
2
c†kα∂τ ckα +

1
2
ckα∂τc

†
kα

]
. (2.48)
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This result, together with the fact that‡

∑
α

c†kαξkckα =
∑
α

[
ξk − ckαξkc

†
kα

]
= ξk +

∑
α

[
1
2
c†kαξkckα − 1

2
ckαξkc

†
kα

]
, (2.49)

can be used to rewrite −
∫ β
0 dτ

∑
k T (k, τ) in a symmetric form −

∫ β
0 dτ

∑
k T ′(k, τ), where

T ′(k, τ) = ξk +
1
2
c†kα (∂τ + ξk) ckα +

1
2
ckα (∂τ − ξk) c†kα

−1
2

dΓ∑
j=1

√
bΓj φ

Γ∗
j (k̂)

[
∆†

j · (v†)αβ

]
ckαc−kβ

−1
2

dΓ∑
j=1

√
bΓj φ

Γ
j (k̂) [(v)αβ · ∆j] c

†
kαc

†
−kβ

= ξk + C†G−1(k, τ)C. (2.50)

Here, C† ≡ (c†kα, c−kβ) is a spinor, and the inverse Nambu propagator G−1 is

G−1(k, τ) =
1
2

⎛
⎜⎝ (∂τ + ξk) δαβ −

∑dΓ
j=1

√
bΓj φ

Γ
j (k̂)(v)αβ ·∆j

−
∑dΓ

j=1

√
bΓj φ

Γ∗
j (k̂)∆†

j · (v†)αβ (∂τ − ξk) δαβ

⎞
⎟⎠ .

(2.51)

Substituting this expression back into Eq. (2.45) and changing the integral variables from

fermionic operators c and c† to spinor C and C†, the grand partition function takes the

form

Z =
∫

BC
D[∆†

j(τ),∆j(τ)]e
− ∫ β

0 dτ
[

1
2VΓ

∆†
j(τ)·∆j(τ)+

∑
k ξk

]

×
[∫

BC
D[C†, C]e

∫ β
0

dτ
∑

k −C†G−1(k,τ)C

]1/2

. (2.52)

The second fermionic functional integral can be evaluated with the help of the Gaussian

integral for Grassmann variables, leading to

Z =
∫

BC
ΠjD[∆†

j(τ),∆j(τ)]e
− ∫ β

0
dτ

[
1

2VΓ

∑dΓ
j=1 ∆

†
j(τ)·∆j(τ)+

∑
k ξk

] (
Detk,τG−1

)1/2

=
∫

BC
ΠjD[∆†

j(τ),∆j(τ)]e−Seff [∆†
j ,∆j ], (2.53)

where the effective action is given by§

Seff [∆†
j ,∆j ] =

∫ β

0
dτ

⎡
⎣ 1

2VΓ

dΓ∑
j=1

∆†
j(τ) ·∆j(τ) +

∑
k

ξk

⎤
⎦− 1

2
Trk,τ

(
lnG−1(k, τ)

)
. (2.54)

‡Here, the summation over spin index α is written out explicitly to give the correct prefactor of ξk.
§Here, the relation ln(det A) = tr(ln A) for a regular matrix A is used.
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The subscripts (k, τ) of the determinant (Det) and trace (Tr) denote that these operators

are the matrix determinant and trace not only over Nambu indices, but also over momentum

and imaginary time variables.

Equations (2.53) and (2.54) define the effective theory for the original many-body Hamil-

tonian (2.34). The effective action is a functional of vector bosonic operators ∆j and ∆†
j ,

which are related to creation and annihilation operators of fermion pairs Bj and B†
j through

the Hubbard-Stratonovich transformation. In the next section, I will apply the saddle point

approximation¶ to this effective theory, and derive the saddle-point equations.

2.3.2 Saddle-point Equations

In this section, it will be shown that the BCS gap and number equations are obtained

as a saddle-point solution of the more general functional integral formulation. In fact, if

∆j(τ) ≡ ∆j,0 is a static solution, then it must render the action stationary, i.e.,

δSeff [∆†
j,∆j ]

δ∆†
j

∣∣∣∣∣
∆j,0

= 0. (2.55)

By substituting the expression for Seff , this saddle-point equation becomes

δSeff [∆†
j ,∆j ]

δ∆†
j

∣∣∣∣∣
∆j,0

=
∫ β

0
dτ

{
2∆j,0

VΓ
− 1

2

∑
k

tr

[
δ

δ∆†
j,0

(
lnG−1

0 (k, τ)
)]}

= 0, (2.56)

where G−1
0 (k, τ) = G−1(k, τ)|∆j,0 . Using the fact that

tr
(
∂

∂x
lnA(x)

)
= tr

(
A−1(x)

∂

∂x
A(x)

)
, (2.57)

equation (2.56) can be written as

β∆j,0

2VΓ
=

1
2

∫ β

0
dτ

∑
k

tr

[
G0(k, τ)

∂G−1
0 (k, τ)

∂∆†
j,0

]
. (2.58)

The right-hand side of this equation is more conveniently evaluated after Fourier trans-

forming G0(k, τ) and G−1
0 (k, τ) to frequency (ω) variables:

G−1
0 (k, τ) =

∫
dωe−iωτG−1

0 (k, ω) (2.59a)

G0(k, τ) =
∫
dωeiωτG0(k, ω). (2.59b)

¶This approximation is also called mean field or stationary phase approximation.
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Using these in Eq. (2.58) and performing the imaginary time integration, one obtains

β∆j,0

2VΓ
=

1
2

∑
k,ωn

tr

[
G0(k, ωn)

∂G−1
0 (k, ωn)

∂∆†
j,0

]
, (2.60)

where the frequency integration is reduced to a summation over a set of discrete frequencies

ωn, which is imposed by the antiperiodic boundary conditions for fermionic fields. The

set of discrete frequencies is called the fermionic Matsubara frequencies [149]. Here, the

G−1
0 (k, ωn) and G0(k, ωn) can be obtained from Eq. (2.51) through the transformation

∂τ → −iωn leading to

G−1
0 (k, ωn) =

1
2

⎛
⎜⎝ (−iωn + ξk) δαβ −

∑dΓ
j=1

√
bΓj φ

Γ
j (k̂)(v)αβ ·∆j,0

−
∑dΓ

j=1

√
bΓj φ

Γ∗
j (k̂)∆†

j,0 · (v†)αβ (−iωn − ξk) δαβ

⎞
⎟⎠

(2.61)

and

G0(k, ωn) =
2
Λ

⎛
⎜⎝ (−iωn − ξk) δαβ

∑dΓ
j=1

√
bΓj φ

Γ
j (k̂)(v)αβ · ∆j,0∑dΓ

j=1

√
bΓj φ

Γ∗
j (k̂)∆†

j,0 · (v†)αβ (−iωn + ξk) δαβ

⎞
⎟⎠ , (2.62)

where Λ = [(−iωn)2 − ξ2k] − f2
k, and f2

k = |
∑dΓ

j

√
bΓj φ

Γ
j (k̂)∆j,0|2. It is convenient to

absorb the angular dependence φΓ
j (k̂) into the bosonic field and define the anisotropic order

parameter as DΓ
0 (k̂) =

∑dΓ
j

√
bΓj φ

Γ
j (k̂)∆j,0. Using this notation, f2

k = |DΓ
0 (k̂)|2.

This result for inverse Nambu matrix G is valid when (DΓ
0,µ)†(k̂)DΓ

0,ν(k̂) are real for all

µ and ν components. This condition is equivalent to requiring that the DΓ(k̂) vector to be

represented by a real vector times an overall phase, i.e., DΓ
0 = eiφ(DΓ

0,x,D
Γ
0,y,D

Γ
0,z), where

DΓ
0,µ are real functions. The superconducting state with an order parameter satisfying

this requirement is called the unitary state throughout this thesis. This terminology is

extensively used in the literature of superfluid 3He, and is well accepted by condensed

matter community. In Chapter 4 when I discuss the condensates of ultra-cold Fermi atoms,

I will extend the current analysis to some specific non-unitary triplet superfluid states. The

inverse Nambu matrix for a general non-unitary state, however, is much more complicated

and will not be discussed in this thesis.
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Substituting the results in Eqs. (2.61) and (2.62) into Eq. (2.60), and noticing that

∂G−1
0 (k, ωn)

∂∆†
j,0

=
1
2

⎛
⎜⎝ 0 0

−
√
bΓj φ

Γ∗
j (k̂)(v†)αβ 0

⎞
⎟⎠ , (2.63)

the trace of the right hand side of Eq. (2.60) becomes

−1
Λ

∑
αβ

dΓ∑
i=1

√
bΓi

√
bΓj φ

Γ
i (k̂)φΓ∗

j (k̂) [∆i,0 · (v)αβ ] (v†)βα

=
−2

∑dΓ
i=1

√
bΓi

√
bΓj φ

Γ
i (k̂)φΓ∗

j (k̂)∆i,0

−ω2
n − ξ2k − f2

k

=
−2

∑dΓ
i=1

√
bΓi

√
bΓj φ

Γ
i (k̂)φΓ∗

j (k̂)∆i,0

(iωn + Ek)(iωn − Ek)
, (2.64)

where E2
k = ξ2k + f2

k. Notice that the numerator of the expression above is independent of

ωn, since the saddle point order parameter ∆i,0 is time and hence frequency independent.

Therefore, the summation over Matsubara frequency ωn is only in the denominator and can

be performed, leading to

∑
ωn

1
(iωn + Ek)(iωn − Ek)

=
1

2Ek

∑
ωn

[
1

iωn − Ek
− 1
iωn + Ek

]

=
1

2Ek

β

2

[
tanh

(
−βEk

2

)
− tanh

(
βEk

2

)]

= − β

2Ek
tanh

(
βEk

2

)
. (2.65)

With these results, Eq. (2.60) becomes

∆j,0

VΓ
=

∑
k

√
bΓj φ

Γ∗
j (k̂)

∑dΓ
i=1

√
bΓi φ

Γ
i (k̂)∆i,0

Ek
tanh

(
βEk

2

)
. (2.66)

If only one pairing state with a specific bΓj and symmetry function φΓ
j (k̂) is dominant, the

equation above can be simplified to the more familiar form

1 = VΓ

∑
k

|φΓ(k̂)|2
Ek

tanh
(
βEk

2

)
, (2.67)

where the factor bΓj is absorbed into the interaction strength VΓ, and the subscript of φ

is neglected. Notice that this equation has the same form as the BCS order parameter

equation.
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Equation (2.67) can be solved together with the number equation to give the saddle point

(or mean field) solution for the superconducting order parameter and the chemical potential.

From statistical mechanics, the number of particles is related to the grand partition function

by

N = −∂Ω
∂µ

=
1
β

∂ lnZ
∂µ

. (2.68)

Thus, at the saddle point level, the number of particles takes the form

N0 =
1
β

∂

∂µ

{
−Seff [∆†

j,0,∆j,0]
}

=
1
β

∑
k

{
β +

1
2

∑
ωn

tr
[
G0

∂

∂µ
G−1

0

]}
. (2.69)

By using the expression (2.61) and (2.62) for G−1
0 and G0, and taking the same Matsubara

summation as in Eq. (2.65), the saddle point contribution to the number of particles

becomes

N0 =
∑
k

[
1 − ξk

Ek
tanh

(
βEk

2

)]
. (2.70)

This equation has the same form as the BCS number equation, which can be solved together

with the order parameter equation (2.67) to obtain chemical potential µ and order parameter

∆0, for a given temperature and particle density. The solutions of these equations give the

saddle point results, which are valid away from critical point. However, when the system

moves towards the critical point, one has to take into account of fluctuation effects. In

order to do that, one can consider a time dependent fluctuation over the saddle point order

parameter ∆j,0 such that

∆j(k, τ) = ∆j,0 + ηj(k, τ), (2.71)

and then expand the effective action (2.54) up to the quadratic term of ηj . This expansion is

called Gaussian approximation [152]. To address the approach to the critical point, where a

second order normal–superfluid transition takes place, one can develop a Ginzburg–Landau

(GL) theory. Next, I will use the functional integral formalism to derive the GL equation

for triplet superfluidity, and show that each term in the GL functional can be obtained by

a corresponding Feynman diagram.
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2.3.3 Ginzburg–Landau Theory

To derive the GL theory, I start from the effective action (2.54), and expand Seff in powers

of ∆j(τ). In the following discussion, I assume that only one bΓj and one symmetry function

φj are relevant to the superfluid transition. Thus, I can simplify notation by absorbing bΓj

into interaction strength VΓ, and omitting the subscript j in both φj and ∆j . Using these

notations, the effective action becomes

Seff [∆†(τ),∆(τ)] =
∫ β

0
dτ

[
1

2VΓ
∆†(τ) ·∆(τ) +

∑
k

ξk

]
− 1

2
Trk,τ

(
lnG−1(k, τ)

)
, (2.72)

where the matrix G−1 = (P−1 + K)/2 with

P−1(k, τ) =

⎛
⎜⎝ (∂τ + ξk) δαβ 0

0 (∂τ − ξk) δαβ

⎞
⎟⎠ , (2.73)

and

K(k, τ) =

⎛
⎜⎝ 0 −φΓ(k̂)(v)αβ ·∆(τ)

−φΓ∗(k̂)∆†(τ) · (v†)αβ 0

⎞
⎟⎠ . (2.74)

In the region where the order parameter ∆ is small, the second term in the effective

action can be expanded as follows:

Trk,τ

[
ln

(
P−1 + K

)
/2

]
= Trk,τ

[
lnP−1 − ln 2

]
+ Trk,τ ln (1 + PK)

= Trk,τ

[
lnP−1 − ln 2 + PK − 1

2
(PK)2 +

1
3

(PK)3 − 1
4

(PK)4 + · · ·
]
, (2.75)

where P can be easily obtained (since P−1 is diagonal) as

P(k, τ) =

⎛
⎜⎝ (∂τ + ξk)−1 δαβ 0

0 (∂τ − ξk)−1 δαβ

⎞
⎟⎠ . (2.76)

Since the expansion is around the critical point with the saddle point solution ∆ = 0, all

odd power terms must vanish and the effective action can be written as

Seff = S0 + S2 + S4 + · · · , (2.77)

where S0 =
∑

k(βξk + ln
√

2) − (1/2)Trk,τ lnP−1 is a constant.
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Assuming a static order parameter ∆(τ) = ∆0, the quadratic term S2 then becomes

S2 =
β

2VΓ
∆†

0 · ∆0 +
1
4

∑
k,ωn

tr [P(k, ωn)K(k, ωn)]2 . (2.78)

Here, the Fourier transformation from imaginary time to frequency is applied to transform

the integral over dτ into summation over fermionic Matsubara frequencies ωn. Notice that

the matrix P(k, ωn) can be obtained from Eq. (2.76) through the substitution ∂τ → −iωn,

and K(k, ωn) = K(k) is frequency independent since ∆ is time independent. By multiplying

the four matrices (PKPK) and taking the trace over the resulting 4×4 matrix, one obtains

S2 =
β

2VΓ
|∆0|2 +

∑
k,ωn

|φ(k̂)|2
(iωn + ξk)(iωn − ξk)

|∆0|2. (2.79)

By performing the Matsubara summation as in Eq. (2.65), the quadratic term of the

effective action can be written as

S2 =

[
β

2VΓ
−

∑
k

β

2ξk
tanh

(
βξk
2

)
|φ(k̂)|2

]
|∆0|2

≡ a|∆0|2. (2.80)

Similarly, the quartic term S4 is

S4 =
1
8

∑
k,ωn

tr [P(k, ωn)K(k, ωn)]4

=
1
4

∑
k,ωn

1
(iωn + ξk)2(iωn − ξk)2

|φ(k̂)|4
(
2|∆0|4 − |∆2

0|2
)

=
1
4

∑
k

[
β

4ξ3k
tanh

(
βξk
2

)
− β2

8ξ2k
sech2

(
βξk
2

)]
|φ(k̂)|4

(
2|∆0|4 − |∆2

0|2
)

≡ b

2
(
2|∆0|4 − |∆2

0|2
)
. (2.81)

Here, the multiplication of spin matrices and Matsubara summations are performed using

the methods discussed in Appendix A and B, respectively.

It is instructive to notice that S2 and S4 can be obtained diagrammatically. For example,

the first term of S2 can be represented diagrammatically as in Fig. 2.1(a). Here, the wavy

line represents the bosonic field ∆0, and the double line denotes the bare Green’s function

for ∆0, i.e., GB = β/VΓ. The second term in S2 corresponds to the “polarization bubble”
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Figure 2.1: Feynman diagrams corresponding to (a) the first, and (b) the second terms of
the quadratic effective action S2, respectively.

as shown in Fig. 2.1(b). In this diagram, the solid line represents the bare fermionic Green’s

function GF (k, ωn) = 1/(iωn + ξk), and the vertex corresponds to the interaction between

fermionic and bosonic fields, which takes the form φΓ(k̂)(v)αβ or φΓ∗(k̂)(v†)αβ , depending

on whether the vertex is connected to an annihilation or creation field of ∆0, respectively. In

summary, the one-to-one correspondence of the algebraic formalism and the diagrammatic

representation is as follows:

1. For each initial bosonic field line connected to a vertex, write a factor φΓ(k̂)∆0 ·(v)αβ ,

while for each final bosonic field line connected to a vertex, write the Hermitian conjugate

φΓ∗(−k̂)∆†
0 ·

(
v†)

αβ
;

2. For each internal fermionic line, labeled by the momentum k and frequency ω, write

a factor

GF (ω,k) =
1

iω + ξk
; (2.82)

3. The linear momentum associated with the bosonic line and the two fermionic lines

meeting at each vertex satisfy energy–momentum conservation. For each closed loop, carry

out the integration
∫
dk for each internal momentum k, and carry out the summation

∑
ωn

for each internal frequency ωn.

4. The spin indices of two fermionic lines meeting at each vertex have to be the same

as the spin indices of that vertex, indicating the fermionic spins do not flip. For each spin

index α, carry out the summation
∑

α. For each closed loop, the summation over spin

indices is equivalent to a trace over all spin matrices v.

5. Multiply the expression by the factor 1/N for diagram with N external bosonic lines.
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Figure 2.2: Feynman diagrams corresponding to the quartic effective action S4.

By using these Feynman rules, one can verify that the quartic term S4 can be obtained

from the diagram with four external wavy lines, as shown in Fig. 2.2.

With the GL effective action, either derived using the functional integral method or

constructed from Feynman diagrams, one can obtain the GL equation by requiring that

δSeff/δ∆
†
0 = 0, leading to

[
a+

b

2
(
2|∆0|2∆0 − ∆2

0∆
∗
0

)]
= 0. (2.83)

Notice that the equation above is different from the GL equation for singlet superconduc-

tors [145] in two aspects: First, the non-linear terms in Eq. (2.83) are different from those

in the singlet superconductivity GL equation. This difference originates from the spin struc-

ture of the triplet pairing. Second, the spatial derivative term is absent since I considered in

this chapter only the simplified Hamiltonian of Eq. (2.34), where only fermions with oppo-

site momenta can form Cooper pairs. This assumption excludes the possibility of having a

non-uniform order parameter since the center-of-mass momentum of the Cooper pair is zero

and the pair wave function is completely uniform. However, I will discuss in Chapter 3 and

4 general Hamiltonian which allow for pairing between fermions with arbitrary momenta,

derive the spatial and time dependent GL equation for quasi-one-dimensional conductors

and p-wave Fermi condensates of ultra-cold atoms. In Chapter 3, I show that the GL coef-

ficients are crucial to determine the phase diagram of the quasi-one-dimensional conductor

(TMTSF)2PF6. Using parameters suggested by experiments, I propose a coexistence phase
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of spin density waves (SDW) and triplet superconductivity (TSC), where both SDW and

TSC order parameters are non-uniform. In Chapter 4, I derive the time dependent GL

(TDGL) equation for p-wave Fermi condensate, and discuss the polarization effect and time

evolution of a harmonically trapped condensate.
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CHAPTER III

COEXISTENCE OF SPIN DENSITY WAVES AND

TRIPLET SUPERCONDUCTIVITY IN

QUASI-ONE-DIMENSIONAL CONDUCTORS

In chapter 2, I presented the background necessary to develop a theory for superconduc-

tivity and superfluidity in correlated Fermi systems, emphasizing the possibility of triplet

superfluidity as an unconventional pairing state. In this chapter, I will focus on the spe-

cific material (TMTSF)2PF6, which is one of the most well studied quasi-one-dimensional

(quasi-1D) organic conductors. The superconducting phase of (TMTSF)2PF6 seems to

be a triplet state, since its upper critical field exceeds the Pauli paramagnetic limit, and

the Knight shift difference is absent. In addition, the interplay between magnetic and

superconducting orders seems to be very important. Thus, here I will discuss in detail

the coexistence or competition of spin density waves (SDW) and triplet superconductivity

(TSC) in (TMTSF)2PF6, and mention other aspects only briefly.

The interplay between spin density waves and triplet superconductivity in (TMTSF)2PF6

is an important problem because most experiments that reveal exotic behavior of the super-

conducting phase were performed in the pressure versus temperature phase diagram close

to the SDW phase. Therefore, the effects of SDW order on the superconducting state of

quasi-1D systems must be addressed. In addition, the competition or coexistence of mag-

netic order and superconductivity is itself a very important problem in condensed matter

physics. There is a broad class of systems that present magnetic order and superconduc-

tivity in close vicinity. One of the most important systems are the copper oxides, where

singlet superconductivity (SSC) is found next to antiferromagnetism (AFM) [153]. Another

interesting system is strontium ruthenate Sr2RuO4, where the proximity to ferromagnetism
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(FM) has been argued as being important to the existence of possible triplet superconduc-

tivity in these materials [154]. Furthermore the ferromagnetic superconductors ZrZn2 and

UGe2 have stimulated a debate on the coexistence of ferromagnetism and triplet or singlet

superconductivity [155, 156]. However, unlike any of these previous examples, the TSC

and SDW orders in quasi-1D systems would avoid coexistence at first glance, since the two

orders are competing to correlate electrons in the triplet and singlet spin sectors, respec-

tively. For instance, the presence of SDW order would disrupt TSC in a more dramatic way

than it would SSC, while the FM order would disrupt SSC more than TSC. Therefore, it

is easier to find in nature examples of coexistence of SSC and SDW or TSC and FM, while

the conditions to find the coexistence of TSC and SDW are much more stringent.

The main results described in this chapter are as follows. First, I will derive microscop-

ically the pressure versus temperature phase diagram indicating the TSC, the SDW and

the coexistence of TSC and SDW (TSC/SDW) phases, and show that the TSC and SDW

order parameters are both non-uniform in the coexistence region. Second, I propose that

external magnetic fields cause a canting transition of the SDW order parameter, which alter

the nature of the TSC state in the coexistence region since SDW and TSC are coupled. In

addition, to the normal phase, I find new phases in the magnetic field versus temperature

phase diagram near the critical pressure.

3.1 Background

The discovery of the first organic superconductor bistetramethyltetraselenafulvalene hex-

afluorophosphate [(TMTSF)2PF6] by Jerome et al. [19] in 1980 stimulated a dramatic

search for superconductivity in other quasi-1D Bechgaard salts family. This search has

lead to discoveries of other very interesting physical effects, among these phenomena it is

worth highlighting the existence of metallic, spin density wave and superconducting phases.

These phases can exist in the same material depending on temperature, pressure, mag-

netic field, and anion ordering. A schematic pressure versus temperature phase diagram for

(TMTSF)2X and (TMTTF)2X is shown in Fig. 3.1 [157], where X represents different an-

ions. In addition, the discovery of magnetic field induced spin density waves (FISDW) [158]
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Figure 3.1: Generalized phase diagram for (TMTSF)2X and (TMTTF)2X compounds
adapted from Ref. [157]. The notation CL, SP, SDW and SC refers to charge-localized,
spin-Peierls, spin density wave, and superconducting states, respectively. The lower-case let-
ters designate compounds and indicate their location at ambient pressure in the generalized
diagram. (a) (TMTTF)2PF6, (b) (TMTTF)2Br, (c) (TMTSF)2PF6, (d) (TMTSF)2ClO4.

in these systems stimulated an incredible surge of theoretical and experimental interest in

the 1980’s, as can be verified in the book by Saito and Kagoshima [159]. Among the recent

aspects related to these phenomena it is important to single out the quantum Hall effect

and the new angle-dependent magneto-resistance oscillations [34, 160, 45, 161, 162]. More

recently there has been some experimental and theoretical efforts in trying to decipher the

nature of the metallic state in a magnetic field [163, 164]. The origin of many of these fea-

tures lies in the extremely anisotropic nature of the electronic structure in these materials

resulting from their weakly coupled chain-like crystalline structure.

3.1.1 Crystal Structure and Electronic Dispersion

The (TMTSF)2X family is iso-structural, where all members are triclinic crystals with very

similar lattice parameters. As can be seen is Fig. 3.2, nearly planar TMTSF molecules

form chains along the so-called a (x) axis, and form sheets in the a-b′ (xy) plane [165].

These sheets are separated by anions along the c∗ (z) axis. Selenium (Se) orbitals play

an important role on the electronic properties of these materials [selenium corresponds

to S in the chemical formula (TMTSF)2X]. Although Se–Se spacings along the a (x)
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a(x)

c∗(z)

Figure 3.2: View of the crystal structure of (TMTSF)2PF6 showing the a and c∗ axes.

axis and along the b′ (y) axis are comparable, the overlap of π orbitals is strongest along

the chains (a direction). As a consequence, the electronic spectrum is quasi-1D and the

electron transfer energies are estimated [166] to be of the order of 6000, 600, 24 K along

special directions x, y and z. Throughout this chapter, I use interchangeably x ↔ a,

y ↔ b′ and z ↔ c∗, unless specified. I may also use the anion formulae PF6 and ClO4 as

a shorthand notation to represent the corresponding Bechgaard salts (TMTSF)2PF6 and

(TMTSF)2ClO4, respectively.

A simple approximation for these systems is to take the dispersion relation [167]

εk = −tx cos(kxa) − ty cos(kyb) − tz cos(kzc), (3.1)

with tx � ty � tz > 0, where the a, b, and c are the lattice constants and tx, ty and tz

are the transfer integrals along the x, y and z directions, respectively. Even though this

dispersion relation should be considered as a simplification, it contains some of the essential

characteristics of the quasi-1D band structure near the Fermi energy. The use of this

dispersion relation implicity assumes an orthorhombic crystal structure for Bechgaard salts.

However, these systems are really triclinic with lattice parameters at room temperature

a = 3.648Å, b = 7.711Å, c = 13.522Å, with angles α = 83.39◦, β = 86.27◦, and γ = 71.01◦,

as seen in Fig. 3.3 [168, 169]. This means that all the discussions presented here in connection
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Figure 3.3: View of the crystal structure of (TMTSF)2PF6 showing the principal directions
a, b′ and c∗. Adapted from Ref. [168].

with triclinic Bechgaard salts should be viewed only as qualitative at best.

As a consequence of this anisotropy, the Fermi surface of quasi-1D systems is open and

has two separate sheets (see Fig. 3.4), such that the electronic motion then can be classified

as right going (with sheet index α = +) or left going (with sheet index α = −). With the

limiting condition that tx � max(ty, tz), the dispersion relation above can be linearized

εk,α = vF (αkx − kF ) − ty cos(kyb) − tz cos(kzc), (3.2)

where the approximations vx ≈ vF and tx ≈ EF were used with vF and EF being Fermi

velocity and Fermi energy, respectively. This strong anisotropy of the dispersion relation

above leads to very interesting effects, especially in a magnetic field.

3.1.2 Upper Critical Fields of (TMTSF)2PF6

Typically the application of an external magnetic field is detrimental to superconductivity

due to the following reasons. First, the coupling of the magnetic field with the electron

charge forces electronic orbits to bend, and as a result it becomes more difficult for two

electrons to form a Cooper pair. Therefore, the suppression of the formation of these
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Figure 3.4: The Fermi surface of quasi-1D systems with transfer integrals tx � ty � tz > 0
is open.

bound states immediately undermines superconductivity. This phenomenon is called orbital

frustration, and affects both singlet and triplet superconductors. Second, the coupling of

the magnetic field to spins also tends to break Cooper pairs because of the Zeeman energy

cost. The Zeeman splitting affects directly singlet superconductors which have magnetic

quantum numbers (S = 0, mS = 0), since electrons with spin up and with spin down are

separated in energy. In the case of triplet superconductors, a magnetic field also has a direct

effect on states with magnetic quantum numbers (S = 1, mS = 0), but not on states with

both spins aligned, i.e. (S = 1, mS = ±1).

Therefore, in order to make the quantum level structure work in favor of supercon-

ductivity at high magnetic fields (beyond the semiclassical orbital upper critical fields and

beyond the Pauli paramagnetic limit), one must envision a mechanism that eliminates or

compensates for (i) the orbital frustration, and (ii) the Zeeman splitting introduced by the

magnetic field. For three-dimensional isotropic systems, such a mechanism was proposed by

Tesanovic et al. [170] and later by Norman, MacDonald and Akera [171], building up and

expanding on earlier works [172, 173]. The survival of superconductivity up to very high

magnetic fields involved reaching the extreme quantum limit, where only a single Landau

level is occupied. Then Cooper pairing can occur between electronic states in the same Lan-

dau level, thus beating the detrimental orbital frustration. In this case, superconductivity
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is only limited by the Pauli pair breaking effect and impurity scattering. The magnetic

fields required to reach this extreme quantum limit for ordinary metals is very high, being

typically in the range of thousands of tesla. The reason for such high fields is that ordinary

metals are high density materials with large Fermi energies. However, it is very difficult to

reach fields of the order of thousands of tesla with current technology.

The advantage of quasi-1D systems is that the extreme quantum limit can be reached

for magnetic fields beginning in the range from 5 to 30 T [166]. This is possible for magnetic

fields applied along the y axis, because of the extreme anisotropic electronic structure of

these systems (tx � ty � tz). When ωc ≡ vF |e|Hyc� tz the electronic wave functions are

confined along the z axis, hence they represent a highly degenerate single quantum Lan-

dau level at the Fermi energy [38, 166]. In such a case, pairing within the same quantum

level is possible, and here it means pairing in the xy plane. Therefore, the quasi-1D, but

nevertheless 3D anisotropic superconductors become essentially 2D anisotropic supercon-

ductors [34, 36]. This effect is called magnetic field induced dimensional crossover (MFIDC).

On the other hand, at high magnetic fields, the confinement of the electronic motion along

the z axis, also tends to confine the formation and motion of Cooper pairs mostly in the xy

planes (pairing in the lowest quantum Landau level). This produces an effective coherence

length ξeffz which is smaller than the inter-planar lattice spacing c. As a result, there exists

a novel MFIDC from a strongly 3D but highly anisotropic Abrikosov vortex lattice to a

nearly 2D highly anisotropic Josephson vortex lattice [36]. Beyond the crossover regime,

the magnetic field along the y axis can not break Cooper pairs, thus the orbital frustra-

tion disappears, and hence the Pauli paramagnetic pair breaking effect determines the final

shape of the upper critical field. This MFIDC mechanism then leads to the survival of

superconductivity in high magnetic fields for singlet superconductors and to a reentrant

behavior for triplet superconductors. This high field behavior is most likely to occur in

a triplet superconductor with equal spin pairing [38, 166] similar to the A-phase [74] of

liquid 3He, in order to take advantage of the external field. Motivated by this theoretical

prediction, Lee et al. [41] carefully designed a more delicate experiment to measure the up-

per critical field of (TMTSF)2PF6, and observe some anomalous results which favor triplet
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pairing states.

Surprisingly, prior to 1997, experimental investigations of the upper critical field of

(TMTSF)2PF6 and its anisotropy [174, 175, 21, 176] had not been undertaken in the tem-

perature and field regimes where anomalous effects were theoretically predicted, i.e., T 	 Tc

and (H/Tc) � (dHc2/dT )Tc . This regime started to be explored only after the initial ex-

perimental work of Naughton’s and Chaikin’s groups [41], where the upper critical field of

(TMTSF)2PF6 was studied at pressure P ≈ 6.0 kbar. This pressure is large enough to

suppress the nearby spin density wave phase and allow the existence of a metallic state at

high temperatures and of a superconducting state at low temperatures [55]. (The insulator–

superconductor transition pressure Pc, is about 5.9 kbar in their calibrated pressure scale.)

In these experiments, Lee et al. [41] extracted the critical temperature Tc(H) as a function

of magnetic field from resistance measurements for magnetic fields precisely aligned with

the three principal directions a, b′ and c∗, and obtained the H–T phase diagram as shown

in Fig. 3.5.

Notice that the phase diagram is consistent with previous low field studies [174, 175,

177, 21, 178, 27] of (TMTSF)2ClO4, and the upper critical fields obey the relation Ha
c2 >

Hb′
c2 > Hc∗

c2 for temperatures close to Tc(0) = 1.13 K. However, there are two unusual

features embedded in the phase diagram of Fig. 3.5. The first one is that the upper critical

fields for H ‖ a and for H ‖ b′ do not seem to saturate at low temperatures. Furthermore,

the upper critical field along these directions exceeds the Pauli paramagnetic limit for this

compound by a factor of 2, at least. This paramagnetic limit is given by HP (T = 0) =

1.84Tc(H = 0) for an isotropic s-wave system in the absence of spin-orbit coupling [29, 30],

or by HP (T = 0) = 1.58Tc(H = 0) for an anisotropic s-wave singlet pairing [33]. In the

case of (TMTSF)2PF6 these estimates correspond to 2.1 T and 1.8 T, respectively. Thus,

at low temperatures, Hb′
c2 > 2HP .

The second unusual feature is the anisotropy inversion that occurs above the character-

istic field H∗ ≈ 1.6 T, where Hb′
c2 becomes larger than Ha

c2. The fact that this anisotropy

inversion was not seen prior to their work, is attributed to the strong sensitivity of Hc2

to sample alignment with respect to the external magnetic field. For instance, a tilt of
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Figure 3.5: The magnetic field versus temperature (H–T ) phase diagram for (TMTSF)2PF6

for magnetic fields aligned along the three principal axis a, b′, and c∗. Adapted from Ref.
[41].
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0.1◦ away from b′ towards c∗ is sufficient to bring Hb′
c2 below Ha

c2 at low temperatures.

Another possible reason is that early upper critical field measurements in Bechgaard salts

were performed on (TMTSF)2ClO4 (at P = 0), or on (TMTSF)2PF6 and (TMTSF)2AsF6

at higher pressures. However, the pressure used in this experiment is very close to the crit-

ical value for the suppression of the insulating SDW phase, and yields a maximized critical

temperature Tc.

The unusual upper curvature and exceeding of Pauli limit for Hc2(T ) can be related

to interpretations from existing theories of layered superconductors. In a theory by Ov-

chinikov and Kresin [179], it was shown that a upward curvature in Hc2(T ) results at low

temperatures, because the pair breaking ability of magnetic impurities is reduced as T → 0.

However magnetic scattering is essentially negligible in (TMTSF)2PF6 since the PF6 ion

is non-magnetic. Strong upward curvature was also discussed by Kotliar and Varma [180]

in the context of cuprate superconductors for magnetic fields normal to the layers. They

suggested that the proximity to a quantum critical point is responsible for the upward cur-

vature in Hc2(T ) at low temperatures. They found that Hc2(T ) ≈ 1 − tα, with t = T/Tc

and α = 2/5 would fit a small portion of the experimental data close to T = 0 for cuprate

superconductors. Although the above expression agrees reasonably well with the measured

Hb′
c2(T ) over the entire temperature range 0.1 < t < 1, this theory is only applicable to fields

perpendicular to the layers, and thus cannot explain the (TMTSF)2PF6 data. One theory

which remains consistent with the upward curvature and the exceeding of Pauli param-

agnetic limit of Hc2(T ) is the triplet superconductivity scenario proposed by Lebed [34],

Burlachkov, Gorkov and Lebed [35], and by Dupuis, Montambaux, and Sá de Melo [36].

However, since the agreement between theoretical and experimental results is only quali-

tative, further work is necessary in order to explore the symmetry of the superconducting

state. In the absence of phase sensitive experiments like those performed in high-Tc su-

perconductors [59, 60, 61], Knight shift experiments are the next natural candidate to get

information about the spin structure of the superconducting state.
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3.1.3 77Se Knight Shift and NMR Measurements in (TMSTF)2PF6

The Knight shift is a very important technique to measure electron spin susceptibility. It

is defined as the shift of NMR resonant frequency due to interaction between nuclear and

electron spins. In the presence of a magnetic field H, nuclear spins in a material precess

with the frequency ω ∝ H. At this frequency a nuclear magnetic resonance can be detected,

i.e., there is a resonant absorption of energy from a radio-frequency magnetic field Hrf with

polarization perpendicular to the constant magnetic field H. Due to the finite probability

of an electron to be located at the nucleus site Rn, there is an interaction between the

nuclear magnetic moments and those of the conducting electrons, Hint ∝ melδ(r − Rn).

The average value of mel in this external field is given by 〈mel〉 ∝ χH, where χ is the

electronic paramagnetic susceptibility. Thus, the nuclear spin energy levels due to this

interaction shift the NMR frequency by δω ≡ Ks ∝ χH, which defines the Knight shift Ks.

In a superconductor with singlet pairing, Cooper pairs do not contribute to the spin

paramagnetic susceptibility since ms = 0, and the entire spin magnetic moment is de-

termined by the contribution from elementary excitations. Therefore, the electronic spin

susceptibility for a singlet superconductor is

χ =
∂M

∂H
= χnY (T ), (3.3)

where χn is the normal state spin susceptibility and the function Y (T ) is the Yosida function,

which determines the fraction of normal electrons in a superconductor. In the singlet case,

Y (T ) vanishes at T → 0, which means the Knight shift Ks will be strongly suppressed at

low temperatures below the superconducting transition. On the contrary, in an equal spin

triplet pairing superconductor, the Knight shift will remain unchanged upon cooling into

the superconducting state, and will not vanish as T → 0. Detailed discussions can be found

in Leggett’s review [74] for 3He, and in Ref. [54] for triplet superconductors.

Prior to the experiment on 77Se atoms by Lee et al. [65, 51], there exists an extensive

NMR literature on both ambient pressure spin density wave [181] and pressurized metal-

lic [182, 183] phases of (TMTSF)2PF6. Most of the previous works included studies of local

magnetic environments of either protons in methyl groups or 13C spin-labeled on various
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inequivalent sites. However, band structure calculations and EPR studies suggest that the

largest spin densities associated with the conduction band are closely linked to molecular

orbitals connected to Se atoms [184]. Since the Knight shift is proportional to the magni-

tude square of the electron wave function at the ionic nucleus, 77Se is a natural choice for

NMR studies. Under this consideration, Lee et al. [65, 51] performed NMR measurements

on 77Se of (TMTSF)2PF6 in the superconducting state. To ensure that the pressurized

sample is superconducting while acquiring the NMR data, they conducted simultaneous

transport measurements in parallel (synchronization) to the application of radio-frequency

pulses. From the measured spectra, Lee et al. [65, 51] concluded that there is no change in

the Knight shifts of 77Se when H ‖ a or H ‖ b′.

The absorption spectra is shown in Fig. 3.6 (from Ref. [51]). The lower set of spectra

is collected as free induction decays (FIDs), and the upper as spin echoes. These spectra

were recorded at temperatures above and below Tc, for a magnetic field aligned parallel to

the layers to within 0.1◦ and parallel to the b′ axis to within ≈ 5◦. Notice that there is

no change in the absorption peak (marked by the vertical solid line in Fig. 3.6), to within

the experimental error bars (δKs = ±20 ppm). The lack of any observable difference

between the spectra as the temperature is varied indicates that the system is not a singlet

superconductor.

The vertical shaded region in Fig. 3.6 corresponds to the estimated range where the cen-

ter of the spectrum would have been if the spin susceptibility had vanished. This expected

Knight shift window is extrapolated from the NMR frequency shift K in the normal state

as a function of spin susceptibility χ for H ‖ b′. The vertical lines that bound the shaded

region in Fig. 3.6 mark the corresponding first moment at 340–480 ppm above the measured

value. At the measuring field of H = 2.38 T, this corresponds to about 6–9 kHz, with an

estimated uncertainty of about 1 kHz. Lee et al. [65] also discovered that 77Se spectroscopy

with the field aligned along the a axis was more sensitive. Thus, they worked at much lower

fields H = 1.43 T for H ‖ a and observed similar results.

In order to guarantee the validity of the 77Se NMR data, Lee et al. [51] performed

transport measurements simultaneously to confirm the superconducting state. Furthermore,
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Figure 3.6: NMR 77Se absorption spectra collected at temperatures below and above Tc

for a magnetic field H = 2.38 T applied along the b′ axis. The solid line indicates the
measured first moment, and the shaded region indicates the expected first moment for a
singlet ground state. Adapted from Ref. [51].

to obtain an independent bulk measurement of the superconducting transition, Lee et al. [51]

also recorded the spin-lattice relaxation rates 1/T1 for 77Se at H = 2.38 T, and for the

methyl group protons 1H at H = 232 mT and 12.8 mT. From their data (not shown here),

a signature for superconductivity can be observed from the 77Se relaxation rates, which

shows no change in spin susceptibility between the normal and superconducting states.

This evidence is consistent with the Knight shifts results discussed above, and strongly

suggests triplet superconductivity in (TMTSF)2PF6.

3.1.4 Triplet Superconducting State in (TMTSF)2PF6

In addition to the spin structure, the orbital symmetry of the superconducting order param-

eter is another important property that needs to be characterized. The previous discussion

on singlet versus triplet states is helpful to refine the number of possible choices, since the

wave function is antisymmetric due to Pauli principle. However, even if we clarify the spin

symmetry, either singlet or triplet, there are still several candidates for the orbital symmetry.
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One way to investigate all possible symmetries systematically is through a group theoreti-

cal analysis, within the assumption that the normal state of quasi-1D superconductors does

not break the full lattice symmetry. This group theoretical analysis was performed for the

orthorhombic group by Duncan, Vaccarella and Sá de Melo [53] and extended by Duncan,

Cherng and Sá de Melo [54]. In principle, superconductors with different orbital sym-

metries show distinct thermodynamic properties since the quasiparticle excitation spectra

are different. However, a direct comparison between experimental and theoretical values

of thermodynamic quantities is still lacking for superconducting (TMTSF)2PF6. This is

mainly due to difficulties in fine tuning the pressure near the critical value required for the

appearance of superconductivity.

On the other hand, thermodynamic measurements are more easily performed in the

sister compound (TMTSF)2ClO4, which is superconducting at ambient pressure. For ex-

ample, Belin and Behnia [42] measured the thermal conductivity of (TMTSF)2ClO4 and

concluded that the electronic contribution to heat transport decreases rapidly below the

critical temperature for superconductivity, thus indicating the absence of low energy elec-

tronic excitations, i.e., a fully gapped quasi-particle spectrum. Under the assumption that

the superconducting order parameters have the same symmetry for (TMTSF)2ClO4 and

(TMTSF)2PF6, the combined studies of upper critical field and Knight shift for PF6, and

thermal conductivity for ClO4 are very suggestive of a fully gapped triplet state. According

to the group analysis [53, 54], the triplet state with px-wave symmetry is a good candidate,

where the quasi-particle excitation spectrum has no zeros due to the open Fermi surface in

these quasi-1D systems. In this thesis, I will focus on this unitary triplet superconducting

state with px-wave symmetry in (TMTSF)2PF6. However, further work is necessary to con-

firm this suggestion. For example, if experimental difficulties can be surmounted, it would

be very useful to perform NMR experiments in (TMTSF)2ClO4, and thermal conductivity

experiments in (TMTSF)2PF6. These two experiments combined can provide information

about the spin and orbital nature of the order parameter for each of the compounds.
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3.2 Experiments Suggesting Coexistence of Spin Density
Waves and Superconductivity in (TMTSF)2PF6

In the previous section, I introduced the background of the superconducting state in quasi-

1D organic conductors, and concluded that the existing experiments highly suggest a triplet

superconducting phase in (TMTSF)2PF6. It is important to emphasize that all experiments

that reveal exotic behavior of superconducting (TMTSF)2PF6 were performed in the phase

diagram close to the insulating antiferromagnetic state, which is characterized by a spin

density wave (SDW). Therefore, the effects of SDW on superconducting states of these

quasi-1D systems should be addressed.

In (TMTSF)2PF6, experiments that explore physical properties in the vicinity of the

SDW–Superconductivity (SC) phase boundaries in the P–T diagram are technically difficult

because it is not easy to fine tune the pressure near the critical pressure Pc. However, some

earlier measurements indicated the presence of an inhomogeneous state in the vicinity of

Pc [66, 67]. Specifically, Azevedo et al.[66] found that the quenching of the SDW state

was a slow function of pressure from measurements of the Knight shift in 77Se. This was

interpreted as an indication of the coexistence of the SDW and metallic states. Lee et al. [67]

assumed the presence of macroscopic domains of superconducting and insulating SDW states

to explain an unusual upper curvature of Hc∗
c2 (T ). Recently, transport measurements by

Vuletić et al. [68] and Kornilov et al. [69], as well as a simultaneous NMR and electrical

transport measurements by Lee et al. [70] in (TMTSF)2PF6 all suggest an “inhomogeneous”

coexistence region of SDW and Metal(SC) orders.

For instance, Vuletić et al. [68] performed resistivity measurements and suggested an

inhomogeneous SDW–Metal (SDW–SC) phase due to a strong hysteretic behavior of resis-

tivity between TSC and TSDW at a fixed pressure within 8.6 < P < 9.43 kbar, as shown in

Fig. 3.7. This pressure range is lower than but close to the SDW–SC critical pressure Pc,

which is 9.43 kbar in their pressure gauge. Here TSC and TSDW are transition temperatures

of superconducting and SDW phases, respectively. Notice that in the phase diagram Fig. 3.7,

there is a 0.8 kbar wide pressure region which exhibits features of coexisting SDW/Metal

and SDW/SC orders, such as hysteretic behavior of resistance as a function of temperature.
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Figure 3.7: P–T phase diagram of (TMTSF)2PF6. SDW/M denotes the region where
metallic and SDW phases coexist inhomogeneously, below TSDW line (large dots). Below
TSC = 1.20 ± 0.01 K line (small dots), this coexistence switches into a coexistence of SC
and SDW phases, due to Metal–Superconductivity phase transition. A gradient in shading
(SDW/SC region) below TSC denotes the increase of SC volume. The solid curve separating
the M and SDW phases is a fit to the data using the empirical formula TSDW(P ) = T1 −
[(T1 − TSC)(P/Pc)3]. Adapted from Ref. [68].

A similar hysteretic behavior was also observed in magneto-resistance measurements

performed by Kornilov et al. [69] on (TMTSF)2PF6. Unlike Vuletić et al. [68], Kornilov et

al. [69] used an alternative approach to cross the phase boundary by varying the magnetic

field at fixed values of pressure and temperature. This technique has two advantages: (i)

crossing phase boundaries may be achieved almost continuously, and (ii) different phases

can be determined by various magneto-resistance characteristics. Using this method, Ko-

rnilov et al. also observed the hysteretic behavior in magneto-resistance, as the pressure

and temperature is properly chosen such that the sweep of magnetic field from 0 to 16

T can drive the system through the SDW-Metal transition. Extending this result to the

SDW–SC boundary, it is possible to have a transition from the SDW to SC state involving

an inhomogeneous mixed state with coexisting SDW and SC phases. Motivated by this

suggestion, Lee et al. [70] performed simultaneous NMR and transport measurements on
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Figure 3.8: Simultaneous resistivity and proton NMR measurements. Shown here are the
temperature dependence of interlayer resistance (top panel), proton spin-lattice relaxation
rate (middle panel), and local field variations at the proton site (bottom panel). The data
with triangles were obtained with a magnetic field aligned along the a axis and circles with
a 45 degree tilt toward the c∗ axis. Adapted from Ref. [70].

(TMTSF)2PF6, and directly showed the presence of SDW order in the superconducting

state.

The main results of Lee et al. are shown in Fig. 3.8 [70], under a pressure of 5.5 kbar

and in a magnetic field of 0.29 T. Data with triangles (circles) are obtained with field along

the a axis (tilted 45 degrees towards the c∗ axis). The top panel shows the results from

interlayer (c∗ axis) electrical transport, in which the resistance is enhanced below 3 K due

to the SDW transition, followed by a superconducting transition near 1 K. The middle

panel of Fig. 3.8 shows the simultaneously measured proton spin-lattice relaxation time

(1/T1). In the metallic state above 3 K, a single exponential curve describes fairly well the

recovery of the magnetic moments. However, below 3 K, the recovery deviates significantly

from an exponential, as local variations of the spectral density develop. The bottom panel

shows the temperature dependence of the local magnetic field at the proton site, which is
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essentially a measure of the full width of the NMR absorption spectra. It is important

to note that the proton NMR results are dominated by the SDW signal, which is largely

unaffected by the emergence of the superconducting state. Lee et al. [70] hence argued that

the SDW and SC regions are macroscopically separated, and each SDW and SC domain is

larger than its respective correlation length. By performing an angular magneto-resistance

oscillation (AMRO) study, they also concluded that there are multiply connected SDW and

SC domains, which are larger than several microns in linear dimension, and thus comparable

to the mean free path of the uniform metallic phase.

Through different methods and approaches, the experiments by Vuletić et al. [68], Ko-

rnilov et al. [69] and Lee et al. [70] suggest a similar scenario of coexisting SDW/SC and

SDW/Metal states on the P–T diagram. These authors concluded that the coexistence

region consists of macroscopically segregated regions of SDW and M(SC), where there may

be little or no effect of one ordered phase on another, due to their spatial separation. In

order to explain this coexistence region, Vuletić et al. [68] proposed a free energy that in-

cluded contributions from the ordered phases and elastic energy. Moreover, Podolsky et

al. [71, 185] found similar coexistence for non-unitary TSC order within a modified SO(4)

theoretical treatment, as do Zhang and Sá de Melo [72] within a variational free energy

approach which includes negative interface energies. However, these previous theories are

not directly applicable to three-dimensional but highly anisotropic superconductors like

the Bechgaard salts, where the SO(4) symmetry is absent, and negative interface energies

are not necessary conditions for the coexistence. Next, I will discuss the coexistence of

SDW and TSC in (TMTSF)2PF6, starting from the highly anisotropic but nevertheless

three-dimensional Hamiltonian.

3.3 The Microscopic Hamiltonian

As discussed in Section 3.1.1, the compound (TMTSF)2PF6 can be described approximately

by an orthorhombic lattice with dispersion relation (3.1)

εk = −tx cos(kxa) − ty cos(kyb) − tz cos(kzc),
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where transfer integrals tx, ty, and tz satisfy the relations tx � ty � tz > 0 representing

the quasi-one-dimensionality. The minimal Hamiltonian which can describe the instability

towards triplet superconducting and SDW state can be written as H = H0 + Hint, where

the non-interacting part is

H0 =
∑
k,α

(εk − µ)c†k,αck,α, (3.4)

with µ is the chemical potential and ξk = εk − µ is the dispersion shifted by the chemical

potential, which may include a Hartree shift. The interacting term is

Hint =
1
2

∑
kk′p

∑
αβγδ

Vαβγδ(k,k′)c†k+p/2,αc
†
−k+p/2,βck′+p/2,γc−k′+p/2,δ

+
1
2

∑
kk′q

∑
αβγδ

Jαβγδ(q)c†k−q/2,αck+q/2,βc
†
k′−q/2,γck′+q/2,δ, (3.5)

where the first and second terms describe interactions that favor triplet superconductivity

and antiferromagnetism, respectively. These interactions allow for the possibility of com-

petition or coexistence of TSC and SDW instabilities at low temperatures. Here, c†k,α and

ck,α represent creation and annihilation operators with spin α and linear momentum k,

respectively.

As shown in Eqs. (2.38) and (2.39), the TSC channel interaction Vαβγδ(k,k′) in the

weak spin-orbit coupling limit can be represented by

Vαβγδ(k,k′) = VΓ(k, k′)φΓ(k̂)φΓ∗(k̂′)vαβ ·
(
v†

)
γδ
, (3.6)

where φΓ(k̂) represents the symmetry function for an irreducible representation Γ of the

orthorhombic D2h group [53, 54], which gives the highest transition temperature. Assuming

that the interaction strength is separable such that VΓ(k, k′) = −VΓλ(k)λ(k′), the first term

in Hint can be written as

HTSC
int =

1
2

∑
kk′p

∑
αβγδ

VΓd
†
αβ(k,p) · dγδ(k′,p), (3.7)

where the vector operator d is defined as follows:

dαβ(k,p) ≡ φΓ(k)c†k+p/2,α (v)αβ c
†
−k+p/2,β, (3.8a)

d†
γδ(k

′,p) ≡ φΓ∗(k′)ck′+p/2,γ

(
v†

)
γδ
c−k′+p/2,δ. (3.8b)
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Here, the symmetry functions are redefined by φΓ(k) = λ(k)φΓ(k̂).

Notice that this TSC channel interaction is a generalization of the interaction Hamil-

tonian Eq. (2.34) discussed in Section 2.3.1, where the momentum summation over p is

absent. By adding the degree of freedom p in the generalized Hamiltonian above, pairing

processes between two fermions with arbitrary momenta are allowed, while in Section 2.3.1

only paring between fermions with opposite momenta were considered.

The second term in Eq. (3.5) describes the interaction which leads the spin density wave

instability. This interaction potential Jαβγδ(q) ≡ J(q)σαβ · σγδ represents the exchange

energy which arises from antisymmetrized wave functions. In order to see that, I consider

here two electrons interacting with each other and a fixed positive point charge Ze. The

two-electron Hamiltonian is

H2 = H0(r1) + H0(r2) +
e2

|r1 − r2|
, (3.9)

where H0(r) = p2/(2m)−Ze2/|R− r| is the single electron Hamiltonian. Here, I implicitly

assume that the spin-orbit coupling is negligible by writing H0(r) as a function indepen-

dent of the electron spin s. Furthermore, I assume that the electron-electron interaction

is smaller than the ground state energy of H0, so that it may be treated by perturbation

theory. The fact that the Hamiltonian without the electron-electron interaction is separable

suggests the usage of product wave functions as the basis for computing the matrix elements

of the interaction. Thus, if electron 1 is in an orbital state n with spin up and electron 2 is

in an orbital state m, also with spin up, we may try ψn(r1)η1(s1)ψm(r2)η1(s2), where ψn(r)

is the orbital function and η1 is the spin-up spinor. However, the Pauli exclusion principle

requires that the wave functions be antisymmetric with respect to particle interchanges.

This condition may be satisfied by writing the wave function as a normalized Slater deter-

minant. If the single-electron wave functions are orthogonal, the appropriate determinantal

wave function is

1√
2

∣∣∣∣∣∣∣
ψn(r1)η1(s1) ψn(r2)η1(s2)

ψm(r1)η1(s1) ψm(r2)η1(s2)

∣∣∣∣∣∣∣ . (3.10)

Since there are an infinite number of orbital states, one can construct an infinite number

of such Slater determinants. The general wave function is a linear combination of such
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determinants. However, if the electron-electron interaction is small, one may neglect this

admixture of other orbital states, and assume that electron 1 has a low-lying non-degenerate

orbital state ψa with energy Ea and electron 2 has a similar low-lying non-degenerate orbital

state ψb with energy Eb. If both spin functions are up, the determinantal wave function

becomes,

Ψ1 =
1√
2

∣∣∣∣∣∣∣
ψa(r1)η1(s1) ψa(r2)η1(s2)

ψb(r1)η1(s1) ψb(r2)η1(s2)

∣∣∣∣∣∣∣ . (3.11)

If the spin function associated with orbital a is down, then

Ψ2 =
1√
2

∣∣∣∣∣∣∣
ψa(r1)η−1(s1) ψa(r2)η−1(s2)

ψb(r1)η1(s1) ψb(r2)η1(s2)

∣∣∣∣∣∣∣ , (3.12)

where η−1 is the spin-down spinor. There are two additional possible spin configurations

which lead to wave functions Ψ3 and Ψ4. These four functions form a complete orthonormal

set and therefore constitute an appropriate basis with which to evaluate the matrix elements

of H2. The result is

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ea + Eb +Kab − Jab 0 0 0

0 Ea + Eb +Kab −Jab 0

0 −Jab Ea + Eb +Kab 0

0 0 0 Ea + Eb +Kab − Jab

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.13)

where

Kab =
∫ ∫

dr1dr2
e2

|r1 − r2|
|ψa(r1)|2|ψb(r2)|2 (3.14)

and

Jab =
∫ ∫

dr1dr2ψ
∗
a(r1)ψ∗

b (r1)
e2

|r1 − r2|
ψb(r1)ψa(r2). (3.15)

Diagonalizing this matrix gives a singlet state with energy

Es = Ea + Eb +Kab + Jab (3.16)

and triplet states with energy

Et = Ea + Eb +Kab − Jab, (3.17)
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which are three-fold degenerate. Since Jab is the self-energy of the charge distribution

eψ∗
a(r)ψb(r), it is positive definite. Therefore the triplet always has a lower energy than the

singlet. This is just the origin of Hund’s rule, which says that the ground state of an atom

has maximum multiplicity.

The eigenvalues (3.16) and (3.17) can be obtained with a basis consisting only of products

of spin functions if an exchange interaction were added to the Hamiltonian. To obtain the

form of this effective interaction term one may notice that just as any 2 × 2 matrix can

be expressed as a linear combination of Pauli matrices plus the unit matrix, any 4 × 4

matrix can be written as a quadratic function of direct products of Pauli matrices[186]. For

example, if

σ1x =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠ and σ2x =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠ ,

then

σ1x ⊗ σ2x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.18)

Therefore, by defining the dot product σ1 · σ2 ≡
∑

i=x,y,z σ1i ⊗ σ2i, we obtain

σ1 · σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.19)

Therefore, the Hamiltonian which will produce in a spinor basis the same eigenvalues as

Eq. (3.9) evaluated in a fully antisymmetrized basis is

H2 =
1
4
(Es + Et) −

1
4
(Es − Et)σ1 · σ2 = const.− J

4
σ1 · σ2. (3.20)

Thus the exchange interaction may be expressed as a spin–spin interaction. As discussed

above, the exchange parameter J = Es−Et is positive definite for this two-electron problem,

hence favors electrons in the triplet state. Thus, we say that the interaction is ferromagnetic.
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However, in general cases of many electron systems, the sign of J can be negative and we

say that the interaction is antiferromagnetic.

In obtaining the exchange interaction Eq. (3.20) two important assumptions were made.

First, only a certain subset of non-degenerate orbital states were considered. However, the

Coulomb interaction may couple different orbital states. Second, it was assumed that

the orbital functions were orthogonal, since the electronic wave functions have a common

origin (the position of the ion) in the two-electron problem discussed above. However,

if one considers electrons centered at different sites the problem becomes very complex,

leading to an apparent divergence in the integrals (3.14) and (3.15). This “nonorthogonality

catastrophe” is a purely mathematical difficulty, and it can be shown [187] that even for large

systems the energies and eigenstates are given by the exchange interaction with exchange

constants having the same values as for the two-electron system.

One approach to the problem of exchange among many electrons is to give up the well-

defined but nonorthogonal functions ψn(r) and work with functions which are orthogonal.

As an example, one can consider the Wannier functions Wnα(r − Ri) resembling the n-th

atomic orbital with spin α near the i-th lattice site, which falls off throughout the crystal

in such a way that it is orthogonal to similar functions centered at other sites. Using this

set of functions as a basis, it can be shown [188] that the Coulomb interaction between the

valence electrons on different ions can be expressed as an effective interaction between the

individual electron spins,

HSDW
int =

1
2

∑
i�=j

JijSi · Sj, (3.21)

where Si is the spin of electron at the ith site. This exchange interaction is often larger in

comparison to other interactions which may lead to SDW instabilities, such as the magnetic

dipole-dipole interaction, hence it can be considered alone to describe the main magnetic

interaction features.

For the quasi-1D organic conductor (TMTSF)2PF6, the coefficient Jij must be positive

in order to describe the antiferromagnetic state at low temperatures. By noticing that the

spin operator Si can be written in the second quantization form as c†i,ασαβci,β, and by
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Fourier transforming into the momentum space, one obtains

HSDW
int =

1
2

∑
kk′q

∑
αβγδ

J(q)σαβ · σγδc
†
k−q/2,αck+q/2,βc

†
k′−q/2,γck′+q/2,δ, (3.22)

which gives the second term of the Eq. (3.25). Here, I have assumed that the interaction

coefficient Jij in Eq. (3.21) is homogeneous. By defining the momentum space operators

s†αβ(k,q) ≡ c†k−q/2,ασαβck+q/2,β,

sγδ(k,q) ≡ c†k+q/2,γσγδck−q/2,δ, (3.23)

the SDW channel interaction can be written as

HSDW
int =

1
2

∑
kk′q

∑
αβγδ

J(q)s†αβ(k,q) · sγδ(k,−q). (3.24)

By adding the two parts of the interaction potential Eqs. (3.7) and (3.24), the interaction

Hamiltonian (3.5) can be written as

Hint = HTSC
int + HSDW

int

=
1
2

∑
kk′p

∑
αβγδ

VΓ(k, k′)d†
αβ(k,p) · dγδ(k′,p)

+
1
2

∑
kk′q

∑
αβγδ

J(q)s†αβ(k,q) · sγδ(k,−q). (3.25)

Next, I will develop an effective field theory for this many-body Hamiltonian, and derive

the Ginzburg–Landau (GL) functional around the critical point. I will show that the coef-

ficients of quartic terms in the GL functional are crucial to determine the phase diagram

around the critical point.

3.4 Ginzburg–Landau Theory

By using the functional integral formalism discussed in Chapter 2, the grand partition

function of this Hamiltonian can be written as

Z =
∫

BC
D[D†(p),D(p)]D[N†(q),N(q)]e−Seff [D†,D,N†,N]. (3.26)

The effective action Seff can be expanded in a power series of fields D and N around the

critical point where both D and N are small, hence defining the GL functional for two
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D(p) D†(p)

GB = β/VΓ

(a)

D(p) D†(p)

ωn,−k + p/2, α

−ωn,k + p/2, β

(b)

Figure 3.9: Feynman diagrams corresponding to the TSC quadratic terms of the effective
action Seff . Here, the wavy lines represent the TSC field D, the double line represent the
TSC bare bosonic field propagator β/VΓ, and the single lines represent bare Green’s function
of electrons.

different orders. Each term of the effective action can be obtained by integrating out the

fermions using the Gaussian integration formula, or by directly drawing the corresponding

Feynman diagrams.

The quadratic terms of the expansion correspond to Feynman diagrams which contain

two external legs of bosonic fields D and N. The diagrams with two external D fields given

in Fig. 3.9 are similar to the diagrams in Fig. 2.1 discussed in Chapter 2. However, notice

that the present diagrams are more general than the ones in Fig. 2.1 since the bosonic field

D(p) is momentum dependent, indicating that the superconducting order parameter can

be inhomogeneous in the present theory.

Using the Feynman rules listed in Chapter 2, the quadratic contribution of the TSC

order parameter to the effective action can be written as

STSC
2 =

∑
p

A(p)D†(p) ·D(p). (3.27)

The coefficient A(p) takes the form

A(p) =
β

2VΓ
+

∑
k,ωn

|φΓ(k)|2
(iωn + ξ−k+p/2)(iωn − ξk+p/2)

. (3.28)

The Matsubara summation
∑

ωn
can be performed using the method discussed in Ap-

pendix B, leading to

A(p) =
β

2VΓ
−

∑
k

β|φΓ(k)|2
2(ξk+q/2 + ξ−k+q/2)

[
tanh

(
βξk+q/2

2

)
+ tanh

(
βξ−k+q/2

2

)]
. (3.29)

In the spirit of the GL theory, we are interested in slowly varying order parameters,
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hence one can expand Eq. (3.29) into powers of p around p = 0:

A(p) = A(0) +
∑

µ,ν=x,y,z

aµνpµpν + · · · , (3.30)

where the coefficients are

A(0) =
β

2VΓ
−

∑
k

β|φΓ(k)|2
2ξk

tanh
(
βξk
2

)
, (3.31)

and

aµν =
∑
k

{[
β

16ξ2k
X(k) − β2

32ξk
Y (k)

]
∂2ξk
∂kµ∂kν

+
β3

32ξk

∂ξk
∂kµ

∂ξk
∂kν

X(k)Y (k)
} ∣∣φΓ(k)

∣∣2 .
(3.32)

Here, X(k) ≡ tanh(βξk/2) and Y (k) ≡ sech2(βξk/2). In order to derive the equation

above, the property that the dispersion relation (3.1) is an even function with respect to

k is used, i.e., ξ−k+p/2 = ξk−p/2. Notice that ∂ξk/∂kµ = tµaµ sin(kµaµ) where aµ is the

lattice spacing along the µ direction and that the second derivative ∂2ξk/∂kµ∂kν = 0 for

µ �= ν.∗ Furthermore, consider ∂ξk/∂kµ is an odd function with respect to kµ, and the

functions X(k) and Y (k) are only functions of ξk, hence are both even functions as well as

|φΓ(k)|2, the last term in Eq. (3.32) must vanish after summation over k for µ �= ν. As a

consequence, the coefficient aµν = aµµδµν is diagonal and

A(p) = A(0) +
∑

µ=x,y,z

aµµp
2
µ + · · · . (3.33)

As I will discuss later, the coefficient aµµ is related to the coherence length of the super-

conducting order parameter along the µ direction. At the saddle point level, the TSC

contribution to the effective action is dominated by the zero center-of-mass momentum

component D0 ≡ D(p = 0). Thus, the TSC quadratic term can be approximated by

STSC
2 ≈ A(0)|D0|2. (3.34)

In addition to the TSC term, the SDW also contributes to the effective action in the

quadratic order. Unlike the TSC diagrams of Fig. 3.9, the Feynman diagrams corresponding

to the the SDW contribution are shown in Fig. 3.10. In order to obtain the algebraic

∗Here, µ is a direction index (µ = x, y, z), but not the chemical potential.
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N(q) N†(q)

GB = β/J(q)

(a)

N(q) N†(q)

ωn,k − p/2, α

ωn,k + p/2, β

(b)

Figure 3.10: Feynman diagrams corresponding to the SDW quadratic terms of the effective
action Seff . Here, the double wavy lines represent the SDW field N, the double dashed lines
represent the SDW bare bosonic field propagator β/J(q), and the single lines represent bare
Green’s function of electrons.

representation of the SDW contribution to the effective action, it is necessary to add the

additional Feynman rules listed as follows:

6. For each initial SDW bosonic field line connected to a vertex, write a factor N(q)·σαβ ,

while for each final SDW bosonic field line connected to a vertex, write the Hermitian

conjugate N†(q) · (σ)αβ;

7. The linear momentum associated with the SDW bosonic line and the two fermionic

lines meeting at each vertex satisfy energy–momentum conservation. For each closed loop,

carry out the integration
∫
dk for each internal momentum k and carry out the summation∑

ωn
for each internal frequency ωn.

Therefore, the quadratic contribution of SDW order parameter to the effective action

can be written as

SSDW
2 =

∑
q

B(q)N(−q) · N(q), (3.35)

where

B(q) =
β

2J(q)
+

∑
k,ωn

1
(iωn + ξk−q/2)(iωn + ξk+q/2)

. (3.36)

By performing the Matsubara summation, the coefficient takes the form

B(q) =
β

2J(q)
−

∑
k

β

2(ξk+q/2 − ξk−q/2)

[
tanh

(
βξk+q/2

2

)
− tanh

(
βξk−q/2

2

)]
. (3.37)

The saddle point solution for the modulation of the spin density wave in (TMTSF)2PF6

is directly related to the nesting vector of the quasi-1D Fermi surfaces. In a completely one-

dimensional electron system, the SDW phase is present with the modulation wave vector
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Q0 = 2kF due to optimal nesting [189]. Here, kF is the Fermi vector. For quasi-1D systems

with electronic dispersion

ε(k) = −tx cos(kxa) − ty cos(kyb) − tz cos(kzc) (3.38)

with tx � ty � tz > 0, the Fermi surface is open in the ky and kz directions and is given

by

kx ≈ ±
[
kF +

(
ty

txa sin(kFa)

)
cos(kyb) +

(
tz

txa sin(kF a)

)
cos(kzc)

−
t2y cos(kFa)

4t2xa sin3(kF a)
cos(2kyb) −

t2z cos(kFa)
4t2xa sin3(kF a)

cos(2kzc)
]
, (3.39)

where kF = π/(2a) is the one-dimensional Fermi wave vector for half-filling systems. If one

neglects the second harmonic terms in the equation above, the Fermi surface is sinusoidal like

the continuous curves of Fig. 3.11. Then, the left part of the Fermi surface with kx ≈ −kF

completely nests with the right part with kx ≈ kF when the former is moved by

Qi =
(
2kF ,±

π

b
,±π

c

)
. (3.40)

The wave vectors Qi are called optimal or perfect nesting vectors and lead to a divergence

of the spin susceptibility when B(Qi) changes sign, thus producing SDW ordering with the

same wave vector.

Therefore, the SDW order parameter N(q) is dominated by the Fourier components

N(Qi) with Qi = (±Qa,±Qb,±Qc). In such a case, the coefficients B(Qi) are identical

for all Qi’s, since both the lattice dispersion and the antiferromagnetic interaction J(q)

are invariant under reflections and inversions compatible with the D2h group. As a result,

the spin density modulation N(r) has the same magnitude for all wave vectors Qi. Given

that N(r) is real, and that we have periodic boundary conditions over the sample, one can

choose a specific reference frame such that N(r) is an even function along all different Qi

directions. This choice of reference frame has the advantage to make all N(Qi) real and

identical. Thus, we can define N0 ≡ N(Qi) for all Qi, and the SDW quadratic term is

dominated by

SSDW
2 ≈ n

2
B(Q1)|N0|2, (3.41)
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kx

ky

π/a−π/a

π/b

−π/b

Qi

kF−kF

0

0

Figure 3.11: The left part of quasi-one-dimensional Fermi surfaces perfectly nests with the
right part when the former is shifted by the nesting vector Qi.

where n is the number of distinct nesting vectors, and Q1 = (Qa, Qb, Qc) is chosen for

definiteness.

Notice that the two order parameters D(p) and N(q) do not couple to quadratic order,

because TSC and SDW are instabilities in the particle-particle and particle-hole channels,

respectively. This conclusion can be reached using the language of Feynman diagram. Under

the Feynman rules defined before, a TSC field line entering (leaving) a vertex is connected

to two outgoing (incoming) electron lines, but a SDW field line is connected to one incoming

and one outcoming electron lines. Therefore, it is topologically forbidden to draw a diagram

with only one external TSC field line and one external SDW field line, since conservation

laws are not obeyed.

In addition, notice that the effective action is independent of the directions of TSC

and SDW order parameter vectors, which means that the theory is completely isotropic so

far. However, it is well known that the SDW order parameter N is weakly anisotropic for

(TMTSF)2PF6, having an easy axis along the crystallographic b′ axis [190]. This small

anisotropy due to spin-orbit coupling is ignored here since it is not crucial for the phase

diagram of TSC and SDW orders at zero magnetic field. This anisotropy will be taken into
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(a)

D0

D†
0N(Qi)

N†(Qi)

ω,k, α

−ω,−k, β

ω,k + Qi, δ

−ω,−k− Qi, γ

(b)

D0

D†
0 N(Qi)

N†(Qi)

ω,k, α

−ω,−k, β

−ω,−k, δ

−ω,−k− Qi, γ

Figure 3.12: Feynman diagrams corresponding to the TSC and SDW coupling term SC
4 in

Eq. (3.42).

account later when discussing the effects of a magnetic field in Section 3.6.

Although the order parameters for TSC and SDW do not couple to quadratic order, the

coupling between D and N in fourth order is given by

SC
4 = (C1 + C2/2)|D0|2|N0|2 − C2|D0 ·N0|2, (3.42)

where coefficients C1 and C2 can be obtained from the corresponding diagrams shown in

Fig. 3.12. Using the Feynman rules discussed above, the diagram Fig. 3.12(a) gives

SC
4,a = −1

2
· 1
2

∑
Qi

∑
k,ωn

φΓ(−k)φΓ∗(k + Q̂i)
(iωn + ξk)(−iωn + ξ−k)(iωn + ξk+Qi

)(−iωn + ξ−k−Qi
)

×
(
2|D0 · N0|2 − |D0|2|N0|2

)
, (3.43)

where the coupling structure of the two vector order parameters is given by the trace of

the spin matrices. Here, an additional prefactor of 1/2 appears in SC
4,a and in SC

4,b, since
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the summation over Qi double counts the same Feynman diagram with Qi and −Qi. After

performing the Matsubara summation, we obtain

SC
4,a = C2

(
1
2
|D0|2|N0|2 − |D0 ·N0|2

)
, (3.44)

where

C2 =
β

2

∑
Qi

∑
k

φΓ(−k)φΓ∗(k + Qi)
(ξk+Qi

− ξk)2

[
X(k + Qi) +X(k)

ξk+Qi
+ ξk

− X(k + Qi)
2ξk+Qi

− X(k)
2ξk

]
. (3.45)

Similarly, the diagram in Fig. 3.12(b) gives

SC
4,b = C1|D0|2|N0|2

= −1
4

∑
Qi

∑
k,ωn

|φΓ(k)|2|D0|2|N0|2
(iωn + ξk)(−iωn + ξ−k)2(−iωn + ξ−k−Qi

)
, (3.46)

where the coefficient C1 is

C1 = −β
4

∑
Qi

∑
k

|φΓ(k)|2
ξk(ξk+Qi

− ξk)

[
X(k)
ξk

− βY (k)
2

+
X(k + Qi) −X(k)

ξk+Qi
− ξk

− X(k + Qi) +X(k)
ξk+Qi

+ ξk

]
(3.47)

after performing the Matsubara summation.

The second term on Eq. (3.42) can be parameterized as C2 cos2(θ)|D0|2|N0|2, where

cos2 θ ≡ |D0 ·N0|2
|D0|2|N0|2

≤ 1 (3.48)

is independent of |D0| and |N0|. Since I consider only unitary states for TSC, its global

phase can be eliminated in SC
4 , and θ can be regarded as the angle between D0 and N0.

The coefficient C2 for (TMTSF)2PF6 is positive, indicating that D0 and N0 are not free to

rotate independently, but tend to be aligned (θ = 0) or anti-aligned (θ = π).

Additional fourth order terms are

STSC
4 = D1|D0|4; (3.49a)

SSDW
4 = D2|N0|4 (3.49b)
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D0

D0

D†
0

D†
0ω,k, α

−ω,−k, β

ω,k, γ

−ω,−k, δ(a)

N(Qj)

N†(Qj)

N(Qi)

N†(Qi)

ω,k + Qi, α

ω,k, β

ω,k + Qi, γ

ω,k + Qi + Qj δ(b)

Figure 3.13: Feynman diagram corresponding to (a) the TSC term STSC
4 and (b) the SDW

term SSDW
4 in Eq. (3.49).
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where coefficients D1 and D2 can be obtained from the diagrams in Fig. 3.13. The diagram

in Fig. 3.13(a) gives

STSC
4 = D1

(
2|D0|4 − |D2

0|2
)

= D1|D0|4

=
1
2

∑
k,ωn

|φΓ(k̂)|4|D0|4
(iωn + ξk)2(−iωn + ξ−k)2

, (3.50)

where the coefficient D1 is

D1 =
β

2

∑
k

|φΓ(k̂)|4
4ξ2k

[
X(k)
ξk

− βY (k)
2

]
. (3.51)

The diagram in Fig. 3.13(b) gives

SSDW
4 = D2

(
2|N0|4 − |N2

0|2
)

= D2|N0|4

=
1
4
· 1
2

∑
Qi,Qj

∑
k,ωn

|N0|4
(iωn + ξk)(iωn + ξk+Qi

)2(iωn + ξk+Qi+Qj
)
, (3.52)

where an additional factor of 1/4 appears since the summations over Qi and Qj count each

identical diagram four times. The coefficient D2 is

D2 =
β

16

∑
Qi,Qj

∑
k

1
(ξk+Qi

− ξk)(ξk+Qi
− ξk+Qi+Qj

)

[
X(k + Qi + Qj) −X(k + Qi)

ξk+Qi+Qj
− ξk+Qi

+
X(k + Qi) −X(k)

ξk+Qi
− ξk

− X(k + Qi + Qj) −X(k)
ξk+Qi+Qj

− ξk
− βY (k + Qi)

2

]
. (3.53)

As a consequence, the saddle point effective action is

Seff = S0 + STSC
2 + SSDW

2 + S4, (3.54)

where S0 is the normal state contribution, and

S4 = D1|D0|4 +D2|N0|4 + C(θ)|D0|2|N0|2 (3.55)

with C(θ) = C1 + C2/2 − C2 cos2 θ. Notice that this effective action depends only on the

magnitudes of TSC and SDW order parameters, and the relative orientation between the

two vectors. Furthermore, after minimizing the action Eq. (3.54) with respect to θ, the

action is only a function of |D0| and |N0|, leading to phase diagrams with either bicritical

or tetracritical points, to be discussed next.
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3.5 Phase Diagram

Minimization of the action Eq. (3.54) with respect to the relative angle θ between TSC and

SDW order parameter vectors leads to

Seff = S0 +A(0)|D0|2 +
n

2
B(Q1)|N0|2 +D1|D0|4 +D2|N0|4 + C(0)|D0|2|N0|2, (3.56)

where C(0) = C1 − C2/2. Notice that this action is only a function of the two scalar

parameters |D0| and |N0|. Thus, the present problem involving two vector order parameters

can be mapped into a system of two scalar order parameters φ1 and φ2 with the effective

action

Sφ1−φ2 =
r

2
(
φ2

1 + φ2
2

)
− g

2
(
φ2

1 − φ2
2

)
+ u1φ

4
1 + u2φ

4
2 + 2u12φ

2
1φ

2
2 (3.57)

through the mapping

|D0| → φ1, |N0| → φ2;

A(0) → (r − g)/2, nB(Q1)/2 → (r + g)/2;

D1 → u1, D2 → u2, and C(0) → 2u12.

(3.58)

If g = 0 and u1 = u2 = u12, the so-called “φ1–φ2” model with action (3.57) reduces

to the xy-model with a two-component vector order parameter φ = (φ1, φ2) and isotropic

interactions. When g > 0, however, one obtains an ordered phase with φ1 �= 0 and φ2 = 0.

When g < 0, the converse occurs with φ1 = 0 and φ2 �= 0. The details of the phase

diagram for Eq. (3.57) depend on the relative magnitudes of the fourth-order terms. When

u1u2 < u2
12, there is a first-order line along g1 = 0, r < 0 separating the phase with

φ1 �= 0 and φ2 = 0 from the phase with φ1 = 0 and φ2 �= 0, as shown in Fig. 3.14(a).

Two distinct second-order lines meet at the point r = 0, g = 0, and this point is called a

bicritical point [191]. When u1u2 > u2
12, there is an intermediate phase, with both φ1 and

φ2 nonzero, separated by a second-order line from the phases with φ1 = 0 and φ2 = 0, as

shown in Fig. 3.14(b). In this case, four second-order lines meet at the point r = 0, g = 0,

which is now a tetracritical point [191].

In the case of quasi-1D systems with competing TSC and SDW orders, the phase dia-

gram that emerges from the action (3.56) leads to either bicritical or tetracritical points as
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Figure 3.14: Phase diagrams from the φ1–φ2 model described by Eq. (3.57) showing (a) a
bicritical point (BP) when u1u2 < u2

12 and (b) a tetracritical point (TP) when u1u2 > u2
12.

illustrated in Fig. 3.15. When R = C2(0)/(4D1D2) > 1 the critical point (Pc, Tc) is bicrit-

ical and there is a first order transition line at (n/2)B(Q1) = A(0) when both B(Q1) < 0

and A(0) < 0, as seen in Fig. 3.15(a). However when R < 1, (Pc, Tc) is tetracritical and

a coexistence region of TSC and SDW occurs when both B(Q1) < 0 and A(0) < 0, as

shown in Fig. 3.15(b). The pressure versus temperature phase diagrams in Fig. 3.15 are

obtained by assigning the standard linear temperature and pressure dependence on the GL

coefficients around the critical point,

A(0) = αTSC[T − TTSC(P )], with TTSC(P ) = Tc + βTSC(P − Pc); (3.59a)

B(Q1) = αSDW[T − TSDW(P )], with TSDW = Tc + βSDW(Pc − P ). (3.59b)

Here, the GL prefactors αTSC and αSDW, and the pressure coefficients βTSC and βSDW are

all positive.

The ratio R ≈ 0.12 for the Bechgaard salt (TMTSF)2PF6 around (Pc, Tc), when the

interaction strengths V , J are chosen to give the same Tc = 1.2 K at quarter filling for

parameters tx = 5800 K, ty = 1226 K, tz = 58 K, used in combination with φΓ(k) =

sin(kxa) (px-symmetry for TSC) and the nesting vectors Q = (±π/2a,±π/2b, 0) (n = 4),

as suggested by experiments [165, 192, 193]. Therefore, the analysis above shows that

(TMTSF)2PF6 has a TSC/SDW coexistence region as suggested by experiments [68, 69, 70].

To investigate the TSC/SDW coexistence region the effective action (3.54) is Fourier
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Figure 3.15: Schematic phase diagrams indicating (a) first order transition line with no
coexistence phase, and (b) two second order lines with coexistence region between TSC and
SDW phases. Adapted from Ref. [73].

transformed into real space to give the GL free energy density

F = Fn + FTSC + FSDW + FC, (3.60)

where Fn is the normal state contribution, and FC = C(θ)|N(r)|2|D(r)|2 is the coupling

term of the two order parameters. The TSC and SDW contributions are

FTSC = A(0)|D(r)|2 +D1|D(r)|4 +
∑
µ

γµ
TSC

∂D(r)†

∂rµ
· ∂D(r)
∂rµ

, (3.61)

FSDW =
∫
dr′

[
B(r, r′)N(r) · N(r′)

]
+
D2

n2
|N(r)|4, (3.62)

where γµ
TSC is equal to aµµ defined in Eq. (3.32), and the integration kernel B(r, r′) is the

Fourier transform of B(q) in Eq. (3.37). For the Bechgaard salt parameters, the prefactor

C(0) of the coupling term FC is positive, hence represents a local repulsive interaction

between the TSC and SDW order parameters. As a consequence, the TSC order parameter

is non-uniform in the TSC/SDW coexistence region, and has a modulation induced by the

SDW order parameter. Since R 	 1 for (TMTSF)2PF6, the coupling term FC is small in
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comparison with the other fourth order terms, and a perturbative solution is possible for

|D(r)| and |N(r)|.

At assumed zero TSC/SDW coupling FC = 0, the saddle point modulation for the SDW

order parameter is N(r) = nN0 cos(Q1 ·r), with |N0| = [−nB(Q1)/3D2]1/2, while the saddle

point magnitude for the TSC order parameter is |D(r)| = |D0| = [−A(0)/2D1]1/2. Including

the coupling FC the new solution for the magnitude of TSC order parameter is

|D(r)| − |D0| = −|N0|2
|D0|

(
6D2R

D1

)1/2
[

cos(2Qax)
4 + 8ξ2xQ2

a

+
cos(2Qby)
4 + 8ξ2yQ2

b

+
cos(2Qax) cos(2Qby)
4 + 8ξ2xQ2

a + 8ξ2yQ2
b

+
1
4

]
, (3.63)

which shows explicitly 2Qa and 2Qb modulations along the a and b′ axes, respectively.

Here, ξµ = [|γµ
TSC/A(0)|]1/2 represents the TSC coherence length along the µ direction.

Notice that the modulation in |D(r)| disappears as the SDW order goes away |N0| → 0.

The qualitative behavior of |D(r)| is shown in Fig. 3.16(a). Since the wave vector of spin

density modulation is unaffected to first order, the solution for the magnitude of SDW order

parameter to the first order correction is

|N(r)| =
∑
Qi

[
1 −

(
D1R

6D2

)1/2 |D0|2
4|N0|2

]
|N0| cos(Qi · r), (3.64)

which is shown in Fig. 3.16(b). Notice that the maxima of |D(r)| coincide with the minima

of |N(r)| indicating that the two orders try to be locally excluded. Since the TSC and SDW

modulations are out of phase, experiments that are sensitive to the spatial distribution of

the spin density or Cooper pair charge density may reveal the coexistence of these inhomo-

geneous phases. In addition, since the TSC and SDW order parameters respond differently

to a magnetic field, it is instructive to investigate the effects of a magnetic field on the

TSC/SDW coexistence region, which is discussed next.

3.6 Magnetic Field Effect

A uniform magnetic field H couples with electrons in both the charge and the spin channels.

The coupling to the charge channel can be described by the Peierl’s substitution k → k−|e|A
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Figure 3.16: Magnitude of (a) TSC and (b) SDW order parameters in the x-y plane, within
the coexistence region. Adapted from Ref. [73].

in the dispersion relation Eq. (3.1) to give

εk−eA = −tx cos [(kx − eAx)a] − ty cos [(ky − eAy)b] − tz cos [(kz − eAz)c] , (3.65)

where −e < 0 is the electron charge, and A is the vector potential such that H = ∇× A.

The magnetic field couples with the electron spin via the paramagnetic term

HP = −µ0H ·
∑
k,αβ

c†kασαβckβ, (3.66)

where µ0 is the effective magnetic moment of electrons.

Upon integrating out the fermions, the corresponding effective action in the presence of

a magnetic field becomes

Seff(H) = S0(H) + STSC
2 (H) + SSDW

2 (H) + S4(H), (3.67)

where

S0(H) = S0 +
|H|2
8π

− 1
2
χn|H|2 (3.68)

with χn is the uniform electronic spin susceptibility of the normal state. The quadratic

terms STSC
2 (H) and SSDW

2 (H) are obtained from STSC
2 and SSDW

2 by the Peierls substitution,

respectively. The quartic term S4(H) is

S4(H) = S0
4(H) + δSTSC

4 (H) + δSSDW
4 (H), (3.69)
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Figure 3.17: Feynman diagrams corresponding to the interacting term δSTSC
4 between a

magnetic field and the TSC order parameter in Eq. (3.69). Here, dashed lines represent
external magnetic field.

where S0
4(H) is obtained from S4 in Eq. (3.55) by Peierls substitution, and δSTSC

4 (H)

and δSSDW
4 (H) represent the magnetic field interaction with the TSC and SDW orders,

respectively.

In order to calculate δSTSC
4 (H) and δSSDW

4 (H), one can also use the diagrammatic

technique. For example, the TSC and magnetic field coupling term can be obtained from

the diagrams shown in Fig. 3.17, via the following Feynman rules for the magnetic field

lines:

8. For each initial magnetic field line connected to a vertex, write a factor −µ0H ·σαβ ,

while for each final magnetic field line connected to a vertex, write the Hermitian conjugate

−µ0H · (σ†)αβ ;

Using these new Feynman rules and others discussed previously, the δSTSC
4 (H) can be

written as

δSTSC
4 (H) = (E1 + E2/2)|H|2|D0|2 − E2|H · D0|2, (3.70)

where

E1 = −1
2

∑
k,ωn

µ2
0|φΓ(k̂)|2

(iωn + ξk)3(−iωn + ξ−k)
, (3.71a)

E2 = −
∑
k,ωn

µ2
0|φΓ(k̂)|2

(iωn + ξk)2(−iωn + ξ−k)2
(3.71b)
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Figure 3.18: Feynman diagrams corresponding to the interacting term δSSDW
4 between a

magnetic field and the SDW order parameter in Eq. (3.69). Here, dashed lines represent
external magnetic field.

are obtained from Figs. 3.17(a) and (b), respectively. By performing the Matsubara sum-

mations, we have the following results for the coefficients

E1 = −β
2

∑
k

µ2
0|φΓ(k̂)|2

8ξk

[
X(k)
ξ2k

− βY (k)
2ξk

− β2X(k)Y (k)
2

]
; (3.72a)

E2 = −β
∑
k

µ2
0|φΓ(k̂)|2

4ξ2k

[
X(k)
ξk

− βY (k)
2

]
. (3.72b)

Similarly, the SDW and magnetic field coupling term can be obtained from the diagrams

shown in Fig. 3.18, leading to

δSSDW
4 (H) = (F1 + F2/2)|H|2|N0|2 − F2|H · N0|2, (3.73)

with coefficients

F1 =
1
4

∑
Qi

∑
k,ωn

µ2
0

(iωn + ξk)3(iωn + ξk+Qi
)
; (3.74a)

F2 = −1
2

∑
Qi

∑
k,ωn

µ2
0

(iωn + ξk)2(iωn + ξk+Qi
)2
. (3.74b)

By performing the Matsubara summations,

F1 =
β

4

∑
Qi

∑
k

µ2
0

ξk − ξk+Qi

[
X(k + Qi) −X(k)

2(ξk+Qi
− ξk)2

+
βY (k)

4(ξk − ξk+Qi
)

+
β2X(k)Y (k)

8

]
; (3.75a)

F2 = −β
2

∑
Qi

∑
k

µ2
0

(ξk+Qi
− ξk)2

[
X(k + Qi) −X(k)

ξk+Qi
− ξk

−βY (k)
4

− βY (k + Qi)
4

]
. (3.75b)
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A numerical calculation using the same parameters used in Section 3.5 for the Bechgaard

salt (TMTSF)2PF6 shows that the coefficients E2 < 0 and F2 < 0, indicating that the TSC

and SDW order parameters D and N prefer to be perpendicular to the magnetic field H.

These conditions, when combined with C2 > 0 in Eq. (3.42), indicate that D and N prefer

to be parallel to each other, but perpendicular to H. However, the relative orientation of

these vectors in magnetic fields is affected by small spin anisotropies which were already

observed in (TMTSF)2PF6, where the easy axis for N is the b′ direction [190]. Such an

anisotropy effect can be described by adding a quadratic term −uNN
2
b′ with uN > 0, which

favors N ‖ b′. Similarly, the D vector also has an anisotropic effect caused by the spin-orbit

coupling, thus can be described by adding a quadratic term −uDD
2
i , where i is the easy axis

for TSC which is not experimentally known thus far. However, this anisotropy of TSC order

parameter is expected to be small due to the weak spin-orbit coupling effect in Bechgaard

salts [55, 63]. The quartic TSC and SDW terms may also become weakly anisotropic when

these effects are taken into account.

However, a sufficiently large H ‖ b′ can overcome spin anisotropy effects, and drive

the N vector to flop into the a-c∗ plane. This canting (flop) transition of the SDW vector

was reported [190] in (TMTSF)2PF6 for H ≈ 1 T at zero pressure and T = 8 K. If

such a spin-flop transition persists near the TSC/SDW critical point (Pc, Tc), then the flop

transition of the N vector forces the D vector to flop as well, since the pinning effect of TSC

order parameter caused by spin-orbit coupling is weak. This flop transition of TSC order

parameter can dramatically change the magnetic field versus temperature phase diagram,

and has potentially serious consequences to the superconducting state.

For P < Pc, if a flop transition occurs for HF < H1(0) [see Fig. 3.19(a)], then N

flops both in the pure SDW and in the TSC/SDW coexistence phases, in which case it

forces D vector to flop as well. If the flop transition occurs for HSDW(0) < HF < H1(0)

[see Fig. 3.19(b)] then only the pure SDW phase is affected. The situation is qualitatively

different for P > Pc. In the zero (weak) spin-orbit coupling limit the D vector is free

to rotate in a magnetic field and tends to be perpendicular to H. Thus, for H ‖ b′ and

|H| > H2(T ), the D vector lies in the a-c∗ plane since there is no SDW order. However, at
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Figure 3.19: Schematic H-T phase diagrams showing the TSC/SDW coexistence region
(thick solid line) and canting transition (double line) for (a) HF (0) < H1(0) and (b)
HF (0) > H1(0), where HF (0) and H1(0) are the zero temperature SDW flopping field
and the TSC/SDW coexistence transition field, respectively. In this figure, pressure P is
assumed to be smaller than the critical pressure Pc. Adapted from Ref. [73].

lower temperatures and small magnetic fields when TSC and SDW orders coexist, the spin

anisotropy field forces N to be along b′ and N forces D to flop from the a-c∗ plane to b′

direction. This canting transition occurs at HF < H2(T ) (see Fig. 3.20).

This canting transition of the superconducting order parameter can only be present

in systems with triplet superconductivity. In the case of coexistence of SDW and singlet

superconductivity (SSC), there would be no vector coupling between SDW and SSC, and

thus the canting transition of the SDW has no effect on the SSC order parameter.

3.7 Summary

In summary, I discussed in this chapter the interplay between triplet superconductivity

and spin density wave orders in quasi-one-dimensional organic conductor (TMTSF)2PF6.

Starting from a microscopic Hamiltonian which allowed both TSC and SDW instabilities

at low temperatures, I derived the effective action for TSC and SDW order parameters.

The phase diagram that emerged from this effective field theory showed that the TSC and

SDW order parameters can coexist. A detailed calculation using microscopic parameters

compatible with experiments confirmed the possibility of a TSC/SDW coexistence region in

the pressure versus temperature phase diagram of (TMTSF)2PF6. Within the coexistence

region, the TSC order parameter is nonuniform and its modulation is induced by the SDW
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Figure 3.20: Schematic H-T phase diagram showing the TSC/SDW coexistence region
(thick solid line) and canting transition (double line) for P > Pc. Adapted from Ref. [73].

order parameter. The modulations of TSC and SDW order parameters are out of phase

since these orders tend to avoid each other because of their effective repulsive interaction.

It should be emphasized that the effective action in Eq. (3.54) is not SO(4) invariant. In

fact, theories based on SO(4) symmetry [71] cannot be applied to these highly anisotropic

three-dimensional systems, since they are strictly valid only in the one-dimensional limit.

Furthermore, I discussed qualitatively magnetic field effects on the coexistence region.

I proposed that a magnetic field pointing along the b′ direction can induce a canting tran-

sition of the SDW order parameter, and consequently flop the TSC order parameter. This

canting transition of TSC order parameter can dramatically alter the properties of the su-

perconducting phase and the phase diagram of the coexistence region. For instance, new

phases in the magnetic field versus temperature phase diagram were found both below and

above the critical pressure. This anomalous magnetic field effect on the superconducting

phase is directly related to the vector nature of the TSC order parameter, and its coupling

to the SDW order. This phenomena is absent in singlet superconductors (SSC), when SDW

and SSC coexist.

The vector nature of the order parameter for triplet superconductivity is a crucial dis-

tinction from the singlet case, and can cause other interesting properties such as polarization
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effect in a triplet superconductor–insulator–triplet superconductor Josephson junction [63].

If spin-orbit coupling is weak in both superconductors, the Josephson current should depend

on the relative orientation of the two vector order parameters in addition to their relative

U(1) phase. This expectation is related to the Malus’ law of polarization in optics, al-

though the physics is completely different. For triplet superfluidity in trapped Fermi gases,

the vector nature of order parameter also affects the matter-wave interference between two

condensates, and leads to a similar polarization effect. In the next chapter, I will discuss

the matter-wave interference between two triplet Fermi condensates, as well as the time

evolution of a single cloud.
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CHAPTER IV

TIME EVOLUTION AND MATTER-WAVE

INTERFERENCE IN P -WAVE FERMI CONDENSATES

In addition to the quasi-one-dimensional conductors discussed in Chapter 3, ultra-cold Fermi

gases are another kind of system which may produce triplet superfluidity. It is encouraging

that many groups have reported some progress towards the formation of p-wave Fermi con-

densates in harmonically trapped clouds [117, 131, 132, 133] and in optical lattices [134],

where p-wave Feshbach resonances have been observed. Unfortunately, for Feshbach res-

onances currently tried in harmonically trapped clouds atom losses have been significant,

and the realization of stable p-wave condensates has not been achieved yet. However, other

unexplored Feshbach resonances in harmonically trapped clouds may show less dramatic

two-body dipolar or three-body losses as observed in optical lattices [134].

In this chapter, I will discuss the time dynamics and matter-wave interference of p-wave

Fermi condensates on the Bose–Einstein condensation side of the Feshbach resonances. The

dynamics of a harmonically trapped cloud is an important issue since much information on

Bose and Fermi condensates can be obtained experimentally from images of the expanded

atomic cloud [92]. This includes in particular the temperature of the gas (which is ex-

tracted from the tail of the thermal component), the release energy, and the aspect ratio

of the velocity distribution. From the theoretical point of view, the free expansion of a

harmonically trapped cloud, following the switching off of the trap, has been studied for

both Bose [194, 195, 196, 197, 198] and s-wave Fermi [199] condensates. For triplet p-wave

Fermi condensates, I will show that the free expansion of a harmonically trapped cloud

can be anisotropic, reflecting the spatial anisotropy of the underlying interaction between

fermions and the orbital nature of the vector order parameter.

Matter-wave interference is a very powerful tool to study quantum phase coherence

between atomic Bose condensates [200, 201, 202], and spatial quantum noise of bosons
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in optical lattices [203]. Similar techniques can also be applied to study Fermi conden-

sates [78, 80, 104, 81, 124, 82], where superfluidity can be tuned from the weakly interacting

(the so-called BCS) regime to the strongly interacting (the so-called BEC) regime. These

experiments may reveal that the time dynamics in the BCS regime is overdamped (large

Cooper pairs can decay into two atoms), while in the BEC regime it is essentially undamped

(tightly bound molecules are stable) [140, 204]. Matter-wave interference experiments of

s-wave Fermi condensates may be readily performed, since stable condensates already exist.

For s-wave Fermi condensates in the BEC regime quantum interference effects are expected

to be similar to those of atomic Bose condensates, and the interference pattern should de-

pend essentially on the phase difference of the order parameters between two interfering

clouds. For p-wave Fermi condensates, however, I will show that the interference pattern

can also have a strong dependence on the relative angle between the two vector order

parameters, thus producing a polarization effect. Therefore, both properties (anisotropic

expansion and polarization dependent matter-wave interference) are key features of p-wave

Fermi condensates, which are absent in their s-wave counterparts.

4.1 Background

The first experimental realizations of Bose–Einstein condensation of diatomic molecules

in ultra-cold Fermi gases in 2003 stimulated investigations of superfluidity in atomic sys-

tems [78, 79, 80]. These Fermi condensates are not only another type of sample, but are

also systems which allow tuning of the effective inter-atomic interaction. Unlike the pairing

mechanism in superconductors, the attractive potential in atomic systems is provided by the

van der Waals interaction between two atoms, and can be tuned by a magnetic field. The

sensitive magnetic-field dependence of the potential occurs through a scattering resonance

known as the Feshbach resonance [205, 206, 207, 208].

4.1.1 Feshbach Resonance

Calculating the interaction between two ground state alkali atoms is a nontrivial problem

in atomic physics. The study of this problem shows that the s-wave interatomic potential

is repulsive for very small r and has a long weak attractive tail that goes as −C6/r
6 as
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Figure 4.1: (a) Feshbach resonance is present when a bound state in the closed channel is
nearly degenerate with the threshold energy of the open channel. (b) The bound state of
the closed channel responds differently to a magnetic field from the open-channel threshold.
This can lead to a crossing of the two levels, and provide a technique to tune the FR.
Adapted from Ref. [209].

r → ∞, while the p-wave interatomic potential has the similar behavior but is anisotropic.

The interatomic potentials are deep enough to contain a large number of bound states. A

Feshbach resonance (FR) occurs when one of these bound states coincides with the collision

energy (usually called the threshold) of two free atoms in a different scattering channel.

For simplicity, I discuss in this section only the s-wave FR in Fermi systems of identical

fermions.

A schematic depiction of FR is shown in Fig. 4.1(a) [209]. The interatomic potential of

the two free atoms (black line) is often referred to as the open channel, while the potential

containing the bound state (gray line) is referred to as the closed channel. When the

closed and open channels describe atoms in different magnetic sublevels, they respond to a

magnetic field in a difference manner and can be shifted with respect to each other through

the Zeeman effect (as shown in Fig. 4.1(b)b [209]).

Typically the effect of the coupling between the closed and open channels is small,

but at a FR when the open-channel threshold is nearly degenerate with a bound state in

the closed-channel, the effect of the coupling can be significantly enhanced. This coupling

changes the effective interatomic potential from the single-channel form to the so-called

multichannel potential [210]. A new bound state is present in this multichannel potential
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Figure 4.2: Qualitative behavior of the s-wave scattering length as around a FR at magnetic
field B0.

at a value near the magnetic field position of the crossing of the closed-channel bound state

and open-channel threshold. This new bound state is usually called a “dressed molecule”,

in comparison with the “bare molecule” referring the bound state in the closed-channel

away from FR∗. The wavefunction of these molecules is generally a linear superposition of

open-channel and closed-channel wavefunctions. However, I will consider only the broad

resonance limit where the open-channel component dominates. This approximation seems

to be valid for many s-wave and p-wave FRs currently studied.

As the magnetic field is tuned, this multichannel bound state moves through the thresh-

old, and the scattering length between atoms in the open channel diverges. The scattering

length near a FR varies with the magnetic field, B, according to the following relation [209]

a(B) = abg

(
1 − w

B −B0

)
, (4.1)

where abg is the background (nonresonant) scattering length for atoms scattering in the

open channel, B0 is the magnetic field position at which the bound state of the closed

channel goes through the threshold of the open channel, and w is the magnetic field width

of the FR, defined as the distance in magnetic field between B0 and the magnetic field at

which a = 0. The behavior of Eq. (4.1), in particular the divergence of a, is shown in

Fig. 4.2.

In addition to the scattering length a, the binding energy of the dressed molecule Eb

∗In this chapter, the term “molecule” is always used to denote the dressed molecule.
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is also a function of magnetic field. To calculate Eb exactly one would need to carry out

a multichannel calculation using realistic potentials of specific atoms. The main goal is to

solve the coupled Schrodinger equations for the two-channel system [211]

H =

⎛
⎜⎝ −∇2/m+ Voc(r) W (r)

W (r) −∇2/m+ Vcc(r)

⎞
⎟⎠ , (4.2)

where Voc is the uncoupled open-channel potential, Vcc is the uncoupled closed-channel

potential, the potential W describes the coupling between the open and closed channels,

and m is the mass of fermions. These interactions can be related to the scattering parameter

a and the binding energy of the bound state in the closed channel by the continuum energy

wavefunctions, or equivalently, by the T -matrix [212]. The two-channel states are of the

general form |o〉φoc(r) + |c〉φcc(r), where |o〉 and |c〉 denote the internal states of an atom

pair in the open channel and the closed channel strongly coupled to it, respectively. The

two components of the energy states are solutions of the coupled Schrodinger equations[
−∇2

m
+ Voc(r)

]
φoc(r) +W (r)φcc(r) = Eφoc(r), (4.3a)

W (r)φoc(r) +
[
−∇2

m
+ Voc(r)

]
φcc(r) = Eφcc(r). (4.3b)

This problem can be solved using a technique discussed by K. Góral et al. [211]. This

technique uses only a set of five experimentally measurable parameters to produce the

important physics of a FR. The main approximation is the “pole approximation” [211],

which holds when the kinetic energies in the collision are small in comparison to the typical

spacing between bound states in the closed channel, i.e., the open channel is strongly coupled

to only one bound state in the closed channel. Under this assumption, the binding energy

of the new multi-channel bound state can be obtained by solving the coupled equations

(4.3). In the small region of magnetic field strengths on the low-field side of the FR (the

scattering length a � r0 with r0 is the effective range of the van der Waals potential), the

binding energy Eb has the universal form [211]

Eb(B) = − 1
ma2

. (4.4)

The behavior of Eb as a function of B is shown in Fig. 4.3, in comparison with the binding

energy in the closed channel E−1 (dotted line), and the open channel threshold E0 (dashed
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Figure 4.3: The magnetic field dependence of the binding energy Eb of the bound state
of the two-channel Hamiltonian (solid line). The binding energy (E−1) of the bound state
in the closed channel (dotted line) and the threshold E0 of the open channel (dashed line)
for the single-channel Hamiltonian are shown for comparison. Notice that the new bound
state with energy Eb emerges on the low-field side of the FR to avoid the two single-channel
levels crossing. Adapted from Ref. [209].

line). Notice that when sweeping the magnetic field, the states E−1 and E0 cross at the

FR, and the new bound state Eb emerges due to the avoided crossing of the two levels.

In conclusion, I have discussed how a Feshbach resonance can be used to add an addi-

tional bound state to a given interatomic potential, leading to a divergence in the zero-energy

scattering cross section for atoms colliding through the open channel. The binding energy

of the new bound state and the effective interaction strength between two atoms depend

sensitively on the magnetic field. The scattering length as is negative for B > B0 (where

there are no Feshbach molecules). The region is called the BCS side because there are no

two-atom bound state, but there are very “large” many-body Cooper pairs at low temper-

atures [204]. The scattering length as is positive for B < B0 (where there are Feshbach

molecules). This region is called the BEC side because the two-atom bound states corre-

spond to very “small” many-body Cooper pairs at low temperatures and low densities [204].

In this chapter, I will discuss only the BEC side of p-wave FRs in a Fermi system
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4.1.2 Experimental Observations of p-wave Feshbach Resonances

In the previous section, I discussed s-wave collisions between atoms and the correspond-

ing Feshbach resonances. For Fermi systems, s-wave collisions occur between fermions in

different states or different species, because the Pauli exclusion principle forbids s-wave

collision between identical fermions. In contrast, p-wave collisions in Fermi systems with

identical fermions are allowed. Unfortunately, they are suppressed by centrifugal effects as

described in the Wigner threshold law [213, 214], which demands that the elastic scattering

cross section decreases with temperature as σ ∝ T 2. This characteristic behavior ordinarily

suppresses p-wave interactions at ultra-cold temperatures. However, p-wave collisions can

become dominant in the presence of a p-wave Feshbach resonance, which was first measured

by Regal et al. [117] for 40K.

In their experiment, Regal et al. [117] performed a collision measurement in an ultra-

cold Fermi system of 40K atoms in the lowest lying state |9/2,−9/2〉. The scattering cross

sections for p-wave collisions has a peak that rises over 3 orders of magnitude about the small

background cross section. This peak in the cross section thus suggests a divergence of the

scattering parameter† ap at the p-wave FR. In addition, Regal et al. also observed sensitive

dependence of observables on temperature. This dependence arises from a centrifugal barrier

through which the wave function must tunnel to access the resonant state.

Further experiments were performed by the same [131] and other experimental groups [132,

133, 134] in Fermi gases of potassium [131, 134] and lithium [132, 133], and showed two

features of p-wave FRs. The first feature is the splitting of FRs in “spin” (hyperfine state)

space, such that three resonances are observed at different magnetic fields in a mixture of

two “spin” states |1〉 and |2〉. Therefore, it is possible in principle to tune p-wave interac-

tions between fermions in different “spin” states independently. For example, p-wave FRs

for |1〉+ |1〉, |1〉+ |2〉, and |2〉+ |2〉 located respectively at 159.14 G, 185.09 G, and 214.95 G

are observed in 6Li system [133], as shown in Fig. 4.4. The atomic numbers in these plots

were obtained from absorption images taken after quickly switching off the magnetic field

†The scattering parameter for p-wave collision has dimension of L3, hence should be called “scattering
volume” instead of scattering length in the s-wave case.

93



Figure 4.4: p-wave Feshbach resonances for (a) |1〉 + |1〉, (b) |1〉 + |2〉, and (c) |2〉 + |2〉
collisions. The resonances were fitted by Lorentzian functions (dotted lines). Adapted from
Ref. [133].

and the trapping potential. The second feature is a doublet peak arising from the magnetic

dipole-dipole interaction between the atoms’ valence electrons, as shown in Fig. 4.5 [134].

In contrast to the s-wave case, two fermions scattered through the p-wave channel experi-

ence a non-vanishing dipole-dipole interaction in lowest order, which can split the FR into

distinct resonances based on their partial-wave projection onto the quantization axis, i.e.,

the magnetic quantum number m� = 0 or m� = ±1. Therefore, splitting of the p-wave FR

offers a means to tune separately the p-wave interaction in different m� states. A typical

experiment data [134] indicating this splitting is shown in Fig. 4.5. Notice that the splitting

between m� = 0 and |m�| = ±1 can reach 1 G at low temperatures, which is about twice
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Figure 4.5: Atom loss measurements of the p-wave FR for 40K atoms held in a crossed-beam
optical dipole trap. Adapted from Ref. [134].

the width of each FR peak.

The finite separation of p-wave FRs in different “spin” and m� states may allow the

selectively tuning of interactions in specific channels. This possibility is even more dramatic

in comparison to s-wave Fermi condensates, since one may control not only how strongly

the fermions are attracted, but also in which additional channels they interact. Thus, p-

wave Fermi condensates are ideal candidates for investigations of triplet superfluidity. In

the rest part of this chapter, I will focus on the time evolution and matter-wave interference

of p-wave Fermi condensates in the BEC regime, show some of their distinctive properties,

and compare them to the s-wave Fermi condensates.

4.2 Hamiltonian and Effective Action

In order to investigate the dynamics of a p-wave Fermi condensate, I consider a dilute Fermi

gas of fermions with mass m in two hyperfine states (pseudospins), labeled by greek indices

α = 1, 2. The Fermi gas is assumed to be confined in a harmonic trap at low temperatures.

Using natural units with � = kB = 1, the Hamiltonian in the Heisenberg picture is given by

H(t) =
∫
dr

{
c†α(r, t)

[
−∇2

r

2m
+ Uext(r, t)

]
cα(r, t)

+
∫
dr′

[
c†α(r, t)c†β(r′, t)Vαβγδ(r − r′)cγ(r′, t)cδ(r, t)

]}
, (4.5)
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where repeated greek indices indicate summation, c†α and cα are creation and annihilation

operators of fermions in state α, respectively, and Vαβγδ(r−r′) is the interparticle interaction

potential. The harmonic trapping potential can be written as

Uext(r, t) =
∑

j=x,y,z

mωj(t)r2j /2, (4.6)

where ωj(t) describes the time dependence of the potential.

Since one is interested in the dynamics of this Fermi system, the analysis should be dif-

ferent from the previous chapters since the system is not at equilibrium state. In nonequi-

librium many-body theory, the complete description of a system with a time-dependent

Hamiltonian H(t) is given by the many-particle density matrix ρ(t), which satisfies the

Heisenberg equation of motion i∂tρ(t) = [H(t), ρ(t)] with initial condition ρ(t0) = ρ0. The

average value of any operator Ô can be calculated as follows:

〈Ô(t)〉 =
Trρ(t)Ô
Trρ(t)

=
Trρ0Û†(t− t0)ÔÛ(t0, t)

Trρ(t)
, (4.7)

where

Û(t2, t1) ≡ T̂c exp
[
−i

∫ t2

t1

H(t)dt
]

(4.8)

is the evolution operator and T̂c means chronological ordering. Calculation of these averages

can be reformulated in a more compact way by introducing the generating functional [215]

Z(t) = TrÛ†(t, t0) exp [−β(H(t0) − µαNα)] Û(t, t0), (4.9)

where Nα ≡ c†αcα is the number operator for fermions of type α, µα is the corresponding

chemical potential, and β = 1/T . In order to get this expression, it is assumed that the

trapping potential Uext(r, t) is independent of time for t < t0 = 0, such that the initial

condition of ρ(t) corresponds to thermal equilibrium. This assumption is directly related to

experiments where the traps are effectively static before the cloud release. Therefore, the

generating functional at t = t0 can be written as Z(t0) = Tr exp [−β(H(t0) − µαNα)].

By introducing a complex time τ , the generating functional Eq. (4.9) can be written as

Z(t) =
∫

BC
ΠαD[c†α, cα] exp

{
−[S2(c

†
j , cj) + S4(c

†
j , cj)]

}
, (4.10)
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Figure 4.6: Integration contour C used in Eq. (4.11). Adapted from Ref. [204].

where the boundary condition (BC) of the functional integral is cα(r, t0− i/T ) = −cα(r, t0).

The quadratic term is

S2(c
†
j , cj) =

∫
C
dτ

∫
drc†α(r, τ)L̂α(r, τ)cα(r, τ), (4.11)

where the integration contour C is shown in Fig. 4.6 [215], and the one-particle operator

Lα is defined as

L̂α(r, τ) = −i∂τ − ∇2

2m
+ Uext(r, τ) − µα. (4.12)

The second term S4(c
†
j , cj) in the action of Eq. (4.10) corresponds to the contribution of

interaction Hamiltonian in Eq. (4.5).

To derive the effective field theory and calculate the effective action of the system, one

writes the interacting potential with weak spin-orbit coupling in the triplet channel as in

Eq. (2.35),

Vαβγδ(ρ) = −V (ρ)vαβ ·
(
v†

)
γδ
, (4.13)

where the spin matrices (vj)αβ ≡ (iσjσy)αβ and σj are Pauli matrices.

Next, the field B†(r, r′, τ) = c†α(r, τ)vαβc
†
β(r′, τ) is introduced and the corresponding

Hubbard–Stratonovich auxiliary field d(r, r′, τ) is used to integrate out the fermions. The

vector nature of the order parameter d can be understood from the spin structure of the

pair wave function Eq. (2.29) and its matrix representation Eq. (2.30). Therefore, the

direction of d determines the amplitude of the pair wavefunction in each of the pseudospin

triplet channels |11〉, |12〉 + |21〉, and |22〉.

The quadratic part S(2)
eff of the effective action can be obtained from the corresponding
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Feynman diagram similar to that in Fig. 3.9, leading to

S
(2)
eff =

1
2

∫
C
dτdτ ′

∫
dr1dr2dr′1dr

′
2

[
d†(r1, r2, τ) · v†

αβK0,αβvβα · d(r′1, r
′
2, τ

′)

+2V (r1 − r2)δC(τ − τ ′)δ(r1 − r′1)δ(r2 − r′2)d
†(r1, r2, τ) · d(r′1, r

′
2, τ

′)

]
. (4.14)

The bare two-particle Green’s function

K0,αβ(r1, r2, τ ; r′1, r
′
2, τ

′) = V (r1 − r2)Gα(r1, τ ; r′1, τ
′)Gβ(r2, τ ; r′2, τ

′)V (r′1 − r′2), (4.15)

where, δC(τ − τ ′) is the delta function on the contour C. The fermionic Green’s function

Gα(r, τ ; r′, τ ′) is defined as the inverse of the one-particle operator Lα in Eq. (4.12),

Lα(r, τ)Gα(r, τ ; r′, τ ′) = δ(r − r′)δC(τ − τ ′). (4.16)

The quadratic effective action Eq. (4.14) can be simplified in the special case where the

two fermionic hyperfine states are equally populated with N1 = N2 = N and µ1 = µ2 = µ.

In such case, the fermionic Green’s function G1 = G2 = G, and K0,αβ and Kαβ are spin

independent. Therefore, the trace of spin matrices can be performed separately leading to

S
(2)
eff = −

∫
C
dτdτ ′

∫
dr1dr2dr′1dr

′
2d

†(r1, r2, τ) · (K−1 −K−1K0K
−1)d(r′1, r

′
2, τ

′), (4.17)

where the bare two-particle Green’s function K0 can be related to the full two-particle

Green’s function K via the Dyson’s equation

K = K0 −K0ΣK = K0 −K0ΣK +K0ΣK0ΣK0 − · · · . (4.18)

Here, the self energy Σ as the difference between the vertex function for the interacting and

non-interacting systems is just the interaction V (ρ). The full two-particle Green’s function

K(r1, r2, τ ; r′1, r′2, τ ′) can be found as a solution to the following equation:

[
i∂τ +

∇2
r1

2m
+

∇2
r2

2m
− Uext(r1, τ) − Uext(r2, τ) + V (r1 − r2) + 2µ

]
K

= δ(r1 − r′1)δ(r2 − r′2)δC(τ − τ ′). (4.19)

Since the external trapping potential Uext is harmonic, the expression in square brackets in

Eq. (4.19) can be rewritten as a function of the center-or-mass R = r1 + (r2)/2 and the
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relative ρ = r1 − r2 coordinates, leading to

K−1 = i∂τ +
∇2

R

4m
+

∇2
ρ

m
− Uext(R + ρ/2, τ) − Uext(R − ρ/2, τ) + V (ρ) + 2µ. (4.20)

The simplified form of S(2)
eff in Eq. (4.17) can also be obtained in another case where only

one hyperfine state is populated. In such a spin-polarized case, only one spin label α is

relevant and the chemical potential in Eqs. (4.19) and (4.20) is µ = µα.

Since the d field depends on two spatial variables r and r′, it can also be transformed

into center-of-mass R and relative ρ coordinates:

d(r, r′, τ) =
∑

n,�,m�

Dn,�,m�
(R, τ)ηn,�,m�

(ρ). (4.21)

Here, the expansion basis functions ηn,�,m�
(ρ) are eigenfunctions of the reduced two-body

Hamiltonian H2 = −∇2
ρ/m− V (ρ), satisfying

[
−
∇2

ρ

m
− V (ρ)

]
ηn,�,m�

(ρ) = −εn,�,m�
ηn,�,m�

(ρ). (4.22)

Therefore, substitution of the expansion Eq. (4.21) into Eq. (4.17) leads to

S
(2)
eff = −

∫
C
dτ

∑
qn,qn′

∫
dRD†

qn(R, τ) · 〈ηqn|K−1 −K−1K0K
−1|ηqn′〉Dqn′(R, τ), (4.23)

where the set of quantum numbers is qn = {n, �,m�} and qn′ = {n′, �′,m′
�}.

From now on, I will concentrate on p-wave superfluids at the BEC side of FRs. For

isotropic interaction potential V (ρ), the lowest eigenvalue of the two-particle Schrodinger

equation (4.22) for the p-wave channel is −ε2,1,m�
, corresponding to the ground state with

n = 2 and � = 1. This state is three-fold degenerate which are labeled by m� = −1, 0, 1,

with corresponding wave functions Y1m�
(ρ̂). However, since the p-wave Feshbach resonances

have finite separation between m� = 0 and m� = ±1 states [131, 134], the interaction

potential V (ρ) for different |m�| values can be tuned independently. Therefore, the three-

fold degeneracy of the state (n = 2, � = 1) is broken, leading to a ground state with no

degeneracy (m� = 0) or with two-fold degeneracy (m� = ±1). In the latter case (m� = ±1),

the ground state wave function can be any linear combination of η2,1,1 and η2,1,−1. In a

superfluid, since all Cooper pairs are in a coherent state, then the internal degree of freedom
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wave function of each pair takes a specific form η2,1,±1 = c1η2,1,1 + c2η2,1,−1, where c1 and

c2 are constants. Therefore, at low temperatures where the excited states contribution is

negligible, the effective action Eq. (4.23) becomes

S
(2)
eff ≈ −

∫
C
dτ

∫
dRD†

2,1,0(R, τ) · 〈η2,1,0|K−1 −K−1K0K
−1|η2,1,0〉D2,1,0(R, τ) (4.24)

when (n = 2, � = 1,m� = 0) is the ground state, and

S
(2)
eff ≈ −

∫
C
dτ

∫
dRD†

2,1,±1(R, τ) ·〈η2,1,±1|K−1−K−1K0K
−1|η2,1,±1〉D2,1,±1(R, τ) (4.25)

when (n = 2, � = 1,m� = ±1) is the ground state.

Using the explicit form of K−1 in Eq. (4.20) and Eq. (4.22), and the representation of

spherical harmonics in terms of linear functions of the unit vector ρ̂

Y11(ρ̂) ∼ ρ̂x + iρ̂y,

Y10(ρ̂) ∼ ρ̂z,

Y1−1(ρ̂) ∼ ρ̂x − iρ̂y, (4.26)

one obtains the matrix element

〈η2,1,|m�||K
−1|η2,1,|m�|〉 = i∂τ +

∇2
R

4m
− 2Uext(R, τ) + 2µ+ ε2,1,|m�|. (4.27)

In the derivation of Eq. (4.27), I use the fact that the wave function η2,1,|m�| is localized on

the length scale of a0, satisfying the condition a0 	 L where L is the characteristic length

scale of the external trapping potential Uext.

The additional contribution of the type 〈η2,1,|m�||K−1K0K
−1|η2,1,|m�|〉 describe correc-

tions to Eq. (4.27). In the BEC regime, these terms are small since they contain a factor

K0 ∼ 1/|µ| ∼ 2/ε2,1,|m�|, which is the smallest parameter of the theory. Therefore, the low

energy contribution to the quadratic part of the effective action takes the form

S
(2)
eff = −

∫
C
dτ

∫
dRD†(R, τ) ·

[
i∂τ +

∇2
R

2M
− 2Uext(R, τ) + µB

]
D(R, τ), (4.28)

where µB = 2µ + ε2,1,|m�|. In Eq. (4.28), I have dropped the subscript of D to simplify

notation. Notice that the expression above has a similar form to the action of an ideal
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Figure 4.7: Diagrammatic representation of the fourth-order effective action in the strong
coupling limit.

gas of vector Bose particles with the mass M = 2m and the chemical potential µB in the

presence of the effective time-dependent external potential 2Uext(R, t).

The fourth-order term of the effective action can be obtained from a Feynman diagram

similar to that of in Fig. 3.13(a). However, in the BEC regime, the diagram can be trans-

formed into the form shown in Fig. 4.7. In this diagram, wavy lines represent the center-of-

mass portion D(r, t) of the bosonic field d(r, r′, t), and the circles are boson-fermion vertices

Ωqn,αβ or Ω†
qn,αβ, which depend only on the relative coordinate ρ

Ω{2,1,|m�|},αβ(ρ) = V (ρ)η2,1,|m�|(ρ)vαβ

=

[
−
∇2

ρ

m
+ ε2,1,|m�|

]
η2,1,|m�|(ρ)vαβ . (4.29)

The main contribution to the internal integrals in the diagram of Fig. 4.7 comes from the

high energy region of the fermionic propagator [215]. Therefore, the effects of inhomogene-

ity and deviations from equilibrium of the bare fermionic Green’s function G are irrelevant

for the calculation of the quartic terms. To the leading order in the BEC regime the coef-

ficients of the forth-order term coincide with those obtained in the equilibrium theory. By

substituting the fermionic Green’s functions G into the diagram of Fig. 4.7 and performing

the spin labels trace and Matsubara summation, the forth-order term of effective action can

be written as

S
(4)
eff =

∫
dt

∫
dR

[
g0

(
D† · D

)2
− g0

2

(
D† ·D†

)
(D · D)

]
, (4.30)
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where the coefficient g0 represent the effective interaction of the D fields.

In conclusion, the effective action of triplet Fermi condensates in strongly coupling limit

becomes

Seff = −
∫

C
dτ

∫
dRD†(R, τ) ·

[
K̂D(R, τ)

]
∫
dt

∫
dR

g0
2

[
2|D(R, t)|4 − |D2(R, t)|2

]
, (4.31)

where the operator K̂ = i∂τ − 2Uext(R, τ) +∇2
R/(4m) corresponds to the action of an ideal

non-equilibrium gas of Bose particles with mass M = 2m.

4.3 Equation of Motion and Time Evolution of a Single
Cloud

This action in Eq. (4.31) leads to the equation of motion

i∂tDj =
[
−∇2

R

2M
+ 2Uext(R, t) + 2g0|D|2

]
Dj − g0 (D ·D)D†

j . (4.32)

Notice that this expression is different from the time-dependent Gross-Pitaevskii (TDGP)

equation for an atomic vector Bose system.

Equation (4.32) can be simplified to the TDGP form in two special cases. First, if the

atomic hyperfine states |1〉 and |2〉 are equally populated with N1 = N2 = N (µ1 = µ2 = µ)

and D is unitary, then D is a real vector with an overall phase, leading to the equation of

motion

i∂tDj =
[
−∇2

R

2M
+ 2Uext(R, t) + g0|D|2

]
Dj . (4.33)

Second, if only one atomic hyperfine state is populated, then D is non-unitary and D =

A(1,±i, 0), where A is a complex constant. Thus, the last term D ·D in Eq. (4.32) vanishes,

and the equation of motion is identical to Eq. (4.33), with g0 → 2g0. In the following lines,

I will discuss only these two special cases.

For this purpose, a solution of the general equation of motion (4.33) is required. However,

such a solution is not easy to obtain, due to the non-linear nature of this equation. To obtain

an approximate solution to Eq. (4.33), I consider here a trapped gas at t < 0, where the

trapping potential Uext is time-independent with ωj(t < 0) = ωj =constants.
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Thus, for t < 0, the system is in thermodynamic equilibrium state and can be described

by

µ0Dj(R) =
[
−∇2

R

2M
+ 2Uext(R) + g|D(R)|2

]
Dj(R), (4.34)

where µ0 is the effective boson chemical potential, and g = g0 (g = 2g0) when D is uni-

tary (non-unitary). In the regime where the effective boson interactions are dominant, a

Thomas–Fermi approximation is valid where the kinetic energy term is neglected, leading

to

|D(R, 0)| =

⎧⎪⎨
⎪⎩

g−1/2[µ0 − 2Uext(R)]1/2; for µ0 ≥ 2Uext(R)

0; otherwise.
(4.35)

When this approximation fails the initial condition for the time evolution can be obtained

by solving Eq. (4.34) numerically. However, the Thomas–Fermi approximation cannot be

directly applied to the equation of motion (4.33), since the kinetic energy may not be

negligible any more in a time dependent system. To treat the expansion of a cloud, Kagan,

Surkov, and Shlyapnikov [194], as well as Castin and Dum [195] introduced a unitary

transformation and a scaling process which approximately describe the time dependence

for a scalar Bose system. Here, I generalize this method and apply it to triplet Fermi

condensates in the BEC regime.

For t > 0, I introduce the transformation Rj(t) = bj(t)Rj(0), where the scaling factors

bj(t) satisfy [194, 195]
d2bj(t)
dt2

=
ω2

j

A(t)bj(t)
(4.36)

with A(t) = bx(t)by(t)bz(t) and initial conditions bj(0) = 1. The three coupled equations

for bj(t) are ordinary differential equations hence can be solved numerically by standard

methods.

First, I consider a dilute Fermi gas trapped in an isotropic harmonic potential with

ωx(t) = ωy(t) = ωz(t) = ω(t). In this case the equations for bj reduce to,

d2b(t)
dt2

= −ω2(t)b(t) +
ω2(0)
b4(t)

. (4.37)

Consider a sudden change of trapping potential at t = 0, i.e., ω(t < 0) = ω and ω(t > 0) = ω′

are constants, the equation above can be solved numerically. The results for different values
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Figure 4.8: Time evolution of scaling factor b(t) for a sudden change of isotropic harmonic
potential at t = 0. Cases with different values of s ≡ ω′/ω are considered. The s = 0 case
corresponds to a complete shut-down of the potential, and s = 1 indicates no change is
applied.

of s ≡ ω′/ω are shown in Fig. 4.8. Notice that for the special case where the trapping

potential is completely shut down at t = 0 (i.e., s = ω′/ω = 0), the scaling factor b(t)

behaves almost linearly when ωt > 1. Since the experimental value for ω is about several

kHz, we can approximate b(t) = 1 + aωt whenever t > 1 ms, where a is a dimensionless

constant. Consider that observations in most experiments [201, 202] are usually taken at

around 10-100 ms after shutting down the potential, thus such approximation is valid. A

numerical calculation gives the value of a ≈ 0.8165.

Another important case is that of an axially symmetric trapping potential with respect

to the z axis and with ω⊥(t) ≡ ωx(t) = ωy(t) � ωz(t). The equipotential surface of this

trap is cigar shaped with the longest axis being z. In this case Eq. (4.36) becomes

d2b⊥(t)
dt2

= −ω2
⊥(t)b⊥(t) +

ω2
⊥(0)

b3⊥(t)bz(t)
, (4.38)

d2bz(t)
dt2

= −ω2
z(t)bz(t) +

ω2
z(0)

b2⊥(t)b2z(t)
, (4.39)

where b⊥ ≡ bx = by. For a sudden change of the trapping potential from ωj for t < 0 to ω′
j

for t > 0, a numerical solution can also be obtained. In Fig. 4.9, I show the solutions of b⊥

and bz as a function of dimensionless time τ = ω⊥t, with ε = ωz/ω⊥ = 0.1, and ω′
⊥ = ω′

z = 0.

Notice that when τ is large, both b⊥ and bz depend linearly on τ , with b⊥ ≈ 1 + a⊥τ and

bz ≈ 1+azτ . The coefficients a⊥ ≈ 0.9944 > az ≈ 0.01492 indicates that the cloud expands
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Figure 4.9: Time evolution of scaling factors b⊥ and bz for a sudden change of a cigar-
shaped anisotropic potential starting at t = 0. Parameters used in these figures are ω′

j = 0
(complete shut-down), and ε = ωz/ω⊥ = 0.1.

faster along the radial direction in comparison with the axial direction. The aspect ratio

of the cloud rxz = L⊥/Lz = εb⊥/bz as a function of τ is shown in Fig. 4.10, where L⊥

and Lz are the cloud lengths along the radial and axial directions, respectively. Notice

that rxz increases from 0.1 to 6.665, indicating that the cloud changes from cigar-shape to

disk-shape. It should be emphasized that this anisotropy inversion is a direct consequence

of the anisotropy of trapping potential. From a classical point of view, particles tend to

move faster along the radial directions upon release from the trap, because the cloud is

strongly confined along the radial direction. This effect presents in Bose [92] and s-wave

Fermi [199] condensates.

In addition to numerical solutions, an approximated analytic solutions can also be ob-

tained as a power expansion of ε = ωz/ω⊥ for the specific case of ω′
j = 0, which corresponds
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Figure 4.10: Time dependence of the aspect ratio rxz = L⊥/Lz . Parameters used in this
plot are same as in Fig. 4.9.

to a complete shut-down of the trapping potential. The scaling coefficients are

b⊥(t) = (1 + τ2)1/2, (4.40)

bz(t) = 1 + ε2
[
τ tan−1(τ) − 1

2
ln(1 + τ2)

]
+ O(ε4), (4.41)

which are in agreement with Castin and Dum [195]. Therefore, for this cigar-shaped trap-

ping potential, Dj(R, t) becomes

Dj(R, t) =
exp[iθ(R, t)]√

1 + ω2
⊥t2

Dj(R, 0), (4.42)

where Rk = Rk/bk(t) are scaled coordinates, and the phase factor is

θ(t) ≈ −tan−1(τ)
ω⊥τ

µ+M
ω⊥τ

1 + τ2
(R2

x +R2
y)

+
ε2µ

ω⊥
θ02(τ) + ε2M

[
ω⊥ tan−1(τ)

]
R2

z. (4.43)

Here

θ02(τ) =
∫ τ

0

2τ1 tan−1(τ1) − ln(1 + τ2
1 )

2(1 + τ2
1 )

dτ1. (4.44)

Notice that θ02 ∼ ln τ as t → ∞, hence the third term in Eq. (4.43) becomes comparable

to the first one when t ln(τ) ∼ ε2. Since the experimental parameters ε ∼ 10−2, ω⊥ ∼ 103

Hz, this condition is satisfied only when t ∼ 102 s, which is several orders of magnitude

larger than any time scales in experiments [201, 202]. Therefore, I neglect the θ02 term in

the following discussions.
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4.4 Matter-wave Interference and Polarization Effect

Next, I consider the matter-wave interference of two spatially separated condensates such

that the energy barrier between them is large enough to neglect the tunneling effect. For

these two condensates, the number of particles in each trap is fixed. Thus, one may write

down the total wave function naively as a product Fock state as

Φtot(R, t) ∝ ΦL(R, t)ΦR(R, t).

However, a direct application of this wave function to explain experimental results for s-

wave Fermi and Bose systems does not work. This disagreement originates from the fact

that condensates are pure coherent states, and that two condensates are not coherent in an

ensemble average, but couple for each trial. Therefore, any single-run interference of these

two-cloud systems need to be described by a coherent superposition wave function

Φtot(R, t) = ΦL(R, t) + ΦR(R, t), (4.45)

which in the p-wave case can be written in terms of the D vector as ΦP ∝ i
∑

j Dj,Pσjσy,

denoting the pair wave function of Fermi condensates in the left [P = L(+)] or right [R(−)]

traps. The trap centers lie at (∓W/2, 0, 0) where W is the distance between traps.

Now I consider the case of two identical axially symmetric Fermi condensates with

ω⊥ � ωz. In this case, the time evolution of each cloud is described by Eq. (4.42):

Dj,P(R, t) =
exp[iθ(R±W x̂/2, t)]√

1 + τ2
Dj,P(R ±W x̂/2, 0),

Thus, for a single run of the experiment, the particle density n(R, t) ≡ |Φtot(R, t)|2 is

n(R, t) ∝ D†
L(R, t) · DL(R, t) + D†

R(R, t)DR(R, t)

+2Re
D†

L(R +W x̂/2, 0) · DR(R −W x̂/2, 0)eiχ

A(τ)
, (4.46)

where the phase χ(R, t) = θ(R + W x̂/2, t) − θ(R −W x̂/2, t) + χ0, and χ0 is the initial

relative phase of the two clouds.

When each cloud has only one hyperfine state occupied (e.g. Ψpair = h11|11〉) the D

vectors in each cloud have the fixed form A(1, i, 0) and fringes are present in all experimental
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Figure 4.11: Interference pattern versus dimensionless time τ = ω⊥t for p-wave Fermi
condensates in the BEC limit with ωz/ωx = 0.1, assuming |D†

L · DR| is maximal. The
plots include only the superfluid part, and show columnar density versus x, y coordinates in
units of the initial clouds separation W . The patterns are similar to those of atomic scalar
bosons, and s-wave paired Fermions.

realizations. This result is similar to the s-wave case where the order parameter is a complex

scalar. However, when both Fermi condensates are in unitary states, D is essentially a real

vector with an overall phase, and n(R, t) shows an angular dependence controlled by the dot

product in Eq. (4.46). When the two order parameters are parallel, this term is maximal and

the interference pattern is most visible (Fig. 4.11). But if the D vectors are perpendicular,

fringes are absent at all times (Fig. 4.12). Therefore, in the unitary case the existence and

intensity of interference fringes are very sensitive to the relative orientation of the D vectors.

Since the interference pattern depends crucially on DL and DR, it is important to under-

stand how these vectors can be controlled experimentally. Recall that experimental results

for p-wave Feshbach resonances (FR) show a finite separation in different channels [133]

implying different interactions in “spin” space. Therefore, one can tune the interaction in

a specific channel to control the D vector to a certain degree. For example, a set of p-wave
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Figure 4.12: Interference pattern versus dimensionless time λ = ω⊥t for p-wave Fermi
condensates in the BEC limit with ωz/ωx = 0.1, assuming |D†

L ·DR| = 0. The plots include
only the superfluid part, and show columnar density versus x, y coordinates in units of the
initial clouds separation W .

FRs for 6Li occur at 159 G (width 0.4 G), 185G (width 0.2 G) and 215 G (width 0.4 G)

for the |11〉, |12〉 (or |21〉), and |22〉 channels, respectively. By applying a constant plus a

gradient magnetic field, one can in principle tune the local field at the left (L) cloud to be

216 G, and at right (R) cloud to be 214 G, which are above and below the |22〉 resonance,

respectively. Thus, a sweep down of the constant magnetic field part by 30G makes the L

cloud cross the |22〉 but not the |12〉 resonance, while it makes the R cloud cross only the

|12〉 resonance. In this case, the L cloud is in the BEC regime of the |22〉 channel, with

Ψpair,L ≈ h22,L|22〉 or DL = h22,L(1/2,−i/2, 0). However, the R cloud is in the BEC regime

of the |12〉 channel, with Ψpair,R ≈ h12,R(|12〉 + |21〉) or DR = h12,R(0, 0, 1). Therefore,

D†
L ·DR = 0 and the interference pattern is that of Fig. 4.12. More generally, however, the

preparation of pair wave functions (or D-vectors) in each cloud can be controlled by tuning

the constant and gradient magnetic fields, as well as the separation between the two clouds.

The polarization effect also manifests itself in the Josephson tunneling between the two

traps. By considering a tunneling process across the energy barrier, the left and right
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condensates can be described by the modified equation of motion

i∂tDL,j =
[
−∇2

R

2M
+ 2Uext(R) + g|DL|2

]
DL,j

+
∑

k

∫
dR′Tkj(R,R′)DR,j(R′), (4.47a)

i∂tDR,j =
[
−∇2

R

2M
+ 2Uext(R) + g|DR|2

]
DR,j

+
∑

k

∫
dR′T ∗

jk(R,R
′)DL,j(R′), (4.47b)

where Tjk(R,R′) ≡ Tc+Ts is the tunneling matrix, with Tc and Ts are the “spin”-conserving

and non-conserving portions, respectively. In the case where the trapping potential is much

smaller than the energy difference between the two hyperfine states, or the time scale of

experiments is much shorter than the lifetime of each hyperfine state, the non-conserving

tunneling process is negligible, leading to Tjk = T (R,R′)δjk.

Multiplying Eq. (4.47a) by D†
L,j and subtracting the Hermitian conjugate, one obtains

i∂t|DL,j(R)|2 =
1
2

[∫
dR′T (R,R′)D†

L,j(R)DR,j(R′)

−D†
L,j(R)

∇2
R

2M
DL,j(R)

]
− H.C. (4.48)

After summing over j and integrating over the spatial coordinate R in the left half space

LS = {R : Rx < 0}, the left hand side of Eq. (4.48) is proportional to the derivative of

number of particles in the left trap. An application of the divergence theorem to the spatial

gradient terms,

∂tnL = Im
∫

LS
dR

∫
dR′T (R,R′)D†

L(R) ·DR(R′). (4.49)

Therefore, if D†
L(R) ·DR(R′) = 0 for all R and R′, there is no Josephson tunneling between

the two condensates.

4.5 Anisotropic Free Expansion

Up to now, I discuss p-wave Fermi condensates trapped in a harmonic potential only in the

BEC limit. In this limit, fermions form tightly bounded molecules with the average pair

size much smaller than the inter-molecular spacing. Thus, the internal degrees of freedom
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of the fermion pairs are not important, and have negligible effects on physical properties

of the condensates. However, if one moves away from the BEC limit, the average pair size

increases with decreasing interaction strength, and the detailed structure of fermion pairs

can dramatically change the condensate properties when the pair size becomes comparable

to the inter-molecular spacing.

Next, I discuss corrections to the expansion of a harmonically trapped p-wave Fermi

condensate when one moves away from the BEC limit, but remains on the BEC side of the

Feshbach resonance. In such case, the method used in Section. 4.2 to derive the effective

action (4.31) is not directly applicable, since the internal-degree-of-freedom wave function

η0,1,|m�|(ρ) is no longer localized within a small volume. However, if the trapping potential

Uext varies slowly in comparison with other length scales including the coherence length and

the average pair size, a semiclassical approximation can be applied. Within this approxi-

mation, one can first derive the effective action in a free space (without trapping potential),

and add the potential afterwards. Again, I consider here only “spin”-polarized systems

consisting of fermions in a single hyperfine state, and unitary cases where fermions in two

hyperfine states are equally populated.

For such a system, the quadratic term of the effective action takes the form [216]

S
(2)
eff = −

∫
dt

∫
dRD†

m�
(R, t) ·

⎡
⎣am�

−
∑
ij

cijm�

∇i∇j

4m
+ 2Uext(R) + idm�

∂t

⎤
⎦Dm�

(R, t),

(4.50)

where it is assumed that only one of the spherical harmonics Y1,m�
is dominant and char-

acterizes the order parameter. The coefficients a, cij , and d in Eq. (4.50) can be obtained

by considering the free space problem and transforming it into momentum space [217]. It

should be emphasized that the coefficient cij is in general anisotropic, taking the form

cijm�
=

∑
k

{[
X(k)

4E2(k)
− βY (k)

16E(k)

]
δij + κij

m�

β2k2X(k)Y (k)
32mE(k)

}
φ2(k), (4.51)

where E(k) = ξ1,k + ξ2,k, ξα,k = k2/2m − µα, X(k) = tanh(βξ1,k/2) + tanh(βξ2,k/2),

and Y (k) = sech2(βξ1,k/2) + sech2(βξ2,k/2). The symmetry function φ(k) is defined as in

Section 2, by V (k,k′) =
∫
dxV (x) exp[i(k−k′) ·x] = V φ(k)φ(k′)Y1,m�

(k̂)Y ∗
1,m′

�
(k̂′), and the

111



angular average is

κij
m�

=
∫
dk̂k̂ik̂jY1,m�

(k̂)Y ∗
1,m�

(k̂) = κii
m�
δij . (4.52)

For the case where m� = 0, this angular average is anisotropic with κyy
0 = κzz

0 = 1/10,

and κxx
0 = 3/5. Here, I choose the x direction to be the quantization axis. Therefore, the

coefficient cij0 (which is directly related to the Ginzburg-Landau coherence length ξij) is

anisotropic, thus acquiring a mass anisotropy Mij = 2m/cij0 . This mass anisotropy reflects

the higher angular momentum (p-wave) nature of the order parameter for paired fermions,

and it is absent for s-wave Fermi and atomic Bose condensates.

This effective mass anisotropy has a non-trivial influence on the time evolution of con-

densates after release from the trap. As an example, I consider a p-wave Fermi condensate

in an axially symmetric trap where ωx = ωy � ωz, with a magnetic field applied along x̂

(chosen as the quantization axis) to tune through the Feshbach resonance (see Fig. 4.13).

Since the resonances for different m� states are split in 40K [131, 134], it may be possible to

adjust the magnetic field such that fermions are paired in the m� = 0 (px) state only. In this

case, the p-wave interaction leads to the formation of px symmetry pairs, which are more

strongly correlated along the x direction (ξx > ξy = ξz or Mx < My = Mz). Thus, in the xy

plane the cloud expands faster along the x-direction corresponding to the lighter effective

mass Mx, hence breaking the axial symmetry. This anisotropic expansion due to p-wave

interactions also occurs for a completely isotropic trap, and it is very different from the

anisotropy inversion (in the xz and yz planes) found in axially symmetric traps for s-wave

Fermi condensates [199]. As discussed in Section 4.3, the anisotropy inversion is related

only to the anisotropy of the trapping potential, while the anisotropic expansion discussed

here is due to anisotropic interactions.

In Fig. 4.14, I show the cloud anisotropy ratio rxy = Lx/Ly as a function of the effective

mass anisotropy ratio rM = My/Mx = ξ2x/ξ
2
y . The anisotropy effect disappears in the BEC

limit, as the effective masses become isotropic, however towards unitarity the anisotropic

expansion become more evident. The values of rM change as a function of the scattering

volume ap, and vary from rM = 1 in the BEC limit (ap → 0+), to rM = 3 in the BCS limit

(ap → 0−). Since our theory is valid only on the BEC side where the fermion chemical
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Figure 4.13: p-wave Fermi condensate of px-symmetry (m� = 0) (a) in an axially symmetric
trap and (b) upon release from trap. Notice that the axial symmetry is lost in the xy plane
due to the anisotropic effective mass (interaction).

potential µ < 0, the maximal theoretical anisotropy is reached near µ = 0 (which is also

close to the unitarity limit ap → ±∞ [140]), leading to a 10% anisotropy (rM ≈ 1.1) for

trapped 40K in the px-state (m� = 0). Investigations on the BCS side (µ > 0) and near

unitarity require the inclusion of Landau damping which leads to the decay of Cooper pairs,

and are beyond the scope of the present theory [218].

4.6 Summary

In conclusion, I considered in this chapter a Fermi condensate consisting of fermions in

two hyperfine states with p-wave interactions, and derived the equation of motion in a

vector boson representation near the BEC limit. For the spin-polarized case where the

superfluid consists of fermions in one single hyperfine state, and the unitary case where two

hyperfine states are equally populated, the equation of motion can be simplified and have

a similar form to the time dependent Gross-Pitaevskii (TDGP) equation for vector atomic

Bose systems. Within the two special cases, I described the time evolution of the vector

order parameter approximately by scaling the spatial coordinate, and found that p-wave

Fermi condensates behave very differently from s-wave Fermi condensates in the following
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Figure 4.14: Cloud anisotropy ratio rxy = Lx/Ly as a function of effective mass anisotropy
ratio rM = Mx/My at time τ (Solid lines). Dashed line indicate the saturated behavior at
τ → ∞.

aspects:

1. The quantum interference of two p-wave Fermi condensates has an angular effect due

to the vector nature of the order parameter. When the dot product of the vector order

parameters of the left and right condensates reaches its maximum, the interference pattern

is most visible; while the dot product of vector order parameters is zero, the interference

pattern disappears. This effect is absent in the BEC limit of s-wave Fermi superfluids, as

well as in scalar Bose systems. It was also proposed that the relative orientation of order

parameters of two condensates can be controlled to a certain degree by applying a constant

plus a gradient magnetic field to cross different Feshbach resonances.

2. Furthermore, towards unitarity, an anisotropic p-wave interaction leads to anisotropic

effective masses for a given orbital symmetry. As a result, for a cigar-shaped cloud with axial

symmetry, the cloud expansion becomes anisotropic in the axial plane and expands more

rapidly along the direction of the smaller effective mass. Thus, the orbital symmetry of the

order parameter for p-wave condensates can be directly probed through cloud expansions.

This anisotropic expansion is a direct consequence of the anisotropic interaction, hence it

is present only in p-wave (and higher angular momentum) Fermi condensates, but not in

s-wave Fermi and vector or scalar Bose systems.
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CHAPTER V

CONCLUSIONS AND FUTURE TOPICS

In this thesis, I discussed triplet superfluidity in quasi-one-dimensional organic conductors

and ultra-cold Fermi gases, and focus on the p-wave case with total angular momentum

L = 1. Triplet superfluidity is different from the singlet s-wave version in the following

aspects: First, the order parameter is a complex vector; Second, the interaction between

fermions is in general anisotropic. These two distinctions lead to very different physics in

triplet superfluidity as presented in Chapters 3 and 4.

In Chapter 3, I discussed the interplay between triplet superconductivity (TSC) and spin

density waves (SDW) in quasi-one-dimensional organic conductors. For a specific material

(TMTSF)2PF6, I proposed a coexistence region of TSC and SDW at low temperatures, such

that the critical point is tetracritical. Within this coexistence region, both the TSC and

SDW order parameters are non-uniform, having out-of-phase modulations of charge and

spin. Furthermore, since the TSC and SDW orders respond differently to a uniform mag-

netic field, the superconducting state in the coexistence region has an anomalous magnetic

field effect. For instance, a sufficiently strong magnetic field pointing along the crystallo-

graphic b′ axis may cause a canting transition of the SDW order parameter from the b′ axis

to the a-c∗ plane. This canting transition of the SDW order parameter also causes a flop

transition of the TSC order parameter, hence it has a non-trivial effect on the superconduct-

ing state. In particular, I proposed new magnetic-field versus temperature phase diagrams

at fixed pressure, below and above the critical pressure. This anomalous magnetic field

effect on the superconducting state is absent in systems having singlet superconductivity.

In Chapter 4, I studied the time evolution and matter-wave interference of p-wave Fermi

condensates in the Bose-Einstein condensation (BEC) regime. For a spin-polarized system

consisting of fermions in one hyperfine state, and for the unitary case where two hyperfine

states are equally populated, the Fermi condensates can be described by an equation of
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motion which is similar to the time dependent Gross-Pitaevskii equation for a vector Bose

condensate. By solving this equation of motion, I showed that the matter-wave interference

of two p-wave Fermi condensates has a polarization effect due to the vector nature of the

order parameter. Furthermore, away from the BEC limit towards unitarity, I observed

that anisotropic p-wave interactions lead to anisotropic effective masses for a given orbital

symmetry. As a consequence, for a cigar-shaped cloud with axial symmetry, the cloud

expansion becomes anisotropic in the radial plane and expands more rapidly along the

direction of the smaller effective mass. Both these effects are absent in the BEC limit of

s-wave Fermi superfluids, as well as in scalar atomic Bose systems.

In the reminder of this chapter I discuss some future topics which I would like to inves-

tigate.

• Upper critical fields of (TMTSF )2PF6.

In (TMTSF)2PF6, the flopping of the TSC order parameter in the coexistence region is

proposed by applying a magnetic field pointing along b′ axis. Then it is expected that this

flopping transition may change the upper critical field Hc2 for H ‖ b′. A complete under-

standing of this effect may help us explain the experimental data obtained by Lee et al. [41],

where an anomalous anisotropy inversion for Ha
c2 and Hb′

c2 is found in (TMTSF)2PF6. I

expect that this anisotropy inversion is related to the interplay between TSC and SDW

orders, since the experiment is done at a pressure of 6 kbar, which is close the SDW phase.

• Critical phenomena at the tetracritical point.

In this thesis, I discussed the competition or coexistence of TSC and SDW order pa-

rameters in quasi-one-dimensional superconductors within a saddle point approximation. A

renormalization group analysis of the Ginzburg–Landau–Wilson functional is necessary to

obtain the critical exponents of various thermodynamical properties, and to determine the

universality class of the coupled SDW/TSC quasi-one-dimensional system.

• What is the time evolution of p-wave Fermi condensates at unitarity and the weakly

interacting regime?

The discussion regarding p-wave Fermi condensates in this thesis is confined to the BEC
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side of the Feshbach resonances. Thus, the dynamics during free expansion is not strongly

affected by collisions, when the density drops and the scattering volume for p-wave is small.

Thus, the theory to holds well on the BEC side away from unitarity. However, collisions

during free expansion may become important at unitarity where the scattering length are

extremely large due to the resonances, and can blur the interference pattern as in Bose

systems [218].

Furthermore, the time evolution of p-wave Fermi condensates at the BCS side of the

Feshbach resonances is also an interesting problem. It is known that in the BCS regime, the

system has Landau damping and large Cooper pairs can decay into two fermions. Therefore,

the condensate may lose coherence during the free expansion and the interference pattern

could be blurred.

• What is the effect of population imbalance?

In Chapter 4, I discussed only the spin-polarized and equally-populated Fermi gases. A

more general case is a Fermi gas with population imbalance with N1 �= N2 and µ1 �= µ2,

as has been discussed for s-wave Fermi condensates [219, 220, 221, 222]. For p-wave Fermi

condensates, the effective action and equation of motion derived in Chapter 4 is no longer

valid in a system with population imbalance. Therefore, one has to take into account the

chemical potential difference for two hyperfine states, and derive the full theory.
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APPENDIX A

SUMMATION OVER SPIN INDICES

Throughout this thesis, a summation over spin indices is often encountered to derive effective

action from the corresponding diagrams. The summation takes the form

Ps =
∑
αβγδ

[
φ† ·

(
s†
)

αβ

]
[φ · sγδ ] δαδδβγ (A.1)

for quadratic terms in effective action, where sαβ = σαβ when φ corresponds to a SDW

order parameter N or a magnetic field H, and sαβ = vαβ when φ corresponds to a TSC

order parameter D. In this chapter, I perform the summation in Eq. (A.1). The summation

for quartic terms have a similar form with four spin matrices, and can be performed using

the same method.

First, I discuss the case where s = σ. Recall the definition of Pauli matrices (i = x, y, z):

(σi) ≡

⎛
⎜⎝ ηi,2 ηi,3

ηi,1 −ηi,2

⎞
⎟⎠ , (A.2)

where

ηi,1 = δi,x + iδi,y,

ηi,2 = δi,z,

ηi,3 = δi,x − iδi,y. (A.3)

Thus, the dot products in equation (A.1) can be written out explicitly as

Pσ =
∑
i,j

φ†iφj

∑
αβγδ

(σi)αβ (σj)γδ δαδδβγ

=
∑
i,j

φ†iφjTr

⎡
⎢⎣
⎛
⎜⎝ ηi,2 ηi,3

ηi,1 −ηi,2

⎞
⎟⎠

⎛
⎜⎝ ηj,2 ηj,3

ηj,1 −ηj,2

⎞
⎟⎠
⎤
⎥⎦ . (A.4)
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Notice that the trace of the two spin matrices product in Eq. (A.4) is

Tr

⎛
⎜⎝ ηi,2ηj,2 + ηi,3ηj,1 ηi,2ηj,3 − ηi,3ηj,2

ηi,1ηj,2 − ηi,2ηj,1 ηi,1ηj,3 + ηi,2ηj,2

⎞
⎟⎠

= 2ηi,2ηj,2 + ηi,3ηj,1 + ηi,1ηj,3

= 2δi,xδj,x + 2δi,yδj,y + 2δi,zδj,z = 2δi,j . (A.5)

Therefore, equation (A.4) becomes S = 2
∑

i,j φ
†
iφjδi,j = 2φ† · φ, hence acquires the dot

product form.

For the case where sαβ = vαβ , the summation (A.1) becomes

Pv =
∑
i,j

φ†iφj

∑
αβγδ

(σyσi)αβ (σjσy)γδ δαδδβγ

=
∑
i,j

φ†iφjTr

⎡
⎢⎣
⎛
⎜⎝ 0 −i

i 0

⎞
⎟⎠

⎛
⎜⎝ ηi,2 ηi,3

ηi,1 −ηi,2

⎞
⎟⎠

⎛
⎜⎝ ηj,2 ηj,3

ηj,1 −ηj,2

⎞
⎟⎠

⎛
⎜⎝ 0 −i

i 0

⎞
⎟⎠
⎤
⎥⎦

=
∑
i,j

φ†iφjTr

⎡
⎢⎣
⎛
⎜⎝ −iηi,1 iηi,2

iηi,2 iηi,3

⎞
⎟⎠

⎛
⎜⎝ iηj,3 −iηi,2

−iηi,2 −iηi,1

⎞
⎟⎠
⎤
⎥⎦

=
∑
i,j

φ†iφjTr

⎛
⎜⎝ ηi,1ηj,3 + ηi,2ηi,2 −ηi,1ηi,2 + ηi,2ηi,1

−ηi,2ηj,3 + ηi,3ηi,2 ηi,2ηi,2 + ηi,3ηi,1

⎞
⎟⎠

= 2
∑
i,j

φ†iφjδij = 2φ† · φ, (A.6)

hence also has the dot product structure.
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APPENDIX B

MATSUBARA FREQUENCY SUMMATION

In addition to the summation over spin indices, one also needs to perform the summation

over Matsubara frequency ωn, which takes the quadratic form

A2 =
∑
ωn

1
iωn + pE1

1
iωn + qE2

, with p, q = ±1; (B.1)

or the quartic form

A4 =
∑
ωn

1
iωn + pE1

1
iωn + qE2

1
iωn + rE3

1
iωn + sE4

, with p, q, r, s = ±1. (B.2)

Since the summation comes from products of bare fermionic Green’s functions, the frequen-

cies ωn must be Fermi frequencies ωn = (2n+1π)/β. Next, I will calculate the second order

summation A2, and use its result to calculate A4.

In principle, an infinite summation
∑

ωn
h(ωn) can be performed using the residue the-

orem:

lim
R→∞

∮
CR

dzh(z)f(z) = 2πi
∑

Res [h(z)f(z)] , (B.3)

with an appropriately chosen function f(z) such that ωn coincide with the singularities of

f(z) enclosed by the contour CR. For the present problem, h(z) = (z+ pE1)−1(z+ qE2)−1,

and the function f(z) is the Fermi function

f(z) =
1

eβz + 1
, (B.4)

with singularities at zn = iωn. In addition, the summation on the right hand side of Eq.

(B.3) includes two additional singularities of function h(z)

w1 = −pE1 and w2 = −qE2. (B.5)

The contour integral Eq. (B.3) vanishes as R → ∞ since h(z) ≈ 1/z2 for |z| → ∞.
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Therefore, one obtains

0 =
∑

Res [h(z)f(z)]

=
∑
iωn

h(iωn)Res[f(z)]iωn + f(w1)Res[h(z)]w1 + f(w2)Res[h(z)]w2 . (B.6)

The residue of h(z) at w1 and w2 are

Res[h(z)]w1 =
1

qE2 − pE1
, (B.7a)

Res[h(z)]w2 =
1

pE1 − qE2
. (B.7b)

The residue of f(z) at iωn can be obtained by expanding the denominator of f(z) as

exp(βz) + 1 ≈ −β(z − iωn) + · · · , (B.8)

hence Res[f(z)]iωn = −1/β is a constant.

Substituting Eqs. (B.7) and (B.8) into the residue theorem Eq. (B.6), one obtains

A2 =
∑
iωn

h(iωn) = β

[
f(−pE1)
qE2 − pE1

+
f(−qE2)
pE1 − qE2

]

=
β

qE2 − pE1
[f(qE2) − f(pE1)]

=
β

2(qE2 − pE1)

[
tanh

(
βpE1

2

)
− tanh

(
βqE2

2

)]
. (B.9)

Notice that the following identities are used to write the frequency sum A2 into the expres-

sion above:

f(−E) = 1 − f(E) (B.10)

f(E) =
1
2

[
1 − tanh

(
βE

2

)]
, (B.11)

In the limiting case where qE2 → pE1, one can expand the hyperbolic tangent function in

Eq. (B.9) and obtain

A2(qE2 → pE1) = −β
2

4
sech2

(
βpE1

2

)
. (B.12)

Next, I will use the result for A2 to derive the fourth-order summation A4 in Eq. (B.2).
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Notice that

A4 =
∑
ωn

1
iωn + pE1

1
iωn + qE2

1
iωn + rE3

1
iωn + sE4

=
∑
ωn

1
qE2 − pE1

[
1

iωn + pE1
− 1
iωn + qE2

]
1

sE4 − rE3

[
1

iωn + rE3
− 1
iωn + sE4

]

=
1

(qE2 − pE1)(sE4 − rE3)

∑
ωn

[
1

iωn + pE1

1
iωn + rE3

− 1
iωn + qE2

1
iωn + rE3

− 1
iωn + pE1

1
iωn + sE4

+
1

iωn + qE2

1
iωn + sE4

]
. (B.13)

Each term in the square bracket of Eq. (B.13) has the same form as A2, hence the Matsubara

summation can be performed using the previous result Eq. (B.9). As discussed before,

limiting cases such as qE2 → pE1 or sE4 → rE3 need to be considered by expanding the

results into Taylor series and collecting the highest order terms.
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superconductors in strong magnetic field”, Phys. Rev. Lett. 70, 2613 (1993).

[37] N. Dupuis, “Thermodynamics and excitation spectrum of a quasi-one-dimensional
superconductor in a high magnetic field”, Phys. Rev. B 50, 9607 (1994).
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dimensional superconductors: quasiparticle density of states and spin susceptibility”,
Physica C 391, 98 (2003).

[55] I. J. Lee and M. J. Naughton, “Metallic state in (TMTSF)2PF6 at low pressure”,
Phys. Rev. B 58, R13343 (1998).

[56] X. Huang and K. Maki, “Upper critical field of organic superconductors”, Phys. Rev.
B 39, 6459 (1989).

[57] K. Kuroki, R. Arita, and H. Aoki, “Spin-triplet f -wave-like pairing proposed for an
organic superconductor (TMTSF)2PF6”, Phys. Rev. B 63, 094509 (2001).

[58] H. Shimahara, “Nodeless d-wave superconductivity in a quasi-one-dimensional organic
superconductor under anion order”, Phys. Rev. B 61, R14936 (2000).

[59] D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett,
“Experimental determination of the superconducting pairing state in YBCO from the
phase coherence of YBCO-Pb dc SQUIDs”, Phys. Rev. Lett. 71, 2134 (1993).

[60] D. A. Brawer and H. R. Ott, “Evidence for an unconventional superconducting order
parameter in YBa2Cu3O6.9”, Phys. Rev. B 50, 6530 (1994).

[61] A. Mathai, Y. Gim, R. C. Black, A. Amar, and F. C. Wellstood, “Experimental proof
of a time-reversal-invariant order parameter with a π shift in YBa2Cu3O7−δ”, Phys.
Rev. Lett. 74, 4523 (1995).

[62] K. Sengupta, I. Zutic, H.-J. Kwon, V. M. Yakovenko, and S. Das Sarma, “Midgap
edge states and pairing symmetry of quasi-one-dimensional organic superconductors”,
Phys. Rev. B 63, 144531 (2001).

[63] C. D. Vaccarella, R. D. Duncan, and C. A. R. Sá de Melo, “Triplet superconductors:
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