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SUMMARY

We consider the problem of enabling a robot to efficiently obtain a dense

haptic map of its visible surroundings using the complementary properties of vision

and tactile sensing. Our approach assumes that visible surfaces that look similar to

one another are likely to have similar haptic properties. In our previous work, we

introduced an iterative algorithm that enabled a robot to infer dense haptic labels

across visible surfaces in an RGB-D image when given a sequence of sparse haptic

labels. In this work, we describe how dense conditional random fields (CRFs) can be

applied to this same problem and present results from evaluating a dense CRF’s per-

formance in simulated trials with idealized haptic labels. We evaluated our method

using several publicly available RGB-D image datasets with indoor cluttered scenes

pertinent to robot manipulation. In these simulated trials, the dense CRF substan-

tially outperformed our previous algorithm by correctly assigning haptic labels to an

average of 93% (versus 76% in our previous work) of all object pixels in an image

given the highest number of contact points per object. Likewise, the dense CRF cor-

rectly assigned haptic labels to an average of 81% (versus 63% in our previous work)

of all object pixels in an image given a low number of contact points per object. We

compared the performance of dense CRF using uniform prior with a dense CRF using

prior obtained from the visible scene using a Fully Convolutional Network trained for

visual material recognition. The use of the convolutional network further improves

the performance of the algorithm. We also performed experiments with the humanoid

robot DARCI reaching in a cluttered foliage environment while using our algorithm

to create a haptic map. The algorithm correctly assigned the label to 82.52% of the

scenes with trunks and leaves after 10 reaches into the environment.

ix



CHAPTER I

INTRODUCTION

Tactile sensing can help in inferring mechanical properties of objects. It can be used

for creating a haptic map, which we define as a set of pairs associating locations with

haptic labels [13]. However, because of the inherent local nature of tactile sensing, a

naive approach of haptic mapping would require the robot to make physical contact

with each and every location of interest which would be energetically expensive and

time consuming. By using vision with tactile sensing, robots have the potential to

haptically map their surroundings with greater efficiency. Our approach assumes that

surfaces near a robot that are visually similar are more likely to have similar haptic

properties. In our previous work [13], we introduced an iterative algorithm to infer

dense haptic labels over a visible surface using sparse haptic labels by leveraging the

complementary nature of the two sensing modalities. In [13], we showed that such

an algorithm enables a robot to reach goal locations in a cluttered environment with

fewer re-plans compared to when using tactile-only mapping method. In this work

we introduce an improved algorithm (See Figure 1), to solve the same problem using

a dense Conditional Random Field (CRF) [35]. The following section outlines the

organization of the thesis.

In Chapter 2, we review the existing literature for work done in this field. In

Chapter 3, we describe our previous algorithm [13] (Section 3.1 and our dense CRF

based algorithm (Section 3.2) and compare the performance of the two in simulation

(Section 3.4). Chapter 4, we describe the Convolutional Neural Network (CNN) used

by Bell et al. [7] for material recognition (Section 4.1) and the fine-tuning procedure

we used to adapt the network for our application (Section 4.2). We also compare
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the difference in performance of the algorithm with and without the CNN to provide

a prior probability distribution (Section 4.3). In Chapter 5, we describe the use of

an entropy measure to intelligently sample the next point of contact and evaluate

it. In Chapter 7, we discuss conclusions drawn from the work and list out possible

future works. The algorithm introduced in this work, Chapters 2, 3 and 6, has been

submitted as part of a paper to the IROS 2016 conference [50].
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CHAPTER II

RELATED WORK

Researchers have worked on various ways of inferring properties of the environment

using vision, tactile sensing, or a combination of both. Knowledge of the material

properties of an object could help a robot deal with novel objects in the environment.

Vision and touch are often seen as complementary modalities as vision gives informa-

tion about the wide visible surface whereas touch can be used to infer properties in

a small area of contact.

2.1 Material recognition using tactile sensing

Robots make contact with various objects in the environment while performing vari-

ous manipulation tasks. Tactile sensing enables robots to gain information regarding

various object characteristics such as surface texture [29, 38], stiffness [43] and tem-

perature [14,39,42]. These properties have been shown to be useful in material classi-

fication [14,29,38]. Tactile sensing, due to its inherent local nature, can only provide

these labels to regions of contact. In this work, we use tactile information from these

points of contact and couple it with information from vision to infer properties of the

rest of the scene.

2.2 Material recognition using vision

Vision has been used for texture recognition [37, 59]. Recent works have shown that

vision can also be used for material recognition tasks [6, 7, 21, 28, 40]. Bell et al. [7]

introduced a large scale database, Materials in Context Database (MINC), that has

23 material categories. They also introduced a framework that combines a fully

convolutional neural network with a fully connected conditional random field (CRF)
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to produce pixel level material labeling of the scene with 73.1% mean class accuracy.

In this work we use the CNN model trained by Bell et al. [7] for the visual perception

system.

CRFs are commonly used in vision problems to simultaneously segment and assign

labels to each pixel in multi-class labeling problems [25,48,51]. Arnab et al. [6] used

a joint dense CRF model to augment dense visual cues with spare auditory cues

to estimate dense object and material labels. While a basic CRF uses a pairwise

potential term that incorporate local smoothing term, a dense CRF incorporates a

pairwise potential between each individual pair of pixels, which enables long range

interaction between pixels. This is useful for our task as it helps incorporate our

notion that visually similar and spatially proximal points have similar labels and at

the same time enables propagation of the information to spatially distant points.

2.3 Integration of vision and touch

Studies have shown that under some conditions, humans can be modeled as combining

visual and haptic information using a maximum-likelihood integrator [23]. They

propose that humans integrate estimates of an environmental property through each

individual sensory modality by performing an MLE integration. Some early work in

integrating vision and haptics [4,53,62] integrated information from the two modalities

to build models of objects.

Allen [4] used vision to first determine objects of interest which the robot then

explored using tactile sensing. The data from the two modalities were integrated to

build a model which was compared with a model database to recognize the object.

Stanisfield [53] presented a robotic perceptual system which used vision to segment

objects and haptically explore them to build a model of the object. Hosoda et al. [27]

used a Hebbian network to learn consistency between data from a camera and tactile

sensors to identify slip. Zytkow and Pachowicz [62] used vision and touch to learn
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object manipulation tasks. Luo et al. [41] combined vision and tactile sensing to

localize the local point of contact by matching tactile feature with the visual map. In

this work, we propose the use of dense CRFs to integrate the material classification

predictions from tactile sensing and those made using vision to generate labels for

the entire scene.

Ueda et al. [56] used vision to observe the deformation of an object after interacting

with it and used this information to extract rheological properties of the object.

Charniya and Dudul [19], used a lightweight plunger and an optical mouse to take the

surface image to classify the material. Zheng et al. [61] used deep learning for surface

material classification using surface texture images and time-series of acceleration data

measured from scratching the surface. They used multiple Fully-Convolutional Neural

Networks, one with images as inputs and the other with spectograms of acceleration

signals as inputs and used a fully-connected layer to combine information from both.

Gao et al. [26] also trained two CNN models for haptic and vision and combined

the two using a fusion layer for classification of haptic adjectives. They used four

exploratory behaviors such as hold, squeeze, slow slide, and fast slide to identify haptic

signals from BioTac sensor. Our problem is different from this work, as we combine

vision and tactile sensing to infer haptic properties of the entire visible surface.

2.4 Haptic Mapping of the scene

Haptic maps generated via active exploration [5, 24, 49] and incidental contact [8]

tend to be sparse due to the local nature of tactile sensing. Our previous work [8,13]

generated haptic maps of the visible scene and demonstrated the usefulness of haptic

map in manipulation tasks. We achieved this by introducing an iterative algorithm

that incorporates the notion that visually similar objects may have similar haptic

properties. We used this to infer dense haptic labels of the scene from few points of

contact. However, this algorithm did not leverage the potential of vision to predict

5



the haptic labels via visual cues alone. In this thesis, we introduce an improved

algorithm to achieve the same goals.

6



CHAPTER III

GENERATING A DENSE HAPTIC MAP

As discussed in Chapter 1, this work considers the problem of inferring a dense haptic

map of the visible surface by using vision, given sparse haptic labels assigned using

tactile sensing. The basic assumption is that surfaces that are visually similar are

more likely to have similar haptic properties. In Section 3.1, we discuss our previous

approach [13] to solve the problem. In Section 3.2 we introduce a new approach to

solve the problem using a dense CRF.

3.1 Previous Algorithm

Our previous algorithm [13] used the sparse haptic labels from tactile sensing and

RGB-D data from a Kinect to assign dense haptic labels across visible surfaces. In

order to infer the dense haptic labels across visible surfaces from the sparse haptic

labels, our algorithm maintained a visual-haptic relation.

3.1.1 Visual-Haptic Relation

The algorithm (see Algorithm 1) creates a relation between the visual and haptic

data using two lists.

The first list (LCL list) is the ‘Location Color Label ’ relation, which keeps track

of the locations of all the points of contact, their corresponding RGB values and

haptic labels assigned in Stage 1. When a new contact is made, the algorithm finds

the corresponding point in the image. It checks if the new point is the same as any of

the previously tracked points. If such a point exists, it increments the corresponding

haptic label. Otherwise, it stores the coordinates of this new point, its RGB value,

and haptic label counts in the list.
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Algorithm 1 VisualHapticRelation(SH Labels,RGB Im)
Input: SH Labels← Sparse Haptic Labels
Input: RGB Im← RGB Image from Kinect
Output: CL list← Color Label relation list
Output: LCL list← Location Color Label relation list

5: while SH Labels is not empty do
SH ← SH Labels.POP ()
XY ← SH.XY
RGB ← RGB Im [XY ]
Label← SH.Haptic Label

10: LCL← LCL list entry with best match XY
if LCL == None then

Label counts← new 0 array
Label counts [Label] + +
LCL← (XY,RGB,Label)

15: LCL list.Append(LCL)
else

LCL.Label counts [Label] + +
end if
CL← CL list entry with best match RGB

20: if CL == None then
Label counts← new 0 array
Label counts [Label] + +
CL← (RGB,Label counts)
CL list.Append(CL)

25: else
CL.Label counts [Label] + +

end if
end while

The second list (CL list) is the ‘Color Label ’ relation between colors and haptic

labels. When a new contact is made, the algorithm compares the RGB value of this

point and checks if the color is similar to any of the colors of previously tracked points.

If such a point exists, the algorithm increments the count of the corresponding haptic

label for this color. Otherwise, it creates a new relation for this color. The algorithm

uses this relation in Section 3.1.2.

3.1.2 Dense Haptic Map Generation

In this stage, our algorithm (see Algorithm 2) uses CL list (See Section 3.1.1) to infer

the haptic labels of the rest of the visible scene. For this, the algorithm compares the

8



Algorithm 2 Map(RGB Im,D Im,CL list,LCL list)
Input: RGB Im← RGB Image from Kinect
Input: D Im← Depth Image from Kinect
Input: CL list← Color Label relation list
Input: LCL list← Location Color Label relation list

5: Output: Hap map← Haptic map of visible scene
procedure GetLabel(RGB,CL list)

CL← CL list entry with best match RGB
if CL == None then

Label← “Unclassified”
10: else

Label← ArgMax (CL.Label counts)
Count← CL.Label counts [Label]
if Count ≤ 0.8 ∗ Sum (CL.Label counts) then

Label← “Uncertain”
15: end if

end if
return Label

end procedure
for each Pixel in RGB Im do

20: RGB ← Pixel.RGB
Pixel.Label← GetLabel (RGB,CL list)

end for
for each LCL in LCL list do

RGB ← LCL.RGB
25: Label← GetLabel (RGB,CL list)

if LCL.Label 6= Label then
XY ← LCL.XY
C RGB ← ConnectedComponent(RGB Im,XY )
C D ← ConnectedComponent(D Im,XY )

30: Segment← C RGB ∩ C D
for each Pixel in Segment do

Pixel.Label← LCL.Label
end for

end if
35: end for

for each Pixel in RGB Im do
Hap map.Add (Pixel)

end for

color of every point in the visible scene with the colors maintained in the CL list.

The algorithm determines the appropriate haptic label by finding a label that has

a count greater than 80% of the total haptic count for the best matching color, if

there is a matching color. If such a label doesn’t exist, then the point is classified as

9



‘Uncertain’. Any points in the visible scene that do not match a color maintained in

the CL list remain ‘Unclassified’.

However, there may be scenarios in which objects with visually similar properties

have distinct haptic labels. The algorithm detects such cases using contradictions

between CL list and LCL list. For example, a new contact could be made and the

haptic label for the color associated with the point (obtained from LCL list) could

be different from the haptic label for the color in general (obtained from CL list).

The algorithm addresses such situations by updating only a local segmented region

(instead of the whole scene) with the associated haptic label. The algorithm seg-

ments a region by computing connected components for the RGB image, computing

connected components for the depth image, selecting the color and depth connected

components that contain the point of interest (obtained from LCL list), and then

finding the intersection between these two connected components.

3.2 Using a dense CRF to generate Dense Haptic Map

We use a dense conditional random field (CRF) [35] in a manner similar to Arnab

et al. [6] to obtain a dense haptic map. Given a dense probability map from the

visual modality (pv) (Described in Chapter 4) and a sparse probability map from

tactile sensing (pt), we combine the two probabilities using convex combination. This

is inspired by Arnab et al. [6] who generated the material labels using two separate

modalities, vision and audio. They combine these two terms by taking their convex

combination. We use this approach as the tactile labels are sparse, similar to the

labels acquired by audio sensing in [6]. We combine the two terms as shown in (1)

pi(xi) =


wtvp

v
i (xi) + (1− wtv)p

t
i(xi), if tactile label is available

wvp
v
i (xi) + (1− wv)U, otherwise

(1)

where pvi (xi) is the probability of the label generated by a classifier trained to

10



Figure 1: Integrating tactile sensing and vision for material recognition. The vision
pipeline is processed by a fully convolution network trained on the MINC dataset by
Bell et al. [7]. We use a fabric based tactile sensing sleeve and HMMs [11] to classify
points of contact based on their haptic property. We combine the probabilities from
the two modalities by taking a convex sum inspired by Arnab et al. [6]. A dense CRF
is used to predict labels for each pixel from the combined probability map.
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predict labels using vision (Section 4.1) and pti(xi) is the probability of the label

generated by the tactile sensing (True labels in Section 3.4 and labels generated

by HMMs [9] in Section 6). U is a uniform distribution. wtv and wv are weight

parameters (which can take a value between 0-1) which determine the importance of

each individual prediction. We then assign haptic labels to individual pixels by using

a dense CRF [35]. The Gibbs energy function for a dense CRF is as follows:

E(x|I) =
∑
i

ψi(xi) +
∑
i<j

ψij(xi, xj) (2)

where ψi(xi) is the unary term and ψij(xi, xj) is the pairwise term. We use the unary

and pairwise terms used by Bell et al. [7].

ψi(xi) = − log pi(xi) (3)

ψij(xi, xj) = wpδ(xi 6= xj)k(fi − fj) (4)

In (4), δ is a label compatibility term which introduces a penalty if two pixels are

assigned different labels and k is a Gaussian kernel. The pairwise feature fi used

in [7] is the color (IL, Ia, Ib) represented in L∗a∗b∗ color space and position (px, py) of

each pixel:

fi = [
pxi
θpd

,
pyi
θpd

,
ILi
θL
,
Iai
θab

,
Ibi
θab

] (5)

To summarize,

1. We use the the dense CRF framework used by Bell et al. [7]

2. We use the formulation used by Arnab et al. [6] to combine the probabilities

from the two modalities.

3.3 Dataset for evaluation

We evaluated our algorithm on annotated RGB-D images in order to provide a con-

trolled evaluation with a substantial number of trials. For this evaluation, we used a

12



simple model of a robot, which provided a sequence of haptic labels with each label

associated with a specific pixel in the RGB-D image.

To create our dataset for this evaluation, we selected 186 RGB-D images of indoor

cluttered scenes suitable for robot manipulation tasks from various publicly available

RGB-D datasets [22, 31, 36, 44, 46]. We relabeled the segmented objects in these

images using tools from [47], applying a single haptic label to each segmented object

and, hence, all of its pixels. The haptic labels we assigned were Books, Cardboard,

Ceramic , Fabric, Foam, Glass, Leather, Metal, Onion, Paper, Plastic, Rubber,

Sponge, Wax, Wood, Bread, Plant and Soap. We chose these haptic labels because

tactile sensing could plausibly make these distinctions. Force, deformation, area of

contact, texture, stiffness, heat transfer and other haptic features have been used to

make comparable distinctions in prior research [12, 15, 20, 30, 38, 55]. Three people

independently assigned these haptic labels to the segmented objects in the 186 RGB-

D images. When the haptic labels for an object disagreed, the three people discussed

the label and attempted to come to a consensus. For the fewer than 5 objects for

which consensus was not readily achieved, they found real-world objects that matched

the objects in the images and physically interacted with them to achieve consensus.

One experimenter also categorized the images based on scenes (table top, shelf, sink

area, bed, floor and misc.) and clutter density (low and high).

3.4 Comparison with our previous algorithm [13]

We compared the performance of this algorithm to our previous algorithm from [13]

using the same evaluation procedure. We used the set of 186 RGB-D images of indoor

cluttered scenes suitable for robot manipulation tasks from various publicly available

RGB-D datasets and the same set of haptic labels as described in Section 3.3. For

each image, we generated a pool of labeled pixels by randomly selecting 1000 labeled

pixels from each segmented object in the image. We then randomly sampled 40 * Ni
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Table 1: Comparison of performance of our current algorithm with our previous
algorithm [13].

Contact Points/ P ixels correctly labeled
No. of Objects Present Algorithm Previous Algorithm

(Avg.±StdDev)% (Avg.±StdDev)%

5 81.14 ±15.02 % 63.08 ±19.71 %
10 85.12 ±11.68 % 69.48 ±18.26 %
15 87.58 ±9.73 % 71.98 ±17.28 %
20 89.20 ±8.68 % 73.84 ±17.02 %
25 90.72 ±7.62 % 75.11 ±16.18 %
30 91.59 ±6.89 % 75.67 ±16.09 %
35 92.37 ±6.16 % 74.98 ±16.91 %
40 93.05 ±5.58 % 76.02 ±16.26 %

Table 2: Performance on different environments after 40 contact points per object
using current algorithm.

Pixels
Env. F1 score [0, 1] correctly labeled
Type (Avg.±Std.Dev.) (Avg.±Std.Dev.)%

Low Clutter 0.86 ±0.12 94.36 ±5.16 %
High Clutter 0.72 ±0.13 90.28 ±5.42 %

Bed 0.92 ±0.06 97.59 ±2.02 %
Floor 0.92 ±0.10 96.85 ±3.77 %
Shelf 0.82 ±0.11 92.94 ±5.28 %

Sink Area 0.76 ±0.14 90.60 ±5.87 %
Table Top 0.82 ±0.14 93.10 ±5.45 %

Misc. 0.84 ±0.13 95.23 ±4.36 %

pixels without replacement from this pool, where Ni is the number of objects and i

is the image. Ni had values that ranged from 1 object to 24 objects. We repeated

this process for each of the 186 images, resulting in
∑186

i=1 40 × Ni = 52160 labeled

pixels in total. For each of the sampled points, we assumed that a patch (of size

10×10) centered around this point had the same haptic label as the center pixel and

updated the probability map for this patch. In our previous algorithm, we did not

make this assumption and considered the color of sampled pixel alone. We ran all

our simulations with wv and wtv set to 0.001.
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Figure 2: Percentage of pixels assigned correct/incorrect labels for environments with
different clutter densities. Green: Correct, Red: Incorrect.

Figure 3: Percentage of pixels assigned correct/incorrect labels for environments cat-
egorized based on scene. Green: Correct, Red: Incorrect.
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To evaluate how our algorithm performed with more contacts with objects in the

environment, we found the number of pixels that were correctly updated with each

new point of contact. Table 1 shows the results and compares it with the results from

our previous algorithm. As the number of contacts increased, the rate at which the

pixels were correctly updated decreased. Feedback-driven sampling, such as sampling

from locations that have not yet been labeled, might result in improved performance.

With a ratio of 40 contact points per object, the algorithm correctly updated an

average of 93% of the object pixels in an image. Since there were 8602 pixels per

object on average, 40 pixels per object is a relatively small portion of the visible

scene. Note that with just 5 pixels per object, the algorithm correctly updated an

average of 81% of pixels which is higher than the results achieved for 40 pixels per

object with our previous algorithm in [13].

3.4.1 Effect of Clutter

We classified the images in our dataset into two categories, low clutter and high

clutter. We computed the F1 score and percentage of pixels updated with a ratio of

40 contact points per object for all images in each category. Table 2 and Figure 2

show the results. Our algorithm performed better with low-clutter environments (F1

score = 0.86) when compared to high-clutter environments (F1 score = 0.72).

3.4.2 Effect of Type of Environment

We also classified the images into 6 different scene-based categories. We computed

the same performance measurements as in Section 3.4.1. Table 2 and Figure 3 show

the results.

3.5 Implementation:

We implemented our algorithm in Python using scikit-image [58], NumPy [57] and

OpenCV [17] libraries. We used the Python code provided by Bell et al. [7], which
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Figure 4: Simulation results of haptic categorization for some example images from
different publicly available datasets [22, 31, 36, 44, 46]. These examples show scenes
from different environments with varying density of clutter.

uses Caffe [32] for building CNN and the C++ implementation of dense CRF released

by Krähenbühl et al. [35].
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CHAPTER IV

MATERIAL RECOGNITION USING VISION

In Chapter 3 we described how we uses a dense CRF (Section 3.2) to generate dense

haptic labels given the material probabilities generated using tactile sensing and vi-

sion. In this chapter we discuss how vision is used to generate the material probabil-

ities. In Section 4.1, we describe the CNN model, released by Bell et al. [7], trained

for material recognition. In Section 4.2, we describe the procedure adopted to fine

tune the model for our application.

4.1 Material Recognition using CNN

Bell et al. [7] introduced the Materials in Context Database (MINC), a large-scale

open dataset of material in the wild. The images in the MINC dataset are annotated

with 23 material categories (brick, carpet, ceramic, fabric, foliage, food, glass, hair,

leather, metal, mirror, painted, paper, plastic, polishedstone, skin, sky, stone, tile,

wallpaper, water, wood, other). Bell et al. [7] also released the fine tuned GoogLeNet

model [54] on patches extracted from the MINC dataset. Figure 5 shows the archi-

tecture of the CNN model.

4.2 Fine tuning the CNN model

For this work we fine tuned this network to recognize 8 material categories (Ceramic,

Paper, Plastic, Metal, Fabric, Wood, Glass and Others) using patches extracted from

various RGB-D datasetes [6, 31, 34, 36, 52, 60]. We believe that these labels could

reasonably be classified using tactile sensing and they better match the labels in the

MINC database [7]. We annotated 228 images from these publicly available datasets

with 8 material categories mentioned. We ensured that none of these 228 images were
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Figure 5: The fully convolution network fine tuned on our image dataset. This
GoogLeNet [54] model was originally fine tuned on the MINC dataset by Bell et al. [7].
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Table 3: Effect of prior on performance using current algorithm.

Pixels correctly labeled
Contact Points Uniform Prior Prior from CNN

(Avg.±StdDev)% (Avg.±StdDev)%

0 15.27 ±25.66 % 36.96 ±28.28 %
100 84.94 ±16.08 % 88.68 ±9.21 %
200 87.12 ±15.47 % 91.41 ±7.17 %
300 88.6 ±15.11 % 93.07 ±5.9 %
400 89.63 ±14.93 % 94.26 ±4.99 %
500 90.43 ±14.83 % 95.16 ±4.32 %
600 91.05 ±14.79 % 95.89 ±3.74 %
700 91.59 ±14.76 % 96.47 ±3.29 %
800 92.0 ±14.75 % 96.92 ±2.9 %
900 92.32 ±14.74 % 97.32 ±2.55 %

1000 92.6 ±14.73 % 97.63 ±2.3 %

part of the 186 image dataset. We then adopted the same procedure used by Bell et

al. [7] to extract patches from these 228 images. Specifically, we used Poisson disk

sampling to sample pixels in the images and extracted square patches centered around

these points. The dimensions of the patch was 23.1 % of the smaller image dimension.

We then fine tuned the MINC CNN model using caffe [32]. We replaced the last fully

connected layer with 23 outputs with a fully connected layer with 8 outputs. Since

our dataset is small, we froze the weights of all the layers till the inception (3b) layer

(See Figure 5). We used one tenth of the learning rate used for the last layer for the

rest of the convolution layers. We used the stochastic gradient descent (sgd) method

for optimization. The training parameters are presented in Appendix A.

4.3 Effect of prior probability pv

For this set of simulations, we made two changes to the procedure adopted in Section

3.4. First we redefined the haptic labels of the 186 images as Ceramic, Paper, Plastic,

Metal, Fabric, Wood, Glass and Others. We believe that these labels could reasonably
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Figure 6: Effect of prior on performance of the algorithm.
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Figure 7: Figure 6 zoomed in for first 20 contact points.
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Figure 8: Figure 6 zoomed in for first 100 contact points.
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be classified using tactile sensing and they better match the labels in the MINC

database [7]. Second, we sample the points of contact directly from the image instead

of sampling from the pool as done in Section 3.4.

We evaluated the effect of the prior (pv) by comparing the performance of Uniform

prior with the the prior generated using the fully convolutional network released by

Bell et al. [7]. We repeated the same simulation as described in 3.4 using the same set

of 186 images. We performed the simulation by initializing pv to two different values

described below:

4.3.1 Uniform Distribution

We set pv to uniform distribution, i.e., we assume that the robot has no knowledge

of the class of the pixels. We assign equal probability to all classes.

4.3.2 Prior determined by CNN

We set pv to the probability map of the image using the fine tuned CNN described

in Section 4.2.

The results for the two different setting are shown in table 3 and in Figures 6, 7

and 8. The dense CRF using uniform prior assigns the correct labels to 15.27% of

pixels. On the other hand the dense CRF using the prior from CNN assigns the correct

labels to 36.96% of pixels. We see considerable improvement in the performance of

the algorithm when it uses the prior generated from the CNN.
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CHAPTER V

EXPLORATION USING ENTROPY MEASURE

In this work, we assume that robot is actively seeking for tactile information by

making contact with the environment. In chapter 3 and 4, the simulations were

conducted by randomly sampling the next point of contact. This strategy of sampling

the points of contact may not be the most optimal in terms of gaining the most amount

of information after each point of contact. Besides random sampling, there are various

entropy based strategies for exploration [16,18,45]. In these approaches, the idea is to

actively take actions that reduces entropy, a measure of uncertainty. In this chapter

we evaluate the use of entropy measure on the probability map defined in Eq. 1, to

sample the next point of contact. In Section 5.1, we describe the procedure used to

generate the entropy measure and Section 5.2, evaluates this procedure in simulation.

5.1 Entropy Measure

Given a probability map pi as defined in eq. (1), we calculate the entropy as shown

in Eq. 6,

ei =
∑
xi

pi × log(pi(xi)) (6)

We use a mean spatial filter to filter the entropy. We then choose the point with

maximum entropy i.e., highest uncertainty as our next point of contact.

5.2 Evaluation

We repeat the simulation as described in Section 4.3 the only change being that the

we sample based on entropy measure described above. The results are reported in

Tables 4 and 5 and Figures 9 and 10. In case of Uniform prior (Figure 10), we observe
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Table 4: Effect of sampling method with prior from CNN.

Pixels correctly labeled
Contact Points Random Sampling Max. Entropy Sampling

(Avg.±StdDev)% (Avg.±StdDev)%

0 36.96 ±28.28 % 36.96 ±28.28 %
100 88.78 ±9.11 % 78.28 ±17.69 %
200 91.37 ±7.18 % 86.33 ±13.88 %
300 93.05 ±5.9 % 91.16 ±10.72 %
400 94.25 ±5.06 % 94.55 ±7.18 %
500 95.2 ±4.3 % 96.54 ±4.89 %
600 95.87 ±3.78 % 97.72 ±3.42 %
700 96.47 ±3.28 % 98.38 ±2.5 %
800 96.96 ±2.87 % 98.85 ±1.81 %
900 97.32 ±2.57 % 99.11 ±1.38 %

1000 97.65 ±2.28 % 99.31 ±0.97 %

that the max entropy sampling strategy improves the performance of the algorithm

substantially. In case of prior being generated from CNN (Figure 9), the performance

drops in case of max entropy based sampling. This could be because the CNN prior

may not represent the uncertainty in the prediction accurately.
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Figure 9: Effect of sampling method on performance of the algorithm with prior from
CNN.
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Figure 10: Effect of sampling method on performance of the algorithm with uniform
prior.
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Table 5: Effect of sampling method with Uniform prior.

Pixels correctly labeled
Contact Points Random Sampling Max. Entropy Sampling

(Avg.±StdDev)% (Avg.±StdDev)%

0 15.27 ±25.66 % 15.27 ±25.66 %
100 84.94 ±16.08 % 87.11 ±11.18 %
200 87.12 ±15.47 % 91.42 ±8.05 %
300 88.6 ±15.11 % 94.4 ±5.67 %
400 89.63 ±14.93 % 96.1 ±4.35 %
500 90.43 ±14.83 % 97.25 ±3.34 %
600 91.05 ±14.79 % 98.02 ±2.47 %
700 91.59 ±14.76 % 98.51 ±1.92 %
800 92.0 ±14.75 % 98.86 ±1.42 %
900 92.32 ±14.74 % 99.1 ±1.12 %

1000 92.6 ±14.73 % 99.25 ±0.92 %
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CHAPTER VI

EVALUATION WITH A REAL ROBOT

We performed experiments using a real robot to validate the algorithm and evaluate

the performance while performing manipulation in a cluttered environment.

6.1 Experimental Setup

We used the humanoid robot DARCI (Figure 11), a Meka M1 Mobile Manipulator,

which includes a mobile base, a torso on a vertical linear actuator, and two 7-DoF

arms. The mobile base and torso height remained fixed throughout our experiments.

The right arm had a fabric based tactile-sleeve [10]. The tactile sleeve has 25 dis-

crete taxels that records the contact force. We trained HMM’s for haptic category

predictions [11]. The joints of the robot arm use Series Elastic Actuators (SEAs) and

have a real-time impedance controller with gravity compensation. This simulates low-

stiffness visco-elastic springs at the robot’s joints. The robot had a Microsoft Kinect

mounted on top of its torso. For our experiments, we used a system that runs Ubuntu

12.04 32-bit OS with the 3.5.0-54-generic Linux kernel. It has 16 GB RAM and an

Intel R© Core
TM

i7-3770 CPU @ 3.40 GHz × 8 processor. We used ROS Fuerte [1]

for communicating with the RTPC and the robot DARCI. We used cv bridge [2] to

convert between ROS images and OpenCV images. We used the GHMM toolkit [3]

to implement and train the HMMs.

We tested the algorithm in the foliage environment, which is an artificially created

cluttered environment. The environment is composed of trunks and leaves as seen in

Figure 11. This setup was used in our previous work [13].
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Figure 11: A robot DARCI, equipped with a tactile-sensing sleeve (blue) and a Kinect,
reaching into the cluttered foliage environment.

6.2 Experimental Procedure

We programmed the robot DARCI to make 10 reaches (5 goal positions × 2 times)

into the foliage environment for each trial. We conducted three such trials with

different leaves in the foliage (See Figure 12). For each of the trials, we randomized

the order in which the goal positions were selected. After reaching each goal position,

the robot arm came back to the initial starting position and then moved to the next

randomly selected goal position. The initial starting position of the robot arm was

the same for all trials. The base of the robot was fixed during the entire experiment.

During each reach, the robot uses our previously developed dynamic MPC con-

troller [33] to quickly reach the goal location with low contact forces. In this process

the robot makes incidental contact with various points in the environment. We used

forward kinematics to locate the contact points and transformed the co-ordinates of

the points of contact to the image pixel co-ordinates using the camera properties and

depth information. We ignored contacts beyond visible surface. We identified those
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Figure 12: The top row shows the scene after the robot made 10 reaches. The middle
row shows the annotated images. The bottom row shows the corresponding haptic
map. The trunks are marked with brown, the leaves are marked with green and the
background is marked in white. We ignored the background for our evaluation. The
Goal locations are marked with red X’s in the top row.

contacts as valid contacts, for which the depth of the contact point using forward

kinematics is larger than depth of the visible surface from the depth image. We used

trained left-right HMMs with 10 states and uniform prior for our experiments. We

had one HMM model each for trunk and leaf and classified the contact points as

trunks or leaves based on maximum likelihood estimates. We used this information

and the Kinect image to infer the haptic property of the rest of the scene using our

algorithm.

6.3 Experimental Results

We annotated the RGB image of the final scene after the robot completed 10 reaches

into the environment. We only annotated the regions belonging to trunk or leaf

and treated the rest as background. We used this annotated image as ground truth

for our evaluation. Figure 12 shows the haptic maps generated after various trials.
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Table 6: Performance of the algorithm on the foliage environment using current
algorithm.

Number of Average number of Pixels correctly labeled
reaches (N) contact points (Avg.±StdDev)%

0 0 27.76 ±1.57 %
1 6.67 58.36 ±20.35 %
2 7 65.37 ±27.07 %
3 7.33 65.37 ±27.07 %
4 7.33 65.37 ±27.07 %
5 7.33 65.37 ±27.07 %
6 12 86.87 ±10.97 %
7 16 87.04 ±10.73 %
8 16.67 87.07 ±10.75 %
9 17 84.46 ±14.44 %
10 22.67 82.52 ±9.70 %

Ignoring the background, we evaluated what percentage of the pixels that belong

to trunks and leaves are assigned the correct labels after each reach. The results are

reported in Table 6. The algorithm assigned the correct labels to 82.52% of pixels that

belong to trunks or leaves after 10 reaches. Note that, unlike in simulations, there is

some uncertainty involved in the haptic labels generated by tactile recognition system

during evaluations with a real robot. Also in some of the reaches, though the robot

made contact with objects in the environment, the HMM failed to classify the haptic

label of the object.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this chapter we summarize the contribution of this work and conclusions that can

be drawn from this work. This chapter also proposes the future work that can be

undertaken.

7.1 Conclusion

We presented a dense CRF based method to obtain dense haptic maps across visible

surfaces using sparse haptic labels provided by tactile sensing. This method performed

substantially better than our previous algorithm [13]. We based our approach on

the notion that surfaces near the robot that look visually similar are more likely

to feel similar to one another when touched. To analyze the performance of our

algorithm, we simulated haptic contact and applied our algorithm to a collection of

186 indoor cluttered images pertinent to robot manipulation selected from various

publicly available RGB-D datasets [13]. We discussed the effect of environment types

on the performance. With 40 contact points per object out of an average 8602 contact

points per object for all images, the algorithm correctly updated 93% of the pixels in

the images. The algorithm can also reach an average F1 score of 0.86 for low-cluttered

environments and 0.92 for bed scenes. It performs better for low-clutter scenes than

for high-clutter scenes. As expected, with more contacts, our algorithm performs

better at inferring the correct haptic labels for the environment. We also showed that

the algorithm performs better with a prior probability generated from a CNN trained

for material recognition. This framework also enables a robot to employ entropy

based strategies to explore its environment. We also evaluated the algorithm on a

real robot in the foliage environment where it assigned the correct label to 82.52% of
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pixels after 10 reaches.

7.2 Future work

The work done as part of this thesis has shown significant improvement in performance

over our previous algorithm for dense haptic mapping. However there is scope for

improvement in various aspects of the algorithm. The following subsections outlines

the possible future directions to the work.

7.2.1 Dynamic Environment

Our current algorithm assumes that the environment is mostly static and hence as-

signs the information acquired through tactile sensing to a physical location in the

environment rather than the object. It will be a value addition to associate the point

of contact to the object and track the object in order to enable the use of the algorithm

in a dynamic environment.

7.2.2 Fine tuning the CNN

In this work, we fine tuned the CNN provided by Bell et al. [7], using a small dataset.

It will be useful to create a larger dataset with material annotated to help the network

generalize better in robotic application.

7.2.3 Different features for visual similarity

Besides the use of color, it should be possible to use other features such as texture

to determine visual similarity between different pixels. This might require the use of

higher resolution cameras which can help extract better texture features.

7.2.4 Other modality for material recognition

Besides the use of a standard RGB sensor to determine the prior probability, it would

be possible to use other sensors such as a thermal sensing camera which can measure
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the thermal emissivity to determine material properties of the environment. This

information can then be added to our existing prior probability.
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APPENDIX A

CAFFE SETUP FOR FINE TUNING OF CNN

solver.prototxt:

1 net : ” f i n e tun i ng / t r a i n v a l . p ro to txt ”

2 t e s t i t e r : 100

3 t e s t i n t e r v a l : 1000

4 # l r f o r f i n e−tuning should be lower than when s t a r t i n g from sc ra t ch

5 b a s e l r : 0 .001

6 l r p o l i c y : ” s tep ”

7 gamma: 0 .1

8 # s t e p s i z e should a l s o be lower , as we ’ re c l o s e r to being done

9 s t e p s i z e : 20000

10 d i sp l ay : 20

11 max iter : 100000

12 momentum : 0 .9

13 weight decay : 0 .0005

14 snapshot : 1000

15 s nap sho t p r e f i x : ” f i n e tun i ng / t a c t i l e v i s i o n ”

16 # uncomment the f o l l ow i ng to d e f au l t to CPU mode s o l v i n g

17 # solver mode : CPU
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