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ABSTRACT

Large graphs with billions of nodes and edges are increasingly com-
mon, calling for new kinds of scalable computation frameworks.
State-of-the-art approaches such as GraphChi and TurboGraph re-
cently demonstrated that a single PC can efficiently perform ad-
vanced computation on billion-node graphs. Although fast, they use
sophisticated data structures, explicit memory management, and op-
timization techniques to achieve high speed and scalability.

We propose a minimalist approach that forgoes such complexities,
by leveraging the fundamental memory mapping (MMap) capability
found on operating systems. We present multiple, major findings; we
contribute: (1) our crucial insight that MMap can be a viable tech-
nique for creating fast, scalable graph algorithms that surpass some
of the best techniques; (2) a counterintuitive result that we can do less
and gain more; MMap enables us to use a much simpler data structure
(edge list) and algorithm design, and to defer memory management
to the OS, while offering significantly faster or comparable perfor-
mance as highly-optimized methods (e.g., 10X as fast as GraphChi
PageRank on 1.47 billion edge Twitter graph); (3) we performed ex-
tensive experiments on real and synthetic graphs, including the 6.6
billion edge YahooWeb graph, and show that MMap’s benefits sus-
tain in most conditions. We hope this work will inspire others to ex-
plore how memory mapping may help improve other methods or
algorithms to further increase their speed and scalability.

1ii
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INTRODUCTION

Large graphs with billions of nodes and edges are increasingly com-
mon in many domains, ranging from computer science, physics,
chemistry, bioinformatics, to linguistics. Such graphs’ sheer sizes
call for new kinds of scalable computation frameworks. Distributed
frameworks has become popular choices; prominent examples in-
clude GraphLab [13], PEGASUS [7], and Pregel [15]. However, such
systems often demand additional cluster management and optimiza-
tion skills from the user; and shared-memory systems can be expen-
sive to build [10, 6].

Some recent state-of-the-art works, such as GraphChi [10] and Tur-
boGraph [6] take an alternative approach by, instead, focusing on
pushing the boundaries as to what a single machine can do. Their
impressive results demonstrate that even for billion-node web-scale
graphs, computation can be performed at a speed that matches that
of a distributed framework, and at times even faster.

We agree that single-machine approaches are promising, and in-
deed they can be attractive for researchers and practitioners who
want scalable computation without having to use computing clusters.
However, when analyzing these works, we observe that they often
require sophisticated techniques [10, 6] to do explicit memory alloca-
tion, edge file partitioning, scheduling, etc., in order to boost speed.

Can we streamline all these, and still achieve the same, or even bet-
ter performance than the state-of-the-art approaches? Our curiosity
led us to investigate if memory mapping can be a viable technique
to support fast, scalable graph computation. In this paper, we present
our major contributions and results:

e We contribute our crucial insight that memory mapping, a fun-
damental capability from operating systems (OSes), is a viable
technique for creating fast, scalable graph algorithms that sur-
pass some of the best graph computation approaches such as
GraphChi and TurboGraph.

o We present the counterintuitive result that by leveraging memory
mapping, we can do less and gain more! MMap enables us to
use a much simpler data structure (edge list) and algorithm de-
sign (the main function class has only 600 lines of source code®),
and to defer management to the OS, while offering significantly
faster or comparable performance as highly-optimized methods
(e.g., 10X faster than GraphChi PageRank on 1.47B edge Twitter

graph);

1 Number of statements measured by LocMetrics
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PageRank Runtime on Twitter Graph (s)
(1.5 billion edges; 10 iterations)

m GraphChi
TurboGraph
= MMap

1-step Neighbor Query Runtime on
YahooWeb Graph (ms) (6.6 bilion edges)

TurboGraph
3.3 = MMap

Figure 1: Top: our minimalist MMap method (memory mapping) is 9.5X
as fast as GraphChi and comparable to TurboGraph; these state-of-
the-art techniques use sophisticated data structures and explicit
memory management, while MMap does not. Bottom: MMap is
46X as fast as TurboGraph for querying 1-step neighbors on 6.6
billion edge YahooWeb graph (times are averages over 5 nodes
with degrees close to 1000 each).

e We conducted extensive experiments on large, real and syn-
thetic graphs with up to 6.6 billion edges (YahooWeb [22]),
to understand how memory mapping perform under various
graph sizes, available main memory, number of threads to use,
etc. We demonstrate that MMap’s benefits hold under most
conditions, and we offer additional findings and practitioner’s
guide that may inform future followup research.

We note that we are not advocating replacing existing approaches
with ours. Rather, we intend to highlight how much performance gain
we can achieve by leveraging the memory mapping capability alone.
We believe other approaches can greatly benefit from integrating this
technique into their implementations.

[October 16, 2013 at 17:55 — classicthesis version 4.0 ]



OUR APPROACH

2.0.1 Owverview and Motivations

In this section, we describe our fast, scalable approach that leverages
memory mapping to speed up graph computation. Memory mapping
is a fundamental capability in operating system built upon virtual
memory management system. However, it has not been exploited ex-
tensively by state-of-the-art approaches such as GraphChi and Turbo-
Graph. Instead, they divide the edges into logical sections or separate
files on disk, and selectively load them into memory.

Although fast, these approaches require explicit memory manage-
ment and optimization in order to achieve high throughput and
speed. They may also be harder to develop and maintain. For ex-
ample, the GraphChi package contains about 8000 lines of code [10].

Can we streamline all these, and still achieve the same, or even bet-
ter performance than the state-of-the-art approaches? We believe we
can. And this motivated us to investigate to the idea of leveraging
memory mapping to achieve a minimalist approach that is not only
faster, but also simpler than GraphChi and TurboGraph. Our imple-
mentation has approximately 600 lines of codes consisting of actual
computation for at least 6 different algorithms like PageRank, con-
nected components, 1-step and 2-step neighbors, disk mapped array,
etc. and 200 lines of codes for pre-processing.

In the next few subsections, we briefly describe what memory map-
ping does, its benefits and how it can help with graph computation.
We refer the reader to [16, 17, 21] for more details on memory map-

ping.
2.0.2 Background: Memory Mapping and Its Advantages

Memory mapping is a mechanism that maps a file or part of a file
into the main memory. By doing so, files on disk can be accessed the
same way as if they were in memory [21]. This makes it possible to do
I/0O operations faster than accessing disk directly. The basic working
of memory mapping is illustrated in Figure 2. Internally by the oper-
ating system, memory mapping is implemented with virtual memory
and benefits from all the modern virtual memory management sys-
tem advancements.

Virtual memory system breaks the virtual memory space into
pages corresponding to contiguous virtual memory address. These
pages are usually 4KB in size and page tables are used to translate
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between virtual addresses to physical addresses. Modern paging sys-
tem employs various techniques to speed up the system performance.
Some of these are read ahead paging, least recently used page re-
placement policies etc. While reading files on the disk, the OS kernel
performs an optimization known as readahead paging [12]. When a
request is made for a given chunk of a file, it also reads the following
chunk of the file. If a request is subsequently made for that chunk, as
is the case when reading a file sequentially, the kernel can return the
requested data immediately. Again, the physical memory size being
much smaller than the virtual memory, the operating systems may
need to remove some page from the memory before bringing in new
pages. It uses the metrics of least recently used to throw out pages
that has not been accessed in a long time. This in terms has the effect
that most accessed pages of a process remains always in memory and
improves the overall throughput.

Systems like GraphChi and TurboGraph implements a lot of these
techniques like custom pages and page tables by themselves, which
eventually gets translated to operating system level paging. This in-
direction can incur large overhead on top of redoing a lot of complex
features that is already built into the operating system.

Memory mapping being a well studied technique, there are a lot of
resources and books that describe it in details. We refer the readers
to other comprehensive resources such as books on this topic [12] for
more details. Below we summarize major advantages of MMap from
the book [12].

e Manipulating files via memory mapping is advantageous to the
standard read() and write() system calls because reading from
and writing to a memory-mapped file avoids the extraneous
copy that occurs when using the read() or write() system calls,
where the data must be copied to and from a user-space buffer.

e Aside from any potential page faults, reading from and writ-
ing to a memory-mapped file does not incur any system call or
context switch overhead. It is as simple as accessing memory.

e When multiple processes map the same object into memory,
the data is shared among all the processes. Read-only and
shared writable mappings are shared in their entirety; pri-
vate writable mappings have their not-yet-COW (copy-on-write)
pages shared.

e Seeking around the mapping involves trivial pointer manipula-
tions. There is no need for the 1seek() system call. For these
reasons, memory mapping is a preferred choice for many appli-
cations.

Particular to our application’s standpoint here are some potential
benefits of using the memory mapping approach.
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Figure 2: The mechanism of memory mapping. A portion of a file on disk
is mapped into memory for use (blue); portions no longer needed
are unmapped (yellow). In our approach, our file is a large edge
list (on the left) which typically does not fit in the main memory
(on the right). Our algorithm treats the edge file as if it were fully
loaded into memory; programatically, it is accessed like an array.
Each “row” of the edge file describes an edge, identified by its
source node ID (left) and target node ID (right).
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Fast 1/0 Operations

The benefit of faster I/O speed provided by memory mapping is es-
pecially apparent when an application needs to execute a good num-
ber of operations on the same chunks of address space on disk. The
OS typically keeps these frequently accessed chucks in memory auto-
matically, so subsequent “reads” from disk become high-speed reads
from memory. In addition, as the OS does most of the work, addi-
tional low level optimization can be more directly provided by the
hardware.

Less Overhead & Simpler Code

Many programs that process large files requires a lot of manual opti-
mization to reach good performance. Nevertheless, the OS does most
of the work for memory mapping and depends less the developers
for optimization. For example, as a rough comparison, GraphChi was
written in more than 8ooo lines of code [10]; our implementation has
only 600 lines of core functional code, while achieving significantly
better performance.

2.0.3 Our Main Idea: Memory Mapping for Fast Graph Computation

As identified by GraphChi and TurboGraph researchers [10, 6], the
crux in enabling fast graph computation is to design efficient tech-
niques to store and access the graph’s edges, because many graph
mining algorithms such as PageRank and connected components are
expressed as a generalized version of the standard matrix-vector mul-
tiplication, as demonstrated in [7]. The matrix concerned here is of-
ten the graph’s adjacency matrix (or its variant), which we store as
an edge list (see Figure 2) and the vector contains information about
nodes (such as the two node vectors contain the current and next
ranks for all vertices in the PageRank algorithm). The question is, can
we do the computation efficiently without sophisticated data struc-
tures, complex memory management, and optimizations?

GraphChi and TurboGraph, among others, designed sophisticated
methods such as parallel sliding windows [10] and pin-and-slide [6] to
efficiently access the edges. The main bottleneck they are trying to
handle is the large number of edges that may be too large to fit
in memory (e.g., 50GB for YahooWeb). GraphChi and TurboGraph
utilizes sharding to break the edge lists into chunks, loads and un-
loads those chunks into the memory, perform necessary computation
on them and move the partially computed results back and forth to
the disk. This requires them to convert the simple edge list file into
a complex, sharded and indexed database, and extraneous memory
management for optimally accessing the database. We show that we
can forgo these steps and still achieve high speed, at times signifi-
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Figure 3: In our memory mapping based system, implemented algorithms
utilize two kinds of data structures based on their location: fully
in memory and fully mapped. With fully in memory implementa-
tion of PageRank, node vectors containing rank and degree values
are stored in main memory (shown in blue in the top). In the fully
mapped implementation, all node vectors are stored and mapped
from disk (shown in orange). Since the graph is too big to fit in
memory, it is always stored on disk as an edge list file and ac-
cessed by memory mapping. The figure depicts data structures
used by the PageRank algorithm, along with their locations and
the way they are manipulated. d represents the damping factor of
PageRank algorithm as explained in [4].
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cantly faster (up to 10 times faster) as shown by our experiments in
Section 3.

In the following subsections, we explain how memory mapping
based method enables us to use simpler data structures for storing
and accessing the graph edges, and how we can also easily handle
billion-node graphs’ node information (node vectors) via memory
mapping. Figure 3 gives an overview of how we can leverage mem-
ory mapping for implementing the PageRank algorithm. It shows the
data structures used in the algorithm and whether they are stored in
memory or memory mapped from disk etc.

2.0.3.1 Simple Graph Storage Structure

Memory mapping allows us to access the disk based edge file as if it
were an in-memory array, which is much simpler to read from and
to manage. In other words, given an edge list (e.g., comma-separated
text file, where each edge is represented by its two endpoints” node
IDs), we only need to convert it into its binary representation, i.e.,
converting each node ID into a binary integer. On the other hand,
GraphChi and TurboGraph create custom, sophisticated databases
that are often much larger than the given edge list text file; this also
incur considerable conversion (preprocessing) time. MMap primarily
works on the simple binary edge list file that we described, without
any complex data structures. In more details, given a raw, text-base
edge list file, which consists of m integer pairs where m is the num-
ber of edges in the graph, we simply convert each integer as a 4Byte
value in the corresponding binary edge file. For graphs with large
number of nodes, this binary edge file is often substantially smaller
than the original text file.

2.0.3.2 In-memory and Fully Mapped Node Vectors

Graph algorithms often need to store information associated with its
nodes. For example, in Figure 3, two node vectors are used for storing
PageRank scores during the computation, and another one for stor-
ing all nodes” out degrees. In other words, for PageRank, three such
node vectors are used. For the connected component algorithm, only
one such node vector is required for storing the component ID infor-
mation. For small and mid sized graphs (i.e. LiveJournal and Twitter
as shown in Section 3), we keep all the three node vectors in mem-
ory and let the OS use the rest of the available RAM for memory-
mapping the large edge file. We call them in-memory node vectors, as
shown in blue color in the top image of Figure 3. However this ap-
proach does not work for the large YahooWeb graph that has about
1.4 billion nodes, which requires 5.6GB space for even just one node
vector. With 16GB of main memory, the previous approach of stor-
ing all three node vectors in memory is no longer possible. To tackle
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this challenge, we experimented with using memory mapping for the
node vectors as well (i.e., each node vector is backed by a file on disk).
We tested two methods: (1) an hybrid approach where we keep part
of the node vectors in memory, and the rest memory-mapped; (2) a
fully-mapped approach where the whole disk-based vector is memory-
mapped. We tried using fully-mapped vectors first, and we hypothe-
sized that it would be slow, since there may be many paging ins and
outs (for the node vectors). To our pleasant surprise, it gave impres-
sive speed. We attribute this result to the strong locality of reference in
the node vector’s access pattern. We will explain this in more details
in Section 3. Given the positive results, we decided to use fully-mapped
node vectors for all our YahooWeb graph computation.

2.0.3.3 Supporting Scalable Queries via MMap
Global Queries

We will explain how memory mapping is used when running the
PageRank algorithm on the YahooWeb graph, as an example of global
queries, where the computation would access all edges in the graph
(thus the name “global”). We memory-map the entire edge file into
memory. Since our implementation is in Java, we can only map a max-
imum size of 2GB at a time (a Java limitation), the YahooWeb graph,
whose binary edge file is 50GB, requires about at least 25 mapping
“blocks”. The algorithm uses multiple threads to process these blocks
simultaneously. We also have three node vectors containing the rank
and degree information residing in the disk and mapped to memory.
Using the generalized matrix vector computation model from [7], a
unit of computation involves rank and degree information about the
source and destination of a single edge only. As explained earlier,
the OS only reads sections from the file (and map them to memory)
when they are needed, or expected to be needed by the process. Por-
tions that are no longer needed are automatically unmapped by the
OS (see Figure 2). To the algorithm developers, all these mapping and
un-mapping operations are transparent. They can view the edge file as
one large, contiguous file, and access it as if it were in memory. Un-
mapping also means writing back updated information back to disk
(in case of node vectors) which is also handled by OS. For optimiza-
tion, the OS can delay the writing until some updated pages are re-
moved from memory. This has the effect that for a period of time, the
highly accessed portions of the node vector (based on source nodes,
since the edge file is grouped by them) is residing in memory as if it
is an in-memory array.

Target Queries

Target queries (finding 1-step and 2-step neighbors of a node) re-
quires access to a portion of the edge list file containing information

[ October 16, 2013 at 17:55 — classicthesis version 4.0 ]



10

OUR APPROACH

about the node in context. To help speed up the target queries, we
used a simple binary index file in addition to the binary edge file.
All the real graphs used for experiment have edges corresponding to
same source node stored contiguously (an assumption made by the
GraphChi and TurboGraph as well). If not, we can presort the edge
file to achieve the same effect. Based on this structure, we define a
index file, that keeps starting offset of a source node’s edges from
the edge file and its degree information and can be directly accessed
based on a node’s ID. In the index file, we store a node’s file offset
from binary edge file in a 8 Byte Long data type, and the node’s de-
gree in a 4Byte Integer data type. Thus, each node take up 12 Bytes.
To ensure that file offsets in the index file are correctly recorded, we
include empty padding for nodes that are missing. So, finding the
1-step of neighbors of a node k would simply involve (1) read via
memory mapping 12 Bytes of information starting at the offset k x 12
of the binary index file, and (2) read via memory mapping again the
portion of the edge file starting at the offset found at (1) having the
size of degree x 8 Bytes.
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3.0.4 Goal and Overview

We compared our memory mapping approach with two state-of-the-
art approaches, GraphChi [10] and TurboGraph [6]. Following their
experimental setups, we measured the elapsed times for two classes
of queries: global queries (connected component, PageRank) and tar-
geted queries (1-step and 2-step out-neighbors). Table 1 lists all the
queries being evaluated.

We will first describe the graph datasets (real and synthetic) used
for this experiment with our experimental setup, then we present and
discuss our results.

3.0.5 Graph Datasets and Experimental Setup

Real-world Graphs

We used the same three large graphs used in GraphChi and Turbo-
Graph'’s experiments, which come at different scales, allowing us to
better understand how the three approaches being compared would
perform at those graph sizes. The three graphs are: the LiveJournal
graph [3] with 69 million edges, the Twitter graph [9] with 1.47 billion
edges, and the YahooWeb graph [22] with 6.6 billion edges. Table 2
shows the exact number of nodes and edges of these graphs.

Synthetic Graphs

For scalability experiments, we used synthetic Kronecker graphs [11].
The reason is that we can generate any size of graphs which mirror
several real world graph characteristics including power law degree
distribution, shrinking or constant diameter, etc. Table 3 shows the
number of nodes and edges of these graphs.

Table 1: Global queries and targeted queries being evaluated

Global Queries  Connected Component

PageRank

Targeted Queries 1-Step Out-neighbors
2-Step Out-neighbors

11
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Figure 4: Comparing the runtimes (in seconds) of three approaches:
GraphChi, TurboGraph, and our Memory Mapping, on LiveJour-
nal, Twitter and YahooWeb graph for global queries (connected
components and PageRank) with 16GB main memory. For PageR-
ank MMap is on average 1.5X faster than TurboGraph and 10X
faster than GraphChi. Similarly for connected component, MMap
on average is 2x faster than both TurboGraph and GraphChi. The
performance degradation from connected component to PageRank
for GraphChi is because connected component algorithm requires
a single pass over the binary edge file where as PageRank makes
10 pass on LiveJournal and Twitter and 3 pass on Yahoo graph.

Table 2: Real graphs used in our experiments

Graph Nodes Edges

LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182
YahooWeb  1,413,511,391 6,636,600,779

Table 3: Synthetic graphs used in our experiments

Graph Nodes Edges

G1 6561 5.75M
G2 19683 40M
G3 59048  284M

Gy 177146  1.914B
Gs 531441  13.8B
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Test computer

All tests are conducted on the same desktop computer with Intel i7-
4770K quad-core CPU at 3.50GHz, 4*8GB RAM, 1TB SSD of Samsung
840 EVO-Series and 2*3TB WD 7200 RPM hard disk. Unless specified
otherwise, all results were obtained from tests using 16GB of RAM
for all the 3 approaches and all 4 types of queries.

Since TurboGraph can only be run on Windows and GraphChi re-
quires a library missing on Windows, we conduct the tests for Turbo-
Graph and Memory Mapping on Windows 8 (x64), and the tests for
GraphChi on Linux Mint 15 (x64). Our system being implemented
in Java, however is capable of running on both Windows and Unix
environment.

Implementations tested

o GraphChi: vo.2.6 C++ version with default configurations. The
full GraphChi package contains about 8ooo lines of code [10].

o TurboGraph: vo.1 Enterprise Edition. TurboGraph requires users
to specify a buffersize allocated from memory for its use. We
however found that allocating it a buffersize close to avaialable
RAM (greater than 12GB with 16GB RAM) causes it to malfunc-
tion. The numbers reported for TurboGraph are the maximum
buffersizes that we could safely allocate to it achieving the best
runtime. TurboGraph’s source code is not available.

e Our Memory Mapping approach: Java 1.7 implementation; The
main functional classes has 600 executable lines of source code
and the overall system consists of 80o lines of codes.

Test Protocol

Each test is run under the same configuration for 3 times and the
average is reported. See Section 3.0.7 for details on how we choose
nodes to compare for target queries. Page caches were cleared before
each test by completely rebooting the machine.

3.0.6  Global Queries

Global queries represents the class of algorithms that needs access to
the entire edge list file one or more times. Figure 4 shows the elapsed
times of finding the connected components and PageRank (10 iter-
ations on LiveJournal and Twitter and 3 iterations on YahooWeb).
For finding connected components it should be noted that Union-
Find [20] algorithm which requires a single pass over the edge file,
was used by all the three approaches. MMap outperforms the Tur-
boGraph by roughly 2 times for all the three size of graphs and
GraphChi with even larger margins.

[ October 16, 2013 at 17:55 — classicthesis version 4.0 ]

13



14

EXPERIMENT

3.0.6.1 Results on LiveJournal and Twitter Graph

LiveJournal and Twitter graphs represents the small and medium
sized graphs used in our experiments. In our implementation of
PageRank, three node vectors are required for storing degree, cur-
rent and next rank information. For LiveJournal and Twitter, we kept
all the three node vectors in memory and only mapped the binary
edge list file from disk. Three node vectors for Twitter graph requires
around 500MB RAM space, thus allowing the OS to use the rest of
the memory for mapping the edge file. For LiveJournal we get the
most significant speedup because of its small size (the binary edge
file is around 526MB). The operating system can memory-map the en-
tire file and keep it in the physical memory at all times, eliminating
many loading and unloading operations that the other approaches
may require. The speedup had slowed down for Twitter, achieving
roughly 1.5x more speed than TurboGraph for PageRank. The reason
being Twitter has a large binary edge file (11GB on disk) in addition
the 0.5GB node vectors. Based on virtual memory page cache size,
the OS may not load the entire file in memory, and do on-demand
paging. This behind the scene management is transparent to the al-
gorithm user (or algorithm author). Our code remains the same, and
our edge file remains as one single file on disk making sharding un-
necessary.

3.0.6.2 Results on YahooWeb Graph

The implementation of PageRank for YahooGraph is different from
the other two due its large size. Note that a single node vector con-
taining 4Byte floats for YahooGraph would need around 5.6GB of
space. Thus the three in-memory node vectors (totaling 16.8GB) that
we used previously for the smaller graphs becomes impossible with
16GB RAM. To resolve this, we chose to use disk based memory
mapped files for node vectors as explained in Section 2.0.3.2. We ex-
pected this would significantly slow down our approach than the
other approaches which were using complex optimization for disk
based node vectors since the beginning. Much to our surprise, even
with this approach MMap performed quite nicely compared to Tur-
boGraph and GraphChi. As Figure 4 (c) shows, we in fact achieved
slightly better run time than theirs. Our understanding is, for such
large sized node vectors, access has a strong locality of reference.
As the edge file is grouped by source nodes, access to node vectors
are partially localized on source node’s rank and degree. Thus for
a period of time, OS loads only small chunks of each node vector
in memory and uses almost the entire remaining RAM for mapping
the huge binary edge file (which is around 50GB), speeding up the
overall throughput.
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Figure 5: Runtimes versus number of edges on Kronecker synthetic graphs
for three iterations of PageRank with our MMap approach. Notice
the almost linear scalability with increasing graph size.

3.0.6.3 Results on Synthetic Graph

We ran 3 iterations of PageRank on the 5 synthetic graphs with the
same settings as above to perform a scalability test with our MMap
approach. Figure 5 shows the runtimes for the graphs. Notice the
excellent linear scalability of computation time versus the graph’s
size achieved by MMap.

3.0.6.4 Effect by Number of Threads Used

For LiveJournal and Twitter, our implementation conceptually di-
vided the edge file with 50 mapped blocks and ran 4 threads on them.
However for the large Yahoo graph we used 100 mapped block and
100 threads for computation. This is because memory mapping is
generally faster for shared access by multiple threads given that they
each has enough computational load. However for smaller graphs,
the blocks size being miniscule, thread switching is more expensive
than the potential benefit of multiple threads. We tried the connected
component algorithm on LiveJournal with 100 blocks and 100 threads
which took 4s versus 2s with 50 blocks and 4 threads proving our as-
sumption.

3.0.6.5 Impact of Main Memory Size

To explore the counter-intuitive result achieved by using fully mapped
node vectors further, we ran the same experiment with varying size of
main memory. Figure 6 reports the runtimes on 3 iterations of PageR-
ank on YahooWeb graph. For main memory of sizes 32GB, 16GB and
8GB, our MMap is faster than TurboGraph and GraphChi. However it
performed badly than TurboGraph given 4GB main memory to work
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Figure 6: Running 3 iterations of PageRank on YahooWeb with varying
memory size. Working on the 50GB edge file, MMap can outper-
form TurboGraph with 8GB or more main memory. MMap falls be-
hind TurboGraph with 4GB memory due to excessive page faults
(thrashing) seen by the operating system’s virtual memory man-
ager.

Table 4: Maxmium out-degree for real graphs used in our experiments

Graph Max. Out-degree
LiveJournal 20,293
Twitter 2,997,469
YahooWeb 2,531

on. With 4GB of main memory and 100 competing threads, the page
faults rate is excessively increased causing the performance fall. It
shows a limitation on the performance of MMap’s automated mem-
ory management approach with considerably small main memory.
We also observed a similar pattern reported by TurboGraph about
GraphChi’s almost constant performance with increased memory
size.

3.0.7 Target Queries
Target queries represents the class of algorithms that needs to access

random partial chunks of the edge list file at most once. For target
queries we do comparison with TurboGraph only, since GraphChi
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Figure 7: Comparing the runtimes of 1-step and 2-step out-neighbor queries
for LiveJournal and Yahoo graph. For both the graphs we choose
5 nodes having similar numbers of 1-/2-step out-neighbors and
report average of those 5 runs. Since the variation in number of
neighbors for most nodes in these 2 graphs are not large, we fol-
lowed TurboGraph’s approach of averaging runtimes. MMap is
shown to outperform TurboGraph by several orders of magnitude.

does not have direct implementation for target queries. As explained
in the approach section, we use the index file to find the 1-step and
2-step neighbors of a node. Typically operating system works on a
much smaller granularity of page size, giving us a much faster time
than TurboGraph. TurboGraph used 1MB as custom page size for its
memory manager, however for most of the nodes, chunks containing
all of its neighbors is much smaller. This enabled MMap to achieve
the faster average times.

3.0.7.1 Effect of Degree Distribution

LiveJournal and YahaooWeb graph. TurboGraph suggested that they
randomly choose 5 nodes to compute target query times and took
average of the runtimes. Although this approach works mostly for
LiveJournal and YahooGraph, does not hold for the Twitter graph. Ta-
ble 4 shows that, degree distribution of LiveJournal and Yahoo graph
has a much smaller range than the Twitter graph. The samples from
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Table 5: 1-step neighbor query times on Twitter graph of representative
nodes from different degree range

MMap TurboGraph
Node ID #Neighbors Time (ms) Node ID #Neighbors Time (ms)
41955 67 1 6382:15 62 11
955 987 2 2600:16 764 12
1000 1794 2 3666:64 1770 13
989 5431 4 3048:48 4354 14
1037947 2997469 140 — — _

Table 6: 2-step neighbor query times on Twitter graph of representative
nodes from different degree range

MMap TurboGraph
Node ID  2-step Neighbors Time (ms) Node ID  2-step Neighbors Time (ms)
25892360 102,000 156 6382:15 115,966 166
1000 835,941 235 2600:16 776,764 1446
100000 1,096,771 532 3666:64 1,071,513 2382
10000 6,787,901 7281 3048:48 7,515,811 6835
1037947 22,411,443 202026 — — —
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which runtimes for TurboGraph was computed for Twitter had max-
imum 115K 2-step neighbors. But there are nodes in Twitter graph
with more than 22.5 million 2-step neighbors. So we ran the queries
on LiveJournal and Yahoo graph following their approach but treated
Twitter separately. TurboGraph uses custom notation for identifying a
node which consists of the pagelD and slotID corresponding to their
internal data structure. We were unable to recreate that mapping and
thus resorted to finding comparable nodes which returned roughly
equal number of 1-step and 2-step neighbors. Figure 7 shows average
query time for similar nodes in LiveJournal and YahooWeb graph.
Twitter graph. For Twitter graph, we picked representative nodes
covering entire distribution of 1 and 2-step neighbor numbers and
report the node IDs and corresponding runtimes in Table 5 and Ta-
ble 6 respectively. Being unable to identify corresponding nodes in
TurboGraph'’s representation for our nodes, we randomly tried a lot
of nodes with their custom representation and report times for nodes
that we found similar in terms of returned number of neighbors as
our experiment. It should be noted that this approach although valid
for 1-step neighbors, is inconsistent for 2-step neighbors. This is be-
cause a node with a million 2-step neighbors may have only one 1-
step neighbor with a million out-degree or a million 1-step neighbors
having single out-degree, and these two cases will have a large vari-
ation in runtimes. The dashed cells in Tables 5 and 6 indicate we
couldn’t find out a similar node in TurboGraph'’s representation.
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RELATED WORK

We survey some of the most relevant works, which may be broadly
divided into multi-machine and single-machine approaches.

Multi-machine. Distributed graph systems are divided into
memory-based approaches (Pregel [15], GraphLab [13][14] and
Trinity[19]) and disk-based approaches (GBase [8] and Pegasus [7]).
Pregel, and its open-source version Giraph [2], uses BSP (Bulk-
Synchronous Parallel) model, which updates vertex states by using
message passing at each sequence of iterations called super-step.
GraphLab is a recent, best-of-the-breed distributed machine learning
library for graphs. It exploits multiple cores to achieve high compu-
tation speed. Trinity is a distributed graph system consisting of a
memory-based distributed database and a computation platform. It
optimizes a memory storage called the cell storage and communica-
tion cost through message passing. For huge graphs that do not fit in
memory, distributed disk-based approaches are popular. Pegasus and
GBase are disk-based graph systems on Hadoop [1], the open-source
version of MapReduce [5]. These systems represent graph computa-
tion by matrix-vector multiplication, and process matrix-vector multi-
plication efficiently.

Single-machine. This category is more related to our work.
GraphChi [10] is one of the first works that demonstrated how graph
computation can be performed on massive graphs with billions of
nodes and edges on a commodity Mac mini computer, with the
speed matching distributed frameworks. TurboGraph [6], improves
on GraphChi, with greater parallelism, to achieve speed orders of
magnitude faster. X-Stream [18] is an edge-centric graph system us-
ing streaming partitions. By using streaming, this system removes the
necessity of pre-processing and building an index which causes ran-
dom access into set of edges. It also provides great parallelism, and
achieves high speed.

Our work aims to achieve an even greater speed, with a simpler
design; the experimental results in Section 3 demonstrate our suc-
cess. First, our work is a fast graph system on a single-machine such
as GraphChi, TurboGraph and X-Stream. Second, MMap does not
need a special graph representation with custom memory manage-
ment and large internal databases; MMap works on the bare bone
edge list. This lets researchers concentrate purely on solving prob-
lems on the computational level without paying too much attention
to complex system and data management issues.

21
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CONCLUSION AND FUTURE WORK

We proposed a minimalist approach for fast and scalable graph com-
putation based on memory mapping (MMap), a fundamental OS capa-
bility. We contributed: (1) our crucial insight that MMap can be a vi-
able technique for creating fast graph algorithms; (2) a counterintuitive
result that we can do less and gain more; MMap enables us to defer
memory management to the OS, so we can use simpler data struc-
tures and algorithm design (600 lines of source code), without sacri-
ficing speed; MMap even surpasses best-of-breed, highly-optimized
methods (e.g., 10X as fast as GraphChi PageRank on 1.47 billion edge
Twitter graph); (3) we performed extensive experiments on real and
synthetic graphs, including the 6.6 billion edge YahooWeb graph, and
showed that MMap’s benefits sustain in most conditions.

We believe this work has shown us an exciting new research direc-
tion that could push the single-machine graph computation speed to
a new height. We look forward to seeing how this technique may help
with other graph algorithms, or perhaps even general data mining
methods. For the road ahead, we will explore several related ideas,
such as: (1) port our Java implementation to C++ for even greater
speed; (2) investigate how using space-efficient data structures such
as Compressed Sparse Row may help boost speed; and (3) explore
how to support time-evolving graphs.
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