THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH, LOADING, AND pH OF ELUENT

A THESIS

Presented to

the Faculty of the Division of Graduate Studies Georgia Institute of Technology

In Partial Fulfillment

of the Requirements for the Degree Master of Science in Chemical Engineering

by

William Nelson Johnson

June 1950

223689

Aller 18

THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH LOADING, AND pH OF ELUENT.

Date Approved by Chairman June 27, 1950

ACKNOWLEDGEMENTS

I wish to thank Dr. W. T. Ziegler for his invaluable aid, guidance, and encouragement in the prosecution of this problem as well as for his suggestion of it. I also wish to express my thanks to Mr. J. T. Roberts, Jr. and Mr. F. LaFond for experimental information aiding and verifying my experiments. Last, but by no means least, I wish to express my gratitude to my wife for her help and encouragement in the long hours required at the laboratory in the gathering of data.

iii

TABLE OF CONTENTS

App	roval of thesis	PAGE 11
Ack	nowledgements	iii
Lis	t of Tables	vi
Lis	t of Figures	vii
For	eword	viii
Abs	tract of Thesis	ix
CHA	PTER	
I	INTRODUCTION	1
II	GENERAL THEORETICAL BACKGROUND	5
III	EXPERIMENTAL	8
	Apparatus	8
	Materials	8
	Column Operation	10
IV	DISCUSSION OF RESULTS	13
	General	13
	Flow rate	20
	Acid Front	21
	Effect of pH	22
	Effect of Column length	29
	Effect of Loading	32
BIB	LIOGRAPHY	40

iv

APPENDIX I:

	Preparation of adsorbate solution 42
	Conditioning of the resin
	Loading the column
	Precipitation and filtration of fractions 45
	Ignition of fractions
	Analysis of fractions
	Make up of eluent solution 49
	Calculation of results
APPENDIX	II : Tables III through XX

v

LIST OF TABLES

TA	BLE	PAGE
I	SUMMARY OF COLUMN RUNS	14
11	PERCENTAGE RECOVERY HIGH PURITY OXIDE	31
III	SLIT WIDTHS USED FOR PHOTOMETRIC ANALYSIS .	48
IV	EXTINCTION COEFFICIENTS USED FOR PHOTOMETRIC	48
	ANALYSIS	48
V	SUMMARY OF OPERATION OF COLUMN RUN NO .27 .	54
VI	ANALYSES FOR COLUMN NUN NO. 27	57
VII	MATERIAL BALANCE FOR COLUMN RUN NO.27	58
VIII	SUMMARY OF OPERATION OF COLUMN RUN NO. 28	59
IX	ANALYSES FOR COLUMN RUN NO. 28	62
x	MATERIAL BALANCE FOR COLUMN RUN NO. 28	63
XI	SUMMARY OF OPERATION OF COLUMN RUN NO. 30 .	64
XII	ANALYSES FOR COLUMN RUN NO. 30	68
XIII	MATERIAL BALANCE FOR COLUMN RUN NO. 30	69
XIV	SUMMARY OF OPERATION OF COLUMN RUN NO. 31 .	7 0
XV	ANALYSES FOR COLUMN RUN NO. 31	74
XVI	MATERIAL BALANCE FOR COLUMN RUN NO. 31	75
XVII	SUMMARY OF OPERATION OF COLUMN RUN NO. 33 .	76
XVIII	MATERIAL BALANCE FOR COLUMN RUN NO. 33	78
XIX	SUMMARY OF OPERATION OF COLUMN RUN NO. 34 .	79
XX	SAMPLE CALCULATION OF PURITY OF RECOVERED	80
	OXIDES	

vi

LIST OF FIGURES

FI	GURES	PAGE
1.	EFFECT OF pH OF ELUENT (Runs 21-23-24)	3
2.	DIAGRAM OF COLUMN	9
3.	CHARACTERISTIC ELUTION CURVE, RUN 27	15
4.	EFFECT OF COLUMN LENGTH (Runs 27-29)	18
5.	EFFECT OF pH OF ELUENT PRASECDYMIUM	2l4
6.	EFFECT OF pH OF ELUENT NEODYMIUM	26
7.	ELUTION CURVE PURE NEODYMIUM RUNS	28
8.	EFFECT OF LOADING pH 3.12	33
9.	EFFECT OF LOADING pH 3.00	36
10.	FORMULATION OF ADSORBATE SOLUTION	41
11.	CHARACTERISTIC CURVE ENLARGED VIEW OF	
	OVERLAP REGION	53

vii

FOREWORD

It is felt that a word of explanation regarding the organization of this thesis would enable the reader to more clearly understand the material which it contains.

The main body of the thesis contains a general discussion of experimental procedure and of materials used in the work. This discussion is intended primarily to give the reader the background for the discussion of results which follows. For the reader who is interested in the details of procedure for comparison of this work with that of other experimentalists or for the reproduction of this work, the details, concerning the materials used and the procedures followed, are presented in Appendix I.

The actual details of the column operation are presented in Appendix II. This includes such information as volume of fractions, weight of oxide obtained per fraction, pH of effluent, color of oxides obtained, average flow rates, and loadings used.

viii

Abstract from Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in 1950.

THE SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH, LOADING AND pH OF ELUENT.

A study was made of the effect of pH of eluent, column length, and loading upon the separation of neodymium, and praseodymium from a mixture of oxides containing approximately $12\% \text{ Nd}_20_3$, $45.1\% \text{ Pr}_60_{11}$, $4.7\% \text{ CeO}_2$, and $38.2\% \text{ La}_20_3$. A 120 cm. Dowex 50 resin column (approximately 4.7 cm. in diameter) was used to make the following runs and the results compared to determine the effect of pH of eluent and loading.

Run	pH of eluent	loading	Composition of oxide mixture
27*	3.12	30 gms.	$ \begin{cases} 45.1\% & Pr60_{11} \\ 12.0\% & Nd203 \\ 38.2\% & La203 \\ 4.7\% & Ce02 \\ 100\% & Nd203 \\ 12\% & Nd203 \\ 38\% & La203 \end{cases} $
28	3.12	15 gms.	
30	3.00	30 gms.	
31	3.00	15 gms.	
33	3.12	3.6 gms.	
34	3.12	30 gms.	

To determine the effect of column length, the results of the above runs were compared with the results of runs made previously under similar conditions except for the use of

^{*} These runs were numbered so as to be in accordance with a continuing series of experiments concerning the same general topic. This series of experiments is being carried out in the Low Temperature Laboratory of the State Engineering Experiment Station.

a 73 cm. resin column for the earlier runs.

The greatest effect was found upon variation of pH of the eluent. This effect was such as to indicate that in general an optimum pH exists for the separation of neodymium and praseodymium between 3.00 and 3.12 on a Dowex 50 resin column. The effect of pH was found to be rather critical and to be the primary variable of the three variables studied.

Increasing the column length had no appreciable effect upon the separation of components. No general conclusions could be drawn as to the effect of this variable since slight effects may have been obscured by errors within experimental limits and since data was obtained for only two different lengths of resin column. However, for practical separations of the particular mixture of rare earths studied, the shorter (73 cm.) column is recommended.

A reduction in loading gave better separation at a pH away from the optimum but had only a very slight effect, if any, when separation was already high. A possible effect of loading on the shape of the praseodymium curve was observed but further experimentation will be required to establish this effect definitely. х

SEPARATION OF NEODYMIUM AND PRASEODYMIUM BY ION EXCHANGE I. EFFECT OF COLUMN LENGTH, LOADING AND pH OF ELUENT

I

INTRODUCTION

In 1949 experimental work with the rare earth oxides in the low temperature laboratory of the State Engineering Experiment Station led to a search for a suitable method of separating neodymium, preseodymium and lanthanum from a mixture of their oxides. At that time the technique of ion exchange was chosen as the most promising method of separation. Experiments were undertaken by W.T. Ziegler¹, et al., utilizing the properties of the synthetic exchange resin, Dowex 50.² In the period of time between the start of this work and the formulation of the plan of this thesis, some twenty four runs had been made under conditions based principally upon the results obtained by Spedding³and his coworkers using

¹Blomeke, J.O., Roberts, J.T. Jr., and Ziegler, W.T., Paper presented before George section - American Chemical Society, Meeting in Miniature, November 17, 1949.

²Bauman, W.C., and Eichorn, J., <u>J. Am.Chem. Soc.</u>, 69, 2830, (1947).

³Spedding, F.H., Voigt, A.F., Gladrow, E.M., and Sleight, N.R., <u>J.Am. Chem.Soc. 69</u>, 2777, 2786, and 2812. (1947).

Amberlite resins and those of Harris and Tompkins using Dowex 50. These experiments showed complete separation of lanthanum from the other two rare earths but only incomplete separation of neodymium from praseodymium. Furthermore, these experiments raised questions which pointed the way to the experiments carried out in this thesis and to others now in process at the Experiment Station.

In a comparison of three runs made under similar conditions, except for pH of the eluent solution, it had been observed¹ that as the pH of eluent was raised successively from 2.90 to 3.00 and 3.12, the trailing edge of the preseodymium elution curve tended to shorten and the peak height to increase, glving the effect of a narrower, sharper band with each increase of pH (see Figure 1). On the other hand, while the neodymium curve exhibited a shortening trailing edge for the same pE changes, the curve appeared to become narrower and sharper for the change from pH 2.90 to 3.00 but to reverse the change and become broader and lower for the change of pH from 3.00 to 3.12. The question was raised as to the possibility of this effect being due to the excess of acid known to be present in the adsorbate solution, thus giving the effect of an acid front limitation.⁵

⁴Harris, D.H. and Tompkins, E.R., <u>J.Am. Chem. Soc</u>. 69, 2792 (1947).

⁵Tompkins, E.R., Harris, D. H., and Khyn, J. X. J. Am Chem. Soc. 71, 2504, (1949).

FIGURE 1

EFFECT OF pH OF ELUENT

RUN	рH	Resin bed Dowex 50
21	2.90	NH4- form
23	3.00	4.7 cm- diam - 73± 2 cm. long
24	3.12	Loading - 30.0 gm oxide.
		Comp: 10.5% Nd ₂ 0 ₃ ; 45.6% Pr6 ⁰ 11 43.9% La ₂ 0 ₃

Volume of Fractions = 1000 ± 100 ml.

η

		1				1.1																			: [.]	1.1.4.7	1.			-	1		Ι.		ļ			÷,		1.1	2.10	
					:		1.1			11.1																	14 1 1 1 1									1		:		i.	Į.	1
1														T											:::: :			111								1						
1.1					÷		1		1	4.1				-	1													÷					ener d	11.2 ·					111		11.1	1
01		1						1.				1													• .•		1111		İ		1	:			114	-24					l .	
2	.5					Е.,		-														31.		1					:				1						1	•	÷	
					÷.,	· 			1		•							1						11. 	;	F1	lins	a .	r							1		1.14				1
			1		ł	-							1	-	rr	n.,			1		•	-			+		P ⁴		1		1	· · .		4		1.1.1	144 144				Ì	1.4
			1					·[.·		1	9	1					: .	1				.:		÷.			<u>.</u>		<u>.</u>		1				1	L		1111			1	
2	10		1				· ·			¦	L	9	·					1.1	·				-		1									•		1.	. _.				1	
	L.		1	_				L.	-		1	1		-					<u>.</u>	1:	1			in.	••								L	1		1		1.1.1	1	1_	<u>i</u> .	
			1		1		2	1		. •1		1	-	-		- pl			2	1:	1:						1									1		•			1.00	
			1			1	Ľ	1.			-	¢	4.					1				4	_						ļ			·				-	į .					1
1	5				1	-	1	1.	_		2			4	1			1		1				• • •	10	•			1	*: et		1.						14	1. 1		L	L
					12				-		1							ļ.:		1	1.	: .	-					-	İ	<u></u> .	1.		١	1.5	<u> </u>	-	1				L.,	
					. :	:	8	-	_			-	μ.				1.5				1	<u>. </u> .					ļ		13	1	1.		L		<u> </u>			24	1			
	-			_		1		1	-	1			1	-			ļ	L	1.	1				1970 -							-				-	41 			1	1.3.		1.
1	0	1		_				-	_	1		1		4	1						DH		3.	oo.			1														ļ	
		1	+					-		1	1000		4			-	P	5	Γ.	1	<u> </u> .	1	-						I		l			-	+ -	-				L	ļ	ļ
	-	1	1					1		9			1	_	Ă	1			1		+		-	+			Ŀ	-	1							ļ	i	1	1		1.	
	ļ	1							10	1.			4	1	1	4	1.3	1	3	\$	1	1			. <u>.</u>			1.		1.1	<u> </u>	100	į		ļ.,,	-		Ì			<u> </u>	
?	5	1	-	V.A	~	-	-		_			+	1	+		Ă	1	1.1	-				-	4	â				ļ	-	1	<u> </u>		-		-	1.12	14				Ļ
	ļ	+	ď		εY;	2	6	-	d				4	1			ļ		15	A.		×	S		7	Z		La	†	рн	2	• 90	₽		 	ļ		1.75			ļ	.
_	-	+	-	_	-	5		T	2			<u> </u>	Q	T4	<u></u>	-	1.1		K	+	-		~[1			Ļ		Z	-	-	ļ	÷		<u>.</u>		+		-	-	<u>.</u>	-
8 999	ļ	-	+		6		-		-	244	ļ	-	l	ł	<u>.</u>	200	ļ	1	1_	+	4	4			\rightarrow	K			ł				4	-	-	-	=	l	-	-	-	
3.	C	-	-	4	-	-	-	-	-			100	£	q	0	_	1	A	1.1	1	-						*		į	-	<u>.</u>	-	<u>.</u>	-	i	F_	_	Ī.		1		L
		10				2	2	+	8		- 2	42	+	-	÷,	4	þ			-	50			÷	Ê	Q	-		7	k.	; ;	-	Ê	C.			ç	¢.			•	-
	-		+	S.,			-	-	-		-	-	12	-	-		-	-	-	1.			-	2	•			-	ļ		¦		• - •••			+		<u> </u>				Ļ.
	-			<u>.</u>			-	1				_	4		1			1	FT	4.5	t1	on		יכיי	te	r	1		l	1	Į.			1	1		l	1		I		

To study further the effect of pH of eluent upon the separation of neodymium and praseodymium, it was decided that the following column runs should be made:

pH	3.12	30	gm.	oxide	loading
pH	3.00	30	gm.	oxide	loading
pH	3.12	15	gm.	oxide	loading
pН	3.00	15	gm.	oxide	loading

These runs were to be made on a longer resin column (120 cm) than that used heretofore since the general theory of ion exchange suggested that greater separation of peaks might be obtained in this way. The work of Spedding, et al⁶, bears out this indication. In addition, the adsorbate solution of rare earth chlorides was to be neutralized with dilute ammonium hydroxide to eliminate insofar as possible the effect of acid front limitation. From these experiments it was expected that information might be drawn concerning the effect of loading and of column length as well as the effect of pH of eluent on the separation of neodymium and praseodymium.

⁶Spedding, et al., <u>J. ^Am. Chem. Soc.</u>, <u>69</u>, 2777 and 2786, (1947).

CHAPTER II

GENERAL THEORETICAL BACKGROUND

Before undertaking a discussion of the specific results of the group of experiments, the general aspects of the ion exchange process will be briefly reviewed. The first step in a separation of mixed cations is to adsorb these ions onto the resin. This is accomplished simply by allowing the solution of the ions to flow through the bed under such conditions that the ions to be absorbed have a greater affinity for the resin than the ions already on the In the present application the adsorption of ions resin. actually means that they displace other ions which have been held to the resin principally by electrovalent forces, the resin being an aromatic hydrocarbon polymer with the replaceable ions being attached to nuclear sulfonic groups. The affinity of cations for the cation exchanger increases with the positive charge of the ion (i.e. Monopositive & dispositive& tripositive) and ions having the same charge, increases with decreasing hydrated ionic radius or with increasing basicity.1 The cations are adsorbed until the mass action equilibrium between rare earth ions on the resin and rare earth ions in solution is attained; i.e.,

 \mathbf{M}^{+n} + n NH₁R = n NH₁ + MR

¹Nachod, F.C., Ion Exchange Theory and Application, p.175 and 192., Academic Press, Inc., New York, N.Y. (1949)

That this process is limited initially to the top part of the bed has been demonstrated by Spedding² who concluded that the length of column occupied was directly proportional to the weight of starting material.

After the initial adsorption of the ions from their salt solution, a complexing agent is passed through the column. In this instance the complexing agent is citric acid containing varying amounts of ammonium hydroxide added to obtain the desired pH. An explanation of the manner in which the elution occurs has been given by Harris and Tompkins³ on the basis of simple mass action reactions. The reactions taking place or in equilibrium are:

 $n NH_4^+ + MR_n + n NH_4R$ (1) And

where M^{-n} + y H_xCit^{x-3} ____ M (H_xCit)⁻²_y (2) where M^{-n} is the rare earth cation, H_xCit^{x-3} some citrate ion (principally H₂Cit⁻ at pH's used here), R the resin ion, and z representing the charge on the complex ion = n - y (x-3). Equation (1) would only proceed a small way toward completion were it not for the reaction represented by equation (2) which effectively removes the M^{-n} ions from solution, thereby allowing more M^{-n} ions to be removed from the resin. Further, the amount of citrate ions present, and hence the

²Spedding, F.H., et al., <u>J.Am.Chem.Soc</u>. <u>69</u>,2786 (1947) ³Harris, D.H. and Tompkins, E.R., <u>J.Am.Chem. Soc.69</u>, 2792, (1947).

⁴Nachod, F.C., Ion Exhange Theory and Application, p.179 Academic Press Inc., New York, N.Y. (1949).

degree of completion of equation (2), is dependent upon the pH of the eluent because of the equilibrium reaction:

 H_3 Cit \longrightarrow (3-x) $H^+ + H_x$ Cit x^{-3} When, however, these complex ions reach the pure $NH_{\underline{L}}R$ below the adsorbed band, the equations above are reversed and the ions are readsorbed onto the resin, due simply to mass action. This process of complexion and readsorption is repeated many times causing the rare earths in effect to flow down the column but at a rate much lower than the flow rate of the eluent. In addition, the complexing action and adsorption equilibria are different for ions of different basicity, thus causing ionic bands to move down the column at different rates, those with the highest atomic number moving at a faster rate and hence being eluted first.⁵ To separate a group of rare earths then, the question is simply that of magnifying the differences in adsorption and complexion by use of several variables, chiefly; type and concentration of complexing agent, pH of eluent, dimensions of the column, and flow rate.

⁵Tompkins, E.R., Khym, J.X., Cohn, W.E., <u>J.Am.Chem.</u> <u>Soc., 69,</u> 2769 (1947)

CHAPTER III

EXPERIMENTAL

Apparatus

The apparatus for the actual column runs consisted essentially of a large pyrex tube approximately 47 mm inside diameter and 150 cm long having a coarse porosity fritted glass plate sealed into the bottom end. (Figure 2) A Dowex 50 resin bed was built up over the fritted plate to a depth of 120 cm. in the washed ammonium form of resin (the actual depth of bed varied from 118-120 cm during the runs --shrinking as rare earths were adsorbed.) A constant head tank and a turntable which was actuated by a timer for automatic collection of fractions completed the column unit. The flow rate of effluent was controlled by a pinch clamp on the exit tube from the column proper and the rate of influent was dependent upon the effluent since the top of the column was closed by a rubber stopper. In addition to the column.a Beckman Model G glass electrode pH meter and a Beckman Model DU quartz spectrophotometer were used for analysis. The details of column operation, conditioning of the resin, and of the methods of analysis are give in Appendix I.

Materials

In order that the results of the proposed experiments might be compared with the results of those made previously, it was desirable that a starting mixture of essentially the

same composition as that used previously be obtained. Since none of the original mixture of oxides was still on hand, it was necessary to prepare the desired mixture from a quantity of "praseodymium ammonium nitrate" (actually a mixture of neodymium, praseodymium, lanthanum, and cerium ammonium nitrates) purchased from Lindsay Light and Chemical Company. West Chicago, Illinois. These nitrates were converted to the oxide form and the composition adjusted to that desired, utilizing some high purity laboratory stocks of praseodymium oxide which contained only a few per cent of neodymium oxide. The details of this operation are given in Appendix I. The final mixture of rare earths was kept in chloride solution of known concentration before adsorption as a convenience in handling. The final solution was analyzed and its composition found to be equivalent to that of an oxide containing 45.1% Pr6011, 12.0% Nd203, 38.2% La203, and 4.7% CeO2. The analysis of neodymium and praseodymium was performed spectrophotometrically; the percentage of ceric oxide was determined from Run 31 in which complete separation of this oxide w s obtained; and the percentage of lanthanum oxide by differ-

ence. It may be noted at this point that the ceric oxide present represented an unexpected complicating factor in these experiments.

The eluent solution was made up by dissolving 900 gms of citric acid monohydrate and 18 gms phenol in 18 liters of distilled water to give approximately a 5% solution of citric

acid. First the citric acid and phenol were dissolved in the water, the solution made up to the desired volume, and then the pH was adjusted to the desired value by the addition of concentrated ammonium hydroxide. The function of the phenol was to prevent mold formation in the column. Spedding¹ using amberlite resins has found that o.1% of phenol is sufficient to prevent this growth and that up to 1.0% may be added without effect upon the shape or size of the elution bands. Further details concerning the making up of the eluent are presented in Appendix I.

Column Operation

A column run was started by neutralizing the adsorbate solution to as high a pH as was easily obtainable without precipitating rare earth hydroxides ---usually pH \doteq 2.0. This adsorbate solution at a concentration equivalent to approximately 30 grams of oxide per liter was then poured onto the column and the column washed with a liter of water. In general, the flow rate at which the loading was done was 20 ml. per minute (or 1.1-1.2 ml. per sq. cm. per minute). Experiments in progress by Roberts² in this Laboratory have indicated that adsorption of lanthanum under these conditions occurs in such a manner that a column length of approximately

¹Spedding, ^r.H., et al., <u>J Am. Chem. Boc.</u>, <u>69</u>, 2812, (1947).

²Roberts, J.T., Jr., unpublished work, Georgia Institute of Technology.

21 cm. (containing about one equivalent of resin) is required per equivalent of rare earth in the adsorbate solution. The fractions collected during loading and during washing have been designated fractions A and B, respectively, in the tabulated data concerning the column runs. At the completion of the washing, eluent of desired pH was introduced at the top of the column, the flow rate adjusted, and the run was under way. One hour fractions (about one liter per fraction) were taken except for the period when both neodymium and praseodymium were being eluted together, during which time half hour fractions were taken. As the fractions were collected, the volume, mean pH, and color of each was noted and then saturated oxalic solution added to precipitate the rare earths. The optical densities of the citrate solutions were checked at intervals by means of the spectrophotometer as a control device only, since concentrations were too low to give an accurate analysis. This device was particularly valuable in determining the overlap region. When the end point of the praseodymium elution curve was reached, as indicated by no precipitate upon the addition of oxalle acid, several additional fractions were taken to insure that all the praseodymium was off the column and then the pH of eluent was increased to remove the cerium and lanthanum which had remained on the column undisturbed by the low pH eluent. The location of the cerium depended upon the loading and pH as shown in the summary of column runs (Table I).

The oxalate precipitates were filtered, the filter paper ashed, ignited in a muffle furnace at 850° C. to convert the oxalates to the oxides, and the oxides weighed. Selected samples were taken from the fractions in the neodynium-praseodymium overlap region and analyzed spectrophotometrically.

CHAPTER IV

DISCUSSION OF RESULTS

As previously indicated, the experimental work consisted of preliminary preparations followed by six column runs which are summarized in Table I. The preliminary work has been discussed generally in former section and in detail in Appendix I. The elution curves of the six runs are of interest principally for comparative purposes and so, while the neodymium and praseodymium elution curves of all the runs are presented in Figures 7, 8, and 9, only one complete elution curve (Figure 3) has been included as a unit. It may be observed that the order of elution followed the order of decreasing atomic number, i.e., the neodymium, first, followed by praseodymium, cerium, and lanthanum in that sequence. The pH of the effluent has been plotted as well and it may be seen that as the concentration of rare earths increases in the effluent, the pH decreases and reaches minimum points corresponding to the various peaks. A consideration of the pH curve will also indicate another very important part of the separation process. That is, the pH of the eluent was increased to elute the lanthanum. On Run 31, this increase was accomplished in two steps. thus allowing the cerium to be removed at pH 3.20 before raising the eluent pH still further to remove the lanthanum.

TABLE	Т
The set of the second second	

			SUMMARY OF COLUMN RUNS	3	
Run #	P ^H *	Loading	Analysis of adsorbate	Gms of Nd203 starting oxid	de Elution of Cerium
27	3.12	29.99 gms	45.1% Pr2011 12.0% Nd203 38.2% La203 4.7% Ce02	3.60	with tail of praseodymium
28	3.12	15.00 gms	as in Run 27	1.80	with lanthanum fractions
30	3.00	29.99 gms	As in Run 27	3.60	with lanthanum fractions
31	3.00	15.00 gms	As in Run 27	1.80	As a separate peak eluted at pH 3.20
33	3.12	30.00 gms	12% Nd203 88% La203	3.60	
34	3.12	3.60 gms	100% Nd203	3.60	

* For elution of neodymium and praseodymium fractions. All runs were made on 118-120 cm Dowex 50 ammonium form resin using 5% citric acid eluent solution with flow rate of approximately 1.1-1.2 ml. per cm² per minute.

FIGURE 3

CHARACTERISTIC ELUTION CURVE

Run 27

.

30 gm. loading	pH of eluent = 3.12
45.1% Pr60 ₁₁	pH of effluent (xx)
12.0% Nd203	gms. R. Ξ . Oxide/liter (00)
38.2% LaO3	
4.7% CeO2	

pH of eluent was 3.12 for first 50 liters, 3.92 thereafter

10F* 300

TANK AND A DAMAGE AND A DAMAG

Ŀ.,	1114					[T	T																									1.1		1	
				0474 1999			1.11					:										122																1	[:
	1	. 9																					1.					10								:.: :.::		1	
		8.8				f.																			1	14. 			1	5.1	¥								
		.7	2 1			1		1															1.21			1	122			wi.	1	41							
		.6	1.11	- 11) + +	: 											F	A v	re											::÷:		1	12				1.11			
1		5.5	1.1	3		1																÷								P							1		1
		3.4		.i .		*	11	1	19		• :::			-	: :::			÷.	÷		h	1 :	1.1.	ł:					T	1							<u>.</u>		
. 4		3.3		.5	.4		1																		1	111			i	9									1.
		.2	1	: .	1.3											.				1		17.		1.11	1.4	:: :		÷.,	i		ŀ	11.3							
		1.1		3	.0		×	*	+>	4	*	-		-						Luis			بن ا	-	*	L	*		Ž	1							133		
	L				1*		1			1.1					12								[·	-					1111										
		9.0	2	2	6		×	::		1	1	1		1.		.						1.1					;	1.1									1.1		
			+			11			1.		<u>.</u>		1. 1	1.			ľ		1			1.1.1	12					•:!		1		1.7							
			1	2	2								÷										1: :-	1.12		:' :	sij.					1.1							
			a	2	Ð	11					-															1	1. H		(i)	5. ¹				• • • • • • • • • • • • • • •					
	::: 		X1C		1	1_	Ľ	1.	1		1		1.	• :-						1.				lest.	i.	:						.:::							
	13		0	i	F			1.		1.17	-		1		1.5						1.	1.		1				: ¹ :				11		÷				1.11	
			6	<u> </u>			1					· .					1:4		100		1	-		L.E	1							1	•			111			17
		1.1	12	1	2	1	1.	-	<u> </u>		1		· · ·			12		1			0	2		1			112		11.			÷.							
			- õ	l'i	10		1:		1				1.		1.				1.	Ŀ	ø	1	2-	-1	Pre	01					-	-L	20	2			10021		1.
3.		13	1.	i	E	-	-	1	1.1	i				1						9	9	1.	1	10		-							1.3		esting.		in a	jin.	
			-	 	ŀ.,	İ	Ľ	1		1.	4: :	1	: i					1	ø	1		<u> </u>	4		1				1		1		İ	ļ			-		
		1.	ļ	0	4.	1.1				1					: <u> </u>	<u> </u> .	G	P	1_		<u> </u>												ļ.,					-	-
		: 						N	12	01-	+	1	-	00	96%	-				1	L-	ļ		P	2-	-00	02			saja	4			ļ		• •			
		1	1.	0	le			1		-	ee	1		1.									-		8	0	3	ji.	6		7		_				1.8		-
	-	1-	ļ			<u>a</u>	ļ		1	10	-	1.		20			-	50		-	4	¢.			5	0	-		e	0		-	7	0					
	2.2		1	-		100	-	-	-	-			-	-	1				1	1				-	<u> .</u>			-			in-sui								-
123	100	11	ļ	1									<u> </u>	-	1.1.4	1.3		-		ue.				1.1.		1 1010-1									1114		I.	<u> </u>	
1			1	3		1.	1		1	1	;			. 11.				1.1		1	1:	1.2		1.25	· · ·	-		13 14			-	12				•	1.		

The elution curves for the other runs were similar in character (see Figures 7, 8 and 9) and data for their construction is presented in Appendix II along with analyses made, and material balances for each of the rare earths present in the run. It may be noted that the recovery varied between 95-100% based on the total oxide in the starting mixture and that the percentage recovery of each of the components is in line with this total, indicating that no great discrepancies in analysis or location of components were made. Thus, it is believed that the elution curves of the components are essentially correct and may be used independently of the total elution curves.

A consideration of Run 27, however, revealed several seeming irregularities;

1. The percentage recovery of neodymium oxide was 1.3% greater than 100. This is believed to have been due principally to impurities which were on the column before the run was started, and which came through with the first few fractions of rare earths. This conclusion was reached from the fact that a tan color exhibited by the oxide from the breakthrough fraction indicated that it, at least, was not 100% neodymium oxide. This indication was borne out by the analysis of this fraction as only 89% neodymium oxide.

It is also possible that some praseodymium oxide was counted as neodymium, thus swelling the percentage recovery. However, the recovery of praseodymium oxide for the same run

is calculated as nearly 99% indicating that if this were the case, only a very small amount of the praseodymium oxide was so considered.

2. The breakthrough in Run 27 came within a liter of the volume of effluent at which breakthrough was obtained on the shorter column (Run 29 by LaFond). This is equivalent to saying that in one case the neodymium band traveled through 120 cm. of resin in the same amount of time as was required for it to travel through 73 cm. of resin under conditions believed to be the same, which is of course, unreasonable. A later run (Run 33) on the longer column with the same total loading, containing the same amount of neodymium as Run 27, and at pH 3.12, gave breakthrough at about 15 liters of effluent which seemed more reasonable. Further, Run 34 with the same amount of neodymium and at pH 3.12 broke through after about 15.5 liters of effluent. It is true that the latter run had a smaller loaded length of column giving a greater free length, but this difference is proportionately a very small one. It would therefore seem reasonable to believe that Run 27 should not have exhibited breakthrough until about the 15th liter of effluent. A possible reason for the early breakthrough will be considered after the next irregularity is pointed out.

3. A comparison of the elution curves of Run 27 and Run 29 (Figure 4) showed that, while the distance between the neodymium and preseodymium peaks was greater for the run on

FIGURE 4

EFFECT OF COLUMN LENGTH

Run	27	(00)	Run 29	(xx)
120	cm.	column	75 cm.	column

Both

Loading - 30 gms. 45.1% Pr60₁₁ 12.0% Nd₂0₃ 38.2%La₂0₃ 4.7% CeO₂

pH of eluent of 3.12

85

1 E 11 FORM SOOO i. Figure ::: 1 -.... £ . . 111. .4 A 1 1. · 48 T • Liter •• 1 * ... 73 columb. cn. tun Proj # ÷, ٠ . . ~ -0110 R 170 9 7 of .1 1119. dm. column rup ø •• 1. Φ 1 . # Smg ø • 14 A 1 Ì 1 • .t. 6 ф 1.1 T? 1 1 8.5 Corres of Nagog T Ø 1... -G -- 1 0 -1 1. xok 1 0 4: 1. Sec).d Ø. .. 2b 4b 5b 60_ 7b 30 0 10 Liters DI Briluent 1 Ľ. +---

1 -

.

the longer column, the cerium band was separated from the preseodymium by the shorter column and yet was nearly under the preseodymium peak in the long column run. This was directly contradictory to what had been expected as will be explained when the effect of column length is considered.

One possible explanation of these latter two anomalies is that the pH of the eluent used for Hun 27 may have been a few hundredths of a pH unit higher than the set value of 3.12. First, consider that breakthrough was obtained in Run 28 (pH 3.12) with the 15th liter of effluent but not until the 46th liter in Run 31 (pH 3.00). In other words, a known change of 0.12 pH units caused breakthrough to shift 31 liters --- a change of about $2\frac{1}{2}$ liters per 0.01 pH units. In the light of this fact, it is reasonable that an error of only 0.02 pH units, resulting in the pH of the eluent for Run 27 being actually 3.14, could have caused the breakthrough to come in the 10th liter instead of in the 15th liter as expected.

Furthermore, the elution of cerium was started with the 49th liter in Run 28 (pH 3.12) but had not started in Run 31 (pH 3.00) by the 99th liter at which time the pH was raised. This constituted a change of cerium band location of about 4 liters per 0.01 pH units. It seems quite possible, then, that an error of 0.02 pH units, resulting in the pH of eluent (Run 27) actually being 3.14, might cause the cerium band to be moved forward as compared to the short column run (Run 29) instead of increasing the peak separation as had been expected.

It is perhaps surprising at first glance that a small change in pH should have an effect upon the cerium band nearly twice as great as its effect upon the neodymium breakthrough. However, it is believed that this difference in behavior is due principally to the particular range of pH in which the effects were observed. In other words, at a different pH range, a smilar error in pH would still probably affect cerium elution more than it would neodymium elution but the difference in effect would not be so striking.

Flow rate

It was thought that the overhead tank arrangement (see Figure 2) was such that the eluent head would be a controlled to within approximately one inch. Even so, a maximum variation in flow rate of about 10% was observed in Run 27 and a variation of about 30% in the succeeding runs. The average flow rate for any particular run was, however, between 0.99 and 1.09 ml./min.cm² Although, Spedding¹ has indicated that flow rate can affect elution, his result was obtained with changes of flow rate on the order of 100-400% and it is believed that the variation of flow rate had little or no effect upon the results of the experiments presented in thi s thesis.

¹Spedding, et el., <u>J. Am. Chem. Soc.</u>, <u>69</u>, 2786(1947).

Acid front limitation

As pointed out earlier, when the effect of pH was studied on short (73 cm.) column, the neodynium elution curve exhibited an anomaly. As the pH was raised from 2.90 to 3.00 and thence to 3.12, the praseodymium elution curves tended to narrow the band and the peak grew higher progressively (Figure 1). However, while the neodynium elution curve changed in a similar manner for the change of pH from 2.90 to 3.00, on the additional change from 3.00 to 3.12, the neodymium elution curve became again lower and broader. It was thought at the time that this effect might possibly have been due to an excess of acid known to have been present in the adsorbate solution. Conceivably, the hydrogen ions were adsorbed onto the column below the rare earths and thus formed a boundary of low pH through which the neodymium band could not move. When this hydrogen band moves slower than the neodymium band, the neodymium tends to "pile up" behind the hydrogen and neodymium breakthrough cannot occur until shortly after the end of the acid band elution. This effect has been pointed out by other workers and is discussed in detail by Tompkins, et al., ³ being especially evident when acid

²Tompkins, E.R., Khym, J.X., and Cohn, W.E., <u>J.Am.Chem.</u> Soc., 69, 2769, (1947).

³Tompkins, E.R., Harris, D.H. and Khym, J.X., <u>J.Am.</u> Chem. Soc., 71, 2504 (1949).

form resins or high pH eluent solutions are used.

In order to avoid this effect in the present experiments an adsorbate solution was used which had been neutralized with dilute ammonium hydroxide to as high a pH as was easily obtainable without precipitation of the rare earth hydroxides. (approximately pH 2.0) Run 29^{l_4} essentially duplicated the former run (Run 24) except for the neutralization of the adsorbate and Run 27 was under the same conditions as Run 29 except for the use of a 120 cm. resin column for Run 27 as compared to 73 cm. for Run 29. When it was observed that the neodymium elution curves for Runs 27 and 29 did not materially differ from the one obtained in the previous experiment, i.e., Run 24, it was concluded that the anomaly was <u>not</u> due to acid front limitation.

Effect of pH

Walter⁵ has examined the problem of adsorption of solutes treated in a manner similar to that employed in ion exchange. He assumed chemical equilibrium between adsorbed material and the solution, and was able to describe mathematically the distribution of adsorbed material for one or more components for the case of monovalent- monovalent adsorption; i.e., both the adsorbed and displaced ions were monovalent. He describes a band with a sharp front for K> 1

⁵Walter, J.E., <u>J. Chem. Phys.</u>, <u>13</u>, 229-234, (1945).

⁴LaFond, F., unpublished work, Georgia Institute of Technology, April, 1950.
and a diffuse front for K \langle 1 where for the equilibrium reaction:

HR + M⁺ \iff MR + H⁺ K = (conc. of M⁺ on the resin) (conc. H⁺ in soln.) (Conc. of H⁺ on the resin) (conc. M⁺ in soln.)

all values of concentrations being those at equilibrium. Further, he concludes that as the band is developed or passes down the column, a band with a sharp front boundary and diffuse rear boundary is formed for K > 1 and a band with sharp rear boundary and diffuse front is formed for K < 1. That is, the elution curves obtained would be shaped thus:

The mathematical expressions are derived for the monovalentmonovalent exchange as mentioned above but the author states that the conclusion should be applicable qualitatively to exchange of ions of higher valence as well.

If now the shape of the preseodymium curves (Figure 5) are examined for pH of 3.00 and of 3.12, for the runs on the longer column, the effect of change of pH is seen to be that of causing a marked change in the shape of the individual elution curves. If we may let K become a function representing the relative affinity of the adsorbing ion to that of the ion already on the resin, then the qualitative result may be stated that for k > 1 a curve is obtained with a sharp front

FIGURE 5

EFFECT OF pH ON SHAPE OF PRASEODYMIUM

Elution Curves

Run 27 (X)

Run 30 (0)

pH 3.00

pH 3.12

Both:

120 cm. column 30 gm. loading 45.1% Pr60₁₁ 12.0% Nd20₃ 38.2% La20₃ 4.7% Ce0₂

FIGURE 5

EFFECT OF pH ON SHAPE OF PRASEODYMIUM

Elution Curves

Run 27 (X)

Run 30 (0)

pH 3.00

pH 3.12

Both:

120 cm. column 30 gm. loading 45.1% Pr60₁₁ 12.0% Nd20₃ 38.2% La20₃ 4.7% Ce02 FURM SOCO

H.	T	11		111			111	::::	1111	1111		1111	1.1.1	1122			tti:		lin:	HE		1		1222	1.	1.		1	1	1.11				111	111.1	1	1	1.11	1.111	1201
H	+:			1.11				1-1-					1111	1111								1			i :::				111.	11.1	1177		-	1.						
H:	-				1			1.11			1	12.22	11.1									1111				1.171				111	1.11				1111			11		1111
<u> </u>																										Į								<u> : : :</u>	<u>.</u>			1	1	
	1	.11	:::·.	145		10						1	1111			Fi		he.	5	100	1111			1111	1	1	1.55			1071	: :		111	1.1.1	111				1	<u>'':.</u>
			1100	1.1	13-13	111	1172				<u> </u>	1.11	11.3	1.11									101			1.11						1.12			1.		1.			11
113					1411																								1220				:11							1
						1								100			111		11.		[:::	::. <u>:</u>							::/]											
							ii								÷1:			1		1.		h				1									: .:					
											-								1	1				1.0				:17						1						
	·	1 - 1 - 1 - 1	1				· · · ·			:1::	1: .:	1 1 2		111				1		12		÷			11	1.00	100	:::::	1	1.1	1.1.		1	1				1111		
		ā.					1			1	1			1	X											1				:::	1.11				1			1.111		
	:	4						:			1.1				ŧ		1.1		1	1								1111 1111		:				1	<u> </u>					
1.1	1 L		:1	1Z			1		1.11				1	1					÷			-	-	1		1	1-	-				1	1 	1		1.1		0.1	1.1	1.11
	1								5.	12	1.1.	1	<u> </u>	1						<u></u>		÷÷	-	+	1		1.	1	1	·	-	DH	-	4-C	0					
H	1	<u>-</u>	1.	D			-	1		[· · ·				F	-	-			1	1			-				a							-	F!:-					
	- lé	Š	1177	110	1.1.	. ::	÷-					1	4			1-	<u></u>		1		1001	 	-	1		d	r i	R.		111.	1.1.		1	+	121	1.11		1		
-	4	-	0	P	-		<u> </u>		1				V	- 11.	1.11	4			1:::			-			1	X	1	9				1.1		·	122			-	-	1
		<u>с</u>		1					1		1	1		1					-	1		_				Y			R	1.8	in.	11.3		<u>.</u>	ŀ	1	1.11			
	-	•	ō	8		1.11	.:·	··· :			11	1	1.1		1.	×			-	1933			1			4	1.1		les!	6	1.1	-	1.44	1		1.11	1	17	1.11	1.3
•		E.		li.i.	L:	110						Ž	P	+nD					1	<u> </u>			<u> </u>	1		Y				N	-	ļ	1 de la		1		1			
			0.	4	· ·				.14		1			Ľ.							1 :-		<u> </u>			Φ		re	h.,		R	1							1997	
				:		1	1	1	12	×	7	1				Þ	k				· :	1		· [t_						R		1 -	1.4			•		
1.1	1.		а.	2		1				1									C.				1.5	1	1.	b :	1					13	R	-				1.1.		.110
14	T		***			1.1.4.	1:1			×	1.1.1			1				¥		2				T			1.1.1	112		1:	Γ	1:		2						
	1		a.	h	in t	1			X		1	1.				1			K		E		Γ		ø		1.414	1	T		1.18	1-1		1	PA	Ð		125		
	1					-	13		1	1:		1			L		11.					1	1	1.0	1	111	1.		1	1	1 13		1	1	11			1		
11	1		1	1.	1		1		1		1			4	1				1	1	1.	1.1.1	1.	1.5	μ.	1	18		1	1	25	-0	1	1.		1	٢	1	1	11
-	1		1		1	1.00		1		1	1	1	1	1.00		I	tte	t's	0	E	11	lue	tt	+	1	1	1	1	-	F	1	1	1	1	+	1-*	1	1	1-	
÷	t			+++	1				-		1		-	+	1	-		111	1	1 :	1		-	1	T	1-	t	1	1		-	r	1	t ·	1	1	1	+	1	
-					-	+	-	-	-	1	-	-	-				1	1	-	1	1.75			+	-	1.	+	-	1	1		+	-	1-	1		-	1	+-	
11					1	11		1.		1	-	+		+	1			1	1.			+	-	1				1	-	1 -		·		.]			1	+	1-	
1	1	1.1		1		1		11		1.5	1.1.1	12	1.1			191.7	1:11	1	1		1		1	1.	1:1	1	1. **	1	1.00	1	1	i .	1 .	1	11	1.97	1.1.	1 1	1 : .	1111

\$

boundary and a diffuse rear boundary, and for $K \lt l$ a curve is obtained with a diffuse front boundary and a sharp rear. Applied to the preseodymium curves we obtain:

It would seem, reasonable to assume that at some intermediate pH a symmetrical elution curve would be obtained for which K = 1. Thus, in a manner of speaking, it may be stated that the effect of a pH change is to change the affinity of the rare earth ions for the resin due to the effect of both changing the equilibrium concentration of the citrate complexing ion and changing the ammonium ion concentration. Further, at some pH, specific for each rare earth ion for a given resin, the affinity will be such that K = 1 giving a symmetrical elution curve. For values of pH above this value, the curve will be longer on the leading edge and for values of pH below the specific, the curve will be longer on the trailing edge.

Inasmuch as the curves for neodymium obtained on the longer column runs did not seem to show this effect to any great degree, (Figure 6) the question was raised as to whether at pH 3.12 the neodymium elution curve was skew or dymmetrical since the above theory would suggest that one might expect this curve to be shaped as curve B above while the elution curve appeared nearly symmetrical. It was decided

FIGURE 6

EFFECT OF pH OF ELUENT ON SHAPE

OF NEODYMIUM ELUTION CURVES

Run 27		Run	30			
pH 3.12	(X)	рН	3.00	(0)

BOTH:	
120 cm rea	sin column
30 gm. Tot	tal loading
45.1%	Pr6011
12.0%	Nd203
38.2%	La203
4.7%	CeO ₂

1044 3-1CO

to make one run loading with just the amount of neodymium that was contained in the former runs and another, loading with the same amount of neodymium but making the total loading up to 30 gms. with lanthanum oxide. It was hoped that these runs (33 and 34) would show the effect of the neodymium curve at pH 3.12 unaffected by the presence of other elements and also the effect of lanthanum, if any. As shown in Figure 7, the curve at this pH is indeed longer on the front than on the rear as theory had predicted. The presence of lanthanum seemed to have had no effect at all upon the shape of the curve. The slightly earlier breakthrough in run 33 may have been due to the larger total load giving a shorter effective column length or it may have been due to other factors varying within the limits of experimental error. The presence of praseodymium, however, seems to have caused the neodymium elution curve to tail out under the praseodymium elution curve to some extent. (See Run 27, Figure 7). When the curves obtained by varying pH for the earlier experiments are reexamined. (Figure 1) the effects explained above are evident although obscured to some extent by the scale required to place all three curves on the same plot, resulting in the effect not being particularly noticeable until exaggerated by the longer column. It may be noted that the shapes exhibited by the earlier curves (Figure 1) are as follows:

P ^H	Nd	Pr
3,12	В	В
3.00	В	Α
2.90	A	A

FIGURE 7 NEODYMIUM ELUTION CURVES SHOWING EFFECT OF PRESENCE OF OF OTHER RARE EARTHS

Run 27 - () Nd₂O₃, Pr₆O₁₁ and La₂O₃in adsorbate (30 gms total) loading
 Run 33 (X--X) Nd₂O₃ and La₂O₃ in adsorbate (30 gms total) loading
 Run 34 (0--0) Nd₂O₃ only in adsorbate (3.6 gms loading)
 All runs:

120 cm column

pH of eluent = 3.12

FORM

it:E E. Ξ ----Hill: -+ 5000 litt 17 -+ 1111 11 441222 . 1.1 ::: 1 11' H ti H 111. 1.4± :: :: 12 • :: ' 11 1÷ 1... . $\mathbf{F} \in \mathbf{G}^{1}$ -0 0-6 :: / t. doği. ¢ :.. -----1 H • 5 • 0.4 P .: :::: 01 A CONTRACTOR a_eb₃ diire N 1 5 C-3 1 9 Pre011-0.2 34 1 14 e 1 1. 1 R 11 k 13.1 1.1 1 1: 011 ter a · Sola F 1 2 -----B 0-0 :: 1 10 -No 100 10 26 12 14 24 34 6 13 22 30 2 .10 14 18 3 1 ::: ters E of Effluent 1 ±. 11. ... ižie 18 - t-....

÷

The effect of pH on the movement of the cerium band has already been noted. It seems to have a surprisingly large effect when varied over the small range between pH 3.00 and 3.12 but perhaps this is not unreasonable when it is considered that essentially the same effect has been observed for lanthanum which seems to move infinitesimally slowly even at pH 3.20 but very rapidly at pH 3.90 (see Run 31).

Effect of Column Length

As discussed in a previous section on general theoretical background, the use of ion exchange to separate the components in a mixture of rare earths is dependent upon differences in their respective exchange equilibrium constants and on differences in the dissociation equilibrium constants of the complexes of the various rare earths. These differences cause the various components to move down the resin column in bands having different rates of movement for different components. Since they are moving at different rates, it would seem that the further they travel before elution, or the longer the free length of column, the greater should be the separation of the bands, and hence, of the components. This effect was, indeed, noted by Spedding⁶, for this reason the runs for this thesis were all made on a column considerably longer than the column used for previous experiments in this

<u>6</u> Spedding, et al., <u>J. Am. Chem. Soc., 69</u>, 2777 and 2786, (1947).

laboratory. The greater separation of the neodymium and praseodymium peaks given by the longer column as compared to that obtained on the short column⁷ is very noticeable (Figure 4). However, as pointed out by Harris, Tompkins, and Khym⁸, a widening of the elution bands may be expected with increasing column length according to either the mass transfer" or the plate¹⁰ theory of chromatography. This effect was indeed noted in a spreading of the bands (i.e., a decrease in slope of the leading and trailing edges.) The net result of these two effects was that no appreciably better separation was obtained for this particular mixture of oxides by lengthening the column alone. This result may be seen by a comparison of a previous run made at this Laboratory (Run 24) and LaFond's Run 29 (both on a 73 cm. column and under similar conditions of pH of eluent, composition of adsorbate, type of resin bed, and flow rate) with Run 27 made under similar conditions except for the use of a longer resin column (See Table IIa). A comparison of another previous run (Run 23) at pH 3.00 with Run 30 (Table IIa) (the long column run at 30 gm. loading and pH 3.00) would perhaps seem to indicate

⁷Short column run used for comparison (Run 29) made by LaFond, F., Georgia Institute of Technology, April 1950.

⁸Tompkins, E.R., Harris, D.H., and Khym, J.X., <u>J.</u> Am. Chem. Soc., 71, 2504 (1949)

⁹Boyd, G.E., Myers, L.S., Jr., and Adamson, A.W., J. Am. Chem. Soc., 69, 2849 (1947)

10Mayer, S.W., and Tompkins, E.R., J. Am. Chem. Soc., 69, 2769 (1947)

TABLE IIa

PURITY OF RECOVERED OXIDES &

	Tot	al		Neody Percen recove having than	mium Oxid t of oxid red as ox purity g	e e ide reater	Prase Percent recover having than	odymium O of oxide ed as oxi purity gr	de de eater
Run No.	pH of eluent	column loading	column length	90%	95%	98%	90%	95%	98%
211 27 29	3.12 3.12 3.12	(gms.) 30 30 30	(cm.) 73 120 73	73b (7) 72 (16) 62 (13)	73 (7) 57 (14) 55 (12)	46 (5) 42 (9) 49 (11	94 (9) 90 (30) 87 (17)	88c (8) 85 (28) 79 (15)	88 (8) 83 (27) 74 (14)
23 30	3.00 3.00	30 30	73 120	82b (5) 93b (22)	82c(5) 93 (22)	82(5) 85 (20	94c(26) 102(43)	94 (26) 98 (42)	87 (25) 94 (41)

a For samole calculations see Table XX

- b Indicates that no fraction was obtained of purity greater than 90% but less than 95%
- c Indicates that no fraction was obtained of purity greater than 95% but less than 100%

Ч

Note: Numbers in parentheses indicate the number of fractions summed to obtain the weight of oxide having the designated purity.

slightly better separation on the longer column. However, the increase is so slight as to be influenced by size of fractions taken and number of fractions considered in setting the limits of purity as well as by other experimental limitations on reproducibility so that no real conclusion could be drawn as to whether or not separation was affected by increasing the column length. Inasmuch as lengthening the column increases the length of the run and the amount of eluent solution required, the practical conclusion may be drawn that for this particular separation, a column shorter than 120 cm. should be used.

Effect of loading

It was expected that if a smaller loading was used under a given set of conditions, narrower bands of the 1 individual components would be formed upon original adsorption. In fact, Spedding¹¹ found that the actual space required for the rare earths upon loading was directly proportional to the weight of the sample. Thus, if the loading was reduced by one half, the column length would be increased but not nearly in proportion to the reduction in band size and the net effect was expected to be that of aiding separation. Indeed, a comparison of the dution curves of Run 27 (30 gms.) with those of kun 28 (15 gms) (Figure 8) both at pH 3.12 would seem to indicate that better separation of the components is

¹¹Spedding, et al., <u>J.Am. Chem. Soc.</u>, <u>69</u>, 2786,(1947)

FIGURE 8

EFFECT OF LOADING

Run 27 (G) Run 28 (X)

30 gm. loading 15 gm. loading

Both pH of eluent - 3.12 Composition of adsorbate: 45.1% Pr60₁₁ 12.0% Nd₂0₃ 38.2% La₂0₃

4.7% CeO2

		HI.					1	1	1				li.		1111	tti		I₩.			1111					1.1.	1	1:.:		1										1:12		
					1				T	•					i r										1				1	1	P								1		1	
i.							17				:1																			5									1			
1									1 11	1					111	1							H	HF:					1	1-	q								-			
				A M		5	1																		+				P			t					1			1		i:
Ė	H										11												15		1		-		1	1	1	1									1	
1			111											F	ŤΒ	ur:	+	-	-		+		+						-	+		4		-							1	
-			ļij	-			-	-	+	-			11 1.1.1												-			19				A		1	υμ	4 # 1	8					1.:
-			1	-0		-	1.1	+		:::::			1111			1	1		11		+	<u> </u>	111		1	1.		ø		-						111						
-				1:		1		+	+										4	ilui	+		+	 	<u> </u>	1	0		1=	+	1	+							1.	1		1
-			C	4.8		1					-						-		4		4		1.7			1	Į.			-		+		#		::::				+		
-		-	-						-			- 1				14	4					-	1.			0	7	1				-	¥							+		
			C	8		E		: .;;		142		11: 11:			1:1:1			<u> </u>				11.	1		Ľ.	17	1	1	1	L.	4	-									<u></u>	
Ŀ		*		4		1								1	1.		1					1	1	1.:		1		.	1	1.	4	4	1		152	70			1			
1	it	4	Ç	7					-				i		L:i	1						112	<u> </u>	1:1:	17				-							1112		<u></u>	1777		1.11	11
		197								-			<u>-</u>					111				1						12		Π				-	17						1	1
1.1.1		T¢	G			15			: 7			E		15					1:		1.1.1	1		1		1.1	2	1			1		9		•	ΞĒ						1
		G ;					1:1:									1.1							1	Ø		1.1	1				1					<u>.</u>						
Ŀ		S	0	15		111						••••		.							1.11		1	1	-÷-`	1			:		T			S.		1111						
		U		:					1 - F			it.							13	dii:			P		2	1	1.11	i i t														1
	::	Ċ	0	4		1.1		:	-	11										:		P	Z		K	1									1				111			1
		<u></u>	::		.ir							ЦĘ			1::						F	17		X	1									P	14	e d	in	8				
			C	3		T	17	1								0	5	à			Π.,	1	1	1		1		1.5					1		à	14.						
		111	111		11.1								e	1	1				P		1		1	1			1	1.12	1	1 1	X	F		-		5			Lis.		1715	1.1
	1		in	2		1.1						ø			-			E		1	1	X	1:	T-	1			T.		T	1	T				1	4	[::::				
F						1.1			1		1		>	×			5	11	N	1	X		1.	1		1.	T	Ť	1	T	1	1				- 4	1	-		1:		[
T			in	1					V	8		1			1			K	-	12	1	T	t.		1	1	T	-	1			1				12	1	1	E.	1.11		I.
F								1	1		1	111					1	17	×	1	K		1.1.	1	1	1.1	1.1			T		-	T	+		1.1	1	1	*	1.	11.5	
	1	H					1º	-	1	1					1.7	Ē	1	ſ	12			[~	1		1	1	1	i.		-		1	×	+	. <u>.</u>				1	Ł		1
H			14	YU:	t i i	9 -	1	17	9-			112	÷	-	-	F	-	f		i	F	-		1		1	+		1	+		+	-	4		12.		1	+			-

89

obtained since a decrease in the size of the overlap region may be observed with decreased loading. A corparison of the tabulated percentage recovery of oxides of various purity for these two runs (Table IIb) would tend to bear this out. In addition, a comparison of the elution curves of Run 30 (30 gms.) with Run 31 (15 gms) both at pH 3.00 would seem by the same criterion of comparative sizes of overlap regions to indicate an improvement in separation. (Figure 9) However, a comparison of percentage recoveries of various purity for these latter two runs (Table IIb) does not show any appreciable difference in separation. It may be simply that with the separation of components already so greatly enhanced by the lower pH, any small improvement due to reduced loading is covered by variation of other conditions within the limits of experimental error, as well as by factors such as size of fractions collected and the possible large effect of one or two fractions on the particular percentage purity under consideration.

A consideration of the two comparison curves (Figure 8 and 9) together raised a question as to the effect of loading upon the location of the praseodymium peak. In one case (Figure 8) at pH 3.12 the peak is shifted toward the earlier part of the run, and in the other (Figure 9) the peak is shifted away from the earlier part of the run. In both cases, however, the peak is shifted toward the diffuse

TABLE IID

PURITY OF RECOVERED OXIDES a

				Neodymi Percent of recovered having pu than	lum Oxide of oxide as oxide urity gre	e ater	Praseod Percent o recovered having pu than	ymium Ox f oxide as oxid rity gre	ide e ater
Run No.	pH of eluent	column loading	column length	90%	95%	98%	90%	95%	98%
27 28	3.12 3.12	(gms.) 30 15	(cm.) 120 120	72 (16) 88 (15)	57 (14) 83 (14)	42 (9) 72 (12)	90 (30) 96 (22)	85 (28) 9 3c(20)	83 (27) 93 (20)
30 31	3.00 3.00	30 15	120 120	93b(22) 96 (23)	93 (22) 920(21)	85 (20) 92 (21)	102 (43) 99 (27)	98 (42) 97 (25)	94(41) 95(24)

a. For sample calculations see Table XX.

- b Indicates that no fraction was obtained of purity greater than 90% but less than 95%.
- c Indicates that no fraction was obtained of purity greater than 95% but less than 100%.

																																1111							. H	1
																													· · · · ·											1
			. ·.		; . ; .							:::														· · · ·	11.			1			-	-				11.1.	1	-
		: .			4							1													15.0	1.	i Liter							:						1
	•	1.	6		-			le.	••••			1.11									1: 1								201						1	1.1			÷	-
		1.					1	1.	1			1.1.1	÷	::.						Je						FI	100	re	9	1		1.5			173	1111				-
	÷.,	0.	4		•		$\frac{1}{1}$		••••					:	1.11				17	1	A	¥,	-	I					(3.				-							
			1	14	14		-11		1.5	1			1									1		- 30			10	d				-							1	-
35	17	0.	R		:			·: ·		11.		1			1.1.1		·			1	18	\square					2344			1.13	353		1					1		-
1				10	4			· · · .	:::	1271									6				X			2		:::					111							1
	4	١.	7	1.0	1.1		2						1.1		1.		1	1:::			1:5	ln.	9				-						1.1		1		1111			and the second
1									940 1947		1.22		÷: .		1.14				Ē					X	· .	<u> </u>							1.0							-
		١.	*	1 2						1	1.	• - •			197	:0	15173			1.:	1.1		1	N		•	1.		:		-	144	1	1		: 23				-
			·							1. 13									L			1.12	1.	-	1	·		121-121	· **.			1	6.	1						-
di i	đ	١.	5	11								1		-	•	1		111		1.			11	\square	\square	1			.:			1.0104	12.5	1	111			1.252		-
a 8	5				1				1	1	1.	1	1.5				12					,	r		Λ	6	L		1	<u>.</u>	1.	ļ.,		1				1.1.1	1	
1			4		1				a []	-			4	A	0			¢				\square				17			-1			1.	60	in.	•					-
	1			1	1							1	\mathbf{k}		$ 1\rangle$			1	1	1.		×			×	A	Q	1.1.1												+
1.5	2.1	b.	3	1			-	;•			1.1		r.	į	1			1	· ·			1		1	1.75		1		1								1.1.1	11.2	11.	1
127		1	4.	1	1.	1			-			ø	Ŀ.	1.1.2	1.1	N.			1	:	Z		-				$\boldsymbol{\lambda}$	7					L	1	1.1			2.57		
		þ.		1	-	1		-			1	1			1.1	1	1.11			1.2	<u> </u>				· .				N					1		1.1			-	1
		1	-			1	18 - J		. /	1	1	×	-	5		1	5	R		×			1	1	- 1-	ļ	•		K	20		ļ	1.		<u> </u>					+
38.		b.	1			÷.		14		1	2	<u>٢</u>		1.1	\square	*	10	1	1	1				1.1	1 1	-		L		>	B	0	100			11.	143	:	1	-
i. Test		1				1		4.4			1			1.1		X		U	ſ		1	1	1	1		!				ļ	~	~	12	40					101	
	•	b.1	d	-	1			0	2	-	- 4.4						Ľ	2			10		11	1	-				Con I					12	×	K			10210	
1.	1.		4	1þ.	1		4	5	1	5	þ.			5		E,	þ.		<u> </u>	65	1	7	b_	<u> </u>		5		Ē	b		E	15_		9	þ					-
	1.	4.0	12			1		1			_				-		-			45			1	1				6	L	*		 			1					-
-		1	1.	-	-	1		-				 	10	1		er	F C	11	RL,	TTT.	Pn	n								F		1		8	ļ	1		ļ		
-				1	123			2	1.3	1					1.1.1					1				1		1.			1		4	1	1.2	1		12		1	-	

/ .

•

side of the curve rather than toward the sharper edge. It may be that this effect is coincidence and caused by slight changes in other variables than loading. On the other hand, it may be that further experimentation could establish a trend with increasing or decreasing loading. In any event, this question must remain unanswered for the present.

FIGURE 9

EFFECT OF LOADING

 Run 30 (0---0)
 Run 31 (X--X)

 30 gm. loading
 15 gm. loading

Both

pH of eluent - 3.00 120 cm. Dowex 50 column Adsorbate: 45.1% Pr60₁₁ 12.0% Nd₂O₃ 38.2% La₂O₃ 4.7% CeO₂

CHAPTER V

CONCLUSIONS

Some studies have been made on the effect of pH of eluent, column length, and loading upon the separation of preseodymium and neodymium from a mixture of oxides containing approximately 12.0% Nd203, 45.1% Pr6011, 4.7% Ce02, and 38.2% La203. The greatest effect was found by variation of the pH of the eluent. This effect was such that it was definitely indicated that for the two ions studied in particular, and probably for any two ions ingeneral, there is an optimum pH for maximum separation. This pH is such that the affinity of one ion for the resin is greater than that of the ion to be displaced and such that the affinity of the second ion is less than that of the ion to be displaced. For example, in the separation of neodymium and praseodymium using ammonium form resin, the affinity of neodymium for the resin should be less than that of the ammonium, and the affinity of the praseodymium for the resin should be greater than that of the ammonium. For the particular separation studied, this pH is believed to be between pH 3.00 and 3.12, perhaps closer to 3.00.

An increase in column length tended to increase the distance between peaks in the elution curve but to widen the bands at the same time so that no appreciable effect on component separation was noted from the increase in column length used in these experiments. Since the longer column did, however, cause the length of the run to be increased and the time consumed to be greater, it is believed that the use of the shorter column is more practical for this particular separation.

A decrease in loading at a pH away from the optimum tended to give better separation of the components. At a pH near the optimum, however, no appreciable effect was noted as a result of lessening the load. It may well be that if better control of all other variables was obtained then a small effect might be found. An unexplained effect was noted upon the shape of the praseodymium curve and the location of that peak which would indicate that more experimental results are necessary to a full understanding of the effect of this variable.

BIBLIOGRAPHY

Bauman, W.C., and Eichorn, J., J. Am. Chem. Soc., 69, 2830, (1947)

- Boyd, G.E., Myers, L.S., Jr., and Adamson, A.W., <u>J. Am. Chem.</u> <u>Soc., 69,</u> 2849, (1947)
- Harris, D.H., and Tompkins, B.R., <u>J. Am. Chem. Soc., 69</u> 2792, (1947)
- LaFond, F., unpublished work, Georgia Institute of Technology, (1950)
- Mayer, S.W. and Tompkins, ².R., <u>J. Am. Chem. Soc., 69</u> 2866, (1947)
- Nachod, ^{F.C.}, <u>Ion Exchange Theory and Applications</u>, Academic Press, Inc., New York, N.Y. (1949)
- Roberts, J. T., Jr., unpublished work, Georgia Institute of Technology, (1950).
- lompkins, E.R., Khym., J.X., and Cohn, W.E., J. Am. Chem. Soc. 69, 2769 (1947).
- Tompkins, E. R., Harris, ^D. H. and Khym, J. X., <u>J. Am. Chem.</u> <u>Soc., 71</u>, 2504 (1949)
- Spedding, F. H., Voigt, A.F., Gladrow, E. M., Sleight, N.R., J. Am. Chem. Soc., 69, 2777, (1947)
- Spedding, F. H., Voigt, A. F., Gladrow, E. M., Sleight, N.R., Powell, J.E., Wright, J. M., Butler, T.M., and Figard, P., J. Am. Chem. Soc., 69, 2786, (1947).
- Spedding, F. H., Fulmer, E.I., Butler, T. A., Gladrow, E. M., Gobush, M., Porter, P. E., Powell, J.L., and Wright, J. M., J. Am. Chem. Soc., 69, 2812 (1947).
- Walter, John E., J. Chem. Phys., 13, 229-234, (1945)
- Ziegler, W.T., Blomeke, J.O., Roberts, J.T., Jr., Paper presented before Georgia Section - American Chemical Society, Meeting in Miniature, November 17, 1949.

APPENDIX I

Figure 10

APPENDIX I

Preparation of Adsorbate Solution.

To compare the proposed experiment with previous ones conducted in this laboratory, it was desirable to use a rare earth oxide mixture with approximately the same composition as that used for the previous experiments, i.e., approximately $10\% \text{ Nd}_20_3$, $45\% \text{ La}_20_3$, and $45\% \text{ Pr}_60_{11}$. As starting material there was available a quantity of praseodymium ammonium nitrate described by its manufacturer, Lindsay Light and Chemical Co. as about 30% oxide, containing $32\% \text{ Pr}_60_{11}$, $10\% \text{ Nd}_20_3$, $4\% \text{ CeO}_2$, and $54\% \text{ La}_20_3$ with traces of other rare earth oxides; and some laboratory stocks of high purity praseodymium oxide containing a few percent of neodymium oxide. The manner in which the adsorbate solution was prepared may be most easily followed on Figure 10.

First, 1000 grams of praseodymium ammonium nitrate were dissolved in water and filtered to remove dirt and insoluble material. Then saturated oxalic acid solution was added to precipitate the rare earths as the oxalates. After filtering, the residue was ignited overnight at 850° C. The oxides thus formed were redissolved in 2N HCl and filtered in an attempt to remove as much of the Ce0₂as possible, Ce0₂ being relatively insoluble in dilute HCl. This solution was neutralized with dilute ammonium hydroxide until the

rare earth hydroxides started to form, enough HCl was added to barely redissolve the hydroxides and then saturated oxalic acid solution added to again precipitate the rare earth oxalates. The residue, after filtration, was once again ignited in the muffle furnace overnight to yield 266.2 grams of oxide (BI) which was analyzed spectrophotmetrically as 33.5% Pr 6 011 and 12.5% Nd₂0₃.

When one batch of laboratory stock (C) was analyzed, it was found to contain 25.1 grams of oxide 12.6% Nd203 and 57.8% Pr6011 with the remaining 30.4% presumably being La203 To obtain purer Pr6011 for the formulation of the adsorbate solution, this mixture was fractionated by a column run over Dowex 50 resin which was used with citric acid eluent at pH 3.20. The praseodymium rich fraction (C 1) weighed 11.4 grams. Since more relatively pure praseodymium oxide was needed, fifty grams of BI was fractionated similarly, yielding a praseodymium fraction, BII, of 14.5 grams. These two fractions (CI AND BII) were combined and the mixture (CII) analyzed as 25.9 grams oxide containing 90.2% Pr6011 and 9.8% Nd203.

One hundred seventy grams of BI were dissolved in about 3 M HCl and filtered to remove the CeO_2 which did not dissolve. Later developments indicated that at least a portion of the CeO_2 was soluble in the HCl and thus remained with the adsorbate. This filtrate was combined with 19.2 grams of CII and with the other batch of laboratory stock (A) consisting of 19.4 grams of oxide analyzing 98.1% Pr60₁₁and 1.9% Nd₂O₃to give the adsorbate mixture of 205.6 grams of oxide

analyzed as 45.1% Pr60₁₁; 12% Nd20₃; 38.2% La20₃ and 4.7% CeO₂. Conditioning of the resin

The Dowex 50 resin for these experiments had been used for a number of previous runs and the impurities originally present such as iron, calcium, etc. had been removed at that time. The resin was screened in the air dry form and found to be approximately 11.7% between 35 and 50 mesh, 54.0% between 50 and 80 mesh, and 34.3% less than 80 mesh. The resin was then placed in a column and converted to the ammonium form by passing "five percent citric acid" solution adjusted to a pH of 3.9 with ammonium hydroxide, through the column. This process was continued until the pH of the effluent was equal to the pH of the influent. After the first run, the elution of lanthanum with eluent of pH 3.9 or greater accomplished the same purpose. Loading the Column

The adsorbate solution was divided into quantities containing the required amount of rare earth chlorides for the various runs (2 quantities equivalent to 30 gms. total oxide and 2 equivalent to 15 gms. total oxide) and kept in tightly stoppered bottles. To begin a run the desired quantity of the adsorbate solution was first neutralized with dilute NH40H, made up to 30 gms per liter with distilled water and poured onto the column. By measurement, 25 milliliters of adsorbate solution yielded 1.4337 grams of oxide. Therefore, for a loading of 30 grams, 523 milliliters equivalent to 29.997 grams of oxide, and for a loading of

15 grams, 262.5 milliters equivalent to 14.999 grams of oxide were used.

After loading the column, eluent solution was admitted to the top of the column from a constant head tank and the flow rate set by a pinch clamp at the column outlet. This rate was set at approximately 20 milliliters per minute for all runs. Approximately 600 milliliter fractions were collected in the overlap region of Nd and Pr and approximately 1200 milliliter fractions at other periods during the runs. The volume, mean pH, color and time interval of collection were recorded for all fractions and a record was kept of the time at which new batches of eluent solution were added and of the times of shut-down.

Precipitation and Filtration of Fractions

All fractions were checked for rare earths by the addition of 20 ml. of a saturated solution of oxalic acid. In selected fractions yielding a precipitate a sample, extracted before precipitation, was analyzed spectrophotometrically. Each precipitated fraction was allowed to stand overnight before filtering and the filtrate checked in every case for complete precipitation by the addition of 5 milliliters of saturated solution of oxalic acid. Each fraction was filtered through No. 40 Whatman (9 centimeter) ashless paper and the residue washed several times with distilled water.

Ignition of Fractions

The precipitate from each fraction was placed in a

weighed porcelain crucible (size 0) and the paper carefully burned off over a gas flame. The crucible was then covered and fired overnight, or a minimum of six hours, in a muffle furnace at a temperature of 850°C. After firing, the crucible was placed in a dessicator while still warm and allowed to cool. As soon as the crucible was cool, it was weighed to the nearest 0.1 milligram. The fraction was then stored in an appropriately labeled glass vial.

Analysis of Fractions

The analysis was carried out by means of a Beckman DU quartz spectrophotometer (Ser. No. 3204) using absorption peaks at about 446 millimirons for Pr and about 742 and 800 for Nd. Approximately 0.1 grams (weighed to the nearest 0.1 milligram of a fraction of oxide was weighed directly into a clean dry 10 milliliter volumetric flask immediately after the ignition of the oxide was completed. Two milliliters of 2 M HCl was then added to the flask and the flask was warmed to remove any chlorine formed by the reaction of HCl with Pr_6O_{11} . The flask was then filled to the mark with distilled water and mixed throughly by inversion and shaking.

The Corex photometer cells were carefully cleaned by soaking in chromic acid for about ten minutes, thoroughly washing in tap water, and rinsing in distilled water. They were then dried, first with a clean soft cloth, and then by

being placed in the drying oven for about fifteen minutes. The solution for analysis was poured into the clean, dry cell, the cell being filled so as to cover the optical surfaces. These optical surfaces were polished with lens tissue and the cells covered and placed in the cell holder.

The optical densities were determined for each sample at the three peaks by using the technique of scanning to find the peak. The optical densities were also measured at other points such as 400, 650, and 850 millimicrons to determine any background effects. When the optical densities were low, i. e., below about 0.040, it was not always possible to locate the peaks by scanning since the change in sensitivity of the photocell with wave length was greater than the change in absorption. At least two determinations of the optical density at each point were made and all values recorded to the nearest 0.001 unit.

The cell corrections were determined using cell 13957 filled with distilled water as the standard. All cells except this standard were filled with 0.4 M. HCl and the optical densities at and near the various peaks measured. Care was taken that the cells were always placed in the same order and orientation in the cell holder.

Since it has been found that the optical density of a given solution at a given wave length is a function of the slit width used in the measurement, it was necessary to use

a standard slit width for all measurements made at any given wave length. The following table gives the slit widths which were used in all analyses for praseodymium and neodymium.

TABLE III

Standard Slit widths

	Band (mµ)	Slit Widths (mm.)
Neodymium	800	0.0116
Praseodymium	744 444	0.0345

The analyses were calculated using the relation C = D/k where C is the concentration of rare earth oxide in gms./ml., and D is the corrected optical density, and k is the extinction coefficient as given in Table IV.

TABLE IV1

Extinction Coefficients

Peak (mµ)	k	for peak 800	mμ
<u>446</u>	59.0	Conc.Nd_O_ (%)	′ k
744	41.1	202 3	62.0
800	varies with	40	61.5
	concentration	60	60.6
		80	59.6
		100	59.3

The corrected optical densities are obtained from the measured optical densities by correcting for the absorption of the cell as related to the standard and for any observed background.effects.

A check was made of the absorption of the 5% citric acid solution at 10 mµ intervals over the light range used

¹These slit widths and extinction ccefficients are based on the work of Ziegler, W.T., Georgia Institute of Technology Oct. (1949).

in our analyses (400-850 mµ) and no absorption at all was observed. During Run 27, a number of fractions were sampled as they came off the column and the optical densities measured as explained above. The results indicated that the effluent solutions were too dilute to afford an accurate quantitative analysis except possibly for the peak fractions. For example, fraction 21b of Run 27 (Nd peak) gave the following information --- assuming that the extinction coefficients are not effected by this change in the solvent. Peak Corr.O.D. Gms/ml. Avg. % in citric % in HCl acid soln. soln. 800 0.019 0.000321 0.012 94.8 744 0.000292 0.000307 94.3 ևևև 0.000017 0.001 0.000017 5.2 6.1 Total oxide -- 550 (0.000324) - 0.178 gms.; by measurement 0.176 gms. but on the other hand fraction 32b gave this information. Corr.O.D. Gms/ml. Avg. ∅ in citric % in HCl Peak acid soln soln. 800 0.014 0.000235 744 0.008 0.000195 0.000215 80.8 76.2 0.003 0.000051 0.000051 19.2 25.2 Total oxide -- 550 (0.000266) 0.0149 gms.; by measurement 0.166 gms.

Make up of Eluent Solution

The citric acid eluent solution was made up in 18 liter batches. First 900 grams of citric acid monohydrate (U.S.P.) (50 grams per liter) and 18 grams of phenol (CP) (1 gram per liter) were weighed out and dissolved in 18 liters of distilled water. Next, concentrated ammonium hydroxide was added to obtain the desired pH. The size of the first portion of ammonia was estimated from a chart of pH plotted versus ammonia added so as to give approximately the right pH. The pH was adjusted exactly to that desired by

successively smaller additions. Care was taken that the solution was throughly mixed after each addition. Finally, each batch was tested for precipitable material with oxalic acid before its use. No precipitates were formed.

Before each series of measurements, the pH meter was standardized as follows. First it was set to the correct value reading against a standard buffer² of 7.00 with the temperature taken into account. Then, since the general range of measurements was between 3.0 and 4.0, the meter was tested with standard buffer of 4.00 and found to give the correct value of the buffer at the prevailing temperature to within 0.01 pH unit each time.

Calculation of Results

The elution curves for the various runs were obtained as follows:

1. The volume of each fraction was measured to the nearest 5 ml. The weight of oxide contained in each fraction was obtained by weighing the crucibles as soon as they were cool after the ignition of the oxalates to the oxides.

2. From these two values, the concentration of oxide was calculated in grams per liter and plotted against the cumulative volume of eluent.

3. The individual elution curves were obtained by using the results of the spectrophotometric analyses

²The standard buffers used for the pH meter were from the National Technical Laboratories, South Pasadena, California They were stated to be pH 7.00±0.01 © 25°C and pH 4.00±0.01

and the total weight per liter to find the weight per liter of the individual rare earth oxides.

For calculation of the material balances, the results of the spectrophotometric analyses were combined with the total weights of oxide per liter to give the individual elution curves as indicated above. These curves were plotted on an enlarged scale. (See Figure 11 for an example) Values of concentration were read from these curves for each oxide and each fraction in the overlap region. The concentrations of Nd and Pr in each fraction were multiplied by the volume of that fraction to obtain the weight of oxide per fraction.

In each run the fractions laying outside the overlap region were assumed to be 100% of the single component and added to the weights per fraction of that component for all the fractions in the overlap region to give the recovery of neodymium and praseodymium oxides (See Tables VII, X, XIII, and XVI.) The lanthanum oxide and cerium oxide weights were obtained simply by adding the weights of the individual fractions containing these substances.

To test this method of calculation, the weights of total oxide, as obtained by the addition of the weights of individual components obtained by this method, were compared with the weights of total oxide obtained by the addition of the actual weights of the fractions.

Run	(1) wt. by calc.	(2) wt. by addition	(1)/(2)
27	29.5313	29.5655	0.9988
28	14.6849	14.7115	0.9982
30	29.1726	29.2054	0.9988
31	14.3583	14.3644	0.9996

Further, the percentage recoveries of the components seemed to be in accord with the total percentage recovery for each run. Thus it is believed that this method of calculation of the material balances of the components gave essentially reliable results.

The calculations of the analyses are explained in the section on analysis of the fractions.
FIGURE 11 ENLARGED CURVE OF OVERLAP REGION Run 28

 Nd_2O_3 (0) Pr_6O_{11} (0)

		:								;		i	1						
		, 								;				1	— 1 1				-
			: 	 					7	eune	н. н.			:		 			,.
	 									÷ ;,				·	, 				
	22												· · ·				; 		
				· ·								. 						· · · · · ·	
1	0.2			 	o	- e	-			 	• • •	·			r			· · · · · ·	╎╴╷
a i i			· · · · · · · · · · · · · · · · · · ·			• • • • •				; ; +	- ·		1	 					
6	0.1					±203			R			/		ļ			 		
•										0	×	2 2 2	· 		······		 		
	 0,p								_0		0	<u> </u>							
				*		2				¥		¢] 3	þ.		₽			
						1 · · ·		Liter	a . af 1	12:13r::0:			· · · · · · · · · · · · · · · · · · ·	:	·				
		┨ _╺ ╡╴ ┃ _{──} ╶	. 		· · · · · · · · · · · · · · · · · · ·				 		 	, 	· · ·		 	 	 		
	 						<u>.</u>		,		,		- - -		·				ŀ

•

TABLE V

SUMMARY OF OPERATION OF COLUMN RUN 27

Column loading - 30.00 gms. Composition of adsorbate 45.1% Pr6011, 12.0% Nd203

pH adsorbate <u>-</u> 2.

A

B

12345678910

11

12

Avg. flow rate - 109 ml2

38.2% La203 , 4.7% Ce02

cm min Wt. of oxide Color Volume Fraction Mean gms per gms per ml. pH fractions liter of oxide Number 3.63 950 2.84 1120 3.89 405 1520 2.92 1120 1115 2.11 1115 3.11 1110 3.12 1110 3.12 1105 3.12 1105 3.12 1095 3.12 1100 3.11 trace trace 3.12 0.0202 1095 0.0185 lt tan blue 3.12 1100 0.0558 0.0507 pale 3.12 0.0999 1090 0.0917 11 11 1100 3.12 0.1502 0.1.365 505 1530 3.12 0.1148 0.3672 0.2273 blue gray 3.12 0.2400 11 0.2532 11 0.2760 1090 3.12 3.12 0.1484

16b 17 18a 11 550 550 550 lt gray 0.1559 0.1648 0.2835 3.11 18b lt tan 11 19a 3.11 11 155550 0.1671 11 11 19b 3.10 0.3038 11 11 20a 3.10 0.1714 0.1088 11 11 3.10 20b 0.1764 0.3178 11 11 21a 3.10 0.1796 0.3207 550 555 11 0.3207 11 21b 3.10 0.1764 0.1796 22a 3.10 gray tan 560 0.3177 22b 3.10 0.1779 tan lt brown 575 * 23a 3.10 0.3090 0.1777 23Ъ 3.10 0.1658

* New batch of eluent added to overhead tank during fraction. --- Indicates no oxide obtained from fraction

		TABLE	E V (Cont)	ła	
Fraction	Volume	Mean	gms per	gms per	Color
Number	ml.	рH	fraction	liter	of oxide
2);a	570	3.10	0.1668	0.2926	lt brown
246	570	3.10	0.1926	0.3379	11 11
25a	575	3.11	0.1967	0.3421	choc. brown
25b	560	3.11	0.1835	0.3277	it ti
26a	570	3,12	0,2070	0.3632	11 11
26ъ	570	3.11	0.2223	0.3900	11 11
27a	560	3.11	0.2369	0.4156	11 11
27́Ъ	560	3.11	0.2473	0.4416	N 11
28a	565	3.11	0.2567	0.4543	
28ъ	570	3.11	0.2792	0.4898	11 11
29a	570	3.10	0.3064	0.5375	n 11
29Ъ	560	3.10	0.3224	0.5757	dk brown
30a	560	3.10	0.3472	0.6200	black
30Ъ	565	3.10	0.3731	0.6604	**
31a	570	3.10	0.3957	0.6942	11
31b	555	3.10	0.4144	0.7467	
32a	560	3.10	0.4743	0.3470	11 12
32Ъ	560	3.10	0.4990	0.8911	13
33a	560	3.10	0.4417	0.7888	19 41
336	550	3.10	0.5187	0.9431	4
34a	550	3.09	0.5495	0.9991	11
34ъ	222	3.09	0.5900	1.0041	11
35a	550	3.00	0.5707	1.0522	11
350	242	3.07	0.6551	1,2020	
308 24 b	242	3.07	0.0970	1.2709	11
300	242	3.00	0.7309	1.3521	11
ኃ/፡፡ ጋፖኬ	242	3.07	0.7221	1 2516	It
280	222	2.08	0.6717	1 2666	dir aboa brown
28h	555	3 00	0.5010	1 nalili	W CHOC DI'OWH
300	510	3.10	0.1731	0.3761	! f
39h	540	3.10	0.3315	0.6255	11
##JO	1090	3.12	0.3916	0,3503	choc brown
<u>J</u> 1	1040	3.12	0.3/80	0.3103	brick red
- 1 -		J+ 12	··/4//	U • J ± 7 J	DITOR 104

** Run stopped for several hours during fraction

TABLE V (Cont)

			Wt. of ox.	ide	
Fraction	Volume	Mean	gms per	gms per	Color
Number	m1.	ph	fraction	liter	of oxide
42	1110	3.11	0.3318	0.2989	pink
43	1115	3.11	0.2589	0.2322	lt pink
*11	1130	3.12	0.1723	0.1525	11
Lis	1110	3.12	0.0983	0.0886	11
46	1110	3.12	0.0515	0.0464	11
47	1105	3.12	trace	trace	
48	1105	3.12			
49	1100	3.12			
50	1100	3.12			
51	1100	3.13			
**52	1050	3.12			
***53	1000	3.18			
54	1260	3.50	1.8150	1.4405	white
55	1260	3.58	4.4805	3.5567	11
56	1250	3.58	4.5915	3.6732	
57	1260	3.85	0.2703	0.2180	11
58	1270	3.89			2
59	12/10	3.90			
60	12/10	3.90			

* New batch eluent added to overhead tank during fraction *** Run stopped for several hours during fraction **** Introduction of pH 3.90 eluent started. --- Indicates no oxide obtained from fraction.

TABLE VI

ANALYSES OF FRACTIONS RUN 27

Run 27	Weight oxide		Percen	tages	Wt. Nd203	Wt. Pr6011
Fraction Number	gm per liter	Nd203	Pr6011	Total	gm per liter	gm per liter
12	0.0185	88.9		88.9	0.0164	
1 8a 18b	0.2698 0.2835	100.0 100.1%		100 100.1	0.2698 0.2835	
19b	0.3038	96.5	2.9	99.4	0.2932	0.0088
21b	0.3207	94.3	6.1	100.4	0.3024	0.0196
23b	0.2961	76.2	25.2	101.4	0.2256	0.0746
25b	0.3277	46.0	55.5	101.5	0.1507	0.1819
26b	0.3900	20.1	81.1	101.2	0.0784	0.3163
275	0.4416	10.7	89.6	100.3	0.0!+73	0.3957
28b	0.4898	6.3	96.4	102.7	0.0309	0.4722
29ъ	0.5757	3.7	95.0	98.7	0.0213	0.5469
31a	0.6942	1.5	100.2	101.7	0.0104	0.6956

TABLE VII

MATERIAL BALANCE RUN 27

			Nd ₂	03	Pr_601	1
Fraction Number	Volume ml.	Average Cumulative Volume liters	gms per liter	gms per fraction	gms per liter	gms per fraction
12 -1 8b*	550			(1.3884)	_	
12-100% 19a 19b 20a 20b 21a 21b 22a 22b 23a 23b 24a 25b 25a 25b 26a 27b 28a 29a 29a 29a 30a 31a-46**	55555555555555555555555555555555555555	20.8 21.3 21.9 22.4 23.0 23.5 24.1 24.6 25.8 25.6 25.9 27.5 28.1 29.2 29.8 30.3 30.9 31.5 32.6 33.7	.292 .303 .306 .309 .310 .304 .395 .282 .260 .237 .206 .152 .129 .108 .185 .068 .053 .040 .030 .040 .020 .015 .010	.1606 $.1656$ $.1698$ $.1715$ $.1736$ $.1672$ $.1637$ $.1579$ $.1495$ $.1327$ $.1174$ $.1037$ $.0874$ $.0722$ $.0616$ $.0485$ $.0388$ $.0297$ $.0226$ $.0171$ $.0148$ $.0112$ $.0084$ $.0057$.004 .009 .010 .011 .015 .020 .030 .045 .060 .085 .112 .140 .171 .209 .240 .278 .323 .360 .404 .454 .496 .550 .610 .615 .(1	.0022 .0050 .0056 .0061 .0084 .0110 .0167 .0252 .0354 .0476 .0638 .0798 .0798 .0983 .1170 .1368 .1585 .2016 .2283 .2588 .2580 .3416 .3684 4.7450)
		Total		3.0390	1	н.73 Щ
	Nc	to Pro		n Fead	T	

	NGO3	$Pr_{6011} - Ce_{20}$	Le 2 ⁰ 3	Total
In	3.5940	14.9171	11.4424	29,9535
Out	3.6396	14.7344	11,1573	29.5313
% recovery	101.3% # ∺	🗱 98.8))	97.5 %	98.6%

* Assumed to be pure Nd203 ** Assumed to be pure Pr6011 *** High recovery believed due to impurities on the column before the run was started.

TABLE VIII

SUMMARY OF OPERATION OF COLUMN RUN 28

Column los	ading -	15.0 gms.	Comp	oosition of ada	sorbate
pH adsorba	ate - 1.	.95	45.1%	Pr ₆ 0 ₁₁ 12.09	% Nd ₂ 03
Avg. flow	rate -	1.09 <u>ml2</u> cm m:	38.2% In	La ₂ 03, 4.7% (CeO ₂
Fraction Number	Volume ml.	Mean pH	Wt. o gms per fraction	f oxide gms per liter	Color of oxide
A	535	3.62		a a a	
В	1015	3.00			
1	1110	3.90			
2	980	3.32			
3	965	3.09			~ ~ ~
4	960	3.12			
0	940	210			
7	940	0+12 7 10			
	930	3.10 3.10			****
0	900	2 10			
้ำก	900	3.19			
11	1070	3.12			
19	1070	3.12			
13	1070	3.12			
14	1075	3.12	• • •		
15	1075	3.12	trace		
16	1135	3.12	.0399	.0351	lt blue
17	1150	3.11	.0802	.0697	tt tt
18	1150	3.12	.1233	.1072	ff 7f
19	1140	3,12	.1676	.1470	H H
20a	570	3.12	.1000	. 1754	11 11
20b	575	3.11	.1101	.1914	blue gray
21a	570	3.11	.1176	.2045	11 TH
21b	570	3.11	.1210	.2123	tt tt
22a	480	3.11	. 1040	.2167	11 11
22b	500	3.11	.0874	.2185	T1 1T
23a	400	3.11	.0867	.2158	blue tan
230	585	3.11	.1196	.2044	17 TF
24a	545	3,11	.1035	.1899	17 11
24b	550	3.11	.0936	.1702	gray tan
258	550	3.11	.0824	.1498	TI TI
250	540	3.11	•0706	.1307	14 17

TABLE VIII (Cont)

Frantic	w Volume	15	Wt. of	oxide	0.5
Fractic Number	on volume	nuean	gms per	gris per	Color
Number	111 •	pn	TACCION	T" fel	or oxide
26 a	545	3.12	.06h7	.187	choc brown
26b	550	3.12	.0626	1138	choc brown
279	550	212	0615	1172	dl: oboo brown
280	FLO	2 12	0767	•1.20	
284	540	2.12	.0/0/	-1420	71
200	540	3.12	.0092	.1052	**
298	240	3.11	.1019	-1007	
290	222	3.10	•1130	• 2123	
30a -	540	3.11	.1300	• 22:07	
300	540	3.11	.1460	.2704	
318	540	3.10	.1610	.2981	11
31b	525	3.10	.1723	.3282	H
32a	530	3.10	.1913	.3600	1
326	535	3.10	.2086	.3869	ALC: N
3 3a	545	3.10	.2236	.4103	11
33b	530	3.10	.2351	.4436	17
34a	530	3.10	.2536	.4785	black
34ъ	535	3.10	.2713	.5071	11
3 5a	535	3.10	.2891	.5405	11
35b	525	3.09	.2980	.5676	
**36	1205	3.09	.7506	.6229	*1
37	1115	3.09	.7643	.6855	v dk brown
*38	970	3.09	.6961	.7176	n
39	780	3.10	.5307	.6016	black
ĹÓ	780	3.12	1255	. दें देंदे	n
41	765	3.12	.2115	2765	"
42	770	3.12	.0661	0858	11
43	760	3.12	.0185	-02/13	
44	760	3.12		••••	
45	750	3.12			
46	750	3.12			
47	750	3.12			
48	750	3.12	the page and		
49	715	3.12	.0203	.028/1	1t nink
***:50	1265	3.12	29/15	2328	off white
51	1270	3.67	2.0623	1.6230	white
52	1265	3.68	3,1115	2.1.207	off white
53	1270	3.80	0.9216	0 7257	Dir wirte
54	1400	3.80		0.1-21	bruk otauge
55	11/10	3.80			
56	960	3.80			
100000	,	2.07			

RUN 28

(*) New eluent added to overhead tank during fraction

(**) Run stopped several hours during fraction

• ,*

(***) Introduction of pH 3.92 eluent started

TABLE IX

ANALYSES OF FRACTIONS RUN 28

Run 28 Fraction Number	Weight oxide gm per liter	Nd203	Perc Pr ₆ 0 ₁₁	entages Total	Wt. Nd ₂ O ₃ gm per liter	Wt. Pr ₆ 0 ₁₁ gm per liter
21Ъ	0.2123	100.9	1.6	102.5	0.2142	0.0034
23b	0.0244	97.5	0.2	97.7	0.1993	0.0004
25Ъ	0.1307	85.1	13.6	98.7	0.1112	0.0178
26b	0.1138	57.3	39.5	96.8	0.0652	0,0450
270	0.1267	28.5	70.3	98.8	0,0361	0.0891
28b	0,1652	11.5	85.8	97.3	0.0190	0.1417
29D	0.2123	5.2	94.2	99.4	0.0110	0.2000

TABLE X

MATERIAL BALANCE RUN 28

			Nd	2 ⁰ 3	Pr	'6 ⁰ 11
Fraction Number	Volume ml.	Average Cumulative Volume	gms per liter	gms per fractio	gms per n liter	gms per fraction
16-23a* 23b 24a 24b 25a 25b 26a 26b 27a 26b 27a 27b 28a 28b 29a 29b 30a 30b-43**	555555555555555555555555555555555555555	23.5 24.0 24.6 25.7 26.2 26.8 27.3 26.8 27.3 28.4 28.9 29.5 30.5	0.1993 (1 0.182 0.162 0.141 0.1112 0.089 0.0652 0.050 0.0361 0.022 0.0190 0.010 0.010 0.010 0.001	1.1378) .1166 .0992 .0891 .0776 .0600 .0485 .0359 .0275 .0195 .0195 .0119 .0103 .0054 .0054 .0005	0.0004 0.001 0.002 0.010 0.0178 0.031 0.0450 0.062 0.0891 0.115 0.1417 0.170 0.2000 0.239	.0002 .005 .0011 .0055 .0096 .0169 .0248 .0341 .0481 .0481 .0621 .0765 .0918 .1070 .1291 (5.9222)
		Total	į	1.7452		6.5295
In Out % recover	у	Nd203 1.7996 1.7452 97.0	Pro1 6.763 6.529 96.5		La203 -Ce0 6.4337 6.4102 99.6	2 Total 14.9969 14.6849 97.9

* Assumed to be pure Nd203 ** Assumed to be pure Pr6011

TABLE XI

SUMMARY OF OPERATION OF COLUMN RUN 30

Column los	ading -	30.0 gms	Composition	n of adsor	bate
pH adsorb	ate - 2.	00	45.1% Pr ₆ 0 ₁₁ ,	, 12.0% No	¹ 2 ⁰ 3
Avg. flow	rate -	1.07 ml2	38.2% La ₂ 03.	, 4.7% Ce	0 ₂
		cm mi	in what of ovid	1 o f	
Fraction	Volume	Mean	ome ner	oms ner	Color
Number	ml.	nH	fraction	liter	of oxide
		Ph	110001011	1100	or onldo
А	980	3.29		 <i>i</i> =	
В	970	2.71	## ##		
1	1270	3.87			
2	1100	3.15			
3	1080	2.83			
4	1050	2.99			-
5	1035	2.99			
6	1010	2.99	1 <u>- 1 - 1 - 1 - 1</u>		
7	1000	2.99			
8	980	3.00			
9	975	3.00			
10	955	3.00	** 		
11	950	3.00	(
12 -	930	3.00			
13	940	3.00			
14	930	3.00			-
15	935	3.00			
16	930	3.00			
17	940	3.00			
18	930	3.00			
**19	980	3.00			
20	1010	3.00			- - -
21	1090	2.99			
*22	1125	3.00	. -		
23	1125	3.00			
24	1110	3.00			
25	1125	3.00		ang ang set	
20	1120	3.00			
27	1130	3.00			
20	1130	3.00			
20	1100	3.00			
30	1105	3.00			
30	1100	3.00			
22	1130	2 99			
34	1110	2.00	(
UI		Nº C C	107 - COND. (1977)		

.

	3	ТА	BLE XI (Cont)		
Fraction Number	Volume ml.	Mean pH	gms per fraction	gms per liter	Color of oxide
*33334444444444444444444555555555555555	117005005000050000 117005000500005000 1111111111	32333777777777777777777777777777777777	$\begin{array}{c}\\$	$\begin{array}{c} & & & & & \\$	<pre> It blue It blue It blue It blue It blue It blue It blue It blue It blue It blue It can choc brown dk choc brown black "" "" "" "" "" "" "" "" "" "" "" "" ""</pre>

.

TABLE XI (Cont)

Fraction Number	Volume ml.	Mean pH	Wt. of oxid gms per fraction	e gms per liter	Color of oxide
622b 62345667890123455665abababababababababababababababababa	56550 111205550 111205550 111500 111500 111500 111500 111500 111500 111500 111500 111500 111500 111500 111500 111500 111500 1015550 100800 101000 100000 100000 100000 1000000	2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90	5201 5159 9622 8934 8268 7430 6713 6174 5416 4564 4004 3418 2876 2376 1069 0970 0866 0798 0718 0656 0598 0492 0569 0492 0569 0492 0569 0492 0569 0492 0569 0493 0383 0335 0143 0103 0237 0096 0126 0156 trace trace trace trace	9288 9131 8553 8049 7382 6021 53693 4097 30251 2503 18957 16873 16873 16873 16841 07703 06644 06366 07290 0190 0242 03264	black n v dk brown n n n dk brown n n n n n n n n n n n n n

.

TABLE XI (Cont)

			Wt. of or	tide	
Frection	Volume	Mean	gms per	gms per	Color
Number	m⊥.	рн	I PACTION	llter.	01 0X108
01	1020	2 00			
71	1020	3.00		100 to - 241	
92	1020	±0.٤		Pag. 9.4 -	
43	1105	3.00	****		
94	1140	3.00			
95	1115	3.00			
96	1130	3.00	÷** ==		
97	1115	3.00	·		
98	1120	3.00			
99	1110	3.00			
*100	1100	3.00	.		
101	1160	3.00			
102	1180	3.00			
103	1160	3.00			
104	1155	3.00			
105	1140	3,00	4+		
106	1 1 40	3.00			
107	1130	3.00			
108	1150	3.00			
109	1130	3.00			
110	1135	3,00			
111	1120	3.00			
112	1100	3.00			
***113	1215	3 00			
116	1230	2 1.81		**-	
115	1220	3.50	10 Bolo		mbito
116	1180	3.531	12.0243		white
117	1160	3.80			
118-122	61.75	2 80			
110-150	9472	2.04	~	-	

Run 30 New batch of eluent added to overhead tank during fraction (*) Run stopped several hours during fraction (**) (***) Introduction of pH 3.89 eluent started (****) Machine did not change flasks, small amount spilt

TABLE XII

ANALYSES OF FRACTIONS RUN 30

Run 30	Weight oxide		Perce	ntages	Wt. Nd203	Wt. Pr6011
Fraction Number	gm per liter	Nd203	Pr6011	Total	gm per liter	gm per liter
450	0.0715	100.0		100.0	0.0715	
52 a	0.4338	100.0		100.0	0.4338	
54a	0.3214	97.2	1.2	98.4	0.3214	0.0039
55a	0.2173	96.0	2.4	98.4	0.2086	0.0052
560	0.1450	65.0	35.0	100.0	0.0943	0.0517
576	0.2777	15.3	84.3	99.6	0.0425	0.2341
58 b	0.5991	3.2	96.9	100.1	0.0192	0.5805
59ъ	0.8677	1.0	98.9	99.9	0.0087	0.8582
81	0.0641	, 	101.9	101.9		0.0653

TABLE XIII

MATERIAL BALANCE RUN 30

			Nd ₂ 0.	Pr6011			
Fraction Numbe r	Volume ml.	Average Cumulati Volume liters	ve gms per liter	gms per fraction	gms per liter	gms pe f r acti	r on
44-52a* 52b 53a 53b 554a 555b 556a 556b 556a 556b 556a 557a 58a 557b 58a 559a 599b 590a*85**	5700 5700 5766 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555	56.4 57.0 57.5 58.1 59.2 59.8 60.3 60.9 61.5 62.0 62.6 63.2 63.7 64.3	.425 .405 .366 .312 .253 .208 .1153 .119 .089 .060 .040 .024 .011 .006 .002	(2.0917) 2423 2309 2086 1747 1429 1175 0864 0666 0503 0339 0226 0134 0062 0034 0011	.000 .000 .001 .0039 .004 .005 .010 .025 .055 .132 .238 .402 .560 .756 .858	.0006 .0022 .0023 .0028 .0057 .0147 .0311 .0746 .1345 .2251 .3164 .4271 .4891	
			Totals	3-4925		2.8558	
		N	$Id_{-0} = Pn < 0$		о т	atal	

	$Na_2 O_3 Pr_6 O_{11} La_2 O_3 - CeO_2$	Total
In	3.5934 13.5092 12.8503	29.9540
Out	3.4925 12.8558 12.8243	29.1726
% recovery	97.2% 95.2% 99.8%	97.4%

* Assumed to be pure Nd203 ** Assumed to be pure Pr6011

TABLE XIV

SUMMARY OF OPERATION OF COLUMN RUN 31

Column loading - 15.0 gms. Composition of adsorbate pH adsorbate - 3.05 45.1% Pr_6O_{11} , 12.0% Nd_2O_3

0 11

Avg. flow rate - 1.09 $\frac{ml_2}{cm \ min}$ 38.2% La_2O_3 , 4.7% CeO₂

	Wt. or oxide							
Fraction Number	Volume ml.	Mean pH	gms per fraction	gms per liter	Color of oxide			
А	575	5.01						
B	าดีว่รี	2.99						
1-3	3670	2.99		** ** **				
\overline{h}	ĩiżo	3.66						
ह	1120	3.00						
6	1105	3.00						
7	1110	3.00						
8	1090	3.00						
9	11 ÓO	3.00						
ío	1080	3.00						
11	1090	3.00						
12	1080	3.00						
13	1090	3.00						
ıЦ	1080	3.00						
*15	1090	3.00						
16	1090	3.00						
17	1090	3.00						
18	1085	3.00						
19	1090	3,00						
20	1085	3.00						
21	1100	3.00						
22	1085	3.00						
23	1100	3.00						
**24	1100	3.00						
25	1120	3.00						
26	1095	3.00						
27	1100	3.00						
28	1090	3.00						
29	1095	3.00						
30	1080	3.00	***					
31	1090	3.00						
32	1075	3.00						
33	1080	3.00						
3/1	1075	3.00						

TABLE XIV (Cont)

Fraction Volume Mean gms per gms per Col Number ml. pH fraction liter of 35 1075 3.00 36 1060 3.00 37 1075 3.00	or oxide
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UXI US
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
37 1075 3.00	
5D IUOU 7 (1/1	
39 1070 3.00	
h0 1055 3.00	
42 1065 3.00 trace	
**43 1110 3.00 .0195 .0176 1+	hluo
44 1090 3.00 .0480 .0/1/0 .	orug
45 1060 3.00 .0738 .0606 "	
46a 575 3.00 .0522 .0908 "	
46b 610 3.00 .0653 .1070 "	
47a 590 3.00 .0726 .1231 "	
47b 590 3.00 .0777 .1317 "	
40a 580 3.00 .0876 .1510 "	
400 590 3.00 .0954 .1617	
498 590 2.99 .1002 .1698	
490 590 2.99 1014 1763 "	
50b 500 2.09 1014 1739 "	
518 590 2.99 1020 1730	
51b 585 2.99 0053 1620	
52a 570 2.99 0875 1029	
52b 580 2.99 .0815 1105 "	
53a 575 2.99 .0738 .1272 "	
53b 580 2.99 $.0636$ $.1106$ "	
54a 570 3.00 .0531 .0932 "	
540 _570 3.00 .0459 .0785 "	
25ª 580 3.00 .0373 .0643 "	
$\frac{220}{50}$ $\frac{500}{50}$ $\frac{3.00}{500}$ $\frac{0308}{500}$ $\frac{0531}{500}$ blue	tan
50a 505 3.00 $.0367$ $.0473$ "	
500 500 3.00 $.0238$ $.0110$ 1t t	lue
51^{M} 500 3.00 .0210 .0128 dk 8	rown
58b 580 3.00 0728 0007 "	
59a 580 2.00 0062 1272 "	
59b 580 2.99 1025 1811 "	
60a 600 2.99 1330 2217	h
***60b 565 2.99 1025 1815 "	DLOMU
61 1190 2.99 $.3425$ $.2878$ "	

.

TABLE XIV (Cont)

			Wt. of	oxide	
Fraction	Volume	Me an	gms per	gms per	Color
Number	ml.	\mathbf{p}_{H}	fraction	liter	of oxide
62	1175	3.97	.4324	.3680	v dk brown
63	1190	2.95	.5446	.4576	98
6 64	1185	2.94	•5888	.4696	11
65	1190	2.92	. 6552	.5506	\$1
66	1170	2.92	.5803	.4970	et.
67	1185	2.95	.4462	.3765	11
68	1165	2.96	.4190	.3597	n
69	1180	2.96	.3545	.3005	er H
70	1180	2.98	.2888	. 2468	
.71	1186	2.99	•24२०	.2101	Ħ
72	1165	2,99	·2037	.1748	87 54
73	1175	2,99	.1689	.1437	
74	1160	2.99	.1235	.1065	11 M
75	1165	3.00	.1127	.0967	u
76	1145	3.00	.0901	•0'787	
77	1155	3.00	•0720	0623	14
78	1140	3.00	•0553	.0485	black
79	1150	3.00	.0402	.0350	y dk brown
80	1130	3.00	•0414	.0366	17
81	1140	3.00	.0305	.0268	black
82	1120	3.00	.0177	+ •0.158	14
83	1140	3.00	trace		
84-5	2140	3.00	trace		
86	1125	3.00			
87	1120	3.00			
88	1115	3.00			
00	1150	3.00			
90	1100	3.00			
95	1140	2.19			
92 03	1140	3 10			
90	1150	2 10 2 10			
97 05	1150	3 10	0754	0656	ninir
90	1125	3,10	1945	-0000	Pluk Pluk
07 07	1140	310	1567	1375	v to pitte
97	1116	319	1482	1%20	UT WITCO
aq	1130	3.19	1112	.0984	nink
100	1100	3.19	-0664	10604	v it nink
101	1125	3.19	.0180	.0160	brick mad
102	1105	3.20			DITOW 1.00
103	1120	3.19			
104	1110	3.19			
105	1125	3.19		-	

TABLE XIV (Cont)

	Wt. of oxide						
Fraction	Volume	Mean	gms per	gms per	Color		
Number	ml.	pH	fraction	liter	of oxide		
106	1115	3.19					
107	1125	3.19					
*****108	1280	3.21					
109	1300	3.65)					
1 1Ó	1270	3.79 >	5.5853		white		
111	1275	3.93					
112	1235	3.94	-	-			
113	1235	3.94					
114	1235	3.94					
115	1205	3.94		-			
116	1160	3.94	100 (00 m)				

(*) New eluent added to overhead tanks during fraction (**) Recycle eluent added to overhead tank during fraction (***) Run stopped several hours during fraction (****) Introduction of pH 3.20 eluent started (******) Introduction of pH 3.94 eluent started

...

TABLE XV

ANALYSES OF FRACTIONS RUN 31

Run 31	Weight oxide		Perc	entages	Wt. NdpOg	Wt. Pr6011
Fraction Number	gm per liter	Nd203	Pr6011	Total	gm per liter	gm per liter
546	0.0875	99.4	1.9	101.3	0.0870	0.0015
556	0.0531	93.6	8.0	101.6	0.0497	0.0042
56a	0.0473	88.9	17.5	102.4	0.0402	0.0083
560	0.0410	65.1	35.6	100.7	0.0267	0.0146
570	0.0609	28,1	71.0	99.1	0.0171	0.0432
58ъ	0.0907	8.9	91.3	100.2	0.0081	0.0828
59ъ	0.1660	3.4	97.2	100.6	0.0056	0.1614

TABLE XVI

MATERIAL BALANCE RUN 31

		Average	Nd203		Pr	6011
Fraction	Volume	Cumulativ	ve gm per	gm per	gm per	gm per
Number	ml.	Volume	liter	fraction	n liter	fraction
R		liters				
43-45a*				(1.5542)		
54Ъ	585	59.5	.078	.0456	.002	.0012
55	580	60.1	.060	.0348	.003	.0017
	580	60.7	.050	.0290	.004	.0023
56	565	61.3	.040	.0226	.008	.0045
	580	61.9	.027	.0157	.015	.0083
57	580	62.4	.021	.0122	.020	.0116
r0	580	03.0	.017	.0099	.042	.0249
50	570	03.0	.010	.0057	.061	.0348
r o	500	04.2	.008	.004.0	.003	.0481
59	500	04.1	.007	.0041	•115	.000/
60- 0000	500	05.3	.000	.0035	.101	.0034
008-02**						(0.0920)
		Total		1.7419		6.3907
In	Nd	203	Pr6011	Le203	CeO 2	Total
T		1006	6 5626	r = 000	POOL	al anor

In	1.7996	6.7636	5.7289 .7004	14.9925
Out	1.7419	6.3907	5.5853 .7004	14.4183
% recovery	96.8%	94.5%	97.5% 100%	96.2%

* Assumed to be pure Nd203 ** Assumed to be pure Pr6011 *** The recovery of Ce02on this run is taken as the analysis for this oxide on the adsorbate mixture.

TABLE XVII

SUMMARY OF COLUMN OF OPERATION RUN 33

Column loading - 30.0 gms.

Composition of adsorbate

pH adsorbate - 2.30

45.1% Pr6011 , 12.0% Nd203

38.2% La203 , 4.7% CeO2

			Wt. of a	oxide	
Fraction Number	Volume ml.	Mean P ^H	gms per f r action	gms per liter	Color of oxide
A	825	3.60			
B	890	2.80			
1	1175	3.90			
2	1070	3.28			
3	1060	2.98			
1	1050	3.12			
5	1050				
6	1045	3.12			
7	1050				
8	1040	3.12			
9	1050	-			
10	1035	3.12			
11	1040	-			
12	1030	3.12			
13	1030				
14	1030	3.12	No ppt.		
15****	1030	3.12	.0360	.0350	lt blue
16	1010	3.11	.0775	.0767	12
17	1135		.1457	.1.284	11
18	11h0	3,10	.2087	.1831	tt
19	11/10	3.11	.2711	.2378	11
20	1140	-	• 3394	•2977	11
21*	1190	3.10	.4048	• 3 [[] 402	11
22	1180		.4672	• 3959	11
23	1180	3.09	.5500	. 4661	11
2h	1180		.5104	•4325	1T
25	1180	3.10	.2644	.2241	11
26	1180	3.12	.0642	.0544	ti
27	1180		trace	· • • •	
28* **	1110	3.12			
29	815				
30	815	3.12			
31	810				
32	800	3.12			
33	795	-			
34 ***	1370	3.18	No.ppt.		

TABLE XVII (Cont)

Fraction Number	Volume ml.	Me an pH	Wt. of ox gms per fraction	ide gms per liter	Color of oxide
35 36 37**** 38 39 40 41 42**** 43 44 45	1190 950 1105 1010 990 990 1095 1100 1080 1070	3.72 3.68 3.61 3.59 3.551 3.52 3.78 3.93 3.95 3.95 3.95 3.95	2.4945 3.0514 4.1008 4.7997 5.2947 4.9572 2.1646 0.0216 No ppt.	2.0962 4.0008 4.7225 4.7225 5.2947 5.0073 2.1895 0.0197	white n n n n n

% New eluent solution pH 3.12 added to overhead bottle
%* Air bubble formed in feed line
%** Introduction of pH 3.95 eluent started
%**** Flow rate effluent adjusted.

Note: Fractions 15-26 all oxides were light blue Fractions 35-42 all oxides were white

TABLE XVIII

MATERIAL BALANCE OF RUN 33

	Md_2O_3	La_2O_3	Total
In	3.60	26.40	30.00
Out	3.3394 *	26.8545	30.1939
Per cent recove	ry 93.8%	101.7%	100.6%

* Fractions 15-26 assumed to be pure Md_2O_3 ** Fractions 35-42 assumed to be pure La_2O_3

TABLE XIX

SUMMARY OF COLUMN OF OPERATION RUN 34

Column loading 3.6 gms			Composition of adsorbate		
pH adsort	oate - 2.8	89	45.1%	Pr6011, 12.0	0% Nd203
Avg. flow	v rate - 1	1.08 <u>ml2</u> cm.m3		La2 ⁰ 3, 4.	7% CeO2
			Wt. of	oxide	
Fraction	Volume	Mean nH	gms per	gms per	Color
NULLIDET.	ш т .	600 ·	11 at trous	TIGOL	OI OXIGO
A	205	500			
ם ז	970	3. 01			
2	885	3.19			
3	900	3.12	-		
Ĺ	870	3.12			
5	910	3.12			
6	1110				
7	1170	3.12			
8	1140	2 1 2			
9	1125	3.12			
11 ()	1150	3 12			
12	1135	J•10			
13	iiho	3.12			
ılí	1110				
15	1125	3.12	trace		
16	1100		.0541	.0492	lt blue
17	1120	3.12	.1042	.0930	11
10	1090	ר כ	·1500	• T'TO (
20	1130		2780	2.60	
21	1110	3.10	.3375	3068	11
22	1075	J•±•	.3921	.3650	11
23	1085	3.10	.4569	.4173	
24	1065		.4877	•4579	11
25	1140	3.10	•4440	·3895	11
26	1165		• 3042	.2356	11
27	1080	3.12	.1657	•1234	12
20	1070	2 1 2	•0559	.0527	
30	1055	31.10	no ppt.		
31	1070	3.12			
32	1055	3.12			
2	1.000 million 2000 - 200	Tot	tal recover	y 3.4620 gms.	96.2%

(*) New eluent pH 3.12 added to overhead tank Note: All oxides obtained were light blue

--- Indicates no oxide obtained from fraction.

TABLE XX

SAMPLE CALCULATION OF PURITY OF RECOVERED OXIDES RUN - 24 95% Purity

		Wt. of Nd203 from fraction (gms)	Total wt. of fraction (oms)	% purity of fraction
Fractions	15-18* (19 20 21	(0.9358) 0.344 0.364 0.346	(0.9358) 0.3494 0.3730 0.3642	(100%) 99•7% 97•5% 95•0%
		1.990	2.0224	

Total wt. of Nd₂O₃recovered in the run 2.771 gms. % oxide of 95% purity = $\frac{2.0224}{2.771}$ = 73%

Note: Fraction 22 was only 87% Nd₂ $^{\circ}_{3}$

* Fractions assumed to be pure Nd203.