THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFPECT OF COLUNN LENGTH, LOADING, AND pH OF ELIENT

A THESIS

Presented to
the Faculty of the Division of Graduate Studies Georgia Institute of Technology

In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemical Engineering

by

William Nelson Johnson June 1950

THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BX ION EXCHANGE I. EFFECT OF COLUMN LENGTH LOADING, AND pH OF ELUENT.

Approved:

Date Approved by Chairman_Jume_27,1550

ACKNOWLEDGEMENTS
I wish to thank Dr. W. T. Ziegler for his invalu able aid, guidance, and encouragement in the prosecution of this problem as well as for his suggestion of it. I also wish to express my thanks to Mr. J. T. Roberts, Jr. and Mr. F. LaFond for experimental information aiding and verifying my experiments. Last, but by no means least, I wish to express my gratitude to my wife for her help and encouragement in the long hours required at the laboratory in the gathering of data.

TABLE OF CONTENTS

PAGE
Approval of thesis ii
Acknowledgerents iii
List of Tables vi
List of Figures vii
Foreword viii
Abstract of Thesis ix
CHAPTER
I INTRODUCTION 1
II GENERAL THEORETICAL BACKGROLND 5
III EXPERIMENTAL 8
Apparatus 8
Materials 8
Column Operction 10
IV DISCUSSION OF RESULTS 13
General 13
Flow rate 20
Acid Front 21
Effect of pH 22
Effect of Column length 29
Effect of Loading 32
BIRLIOGRAPHY 40

APPENDIX I:

$$
\text { Preparation of adsorbete solution } 42
$$

Conditioning of the resin 44
Loading the column 41
Precipitation and filtration of fractions 45
Ignition of fractions 45
Analysis of fractions 46
Make up of eluent solution 49
Calculation of results 50
APPENDIX II : Tables IIJ through XX 54

LIST OF TABLES

TABLE PAGE
I SUMMARY OF COLUNN RUNS 14
II PERCENTAGE RECOVERX -- HIGH PURITY OXIDE 31
III SLIT WIDTHS USED FOR PHOTOAETRIC ANALYSIS 48
IV EXTINCTION COEFFICIENTS USED FOR PHOTOMETRIC 48
ANALYSIS 48
V STMNARAY OF OPERATION OF COLUMN RUN NO . 27 54
VI ANALYSES FOR COLUMN RUN NO. 27 57
VII MATERIAL BALANCE FOR COLTMN RUN NO 58
VIII SUMMARY OF OPERATION OF COLUEN RUN NO. 28 59
IX ANALYSES FOR COLUNN RUN NO. 28 62
X MATERIAL BALANCE FOR COLUMN RUN NO. 28 63
XI SUMMARY OF OPERiTION OF COLUM R RUN NO. 30 64
XII ANALYSES FOR COLUMN RUN NO. 30 68
XIII MATERIAL BALANCE FOR COLTMN RUN NO. 30 69
XIV SUMMARY CF OPERATION OF COLUMN RUN NO. 31 70
XV ANALYSES FOR COEUNN RUN NO. 31 74
XVI MATERIAL BALANCE FOR COLTMN RUN NO. 31 75
XVII SUMNARY OF OPERATION OF COLUNN RUN NO. 33 76
XVIII MATERIAL BALANGE FOR COLUNN RUN NO. 33 78
XIX SUMMARY OF OPERATI ON OF COLUMN RUN NO. 34 79
XX SAMPLE CALCULATION OF PURITY OF RECOVERED 80OXIDES

LIST OF FIGURES

FIGURES PAGE

1. EFFECT OF pH OF ELUENT (Runs 21-2.3-24) 3
2. DIAGRAM OF COL LINR 9
3. CHARACTERISTIC ELUTION CURVE, RUN 27 15
4. EFFECT OF COLTMN LEEGTH (Runs 27-29) 18
5. EFFECT OF pH OF ELUENT - - PRASECDYMIIM 24
6. EFFECT OF pH OF ELUENT - - NEODYMIUM 26
7. ELUTION CURVE - - PURE NEODYMIUM RUNS 28
8. EFFECT OF LOADING - - pH 3.12 33
9. EFFECT OF LOADING - - pH 3.00 36
10. FORMULATION OF ADSOREATE SOLUTION 41
11. CHARACTERISTIC CURVE - - ENLARGED VIEW OF
OVERLAP REGION 53

FOREWORD

It is felt thet a word of explanation regarding the organization of this thesis would enable the reader to more clearly understand the material which it contains.

The main body of the thesis contains general discussion of experimental procedure and of materials used in the work. This discussion is intended primarily to give the reader the background for the diacussion of results which follows. For the reader who is interested In the details of procedure for comparison of this work with that of other experimentalists or for the reproduction of this work, the details, concerning the materials used and the procedures followed, are presented in Appendix I.

The actual details of the column operation are presented in Appendix IT. This includes such information as volume of fractions, weight of oxide obtained per frection, pH of effiluent, color of oxides obzained, average flow rates, and loadings used.

Abstract from Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in 1950.

THE SEPARATION OT NEODYVIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH, LOADING AND pH OF ELUENT.

A study was made of the effect of pH of eluent, column length, and loading upon the separation of neodymium, and praseodymium from a mixture of oxides containing approximately $12 \% \mathrm{Nd}_{2} \mathrm{O}_{3}, 45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}, 4.7 \% \mathrm{CeO}_{2}$, and $38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}$. A 120 cm . Dowex 50 resin column (approximately 4.7 cm . in diameter) was used to make the following runs and the results compared to determine the effect of pH of eluent and loading.
Run $\quad \mathrm{pH}$ of eluent loading Composition of oxide mixture

27*	3.12	$30 \mathrm{gms}$.	(45.1\%	Pr 50
28	3.12	15 gns.	12.0\%	$\mathrm{NC}_{2} \mathrm{O}_{3}$
30	3.00	30 gns .	38.2\%	$\mathrm{La}_{2} \mathrm{O}_{3}$
31	3.00	15 oms.	4.7\%	CeO_{2}
33	3.12	3.6 gms .	100\%	$\mathrm{Na}_{2} \mathrm{O}_{3}$
34	3.12	30 gms .	$\{12 \%$	$\mathrm{Na}_{2} \mathrm{O}_{3}$
			(38\%	$\mathrm{La}_{2} \mathrm{O}_{3}$

To determine the effect of column length, the results of the above runs were compared with the results of runs made previously under similar conditions except for the use of

[^0]a 73 cm . resin column for the earlier runs.
The greatest effect was found upon variation of pH of the eluent. This effect was such $8 s$ to indicate that in general an optimurn pH exists for the separation of neodymium and praseodymium between 3.00 and 3.12 on a Dowex 50 resin column. The effect of pH was found to be rather critical and to be the primary variable of the three variables studied.

Increasing the column length had no appreciable effect upon the separation of components. No general conclusions could be drawn as to the effect of this variable since slight effects may have been obscured by errors within experimental limits and since data was obtained for only swo different lengths of resin colimn. However, for practical separations of the particular mixture of rare earths studied, the shorter (73 cm .) column is recommended.

A reduction in loading gave better seraration at a pH away from the optimum but had only a very slight effect, if any, when separation was already high. A possible effect of loading on the shape of the praseodymium curve was observed but further experimentation will be required to establish this effect definitely.

SEPARATION OF NEODYMIUM AND PRASEODYMIUM

BY ION EXCHANGE

I. EFFECT OF COLUMN LENGTH, LOADING AND
pH OF ELUENT

I

INTRODUCTION

In 1949 experimental work with the rare earth oxides in the low temperature laboratory of the State Engineering Experiment Station led to a search for a suitable method of separating neodymium, praseodymium and lanthanum from a mixture of their oxides. At that time the technique of ion exchange was chosen as the most promising method of separation. Experiments were undertaken by W.T. Zieglerl et al., utilizing the properties of the synthetic exchange resin, Dowex 50.2 In the period of time between the start of this work and the formulation of the plan of this thesis, some twenty four runs had been made under conditions based principally upon the results obtained by Spedding3and his coworkers using
$I_{\text {Blomeke, J. J., Roberts, J.T. Jr., and Ziegler, W.T., }}$ Paper presented before George section - American Chemical Society, Neeting in Miniature, November 17, 1949.
$2_{\text {Bauman, W.C., and Elchorn, J., J. Am.Chem. Soc., 69, }}$ 2830, (1947).
3^{3} Spedaing,F.H., Voigt, A.F., (iladrow, E.N., and Sleight, N.R., J.Am. Chem.Soc. 69, 2777, 2786, and 2812. (1947).

Amberlite resins and those of Harris and Tompkins 4 using Dowex 50. These experiments showed complete separation of lantranum from the other two rare earths but only incomplete separation of neodymiun from praseodynium. Furthermore, these experiments raised questions which pointed the way to the experiments carried out in this thesis and to otiers now in process at the Experiment Station.

In a comparison of three runs made under similar conditions, except for pH of the eluent solution, it had been observed ${ }^{l}$ that as the pH of eluent was raised successively from 2.90 to 3.00 and 3.12 , the traillng edge of the proseadynitum elution curve tended to shorten and the peak height to increase, glving the effect of a narrower, sharper band with each increase of pH (see figure 1). On the other hand, while the neodymium curve exhitited a shortening tralling edge for the same pF changes, the curve appeared to become narrower and sharrer for the change from pH 2.90 to 3.00 but to reverse the change and become broader and lowerfor the change of pH from 3.00 to 3.12 . The question was raised as to the possibility of this effect boing due to the excess of acid known to be present in the adsorbate solution, thus giving the effect of ar acid front ilmitation. ${ }^{5}$

[^1]FIGURE 1
EFFECT OF pH OF ELUENT

RUN	pH	Resin bed Dowex 50
21	2.90	NH_{4} - form
23	3.00	4.7 cm - diam $-73 \pm 2 \mathrm{~cm}$. long
24	3.12	Loading -30.0 gm oxide.
		Comp: $10.5 \% \mathrm{Na}_{2} \mathrm{O}_{3} ; 45.6 \% \mathrm{Pr}_{6} \mathrm{O}_{11}$
		$43.9 \% \mathrm{La}_{2} \mathrm{O}_{3}$

To study further the effect of pH of eluent upon the separation of neodymium and praseodymium, it was decided that the following column runs should be made:

pH	3.12	30 gm . oxide loading
pH	3.00	30 gm . oxide loading
pH	3.12	15 gm . oxide logding
pH	3.0 C	15 gm . oxide loading

These runs were to be made on a longer resin column (120 cm) than that used heretofore since the general theory of ion exchange suggested that greater separation of peaks might be obtained in this way. The work of spedding, et al?, bears out this indication. In addition, the adsoriote solution of rare earth chlorides was to be neutralized with dilute ammonium hydroxide to eliminate insofar as possible the effect of acid front limitation. From these experiments it was expected that information might be drawn cencerning the effect of loading and of column length as well as the effect of pH of eluent on the separation of neodymium and praseodymium.

[^2]CHAPTER II
GENERAL THEORETICAL BACKGRONND
Berore undertaking a discussion of tre specific results of the group of experiments, the general aspects of the 10 exchange process will be briefly reviewed, The first step in a separation of mixed cations is to adsorb these fons onto the resin. This is accomplished simply by allowing the solution of the ions to flow through the bed under such conditions that the ions to be absorbed have a greater affinity for the resin than the ions already on the resin. In the present application the adsorption of ions actually means that they displace other ions which have been held to the resin principally by electrovalent forces, the resin being an aromatic hydrocarbon polymer th the replaceable ions being attached to nuclear sulfonic groups. The affinity of cations for the cation exchanger increases with the positive charge of the ion (i.e. Monopositive < dispositiveく tripositive) and ions having the same charge, increases with decreasing hydrated ionic radius or with increasing basicity. 1 The cations are adsorbed until the mass action equilibrium between rare earth ions on the resin and rare earth ions in solution is attained; i.e.,

$$
\mathrm{M}^{+\mathrm{n}}+\mathrm{n} \mathrm{NH}_{4} \mathrm{R} \Longrightarrow \mathrm{n} \mathrm{NH} 4_{4}^{+} \quad \mathrm{MR}
$$

[^3]That this process is limited initially to the top part of the bed has been demonstrated by Spedding ${ }^{2}$ who concluded that the length of column occupied was directly proportional to the weight of starting material.

After the initial adsorption of the ions from their salt solution, a complexing agent is jassed through the column. In this instance the complexing agent is citric acid containing varying amounts of amonium hydroxide added to obtain the desired pH. An explanation of the manner in Which the elution occurs has been given by Harris and Tompkins ${ }^{3}$ on the basis of simple mass action reactions. The reactions taking place or in equilibrium are:

$$
\begin{equation*}
\mathrm{nNH}_{4}^{+}+\mathrm{MR}_{\mathrm{n}} \rightarrow \mathrm{M}^{+\mathrm{n}}+\mathrm{nNH} \mathrm{~N}_{4} \mathrm{~N} \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
\mathrm{M}^{+\mathrm{n}} \quad+\mathrm{y} \mathrm{H}_{\mathrm{X}} \mathrm{Cit}^{\mathrm{x}-3} \sim \mathrm{M}\left(\mathrm{H}_{\mathrm{X}} \mathrm{Cit}\right)_{\mathrm{Y}}^{-\mathrm{z}} \tag{2}
\end{equation*}
$$

where \mathbb{N}^{-n} is the rare earth cation, $H_{\mathrm{K}} \mathrm{Cit} \mathrm{X}^{-3}$ some citrate ion (principally $\mathrm{H}_{2} \mathrm{Cit}^{-}$at pH's used here), R the resin ion, and z representing the charge on the complex ion $=n-y(x-3)$. Equation (l) would only proceed a small way toward completion were it not for the reaction represented by equation (2) winch effectively removes the M^{-n} ions from solution, thereby allowing more $\mathrm{m}^{-\mathrm{n}}$ ions to be removed from the :resin. Further, the amount of citrate ions prosent, and hence the
${ }^{2}$ Spodinng, F.E., ot al., J.Am.Ohem.Soc. 69,2786 (1947)
$3_{\text {Harris, D.H. and Tompkins, E.R., J.Am"Chem: Soc. } 69 \text {, }}$ 2792, (1947).
${ }^{4}$ Nachod, F.C., Ion Exhange Theory and Application, p. 179 Academic Press Inc., New York, H.Y. (1949).
degree of completion of equation (2), is devendent upon the pH of the eluent because of the equilibrium reaction:

$$
\mathrm{H}_{3} \mathrm{Cit}=(3-x) \mathrm{H}^{+}+\mathrm{H}_{x} \mathrm{Ci} \mathrm{t}^{\mathrm{x}-3}
$$

When, however, these complex ions reach the pure $\mathrm{NH}_{4} R$ below the adsorbed band, the equations above are reversed and the ions are readsorbed onto the resin, due simply to mass action. This process of complexion and readsorption is repeated many times causing the rare earths in effect to flow down the colum but at a rate much lower than the flow rate of the eluent. In addition, the complexing action and adsorption equilibria are different for ions of different basicity, thus causing ionic bands to move down the cclumn at different rates, those with the highest atomic number moving at a faster rate and hence being eluted first. 5 To separate a group of rare earths then, the question is simply that of magnifying the differences in adsorption and complexion by use of several variables, chiefly; type and concentration of complexing agent, pH of eluent, dimensions of the column, and flow rate.
${ }^{5}$ Tompkins, E.R., Khym, J.X., Cohn, W.E., J.Am.Chem. Soc. $6922769(1947)^{\circ}$

CHAPTER III
EXPERIMENTAL

Apparatus

The apparatus for the actual column runs consisted essentially of a large pyrex tube approximately 47 mm inside diameter and 150 cm long having a coarse porosity fritted glass plate sealed into the boteom end. (Figure 2) A Dowex 50 resin bed was built up over the fritted plate to a depth of 120 cm . in the wshed ammonium form of resin (the actual depth of bed varied from $118-120 \mathrm{~cm}$ during the runs -shrinking as rare earths were adsorbed.) A sonstant head tank and a turntable which was actuated by a timer for automatic collection of fractions conpleted the column unit. The flow rate of effluent was controlled by a pinch clamp on the exit tube from the column proper and the rate of influent was dependent upon the effluent since the top of the column was closed by a rubber stopper. In badition to the column, a Beckman Miodel g gless electrode pH meter and a Beckman Model DU quartz spectrophotometer were used for analysis. The details of column operation, conditioning of the resin, and of the methods of analysis are give in Appendix I. Materiais

In order that the results of the proposed experiments might be compared with the results of those made previously, it was desirable that a starting mixture of essentially the

same composition as that used previously be obtained. Since none of the original mixture of oxides was still on hend, it was necossary to prepare the desired mixture from a quantity of "praseodymium ammonfum nitrate" (actually a mixture of neodymifu, preseodymium, lanthanum, and cerium ammonium nitrates) purchesed from Lindsay Light and Chemical uompany, West Chicago, Illinois. These nitrates were converted to the oxide form and the composition adjusted to that desired, utilizing some high purity laboratory stocks of praseodymium oxide which contained only a few per cent of neodymium oxide. The details of this operation are given in Appendix I. The final mixture of rare earths was kept in chloride solution of know concentration before adsorption as a convenience in handling. The final solution was analyzed and its composition found to be equivalent to that of an oxide containing $45.1 \% \operatorname{Pr}_{6} \mathrm{O}_{11}, 12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}, 38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}$, and $4.7 \% \mathrm{CeO}_{2}$. The analysis of neodymium and praseodymium was performed spectrophotometrically; the percentage of ceric oxide was determined from Run 31 in which complete separation of this oxide w s obtained; and the percentage of lanthanurn oxide by difference. It may be noted at this point that the ceric oxide present represented an unexpected compliceting factor in these experiments.

The eluent solution was made up by dissolving 300 gms of citric acid monohydrate and 18 gms phenol in 18 liters of distilled water to give approxinately a 5% solution of citric
acid. First the citric acid and phenol were dissolved in the water, the solution made up to the desired volume, and then the pH was adjusted to the desired value by the additinn of concentrated ammonium hydroxide. The function of the phenol was to prevent mold formation in the solumn. Spedding ${ }^{l}$ using amberlite resins has found that 0.1% of phenol is sufficient to prevent this growth and that up to 1.0% may be added without effect upon the shape or size of the elution bands. Further details concerning the makinis up of the eluent are presented in Appendix I.

Column Operation

A column run was started by neutralizing the adsorbate solution to as high a pH as was easily obtainable without precipitating rare earth hydroxides ---usually pH $\doteq 2.0$. This adsorbate solution at a concentration equivalent to approximately 30 grams of oxide per liter was then poured on to the colum and the column washed with a liter of water. In general, the flow rate at which the loading was done was 20 ml . per minute (or $1.1-1.2 \mathrm{ml}$. per $\mathrm{sq} . \mathrm{cm}$. per minute). Experiments in progress by Roberts ${ }^{2}$ in this Laboratory have indicated that adsorption of lanthanum under these conditions occurs in such a manner that a column length of approximately

[^4]21 cm . (containing about ore equivaleat of resin) is required per equivalent of rare earth in the adsorbate solution. The fractions collected during loading and during washing have been designated fractions A and B, respectively, in the tabulated data concerning the column runs. At tie completion of the washing, eluect of desired pH was introduced at the top of the colum, the flow rate adjisted, and the run was under way. One hour fractions (about one liter per fraction) were taken except for the perion when both nedaymium and praseodymiun were being eluted together, during which time half hour fractions were taken. As the fractions were collected, the volume, mean pH , and color of each was noted and then saturated oxalic acid solution added to precipitate the rare earths. The optical densities of the citrate solutions were checked at intervals by means of the spectrophotometer as a control device only, since concentrations were too low to give an acourate analysis. This device was particularly valuable in detemintng the over"ap region. When the end point of the praseodymiun elution curve was reached, as tnalicated by no precipitate upon the addition of oxalie acid, several additional fractlons wene taken to insure that all the praseodymion was off the column and then the pH of eldent was increased to remove the cerium and lanthanum which had remained on the colum undtsturbed by the low ph eluent. The location of the ceriun lepended upon the losding and pa as show in the summary of column suns (Table T).

The oxalate precipitates were filtered, the filter paper ashed, ignited in a muffle furnace at $050^{\circ} \mathrm{C}$. to convert the oxalates to the oxides, and the oxides weighed. Selected samples wore taken from the fractions in the neodymium-praseodymium overlap region and analyzed spectrophotometrically.

CHAPTER IV

DISGUSSIOM OF RESULTS

As previously indicated, the experimertal work consisted of preliminary preparations followed by six column runs which are summarized in Table I. The preliminary work has been discussed generally in former section and in detail in Appendix I. 'he elution curves of the six runs are of interest principally for comparative purposes and so, while the neodymium and praseodymium elution curves of all the runs are presented in Figures 7, 8, and 9, only one complete elution curve (figure 3) has been included as a unit. It may be observed that the order of elution followed the order of decreasing atomic number, i.e., the neodymium, first, followed by praseodymium, cerium, and lanthanum in that sequence. The pH of the effluent has been plotted as well and it may be seen that as the concentration of rare earths increases in the effluent, the pH decreases and reaches minimum points corresponding to the various peaks. A consideration of the pH curve will also indicate another very important part of the separation process. That is, the pH of the eluent was increased to elute the lanthanum. On Run 31 , this increase was accomplished in two steps, thus allowing the cerium to be removed at pH 3.20 before raising the eluent pH still further to remove the lanthanum.

TABLE I

Run \#	P^{H} *	Loading	SUMMARY OF COLUMN RUN Analysis of adsorbate	Gms of N starting	de Elution of Cerium
27	3.12	29.99 gms	$\begin{gathered} \text { 45.1\% } \\ \mathrm{Pr}_{2} \mathrm{O}_{11} 1 \\ 12.0 \% \\ \mathrm{Nd}_{2} \mathrm{O}_{3} \\ 38.2 \% \\ \mathrm{La}_{2} \mathrm{O}_{3} \\ 4.7 \% \\ \mathrm{CeO}_{2} \end{gathered}$	3.60	with tail of praseodymium
28	3.12	15.00 gms	as in Kun 27	1.80	with lanthanum fractions
30	3.00	29.99 gms	As in Run 27	3.60	with lanthanum fractions
31	3.00	15.00 gms	As in Run 27	1.80	As a separate peak eluted at pH 3.20
33	3.12	30.00 gms	$\begin{array}{ll} 12 \% & \mathrm{Nd}_{2} \mathrm{O}_{3} \\ 88 \% & \mathrm{La}_{2} \mathrm{O}_{3} \end{array}$	3.60	
34	3.12	3.60 mms	$100 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$	3.60	

* For elution of neodymium and praseodymium fractions. All runs were made on 118-12 cm Dowex 50 ammonium form resin using 5% citric acid eluent solution with flow rate of approximately $1.1-1.2 \mathrm{ml}$. per cm^{2} per minute.

FIGURE 3

CHARACTERISTIC ELUTION GURVE
Run 27

```
30 gm. loading
4.5.1% Pr6O}1
12.0% Nd2O
```



```
    4.7% CeO_2
pH of eluent was 3.12 for first 50 liters, 3.92 thereafter
```

The elution curves for the other runs were similar in character (see Figures 7, 8 and 9) and data for their construction is presented in Appendix II along with analyses made, and material balances for each of the rare earths present in the run. It may be noted that the recovery varied between 95-100\% based on the total oxide in the starting mixture and that the percentage recovery of each of the components is in line with this total, indicating that no great discrepancies in analysis or location of components were made. Thus, it is believed that the elution curves of the components are essentially correct and may be used independently of the total elution curves.

A consideration of Run 27, however, revealed several seeming irregularities;

1. The percentage recovery of neodymium oxide was 1.3% dreater than 100. T_{h} is is believed to have been due principally to impurities which were on the column before the run was started, and which came through with the first few fractions of rare earths. This conclusion was reached from the fact that a tan color exhibited by the oxide from the breakthrough fraction indicated that it, at least, was not 100% neodymium oxide. This indication was bome out by the analysis of this fraction as only 89% neodymium oxide.

It is also possible that some praseodymium oxide was counted as neodymium, thus swelling the percentage recovery. However, the recovery of praseodymium oxide for the same run
is calculated as nearly 99% indicating that if this were the case, only a very small amount of the praseodymium oxide was so considered.
2. The breakthrough in Hun 27 came within a liter of the volume of effluent at which breaisthrough was obtained on the shorter column (Run 29 by LaFond). This is equivalent to saying that in one case the neodymium band traveled through 120 cm . of resin in the same amount of time as was required for it to travel through 73 cm . of resin under conditions believed to be the same, which is of course, unreasonable. A later run (Run 33) on the longer column with the same total loading, containing the same amount of neodymium as Run 27 , and at pH 3.12 , gave breaisthrough at about 15 liters of effluent which seemed more reasonable. Further, Kun 34 with the same amount of neodymium and at pH 3.12 broke through after about 15.5 liters of effluent. It is true that the latter run had a smailer loaded length of column giving a greater free length, but this difference is proportionately a very small one. It would therefore seem reasonable to believe that Run 27 should not have exhibited breakthrough until about the 15 th $11 t e r$ of effluent. A possible reason for the early breakthrough will be considered after the next irregularity is pointed out.
3. A comparison of the elution curves of Hun 27 and Run 29 (Figure 4) showed that, while the distance between the neodymium and preseodymium peaks was greater for the run on

FIGURE 4
EFFECT OF COLUNN LENGTH

```
Run 27 ( 0--0)
Run 29 ( x --x )
120 cm. column
    75 cm. column
        Both
        Loading - 30 gms.
        45.1% Pr6O
        12.0% N\mp@subsup{d}{2}{}\mp@subsup{O}{3}{}
        38.2%\mp@subsup{La}{2}{O}
        4.7% CeO2
    pH of eluent of 3.12
```


the longer column, the cerium band was separeted from the praseodymium by the shorter column and yet was nearly under the praseodymium peak in the long column run. This was directly contradictory to what had been expected as will be explained when the effect of column length is considered. One possible explanation of these latter two anomalies Is that the pH of the eluent used for Run 27 may have been a few hundredths of a pH unit higher than the set value of 3.12. First, consider that breakthrough was obtained in Run 28 (pH 3.12) with the 15 th Ifter of effluent but not until the 46 th ilter in Run $31(\mathrm{pH} 3.00)$. In other words, a known change of 0.12 pH units caused breakthrough to shift 31 liters -- a change of about $2 \frac{1}{2}$ liters per 0.01 pH units. In the light of this fact, it is reasonable that an error of only 0.02 pH units, resulting in the pH of the eluant for Run 27 being actually 3.14 , could have caused the breakthrough to come in the loth liter instead of in the l5th liter as expected.

Furthermore, the elution of cerium was started with the 49 th liter in Run 28 (pH 3.12) but had not started in Run 31 (pH 3.00) by the 99 th 11 ter at which time the pH was raise3. This constituted a change of cerium band location of about 4 ifters per 0.01 pH units. It seems quite possible, then, that an error of 0.02 pH units, resulting in the pH of eluent (Run 27) actually being 3.14, might cause the cerium band to be moved forward as compared to the short column run (Run 29) instead of increasing the peak separation as had been expected.

It is perhaps surprising at first glance trat a small change in pH should have an effect upon the cerium band nearly twice as great as its effect upon the neodymium breakthrough. However, it is belleved that this difference in behavior is due principally to the particular range of pH in which the effects were observed. Ir otiaer words, at a different pH range, a smilar error in pH would still probably affect cerium elution more than it would neodymium elution but the difference in effect would not be so striking.

Flow rate

It was thought that the overhead tank arrangement (see Figure 2) was such thet the eluent head would be controlled to within approximately one inch. Even so, a maximum variation in flow rate of about 10% was observed in Run 27 and a variation of about 30% in the succeeding runs. The sverage flow rate for any particular run was, however, between 0.99 and $1.09 \mathrm{ml} . / \mathrm{min} . \mathrm{cm}^{2}$ Although, Spedding has indicated that flow rate can affect elution, his result was obtained with changes of flow rate on the order of $100-400 \%$ and it is believed that the variation of flow rate had little or no effect upon the results of the experiments presented in thi s thesis.

$$
1_{\text {Spedding, et } 91 ., ~ J . ~ A m . ~ C h e m . ~ S o c ., ~}^{\text {G }} \text {, } 2786(1947) \text {. }
$$

Acla front limitation

As pointed out esmlier, when the offect of pH was studied on short (73 cm .) colum, the neodynium elution curve exhibited an anomaly. As the ph was raised from 2.90 to 3.00 and thence to 3.22 , the praseodyminn elution curves tended to narrow the band and the peak srew higher progressIvely (Figure 1). Hovever, while the neodynium elution curve changed in a similar manner for the change of pll from 2.90 to 3.00, on the additional change from 3.00 to 3.12, the neodymium elution curve became again lower and broader. It was thought at the time that this erfect might possibly have been due to an excess of acid known to have been present in the adsorbate solution. Concelvably, tho hydrogen :ons were adsorbed onto the column below the rare earths and thus formed a boundary of low pli through which the neodymium band could not move. When this hydrogen band moves slower than the neodymium band, the neodymium tends to "pile up" benind the hydrogen and neodymi um breakthrough cannot occur uritll shortly after the end of the acid band elution. This effect has been pointed out by other workers ${ }^{2}$ and is discussed in detail by Tomprins, et al., 3 being especialiy evident when acid

[^5]form resins or high pH eluent solutions are used.
In order to avoid this effect in the present experiments an adsorbate solution wasused which hac! been neutralized with dilute ammonium hydroxide to as high a pH as was easily obtainable without precipitation of the rare earth hydroxides. (approximately pH 2.0$)$ Run 294 essentially duplicated the former run (Run 24) except for the neutralization of the adsorbate and Run 27 was under the same conditions as Run 29 except for the use of a 120 cm . resin column for Run 27 as compared to 73 cm . for Run 29. When it was observed that the neodymium elution curves for Runs 27 and 29 did not materially differ from the one obtained in the previous experiment, i.e., Run 24, it was concluded that the anomaly was not due to acid front limitation.

Effect of pH

Walter 5 has examined the problem of adsorption of solutes treated in manner similar to that employed in ion exchange. He assumed chemical equilibrium between adsorbed material and the solution, and was able to describe mathematically the distribution of adsorbed material for one or more components for the case of monovalent- monovalent adsorption; i.e., both the adsorbed and displaced ions were monovalent. He describes a band with a sharp front for K l 1

[^6]and a diffuse front for $K<1$ where for the equilibrium reaction:
\[

$$
\begin{aligned}
& \mathrm{HR}+\mathrm{M}^{+} \leftrightharpoons \mathrm{MR}+\mathrm{H}^{+} \\
& \mathrm{K}=\frac{\left(\text { conc. of } \mathrm{W}^{+} \text {on the resin }\right)\left(\text { conc. } \mathrm{H}^{+} \text {in soln. }\right)}{\left(\text { Conc. of } \mathrm{H}^{+} \text {on the resin }\right)\left(\text { conc. } \mathrm{V}^{+} \frac{\text { in soln. })}{}\right.}
\end{aligned}
$$
\]

all values of concentrations being those at aquilibrium. Further, he concludes that as the band is developed or passes down the column, a band with a sharp front boundary and diffuse rear boundary is formed for $K>1$ and a band with sharp rear boundery and diffuse front is formed for $K<1$. That is, the elution curves obtained would be shaped thus:

$$
K>1
$$

The mathematical expressions are derived for the monovalentmonovalent exchange as mentioned above but the author states that the conclusion should be applicable qualitatively to exchange of ions of higher valence as well.

If now the shape of the praseodymium curves (Figure 5) are examined for pH of 3.00 and of 3.12 , for the runs on the longer column, the effect of change of pH is seen to be that of causing a marked change in the shape of the individual elution curves. If we may let K become funcion representing the relative affinity of the adsorbing ion to that of the ion already on the resin, then the qualitative result may be stated that for $k>1$ a curve is obtained with a sharp front

FIGURE 5
EFFECT OF pH ON SHAPE OF PRASEODYMIUM Elution Curves

Run 27 (X)
pH 3.12

Run 30 (0)
pH 3.00

Both:

$120 \mathrm{~cm} . \operatorname{column}$
30 gm . loading

$$
45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}
$$

$$
12.0 \% \mathrm{Na}_{2} \mathrm{O}_{3}
$$

$$
38.2 \% \quad \mathrm{La}_{2} \mathrm{O}_{3}
$$

$$
4.7 \% \mathrm{CeO}_{2}
$$

FIGURE 5
EPFEGT OF pH ON SHAPE OF PRASEODYMIUM
Elution Curves

```
Run 27(x)
pH 3.12
Run 30 (0)
pH 3.00
Both:
\(120 \mathrm{~cm} . \operatorname{column}\)
30 gm . loading
\(45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}\)
\(12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}\)
\(38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}\)
\(4.7 \% \mathrm{CeO}_{2}\)
```


boundary and a diffuse rear boundary, and for $K<1$ a curve is obtained with a diffuse front boundary and a sharp rear. Applied to the praseodymium curves we obtain:
pH 3.00
pH 3.12

B

K > 1
K < 1

It would seem, reasonable to assume that at some intermediate pH a symmetrical elution curve would be obtained for which $K=1$. Thus, in a manner of speaking, it may be stated that the effect of a pH change is to change the affinity of the rare earth ions for the resin due to the effect of both changing the equilibrium concentration of the citrate complexing ion and changing the ammonium ion concentration. Further, at some pH , specific for each rare eerth ion for a given resin, the affinity will be such that $K=1$ giving a symmetrical elution curve. For values of pH above this value, the curve will be longer on the leading edge and for values of pH below the specific, the curve will be longer on the trailing edge.

Inasmuch as the curves for neodymium obtained on the longer column runs did not seem to show this effect to any great degree, (Figure 6) the question was raised as to whether at pH 3.12 the neodymium elution curve was skew or dymmetrical since the above theory would suecest that one might expect this curve to be shaped as curve B above while the elution curve appeared nearly symmetrical. It was decided

FIGURE 6

EFFECT OF pH OF ELUENT ON SHAPE
 OF NEODMIMR ELUTION CURVES

Run 27
pa 3.12 (X)
Run 30
pH 3.00 (0)

Borif:
120 cm resin column
30 gm . Total loading
$45.1 \% \quad \operatorname{Pr}_{6} \mathrm{O}_{11}$
$22.0 \% \quad \mathrm{Nd}_{2} \mathrm{O}_{3}$
$38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}$
$4.7 \% \quad \mathrm{CeO}_{2}$

to make one run loading with just the amount of neodymium that was contained in the former runs and another, loading with the same amount of neodymium but making the total loading up to 30 gms. With lanthanum oxide. It was hoped that these runs (33 and 34) would show the effect of the neodymium curve at pH 3.12 unaffected by the presence of other elements and also the effect of lanthanum, if any. As shown in figure 7 , the curve at this pH is indeed longer on the front than on the rear as theory had predicted. The presence of lanthanum seemed to have had no effect at all upon the shape of the curve. The slightly earlier breakthro:agh in run 33 may have been due to the larger total load giving a shorter effective column length or it may have been due to other factors varying within the limits of experimental error. The presence of praseodymium, however, seems to have caused the neodymium elution curve to tail out under the praseodymium elution curve to some extent. (See Run 27, Figure 7). When the curves obtained by varying pH for the earlier experiments are reexamined, (Figure l) the effects explained above are evident although obscured to some extent by the scale required to place all three curves on the same plot, resulting in the effect not being particularly noticeable until exaggerated by the longer column. It may be noted that the shapes exhibited by the earlier curves (Figure l) are as follows:

${ }_{\mathrm{P}} \mathrm{H}$

Nd	Pr
B	B
B	A
A	A

FIGURE 7

NEODYMIUN ELUMION CUEVES
SHONING EFFECT OF PESBECE OF
CF OHER RARE EARTHS

Rur. 27 - ((-a) $\mathrm{Na}_{2} \mathrm{O}_{3}, \mathrm{Pr}_{6} \mathrm{O}_{11}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ in adsorbate (30 gms total) loading

Run 33 (X--X) $\quad \mathrm{Nd}_{2} \mathrm{O}_{3}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ in adsorbate (30 gms total)
loading
Run $34(0--0) \quad \mathrm{Nd}_{2} \mathrm{O}_{3}$ only in adsorbate (3.6 gms loading)
All runs:

$$
\begin{aligned}
& 120 \mathrm{~cm} \text { column } \\
& \mathrm{pH} \text { of eluent }=3.12
\end{aligned}
$$

The effect of pH on the movernent of "he cerium band has already been noted. It seems to have a surprisingly large effect when varied over the small range between $p H$ 3.00 and 3.12 but perhaps this is not unreasonable when it is considered that essentially the same effact has been observed for lanthanum which seems to move infinitesimally slowly even at pH 3.20 but very rapidly at pH 3.90 (see Run 31).

Effect of Column Length

As discussed in a previous section or general theoretical background, the use of ion exchenge to separate the components in a mixture of rare earths is dependent upon differences in their respective exchange equilibrium constants and on differences in the dissociation equilibrium constants of the complexes of the various rare earths. These differences cause the various components to move down the resin column in bands having different rates of movement for different components. Since they are moving at different rates, it would seem that the further they travel before elution, or the longer the free length of column, the greater should be the separation of the bands, and hence, of the components. This effect was, indeed, noted by Spedding 6 , for this reason the rums for this thesis were all made on a column considerably longer than the column used for previous experiments in this

[^7]laboratory. The greater separation of the neodymium and praseodymium pears given by the longer column as compared to that obtained on the short column ${ }^{7}$ is very noticeable (Figure 4). However, as pointed out by Harris, Tompkins, and Khym ${ }^{3}$, a widening of the elation bands may be expected with increasing column length according to either the mass transfer ${ }^{9}$ or the plate ${ }^{10}$ theory of chromatography. This effect was indeed noted in a spreading of the bands (ie., a decrease in slope of the leading and trailing edges.) The net result of these two effects was that no appreciably better separation was obtained for this particular mixture of oxides by lengthending the column alone. This result may be seen by a comparison of a previous run made at this Laboratory (Run Rf) and LaFond's Run 23 (both on a 73 cm . colum and under similar conditions of pH of eluent, composition of adsorbate, type of resin bed, and flow rate) with Run 27 made under similar conditions except for the use of a longer resin column (See Table ILa). A comparison of another previous run (Run 23) at pH 3.00 with Run 30 (Table II) (the long column run at 30 gm . loading and pH 3.00) would perhaps seem to indicate

[^8]TABLE IIa
PURITY OF RECOVERED OXIDES a

a For samole calculations see Table XX
b Indicates that no fraction was obtained of purity greater than 90% but less then 95\%
c Indicates that no fraction was obtained of purity greater than 95% but less than 100\%

Note: Numbers in parentheses indicate the number of fractions summed to obtain the weight of oxide having the designated purity.
slightly better separstion on the longer column. However, the increase is so slight as to be influenced by size of fractions taken ard number of fractions considered in setting the limits of purity $2 s$ well as by other experimental limitations on reproducibility so that no real conclusion could be drawn as to whether or not separation was affected by increasing the column length. Inasmuch as lengthening the column increases the length of the run and the amount of eluent solution required, the practical conslusion may be drawn that for this particular separation, a columi shorter than 120 cm . should be used.

Effect of loading

It was expected that if a smaller loading was used under a given set of onditions, narpower bands of the individual components would be formed upon onfginal adsorption. In fact, Speddingll found that the actual space required for the rare earths upon loading was directly proportional to the weight of the sample. Thus, if the loading was reduced by one half, the column length would be increased but not nearly in proportion to the reduction in band size and the net effect was expected to be that of aiding separation. Indeed, a comparison of the dution curves of Run 27 (30 gms .) with those of kun 28 (15 gms) (Figure 8) both at pH 3.12 would seem to indicate that better separation of the components is

$$
{ }^{11} \text { Spedding, et al.., J.Am. Shem. Soc., 69, 2786, (1947) }
$$

FIGURE 8
EFFECT OF LOADING

$$
\begin{aligned}
& \text { Run } 27 \text { (} 0 \text {) } \\
& \text { Run } 28 \text { (X) } \\
& 30 \mathrm{gm} \text {. loading } \\
& 15 \text { gm. loading } \\
& \text { pH of Both eluent - } 3.12 \\
& \text { Composition of adsorbate: } \\
& \text { 45.1\% } \mathrm{Pr}_{6} \mathrm{O}_{11} \\
& 12.0 \% \quad \mathrm{Na}_{2} \mathrm{O}_{3} \\
& 30.2 \% \mathrm{La}_{2} \mathrm{O}_{3} \\
& 4.7 \% \mathrm{CeO}_{2}
\end{aligned}
$$

obtained since a decrease in the sita or overlap region may be observed with decreased Icacine. a corrarisun of the tabulated percentage recovery of oxides of various purity for these two runs (Table IIb) would tend to bear this out. In addition, a comparison of the elution curves of Run 30 (30 gms.) with Run 31 (15 gms) both at pH 3.00 would seem by the same criterion of comparative sizes of overlap regions to indicate an improvement in separation. (Figure 9) However, a comparison of percentage recoveries of various purity for these latter two runs (Table IIb) does not show any appreciable difference in separation. It may be simply that with the separation of components already so greatly enhanced by the lower pH, any small improvement due to reduced loading is covered by variation of other conditions within the limits of experimental error, as well as by factors such as size of fractions collected and the possible large effect of one or two fractions on the particular percentage purity under consideration.

A consideration of the two comparison curves (Figure 8 and 9) together raised a question as to the effect of loading upon the location of the praseodymium peak. In one case (Figure 8) at pH 3.12 the peak is shifted toward the earlier part of the run, and in the other (Figure 9) the peak is shiftedaway from the earlier part of the run. In both cases, however, the peak is shifted toward the diffuse

TABLE IIb
PURITY OF RECOVERED OXIDES a

a. For sample calculations see Table XX.
b Indicates that no fraction was obtained of purity greater than 90% but less than 95%.
c Indicates that no fraction was obtained of purity greater than 95% but less than 100\%.

side of the curve rather than toward the shasper edge. It may be that this effect is coincidence and caused by slight changes in other variables thar loading. On the other hand, it may be that further experimentation could establish a trend with incressing or decreasing looding. In any event, this question must remain unanswered for the present.

FIGURE 9
EFFECT OF LOADING
Run 30 ($0-\infty$)
Run 31 ($\mathrm{X}-\mathrm{-}$ X)
30 gm . loading
15 gm . loading
Both
pH of eluent - 3.00
120 cm . Dowex 50 column
Adsorbate: $45.1 \% \mathrm{Pr}_{\mathrm{O}} 11$
$12.0 \% \quad \mathrm{Nd}_{2} \mathrm{O}_{3}$
$38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}$
$4.7 \% \quad \mathrm{CeO}_{2}$

CHAPTER V

CONCLUSIONS

Some studies have been made on the effect of pH of eluent, column length, and loading upon the separstion of praseodymium and neodymium from a mixture of oxides containing approximately $12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}, 45.1 \% \mathrm{Pr} 6 \mathrm{O}_{11}, 4.7 \% \mathrm{CeO}_{2}$, and $38.2 \% \mathrm{La} 203$. The greatest effect was found by variation of the pH of the eluent. This effect was such that it was definitely indicated that for the two ions studied in particular, and probably for any two ions ingeneral, there is an optimum pHifor maximum separation. This pH is such that the affinity of one ion for the resin is greater than that of the ion to be displaced and such that the affinity of the second ion is less than that of the ion to be displaced. For example, in the separation of neodymium and praseodymium using ammonium form resin, the affinity of neodymium for the resin should be less than that of the ammonium, and the affinity of the praseodymium for the resin should be greater than that of the ammonium. For the particular separation studied, this pHis believed to be between pH 3.00 and 3.12 , perhaps closer to 3.00 .

An increase in column length tended to increase the distance between peaks in the elution curve but to widen the bands at the same time so that no appreciable effect on com-
ponent separation was noted from the increass in column length used in these experiments. Since the longer column did, however, cause the length of the run to be increased and the time consumed to be greater, it is believed that the use of the shorter column is more practical for this particular separation.

A decrease in loading at a pH away from the optinum tended to give better separation of the components. At a pH near the optimun, however, no appreciable effect was noted as a result of lessening the load. It may well be that if better control of all other variables was obtained then a small effect might be found. An unexplained effect was noted upon the shape of the praseodymium curve and the location of that peak which would indicate trat more experinental results are necessary to a full understanding of the effect of this variable.

Bauman, W.C., and Eichorn, J., J. Am. Chem. Soc., 62, 2830, (1947)
Boyd, G.E.,Myers, L.S., Jr., and Adsmson, A.W., J. Am. Chem. SOC. 69.2849 , (1947)

Harris, D.H., and Tompkins, E.R., J. Am. Chem. Soc., 69 2792, (1947)

LaFond, $\underset{(1950)}{ }{ }^{\text {F }}$ unpubilshed work, Georgia Institute of Technology,
Nayer, S.W, and Tompkins, i.R., J.Am. Chem. Soc., 69 2866, (1947)

Nachod, F. . Ion Exchange Theory and Applications, Academic Press, Inc., New York, N.Y. (1949)

Roberts, J. T., Jr., unpublished work, Georgia Institute of Technology, (1950).
lompkins, E.R., Khym., J.X., and Cohn, ".E., J. Am. Chem. Soc. 69, 2769 (1947).

Spedaing, F. H., Voigt, A.F., Gladrow, E. M., Slelght, N.R., J. Am. Chem. Sos., 69, 2777, (1947)

Spedding, H. H., Volgt, A. F., Gladrow, L. M., Sleight, N. F., Powell, J.E., Wright, J. M., Butler, T..., and Figard, P., J. Hm. Chem. Soc., 69, 2786, (1947).

Spedding, F. H., Fulmer, E.I., Butler, f. A., Gladrow, E. M.; Gobush, W., Porter, P.E., Powell, J.L., and Wright, J. M., J. Am. Chem. Soc., 69, 2812 (1947).

Walter, John ${ }^{4} .$, J. Chem. Phys., 13. 229-234, (1945)
Ziegler, W.T., Blomeke, J.O., Roberts, J.I., Jr., Paper presented before Georgia Section - American Chemical Society, Heeting in Miniature, November 17, 1949.

APPENDIX I
Figure 10

APPENDIX I

Preparation of Adsorbate Solution.

To compare the proposed experiment with previous ones conducted in this laboratory, it was desirable to use a rare earth oxide mixture with approximately the same composition as that used for the previous experiments, i.e., approximately $10 \% \mathrm{Nd}_{2} \mathrm{O}_{3}, 45 \% \mathrm{La}_{2} \mathrm{O}_{3}$, and $45 \% \mathrm{Pr}_{6} \mathrm{O}_{11}$. As starting material there was available a quantity of praseodymium ammonium nitrate described by its manufacturer, Lindsay Light and Chemical Co. as about 30% oxide, containing $32 \% \mathrm{Pr}_{6} \mathrm{O}_{11}, 10 \% \mathrm{Nd}_{2} \mathrm{O}_{3}, 4 \% \mathrm{veO}_{2}$, and $54 \% \mathrm{La}_{2} \mathrm{O}_{3}$ with traces of other rare earth oxides; and some laboratory stocks of high purity praseodymium oxide containing a few percent of neodymium oxide. The manner in which the adsorbate solution was prepared may be most easily followed on Figure 10.

First, 1000 grams of praseodymium ammonium nitrate were dissolved in water and filtered to remove dirt and insoluble material. Then saturated oxalic acid solution was added to precipitate the rare earths as the oxalates. After filtering, the residue was ignited overnight at $850^{\circ} \mathrm{C}$. The oxides thus formed were redissolved in 2 N HC] and filtered in an attempt to remove as much of the CeO_{2} as possible, CeO_{2} being relatively insoluble in dilute HCl . This solution was neutralized with dilute ammonium hydroxicie until the
rare earth hydroxides started to form, enough HCJ. was added to bsrely redissolve the hydroxides and then saturated oxalic acid solution added to again precipitate the rare earth oxalates. The residue, after filtration, was once again ignited in the muffle furnace overnight to yield 266.2 grams of oxide (BI) which was analyzed spectrophotmetrically as $33.5 \% \operatorname{Pr} 60_{11}$ and $12.5 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$.

When one batch of laboratory stock (C) was analyzed, It was found to contain 25.1 grams of oxide $12.6 \% \mathrm{Na}_{2} \mathrm{O}_{3}$ and $57.8 \% \operatorname{Pr}_{6} \mathrm{O}_{11}$ with the remaining 30.4 presumably being $\mathrm{La}_{2} \mathrm{O}_{3}$ To obtain purer $\operatorname{Pr} 60_{11}$ for the formulation of the adsorbate solution, this mixture was fractionated by a column run over Dowex 50 resin which was used with citric act.d eluent at pH 3.20. The praseodymium rich fraction (C 1.) weighed 11.4 grams. Since more reiatively pure praseodymium oxide was needed, fifty grams of $B I$ was fractionated similarly, yielding a praseodymium fraction, BII, of 14.5 grams. These two fractions (CI AND BII) were combined and the mixture (CII) analyzed as 25.9 srams oxide containing $90.2 \% \mathrm{Pr}_{6} \mathrm{O}_{11}$ and $9.8 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$.

One hundred seventy grams of BI were dissolved in about 3 MHCl and filtered to remove the CeO_{2} which did not dissolve. Later developments indicated that at least a portion of the CeO_{2} was soluble in the HCl and thus remained with the adsorbate. This filtrate was combined with 19.2 grams of CII and with the other batch of laboratory stock (A) consisting of 19.4 grams of oxide analyzing $98.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}$ and 1.9% $\mathrm{Na}_{2} \mathrm{O}_{3}$ to give the adsorbate mixture of 205.6 grams of oxide
analyzed as $45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11} ; 12 \% \mathrm{Nd}_{2} \mathrm{O}_{3} ; 38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}$ and $4.7 \% \mathrm{CeO}_{2}$. Conditioning of the resin

The Dowex 50 resin for these experiments had been used for a number of previous runs and the impurities originally present sach as iron, calcium, etc. had been removed at that time. The resin was screened in the air dry form and found to be approximately 11.7% between 35 and 50 mesh, 54.0% between 50 and 80 mesh, and 34.3% less than 80 mesh. The resin was then placed in a column and converted to the ammonium form by passinc "five percent citric acid" solution adjusted to a pH of 3.9 with armonium hydroxide, thro gh the column. This process was continued until the pH of the effluent was equal to the pH of the influent. After the first run, the elation of lanthanum with eluent of pH 3.9 or greater accomplished the same purpose. Loading the Column

The adsorbate solution was divided into quantities containing the required amount of rare eartl chlorides for the various runs (2 quantities equivalent to 30 gms . total oxide and 2 equivalent to 15 gms . total oxide) and kept in tightly stoppered bottles. To begin a run the desired quantity of the adsorbate solution was first neutralized with dilute $\mathrm{NH}_{4} \mathrm{OH}$, made up to 30 gms per liter with distilled water and poured onto the column. By measurement, 25 milliliters of adsorbate solution yielded 1.4337 grams of oxide. Therefore, for a loading of 30 grams, $523 \mathrm{~m}: 11 \mathrm{lliters}$ equivalent to 29.997 grams of oxide, and for a loading of

15 grams, 262.5 miniliters equivalent to 14.999 grams of oxide were used.

After loading the column, eluent solution was admitted to the top of the column from a constant head tank and the flow rate set by a pinch clamp at the column outlet. This rate was set at approximately 20 milliliters per minute for all runs. Approximately 600 milliliter fractions were collected in the overlap region of $N d$ and $P r$ and approximately 1200 milliliter fractions at other periods during the runs. The volume, mean pH , color and time interval. of collection were recorded for all fractions and a record was kept of the time at which new batches of eluent solution were added and of the times of shut-down.

Precipitation and Filtration of Fractions
All fractions were checked for rare earths by the addition of 20 ml . of a saturated solution of oxalic acid. In selected fractions yielding a precipitate a sample, extracted before precipitation, was analyzed spectrophotometrically. Each precipitated fraction was allowed to stand overnight before filtering and the filtrate checked in every case for complete precipitation by the addition of 5 milliliters of saturated solution of oxalic acid. Each fraction was filtered through No. 40 Whatman (9 centimeter) ashless paper and the residue washed several times with distilled water. Ignition of Fractions

The precipitate from each fraction was placed in a
weighed porcelain crucible (size 0) and the paper carefully burned off over a gas flame. The crucible was then covered and fired overnight, or a minimum of six hours, in a muffle furnace at a temperature of $850^{\circ} \mathrm{C}$. After firing, the crucible was placed in a dessicator while still warm and allowed to cool. As soon as the crucible was cool, it was weighed to the nearest 0.1 milligram. The fraction was then stored in an appropriately labeled glass vial.

Analysis of Fractions
The analysis was carried out by means of a Beckman DU quartz spectrophotometer (Ser. No. 3204) using absorption peaks at about 446 millimirons for Pr and about 742 and 800 for $N d$. Approximately 0.1 grams (weighed tc the nearest 0.1 milligram of a fraction of oxide was weighed directly into a clean dry 10 milliliter volumetric flask immediately after the ignition of the oxide was completed. Two milliliters of 2 M HCl was then added to the flask and the flask was warmed to remove any chlorine formed by the reaction of HCl with $\mathrm{Pr}_{6} \mathrm{O}_{11}$. The flask was then filled to the mark with distilled water and mixed throughly by inversion and shaking.

The Corex photometer cells were carefully cleaned by soaking in chromic acid for about ten minutes, thoroughly washing in tap water, and rinsing in distilled water. They were then dried, first with a clean soft cloth, and then by
being placed in the drying oven for about fifteen minutes. The solution for analysis was poured into the clean, dry cell, the cell being filled so as to cover the optical surfaces. These optical surfaces were polished with lens tissue and the cells covered and placed in the cell holder.

The optical densities were determined for each sample at the three peaks by using the technique of scanning to find the peak. The optical densities were also mesasured at other points such as 400,650 , and 850 milimicrons to determine any background effects. When the optical dersities were low, 1. e., below about 0.040 , it was not always possible to locate the peaks by scanning since the change in serisitivity of the photocell with wave length was greater than the change in absorption. At least two determinations of the optical density at each point were made and all values recorded to the nearest 0.001 unit.

The cell corrections were determined using cell 13957 filled with distilled water as the standard. All cells except this standard were filled with $0.4 \mathrm{M} . \mathrm{HCl}$ and the optical densities at and near the various peaks measured. Care was taken that the cells were always placed in the same order and orientation in the cell holder.

Since it has been found that the optical density of a given solution at a given wave length is a function of the slit width used in the measurement, it was necessary to use
a standard slit width for all measurements made at any given wave length. The following table gives the slit widths which were used in all analyses for praseodymium and neodymium.

TABLE III
Standard Slit widths
Band ($m \mu$) Slit widths (mm.)
Neodymium
Praseodymium
800
0.0216
0.0 .8
0.0345

The analyses were calculated using the relation $C=D / k$ where C is the concentration of rare earth oxide in gms./ml., and D is the corrected optical denst.ty, and k is the extinction coefficient as given in Table i.V.

TABJEE IV1
Extinction Coefficients

for peak $800 \mathrm{~m} \mathrm{\mu}$	
Cone. Nd $\mathrm{O}_{3}(\%)$	k
20^{2}	62.0
40	61.5
60	60.6
80	59.6
100	59.3

The corrected optical densities are obtained from the measured optical densities by correcting for the absorption of the cell as related to the standard and for any observed background.effects.

A check was made of the absorption of the 5% citric acid solution at 10 mp intervals over the light range used
$l_{\text {These }}$ slit widths and extinction ccefficients are based on the work of Ziegler, W.T., Georgia Institute of Technology Oct. (1949).
in our analyses ($400-850 \mathrm{~m} \mathrm{\mu}$) and no absorption at all was observed. During Run 27, a number of fractions were sampled as they came off the column and the optical densities measured as explained above. The results indicated that the effluent solutions were too dilute to afford an accurate quantitative analysis except possibly for the peak fractions. For example, fraction $21 b$ of Run 27 (Nd peak) gave the following information --- assuming that the extinction coefficients are not effected by this change in the solvent. Peak Corr.O.D. Gmș/ml. Avg. \% in citric \% in HCl

800	0.019	0.000321			
744	0.012	0.000292	0.000307	94.8	94.3
444	0.001	0.000017	0.000017	5.2	6.1

 Make up of Eluent Solution

The citric acid eluent solution was made up in 18 liter batches. First 900 grams of citric acic monohydrate (U.S.P.) (50 grams per liter) and 18 grams of phenol (CP) (1 gram per liter) were weighed out and dissolved in 18 liters of distilled water. Next, concentrated ammonium hydroxide was added to obtain the desired pH . The size of the first portion of ammonia was estimated from a chart of pH plotted versus ammonia added so as to give approximately the right pH . The pH was adjusted exactly to that desired by
successively smaller additions. Care was taken that the solution was throughly mixed after each addition. Finally, each batch was tested for precipitable material with oxalic acid before its use. No precipitates were formed.

Before each series of measurements, the pH meter was standardized as follows. First it was set to the correct value reading against a standard buffer ${ }^{2}$ of 7.00 with the temperature taken into account. Then, since the general range of measurements was between 3.0 and 4.0 , the meter was tested with standard buffer of 4.00 and found to give the correct value of the buffer at the prevailing temperature to within 0.01 pH unit each time.

Calculation of Results
The elution curves for the various runs were obtained as follows:

1. The volume of each fraction was measured to the nearest 5 ml . The weight of oxide contained in each fraction was obtained by weighing the crucibles as soon as they were cool after the ignition of the oxalates to the oxides.
2. From the se two values, the concentration of oxide was calculated in grams per liter and plotted against the cumulative volume of eluent.
3. The individual elution curves were obtained by using the results of the spectrophotometric analyses
${ }^{\text {S }}$ The standan buffers used for the pH meter were from the National Technical Laboratories, South Pasadena, California They were stated to be pH 7.00 ± 0.01 250 and $2 H 4.00 \pm 0.01$
and the total weight per liter to find the weight per liter of the individual rare earth oxides. For calculation of the material balances, the results of the spectrophotometric analyses were combined with the total weights of oxide per liter to give the individual elution curves as indicated above. These curves were plotted on an enlarged scale. (See Figure 11 for an example) Values of concentration were read from these curves for each oxide and each fraction in the overlap region. The concentrations of Nd and Pr in each fraction were multiplied by the volume of that fraction to obtain the weight of oxide per fraction.

In each run the fractions laylng outsitde the overlap region were assumed to be 100% of the single component and added to the weights per fraction of that component for all the fractions in the overlap region to give the recovery of neodymium and praseodymium oxides (See Tables VII, X, XIII, and XVI.) The lanthanum oxide and cerium oxide weights were obtained simply by adding the weights of the individual fractions oontaining these substances.

To test this method of calculation, the weights of total oxide, as obtained by the addition of the weights of individual components obtained by this methoci, were compared with the weights of total oxide obtained by the addition of the actual weights of the fractions.

	(1)		(2)
Run	wt. by calc.	wt. by addition	(1)/(2)
27	29.5313	29.5655	0.9988
28	14.6849	14.7125	0.9982
30	29.1726	29.2054	0.9988
31	14.3583	14.3644	0.9996

Further, the percentage recoveries of the components seemed to be in accord witil the total percentage recovery for each run. Thus it is belleved that this nethod o: calculation of the material balances of the components gave essentially reliable results.

The calculations of the analyses are explainet in
the section on analysis of the fractions.

FIGURE 11
ENLARGED CURVE OF OVERLAP REGION
Run 28
$\mathrm{Na}_{2} \mathrm{O}_{3}(0) \quad \mathrm{Pr}_{6} \mathrm{O}_{11}$ (■)

APPENDIX II

TABLE V
SUMMARY OF OPZRATION OF COLUMN RUN 27
Column loading - 30.00 gms . Composition of adsorbate $\begin{array}{ll}\mathrm{pH} \text { adsorbate } \doteq 2 . & 45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}, 12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3} \\ \text { Avg. flow rate - } 1.09 \frac{\mathrm{ml} 2}{\mathrm{~cm} \mathrm{~min}} & 38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}, 4.7 \% \mathrm{CeO}_{2}\end{array}$

Wt. of oxide

Fraction Number	$\begin{gathered} \text { Volume } \\ \text { ml. } \end{gathered}$	Mean pH	gms per fractions	$\begin{aligned} & \text { gms per } \\ & \text { liter } \end{aligned}$	Color of oxide
A	950	3.63	---	--..	---
B	1120	2.84	---	---.	---
1	405	3.89	---	---	---
2	1520	3.4 .5	---	--..	
3	1120	2.92	-.-	--..	
4	1115	2.11	---	--..	---
5	1115	3.11	---	--..	---
6	1110	3.1 .2	---	--..	
7	1110	3.12	---	---	
8	1105	3.12	---	--*	
9	1105	3.12	---	--*	---
10	1095	3.12	-	--	---
11	1100	3.11	trace	trace	---
12	1095	3.12	0.0202	0.0185	It tan
13	1100	3.12	0.0558	0.0507	pale blue
14	1090	3.12	0.0999	0.0917	" "
15	1100	3.12	0.1502	0.1 .365	"
16 a	505	3.12	0.1148	0.2273	blue gray
16 b	1530	3.12	0.3672	0.22400	"
17	1090	3.12	0.2760	0.2 .532	"
18 a	550	3.12	0.1484	0.2 .698	lt gray
18 b	550	3.11	0.1559	0.22835	It \tan
19a	550	3.11	0.1648	0.2996	" "
19b	550	3.10	0.1671	0.3038	" "
20a	555	3.10	0.1714	0.1088	"
20 b	555	3.10	0.1764	0.3178	"
21a	560	3.10	0.1796	0.3207	" "
21 b	550	3.10	0.1764	0.3207	"
22a	555	3.10	0.1796	0.3236	gray tan
22 b	560	3.10	0.1779	0.3177	tan
23a	575	3.10	0.1777	0.3090	It brown
23 b	560	3.10	0.1658	0.2061	" ${ }^{\text {" }}$

* New batch of eluent added to overhead tank during fraction. --- Indicates no oxide obtained from fraction

APPENDIX II

TABLE V (Cont)
lat. of oxide

Fraction Number	Volume ml .	Mean pH	gms per fraction	gms per iiter	Color of oxide
$24 . a$	570	3.10	0.1668	0.2926	1 t brown
24 b	570	3.10	0.1926	0.3379	
25a	575	3.11	0.1967	0.3421	choc brown
25 b	560	3.11	0.1835	0.3277	" 1
26 a	570	3.12	0.2070	0.3632	"
26 b	570	3.11	0.2223	0.3900	"
27 a	560	3.11	0.2369	0.4156	" "
27 b	560	3.11	0.2473	0.14416	" "
28a	565	3.11	0.2567	0.1453	" "
28 b	570	3.11	0.2792	0.4898	"
29a	570	3.10	0.3064	0.5375	'
29b	560	3.10	0.3224	0.5757	dk brown
30a	560	3.10	0.3472	0.6200	black
30 b	565	3.10	0.3731	0.6604	
31 a	570	3.10	0.3957	0.6942	1
31 b	555	3.10	0.4144	0.74 .67	11
32a	560	3.10	0.4743	0.3470	"
32 b	560	3.10	0.4990	0.8911	"
33 a	560	3.10	0.4417	0.7888	"
33 b	550	3.10	0.5187	0.9431	"
34 a	550	3.09	0.5495	0.9991	"
34 b	555	3.09	0.5906	1.0641	"
35a	550	3.08	0.5787	1.0522	"
35 b	545	3.07	0.6551	1.2020	"
36a	545	3.07	0.6970	1.2789	"
36 b	545	3.06	0.7369	1.3521	"
37 a	545	3.07	0.7506	1.3772	"
37 b	535	3.07	0.7231	1.3516	"
38 a	535	3.08	0.6717	1.2555	dk choc brown
38 b	540	3.09	0.5910	1.10944	
39a	540	3.10	0.4731	0.8761	"
39 b	540	3.10	0.3315	0.6255	"
+ 40	1090	3.12	0.3916	0.3593	choc brown
41	1090	3.12	0.3480	0.3193	brick red

** Run stopped for several hours during fraction

APPENDIX

TABLE V (Cont)

FractionNumber	Wt. of oxide				
	Volume	Mean	gms per	gms per	Color
	ml.	pH	fraction	11.ter	of oxide
42	1110	3.11	0.3318	0.2989	pink
43	1115	3.11	0.2589	0.2322	lt pink
$\because 44$	1130	3.12	0.1723	0.1525	
45	1110	3.12	0.0983	0.0886	"
46	1110	3.12	0.0515	0.0464	"
47	1105	3.12	trace	trace	---
48	1105	3.12	---		-..
49	1100	3.12	.-.	...	---
50	1100	3.12	--.	---	---
51	1100	3.13	---	---	---
**52	1050	3.12	--*	---	---
***53	1000	3.18	---	---	-"-
54	1260	3.50	1.8150	1.4405	white
55	1260	3.58	4.4805	3.5567	
56	1250	3.58	4.5915	3.6732	"
57	1240	3.85	0.2703	0.2180	"
58	1270	3.89	-	---	2--
59	1240	3.90	---	---	---
60	1240	3.90	---	---	---

* New batch eluent added to overhead tank during fraction
** Run stopped for several hours during fraction
*** Introduction of pH 3.90 eluent started.
--- Indicates no oxide obtained from fraction.

APPENDIX II

TABLE VI
ANALYSES OF FRACTIONS RUN 27

Run 27	Weight oxide		Perce	ges	Wt. $\mathrm{Nd}_{2} \mathrm{O}_{3}$	Wt. $\operatorname{Pr} 6 \mathrm{O}_{11}$
Fraction Number	gm per liter	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{Pr}_{6} \mathrm{O}_{11}$	Total	$\text { gm per }{ }^{3}$	gm per
12	0.0185	88.9	---	88.9	0.0164	---
18a	0.2598	100.0	---	100	0.2598	
$18{ }^{\circ}$	0.2835	100.1\%	---	100.1	0.2835	---
19 b	0.3038	96.5	2.9	99.4	0.2932	0.0088
21 b	0.3207	94.3	6.1	100.4	0.3024	0.0196
23b	0.2961	76.2	25.2	101.4	0.2256	0.0746
25b	0.3277	46.0	55.5	101.5	0.1507	0.1819
260	0.3900	20.1	81.1	101.2	0.0784	0.3163
270	0.4416	10.7	89.6	100.3	$0.01+73$	0.3957
28 b	0.4878	6.3	96.4	102.7	0.0309	0.14722
29b	0.5757	3.7	95.0	98.7	0.0213	0.5469
$31 a$	0.5942	1.5	100.2	101.7	0.0104	0.6956

AFPENDIX II

TABLE VII
MATERIAL BALANCE RUN 27

[^9]
APPENDIX II

TABLE VIII

SIMTARY OF OPERATION OF COLJMN RUN 28

Colum loading - 15.0 gins.
pF adsorbate - 1.95
Avg. flow rate $-1.09 \frac{\mathrm{ml}_{2}}{\mathrm{~cm} \mathrm{~min}^{\mathrm{mln}}}$

Composition of adsorbate $45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11} \quad 12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$ 3 . $2 \% \mathrm{La}_{2} \mathrm{O}_{3}, \quad 4.7 \% \mathrm{CeO}_{2}$ Wt. of oxide
Fraction Number

A	535	3.62
B	1015	3.00
1	1110	3.90
2	980	3.32
3	965	3.09
4	960	3.12
5	945	3.12
6	945	3.12
7	930	3.12
8	930	3.12
9	930	2.12
10	1070	3.12
11	1070	3.12
12	1070	3.12
13	1075	3.12
14	1135	3.12
15	1150	3.12
16	1150	3.11
17	570	3.12
18	575	3.12
19	570	3.11
$20 a$	570	3.11
$20 b$	480	3.11
$21 a$	500	3.11
$21 b$	400	3.11
$22 a$	585	3.11
$22 b$	545	3.11
$23 a$	550	3.11
$23 b$	550	3.11
$24 a$	540	3.11

gms per
fraction

trace
.0399
.0802
.1233
.1676
.1000
.1176
.1210
.1040
.0874
.0867.
. 1196
.1035
.0824
.0706
gms per liter

- - -	---
---	--*
---	---
---	---
---	---
- -	---
---	-->
---	---
---	---
---	---
---	---
---	---

. $C 351$	1 t b	blue
. 6607		
. 1072	"	"
. 1470	"	"
. 1754	"	"
. 1914	blue	e gray
. 2045		
. 2123	"	"
. 2167	"	"
. 2185	"	"
. 2158	blue	tan
. 2044	"	1
. 1899	"	"
. 1702	gray	$y \tan$
. 1498	"	"
.1307	"	"

APPENDIX II

TABLE VIII (Cont)

Fraction Number	Volume ml .	Mean pH
269	545	3.12
26 b	550	3.12
27a	550	3.12
28a	540	3.12
28 b	540	3.12
293	540	3.11
29b	535	3.10
30a	540	3.11
30 b	540	3.11
312	540	3.10
31b	525	3.10
32a	530	3.10
32 b	535	3.10
33 a	545	3.10
336	530	3.10
34 a	530	3.10
34 b	535	3.10
35a	535	3.10
35 b	525	3.07
**36	1205	3.09
37	1115	3.09
*38	970	3.09
39	780	3.10
40	780	3.12
41	765	3.12
42	770	3.12
43	760	3.12
44	760	3.12
45	750	3.12
46	750	3.12
47	750	3.12
48	750	3.12
49	715	3.12
***50	1265	3.12
51	1270	3.67
52	1265	3.68
53	1270	3.80
54	1400	3.89
55	1140	3.89
56	960	3.89

RUN 28
(*) Now eluent added to overhead tank during fraction
(\%) Run stopped several hours during fraction
(\%\%) Introduction of pH 3.92 eluent started.

AFPENDIX II

TABLE IX

ANALYSTS OF FRACTIONS RUN 28

Run 28 Fraction Number	Weight oxide gm per liter	$\mathrm{Na}_{2} \mathrm{O}_{3}$	$\stackrel{\text { Pero }}{\mathrm{Pr}_{6} \mathrm{O}_{11}}$	tages Total	$\begin{aligned} & \text { Wt. } \mathrm{Nd}_{2} \mathrm{O}_{3} \\ & \text { gm per } \\ & \text { liter } \end{aligned}$	
21b	0.2123	100.9	1.6	102.5	0.2142	0.0034
23 b	0.0244	97.5	0.2	97.7	0.1993	0.0004
$25 b$	0.1307	85.1	13.6	98.7	0.1118	0.0178
26 b	0.1138	57.3	39.5	96.8	0.0652	0.0450
27 b	0.1267	28.5	70.3	98.8	0.0361	0.0891
28 b	0.1652	11.5	85.8	97.3	0.0190	0.1417
29 b	0.2123	5.2	94.2	99.4	0.0110	0.2000

APPENDIX II

TABLE X
MATERIAL BALANCE RUN 28

			$\mathrm{Nd}_{2} \mathrm{O}_{3}$		Pr6011	
		Average				
Fraction	Volume	Cumulative	gms per	gms per	gms per	gms per
Number	ml.	Volume	liter	fraction	liter	fractio

16-23a\%	---	---	0.1993	(1.1378)	---	---
23 b	585	23.5	0.182	. 1166	0.0004	. 0002
24 a	545	24.0	0.162	. 0992	0.001	. 005
24.6	550	24.6	0.141	. 0801	0.002	. 0011
258	550	25.1	0.1112	. 0776	0.010	. .0055
25 b	540	25.7	0.089	. 0600	0.0178	. 0096
268	54.5	26.2	0.0652	. 0485	0.031	. 0169
26 b	550	26.8	0.050	. 0359	0.0450	. 0248
$27 a$	550	27.3	0.0361	.0275	0.062	.0341
27 b	540	27.8	0.022	. 0195	0.0891	. 0481
28 a	540	28.4	0.0190	. 0119	0.115	. 0621
28 b	540	28.9	0.010	. 0103	0.1417	. 0765
29	540	29.5	0.010	. 0054	0.170	. 0918
290	535	30.0	0.001	.0054	0.2000	. 1070
30 n	540	30.5	0.001	. 0005	0.239	. 1291
$30 b-43 \% \%$		30.,	. 001	. 000	-23,	(5.9222)

	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	PrO_{1}	$\mathrm{La}_{2} \mathrm{O}_{3}-\mathrm{CeO}_{2}$ Total	
In	1.7996	6.7636	6.433	14.9969
Out	1.7452	6.5295	6.4102	14.6849
$\%$ recovery	97.0	96.5	99.6	97.9

* Assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$
\%\% Assumed to be pure $\operatorname{Pr}_{6} 0_{11}$

AFPENDIX II

TABLE XI
SUMMARY OF OPERATION OF COLUMN RUN 30

APPENDIX II

TABLE XI (Cont)					
Fraction Number	$\begin{gathered} \text { Vol ume } \\ \mathrm{ml} \text {. } \end{gathered}$	Mean pH	gms per fraction	$\begin{aligned} & \text { gms per } \\ & \text { liter } \end{aligned}$	$\begin{aligned} & \text { Color } \\ & \text { of oxide } \end{aligned}$
*35	1170	3.00	---	---	---
36	1170	2.09	---	---	---
37	1200	3.00	---	---	---
38	1185	3.00	---	---	---
39	1190	3.00	---	---	
40	1190	2.99	---	---	
41	1195	2.99	---	---	---
42	1180	2.99	---	---	---
43	1190	2.99	trace	trace	
4	1180	2.99	. 0260	.0220	It blue
45 a	610	2.99	. 0275	. 0450	
45 b	615	2.99	.0440	. 0715	
46 a	610	2.99	. 0523	. 0857	"
46 b	620	2.99	. 0709	. 1144	"
\% 47 a	590	2.99	. 0843	. 1429	"
47 b	535	2.99	. 0916	.1712	"
48 a	550	2.98	. 1119	. 2034	"
48 b	570	2.96	. 1332	. 2337	"
49a	570	2.96	.1545	. 2711	"
49 b	570	2.95	.1767	. 3100	"
509	560	2.95	.1938	- 3461	"
50 b	570	2.94	. 2152	. 3775	v It blue
51.	565	2.94	. 2303	.4076	lt blue
51 b	570	2.92	. 2366	. 4098	lt blue
52 a	560	2.92	. 2429	.4338	
52 b	570	2.92	. 2423	.4251	"
53 a	570	2.92	.2308	.4049	"
53 b	570	2.94	. 2094	- 3674	Eray blue
548	560	2.94	.1800	. 3214	
54 b	565	2.94	.1526	. 2701	
55 a	565	2.95	. 1228	. 2173	"
55 b	565	2.96	.0994	. 1759	gray tan
$56 a$	560	2.96	.0812	.1450	"
56 b	565	2.98	.0781	. 1382	It tan
579	565	2.97	. 1031	. 1825	choc brown
570 580	565 560	2.95	-1589	-277	dk choc brown
58 b	565	2.91	. 3385	.5991	
598	565	2.90	.4308	. 7625	"
59 b	570	2.90	. 4946	. 8677	black
60a	555	2.90	. 5244	. 9449	
60 b	565	2.00	. 5443	. 9634	"
612	565	2.90	. 5478	. 9696	"
61 b	570	2.90	. 5439	. 9542	"

APPENDIX II

TABLE XI (Cont)

Fraction Number	Wt. of oxide				
	Volume ml.	Mean pH	gms per fraction	gms per liter	Color of oxide
62 a	560	2.90	. 5201	. 92288	black
62b	565	2.90	. 5159	. 9131	
63	1125	2.90	. 9622	. 8.553	"
64	1110	2.90	. 8934	. 8049	"
65	1120	2.91	. 8268	. 7382	"
66	1105	2.92	. 7430	. 6724	v dk brown
67	1115	2.92	.6713	. 6021	It ${ }^{\text {I }}$
*68	115	2.92	.6174	. 5345	"
69	1160	2.92	. 5416	. 4569	"
70	1115	2.93	. 4564	. 4093	"
* 71	1110	2.93	. 4004	. 3607	"
72	1130	2.95	. 3418	. 3025	"
73	1150	2.99	. 2876	. 2501	dk brown
74	1130	2.99	. 2376	. 2.103	
75a	575	2.99	. 1069	. 1895	"
75 b	575	3.00	. 0970	. 1687	"
$76 a$	565	3.00	. 0866	. 1533	"
76 b	570	3.00	. 0798	. 11400	"
77 a	575	3.00	. 0718	. 1249	"
77 b	575	3.00	. 0656	.1241	"
*78a	570	3.00	. 0598	.1049	"
78 b	595	3.00	. 0492	. 0841	"
79a	595	3.00	. 0569	. 0956	"
79b	585	2.99	. 0451	. 0771	"
80a	580	3.00	.0408	. 0703	1
803	580	3.00	. 0383	. 0660	"
81a	520	3.00	. 0335	.0634	"
81 b	225	3.00	.0143	. 0636	"
82 a	170	3.00	.0103	. 0606	"
82 b	325	3.00	. 0237	. 0729	"
$83 a$	505	3.02	. 0096	. 01.90	\%
836	420	3.07	---	--..	-ッ-
84 a	520	3.00	. 0126	. $02021+2$	dk brown
84 b	600	3.00	. 0181	. 0302	dr
85 a	580	3.00	. 0189	. 0326	*
85 b	570	3.00	. 0156	.02.74	"
86	1020	3.00	trace		
87	1095	3.00	trace		
88	1080	3.00	trace		
89	1040	3.00	trace		
90	1040	3.00	trace		

APPENDIX II
PABLE XI (cont)
Wt. of oxide

Frection Number	Volume $\mathrm{ml} \text {. }$	Hern pH	gms per fraction	gms per 1f.ter	Color of oxide
91	1020	3.00	---	-...	
0,2	2020	3.01	---	
73	1105	3.00	---	-	
94	1140	3.00	-..	-..-	
95	1115	3.00	---	-..-	
96	1130	3.00	---		
97	1115	3.00	---	-.--	
98	1120	3.00	-	-	
99	1110	3.00	-...	..-	
*100	1100	3.00	----	-.-	
101	1160	3.00	---	...-	
102	1180	3.00	---	...-	
103	1160	3.00	---	-..	
204.	1155	3.00	---	---	
105	1140	3.00	---	-..-	
106	1140	3.00	---	---	
107	1130	3.00	---	---	
108	1150	3.00	---	---	
109	1130	3.00	---		
110	1135	3.00	---	---	
111	1120	3.00	---	---	
112	1100	3.00	---		
*\% $\% 113$	1215	3.00			
. 114	1230	3.487			
- 115	1220 1180	3.59	12.8243		white
116	1180 1160	3.52 3.80			
118-3.23	6475	3.89	---	---	

Run 30
(is) New batch of eluent added to overhead tank during fraction
(\%) Run stopped several hours during fraction
($\% * \%$) Introduction of $\mathrm{pF}^{2} 3.89$ eluent started
($\% \% \%$) Machine did not change flasks, small amount spilt

APPENDIX II
 TABLE XII
 ANALYSES OF FRACTIONS RUN 30

Run 30	Weight oxide		Per	ges	Wt. $\mathrm{Nd}_{2} \mathrm{O}_{3}$	Wt. $\mathrm{Pr}_{6} \mathrm{O}_{11}$
Fraction	gm per	$\mathrm{Na}_{2} \mathrm{O}_{3}$	Pr6011	Total	gm per	gm per
Number	liter				liter	liter
450	0.0715	100.0	---	100.0	0.0715	---
$52 a$	0.4338	100.0	---	100.0	0.4338	---
549	0.3214	97.2	1.2	98.1	0.3214	$0.003 ?$
530	0.2173	0.6 .0	2.4	98.4	0.2086	0.0052
566	0.1450	65.0	35.0	100.0	0.0943	0.0517
57 b	0.2777	15.3	84.3	99.6	0.0425	0.2341
58 b	0.5991	3.2	96.9	100.1	0.0192	0.5805
59 b	0.8677	1.0	98.9	99.9	0.0087	0.8582
81	0.0641	---	101.9	101.9	---	0.0653

APPENDIX II

TABLE XIII

MATERIAL BALANCE RUN 30

$$
\mathrm{Na}_{2} \mathrm{O}_{3} \quad \mathrm{Pr}_{6} \mathrm{O}_{11}
$$

Average

| Fraction | Volume
 ml. | Cumulative
 Volume
 Number | | gins per
 liter | gms per
 fraction | ms per
 liter |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | gms per |
| :---: |
| fraction |

* Assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$
** Assumed to be pure $\operatorname{Pr} 6011$

APPENDIX II

TABEE XIV
SUMMARY OF OPERATION OF COLIMN RUN 31
Column loading - 15.0 gms. Composition of adsorbate
pH adsorbate - $3.05 \quad 45.1 \% \mathrm{Pr}_{6}^{0}{ }_{11}, 12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$
Avt. flow rate $-1.09 \frac{\mathrm{ml}_{2}}{\mathrm{~cm} \mathrm{~min}} 38.2 \% \mathrm{La}_{2} \mathrm{O}_{3}, 4.7 \% \mathrm{CeO}_{2}$
Wt. of oxide

Fraction Number	Volume ml .	Mean pH	gms per fraction	$\begin{aligned} & \text { ghs per } \\ & \text { lit.ter } \end{aligned}$	$\begin{aligned} & \text { Color } \\ & \text { of oxide } \end{aligned}$
A	575	5.01	---	-..-	
B	1005	2.99	---	-..-	
1-3	3670	2.99	---	--.-	
4	1120	3.00	---	-..-	
5	1120	3.00	---	-..-	
6	1105	3.00	---	---	
7	1110	3.00	---	-..-	
8	1090	3.00	---	-..-	
9	1100	3.00	---	---	
10	1080	3.00	---	-.-	
11	1090	3.00	---	---	
12	1080	3.00	---	-..-	
13	1090	3.00	---	-..-	
14	1080	3.00	--	---	
* 15	1090	3.00	---	-.-	
16	1090	3.00	---	---	
17	1090	3.00	---	-..-	
18	1085	3.00	---	-..-	
19	1090	3.00	---	-..-	
20	1085	3.00	---	---	
21	1100	3.00	---	-*-	
22	1085	3.00	--*	--	
23	1100	3.00	---	-.-	
$\div 24$	1100	3.00	--	-.-	
25	1120	3.00	---	--.	
26	1095	3.00	---	--.	
27	1100	3.00	---	-ッ-	
28	1090	3.00	---	-.--	
29	1095	3.00	---	---	
30	1080	3.00	--	---	
31	1090	3.00	---	--.	
32	1075	3.00	---	---	
33	1080	3.00	---	-- -	
34	1075	3.00	---	---	

APPENDIX II

TABLE XIV (Cont)
Wt. of oxide
$\begin{array}{lc}\text { Fraction } & \text { Volume Mean } \\ \text { Number } & \text { ml. } \mathrm{pH}\end{array}$

gms per $\begin{array}{ll}\text { gms per } & \text { Color } \\ \text { inter } & \text { of oxide }\end{array}$
fraction

. 0176	lt blue
. 0.440	
. 0006	"
. 0908	"
. 1070	"
.1231	"
. 1.317	"
. 1510	1
.1617	"
. 1698	"
. 1763	"
. 1739	"
. 1739	"
.1698	"
. 1629	"
. 153	"
.1405	"
. 12.72	"
. 11.06	"
. 0932	-
. 0785	"
. 0643	"
. 0531	blue tan
. 04.73	"
. 0210	lt blue
. 0428	dis brown
. 0907	
.1272	"
. 1660	1
.1814	"
. 2217	v dk brown
.1814	
. 2878	"

APFENDIX II
TABLE XIV (Cont)

Fraction Number	Wt. of oxide				
	Volume	Mean	gms per	gms per	Color
	ml .	pH	fraction	liter	of oxide
62	1175	3.97	. 4324	. 3680	v dk brown
63	1190	2.95	. 5446	. 4576	
664	1185	2.94	. 5888	. 4696	"
65	1190	2.92	. 6552	. 5506	"
66	1170	2.92	. 5803	. 4970	"
67	1185	2.95	. 4462	. 3765	"
68	1165	2.96	. 4190	. 3597	"
69	1180	2.96	. 3545	. 3005	"
70	1180	2.98	. 2888	. 2468	1
71	1186	2.99	. 2480	. 2101	"
72	1165	2.99	. 2037	.1748	"
73	1175	2.99	. 1689	.1437	"
74	1160	2.99	. 1235	. 1065	"
75	1165	3.00	. 1127	.0967	n
76	1145	3.00	. 0901	. 01787	"
77	1155	3.00	. 0720	.. 06623	"
78	1140	3.00	. 0553	. 0485	black
79	1150	3.00	. 0402	.0350	v dk brown
80	1130	3.00	. 0414	. 0366	
81	1140	3.00	.0305	.0268	black
82	1120	3.00	. 0177	..0:158	
83	1140	3.00	trace		
84-5	2140	3.00	trace		
86	2125	3.00	---	--.	
87	1120	3.00	---	--*	
88	1115	3.00	---	--.	
89	880	3.00	---	.	
90	1150	3.00	---	--..	
91	1180	3.19	---	--*	
92	1140	3.20	---	--.	
93	1150	3.19	---	-*..	
94	1150	3.19	---	--..	
95	1150	3.19	.0754	. 0656	pink
96	1125	3.19	. 1245	. 11.07	v lt pink
97	1.140	3.19	. 1567	. 1375	off white
98	1115	3.19	. 1482	. 1329	
99	1130	3.19	.1112	. 0984	pink
100	1100	3.19	. 0664	. 0604	v lt pink
101	1125	3.19	. 0180	. 0160	brick red
102	1105	3.20	---	---	
103	1120	3.19	---	---	
104	1110	3.19	--	---	
105	1125	3.19	---	---	

APPENDIX
 II

TsBLE XIV (Cont)

(\%) New eluent added to overhead tanks during fraction (\%*) Recycle eluent added to overkead tank during fraction ($\% *$) Run stopped several hours during fraction
(****) Introduction of pH 3.20 eluent started
(\%\%\%\%\%) Introduction of pH 3.94 eluent started

6PPENDIX II

TABLE XV
ANALYSES OF FRACTIONS RUN 31

APPENDIX II

TABLE XVI
MATERIAL BALANCE RUN 31

In	Nd 203	Pr6017	L2823	CeO 2	Total
In	1.7996	6.7636	5.7289	.7004	14.9925
Out	1.7419	6.3907	5.5853	.7004	14.4183
$\%$ recovery	96.8%	94.5%	97.5%	100%	96.2%

* Assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$
** Ass med to be pure $\operatorname{Pr} 60_{11}$
*** The recovery of CeO_{2} on this run is taken 9 the analysis forthis oxide on the adsorbate mixture.

APPENDIX II

TABLE XVIII

SUMMARY OF COLLMN OF OPERATION RUN 33

Column loading - 30.0 gms.	Composition of adsorbate
pH adsorbate - 2.30	$45.1 \% \mathrm{Pr}_{6} \mathrm{O}_{11}, 12.0 \% \mathrm{Nd}_{2} \mathrm{O}_{3}$
	$38.2 \% \mathrm{Ia}_{2} \mathrm{O}_{3}, 4.7 \% \mathrm{CeO}_{2}$

Fraction Number	Volume ml.	Mean pH	gms per fraction	gms per liter	Color of oxide
A	825	3.60	---	---	
B	890	2.80	---	---	
1	1175	3.90	---	---	
2	1070	3.28	---	---	
3	1060	2.98	---	---	
4	1050	3.12	---	---	
5	1050		---	--.	
6	1045	3.12	---	---	
7	1050		---	---	
8	1040	3.12	---	---	
9	1050		---	---	
10	1035	3.12	---	---	
11	1040		---	---	
12	1030	3.12	---	---	
13	1030		---	---	
14	1030	3.12	No ppt.	--0	
15\% $2 \times 2 \%$	1030	3.12	. 0360	. 0350	It blue
16	1010	3.11	.0775	. 0767	
17	1135		. 1457	.1 .284	"
18	1140	3.10	. 2087	. 1831	"
19	1140	3.11	. 2711	. 2378	"
20	1140		. 3394	- 2977	"
21\%	1190	3.10	. 4048	-3!02	"
22	1180		. 4672	.3959	"
23	1180	3.09	. 5500	. 4061	"
2.	1180		. 5104	. 4.325	"
25	1180	3.10	. 2644	.2341	"
26	1180	3.12	. 0642	. 0.544	"
27	1180		trace		
28* **	1110	3.12	---	---	
29	815		---	---	
30	815	3.12	---	---	
31	810		---	---	
32	800	3.12	---	---	
33	795		-	---	
34.	1370	3.18	No.ppt.		

APPENDIX II

TABLE XVII (Cont)
Wt. of oxide

Fraction Number	Volume ml .	Mean pH	gms per frection	gns per liter	Color of oxide
35	1190	3.72	2.4945	2.0962	white
36	950	3.68	3.0514	4.0008	
37\%	1105	3.61	4.1008	4.7225	"
38	1010	3.59	4.7997	4.7225	"
39	1000	3.51	5.2947	5.2947	"
40	990	3.52	4.9572	5.0073	\%
41	990	3.78	2.1646	c. 1895	"
42\%	1095	3.93	0.0216	0.0197	"
43	1100	3.95	No ppt.	...-	
44	1080	3.95	---		
45	1070	3.95	---	-~-	

* New eluent solution pH 3.12 added to overhead bottle ** Air bubble formed in feed line
*\% Introduction of pH 3.95 elvent started
\#\#*: Flow rate effluent adjusted.
Note: Fractions $15-26$ all oxides were light blue Fractions $35-42$ all oxides were white

APPENDIX II

TABLE XVIII
MATERIAL BALANCE OF RUN 33

	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{La}_{2} \mathrm{O}_{3}$	Total
In	3.60	26.40	30.00
out	3.3394\%	26.8545	30.1939
Per cent recovery	93.8\%	101.7\%	100.6\%
* Fractions $15-26$ assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$ ** Fractions 35-42 assumed to be pure $\mathrm{La}_{2} \mathrm{O}_{3}$			

APPENDIX II

TABLE XIX
SUMMARY OF COLUMN OF OPERATION RUN 34

(*) New eluent pH 3.12 added to overhead $\tan \mathrm{x}$
Note: All oxides obtained were light blue
-- Indicates no oxide obtained from fraction.

APPENDIX II

TABLE XX
SAMPLE CALCULATION OF PURITY OF RECOVERED OXIDES RUN - 24.95% Purity

Fractions 15-18*

\% purity $\begin{array}{ccc}\text { from fraction } & \text { fraction } & \text { (gms) } \\ (0.9358) & (0.7358) & \text { of fraction } \\ 0.344 & 0.3494 & (100 \%) \\ 0.364 & 0.3730 & 99.7 \% \\ 0.346 & 0.3642 & 97.5 \% \\ & & 2.0224\end{array}$

Total wt. of $\mathrm{Nd}_{2} \mathrm{O}_{3}$ recovered in the run 2.771. gms. $\%$ oxide of 95% purity $=\frac{2.0224}{2.771}=73 \%$

Note: Fraction 22 was only $87 \% \mathrm{Nd}_{2} 3$

* Fractions assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$.

[^0]: * These runs were numbered so as to be in accordance with a continuing series of experiments concerning the same general topic. This series of experiments is being carried out in the Low Temperature Laboratory of the State Engineering Experiment Station.

[^1]: ${ }^{4}$ Harris, D.H. and Tompkins, E.R., J.Am, Chem. SOC. 69, 2792 (1947).
 $5_{\text {Tompkins, E.R., Harris, D. H., and Khyn, J. X. }}$ J. Am Chem. Soc. 71, 2504, (1649).

[^2]: ${ }^{6}$ Spedding, et al., J. Am. Uhem. Soc., 69, 2777 and 2786, (1947).

[^3]: ${ }^{2}$ Nachod, F.C., Ion Exchange Theory and Application p.17) and 192., Academic Press, Inc., New York, N. Y. (1949)

[^4]: ${ }^{1}$ Spedding, F.H., et al., J Am. Chem. Boc., 69, 2812,
 $2_{\text {Roberts, J.T., Jr., }}$ unpublished work, Georgia Institute of l'echnology.

[^5]: ${ }^{2}$ Tompkins, E.R., Khym, J.X., and Cohn, W.E., I.Am.Chem. Soc., 69, 2769, (1947).
 $3_{\text {Tompkins, E.R., Hiarris, D.H. and Khym, J.X., J.Am. }}^{\text {. }}$ Chem. Soc., 71,2504 (1949).

[^6]: 4afond, F., unpublished work, Georgia Institute of Technology, April, 1950.

 SWalter, J.E., J. Chem. Piys:. 13, 229-234, (1945).

[^7]: 6
 Spedding, et al., J. Am. Chem. Soc. 69, 2777 and 2786, (1947).

[^8]: ${ }^{7}$ Short colum run used for comparison (Run 29) made by LaFond, E., Georgia Institute of Technology, April 1950.

 B Tompkins, E.R., Harris, D.H., and Khym, J.X., J. Am. Chem. Soc., 71, 2504 (1949)
 ${ }^{\text {Boyd, G.E., Myers, L.S., Jr., and Alamson, A.N., }}$ J. Am. Chem. Soc., 69, 2849 (1947)

 10 mayer, S.W., and Tompkins, E.R., J. Am. Chem. Soc., 69, 2759 (1947)

[^9]: * Assumed to be pure $\mathrm{Nd}_{2} \mathrm{O}_{3}$ ** Assumed to be pure $\operatorname{Pr} 6011$
 \%** High recovery believed dre to impurities on the column before the run was started.

