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SUMMARY

We study codes that have identifiable parent property. Such codes are called IPP codes. Re-

search on IPP codes is motivated by design of schemes that protect against piracy of digital prod-

ucts.

Construction and decoding of maximum IPP codes have been studied in rich literature. General

bounds on F(n, q), the maximum size of IPP codes of length n over an alphabet with q elements,

have been obtained through the use of techniques from graph theory and combinatorial design.

Improved bounds on F(3, q) and F(4, q) are obtained. Probabilistic techniques are also used to

prove the existence of certain IPP codes.

We prove a precise formula for F(3, q), construct maximum IPP codes with size F(3, q), and give

an efficient decoding algorithm for such codes. The main techniques used in this thesis are from

graph theory and nonlinear optimization. We begin by associating to each code an edge colored

graph. Then a code has the IPP if and only if its associated graph has certain structural conditions.

We study the underlying structure of graphs associated with IPP codes of maximum size. Using

this approach, we present explicit construction of classes of graphs associated with IPP codes of

length 3, which gives a lower bound on F(3, q). By further investigating the structure of graphs

associated with IPP codes of length 3, we show that there exist maximum IPP codes of length 3

whose associated graphs have good structural properties. Using such structural properties, we are

able to convert the problem of deciding F(3, q) to a nonlinear programming problem. Based on our

nonlinear programming formulation, we give an algorithm which determines F(3, q) numerically for

each q ≥ 15. We also describe how to construct maximum IPP codes from optimal solutions to the

nonlinear programming problem, and show that such IPP codes possess good tracing capabilities.

Using techniques from nonlinear programming, we prove a precise formula for F(3, q) when q ≥ 15.

Our approach may be used to improve bounds on F(2k+1, q). For example, we characterize the

associated graphs of maximum IPP codes of length 5, and obtain bounds on F(5, q).

viii



CHAPTER I

INTRODUCTION

Recently, combinatorial structure and code designs have been widely used in the fields of com-

munication, cryptography, networking and computer science. Some applications of coding theory

to communication problems are described in [1]. Many practical problems where combinatorial

designs have played a substantial role are discussed in some survey papers, such as those in appli-

cations of combinatorial designs in computer science [2], combinatorial designs and cryptography

[3], applications of combinatorial designs to communications, cryptography, and networking [4, 5].

1.1 Fingerprinting and IPP Codes

Fingerprinting, first introduced by Wagner [6], is a technique for identifying individuals who use

digital materials for unintended purposes, such as redistribution [7, 8, 9]. In order to control such

misuse of digital materials, a distributor embeds a watermark (codeword) into each product through

a variety of fingerprinting techniques [8, 15, 16, 17, 18, 19, 20, 21] before sending it to customers.

Using different watermarks for different copies makes each copy unique. The watermark in each

product can be used to identify the customer who buys that product and, thereby, redistributing the

product is equivalent to exposing the customer’s identity. However, a cost-effective attack against

such digital fingerprints is that a group of customers can collude and create a new illegal product by

combining parts of their products.

The problem of designing fingerprints that can withstand collusion and allow for the identifica-

tion of colluders has been studied extensively in recent years. Several schemes for tracing colluders

have been designed, see for example [9] and [10]. Frameproof codes and c-secure codes are in-

troduced in [9] for protection against illegally copying software. Additive embedding techniques

against collusion and a new class of codes, called anti-collusion codes, have been proposed in [27].

Traceability codes and schemes are studied in [10, 11, 12, 30].

IPP codes, first introduced in [31], are codes with the property that if two users create a new
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image by combining parts of their images, then the new image reveals the identity of at least one of

the source images. Hence, IPP codes provide traceability in the presence of a collusion attack.

1.1.1 Codes with the Identifiable Parent Property

Let Q be an alphabet and n be a positive integer. A block code C of length n over an alphabet

Q is a set of n-tuples with components from Q. That is, C ⊆ Qn, and C is called a q-ary block

code of length n. Throughout, by a code we mean a block code. Given a code C of length n over

an alphabet Q, the elements of C are called codewords which are of the form (a1, . . . , an), where

ai ∈ Q (1 ≤ i ≤ n) is the ith coordinate.

Let C be a code of length n. For any two codewords a = (a1, . . . , an) and b = (b1, . . . , bn) in C,

the Hamming distance between a and b, denoted by d(a,b), is defined as the number of coordinates

in which a and b differ. The minimum distance of C, denoted dmin, is defined as the minimum

Hamming distance between all distinct pairs of codewords in C, i.e.,

dmin = min{d(a,b) : a,b ∈ C, a , b}.

Let Q be an alphabet with q elements. For any code C over Q of length n and any two codewords

a = (a1, . . . , an) and b = (b1, . . . , bn) in C, let

desc(a,b) = {(x1, . . . , xn) ∈ Qn : xi ∈ {ai, bi} for 1 ≤ i ≤ n}.

The set desc(a,b) is called the descendant set of a and b. For any element x ∈ desc(a,b), x is a

descendant of a and b, and a and b are parents of x. The descendant code of C, denoted desc(C), is

defined by

desc(C) =
⋃

a,b∈C
desc(a,b).

For example, if C is a binary repetition code of length 4, i.e., C = {(0, 0, 0, 0), (1, 1, 1, 1)}, then

desc(C) = F4
2 , where F2 is the finite field with two elements 0 and 1. Similarly, if C is the ternary

Hamming code, i.e.,

C =











































(0, 0, 0, 0), (1, 0, 1, 1), (2, 0, 2, 2)

(0, 1, 1, 2), (1, 1, 2, 0), (2, 1, 0, 1)

(0, 2, 2, 1), (1, 2, 0, 2), (2, 2, 1, 0)











































,

2



then desc(C) = F4
3 , since it is obvious that all words in a ball of radius 1 around a codeword are

descendants of some pair containing that codeword.

A code C is said to have the identifiable parent property (IPP) if, for any x ∈ desc(C),
⋂

x∈desc(a,b)
{a,b} , ∅.

In other words, a code has the IPP if, whenever x ∈ desc(C), at least one of the parents of x can be

identified. Codes with the IPP were introduced by Hollmann et al in [31]. A code with the IPP is

also called an IPP code.

Trivially, any code of cardinality 2 is an IPP code, and so any repetition code C ⊆ {0, 1}n is an

IPP code.

A less trivial example is the ternary Hamming code C. Note that for any pair of distinct code-

words a,b ∈ C, d(a,b) = 3, so any descendant x ∈ desc(C) has distance less than or equal to 1 to

exactly one of its parents in a parent pair. Hence, the unique codeword with distance at most 1 from

x is the identifiable parent. For the other parent there are three choices if c < C, and eight choices if

c ∈ C.

1.1.2 Motivation to Study Maximum IPP Codes and Existing Results

As mentioned earlier, IPP codes are capable of providing traceability in the presence of a collu-

sion attack. Clearly, an IPP code with large size can mark more digital products. Hence, encoding

and decoding of maximum IPP codes have been studied in rich literature.

Combinatorial properties of IPP codes and trace ability codes have been studied by several au-

thors. Relationships of IPP codes with several other combinatorial structures and codes have been

studied in [31, 32, 33]. Based on these connections several sufficient conditions on the existence of

IPP codes are derived in [11, 31, 32, 34, 35]. Necessary conditions for the existence of IPP codes

given in the form of an upper bound on the size of codes are obtained in [31, 33, 34, 35, 36, 37].

Probabilistic techniques are also used to prove the existence of certain IPP codes. Using the connec-

tions between IPP codes and other known combinatorial structures, several explicit constructions of

IPP codes are derived in [11, 33, 36, 38, 41].

Algorithms for decoding IPP codes have also received much consideration. Various decoding

algorithms including list decoding techniques have been studied in [42, 43, 44, 45, 46]. Recently,

3



IPP codes have been generalized for more practical applications. Generalizations of IPP codes have

been studied in [35, 37, 39, 40, 47, 51, 52].

Let

F(n, q) = max{|C| : C is a q-ary code of length n with the IPP}. (1)

An IPP q-ary code of length n is said to be maximum if its size is F(n, q).

As a trivial case, we have F(1, q) = q. We also have F(2, q) = q. It is easy to see F(2, q) ≥ q,

since we can simply construct an IPP code C ⊆ Q2 with C = {(ai, ai) : ai ∈ Q, 1 ≤ i ≤ q}.

To prove F(2, q) ≤ q, we consider any code C ⊆ Q2. If |C| ≥ q + 1, then by the pigeon-hole

principle, there exist two symbols a1, a2 ∈ Q such that a1 occurs in two different codewords as

the first coordinate, and a2 occurs in two different codewords as the second coordinate. Hence, C

contains such codewords a = (a1, x1), b = (a1, y1), c = (x2, a2) and d = (y2, a2), where xi , yi for

i = 1, 2. Then the descendant (a1, a2) ∈ desc(C) has no identifiable parent. Hence, F(2, q) = q.

F(n, q) turns out to be much harder to derive when n ≥ 3. In this thesis, we focus on explicit

construction of IPP codes with maximum size F(n, q). Hollmann, van Lint, Linnartz and Tolhuizen

[31] obtained bounds on the maximum size of IPP codes of a given length n. They proved that

F(3, q) ≤ 3q − 1 and for n ≥ 4, there exists a constant c such that

c(q
4)n/3 ≤ F(n, q) ≤ 3qdn/3e. (2)

Many interesting IPP codes of length 3 are also constructed in this literature.

Tô and Safavi-Naini [36] obtained tighter bounds for F(3, q), they proved that for q ≥ 17,

3q + 6 − 6d
√

q + 1e ≤ F(3, q) ≤ 3q + 6 − d6
√

q + 1e. (3)

They also determined F(3, q) precisely when q ≤ 48 or when q can be expressed as r2 + 2r or

r2 + 3r + 2 for r ≥ 2, and in the later case, maximum IPP codes are also constructed.

Alon, Fischer and Szegedy [34] answered an open question on F(4, q) raised in [31]. They show

that for any ε > 0, if q is greater than some constant q0(ε) which is related to ε, then

q2−ε ≤ F(4, q) ≤ εq2. (4)
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1.2 Our Results

In this thesis, we primarily study structure and cardinality of maximum IPP codes of length

3 and 5, by using techniques from graph theory and nonlinear optimization. Our techniques may

provide useful information on IPP codes of any odd length.

For IPP codes of length 3, we associate to each code C an edge colored graph as in [31], in

such a way that the IPP of C is equivalent to certain structural conditions on the associated graph.

We prove that there is always a maximum size IPP code of length 3 whose associated graph has a

special structure (see Theorem 5.2.5). Such structural information is used to reduce the maximum

size problem to a nonlinear programming problem. We then design an algorithm which determines

F(3, q) numerically for each q ≥ 15. The problem for q ≤ 14 was solved in [36]. Using the outputs

of the algorithm, we describe a simple method that constructs maximum IPP codes of length 3.

Designing decoding algorithm for IPP codes has been a challenging problem; however, we show

that the maximum IPP codes constructed by our method allow for efficient tracing, by presenting

a decoding algorithm with constant complexity. Moreover, we study the nonlinear programming

problem, thereby, giving a precise formula for F(3, q).

Note that for any positive integer q ≥ 0, there exist unique integers r and k such that q can be

written in the form of q = r2 + 2r + k where 0 ≤ k ≤ 2r + 2. Our precise formula for F(3, q) is as

follows. For q ≥ 15,

F(3, q) =







































































































3r2, k = 0
3r2 + 3k − 2, 1 ≤ k ≤ 2

√
r + 4 − 3 and k is odd, or

2 ≤ k ≤ 2
√

r + 2 − 2 and k is even
3r2 + 3k − 3, 2

√
r + 4 − 3 < k ≤ r + 1 and k is odd, or

2
√

r + 2 − 2 < k ≤ r + 1 and k is even
3r2 + 3k − 4, k = r + 2
3r2 + 3k − 5, r + 3 ≤ k ≤ r +

√
4r + 21 − 2 and k − r is odd, or

r + 4 ≤ k ≤ r +
√

4r + 9 − 1 and k − r is even
3r2 + 3k − 6, r +

√
4r + 21 − 2 < k ≤ 2r + 2 k − r is odd, or

r +
√

4r + 9 − 1 < k ≤ 2r + 2 and k − r is even

(5)

For 1 ≤ q ≤ 15, see Table 1 in [36].

Using the same graph theoretic approach as for IPP codes of length 3, we obtain structural

information on the associated graphs of IPP codes of length 5. We also completely characterize the
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forbidden subgraphs of the associated graphs of IPP codes of length 5. These results are given in

Chapter VIII.

1.3 Concepts from Coding Theory

In later Chapters, we need extended ternary Hamming codes, shortened or extended Reed-

Solomon codes to develop our results. Hence, we include some more basic concepts from coding

theory. For more information on coding theory, see e.g. [53, 54, 55, 56, 57].

Many examples we use are linear codes, and it is convenient to describe them through parity-

check matrices. So we introduce basic concepts of linear codes. We use F to denote a finite field and

GF(q) to denote a finite field with elements 0, 1, · · · , q − 1. The order of a non-zero element α ∈ F

is defined as the smallest positive integer m such that αm = 1. An element of order q − 1 in GF(q)

is called a primitive element. We also use the notation GF(q)[x] to denote the ring of polynomials

with coefficients in GF(q). Denote the set of all n-tuples over F by Vn(F). Then Vn(F) is a vector

space of dimension n under componentwise addition and multiplication. A linear (n, k)-code, or

(n, k)-code for short, over F is a k-dimensional subspace of Vn(F). If an (n, k)-code has minimum

distance dmin, we also refer to this code as (n, k, dmin)-code.

Clearly the binary repetition code C = {(0, 0, 0, 0), (1, 1, 1, 1)} ⊆ V4(GF(2)) is a (4,1,4)-code.

Let

H =

























1 0 1 1

0 1 1 2

























. (6)

Define C = {c ∈ V4(GF(3)) : Hc = 0}. Then C is the ternary Hamming code as follows,

C =











































c1 = (0, 0, 0, 0), c4 = (1, 0, 1, 1), c7 = (2, 0, 2, 2)

c2 = (0, 1, 1, 2), c5 = (1, 1, 2, 0), c8 = (2, 1, 0, 1)

c3 = (0, 2, 2, 1), c6 = (1, 2, 0, 2), c9 = (2, 2, 1, 0)











































. (7)

Clearly C in (7) is a 2-dimensional subspace of V4(GF(3)), and C has minimum distance 3. Hence,

C is a (4,2,3)-code. The H in (6) is called the parity check matrix of the ternary Hamming code. A

usual way to encode linear codes is to use parity check matrices.

Let C be a q-ary (n, k)-code and c = (c0, c1, · · · , cn−2, cn−1) be a codeword in C. The first k

coordinates c0, c1, · · · , ck−1 are called the message coordinates of c, and the last n − k coordinates
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ck, ck+1, · · · , cn−1 are called the redundant coordinates of c. An (n, k)-code is said to be shortened

if a message coordinate is deleted from the encoding process, and thus becomes an (n − 1, k − 1)-

code. An (n, k)-code is said to be extended if an additional redundant coordinate is added from the

encoding process, and thus becomes an (n + 1, k)-code.

An (n, k)-code C is said to be cyclic if for every codeword c = (c0, c1, · · · , cn−2, cn−1) ∈ C,

there is also a codeword c′ = (cn−1, c0, c1, · · · , cn−2) ∈ C. Let C be a cyclic q-ary (n, k)-code and

c = (c0, c1, · · · , cn−2, cn−1) be a codeword in C. The code polynomial associated with the codeword

c is c(x) = c0 + c1x + · · · + cn−2 xn−2 + cn−1 xn−1. Within the set of code polynomials associated

with C, there is a unique monic polynomial g(x) with minimal degree n − k < n, which is called

the generator polynomial of C. Every code polynomial c(x) in C can be expressed uniquely as

c(x) = m(x)g(x), where g(x) is the generator polynomial of C and m(x) is a polynomial of degree

less than k in GF(q)[x].

A BCH code over GF(q) of length n and minimum distance dmin is a cyclic code generated by a

polynomial

g(x) = (x − βa)(x − βa+1) · · · (x − βa+dmin−2)

in GF(q)[x], where β is a primitive element in GF(q) and a is some integer. A Reed-Solomon code

is a qm-ary BCH code of length qm−1.

1.4 Thesis Outline

In Chapter II, we introduce basic terminology from graph theory and associate each code with

an edge colored graph. An IPP code may be viewed as an edge colored graph with certain structural

conditions.

In Chapter III, the structure of graphs associated with IPP codes of length 3 is studied. We prove

two results which will be used to show that certain codes constructed in Chapter IV are IPP codes.

In this chapter we also obtain further information which is crucial to the proof of (5).

In Chapter IV, we construct classes of IPP graphs associated with IPP codes of length 3, through

which we obtain a lower bound on F(3, q). In Chapter V, we further study the structure of graphs

associated with IPP codes of length 3, and show that there exist maximum IPP codes of length 3

whose associated graphs possess very good structural properties.
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In Chapter VI, we use the structure of maximum IPP graphs to convert the problem of deciding

F(3, q) to a nonlinear programming problem. We then derive an algorithm that determines F(3, q)

numerically for each q ≥ 15 (The problem for q ≤ 14 is done in [36]). We also describe how to

construct maximum IPP codes by using optimal solutions to the nonlinear programming problem.

At the end of Chapter VI, we present an algorithm, which shows that the IPP codes we construct

allow for efficient tracing.

In Chapter VII, we prove (5). By using techniques from nonlinear optimization, we prove (5)

for critical values of k at which the expression of F(3, q) changes. We then complete the proof by a

detailed analysis.

Finally in Chapter VIII we study IPP codes of length 5. Using the same graph theoretic approach

as for IPP codes of length 3, we present structural information on the associated graphs of IPP codes

of length 5.

Throughout the rest of this thesis, we fix Q := {α1, α2, · · · , αq}, where q is some positive integer,

and let Qn := {(x1, x2, · · · , xn) : xi ∈ Q for i = 1, · · · n}.
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CHAPTER II

CODES AND ASSOCIATED GRAPHS

Several different methods have been employed to study IPP codes, including recursion tech-

niques, number theory techniques, probabilistic methods and graph theoretic tools, see for example

[31, 36, 34, 32, 38], as well as references therein. We shall use techniques from graph theory and

nonlinear programming to study IPP codes.

2.1 Terminology from Graph Theory

A graph G consists of a vertex set V(G) and an edge set E(G), and each edge joins two distinct

vertices of G. Typically, V(G) is defined to be nonempty. For two graphs G and H, G ∪ H denotes

the graph with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H), G ∩ H denotes the graph with

vertex set V(G) ∩ V(H) and edge set E(G) ∩ E(H).

Two graphs G and H are disjoint if V(G) ∩ V(H) = φ, E(G) ∩ E(H) = φ, and there is no edge

with two ends in V(G) and V(H), respectively.

Two vertices u and v of G are said to be adjacent if {u, v} forms an edge, where edge {u, v} is

usually written as uv or vu. If e = uv ∈ E(G), then we say that u and v are the ends of e; and e is

incident with u and v. If e = uv ∈ E(G) with u = v, then e is a loop. We say E ′ is incident with V ′ if

E′ ⊆ E(G) and V ′ is the set of ends of edges in E′.

Two or more edges that join a pair of vertices are called multiple edges. A simple graph is a

graph with no loops or multiple edges. A multigraph is a graph which has no loops but may have

multiple edges.

The cardinality of a set S is denoted by |S |. Therefore, for a graph G, |V(G)| denotes the number

of vertices in G, and |E(G)| denotes the number of edges in G.

A graph H is a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G); if, in addition,

V(H) = V(G) then H is said to be spanning. For a subgraph H of a graph G, G − V(H) denotes the

subgraph of G obtained from G by deleting the vertices of H and all edges of G incident with the
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vertices in V(H).

A path in a graph is a sequence of distinct vertices v1v2 · · · vm such that there is an edge joining

vi and vi+1 for all 1 ≤ i ≤ m− 1; in this case, we say that the path is between v1 and vm and of length

m− 1. If v1v2 · · · vm is a path and there is an edge joining vm and v1, then v1v2 · · · vmv1 forms a cycle

and is of length m. The girth of a graph is the length of the shortest cycle contained in the graph. If

the graph doesn’t contain any cycles, its girth is defined to be infinity.

A graph is connected if there is a path between every pair of distinct vertices of the graph. A

component of a graph is a maximal connected subgraph. A vertex incident with no edges is called

an isolated vertex. Clearly, an isolated vertex of a graph is also a component of the graph.

A graph is said to be complete if there is exactly one edge between every pair of distinct vertices.

A complete graph with 3 vertices is also called a triangle.

A graph is a bipartite graph if the set of its vertices can be divided into two disjoint sets such

that no two vertices of the same set share an edge. If a bipartite graph contains a cycle, then the

length of the cycle must be even.

Two graphs G and H are isomorphic if there exists a map f : V(G)→ V(H) such that f is one-

to-one, and for any two vertices u, v ∈ V(G), e = uv ∈ E(G) if and only if e′ = f (u) f (v) ∈ E(H).

It is well known that if G is a connected graph then |E(G)| ≥ |V(G)| − 1, if |E(G)| ≥ |V(G)| then

G contains at least one cycle.

For more information on graph theory, see for example [60].

2.2 IPP Graphs

For each code C ⊆ Qn, we define a graph G such that the vertices of G represent the codewords

in C, and two vertices of G are joined by an edge of color i if their corresponding codewords have

the same ith coordinate. Clearly |C| = |V(G)|. An IPP graph is an edge colored graph which is

associated with an IPP code.

For example, the associated graph of the binary repetition code of length n is two isolated

vertices, because the code has only two codewords and they don’t share any common coordinates.

Figure 1 is the associated graph of the ternary Hamming code in (7), where red, blue, green and

magenta represent colors 1, 2, 3, 4, respectively. In this graph, vertex v i corresponds to codeword
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ci, 1 ≤ i ≤ 9. vi and v j are joined by an edge of color k if ci and c j share the kth coordinate where

1 ≤ i , j ≤ 9, 1 ≤ k ≤ 4.PSfrag replacements
u1
u2
u3

v1

v2

v3

v4

v5 v6

v7

v8

v9

T
S
H

Figure 1: The associated graph of the ternary Hamming code

Let S be a component of an edge colored graph G with |V(S )| ≥ 2. If the edges of S use only

one color, then S is called a uni-color component; if the edges of S use exactly two colors, then S

is called a bi-color component; if the edges of S use exactly three colors, then S is called a tri-color

component. Four-color components and five-color components are defined similarly. In general,

define k-color components as those components whose edges use exactly k colors for k ≥ 6. If S is

an isolated vertex, we treat S as a uni-color component using color 1 by default.

Let G be an edge colored graph using colors {1, . . . , n}. For each i ∈ {1, . . . , n}, let G(i) denote

the spanning subgraph of G whose edges are exactly those edges of G with color i. We see that

the associated graph G of the ternary Hamming code in Figure 1 is a four-color component, and for

each 1 ≤ i ≤ 4, G(i) consists of three disjoint triangles whose edges use color i.

The following result from [31] gives a necessary and sufficient condition for a code to have the

IPP.

Lemma 2.2.1. A code C ⊆ Qn has IPP iff

(IPP1) for any three distinct codewords a, b, c in C, there exists some 1 ≤ i ≤ n such that the ith

coordinates of a, b, c are pairwise distinct, and

(IPP2) For any four distinct codewords a, b, c, d in C, there exists some 1 ≤ i ≤ n such that no ith

11



coordinate of a or b coincides with the ith coordinate of c or d.

We can rephrase Lemma 2.2.1 to give a necessary and sufficient condition for an associated

graph to be an IPP graph.

Lemma 2.2.2. Let C ⊆ Qn and G be its associated graph. Then G is an IPP graph iff

(IPP1) for any three distinct vertices u, v,w of G, there exists some color i ∈ {1, . . . , n} such that

u, v,w belong to three different components of G(i), and

(IPP2) for any four distinct vertices u, v,w, x of G, there exists some color i ∈ {1, . . . , n} such that

any component of G(i) containing u or v contains neither w nor x.

For any subgraph S of an edge colored graph G and for any color i used by G, it is easy to see

that if S is a union of components of G, then each component of S (i) is also a component of G(i).

Hence, the following result is a direct consequence of Lemma 2.2.2.

Lemma 2.2.3. Let G be an IPP graph and S be a union of components of G. Then S is an IPP

graph.

It is convenient to distinguish those elements of Q that are used in different coordinate position.

We shall make use of the following notation. For a code C ⊆ Qn, let Qi(C) (1 ≤ i ≤ n) denote the

set of elements of Q, each of which occurs as the ith coordinate of some codeword in C. Hence,

C ⊆ {(x1, x2, · · · , xn) : xi ∈ Qi(C)}. For a subgraph S of G associated with C ⊆ Qn, let Qi(S ) denote

the set of elements of Q, each of which occurs as the ith coordinate of some codeword corresponding

to a vertex of S .
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CHAPTER III

ASSOCIATED GRAPHS OF IPP CODES OF LENGTH 3

3.1 Introduction

As recall this, to each code C ⊆ Q3, we associate an edge colored graph G with C. The vertices

of G represent the codewords in C, and two vertices of G are joined by an edge of color i if their

corresponding codewords have the same ith coordinate. Hence, edges of an associated graph of an

IPP code of length 3 use colors from {1, 2, 3}. In this Chapter, we aim to derive some structural

information of graphs associated with IPP codes of length 3.

The following result proved in [31] gives useful structural information. It describes some for-

bidden edge colored subgraphs of an IPP graph associated with an IPP code of length 3.

Lemma 3.1.1. Let C ⊆ Q3 be an IPP code and G be its associated graph. Then the following

statements hold:

(i) If |C| > |Q| then no two vertices of G are joined by more than one edge;

(ii) G contains no triangle whose edges use three different colors; and

(iii) G contains no path of length 3 whose edges use pairwise different colors.

As a trivial case, F(3, 1) = 1 and F(3, 2) = 2, as presented in Table 1 in this thesis. For q ≥ 3, it

has been shown that F(3, q) ≥ q + 1 in [31]. For example, let Q = {α1, α2, · · · , αq}, m = b q−1
2 c. Let

C = {(α1, α1, α1)} ∪ {(α1, αi, αi) : 2 ≤ i ≤ m + 1} ∪ {(αi, α1, αi+m) : 2 ≤ i ≤ m + 1} ∪ {(αi, αi, α1) :

m + 2 ≤ i ≤ q}. Then |C| = q +m ≥ q + 1 when q ≥ 3. In each position, every symbol αi, 2 ≤ i ≤ q,

occurs in at most one codeword. So if x ∈ desc(C) and x , (α1, α1, α1), then at least one parent is

identifiable. If x = (α1, α1, α1), then (α1, α1, α1) must be an identifiable parent. Hence, C has the

IPP. This implies F(3, q) ≥ q + 1 when q ≥ 3.

Since we are interested in maximum IPP codes of length 3 over Q, by (i) of Lemma 3.1.1, we

only need to study simple graphs associated with IPP codes of length 3.

13



3.2 Structural Results about IPP Graphs

The next two lemmas will be used to show that certain codes constructed in the next section

are IPP codes. First, by applying Lemma 2.2.2 and Lemma 2.2.3, we can establish the converse of

Lemma 2.2.3.

Lemma 3.2.1. Let C ⊆ Q3 with |C| > |Q|, let G be the associated graph of C, and let S ,T be unions

of components of G such that S ∩ T = ∅ and S ∪ T = G. If S and T are IPP graphs, then so is G.

Proof. It suffices to prove that G satisfies (IPP1) and (IPP2) of Lemma 2.2.2.

To prove that G satisfies (IPP1) of Lemma 2.2.2, let u, v,w be three distinct vertices of G. We

need to show that there exists some i ∈ {1, 2, 3} such that u, v,w belong to three different components

of G(i).

First, assume {u, v,w} ⊆ V(S ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3} such that

u, v,w belong to three different components of S (i). Since S is a union of components of G, any

component of S (i) is also a component of G(i). Hence, u, v,w belong to three different components

of G(i).

So we may assume that {u, v,w} * V(S ). Similarly, we may assume that {u, v,w} * V(T ).

Then by symmetry, we may assume that u, v ∈ V(S ) and w ∈ V(T ). Since S is an IPP graph,

there exists some i ∈ {1, 2, 3} such that u and v belong to two different components of S (i). Because

S ∩ T = ∅, the component of T (i) containing w is disjoint from S (i). Since S and T are unions of

components of G, each component of S (i) or T (i) is also a component of G(i). Hence, u, v,w belong

to three different components of G(i). So G satisfies (IPP1) of Lemma 2.2.2.

To prove that G satisfies (IPP2) of Lemma 2.2.2, let u, v,w, x be four distinct vertices of G. We

need to show that there exists some i ∈ {1, 2, 3}, no component of G(i) containing u or v contains w

or x.

Suppose {u, v,w, x} ⊆ V(S ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3} such that no

component of S (i) containing u or v contains w or x. Since S is a union of components of G, the

components of G(i) containing one of {u, v,w, x} is also a component of S (i). Hence, no component

of G(i) containing u or v contains w or x.

Therefore, we may assume that {u, v,w, x} * V(S ). Similarly, we may assume that {u, v,w, x} *
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V(T ).

Assume for the moment that one of S and T contains three of {u, v,w, x}, and the other contains

one of {u, v,w, x}. By symmetry, we may assume that u, v,w ∈ V(S ) and x ∈ V(T ). Since S is an

IPP graph, there exists some i ∈ {1, 2, 3} such that u, v,w belong to three different components of

S (i). Because S ∩ T = ∅, the component of T (i) containing x is disjoint from S (i). Also since S

and T are unions of components of G, each component of G(i) containing one of {u, v,w, x} is also

a component of S (i) or T (i). Therefore, no component of G(i) containing u or v contains w or x.

Thus, we may assume that each of S and T contains exactly two vertices from {u, v,w, x}. We

need to consider two cases.

First, one of S and T contains {u, v} and the other contains {w, x}. By symmetry, we may assume

{u, v} ⊆ V(S ) and {w, x} ⊆ V(T ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3} such that

u, v belong to different components of S (i). Note that any component of T (i) containing w or x is

contained in T and, hence, is disjoint from S (i). As before, any component of G(i) containing one

of {u, v,w, x} is a component of S (i) or T (i). Hence no component of G(i) containing u or v contains

w or x.

The remaining case to be considered is when neither S nor T contains {u, v} or {w, x}. By

symmetry, we may assume {u,w} ⊆ V(S ) and {v, x} ⊆ V(T ). Again, since S is an IPP graph, there

exists some i ∈ {1, 2, 3} such that u,w belong to different components of S (i). Similarly, since T

is an IPP graph, there exists some j ∈ {1, 2, 3} such that v, x belong to different components of

T ( j). Note that any component of G(i) containing one of {u, v,w, x} is a component of S (i) or T (i).

If v, x belong to different components of T (i), then we see that u, v,w, x belong to four different

components of G(i). So we may assume that v, x belong to the same component of T (i). Then by (i)

of Lemma 3.1.1, i , j and, for each {k} = {1, 2, 3} − {i}, v and x belong to different components of

T (k). Similarly, if u,w belong to different components of S ( j), then u, v,w, x belong to four different

components of G( j). So we may assume that u,w belong to the same component of S ( j). Hence,

by (i) of Lemma 3.1.1, u and w belong to different components of S (k). Again, since S and T are

unions of components of G, any component of G(k) containing one of {u, v,w, x} is a component of

S (k) or T (k). Therefore, u, v,w, x belong to four different components of G(k). Hence G satisfies

(IPP2) of Lemma 2.2.2. �
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Our next lemma shows a situation where a component of a graph (associated with a code) is an

IPP graph.

Lemma 3.2.2. Let C ⊆ Q3, let G be the associated graph of C, and let S be a component of G.

(i) If S is a uni-color component or a bi-color component of G then S is an IPP graph.

(ii) If there exist a vertex z of S and complete subgraphs S 1, S 2, S 3 of S such that S 1∪S 2∪S 3 = S ,

V(S i ∩ S j) = {z} for {i, j} ⊆ {1, 2, 3}, and for each i ∈ {1, 2, 3} all edges of S i are colored with

color i, then S is an IPP graph.

Proof. Suppose S is a uni-color or bi-color component. Let i ∈ {1, 2, 3} be a color not used by edges

of S . Then every component of S (i) is an isolated vertex. Hence, (IPP1) and (IPP2) of Lemma 2.2.2

hold. Since G is associated with C, S is also associated with a code (whose codewords are the

codewords in C corresponding to the vertices of S ). So S is an IPP graph, and (i) holds.

Next, let S be given as in (ii). It suffices to show that S satisfies (IPP1) and (IPP2) of Lemma 2.2.2.

Let u, v,w be distinct vertices of S . If {u, v,w} ⊆ V(S i) ∪ V(S j) for some {i, j} ⊆ {1, 2, 3}, then

u, v,w belong to three different components of S (k), where k ∈ {1, 2, 3} − {i, j}. So we may assume

that no S i contains two of {u, v,w}. Then u, v,w belong to different components of S (1). So S

satisfies (IPP1) of Lemma 2.2.2.

Now let u, v,w, x be four distinct vertices of S . If {u, v,w, x} ⊆ V(S i ∪ S j) for some {i, j} ⊆

{1, 2, 3}, then u, v,w, x belong to four different components of S (k), where k ∈ {1, 2, 3} − {i, j}. So

we may assume by symmetry that S 1 contains two vertices from {u, v,w, x} and that S 2 − {z} and

S 3 − {z} each contain exactly one vertex from {u, v,w, x}. First, assume {u, v} ⊆ V(S 1). Note that S 1

is a component of S (1), and so, no component of S (1) containing u or v contains w or x. Similarly,

if {w, x} ⊆ V(S 1), then no component of S (1) containing w or x contains u or v. So by symmetry, we

may assume that {u,w} ⊆ V(S 1), v ∈ V(S 2) − {z}, and x ∈ V(S 3) − {z}. If u = z then {u, v} ⊆ V(S 2)

and, as in the previous case, we can show that no component of S (2) containing u or v contains w or

x. Similarly, if w = z, then we can show that no component of S (3) containing w or x contains u or v.

So we may assume u , z and w , z. Then we see that the components of S (2) containing u or w or

x each are an isolated vertex, and the component of S (2) containing v is S 2. Hence, no component

of S (2) containing u or v contains w or x. This shows that S satisfies (IPP2) of Lemma 2.2.2. �
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For bi-color components, we prove further information in the following, which is crucial to the

nonlinear programming formulation and the proof of (5).

Lemma 3.2.3. Let C ⊆ Q3 be an IPP code with |C| > |Q| and G be its associated graph. Let

S be a component of G whose edges use color i and color j for some {i, j} ⊆ {1, 2, 3}, and let

{k} = {1, 2, 3} − {i, j}. Then

|Qi(S )| + |Q j(S )| − 1 ≤ |Qk(S )| ≤ |Qi(S )||Q j(S )|.

Proof. Let R1, · · · ,Rn1 denote the components of S (i), and let T1, · · · ,Tn2 be the components of

S ( j). Then for 1 ≤ i ≤ n1 (respectively, 1 ≤ t ≤ n2), those codewords in C corresponding to vertices

of Rs (respectively, Tt) have the same ith (respectively, jth) coordinate, and hence, R s (respectively,

Tt) is a complete graph. Moreover, by (i) of Lemma 3.1.1, |V(Rs) ∩ V(Tt)| ≤ 1.

Define an auxiliary graph H as follows. The vertices of H are R1, · · · ,Rn1 and T1, · · · ,Tn2 . For

any 1 ≤ s ≤ n1 and 1 ≤ t ≤ n2, Rs and Tt are joined with an edge in H when |V(Rs)∩V(Tt)| = 1. Let

m denote the number of edges in H. Since S is connected, H is connected, and hence, m ≥ n1+n2−1.

Note that m represents the number of pairs Rs and Tt such that |V(Rs) ∩ V(Tt)| , 0.

We now count |Qi(S )|, |Q j(S )|, and |Qk(S )|. Since there is no edge of color k, and because

∪n1
s=1Rs and ∪n2

t=1Tt have m vertices in common, we have

|Qi(S )| = n1 + (∑n2
t=1 |V(Tt)|) − m,

|Q j(S )| = n2 + (
∑n1

s=1 |V(Rs)|) − m, and

|Qk(S )| = (∑n1
s=1 |V(Rs)|) + (∑n2

t=1 |V(Tt)|) − m.

Hence

|Qi(S )| + |Q j(S )| = |Qk(S )| + n1 + n2 − m.

Since m ≥ n1 + n2 − 1, we have

|Qk(S )| ≥ |Qi(S )| + |Q j(S )| − 1.

Next, we show |Qk(S )| ≤ |Qi(S )||Q j(S )|. Suppose on the contrary |Qk(S )| ≥ |Qi(S )||Q j(S )| + 1.

Then there must exist some symbol a ∈ Qi(S ) such that a occurs as the ith coordinate of at least

|Q j(S )| + 1 codewords. By the pigeonhole principle, there exist two vertices of S joined by two

edges, contradicting (i) of Lemma 3.1.1. �
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From the conclusion of Lemma 3.2.3, we see that |V(S )| = |Qk(S )| ≤ |Qi(S )||Q j(S )|. In addi-

tion, we observe that |Qk(S )| = |Qi(S )||Q j(S )| only if for any a ∈ Qi(S ) (respectively, a ∈ Q j(S )), a

occurs as the ith (respectively, jth) coordinate in exactly |Q j(S )| (respectively, |Qi(S )|) codewords.

Therefore, each component of S (i) (respectively, S ( j)) is a complete graph on exactly |Q j(S )| (re-

spectively, |Qi(S )|) vertices. It is easy to see that this necessary condition is also sufficient for

|Qk(S )| = |Qi(S )||Q j(S )|. This observation suggests that in order to construct a maximum IPP code,

the numbers of symbols used by any two coordinate positions should be roughly equal. This ob-

servation is the foundation to our proof of main structure theorem (Theorem 5.2.5) for IPP graphs.

Theorem 5.2.5 is proved in [36]. In this thesis, we provide a simple and independent proof for

Theorem 5.2.5.
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CHAPTER IV

LOWER BOUND

In this chapter, we use IPP graphs to derive a lower bound on F(3, q), by making use of

Lemma 3.2.1 and Lemma 3.2.2. We give explicit constructions of several classes of IPP codes,

including some constructed in [31] and [36]. Such codes turn out to be maximum IPP codes of

length 3 and can provide means for efficient tracing.

We observe that for each integer q ≥ 15, there exist unique integers r and k such that r ≥ 3,

0 ≤ k ≤ 2r + 2, and q = r2 + 2r + k.

4.1 A Partition of {0, 1, · · · , 2r + 2}

Let I = {0, 1, 2, 3, · · · , 2r + 2}, I0 = {0}, I1 = {k : 1 ≤ k ≤ 2
√

r + 4− 3 when k is odd, or 2 ≤ k ≤

2
√

r + 2− 2 when k is even}, I2 = {k : 2
√

r + 4− 3 < k ≤ r + 1 when k is odd, or 2
√

r + 2− 2 < k ≤

r+1 when k is even}, I3 = {r+2}, I4 = {k : r+3 ≤ k ≤ r+
√

4r + 21−2 when k− r is odd, or r+4 ≤

k ≤ r +
√

4r + 9 − 1 when k − r is even}, I5 = {k : r +
√

4r + 21 − 2 < k ≤ 2r + 2 when k −

r is odd, or r +
√

4r + 9 − 1 < k ≤ 2r + 2 when k − r is even}.

For example, if r = 3 then I = {0, 1, 2, · · · , 8}, I0 = {0}, I1 = {1, 2}, I2 = {3, 4}, I3 = {5}, I4 = {6},

I5 = {7, 8}. If r = 4 then I = {0, 1, 2, · · · , 10}, I0 = {0}, I1 = {1, 2}, I2 = {3, 4, 5}, I3 = {6}, I4 = {7, 8},

I5 = {9, 10}.

For any r ≥ 3, it is easy to see that
5
⋃

i=0
Ii = I and Ii ∩ I j = φ for i , j. (8)

Hence, {Ii}5i=0 forms a partition of I. This partition is crucial for construction of certain maximum

IPP codes of length 3 and derivation of the precise formula for F(3, q) in (5).

4.2 Lower Bounds

For any q ≥ 15, we first write q in the unique form of q = r2 + 2r + k. According to the value of

k based on the partition of I, our construction and lower bounds will be given in six cases. In each
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case, we construct an edge colored graph with three bi-color components, and then construct a code

associated with it. In all figures in this chapter, we use red, blue and green to represent colors 1, 2

and 3, respectively.

Lemma 4.2.1. Let q = r2 + 2r + k where r ≥ 3 and k ∈ I0. Let C ⊆ Q3 be a maximum IPP code

and G be its associated graph. Then |V(G)| ≥ 3r2 .

Proof. It suffices to construct an IPP graph G0 with |V(G0)| = 3r2.

For each m ∈ {1, 2, 3}, let {i, j} = {1, 2, 3} − {m}. We construct an edge colored graph Bm such

that the edges of Bm use both color i and color j, but not color m. Take r disjoint complete graphs

Rm
s with |V(Rm

s )| = r (1 ≤ s ≤ r), and label the vertices of each Rm
s by vm

s,1, v
m
s,2, · · · , v

m
s,r. Color all

edges of each Rm
s with color i. For each 1 ≤ t ≤ r, join every pair of vertices from {vm

1,t, v
m
2,t, · · · , v

m
r,t}

by edges of color j. Let Bm denote the resulting edge colored graph.

Note that |V(Bm)| = r2 and the edges of Bm do not use color m. The components of Bm(i)

are the graphs Rm
s (1 ≤ s ≤ r), the components of Bm( j) are the complete graphs with vertex set

{vm
1,t, v

m
2,t, · · · , v

m
r,t} (1 ≤ t ≤ r), and the components of Bm(m) are the isolated vertices vm

s,t (1 ≤ s, t ≤

r).

Let G0 denote the edge colored graph which is the disjoint union of B1, B2 and B3. Next, we

show that G0 is the associated graph of a code C0 ⊆ Q3. Let

C3
0 = {(αs, αt, α(s−1)r+t) : 1 ≤ s, t ≤ r}.

Note C3
0 ⊆ Q3 and the subscript (s − 1)r + t ensures that all codewords in C3

0 have distinct 3rd

coordinates. It is straightforward to check that B3 is the associated graph of C3
0 by associating

(αs, αt, α(s−1)r+t) to v3
s,t for all 1 ≤ s, t ≤ r. Let

C1
0 = {(αsr+t, αr+s, αr2+t) : 1 ≤ s, t ≤ r}.

Then C1
0 ⊆ Q3 and the subscript sr+ t ensures that all codewords in C1

0 have distinct 1st coordinates.

It is straightforward to check that B1 is the associated graph of C1
0 by associating (αsr+t, αr+s, αr2+t)

to v1
s,t for all 1 ≤ s, t ≤ r. Let

C2
0 = {(αr2+r+t, α(s+1)r+t, αr2+r+s) : 1 ≤ s, t ≤ r}.
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Then C2
0 ⊆ Q3 and the subscript (s + 1)r + t ensures that all codewords in C2

0 have distinct 2nd

coordinates. It is straightforward to check that B2 is the associated graph of C2
0 by associating

(αr2+r+t, α(s+1)r+t, αr2+r+s) to v1
s,t for all 1 ≤ s, t ≤ r.

Let C0 = C1
0 ∪C2

0 ∪C3
0 . Note that C1

0,C
2
0,C

3
0 are pairwise disjoint. Since G0 is the disjoint union

of B1, B2 and B3, G0 is the associated graph of C0. Since B1, B2 and B3 are bi-color components of

G0, by Lemma 3.2.2, B1, B2 and B3 are IPP graphs. In view of Lemma 3.2.1, G0 is an IPP graph

with |V(G0)| = 3r2. �

For r = 3 and k = 0, our construction of an IPP graph G is illustrated in Figure 2. B3 in Figure

2(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three pairwise

disjoint red triangles, and B3(2) consists of three pairwise disjoint blue triangles. B1 in Figure 2(b)

is a bi-color component whose edges use colors 2 and 3. B1(2) consists of three pairwise disjoint

blue triangles, and B1(3) consists of three green triangles. B2 in Figure 2(c) is a bi-color component

whose edges using colors 3 and 1. B2(3) consists of three pairwise disjoint green triangles, and

B2(1) consists of three pairwise disjoint red triangles. G is the disjoint union of these three bi-color

components. Since |V(Bi)| = 9 for 1 ≤ i ≤ 3, |V(G)| = 27 = 3r2.

 (a) Bi−color component  (b) Bi−color component  (c) Bi−color component

PSfrag replacements

B1 B2B3

Figure 2: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 0.

We now consider k ∈ I1.

Lemma 4.2.2. Let q = r2 + 2r + k where r ≥ 3, and assume k ∈ I1. Let C ⊆ Q3 be a maximum IPP

code and G be its associated graph. Then |V(G)| ≥ 3r2 + 3k − 2.

Proof. Since k ∈ I1, 1 ≤ k ≤ 2
√

r + 4 − 3 when k is odd, or 2 ≤ k ≤ 2
√

r + 2 − 2 when k is even. It

suffices to construct an IPP graph G1 with |V(G1)| = 3r2 + 3k − 2.
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Case 1. k is odd and 1 ≤ k ≤ 2
√

r + 4 − 3.

First, we construct a graph B3 whose edges use color 1 and color 2. For components of B3(1),

we take disjoint complete graphs R3
s , 1 ≤ s ≤ r + 1 − k−1

2 , such that

max{|V(R3
s)| : 1 ≤ s ≤ r + 1 − k − 1

2 } = r + k − 1
2

and
r+1− k−1

2
∑

s=1
|V(R3

s)| = r2 + k − 1 + (k − 1
2 + 1).

This can be done if and only if

(r + 1 − k − 1
2 )(r + k − 1

2 ) ≥ r2 + k − 1 + (k − 1
2 + 1).

The above inequality holds if and only if k ≤ 2
√

r − 1. Note when r ≥ 3, 2
√

r + 4 − 3 ≤ 2
√

r − 1.

So the graphs R3
s can be well defined when 1 ≤ k ≤ 2

√
r + 4 − 3. Now color all edges of each R3

s

with color 1. To form components of B3(2) which are also complete graphs, we label the vertices of

each R3
s by v3

s,1, v
3
s,2, · · · , v

3
s,|V(R3

s )|. For each 1 ≤ t ≤ r + k−1
2 , let J3

t = {s : |V(R3
s)| ≥ t} and join every

pair of vertices from {v3
s,t : s ∈ J3

t } by edges of color 2. Note that |V(B3)| = r2 + k + k−1
2 . Let

C3
1 =























(αs, αt, α(∑s−1
k=1 |V(R3

k )|)+t) :

1 ≤ s ≤ r + 1 − k−1
2 , 1 ≤ t ≤ |V(R3

s)|























.

Then C3
1 ⊆ Q3 and the subscript

∑s−1
k=1 |V(R3

k)|) + t ensures that all the codewords in C3
1 have distinct

3rd coordinates. It is straightforward to check that B3 is the associated graph of C3
1 by associating

(αs, αt, α(∑s−1
k=1 |V(R3

k )|)+t) to v3
s,t for all 1 ≤ s ≤ r + 1 − k−1

2 and 1 ≤ t ≤ |V(R3
s)|.

Next we construct a graph B1 whose edges use color 2 and color 3. For components of B1(2),

we take disjoint complete graphs R1
s , 1 ≤ s ≤ r + 1 + k−1

2 , such that

max{|V(R1
s)| : 1 ≤ s ≤ r + 1 + k − 1

2 } = r − k − 1
2

and
r+1+ k−1

2
∑

s=1
|V(R1

s)| = r2 + k − 1 + k − 1
2
.

This can be done if and only if

(r + 1 + k − 1
2

)(r − k − 1
2

) ≥ r2 + k − 1 + k − 1
2
,
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which holds if and only if k ≤ 2
√

r + 4 − 3. Therefore, the graphs R1
s are well defined. Now

color all edges of R1
s with color 2. For components of B1(3), we label the vertices of each R1

s by

v1
s,1, v

1
s,2, · · · , v

1
s,|V(R1

s )|. For each 1 ≤ t ≤ r − k−1
2 , let J1

t = {s : |V(R1
s)| ≥ t}. Join every pair of vertices

from {v1
s,t : s ∈ J1

t } by edges of color 3. Note that |V(B1)| = r2 + k − 1 + k−1
2 . Let

C1
1 =























(αr+1− k−1
2 +(
∑s−1

k=1 |V(Rk)|)+t, αr+ k−1
2 +s, αr2+k+ k−1

2 +t) :

1 ≤ s ≤ r + 1 + k−1
2 , 1 ≤ t ≤ |V(R1

s)|























.

Then C1
1 ⊆ Q3 and the subscript r + 1 − k−1

2 + (∑s−1
k=1 |V(Rk)|) + t ensures that all codewords in C1

1

have distinct 1st coordinates. It is straightforward to check that B1 is the associated graph of C1
1

by associating (αr+1− k−1
2 +(
∑s−1

k=1 |V(Rk)|)+t , αr+ k−1
2 +s, αr2+k+ k−1

2 +t) to v1
s,t for all 1 ≤ s ≤ r + 1 + k−1

2 and

1 ≤ t ≤ |V(R1
s)|.

Finally, we construct a graph B2 whose edges use color 3 and color 1. For components of B2(3),

we take r disjoint complete graphs R2
s with |V(Rs)2| = r (1 ≤ s ≤ r), and assign color 3 to all edges

of R2
s . To form components of B2(1), we label the vertices of each R2

s by v2
s,1, v

2
s,2, · · · , v

2
s,r. For

each 1 ≤ t ≤ r, join every pair of vertices from {v2
1,t, v

2
2,t, · · · , v

2
r,t} by edges of color 1. Note that

|V(B1)| = r2. Let

C2
1 =























(αr2+r+k+t , α(s+1)r+k+t , αr2+r+k+s) :

1 ≤ s, t ≤ r























.

Then C2
1 ⊆ Q3 and the subscript (s + 1)r + k + t ensures that all codewords in C2

1 have distinct 2nd

coordinates. It is straightforward to check that B2 is the associated graph of C2
1 ⊆ Q3 by associating

(αr2+r+k+t, α(s+1)r+k+t , αr2+r+k+s) to v2
s,t for all 1 ≤ s ≤ r and 1 ≤ t ≤ r.

Now let G1 denote the disjoint union of B1, B2 and B3, and let C1 = C1
1 ∪ C2

1 ∪ C3
1. Note that

C1
1,C

2
1,C

3
1 are pairwise disjoint. So G1 is associated with the code C1. Since B1, B2, B3 are bi-color

components of G1, it follows from Lemma 3.2.2 that B1, B2, B3 are IPP graphs. Hence, G1 is an IPP

graph by Lemma 3.2.1. Note

|V(G1)| = (r2 + k + k − 1
2

) + (r2 + k − 1 + k − 1
2

) + r2 = 3r2 + 3k − 2.

Case 2. k is even and 2 ≤ k ≤ 2
√

r + 2 − 2.

First, we construct a graph B3 whose edges use color 1 and color 2. For components of B3(1),
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we take disjoint complete graphs R3
s , 1 ≤ s ≤ r + 1 − k

2 , such that

max{|V(R3
s)| : 1 ≤ s ≤ r + 1 − k

2 } = r + k
2

and
r+1− k

2
∑

s=1
|V(R3

s)| = r2 + k − 1 + k
2 .

This can be done if and only if

(r + 1 − k
2

)(r + k
2

) ≥ r2 + k − 1 + k
2
,

and the inequality is true if and only if k ≤ 2
√

r + 2 − 2. So graphs R3
s are well defined. Now color

all edges of each R3
s with color 1. To form components of B3(2), we label the vertices of each R3

s

by v3
s,1, v

3
s,2, · · · , v

3
s,|V(R3

s )|. For each 1 ≤ t ≤ r + k
2 , let J3

t = {s : |V(R3
s)| ≥ t} and join every pair of

vertices from {v3
s,t : s ∈ J3

t } by edges of color 2. Note that |V(B3)| = r2 + k − 1 + k
2 . Let

C3
1 =























(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) :

1 ≤ s ≤ r + 1 − k
2 , 1 ≤ t ≤ |V(R3

s)|























.

Then C3
1 ⊆ Q3 and the subscript |V(R3

k)|) + t ensures that all codewords in C3
1 have distinct 3rd

coordinates. It is straightforward to check that B3 is the associated graph of C3
1 ⊆ Q3 by associating

(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) to v3

s,t for all 1 ≤ s ≤ r + 1 − k
2 and 1 ≤ t ≤ |V(R3

s)|.

Next we construct a graph B1 whose edges use color 2 and color 3. For components of B1(2),

we take disjoint complete graphs R1
s , 1 ≤ s ≤ r + k

2 , such that

max{|V(R1
s)| : 1 ≤ s ≤ r + k

2
} = r + 1 − k

2

and
r+ k

2
∑

s=1
|V(R1

s)| = r2 + k − 1 + k
2
.

This can be done if and only if

(r + k
2)(r + 1 − k

2) ≥ r2 + k − 1 + k
2 ,

which holds if and only if k ≤ 2
√

r + 2 − 2. So graphs R1
s are well defined. Now color all

edges of R1
s with color 2. To form components of B1(3), we label the vertices of each R1

s by
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v1
s,1, v

1
s,2, · · · , v

1
s,|V(R1

s )|. For each 1 ≤ t ≤ r + 1 − k
2 , let J1

t = {s : |V(R1
s)| ≥ t}. Join every pair

of vertices from {v1
s,t : s ∈ J1

t } by edges of color 3. Note that |V(B1)| = r2 + k − 1 + k
2 . Let

C1
1 =























(αr+1− k
2+(∑s−1

k=1 |V(Rk)|)+t , αr+ k
2+s, αr2+k−1+ k

2+t) :

1 ≤ s ≤ r + k
2 , 1 ≤ t ≤ |V(R1

s)|























.

Then C1
1 ⊆ Q3 and the subscript r + 1− k

2 + (
∑s−1

k=1 |V(Rk)|)+ t ensures that all codewords in C1
1 have

distinct 1st coordinates. It is straightforward to check that B1 is the associated graph of C1
1 ⊆ Q3 by

associating (αr+1− k
2+(
∑s−1

k=1 |V(Rk)|)+t, αr+ k
2+s, αr2+k−1+ k

2+t) to v1
s,t for all 1 ≤ s ≤ r+ k

2 and 1 ≤ t ≤ |V(R1
s)|.

Finally we construct B2 and the codewords C2
1 associated to the vertices of B2 as in Case 1.

Now let G1 denote the disjoint union of B1, B2 and B3, and let C1 = C1
1 ∪ C2

1 ∪ C3
1. Note that

C1
1,C

2
1,C

3
1 are pairwise disjoint. So G1 is the associated graph of the code C1. Since B1, B2, B3 are

bi-color components of G1, it follows from Lemma 3.2.2 that B1, B2, B3 are IPP graphs. Hence, G1

is an IPP graph by Lemma 3.2.1. Note

|V(G1)| = (r2 + k − 1 + k
2

) + (r2 + k − 1 + k
2

) + r2 = 3r2 + 3k − 2.

�

Corresponding to r = 3 and k = 1, we describe an example to construct an IPP graph in Figure 3.

B3 in Figure 3(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three

pairwise disjoint red triangles and an isolated vertex, and B3(2) consists of three pairwise disjoint

blue complete graphs with order 3, 3, 4, respectively. B1 in Figure 3(b) is a bi-color component

whose edges use colors 2 and 3, and B2 in Figure 3(c) is a bi-color component whose edges use

colors 3 and 1. B1 and B2 are constructed in the same way as in Figure 2(b) and Figure 2(c). G

is the disjoint union of these three bi-color components. Since |V(B3)| = 10 and |V(Bi)| = 9 for

1 ≤ i ≤ 2, |V(G)| = 28 = 3r2 + 3k − 2.

For r = 3 and k = 2, we describe an example to construct an IPP graph in Figure 4. B3 in

Figure 4(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three pairwise

disjoint red complete graphs with order 3, 4, 4, respectively. B3(2) consists of four pairwise disjoint

blue complete graphs with order 2, 3, 3, 3, respectively. B1 in Figure 4(b) is a bi-color component

whose edges use colors 2 and 3. B1(2) consists of three pairwise disjoint blue complete graphs with

order 3, 4, 4, respectively, and B1(3) consists of four pairwise disjoint green complete graphs with
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(a) Bi−color component  (b) Bi−color component  (c) Bi−color component

PSfrag replacements

B1 B2B3

Figure 3: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 1.

order 2, 3, 3, 3, respectively. B2 in Figure 4(c) is a bi-color component whose edges use colors 3

and 1. B2(3) consists of three pairwise disjoint green triangles, and B2(1) consists of three pairwise

disjoint red triangles. G is the disjoint union of these three bi-color components. Since |V(B2)| = 9

and |V(B1)| = |V(B3)| = 11, |V(G)| = 31 = 3r2 + 3k − 2.

 (a) Bi−color component  (b) Bi−color component  (c) Bi−color component

PSfrag replacements

B1 B2B3

Figure 4: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 2.

We now consider k ∈ I2.

Lemma 4.2.3. Let q = r2 + 2r + k with r ≥ 3, and assume k ∈ I2. Let C ⊆ Q3 be a maximum IPP

code and G be its associated graph. Then |V(G)| ≥ 3r2 + 3k − 3.

Proof. Since k ∈ I2, 2
√

r + 4 − 3 < k ≤ r + 1 when k is odd, and 2
√

r + 2 − 2 < k ≤ r + 1 when k is

even. It suffices to construct an IPP graph G2 with |V(G2)| = 3r2 + 3k − 3.
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For each 1 ≤ m ≤ 3, let {i, j} = {1, 2, 3} − {m}, and let B1, B2, B3 be obtained as in the proof of

Lemma 4.2.1. Let B′m be obtained from Bm by adding k − 1 vertices vm
s,r+1 (1 ≤ s ≤ k − 1), joining

vm
s,r+1 to each of {vm

s,1, v
m
s,2, · · · , v

m
s,r} by an edge of color i for all 1 ≤ s ≤ k− 1, and joining every pair

of vertices from {vm
1,r+1, v

m
2,r+1, · · · , v

m
k−1,r+1} by an edge of color j.

Let G2 denote the disjoint union of B′1, B
′
2, B

′
3. Let Xm, 1 ≤ m ≤ 3, denote the set of codewords

corresponding to the k − 1 vertices added to Bm, where

X3 = {(αs, αr2+2r+1, αr2+2r+s), 1 ≤ s ≤ k − 1},

X1 = {(αr2+2r+s, αr+s, αr2+2r+k), 1 ≤ s ≤ k − 1},

X2 = {(αr2+2r+k, αr2+2r+1+s, αr2+r+s), 1 ≤ s ≤ k − 1}.

One can check that C0, X1, X2, X3 are pairwise disjoint, and G2 is associated with the code

C2 := C0 ∪ X3 ∪ X1 ∪ X2. Since B′1, B
′
2, B

′
3 are bi-color components of G2, B′1, B′2, B

′
3 are IPP graphs

by Lemma 3.2.2. Hence G2 is an IPP graph by Lemma 3.2.1. Note

|V(G2)| = 3r2 + 3(k − 1) = 3r2 + 3k − 3.

�

For r = 3 and k = 3, we describe our construction of an IPP graph in Figure 5. B3 in Figure 5(a)

is a bi-color component whose edges use colors 1 and 2 and B1 in Figure 5(b) is a bi-color compo-

nent whose edges use colors 2 and 3. B3 and B1 are constructed in the same way as in Figure 4(a)

and Figure 4(b). B2 has the same structure as B3 except using different colors. Let G be the disjoint

union of the three bi-color components. Since |V(Bi)| = 11 for 1 ≤ i ≤ 3, |V(G)| = 3r2 + 3k − 3.

 (a) Bi−color component  (c) Bi−color component (b) Bi−color component

PSfrag replacements

B1 B2B3

Figure 5: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 3.
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For r = 3 and k = 4, we describe an example to construct an IPP graph in Figure 6. B3

in Figure 6(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three

pairwise disjoint red complete graphs with order 4, 4, 4, respectively, and B3(2) consists of four

pairwise disjoint blue triangles. B1 in Figure 6(b) is a bi-color component whose edges use colors

2 and 3, and B2 in Figure 6(c) is a bi-color component whose edges use colors 3 and 1. B1 and B2

have the same structure as B3 except using different colors. Let G be the disjoint union of B1, B2, B3.

Since |V(Bi)| = 12 for 1 ≤ i ≤ 3, |V(G)| = 3r2 + 3k − 3.

 (b) Bi−color component  (c) Bi−color component

 (a) Bi−color component

PSfrag replacements

B1 B2

B3

Figure 6: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 4.

Now we consider k ∈ I3 = {r + 2}.

Lemma 4.2.4. Let q = r2 + 2r + k with r ≥ 3, and k ∈ I3. Let C ⊆ Q3 be a maximum IPP code and

G be its associated graph. Then |V(G)| ≥ 3r2 + 3k − 4.
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Proof. Since k ∈ I3, k = r + 2. It suffices to construct an IPP graph G3 with |V(G3)| = 3r2 + 3k − 4.

First, we construct a graph B3 whose edges use color 1 and color 2. For components of B3(1),

we take disjoint complete graphs R3
s , 1 ≤ s ≤ r + 1, such that

max{|V(R3
s)| : 1 ≤ s ≤ r + 1} = r + 1

and
r+1
∑

s=1
|V(R3

s)| = r2 + r + 2.

This can be done because (r + 1)(r + 1) ≥ r2 + r + 2 when r ≥ 1. Now assign color 1 to all edges

of each Rs. To form components of B3(2), we label the vertices of each R3
s by v3

s,1, v
3
s,2, · · · , v

3
s,|V(R3

s )|
.

For each 1 ≤ t ≤ r + 1, let J3
t = {s : |V(R3

s)| ≥ t} and join every pair of vertices from {v3
s,t : s ∈ J3

t }

by edges of color 2. Note that |V(B3)| = r2 + r + 2. Let

C3
3 =























(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) :

1 ≤ s ≤ r + 1, 1 ≤ t ≤ |V(R3
s)|























.

Then C3
3 ⊆ Q3 and the subscript |V(R3

k)|) + t ensures that all codewords in C3
3 have distinct 3rd

coordinates. It is straightforward to check that B3 is the associated graph of C3
3 by associating

(αs, αt, α(∑s−1
k=1 |V(R3

k )|)+t) to v3
s,t for all 1 ≤ s ≤ r + 1 and 1 ≤ t ≤ |V(R3

s)|.

Next we construct a graph B1 whose edges use color 2 and color 3. For components of B1(2),

we take disjoint complete graphs R1
s , 1 ≤ s ≤ r + 1, such that |V(R1

s)| = r, and color all edges of R1
s

with color 2. To form components of B1(3), we label the vertices of each R1
s by v1

s,1, v
1
s,2, · · · , v

1
s,r.

Join every pair of vertices from {v1
s,t : 1 ≤ t ≤ r} by edges of color 3. Note that |V(B1)| = r2 + r. Let

C1
3 =























(α(r+1)t+s, αr+1+s, αr2+r+2+t) :

1 ≤ s ≤ r + 1, 1 ≤ t ≤ r























.

Then C1
3 ⊆ Q3 and the subscript (r + 1)t + s ensures that all codewords in C1

3 have distinct 1st

coordinates. It is straightforward to check that B1 is the associated graph of C1
3 by associating

(α(r+1)t+s, αr+1+s, αr2+r+2+t) to v1
s,t for all 1 ≤ s ≤ r + 1 and 1 ≤ t ≤ r.

Finally, we construct a graph B2 whose edges use color 3 and color 1. To form components

B2(3), take disjoint complete graphs R2
s , 1 ≤ s ≤ r, such that V(R2

s)| = r+1, and color all edges of R2
s

with color 3. To form components of B2(1), we label the vertices of each R2
s by v2

s,1, v
2
s,2, · · · , v

2
s,r+1.
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Join every pair of vertices from {v2
s,t : 1 ≤ t ≤ r + 1} by edges of color 1. Note that |V(B2)| = r2 + r.

Let

C2
3 =























(αr2+2r+1+t, α2r+2+(s−1)(r+1)+t , αr2+2r+2+s) :

1 ≤ s ≤ r, 1 ≤ t ≤ r + 1























.

Then C2
3 ⊆ Q3 and the subscript 2r + 2 + (s − 1)(r + 1) + t ensures that all codewords in C2

3 have

distinct 2nd coordinates. It is straightforward to check that B2 is the associated graph of C2
3 by

associating (αr2+2r+1+t , α2r+2+(s−1)(r+1)+t , αr2+2r+2+s) to v2
s,t for all 1 ≤ s ≤ r + 1 and 1 ≤ t ≤ r.

Now let G3 denote the disjoint union of B1, B2 and B3, and let C3 = C1
3 ∪ C2

3 ∪ C3
3. Note that

C1
3,C

2
3,C

3
3 are pairwise disjoint. So G3 is associated with the code C3. Since B1, B2, B3 are bi-color

components of G3, it follows from Lemma 3.2.2 that B1, B2, B3 are IPP graphs. Hence, G3 is an IPP

graph by Lemma 3.2.1. Note

|V(G3)| = (r2 + r + 2) + (r2 + r) + (r2 + r) = 3r2 + 3k − 4.

�

For r = 3 and k = 5, we describe an example to construct an IPP graph in Figure 7. B3 in

Figure 7(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of four pairwise

disjoint red complete graphs with order 3, 3, 4, 4, respectively, and B3(2) consists of four pairwise

disjoint blue complete graphs with order 2, 4, 4, 4, respectively. B1 in Figure 7(b) is a bi-color

component whose edges use colors 2 and 3, and B2 in Figure 7(c) is a bi-color component whose

edges use colors 3 and 1. B1 and B2 are identical to Figure 6(b) and Figure 6(c), respectively. Let

G be the disjoint union of B1, B2, B3. Since |V(B3)| = 14 and |V(B1)| = |V(B2)| = 12, |V(G)| =

3r2 + 3k − 4.
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 (a) Bi−color component

 (b) Bi−color component (c) Bi−color component

PSfrag replacements

B1 B2

B3

Figure 7: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 5.

We now consider k ∈ I4.

Lemma 4.2.5. Let q = r2 + 2r + k with r ≥ 3, and assume k ∈ I4. Let C ⊆ Q3 be a maximum IPP

code and G be its associated graph. Then |V(G)| ≥ 3r2 + 3k − 5.

Proof. Since k ∈ I4, r+3 ≤ k ≤ r+
√

4r + 21−2 when k− r is odd, and r+4 ≤ k ≤ r+
√

4r + 9−1

when k − r is even. It suffices to construct an IPP graph G4 with |V(G4)| = 3r2 + 3k − 5.

Case 1. k − r is odd and r + 3 ≤ k ≤ r +
√

4r + 21 − 2.

First we construct B3 whose edges use color 1 and color 2. To form components B3(1), we take
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disjoint complete graphs R3
s , 1 ≤ s ≤ r + 2 − k−r−1

2 , such that

max{|V(R3
s)| : 1 ≤ s ≤ r + 2 − k − r − 1

2 } = r + k − r − 1
2

and
r+2− k−r−1

2
∑

s=1
|V(R3

s)| = r2 + k − 2 + (k − r − 1
2 + 1).

This can be done if and only if

(r + 2 − k − r − 1
2 )(r + k − r − 1

2 ) ≥ r2 + k − 2 + (k − r − 1
2 + 1),

which holds if and only if k ≤ r +
√

4r + 1. In particular, the inequality holds when r + 3 ≤ k ≤

r +
√

4r + 21 − 2. Hence, R3
s are well defined. Now color all edges of each R3

s with color 1. To

form components of B3(2), we label the vertices of each R3
s by v3

s,1, v
3
s,2, · · · , v

3
s,|V(R3

s )|
. For each

1 ≤ t ≤ r + k−r−1
2 , let J3

t = {s : |V(R3
s)| ≥ t} and join every pair of vertices from {v3

s,t : s ∈ J3
t } by

edges of color 2. Note that |V(B3)| = r2 + k + k−r−1
2 − 1. Let

C3
4 =























(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) :

1 ≤ s ≤ r + 2 − k−r−1
2 , 1 ≤ t ≤ |V(R3

s)|























.

Then C3
4 ⊆ Q3 and the subscript (

∑s−1
k=1 |V(R3

k)|) + t ensures that all codewords in C3
4 have distinct

3rd coordinates. It is straightforward to check that B3 is the associated graph of C3
4 by associating

(αs, αt, α(∑s−1
k=1 |V(R3

k )|)+t) to v3
s,t for all 1 ≤ s ≤ r + 2 − k−r−1

2 and 1 ≤ t ≤ |V(R3
s)|.

Now construct B1. To form components of B1(2), we take disjoint complete graphs R1
s , 1 ≤ s ≤

r + 1 + k−r−1
2 , such that

max{|V(R1
s)| : 1 ≤ s ≤ r + 1 + k − r − 1

2
} = r + 1 − k − r − 1

2

and
r+1+ k−r−1

2
∑

s=1
|V(R1

s)| = r2 + k − 2 + (k − r − 1
2 − 1).

This can be done if and only if

(r + 1 + k − r − 1
2

)(r + 1 − k − r − 1
2

) ≥ r2 + k − 2 + (k − r − 1
2

− 1),

which, in turn, holds if and only if k ≤ r+
√

4r + 21− 2. Now color all edges of R1
s with color 2. To

form the components of B1(3), we label the vertices of each R1
s by v1

s,1, v
1
s,2, · · · , v

1
s,|V(R1

s )|. For each
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1 ≤ t ≤ r + 1 − k−r−1
2 , let J1

t = {s : |V(R1
s)| ≥ t}. Join every pair of vertices from {v1

s,t : s ∈ J1
t } by

edges of color 3. Note that |V(B1)| = r2 + k + k−r−1
2 − 3. Let

C1
4 =























(αr+2− k−r−1
2 +(

∑s−1
k=1 |V(Rk)|)+t, αr+ k−r−1

2 +s, αr2+k+ k−r−1
2 −3+t) :

1 ≤ s ≤ r + 1 + k−r−1
2 , 1 ≤ t ≤ |V(R1

s)|























.

Then C1
4 ⊆ Q3 and the subscript r + 2 − k−r−1

2 + (
∑s−1

k=1 |V(Rk)|) + t ensures that all codewords in C1
4

have distinct 1st coordinates. It is straightforward to check that B1 is the associated graph of C1
4 by

associating (αr+2− k−r−1
2 +(

∑s−1
k=1 |V(Rk)|)+t , αr+ k−r−1

2 +s, αr2+k+ k−r−1
2 −3+t) to v1

s,t for all 1 ≤ s ≤ r + 1 + k−r−1
2

and 1 ≤ t ≤ |V(R1
s)|.

Finally, we construct a graph B2 whose edges use color 1 and color 3. To form components of

B2(3), we take disjoint complete graphs R2
s , 1 ≤ s ≤ r + 1, such that |V(R1

s)| = r. Color all edges of

R1
s with color 3. To form components of B2(1), we label the vertices of each R3

s by v1
s,1, v

1
s,2, · · · , v

3
s,r.

Join every pair of vertices from {v1
s,t : 1 ≤ t ≤ r} by edges of color 1. Note that |V(B2)| = r2 + r. Let

C2
4 =























(αr2+r+k+t, αr+k+(s−1)r+t , αr2+r+k−1+s) :

1 ≤ s ≤ r + 1, 1 ≤ t ≤ r























.

Then C2
4 ⊆ Q3 and the subscript r + k + (s − 1)r + t ensures that all codewords in C2

4 have distinct

2nd coordinates. It is straightforward to check that B2 is the associated graph of C2
4 by associating

(αr2+r+k+t, αr+k+(s−1)r+t , αr2+r+k−1+s) to v2
s,t for all 1 ≤ s ≤ r + 1 and 1 ≤ t ≤ r.

Now let G4 denote the disjoint union of B1, B2 and B3, and let C4 = C1
4 ∪ C2

4 ∪ C3
4. Note that

C1
4,C

2
4,C

3
4 are pairwise disjoint. So G4 is associated with the code C4. Since B1, B2, B3 are bi-color

components of G4, it follows from Lemma 3.2.2 that B1, B2, B3 are IPP graphs. Hence, G4 is an IPP

graph by Lemma 3.2.1. Note

|V(G4)| = (r2 + k + k − r − 1
2 − 1) + (r2 + k + k − r − 1

2 − 3) + (r2 + r) = 3r2 + 3k − 5.

Case 2. k − r is even and r + 4 ≤ k ≤ r +
√

4r + 9 − 1.

Construction of B3 whose edges use color 1 and color 2. To form components of B3(1), we take

disjoint complete graphs R3
s , 1 ≤ s ≤ r + 1 − k−r−2

2 such that

max{|V(R3
s)| : 1 ≤ s ≤ r + 1 − k − r − 2

2
} = r + 1 + k − r − 2

2
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and
r+1− k−r−2

2
∑

s=1
|V(R3

s)| = r2 + k − 2 + (k − r − 2
2

+ 1).

This can be done if and only if

(r + 1 − k − r − 2
2 )(r + 1 + k − r − 2

2 ) ≥ r2 + k − 2 + (k − r − 2
2 + 1),

which, in turn, holds if and only if k ≤ r+
√

4r + 9−1. Now color all edges of each Rs with color 1.

To form components of B3(2), we label the vertices of each R3
s by v3

s,1, v
3
s,2, · · · , v

3
s,|V(R3

s )|
. For each

1 ≤ t ≤ r + 1 + k−r−2
2 , let J3

t = {s : |V(R3
s)| ≥ t} and join every pair of vertices from {v3

s,t : s ∈ J3
t } by

edges of color 2. Note that |V(B3)| = r2 + k + k−r−2
2 − 1. Let

C3
4 =























(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) :

1 ≤ s ≤ r + 1 − k−r−2
2 , 1 ≤ t ≤ |V(R3

s)|























.

Then C3
4 ⊆ Q3 and the subscript (∑s−1

k=1 |V(R3
k)|) + t shows that all codewords in C3

4 have distinct

3rd coordinates. It is straightforward to check that B3 is the associated graph of C3
4 by associating

(αs, αt, α(
∑s−1

k=1 |V(R3
k )|)+t) to v3

s,t for all 1 ≤ s ≤ r + 1 − k−r−2
2 and 1 ≤ t ≤ |V(R3

s)|.

Construction of B1 whose edges use color 2 and color 3. To form components of B1(2), we take

disjoint complete graphs R1
s , 1 ≤ s ≤ r + 1 + k−r−2

2 , such that

max{|V(R1
s)| : 1 ≤ s ≤ r + 2 + h} = r + 1 − k − r − 2

2

and
r+2+h
∑

s=1
|V(R1

s)| = r2 + k − 2 + k − r − 2
2 .

This can be done if and only if

(r + 1 + k − r − 2
2 )(r + 1 − k − r − 2

2 ) ≥ r2 + k − 2 + k − r − 2
2 ,

which holds if and only k ≤ r+
√

4r + 13−1. In particular, it holds with k ≤ r+
√

4r + 9−1. So R1
s

are well defined. Now color all edges of R1
s with color 2. To form components of B1(3), we label the

vertices of each R1
s by v1

s,1, v
1
s,2, · · · , v

1
s,|V(R1

s )|. For each 1 ≤ t ≤ r+1− k−r−2
2 , let J1

t = {s : |V(R1
s)| ≥ t}.

Join every pair of vertices from {v1
s,t : s ∈ J1

t } by edges of color 3. Let B1 denote the resulting edge

colored graph. Note that |V(B1)| = r2 + k − 2 + k−r−2
2 . Let

C1
4 =























(αr+1− k−r−2
2 +(

∑s−1
k=1 |V(Rk)|)+t , αr+1+ k−r−2

2 +s, αr2+k+ k−r−2
2 −1+t) :

1 ≤ s ≤ r + 1 + k−r−2
2 , 1 ≤ t ≤ |V(R1

s)|























.

34



Then C1
4 ⊆ Q3 and the subscript r + 1 − k−r−2

2 + (∑s−1
k=1 |V(Rk)|) + t shows that all codewords in C1

4

have distinct 1st coordinates. It is straightforward to check that B1 is the associated graph of C1
4 by

associating (αr+1− k−r−2
2 +(

∑s−1
k=1 |V(Rk)|)+t , αr+1+ k−r−2

2 +s, αr2+k+ k−r−2
2 −1+t) to v1

s,t for all 1 ≤ s ≤ r + 1 + k−r−2
2

and 1 ≤ t ≤ |V(R1
s)|.

Let B2 and C2
4 be obtained as in the proof of Case 1.

Now let G4 denote the disjoint union of B1, B2 and B3, and let C4 = C1
4 ∪ C2

4 ∪ C3
4. Note that

C1
4,C

2
4,C

3
4 are pairwise disjoint. So G4 is associated with the code C4. Since B1, B2, B3 are bi-color

components of G4, it follows from Lemma 3.2.2 that B1, B2, B3 are IPP graphs. Hence, G4 is an IPP

graph by Lemma 3.2.1. Note

|V(G4)| = (r2 + k + k − r − 2
2 − 1) + (r2 + k − 2 + k − r − 2

2 ) + (r2 + r) = 3r2 + 3k − 5.

�

Corresponding to r = 3 and k = 6, we describe how to construct an IPP graph in Figure 8.

B3 in Figure 8(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of four

pairwise disjoint red complete graphs with order 3, 4, 4, 4, respectively, and B3(2) consists of four

pairwise disjoint blue complete graphs with order 3, 4, 4, 4, respectively. B1 in Figure 8(b) is a

bi-color component whose edges use colors 2 and 3. B1(3) consists of five pairwise disjoint blue

complete graphs with order 2, 2, 3, 3, 3, respectively, and B1(2) consists of three pairwise disjoint

blue complete graphs with order 4, 4, 3, respectively. B2 in Figure 8(c) is a bi-color component

whose edges use colors 3 and 1, and B2 is identical to Figure 7(c). Let G be the disjoint union of

B1, B2, B3. Since |V(B3)| = 14, |V(B1)| = 13 and |V(B2)| = 12, |V(G)| = 3r2 + 3k − 5.

For r = 3, the set {k : r + 4 ≤ k ≤ r +
√

4r + 9 − 1 and k − r is even} is empty. That is why no

example is provided for this case.
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 (c) Bi−color component (b) Bi−color component 

 (a) Bi−color component

PSfrag replacements

B1 B2

B3

Figure 8: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 6.

Now we consider k ∈ I5.

Lemma 4.2.6. Let q = r2 + 2r + k with r ≥ 3, and assume k ∈ I5. Let C ⊆ Q3 be a maximum IPP

code and G be its associated graph. Then |V(G)| ≥ 3r2 + 3k − 6.

Proof. Since k ∈ I5, r+
√

4r + 21−2 < k ≤ 2r+2 when k−r is odd, and r+
√

4r + 9−1 < k ≤ 2r+2

when k − r is even. It suffices to construct an IPP graph G5 with |V(G5)| = 3r2 + 3k − 6.

For each 1 ≤ m ≤ 3, let {i, j} = {1, 2, 3} − {m}, and let B′m be obtained as in the proof of

Lemma 4.2.3. Let B′′m be obtained from B′m by adding k − r − 2 vertices vm
s,r+2 (1 ≤ s ≤ k − r − 2),

joining vm
s,r+2 to each vertex of {vm

s,1, v
m
s,2, · · · , v

m
s,r+1} by an edge of color i for all 1 ≤ s ≤ k − r − 2,
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and joining every pair of vertices from {vm
1,r+2, v

m
2,r+2, · · · , v

m
k−r−2,r+2} by an edge of color j.

Let Ym, 1 ≤ m ≤ 3, denote the set of codewords corresponding to the k − r − 2 vertices added to

B′m, where

Y3 = {(αs, αr2+3r+2, αr2+3r+1+s), 1 ≤ s ≤ k − r − 2},

Y1 = {(αr2+3r+1+s, αr+s, αr2+2r+k), 1 ≤ s ≤ k − r − 2},

Y2 = {(αr2+2r+k, αr2+3r+2+s, αr2+r+s), 1 ≤ s ≤ k − r − 2}.

Let G5 denote the disjoint union of B′′1 , B
′′
2 and B′′3 , and let C5 := C3 ∪ Y3 ∪ Y1 ∪ Y2. Note that

C3,Y3,Y1,Y2 are pairwise disjoint. So G5 is associated with the code C5. By Lemma 3.2.2, B′′m is

an IPP graph for each 1 ≤ m ≤ 3. Therefore, G5 is an IPP graph by Lemma 3.2.1. Note

|V(G5)| = 3r2 + 3r + 3(k − r − 2) = 3r2 + 3k − 6.

�

Corresponding to r = 3 and k = 7, we describe how to construct an IPP graph in Figure 9. B3 in

Figure 9(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three pairwise

disjoint red complete graphs with order 4, 5, 5, respectively, and B3(2) consists of five pairwise

disjoint blue complete graphs with order 2, 3, 3, 3, 3, respectively. B1 in Figure 9(b) is a bi-color

component whose edges use colors 2 and 3, and B2 in Figure 9(c) is a bi-color component whose

edges use colors 3 and 1. B1 and B2 have the same structure as B3 except using different colors. Let

G be the disjoint union of B1, B2, B3. Since |V(Bi)| = 14 for 1 ≤ i ≤ 3, |V(G)| = 3r2 + 3k − 6.

Corresponding to r = 3 and k = 8, we describe how to construct an IPP graph in Figure 10.

B3 in Figure 10(a) is a bi-color component whose edges use colors 1 and 2. B3(1) consists of three

pairwise disjoint red complete graphs with order 5, 5, 5, respectively, and B3(2) consists of five

pairwise disjoint blue complete graphs with order 3, 3, 3, 3, 3, respectively. B1 in Figure 10(b) is a

bi-color component whose edges use colors 2 and 3, and B2 in Figure 10(c) is a bi-color component

whose edges use colors 3 and 1. B1 and B2 have the same structure as B3 except using different

colors. Let G be the disjoint union of B1, B2, B3. Since |V(Bi)| = 15 for 1 ≤ i ≤ 3, |V(G)| =

3r2 + 3k − 6.
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 (b) Bi−color component

 (a) Bi−color component

(c) Bi−color component

PSfrag replacements
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B3

Figure 9: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 7.
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 (a) Bi−color component

 (b) Bi−color component

(c) Bi−color component
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Figure 10: An IPP graph G = B1 ∪ B2 ∪ B3 corresponding to r = 3, k = 8.
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As mentioned at the beginning of this chapter, for each integer q ≥ 15 there exist unique integers

r and k such that r ≥ 3, 0 ≤ k ≤ 2r + 2, and q = r2 + 2r + k. Hence throughout of the rest of the

thesis, we express q in terms of r and k in this way. By Lemma 4.2.1–Lemma 4.2.6, we have proved

the following lower bound on F(3, q).

Theorem 4.2.7. For q ≥ 15,

F(3, q) ≥
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

3r2, k = 0

3r2 + 3k − 2, 1 ≤ k ≤ 2
√

r + 4 − 3 and k is odd, or

2 ≤ k ≤ 2
√

r + 2 − 2 and k is even

3r2 + 3k − 3, 2
√

r + 4 − 3 < k ≤ r + 1 and k is odd, or

2
√

r + 2 − 2 < k ≤ r + 1 and k is even

3r2 + 3k − 4, k = r + 2

3r2 + 3k − 5, r + 3 ≤ k ≤ r +
√

4r + 21 − 2 and k − r is odd, or

r + 4 ≤ k ≤ r +
√

4r + 9 − 1 and k − r is even

3r2 + 3k − 6, r +
√

4r + 21 − 2 < k ≤ 2r + 2 k − r is odd, or

r +
√

4r + 9 − 1 < k ≤ 2r + 2 and k − r is even

(9)
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CHAPTER V

MAXIMUM IPP GRAPHS

In Chapter III, we have explored some structural results on graphs associated with IPP codes of

length 3. In this chapter, we aim to further study structure of graphs associated with maximum IPP

codes of length 3. By using the lower bound obtained in Chapter IV and a simple graph theoretic

approach, we completely characterize the structure of graphs associated with a class of maximum

IPP codes of length 3. This eventually helps us to construct maximum IPP codes of length 3 over

any Q with |Q| ≥ 15.

For all figures in this chapter, we use red, blue and green to represent colors 1, 2 and 3, respec-

tively.

5.1 Preliminaries

First, we need some notation. An edge colored graph G is proper if it consists of exactly three

bi-color components S 1, S 2, S 3 such that for each i ∈ {1, 2, 3}, S i does not use color i. We restate a

result proved in [31], which says that the components of an IPP graph must satisfy certain properties.

Lemma 5.1.1. Let C ⊆ Q3 be an IPP code and G be its associated graph. Then the following hold.

(i) For each uni-color component S of G whose edges use color i for some i ∈ {1, 2, 3}, |Q i(S )| = 1

and |Q j(S )| = |V(S )| for all j ∈ {1, 2, 3} − {i}.

(ii) For each bi-color component S of G whose edges use color i and color j for some {i, j} ⊆

{1, 2, 3}, |Qk(S )| = |V(S )| for k ∈ {1, 2, 3} − {i, j}.

(iii) For each tri-color component S of G, there exist a vertex v of G and three complete subgraphs

S 1, S 2, S 3 of G such that the edges of S i use color i (1 ≤ i ≤ 3), V(S i ∩ S j) = {v} (1 ≤ i , j ≤ 3),

and |V(S )| = 1
2

(|Q1(S )| + |Q2(S )| + |Q3(S )| − 1).

Using the above lemma, we can give an upper bound on the size of a maximum IPP code when

its associated graph has no bi-color component.
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Theorem 5.1.2. Let C ⊆ Q3 be an IPP code and G be its associated graph. If G contains no

bi-color components, then |C| < 3q
2 .

Proof. Let S 1, S 2, · · · , S m be the components of G, which are either uni-color or tri-color. Then by

(i) and (iii) of Lemma 5.1.1, we have

|V(S i)| =
|Q1(S i)| + |Q2(S i)| + |Q3(S i)| − 1

2 .

Since
∑m

i=1 |Q j(S i)| ≤ q for all 1 ≤ j ≤ 3, we have

|C| = |V(G)| =
∑m

i=1 |V(S i)|

=
∑m

i=1
1
2(|Q1(S i)| + |Q2(S i)| + |Q3(S i)| − 1)

≤ (3q − m)/2. �

Theorem 5.1.2 and Theorem 4.2.7 tell us that if the associated graph of an IPP code of length 3

contains no bi-color components, then it is not maximum. In fact, we shall prove that there exists a

maximum IPP code whose associated graph consists of exactly three bi-color components.

5.2 Structure of Maximum IPP Graphs

First, we show that for any maximum IPP code, its associated graph must have at least three

components.

Lemma 5.2.1. Let C ⊆ Q3 be a maximum IPP code and let G be its associated graph. Then G has

at least three components and one of these is a bi-color component.

Proof. Suppose G has at most two components. If G has exactly one component, then by (i) of

Lemma 5.1.1, |V(G)| ≤ q. If G has exactly two components, then again by (i) of Lemma 5.1.1 we

have |V(G)| ≤ 2q − 2. In both cases, we see that |V(G)| < F(3, q). Hence, by Theorem 4.2.7, |C| is

not maximum, a contradiction.

Now assume G has no bi-color components. Then by Theorem 5.1.2, |V(G)| < 3q/2 < h(q). In

view of Theorem 4.2.7, |C| is not maximum, a contradiction. �

Next, we study maximum IPP graphs with minimum number of components. The following

three lemmas show that the components of such an IPP graph must satisfy certain restrictions.
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Lemma 5.2.2. Suppose C ⊆ Q3 is a maximum IPP code which is chosen so that its associated

graph G has the minimum number of components. Then no two components of G use exactly the

same colors.

Proof. First, assume that there are two uni-color components S and T of G whose edges use the

same color i for some i ∈ {1, 2, 3}. Let G′ be the graph obtained from G by adding edges uv for

all u ∈ V(S ) and v ∈ V(T ). Let H denote the component of G′ containing S and T . Note that all

other components of G′ are components of G. It is easy to see that G′ is the edge colored graph

associated with a code C′, where C′ is obtained from C by changing the ith coordinate of every

codeword in C corresponding to a vertex of T to the ith coordinate of the codewords corresponding

to the vertices of S . Therefore, since H is a uni-color component, H is an IPP graph (by (i) of

Lemma 3.2.2). Since G − (V(S ) ∪ V(T )) is a union of components of G, G − (V(S ) ∪ V(T )) is an

IPP graph (by Lemma 2.2.3. Therefore, by Lemma 3.2.1, G′ = (G − (V(S ) ∪ V(T ))) ∪ H is also an

IPP graph. However, |V(G′)| = |V(G) and the number of the components of G′ is less than that of

G, contradicting the choice of C and G.

Now assume that there are two bi-color components S and T of G whose edges use the same

colors i and j for some {i, j} ⊆ {1, 2, 3}. Let S ′ be a component of S (i) and T ′ be a component of T (i).

Let G′ be the graph obtained from G by adding edges uv of color i for all u ∈ V(S ′) and v ∈ V(T ′).

Let H denote the component of G′ containing S and T . Note that all other components of G′ are

components of G. It is easy to see that G′ is the edge colored graph associated with a code C ′, where

C′ is obtained from C by changing the ith coordinate of every codeword in C corresponding to a

vertex of T ′ to the ith coordinate of the codewords corresponding to the vertices of S ′. Therefore,

since H is a bi-color component, H is an IPP graph by (ii) of Lemma 3.2.2. Since G− (V(S )∪V(T ))

is a union of components of G, G− (V(S )∪V(T )) is an IPP graph (by Lemma 2.2.3). Therefore, by

Lemma 3.2.1, G′ = (G − (V(S ) ∪ V(T ))) ∪ H is also an IPP graph. However, |V(G′)| = |V(G) and

the number of the components of G′ is less than that of G, contradicting the choice of C and G.

Finally, assume that there are two tri-color components S and T of G. By (iii) of Lemma 5.1.1,

there exist a vertex v of S (respectively, w of T ) and three complete subgraphs S 1, S 2, S 3 of S

(respectively, T1,T2,T3 of T ) such that all edges of S i (respectively, Ti) use color i (for 1 ≤ i ≤ 3)
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and V(S i ∩ S j) = {v} (respectively, V(Ti ∩ T j) = {w}) for all 1 ≤ i , j ≤ 3. Let G′ be the graph

obtained from G by adding edges xy of color 1 for all x ∈ V(S 1) and y ∈ V(T1), adding edges xy

of color 2 for all x ∈ V(S 2) and y ∈ V(T2) − {w}, adding edges xy of color 3 for all x ∈ V(S 3) and

y ∈ V(T3)−{w}, and deleting edges between w and V(T2∪T3)−{w}. Let H denote the component of

G′ containing S and T . Note that all other components of G′ are components of G. It is easy to see

that G′ is the edge colored graph associated with a code C ′, where C′ is obtained from C by changing

the ith coordinate of each codeword in C corresponding to a vertex of T i −w to the ith coordinate of

the codewords in C corresponding to the vertices of S i (1 ≤ i ≤ 3), and changing the 1st coordinate

of the codeword corresponding to w to the 1st coordinate of the codewords corresponding to the

vertices in S 1. Note that there are three complete subgraphs H1,H2 and H3 of H such that all

edges of each Hi are colored by i (1 ≤ i ≤ 3) and V(Hi ∩ H j) = {v} (1 ≤ i , j ≤ 3). Hence, it

follows from (iii) of Lemma 3.2.2 that H is an IPP graph. Since G − (V(S ) ∪ V(T )) is a union of

components of G, G−(V(S )∪V(T )) is an IPP graph (by Lemma 2.2.3). Therefore, by Lemma 3.2.1,

G′ = (G − (V(S ) ∪ V(T ))) ∪ H is also an IPP graph. However, |V(G′)| = |V(G) and the number of

the components of G′ is less than that of G, contradicting the choice of C and G. �

In Figure 11, we describe how to combine two uni-color components of the same color into

one uni-color component. S in Figure 11(a) is a uni-color component, and T in Figure 11(b) is a

uni-color component T , both S and T use color 1 (red). Joining all pairs of vertices between V(S )

and V(T ) by edges of color 1, we obtain the uni-color component H in Figure 11(c).

In Figure 12, we describe how to combine two bi-color components into one bi-color compo-

nent. S in Figure 12(a) is a bi-color component S , and T Figure 12(b) is a bi-color component T ;

both use colors 1 (red) and 2 (blue). S (1) contains a component S ′ which is a triangle, and T (1)

contains a component T ′ which is a path of length 2. Joining all pairs of vertices between V(S ′) and

V(T ′) by edges of color 1, we obtain the bi-color component H in Figure 12(c).

As shown in Lemma 5.2.2, combining two tri-color components is a little different. An example

is illustrated in Figure 13. Figure 13(a) shows a tri-color component S 1 ∪ S 2 ∪ S 3, where S 1, S 2, S 3

have a common vertex v and they use colors 1,2,3, respectively. Figure 13(b) shows a tri-color

component T1 ∪ T2 ∪ T3, where T1,T2,T3 have a common vertex w and they use colors 1,2,3,

respectively. Join all pairs of vertices between V(S 1) and V(T1) by edges of color 1, join all pairs of
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(b)  uni−color component(a)  uni−color component

(c)  uni−color component
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Figure 11: Combining two uni-color components

vertices between V(S 2) and V(T2) − {w} by edges of color 2, and join all pairs of vertices between

V(S 3) and V(T3) − {w} by edges of color 3. Then deleting (three) edges between V(T2 ∪ T3) and

{w}, we obtain the tri-color component H in Figure 13(c).

Lemma 5.2.3. Suppose C ⊆ Q3 is a maximum IPP code which is chosen so that its associated

graph G has the minimum number of components. Then G has no uni-color components.

Proof. Suppose on the contrary that G contains a uni-color component S , whose edges are colored

with color i for some i ∈ {1, 2, 3}.

First, we show that we may choose S so that the color used in S is also used in another com-

ponent T of G. Suppose this is not true. Then all other components of G are uni-color or bi-color

components. By Lemma 5.2.1, let T be a bi-color component. Then the edges of T use colors from

{1, 2, 3} − {i}. By Lemma 5.2.1, G has a component U other than S and T . If U is a uni-color

component, then we see from Lemma 5.2.2 that the edges of U use a color from {1, 2, 3} − {i}, and

therefore, U,T would give the desired choice. So we may assume that U is also a bi-color compo-

nent. Then by Lemma 5.2.2 again, U and T cannot use the same two colors. Hence, color i is used

in U. Therefore, S and U give the desired choice.
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(b)  bi−color component

(c)  bi−color component

(a)   bi−color component
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Figure 12: Combining two bi-color components

By Lemma 5.2.2, T is a bi-color or tri-color component of G. Let T ′ be a component of T (i).

Let G′ be the graph obtained from G by adding edges uv of color i for all u ∈ V(S ) and v ∈ V(T ′).

Clearly, G′ is the graph associated with a code C′ ⊆ Q3 obtained from C by changing the ith

coordinate of those codewords in C corresponding to vertices of T ′ to the ith coordinate of the

codewords in C corresponding to vertices of S . Let H be the component of G ′ containing S ∪ T .

Note that G − V(H) consists of components of G, and hence, is an IPP graph.

When T is a bi-color component of G, we see from (i) of Lemma 3.2.2 that H is an IPP graph.

Now assume T is a tri-color component of G. Then by (iii) of Lemma 5.1.1, there exist a vertex v

of T and complete subgraphs T1,T2,T3 of T such that all edges of T s use color s (1 ≤ s ≤ 3) and

V(Ts ∩ Tt) = {v} (1 ≤ s , t ≤ 3). In this case, T ′ = Ti, and we see that H has three complete

subgraphs H1,H2,H3 such that H1 ∪ H2 ∪ H3 = H, all edges of each Hs use color s (1 ≤ s ≤ 3),

and V(Hs ∩ Ht) = {v} (1 ≤ s , t ≤ 3). In fact, V(Hi) = V(S ) ∪ V(Ti). By (iii) of Lemma 3.2.2, H is

an IPP graph.

Since both H and G−V(H) are IPP graphs, it follows from Lemma 3.2.1 that G ′ is an IPP graph.

However, |V(G′)| = |V(G)| and G′ has fewer components than G, contradicting the choice of C and
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(b)  tri−color component(a)  tri−color component

(c)  tri−color component
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Figure 13: Combining two tri-color components

G. �

In Figure 14, we see how to combine a uni-color component and a bi-color component. Fig-

ure 14(a) shows a uni-color component S which uses color 1 (red), and Figure 14(b) shows a bi-color

component T which uses colors 1 (red) and 2 (blue). T (1) contains a component T ′ which is a path

of length 2. Joining all pairs of vertices between V(S ) and V(T ′) by edges of color 1, we obtain the

bi-color component H in Figure 14(c).

Lemma 5.2.4. Suppose C ⊆ Q3 is a maximum IPP code which is chosen so that its associated

graph G has the minimum number of components. Then G has no tri-color components.

Proof. Suppose G contains a tri-color component S . By (iii) of Lemma 5.1.1 there exist a vertex

v of S and complete subgraphs S 1, S 2, S 3 of S such that S 1 ∪ S 2 ∪ S 3 = S , all edges of each S i

use color i (1 ≤ i ≤ 3), and V(S i ∩ S j) = {v} (1 ≤ i , j ≤ 3). By Lemma 5.2.2, S is the only

tri-component of G. By Lemma 5.2.3, all components of G other than S are bi-color components.

Therefore, it follows from Lemma 5.2.1 that there are two bi-color components in G, say T and U.

By Lemma 5.2.2, we may assume that T uses colors 1 and 2, and U uses colors 2 and 3.
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(c)  bi−color component

(a)  uni−color component (b)  bi−color component
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Figure 14: Combining a uni-color component and a bi-color component

Next, we construct a new graph G′. Let T ′ be a component of T (1), let T ′′ be a component of

T (2), and let U ′ be a component of U(3). Let G′ be obtained from G by adding edges xy of color 1

for all x ∈ V(T ′) and y ∈ V(S 1), adding edges xy of color 2 for all x ∈ V(T ′′) and y ∈ V(S 2) − {v},

adding all edges of color 3 for all x ∈ V(U ′) and y ∈ V(S 3) − {v}, and deleting all edges of S 2 and

S 3 incident with v. Let H1 denote the component of G′ containing S 1, S 2 and T , and let H2 denote

the component of G′ containing S 3 − {v} and U. Note that both H1 and H2 are bi-color components

of G′.

Clearly, G′ is the graph associated with a code C′ ⊆ Q3, where C′ is obtained from C by

changing the first coordinate of the codewords in C corresponding to vertices of S 1 to the first

coordinate of codewords in C corresponding to vertices of T ′, changing the second coordinate of

the codewords in C corresponding to vertices of S 2 − {v} to the second coordinate of codewords

in C corresponding to vertices of T ′′, and changing the third coordinate of the codewords in C

corresponding to vertices of S 3 − {v} to the third coordinate of codewords in C corresponding to

vertices of U ′.

Since H1 and H2 are bi-color components, H1 and H2 are IPP graphs by (i) and (ii) of Lemma 3.2.2.

Since G is an IPP graph, G − (V(H1) ∪ V(H2)) (if non-empty) is also an IPP graph. So by

Lemma 3.2.1, G′ is an IPP graph. Clearly, |V(G′)| = |V(G)|. However, G′ has fewer components
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than G, contradicting the choice of C and G. �

In Figure 15, we illustrate how to combine a tri-color component and two bi-color components.

Figure 15(a) gives a tri-color component S = S 1∪S 2 ∪S 3, where S 1, S 2, S 3 have a common vertex

v and they use colors 1, 2, 3, respectively. Figure 15(b) gives a bi-color component T which uses

colors 1 and 2. T (1) contains a component T ′ which is a path of length 2 and T (2) contains a triangle

T ′′. Figure 15(c) gives a bi-color component U which uses colors 2 and 3. U(3) contains a com-

ponent U′ which is a triangle. Join all pairs of vertices between V(S 1) and V(T ′) by edges of color

1, join all pairs of vertices between V(S 2) − {v} and V(T ′′) by edges of color 2, and join all pairs

of vertices between V(S 3) − {v} and V(U ′) by edges of color 3. Then delete (two) edges between

V(S 2 ∪ S 3) and {v}, we obtain two bi-color components H1 in Figure 15(d) and H2 in Figure 15(e).

(a)  tri−color component

(c)  bi−color component

(b)  bi−color component

(e)  bi−color component(d)  bi−color component
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Figure 15: Combining a tri-color component and two bi-color components

We can now prove the main result of this section.
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Theorem 5.2.5. There exists a maximum IPP code C ⊆ Q3 such that its associated graph is a

proper graph.

Proof. Choose a maximum IPP code C such that its associated graph G has the minimum number

of components. By Lemma 5.2.3 and Lemma 5.2.4, all components of G are bi-color. Therefore,

by Lemma 5.2.2, G has at most three components. It follows from Lemma 5.2.1 that G has exactly

three bi-color components. Hence, G is proper. �

We point out that Theorem 5.2.5 was also proved in [36], but our approach is independent of

[36] and is much simpler. This result provides explicit structure of a class of maximum IPP codes

of length 3, which played a role in the code constructions in Chapter IV, and will play an important

role in the remainder of the thesis.
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CHAPTER VI

NONLINEAR PROGRAMMING PROBLEM

Recall from Theorem 5.2.5, there exists a maximum IPP code C ⊆ Q3 such that its associated

graph consists of exactly three bi-color components B1, B2, B3, where Bi does not use color i. In this

chapter, we use this result to reduce the problem of determining F(3, q) to a nonlinear programming

problem. We propose an algorithm which finds an optimal solution. We then show how to use an

optimal solution of the nonlinear programming problem to construct IPP codes. Lemma 3.2.1 and

Lemma 3.2.2 will be used to show that the codes we construct are indeed IPP codes. We shall see

that our construction is efficient and the constructed codes are capable of tracing efficiently a parent

of any descendant codeword.

6.1 A Nonlinear Programming Formulation

Let q = |Q|. Let C ⊆ Q3 be a maximum IPP code and G be its associated graph. By The-

orem 5.2.5, we may choose C so that G has exactly three components B1, B2, B3, and for each

i ∈ {1, 2, 3}, Bi is a bi-color component in which the color i does not occur. Then

|C| = |V(G)| =
3
∑

i=1
|Qi(Bi)| (10)

and, for j ∈ {1, 2, 3},
3
∑

i=1
|Q j(Bi)| ≤ q. (11)

Moreover, it follows from Lemma 3.2.3 that, for each k ∈ {1, 2, 3} and {i, j} = {1, 2, 3} − {k},

|Qi(Bk)| + |Q j(Bk)| − 1 ≤ |Qk(Bk)| ≤ |Qi(Bk)||Q j(Bk)| (12)

Since B1, B2, B3 are bi-color components of G, |Q j(Bi)| ≥ 2 for all 1 ≤ i, j ≤ 3. Combining

this with (11), we obtain 2 ≤ |Q j(Bi)| ≤ q − 4 for all 1 ≤ i, j ≤ 3. For 1 ≤ j ≤ 3, let |Q j(B3)| =

x j, |Q j(B1)| = y j, |Q j(B2)| = z j. LetN = {2, 3, · · · , q− 4}. Then finding the maximum |V(G)| in (10)

subject to (11) and (12) is equivalent to solving the following nonlinear optimization problem:

maximize f (x) = x3 + y1 + z2 (13)
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subject to x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9 and

(i) x3 − x1x2 ≤ 0,

(ii) y1 − y2y3 ≤ 0,

(iii) z2 − z1z3 ≤ 0,

(iv) x1 + y1 + z1 − q ≤ 0,

(v) x2 + y2 + z2 − q ≤ 0,

(vi) x3 + y3 + z3 − q ≤ 0,

(vii) x1 + x2 − 1 − x3 ≤ 0,

(viii) y2 + y3 − 1 − y1 ≤ 0,

(ix) z1 + z3 − 1 − z2 ≤ 0.

(14)

We call x ∈ N9 an optimal solution if f (x) is maximum subject to (14), the maximum is therefore

F(3, q). We note that the formulation without (vii), (viii) and (ix) is also given in [36]. But (vii),

(viii) and (ix) are important for determining F(3, q).

6.2 Algorithm to Compute F(3, q)

To find an optimal solution to the above nonlinear programming problem, exhaustive search has

complexity of O(q9), which is not efficient.

Let us analyze the constraints in (14). Suppose x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9 is an

optimal solution to (13) subject to (14). Then F(3, q) = x3+y1+z2. Note that F(3, q) ≥ 3r2+3k−6 ≥

3q − 6
√

q + 1, hence

x3 + y1 + z2 ≥ 3q − 6
√

q + 1. (15)

So by (iv)-(vi) of (14) and (15), we have

x1 + x2 + y2 + y3 + z1 + z3 ≤ 6
√

q + 1. (16)

Again by (15) and since x ∈ N9, we have

x3 ≥ q + 1 − 6
√

q + 1, y1 ≥ q + 1 − 6
√

q + 1, z2 ≥ q + 1 − 6
√

q + 1. (17)

Hence, by (i)-(iii) of (14) and (17), we obtain

x2 ≥
q + 1 − 6

√

q + 1
x1

, y3 ≥
q + 1 − 6

√

q + 1
y2

, z1 ≥
q + 1 − 6

√

q + 1
z3

. (18)
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Since x ∈ N9 and by (16), we obtain

x1 ≤ 6
√

q + 1, x2 ≤ 6
√

q + 1, y2 ≤ 6
√

q + 1,

y3 ≤ 6
√

q + 1, z1 ≤ 6
√

q + 1, z3 ≤ 6
√

q + 1.
(19)

Plug (19) into (18), we obtain

x1 ≥
√

q + 1
6 − 1, x2 ≥

√

q + 1
6 − 1, y2 ≥

√

q + 1
6 − 1,

y3 ≥
√

q + 1
6 − 1, z1 ≥

√

q + 1
6 − 1, z1 ≥

√

q + 1
6 − 1.

(20)

Now if we plug (20) into (16), then we obtain a tighter upper bound on x1, x2, y2, y3, z3, z1 than

that in (19). Plugging this new upper bound into (18), we can obtain a tighter lower bound on

x1, x2, y2, y3, z3, z1 than that in (20). Hence, we are able to recursively improve (19) and (20) by

using (16) and (18). Hence we are able to obtain a very tight range for x1, x2, y2, y3, z3, z1. Next, let

us examine x3, y1, z2.

Notice that at least two of (iv), (v), (vi) of (14) hold with equality since x is an optimal solution.

Otherwise, assume that (iv) and (v) hold with strict inequality; then x′ = (x1, x2, x3, y1 + 1, y2 +

1, y3, z1, z2, z3), and hence, x′ ∈ N9 and x′ satisfies (14). However, f (x′) = x3 + y1 + z2 + 1 > f (x′),

a contradiction. Hence, we may assume (iv) and (v) of (14) hold with equality.

We also notice that either (i) or (vi) of (14) holds with equality. Otherwise, let x′ = (x1, x2, x3 +

1, y1, y2, y3, z1, z2, z3), then x′ ∈ N9 and it satisfies (14), but f (x′) = x3 + y1 + z2 + 1 > f (x′), a

contradiction.

With the above analysis, we are now ready to design an efficient algorithm to compute F(3, q).

We use lb =
√

q + 1/6 − 1 and ub = 6
√

q + 1 to denote the lower bound and the upper bound,

respectively. The following algorithm, named MAX-IPP, can be used to determine F(3, q). This

program searches for an optimal solution to maximize (13) subject to (14).

There are two outputs from the MAX-IPP algorithm: an optimal solution x to (13) subject to

(14) and the value of F(3, q) for each q ≥ 15. The complexity of algorithm MAX-IPP is O(q3)[49].

We remark that this algorithm is also presented in [36] independently.

6.3 Method to Construct Maximum IPP Codes

Next, we show that any feasible solution x to the above non-linear programming problem can

be used to construct an IPP code C.
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Input: The cardinality q of alphabet Q
Output: Optimal soulution x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) and F(3, q)

1 maximum← 0;
2 for x1 = lb to ub do
3 for x2 = lb to ub do
4 for y2 = lb to ub do
5 for y3 = lb to ub do
6 for z1 = lb to ub do
7 for z3 = lb to ub do
8 y1 ← q − (x1 + z1);
9 z1 ← q − (x2 + y2);
10 x3 ← q − (y3 + z3) or x1 ∗ x2;
11 if constraints (14) satisfied then
12 temp← x3 + y1 + z2;
13 if temp > maximum then
14 maximum← temp;
15 x← (x1, x2, x3, y1, y2, y3, z1, z2, z3);
16 end
17 end
18 end
19 end
20 end
21 end
22 end
23 end
24 return x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) and maximum

MAX-IPP algorithm: Compute the maximum size of IPP codes of length 3 over Q.

Theorem 6.3.1. Let x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9 satisfying (14). Then there exists a

q-ary IPP code of length 3 with size x3 + y1 + z2.

Proof. We construct an IPP graph which consists of three bi-color components B1, B2, B3 such

that for each i ∈ {1, 2, 3}, the edges of Bi do not use color i. We also construct codes C1,C2,C3

simultaneously such that Bi is the associated graph of Ci.

First, we construct B3 whose edges use color 1 and color 2 only. Take x1 disjoint complete

graphs R3
s , 1 ≤ s ≤ x1, such that min{|V(R3

s)| : 1 ≤ s ≤ x1} ≥ 1, max{|V(R3
s)| : 1 ≤ s ≤ x1} = x2, and

∑x1
s=1 |V(R3

s)| = x3. This can be done because x1x2 ≥ x3 (by (i) of (14)) and x3 ≥ x1 + x2 −1 ≥ x1+1
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(by (vii) of (14) and since x2 ≥ 2 because x ∈ N9). Color all edges of each R3
s with color 1, and

label the vertices of each R3
s as v3

s,1, v
3
s,2, · · · , v

3
s,|V(R3

s )|. For each 1 ≤ t ≤ x2, let J3
t = {s : |V(R3

s)| ≥ t}

and, if |J3
t | ≥ 2 then join every pair of vertices from {v3

s,t : s ∈ J3
t } by an edge of color 2. Let B3

denote the resulting edge colored graph. Note that |V(B3)| = x3 and the edges of B3 do not use color

3. Also note that the components of B3(1) are the graphs R3
s (1 ≤ s ≤ x1), the components of B3(2)

are the complete graphs with vertex set {vs,t : s ∈ J3
t } (1 ≤ t ≤ x2), and the components of B3(3) are

the isolated vertices {v3
s,t} (1 ≤ s ≤ x1 and 1 ≤ t ≤ |V(R3

s)|). Let

C3 = {(αs, αt, α(
∑s−1

k=1 |V(R3
k)|)+t) : 1 ≤ s ≤ x1, 1 ≤ t ≤ |V(R3

s)|}. (21)

Clearly, the subscript of the first coordinate is between 1 and x1, the subscript of the second coor-

dinate is between 1 and x2, and subscript of the third coordinate is between 1 and x3. Note that the

third subscript (
∑s−1

k=1 |V(R3
k)|) + t guarantees that all codewords in C3 have distinct 3rd coordinates.

It is straightforward to check that B3 is the graph associated with C3 ⊆ Q3 by noticing that the

codeword (αs, αt, α(∑s−1
k=1 |V(R3

k )|)+t) in C3 corresponds to the vertex v3
s,t of B3 for all 1 ≤ s ≤ x1 and

1 ≤ t ≤ |V(R3
s)|. Since B3 is a bi-color component and by (i) of Lemma 3.2.2, B3 is an IPP graph.

Now, we construct B1 whose edges use color 2 and color 3 only. Take y2 disjoint complete

graphs R1
s , 1 ≤ s ≤ y2, such that min{|V(R1

s)| : 1 ≤ s ≤ y2} ≥ 1, max{|V(R1
s)| : 1 ≤ s ≤ y2} = y3, and

∑y2
s=1 |V(R1

s)| = y1. This can be done because y2y3 ≥ y1 (by (ii) of (14)) and y1 ≥ y2 + y3 − 1 ≥ y2 + 1

(by (viii) (14) and because x ∈ N 9). Color all edges of each R1
s with color 2, and label the vertices

of each R1
s as v1

s,1, v
1
s,2, · · · , v

1
s,|V(R1

s )|. For each 1 ≤ t ≤ y3, let J1
t = {s : |V(R1

s)| ≥ t} and, if |J1
t | ≥ 2,

join every pair of vertices from {v1
s,t : s ∈ J1

t } by an edge of color 3. Let B1 denote the resulting

edge colored graph. Note that |V(B1)| = y1 and the edges of B1 do not use color 1. Also note that

the components of B1(2) are the graphs R1
s (1 ≤ s ≤ y2), the components of B1(3) are the complete

graphs with vertex set {v1
s,t : s ∈ J1

t } (1 ≤ t ≤ y3), and the components of B1(1) are the isolated

vertices {v1
s,t} (1 ≤ s ≤ y2 and 1 ≤ t ≤ |V(R1

s)|). Let

C1 = {(αx1+(∑s−1
k=1 |V(R1

k )|)+t, αx2+s, αx3+t) : 1 ≤ s ≤ y2, 1 ≤ t ≤ |V(R1
s)|}. (22)

Clearly, the subscript of the first coordinate is between x1+1 and x1+y1, the subscript of the second

coordinate is between x2 + 1 and x2 + y2, and subscript of the third coordinate is between x3 + 1 and

x3 + y3. Note that the subscript x1 + (∑s−1
k=1 |V(R1

k)|)+ t ensures that all codewords in C1 have distinct
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1st coordinates. It is straightforward to check that B1 is the graph associated with C1 ⊆ Q3 by

noticing that the codeword (αx1+(∑s−1
k=1 |V(Rk)|)+t, αx2+s, αx3+t) in C1 corresponds to the vertex v1

s,t of B1

for all 1 ≤ s ≤ y2 and 1 ≤ t ≤ |V(R1
s)|. Since B1 is a bi-color component and by (i) of Lemma 3.2.2,

B1 is an IPP graph.

Finally, we construct B2 whose edges use color 3 and color 1 only. Take z3 disjoint complete

graphs R2
s , 1 ≤ s ≤ z2 such that min{|V(R2

s)| : 1 ≤ s ≤ z3} ≥ 1, max{|V(R2
s)| : 1 ≤ s ≤ z3} = z1, and

∑z3
s=1 |V(R2

s)| = z2. This can be done because z1z3 ≥ z2 (by (iii) of (14)) and z2 ≥ z1 + z3 − 1 ≥ z3 + 1

(by (ix) of (14) and because x ∈ N 9). Color all edges of each R2
s with color 3, and label the vertices

of each R2
s as v2

s,1, v
2
s,2, · · · , vs,|V(R2

s )|. For each 1 ≤ t ≤ z1, let J2
t = {s : |V(R2

s)| ≥ t} and, if |J2
t | ≥ 2,

join every pair of vertices from {v2
s,t : s ∈ J2

t } by an edge of color 1. Let B2 denote the resulting

edge colored graph. Note that |V(B2)| = z2 and the edges of B2 do not use color 2. Also note that

the components of B2(3) are the graphs R2
s (1 ≤ s ≤ z3), the components of B2(1) are the complete

graphs with vertex set {v2
s,t : s ∈ J2

t } (1 ≤ t ≤ z1), and the components of B2(2) are the isolated

vertices {v2
s,t} (1 ≤ s ≤ z3 and 1 ≤ t ≤ |V(R2

s)|). Let

C2 = {(αx1+y1+t, αx2+y2+(
∑s−1

k=1 |V(R2
k)|)+t , αx3+y3+s) : 1 ≤ s ≤ z3, 1 ≤ t ≤ |V(R2

s)|}. (23)

Clearly, the subscript of the first coordinate is between x1 + y1 + 1 and x1 + y1 + z1, the subscript of

the second coordinate is between x2 + y2+ 1 and x2 + y2+ z2, and subscript of the third coordinate is

between x3 + y3 + 1 and x3 + y3 + z3. Note that the subscript x2 + y2 + (
∑s−1

k=1 |V(R2
k)|) + t shows that

all codewords in C2 have distinct 2nd coordinates. It is straightforward to check that B2 is the graph

associated with C2 ⊆ Q3 by noticing that the codeword (αx1+y1+t, αx2+y2+(∑s−1
k=1 |V(Rk)|)+t, αx3+y3+t) in

C2 corresponds to the vertex v2
s,t of B2 for all 1 ≤ s ≤ z3 and 1 ≤ t ≤ |V(R2

s)|. Since B2 is bi-color

and by (i) of Lemma 3.2.2, B2 is an IPP graph.

Let G denote the disjoint union of B1, B2 and B3. That is, B1, B2 and B3 are the components

of G. By looking at the subscripts of coordinates of codewords in C1,C2,C3, we can check that

C1,C2,C3 are disjoint, and for any 1 ≤ i , j ≤ 3 and 1 ≤ k ≤ 3, no codeword of C i shares the same

kth coordinate with a codeword of C j. Hence, G is the graph associated with

C := C1 ∪ C2 ∪ C3. (24)

Therefore, because B1, B2, B3 are IPP graphs, it follows from Lemma 3.2.1 that G is an IPP graph.
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Hence, C is an IPP code. �

6.4 Algorithm to Decode IPP Codes

From the construction in the proof of Theorem 6.3.1, it is easy to see that any two coordinates

of a codeword in C uniquely determine the third coordinate of that codeword. If a,b ∈ C and

c ∈ desc(a,b), then at least two coordinates of c come from a or come from b but not from both.

Next, we give an algorithm which shows that the maximum IPP code C in (24) can be used to

trace, in constant time, a parent of any descendant codeword.

For each 1 ≤ m ≤ 3 and each 1 ≤ i ≤ 3, let f m
i (s, t) denote the ith subscript of the codeword

in Cm corresponding to vm
s,t. For example, f 1

1 (s, t) = x1 + (∑s−1
k=1 |V(R1

k)|) + t and f 3
1 (s, t) = s. Note

that any pair of subscripts ( f m
i (s, t), f m

j (s, t)) uniquely determines (s, t) due to the special structure

of our code in (24) . For each 1 ≤ m ≤ 3, let Dm denote the set of all pairs of (s, t) that occur in the

subscript of the codewords in Cm, that is,

D1 = {(s, t) : 1 ≤ s ≤ y2, 1 ≤ t ≤ |V(R1
s)|},

D2 = {(s, t) : 1 ≤ s ≤ z3, 1 ≤ t ≤ |V(R2
s)|},

D3 = {(s, t) : 1 ≤ s ≤ x1, 1 ≤ t ≤ |V(R3
s)|}.

The following algorithm, named Decoding-IPP, traces a parent of any descendant codeword.

The input of the algorithm is any descendant c of the code in (24). This algorithm always succeeds,

since at least two coordinates of c are from one of its parents, there must exist some l ∈ {1, 2, 3}

such that line 6, 16 or 26 applies. Hence, when it terminates, the algorithm outputs an identifiable

parent a. In the worst case, the Decoding-IPP algorithm runs three loops (line 2), and in each loop,

it solves two simple linear algebraic equations (line 5, 15, or 25). Thus, algorithm Decoding-IPP

has a constant decoding complexity.
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Input: descendant codeword c = (αu1 , αu2 , αu3)
Output: identifiable parent a of c

1 l← 1; boolean ← 0;
2 while (boolean == 0) do
3 {i, j} ← {1, 2, 3} − {l};
4 if ui ≤ xi and u j ≤ x j then
5 solve (s, t) from ui = f 1

i (s, t), u j = f 1
j (s, t);

6 if (s, t) ∈ D1 then
7 wi ← ui; w j ← u j; wl ← f 1

l (s, t);
8 [I, J, L]← sort([i, j, l]);
9 a← (αwI , αwJ , αwL);
10 boolean ← 1;
11 return a with success; // a is an identifiable parent and a ∈ C1
12 else l← l + 1;
13 end
14 else if xi < ui ≤ xi + yi and x j < u j ≤ x j + y j then
15 solve (s, t) from ui = f 2

i (s, t), u j = f 2
j (s, t);

16 if (s, t) ∈ D2 then
17 wi ← ui; w j ← u j; wl ← f 2

l (s, t);
18 [I, J, L]← sort([i, j, l]);
19 a← (αwI , αwJ , αwL );
20 boolean ← 1;
21 return a with success; // a is an identifiable parent and a ∈ C2
22 else l← l + 1;
23 end
24 else if xi + yi < ui and x j + y j < u j then
25 solve (s, t) from ui = f 3

i (s, t), u j = f 3
j (s, t);

26 if (s, t) ∈ D3 then
27 wi ← ui; w j ← u j; wl ← f 3

l (s, t);
28 [I, J, L]← sort([i, j, l]);
29 a← (αwI , αwJ , αwL );
30 boolean ← 1;
31 return a with success; // a is an identifiable parent and a ∈ C3
32 end
33 end
34 end
35 end
36 end

Decoding-IPP algorithm: Find an identifiable parent for any descendant of the IPP code in (24).
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CHAPTER VII

THE PRECISE FORMULA

As proved in Chapter VI, in order to find F(3, q), it suffices to solve the following nonlinear

optimization problem, named Nonlinear-IPP problem,

maximize f (x) = x3 + y1 + z2 (25)

subject to x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9 and

(i) g1(x) = x3 − x1x2 ≤ 0,

(ii) g2(x) = y1 − y2y3 ≤ 0,

(iii) g3(x) = z2 − z1z3 ≤ 0,

(iv) g4(x) = x1 + y1 + z1 − q ≤ 0,

(v) g5(x) = x2 + y2 + z2 − q ≤ 0,

(vi) g6(x) = x3 + y3 + z3 − q ≤ 0,

(26)

and
(vii) g7(x) = x1 + x2 − 1 − x3 ≤ 0,

(viii) g8(x) = y2 + y3 − 1 − y1 ≤ 0,

(ix) g9(x) = z1 + z3 − 1 − z2 ≤ 0.

(27)

The maximum of (25) subject to (26) and (27) is exactly F(3, q). In this chapter, we aim to prove

(5).

Recall the partition of I defined in Section 4.1, for each integer q ≥ 15, there exist unique

integers r and k such that r ≥ 3, 0 ≤ k ≤ 2r + 2, and q = r2 + 2r + k. Hence, through this Chapter

we consider q as such a function of r and k.

7.1 F(3, q) for small q

For small values of 1 ≤ q ≤ 48 (i.e., 1 ≤ r ≤ 5), F(3, q) is given in Table 1 by Tô and Safavi-

Naini [36]. Let us compute the lower bound on F(3, q) in (9) for 15 ≤ q ≤ 62 (i.e., 3 ≤ r ≤ 6) as
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in Table 2. By checking these two tables, we find that (5) holds for 15 ≤ q ≤ 48 (i.e., 3 ≤ r ≤ 5,

0 ≤ k ≤ 2r + 2). Hence, we have the following,

Lemma 7.1.1. (5) holds for 15 ≤ q ≤ 48.

Table 1: F(3, q) for 1 ≤ q ≤ 48
q F(3, q) q F(3, q) q F(3, q) q F(3, q)
1 1 13 22 25 49 37 79
2 2 14 24 26 52 38 82
3 4 15 27 27 54 39 84
4 5 16 28 28 57 40 87
5 7 17 31 29 60 41 90
6 8 18 33 30 62 42 92
7 10 19 36 31 64 43 94
8 12 20 38 32 67 44 97
9 14 21 40 33 69 45 99
10 16 22 42 34 72 46 102
11 18 23 45 35 75 47 105
12 20 24 48 36 76 48 108

Table 2: (9) for 15 ≤ q ≤ 62
q (9) q (9) q (9) q (9)

15 27 27 54 39 84 51 115
16 28 28 57 40 87 52 117
17 31 29 60 41 90 53 120
18 33 30 62 42 92 54 123
19 36 31 64 43 94 55 126
20 38 32 67 44 97 56 128
21 40 33 69 45 99 57 130
22 42 34 72 46 102 58 133
23 45 35 75 47 105 59 136
24 48 36 76 48 108 60 138
25 49 37 79 49 109 61 141
26 52 38 82 50 112 62 144

Thus, to prove (5), we may assume r ≥ 6. In what follows, we shall first establish (5) for some

special values of k.
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7.2 Critical Values of k

Notice that there exist some special values of k at which (5) changes: the smallest values in I i

for 0 ≤ i ≤ 5. That is, k = 0, k = 1, k is odd and k is the smallest integer with k > 2
√

r + 4 − 3 or k

is even and k is the smallest integer with k > 2
√

r + 2 − 2, k = r + 2, k = r + 3, and k − r is odd and

k is the smallest integer with k > r +
√

4r + 21 − 2 or k − r is even and k is the smallest integer with

k > r +
√

4r + 9 − 1. The number k satisfying one of the above properties is said to be critical. In

this section, we prove (5) holds when k is critical.

7.2.1 Khun-Tuker Conditions

First, we prove (5) holds when k = 0 by techniques from non-linear optimization.

Let E ⊆ Rn and gi(x) ≤ 0 (1 ≤ i ≤ m) be functional constraints. A point x that satisfies all

functional constraints is said to be feasible. A functional constraint g i(x) ≤ 0 is said to be active at

a feasible point x if gi(x) = 0, and inactive if gi(x) < 0. Suppose x is a feasible point, and let J be

the set of indices j for which g j(x) = 0. Then x is said to be a regular point of the constraints if

the gradient vectors ∇g j(x) ( j ∈ J) are linearly independent. The following result (see p. 314, [61])

gives necessary conditions for f to achieve a relative maximum at a regular point.

Khun-Tuker Conditions: Suppose f (x) and gi(x) (i = 1, 2, · · · ,m) possess continuous first

order partial derivatives. Suppose x∗ is a relative maximum point for the problem

maximize f (x)

subject to gi(x) ≤ 0, i = 1, 2, · · · ,m,

and suppose x∗ is a regular point for the constraints. Then there is a vector (µ1, µ2, · · · , µm) with

µi ≥ 0 such that
∂ f (x∗)
∂x j

−
m
∑

i=1
µi
∂gi(x∗)
∂x j

= 0,

µigi(x∗) = 0, i = 1, 2, · · · ,m.

Next, we use Khun-Tuker Conditions to solve the above Nonlinear-IPP problem. We first show

that every point x satisfying (26) is a regular point. To do this, we need to find gradient vector of

61



gi(x) at x = (x1, . . . , x9). By simple calculations, we see that

∇g1(x) = (−x2,−x1, 1, 0, 0, 0, 0, 0, 0),

∇g2(x) = (0, 0, 0, 1,−y3,−y2, 0, 0, 0),

∇g3(x) = (0, 0, 0, 0, 0, 0,−z3 , 1,−z1),

∇g4(x) = (1, 0, 0, 1, 0, 0, 1, 0, 0),

∇g5(x) = (0, 1, 0, 0, 1, 0, 0, 1, 0),

∇g6(x) = (0, 0, 1, 0, 0, 1, 0, 0, 1).

(28)

It is an easy exercise to show that if
∑6

i=1 ci∇gi(x) = 0 then ci = 0 for all 1 ≤ i ≤ 6. Hence these six

vectors ∇gi(x) are linearly independent. Therefore, we have the following.

Lemma 7.2.1. Every nonzero point x satisfying (26) is a regular point of (26).

The Khun-Tuker conditions are necessary conditions for f (x) to achieve a relative maximum at

regular points. For the Nonlinear-IPP problem, if we relax (27), it can be stated as follows.

Lemma 7.2.2. Suppose f and gi, 1 ≤ i ≤ 6, are given as in (25) and (26). If f has a relative

maximum at x = (x1, x2, x3, y1, y2, y3, z1, z2, z3), then there is a vector (µ1, µ2, · · · , µ6) with µi ≥ 0

for all 1 ≤ i ≤ 6 such that
∂ f (x)
∂x j

−
6
∑

i=1
µi
∂gi(x)
∂x j

= 0,

∂ f (x)
∂y j

−
6
∑

i=1
µi
∂gi(x)
∂y j

= 0,

∂ f (x)
∂z j

−
6
∑

i=1
µi
∂gi(x)
∂z j

= 0,

µigi(x) = 0, 1 ≤ i ≤ 6.

Note that the conditions µigi(x) = 0 and µi ≥ 0 imply that if gi is not active at x then µi = 0.

This shows that only active constraints will be used when determining potential maximum points.

Now we are ready to prove the following result.

Lemma 7.2.3. (5) holds when q ≥ 15 and k = 0.

Proof. By the above analysis, our objective is to find a solution x = (x1, x2, x3, y1, y2, y3, z1, z2, z3)

which maximizes (25) subject to (26). It turns out that our optimal solution x ∈ N 9 and also satisfies

the constraints (vii)-(ix) in (27).

62



Let L(x) = f (x) −∑6
i=1 µigi(x), µi ≥ 0 for 1 ≤ i ≤ 6. By Lemma 7.2.2, we have

∂L
∂x1
= µ1x2 − µ4 = 0, ∂L

∂x2
= µ1x1 − µ5 = 0,

∂L
∂x3
= 1 − µ1 − µ6 = 0, ∂L

∂y1
= 1 − µ2 − µ4 = 0,

∂L
∂y2
= µ2y3 − µ5 = 0, ∂L

∂y3
= µ2y2 − µ6 = 0,

∂L
∂z1
= µ3z3 − µ4 = 0, ∂L

∂z2
= 1 − µ3 − µ5 = 0,

∂L
∂z3
= µ3z1 − µ6 = 0, µi ≥ 0, µigi = 0, 1 ≤ i ≤ 6.

If there is a feasible point x such that gi(x) is inactive for some 1 ≤ i ≤ 6, then µi = 0. In this

case, it is easy to show f (x) ≤ 2q − 2 < 3q − 6r.

Therefore, it follows from Theorem 4.2.7 that we only need to consider those feasible points x

such that all functional constraints gi(x), 1 ≤ i ≤ 6, are active. Thus, we may assume that all µi are

positive. Hence,

µ4 = 1 − µ2, µ5 = 1 − µ3, µ6 = 1 − µ1,

x1 =
1 − µ3
µ1
, x2 =

1 − µ2
µ1
, y2 =

1 − µ1
µ2
,

y3 =
1 − µ3
µ2
, z1 =

1 − µ1
µ3
, z3 =

1 − µ2
µ3
.

Since all gi(x), 1 ≤ i ≤ 6, are active, we have

r2 + 2r − 1 − µ3
µ2

− 1 − µ2
µ3

− (1 − µ2)(1 − µ3)
µ2

1
= 0,

r2 + 2r − 1 − µ3
µ1

− 1 − µ1
µ3

− (1 − µ3)(1 − µ1)
µ2

2
= 0,

r2 + 2r − 1 − µ2
µ1

− 1 − µ1
µ2

− (1 − µ1)(1 − µ2)
µ2

3
= 0.

By using Maple 9, we obtain a unique positive solution

µ1 = µ2 = µ3 =
1

r + 1 , µ4 = µ5 = µ6 =
r

r + 1 .

It follows that (r, r, r2, r2, r, r, r, r2, r) is the unique regular point which satisfies the necessary condi-

tions in Lemma 7.2.2 for a relative maximum. Note that (r, r, r2, r2, r, r, r, r2, r) ∈ N9 ⊆ [2, q − 4]9

and satisfies constraints (vii)-(ix) in (27). Since f (x) is continuous on [2, q − 4]9, we see that f (x)

has a maximum. Hence by the uniqueness of (r, r, r2, r2, r, r, r, r2, r) as a regular point, we see that it

is the absolute maximum point. Therefore, F(3, q) = maxx∈N9 f (x) = 3r2 for k = 0. �
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7.2.2 Other Critical Values of k

In this section, we prove (5) holds for other critical values of k. Before stating next result, let

us recall that for any finite real number x, bxc denotes the greatest integer in x, dxe designates the

ceiling of x.

The following result is proved in [36] (Theorem 33).

Lemma 7.2.4. F(3, q) ≤ 3q + 6 − d6
√

q + 1e when q ≥ 15.

Using Lemma 7.2.4, we prove (5) holds for k = r + 2 quickly.

Lemma 7.2.5. (5) holds when q ≥ 15 and k = r + 2.

Proof. Since q = r2+2r+k and k = r+2, d6
√

q + 1e = d6
√

r2 + 3r + 3e = 6r+10. By Lemma 7.2.4,

F(3, q) ≤ 3(r2 + 2r + k)+ 6 − d6
√

r2 + 2r + k + 1e = 3(r2 + 3r + 2) + 6− (6r + 10) = 3r2 + 3r + 2 =

3r2 + 3k− 4. Note that (e f F(3, q)) = 3r2 + 3k − 4 = 3r2 + 3r + 2 when q ≥ 15 and k = r + 2. Hence,

(5) holds when q ≥ 15 and k = r + 2. �

Next, we shall establish (5) for critical values of k (except k = 0 and k = r + 2). The following

fact will be convenient for that purpose.

Lemma 7.2.6. Let β, γ, s, t > 0. If β + γ ≤ s and γ ≤ t ≤ s
2 , then βγ ≤ (s − t)t.

Proof. Since β + γ ≤ s and β, γ > 0, βγ ≤ (s − γ)γ = ( s
2)2 − (γ − s

2)2. Since γ ≤ t ≤ s
2,

βγ ≤ ( s
2

)2 − (t − s
2

)2, which implies βγ ≤ (s − t)t. �

In order to combine similar arguments, we define

m =































































































2 if k = 1;

3 if k is odd and k is the smallest integer with k > 2
√

r + 4 − 3,

or k is even and k is the smallest integer with k > 2
√

r + 2 − 2;

5 if k = r + 3;

6 if k − r is odd and k is the smallest integer with k > r +
√

4r + 21 − 2,

or k − r is even and k is the smallest integer with k > r +
√

4r + 9 − 1.

(29)

Note that if q = r2 + 2r + k and k is critical, then (5) is equal to 3r2 + 3k − m.

The following lemma can be easily verified.
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Lemma 7.2.7. Suppose r ≥ 6. Then

(i) if m = 3 then 4 ≤ k < r, (k − 1
2 )2 > r + 1

4 , ( r+4−k
2 )2 ≥ r, and ( k+4

2 )2 > r + 6, and

(ii) if m = 6 then r + 5 ≤ k < 2r, ( 2r+5−k
2 )2 > r, ( 2r+8−k

2 )2 > 2r + 5
4 , (k − r − 2)2 > r + 1,

( k−r+2
2 )2 > r + 5 if k − r is even, and ( k−r+3

2 )2 > r + 6 if k − r is odd.

The remainder of this section is devoted to proving the following lemma. The proof is quite

tedious; the reader may want to read Section 7.3 first to see how it is applied in the proof of (5).

Lemma 7.2.8. (5) holds when q ≥ 24 and k is critical.

Proof. By Lemma 7.1.1, we may assume that q ≥ 49, and hence, r ≥ 6. Suppose for a contradiction

that F(3, q) ≥ 3r2 + 3k − m + 1. Then by Theorem 5.2.5 and Theorem 6.3.1, there exists some

x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9, where N = {2, . . . , q − 4}, such that x satisfies (14) and

x3 + y1 + z2 = F(3, q) ≥ 3r2 + 3k − m + 1. By symmetry among x3, y1, z2 in (14), we may assume

x3 ≥ y1 ≥ z2. For visual convenience, we express x j, y j, z j for 1 ≤ j ≤ 3 in a matrix form as follows,








































x1 x2 x3

y1 y2 y3

z1 z2 z3









































=









































r + a r + b r2 + k − bm
2 c + c

r2 + k − bm
2 c + d r + e r + f

r + g z2 r + h









































where a, b, c, d, e, f , g and h are integers.

Because x3 + y1 + z2 ≥ 3r2 + 3k − m + 1, we have

(P1) z2 ≥ r2 + k + 1 − m + 2bm
2 c − (c + d).

Because x3 ≥ y1 ≥ z2, we have r2 + k − bm
2 c+ c ≥ r2 + k − bm

2 c+ d ≥ r2 + k + 1−m+ 2bm
2 c − (c+ d),

which implies

(P2) 3bm
2 c−m+1−c

2 ≤ d ≤ c.

From (P2), we have c ≥ bm
2 c −

m−1
3 . Recall that q = r2 + 2r + k. Since x3 ≤ q − 4, c ≤ 2r − 4 + bm

2 c.

Hence, we have

(P3) bm
2 c −

m−1
3 ≤ c ≤ 2r − 4 + bm

2 c.

By (vi) of (14), z3 ≤ q − (r2 + k − bm
2 c + c) − y3. Since y3 ≥ 2, we have
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(P4) z3 ≤ 2r + bm
2 c − 2 − c.

By (i) of (14), we have

(P5) (r + a)(r + b) ≥ r2 + k − bm
2 c + c.

By (ii) of (14), we have

(P6) (r + e)(r + f ) ≥ r2 + k − bm
2 c + d.

By (iii) of (14) and by (P1), we have

(P7) (r + g)(r + h) ≥ r2 + k + 1 − m + 2bm
2 c − (c + d).

By adding (iv), (v), (vi) of (14) and by (P1), we have

(P8) a + b + e + f + g + h ≤ m − 1.

By (vi) of (14) again, we have

(P9) c + f + h ≤ bm
2 c.

Note that for any real numbers x and y, xy ≤ ( x+y
2 )2. Suppose a + b ≤ n for some integer

n. Then (r + a)(r + b) ≤ ( 2r+a+b
2 )2 ≤ r2 + nr + n2

4 . On the other hand, it follows from (P5) that

(r + a)(r + b) ≥ r2 + k − bm
2 c + c. So c ≤ nr + bm

2 c − k + n2

4 . Similarly, if e + f ≤ n then by (P6) we

have d ≤ nr + bm
2 c − k + n2

4 . Therefore, we have the following.

(P10) For any n ∈ {−1, 0, 1}, if c ≥ nr + bm
2 c − k + 1 then a + b ≥ n + 1, and if d ≥ nr + bm

2 c − k + 1

then e + f ≥ n + 1.

(P11) For any n ∈ {2, 3}, if c ≥ n(r + 1) + bm
2 c − k then a + b ≥ n + 1, and if d ≥ n(r + 1) + bm

2 c − k

then e + f ≥ n + 1.

We shall derive a contradiction to (14) by showing x1 x2 < x3, or y2y3 < y1, or z1z3 < z2. To

achieve this, we proceed to prove five claims concerning the ranges of c and d.

Claim 1. c ≤ 3r + 2 + bm
2 c − k.
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Suppose Claim 1 is false. Then c ≥ 3r + 3 + bm
2 c − k, and hence a + b ≥ 4 (by (P11)).

By (P3), 3r + 3 + bm
2 c − k ≤ c ≤ 2r − 4 + bm

2 c, and so, k ≥ r + 7. Thus, m = 6. By (P4),

z3 ≤ 2r + 1 − c ≤ 2r + 1 − (3r + 6 − k) = k − r − 5 < r − 5 (by (ii) of Lemma 7.2.7).

Suppose d ≥ r + 4 − k. Then e + f ≥ 2 by (P10). Therefore, since a + b ≥ 4 and by (P8), we

have g + h ≤ −1, and so, z1 + z3 = r + g + r + h ≤ 2r − 1. Since z3 ≤ 2r + 1 − c < r − 5 < 2r−1
2 ,

it follows from Lemma 7.2.6 (with z1, z3, 2r − 1, 2r + 1 − c as β, γ, s, t, respectively) that z1z3 ≤

(2r − 1 − (2r + 1 − c))(2r + 1 − c). So by (P1),

z1z3 − z2 ≤ (c − 2)(2r + 1 − c) − (r2 + k + 1 − (c + d))

≤ (c − 2)(2r + 1 − c) − (r2 + k + 1 − 2c) (because d ≤ c)

= −(c − 2 − (r + 1
2 ))2 + r − k + 13

4

< 0 (because k ≥ r + 7), a contradiction.

Therefore, d ≤ r + 3 − k. By (P2), d ≥ 4−c
2 . Since c ≤ 2r − 1 (by (P3)), d ≥ 4−c

2 > 2 − r.

Therefore, since k ≥ r+ 7, d > 2− (k− 7) = 9− k. So by (P10), e+ f ≥ 1. Hence, because a+ b ≥ 4

and by (P8), we have g + h ≤ 0, and so, z1 + z3 = r + g + r + h ≤ 2r. By Lemma 7.2.6 again,

z1z3 ≤ (2r − (2r + 1 − c))(2r + 1 − c). So by (P1),

z1z3 − z2 ≤ (c − 1)(2r + 1 − c) − (r2 + k + 1 − (c + d))

≤ (c − 1)(2r + 1 − c) − (r2 + k + 1) + c + (r + 3 − k)

= −((c − 1) − (r + 1
2 ))2 − 2k + 2r + 13

4

< 0 (because k ≥ r + 7), a contradiction. �

Claim 2. c ≤ 2r + 1 + bm
2 c − k.

Otherwise, c ≥ 2r + 2 + bm
2 c − k. Then a + b ≥ 3 (by (P11)) and m , 2 (by (P3)). By (ii) and

(iii) of Lemma 7.2.7, we have k < 2r. Hence c ≥ 5 if m = 5 and c ≥ 6 if m = 6.

Suppose m = 3. Then c ≥ 2r + 3 − k ≥ r + 3 (because k < r by (i) of Lemma 7.2.7) and

z3 ≤ 2r−1− c (by (P4)), and so, z3 ≤ 2r−1− c ≤ r−4 ≤ 2r−8
2 . Suppose d ≥ 2− k, then e+ f ≥ 1 by

(P10). Hence, because a+b ≥ 3 and by (P8), we have g+h ≤ −2. Then z1+z3 = r+g+r+h ≤ 2r−2.
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By Lemma 7.2.6, z1z3 ≤ (2r − 2 − (2r − 1 − c))(2r − 1 − c). Thus, by (P1),

z1z3 − z2 ≤ (c − 1)(2r − 1 − c) − (r2 + k − (c + d))

≤ (c − 1)(2r − 1 − c) − (r2 + k) + 2c (because d ≤ c)

= −(c − 1 − r)2 − k + 2

< 0 (because k ≥ 4 by (i) of Lemma 7.2.7), a contradiction.

So d ≤ 1− k. Since d ≥ 1−c
2 (by (P2)) and c ≤ 2r − 3 (by (P3)), we have d ≥ 2− r, and so, e+ f ≥ 0

by (P10). Since a + b ≥ 3 and by (P8), g + h ≤ −1. Therefore, z1 + z3 = r + g + r + h ≤ 2r − 1. By

Lemma 7.2.6, z1z3 ≤ (2r − 1 − (2r − 1 − c))(2r − 1 − c). Thus by (P1),

z1z3 − z2 ≤ c(2r − 1 − c) − (r2 + k − (c + d))

= −(c − r)2 − k + d

≤ −(c − r)2 − 2k + 1 (because d ≤ 1 − k)

< 0 (because k ≥ 4 by (i) of Lemma 7.2.7), a contradiction.

Therefore m ∈ {5, 6}. We consider three cases according to d.

Case 1. d ≥ 2r + 2 + bm
2 c − k.

Then e + f ≥ 3 by (P11). Since a + b ≥ 3 and by (P8), we have g + h ≤ m − 7, and so,

z1 + z3 = r + g + r + h ≤ 2r + m − 7. Thus min{z1, z3} ≤ 2r+m−7
2 . By applying Lemma 7.2.6 (with

max{z1, z3},min{z1, z3}, 2r + m − 7, 2r+m−7
2 as β, γ, s, t, respectively), we have z1z3 ≤ (2r + m − 7 −

2r+m−7
2 )( 2r+m−7

2 ). Hence by (P1), we have

z1z3 − z2 ≤ (2r + m − 7
2 )2 − (r2 + k + 1 − m + 2bm2 c − (c + d)).

Suppose m = 5. Then k = r + 3. So 0 ≤ z1z3 − z2 ≤ (r − 1)2 − (r2 + k − (c + d)) ≤ (r − 1)2 −

r2 − (r + 3) + 2c (because d ≤ c). This implies c ≥ 3r+2
2 . Then by (P4), z3 ≤ 2r − c ≤ r−2

2 <
2r−2

2 .

Because z1 + z3 ≤ 2r − 2 and by Lemma 7.2.6, z1z3 ≤ (2r − 2 − (2r − c))(2r − c). Thus by (P1), we

have
z1z3 − z2 ≤ (c − 2)(2r − c) − (r2 + k − (c + d))

≤ (c − 2)(2r − c) − r2 − k + 2c (because d ≤ c)

= −(c − r − 2)2 + 4 − k

< 0 (because k = r + 3), a contradiction.

68



So m = 6. Then k ≥ r + 5 (by (iii) of Lemma 7.2.7). So 0 ≤ z1z3 − z2 ≤ (2r−1)2

4 − (r2 +

k + 1 − (c + d)) ≤ (2r−1)2

4 − (r2 + (r + 5) + 1) + 2c (because d ≤ c), which implies c ≥ r + 3.

Then by (P4), z3 ≤ 2r + 1 − c ≤ r − 2 < 2r−1
2 . Because z1 + z3 ≤ 2r − 1 and by Lemma 7.2.6,

z1z3 ≤ (2r − 1 − (2r + 1 − c))(2r + 1 − c). So by (P1), we have

z1z3 − z2 ≤ (c − 2)(2r + 1 − c) − (r2 + k + 1 − (c + d))

≤ (c − 2)(2r + 1 − c) − r2 − k − 1 + 2c (because d ≤ c)

= −(c − r − 5
2 )2 + r − k + 13

4

≤ r − (r + 5) + 13
4 (since k ≥ r + 5)

< 0, a contradiction.

Case 2. r + 1 + bm
2 c − k ≤ d ≤ 2r + 1 + bm

2 c − k.

Then e + f ≥ 2 by (P10). Therefore, since a + b ≥ 3 and by (P8), we have g + h ≤ m − 6, and

hence, z1 + z3 = r + g + r + h ≤ 2r + m − 6. From (P9), f + h ≤ bm
2 c − c.

Suppose h ≤ bm
2 c−c
2 + 1. Then z3 = r + h ≤ r + b

m
2 c−c
2 + 1 ≤ r − 1

2 (since c ≥ 5 when

m = 5 and c ≥ 6 when m = 6). So z3 ≤ r + b
m
2 c−c
2 + 1 ≤ 2r+m−6

2 . By Lemma 7.2.6, z1z3 ≤

(2r + m − 6 − (r + b
m
2 c−c
2 + 1))(r + b

m
2 c−c
2 + 1). If m = 5, then k = r + 3 and, by (P1),

z1z3 − z2 ≤ (r − 2 − 2−c
2 )(r + 1 + 2−c

2 ) − (r2 + k − (c + d))

= −( c−7
2 )2 − r − k + 25

4 + d

≤ r − 2k + 37
4 (because d ≤ 2r + 3 − k)

= r − 2(r + 3) + 37
4 (because k = r + 3)

< 0 (because r ≥ 6), a contradiction.

So m = 6. Then k ≥ r + 5 (by (ii) of Lemma 7.2.7) and d ≤ 2r + 4 − k (by assumption of Case 2).

By (P1), we have

z1z3 − z2 ≤ (r − 1 − 3−c
2 )(r + 1 + 3−c

2 ) − (r2 + k + 1 − (c + d))

= −( c−7
2 )2 − k + d + 5

≤ −k + (2r + 4 − k) + 5 (because d ≤ 2r + 4 − k)

≤ 2r + 9 − 2(r + 5) (because k ≥ r + 5)

< 0, a contradiction.
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Therefore h > b
m
2 c−c
2 + 1. Then f < b

m
2 c−c
2 − 1. Because f is an integer, f ≤ b

m
2 c−c−3

2 . We shall

derive a contradiction by proving y2y3 < y1.

By Claim 1 and assumption of Case 2, c+ d ≤ (3r + 2+ bm
2 c − k)+ (2r + 1+ bm

2 c − k) = 5r + 3+

2bm
2 c−2k. It follows from (P7) that (r+g)(r+h) ≥ r2+k+1−m+2bm

2 c−(c+d) ≥ r2+3k−5r−m−2.

Then, since k = r + 3 when m = 5 and k ≥ r + 5 when m = 6 (by (ii) of Lemma 7.2.7), we have

(r + g)(r + h) ≥ r2 − 2r + 2. So g + h ≥ −1; as otherwise, (r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − 2r + 1,

a contradiction. Since a + b ≥ 3 and by (P8), e + f ≤ m − 3. Hence, y2 + y3 = r + e + r + f ≤

2r + m − 3. Because c ≥ 5, y3 = r + f ≤ r + b
m
2 c−c−3

2 < r − 2 < 2r+m−3
2 . Hence by Lemma 7.2.6,

y2y3 ≤ (2r + m − 3 − (r + b
m
2 c−c−3

2 ))(r + b
m
2 c−c−3

2 ). If m = 5, then c ≥ 2r + 4 − k (by the assumption

that Claim 2 fails) and d ≥ r + 3 − k (by assumption of Case 2), and

y2y3 − y1 ≤ (r + 2 + c+1
2 )(r − c+1

2 ) − (r2 + k − 2 + d)

= −( c+3
2 )2 + 2r − k − d + 3

≤ −( c+3
2 )2 + r (because d ≥ r + 3 − k)

≤ −( 2r+7−k
2 )2 + r (because c ≥ 2r + 4 − k)

< 0 (by (ii) of Lemma 7.2.7), a contradiction.

So m = 6. Then c ≥ 2r+5−k (by the assumption that Claim 2 fails) and d ≥ r+4−k (by assumption

of Case 2). Hence,

y2y3 − y1 ≤ (r + 3 + c
2 )(r − c

2 ) − (r2 + k − 3 + d)

= −( c+3
2 )2 + 3r + 21

4 − k − d

≤ −( c+3
2 )2 + 2r + 5

4 (because d ≥ r + 4 − k)

≤ −( 2r+8−k
2 )2 + 2r + 5

4 (because c ≥ 2r + 5 − k)

< 0 (by (ii) of Lemma 7.2.7), a contradiction.

Case 3. d ≤ r + bm
2 c − k.

We claim that e + f ≥ 0. For otherwise, (r + e)(r + f ) ≤ ( 2r+e+ f
2 )2 ≤ r2 − r + 1

4 . So by (P6) and

(P2), r2 − r + 1
4 ≥ r2 + k − bm

2 c +
3bm

2 c−m+1−c
2 . Hence c ≥ 2k + 2r + 1

2 + b
m
2 c − m, contradicting (P3)

(because m ∈ {5, 6} and k ≥ r + 3 by (ii) of Lemma 7.2.7).

Therefore, since a + b ≥ 3 and by (P8), we have g + h ≤ m− 4. Hence, z1 + z3 = r + g + r + h ≤

2r + m − 4. By (P9), f + h ≤ bm
2 c − c.
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Suppose h ≤ b
m
2 c−c+1

2 . Then because c ≥ 5 when m = 5 and c ≥ 6 when m = 6, z3 = r + h ≤

r + b
m
2 c−c+1

2 ≤ r − 1 < 2r+m−4
2 . By Lemma 7.2.6, z1z3 ≤ (2r + m − 4 − (r + b

m
2 c−c+1

2 ))(r + b
m
2 c−c+1

2 ). If

m = 5, then d ≤ r + 2 − k (by assumption of Case 3) and k = r + 3 and, by (P1),

z1z3 − z2 ≤ (r + 1 − 3−c
2 )(r + 3−c

2 ) − (r2 + k − (c + d))

= −( c−4
2 )2 + r − k + d + 13

4

≤ −( c−4
2 )2 + r − k + (r + 2 − k) + 13

4

≤ 2r − 2(r + 3) + 13
4 (because k = r + 3)

< 0, a contradiction.

So m = 6. Then d ≥ 4−c
2 (by (P2)), d ≤ r + 3 − k (by assumption of Case 3), and k ≥ r + 5 (by (ii)

of Lemma 7.2.7). Since 4−c
2 ≤ d ≤ r + 3 − k, we have c−4

2 ≥ k − r − 3 > 0. By (P1),

z1z3 − z2 ≤ (r + 2 − 4−c
2 )(r + 4−c

2 ) − (r2 + k + 1 − (c + d))

= −( c−4
2 )2 + 2r − k + d + 3

≤ −( c−4
2 )2 + 3r − 2k + 6 (because d ≤ r + 3 − k)

≤ −(k − r − 3)2 − 2(k − r − 3) + r (because c−4
2 ≥ k − r − 3 > 0)

= −(k − r − 2)2 + r + 1

< 0 (by (ii) of Lemma 7.2.7), a contradiction.

So h > b
m
2 c−c+1

2 . Then f < b
m
2 c−c−1

2 . Because f is an integer, f ≤ b
m
2 c−2−c

2 . By Claim 1 and by

assumption of Case 3, c + d ≤ 4r + 2 + 2bm
2 c − 2k. Hence, by (P7),

(r + g)(r + h) ≥ r2 + k − m + 1 + 2bm
2 c − (c + d)

≥ r2 + k − m + 1 + 2bm
2 c − (4r + 2 + 2bm

2 c − 2k)

= r2 + 3k − 4r − m − 1

≥ r2 − r + 2 (because m ∈ {5, 6} and k ≥ r + 3).

So g+ h ≥ 0; for otherwise, (r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − r + 1

4 . Since a + b ≥ 3 and by (P8), we

have e+ f ≤ m−4, and so, y2+y3 = r+e+r+ f ≤ 2r+m−4. Since y3 = r+ f ≤ r+ b
m
2 c−2−c

2 < 2r+m−4
2

(because c ≥ 5) and by Lemma 7.2.6, we have y2y3 ≤ (2r + m − 4 − (r + b
m
2 c−2−c

2 ))(r + b
m
2 c−2−c

2 ). If
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m = 5 then k = r + 3 and

y2y3 − y1 ≤ (r + 1 + c
2 )(r − c

2 ) − (r2 + k − 2 + d)

= −( c
2 )2 − c

2 + r − k + 2 − d

≤ −( c
2 )2 + r − k + 1 (because d ≥ 2−c

2 by (P2))

< 0 (since k = r + 3), a contradiction

So m = 6. Then k ≥ r + 5 (by (ii) of Lemma 7.2.7) and c ≥ 2r + 5− k (by the assumption that Claim

2 fails). Hence,

y2y3 − y1 ≤ (r + 2 − 1−c
2 )(r + 1−c

2 ) − (r2 + k − 3 + d)

= −( c
2 )2 − c

2 + 2r − k + 15
4 − d

≤ −( c
2 )2 + 2r − k + 7

4 (because d ≥ 4−c
2 by (P2))

≤ −( c
2 )2 + r − 13

4 (since k ≥ r + 5)

≤ −( 2r+5−k
2 )2 + r − 13

4 (because k ≥ 2r + 5 − k)

< 0 (by (ii) of Lemma 7.2.7), a contradiction. �

Claim 3. If c ≥ r + bm
2 c − k + 1 then d ≤ r + bm

2 c − k.

Suppose c ≥ r + bm
2 c − k + 1 and d ≥ r + bm

2 c − k + 1. Then by (P10), we have a + b ≥ 2 and

e + f ≥ 2. So it follows from (P8) that g + h ≤ m − 5. Thus, z1 + z3 = r + g + r + h ≤ 2r + m − 5.

Suppose m = 2. Then z1 + z3 ≤ 2r − 3, d ≤ c ≤ 2r − 3 (by (P2) and (P3)), and c ≥ r + 1

(because k = 1 when m = 2). So by (P4), z3 ≤ 2r − 1 − c ≤ r − 2 < 2r−3
2 . Hence by Lemma 7.2.6,

z1z3 ≤ (2r − 3 − (2r − 1 − c))(2r − 1 − c). By (P1),

z1z3 − z2 ≤ (c − 2)(2r − 1 − c) − (r2 + 2 − (c + d))

= −(c − r − 1)2 − 2r + d + 1

< 0 (because d ≤ c ≤ 2r − 3), a contradiction.

Now suppose m = 3. Then k ≥ 4 (by (i) of Lemma 7.2.7) and z1 + z3 ≤ 2r − 2. Suppose c ≥ r.

Then by (P4), z3 ≤ 2r − 1 − c ≤ 2r−2
2 . By Lemma 7.2.6, z1z3 ≤ (2r − 2 − (2r − 1 − c))(2r − 1 − c).

Hence by (P1),

z1z3 − z2 ≤ (c − 1)(2r − 1 − c) − (r2 + k − (c + d))

= −(c − r − 1)2 − c + d + 2 − k

< 0 (because d ≤ c and k ≥ 4), a contradiction.
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So c ≤ r − 1. Since z1z3 ≤ ( z1+z3
2 )2 ≤ (r − 1)2 and by (P1),

z1z3 − z2 ≤ (r − 1)2 − (r2 + k − (c + d))

= −2r − k + 1 + c + d

< 0 (because d ≤ c ≤ r − 1 and k ≥ 4), a contradiction.

So we have m ∈ {5, 6}. By Claim 2 and because d ≤ c (by (P2)), c + d ≤ 4r + 2 + 2b m
2 c − 2k.

So by (P7), we have (r + g)(r + h) ≥ r2 + k + 1 −m + 2bm
2 c − (c + d) ≥ r2 + 3k − 4r − 1 −m. Since

m ∈ {5, 6}, k ≥ r + 3 (by (ii) of Lemma 7.2.7). So (r + g)(r + h) ≥ r2 − r + 2. Therefore, g + h ≥ 0;

for otherwise, (r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − r + 1

4 , a contradiction. We consider two cases.

Case 1. g + h ≥ 1.

Then, since m ≤ 6 and g + h ≤ m − 5, we see that m = 6 and g + h = 1. Hence by (P8) and

because a + b ≥ 2 and e + f ≥ 2, we have a + b = 2 and e + f = 2.

Since g + h = 1, (r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 + r + 1

4 . Hence by (P7), we have c + d ≥

r2 + k + 1 − (r2 + r + 1
4 ). Because c + d is an integer, we have c + d ≥ k − r + 1.

Recall the matrix representation of xi, yi, zi. By (P1), we have ∑3
i=1(xi + yi + zi) ≥ 3r2 + 6r + 3k.

By (iv), (v) and (vi) of (14), xi + yi + zi ≤ r2 + 2r + k for 1 ≤ i ≤ 3. Hence, xi + yi + zi = r2 + 2r + k

for 1 ≤ i ≤ 3 and (P1) holds with equality. Therefore, a + d + g = 3, b + e + 1 − (c + d) = 0, and

c + f + h = 3. Because c + d ≥ k − r + 1 and c ≥ d, we have b + e ≥ k − r and c ≥ k−r+1
2 .

Subcase 1.1. b ≥ k−r
2 .

Then b ≥ d k−r
2 e. Hence, x1 = r + (2 − b) ≤ r + 2 − d k−r

2 e < r (because k ≥ r + 5). Since

x1 + x2 = 2r + 2 and by Lemma 7.2.6, x1 x2 ≤ (2r + 2 − (r + 2 − d k−r
2 e))(r + 2 − d k−r

2 e). Recall from

the matrix representation that x3 = r2 + k − 3 + c.

Suppose k − r is even. Then k > r +
√

4r + 9 − 1 and c ≥ k−r+2
2 , and we have

x1x2 − x3 ≤ (r + k−r
2 )(r + 2 − k−r

2 ) − (r2 + k − 3 + c)

≤ (r + k−r
2 )(r + 2 − k−r

2 ) − (r2 + k − 3 + k−r+2
2 )

= −( k−r+1
2 )2 + r + 9

4

< 0 (because k > r +
√

4r + 9 − 1), a contradiction.
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So k − r is odd. Then k > r +
√

4r + 21 − 2 and c ≥ k−r+1
2 . Hence

x1x2 − x3 ≤ (r + k−r+1
2 )(r + 2 − k−r+1

2 ) − (r2 + k − 3 + c)

≤ (r + k−r+1
2 )(r + 2 − k−r+1

2 ) − (r2 + k − 3 + k−r+1
2 )

= r + 17
4 − ( k−r+2

2 )2

< 0 (because k > r +
√

4r + 21 − 2), a contradiction.

Subcase 1.2. e ≥ k−r+2
2 .

Since g+h = 1 and by (P7), r2+k+1− (c+d) ≤ (r+g)(r+h) = (r+1−h)(r+h) = r2+r+h−h2.

Hence, h2−h−(c+d)+(k−r+1) ≤ 0, and so, h ≥ 1
2−
√

1
4 + c + d − (k − r + 1) ≥ 1

2−(
1
4+c+d−(k−r+1)

2 +

1). Hence, c+d−(k−r+1)
2 +h > −1. Since c+ f +h = 3, f = 3−c−h = 3− c−d+(k−r+1)

2 − c+d−(k−r+1)
2 −h <

4 − c−d+k−r+1
2 .

We claim that d ≥ 0. For otherwise, d ≤ −1, and hence, c ≥ k − r + 2. Therefore, f ≤

4− c−d+k−r+1
2 ≤ 2+ r − k. So y3 = r + f ≤ 2r + 2− k < r (because k ≥ r + 5). Since y2 + y3 = 2r + 2

and by Lemma 7.2.6, y2y3 ≤ (2r + 2 − (2r + 2 − k))(2r + 2 − k). By the assumption that Claim 3

fails, d ≥ r + 4 − k. Therefore,

y2y3 − y1 ≤ k(2r + 1 − k) − (r2 + k − 3 + d)

= −k2 + 2rk − r2 + 3 + k − d

≤ −(k − r)2 + 2k − r − 1 (since d ≥ r + 4 − k)

= −(k − r − 1)2 + r

< 0 (by (ii) of Lemma 7.2.7), a contradiction.

Note that y3 = r + (2 − e) ≤ r + 2 − d k−r+2
2 e <

2r+2
2 (because k ≥ r + 5). So by Lemma 7.2.6,

y2y3 ≤ (2r + 2 − (r + 2 − d k−r+2
2 e))(r + 2 − d k−r+2

2 e).

If k − r is odd then e ≥ k−r+3
2 . Hence

y2y3 − y1 ≤ (r + k−r+3
2 )(r + 2 − k−r+3

2 ) − (r2 + k − 3 + d)

= −( k−r+3
2 )2 + r + 6 − d

≤ −( k−r+3
2 )2 + r + 6 (since d ≥ 0)

< 0 (by (ii) of Lemma 7.2.7), a contradiction.
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So k − r is even. Then

y2y3 − y1 ≤ (r + k−r+2
2 )(r + 2 − k−r+2

2 ) − (r2 + k − 3 + d)

= −( k−r+2
2 )2 + r + 5 − d

≤ −( k−r+2
2 )2 + r + 5 (since d ≥ o)

< 0 (by (ii) of Lemma 7.2.7)), a contradiction.

Subcase 1.3. b < k−r
2 and e < k−r+2

2 .

Since b + e ≥ k − r. We must have b = k−r−1
2 and e = 1 + k−r−1

2 , and hence b + e = k − r is odd.

Then a = 2 − b = 2 − k−r−1
2 , f = 2 − e = 1 − k−r−1

2 , and c + d = b + e + 1 = k − r + 1.

We claim that d ≥ k−r−1
2 . By (P7), (r + g)(r + h) ≥ r2 + k + 1 − (c + d) = r2 + r, and therefore,

because g+h = 1, we have gh ≥ 0. Hence either g = 1 or h = 1. If g = 1, then d = 3−a−g = k−r−1
2 ;

otherwise, h = 1, then c = 3 − f − h = 1 + k−r−1
2 , and so, d = k − r + 1 − c = 1 + k−r−1

2 . Hence,

d ≥ k−r−1
2 .

Note that y3 = r + f ≤ r + 1 − k−r−1
2 < 2r+2

2 (because k ≥ r + 5 by (ii) of Lemma 7.2.7). So by

Lemma 7.2.6, y2y3 ≤ (2r + 2 − (r + 1 − k−r−1
2 ))(r + 1 − k−r−1

2 ). Hence,

y2y3 − y1 ≤ (r + 1 + k−r−1
2 )(r + 1 − k−r−1

2 ) − (r2 + k − 3 + d)

≤ (r + 1)2 − ( k−r−1
2 )2 − (r2 + k − 3 + k−r−1

2 ) (because d ≥ k−r−1
2 )

= −( k−r+2
2 )2 + r + 21

4

< 0 (because k > r +
√

4r + 21 − 2), a contradiction.

Case 2. g + h = 0.

Then z1 + z3 = 2r. Moreover, c + d ≥ k − m + 2bm
2 c + 1; for otherwise, by (P7), r2 + gh =

(r + g)(r + h) ≥ r2 + k + 1 − m + 2bm
2 c − (c + d) ≥ r2 + 1, acontradiction.

Since c ≥ d, we have c ≥ k−m+2bm
2 c+1

2 . Hence c ≥ k
2 if m = 5 and c ≥ k+1

2 if m = 6. Since

k = r + 3 when m = 5 and k ≥ r + 5 when m = 6, c ≥ r+3
2 , which implies c ≥ 5 (since r ≥ 6). By

(P9), f + h ≤ bm
2 c − c.

Subcase 2.1. f ≤ b
m
2 c−c−1

2 .

Then y3 = r + f ≤ r + b
m
2 c−c−1

2 < r (because c ≥ 5). Since a + b ≥ 2 and g + h = 0, it

follows from (P8) that e + f ≤ m − 3, and hence, y2 + y3 ≤ 2r + m − 3. In view of Lemma 7.2.6,

y2y3 ≤ (2r + m − 3 − (r + b
m
2 c−c−1

2 ))(r + b
m
2 c−c−1

2 ).
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Suppose m = 5. Then c ≥ k
2 , k = r + 3, and d ≥ r + 3 (by the assumption that Claim 3 fails).

Hence,
y2y3 − y1 ≤ (r + 2 − 1−c

2 )(r + 1−c
2 ) − (r2 + k − 2 + d)

= −( c+1
2 )2 + 2r + 3 − k − d

≤ −( c+1
2 )2 + r (since d ≥ r + 3 − k)

≤ −( k+2
4 )2) − r (since c ≥ k

2 )

= −( r+5
4 )2) − r (since k = r + 3)

< 0 (because r ≥ 6), a contradiction.

Therefore, m = 6. Then c ≥ k+1
2 and k ≥ r + 5 (by (ii) of Lemma 7.2.7). If d ≥ 1, then

y2y3 − y1 ≤ (r + 3 − 2−c
2 )(r + 2−c

2 ) − (r2 + k − 3 + d)

= −( c+1
2 )2 + 3r − k + 21

4 − d

≤ −( c+1
2 )2 + 2r − 3

4 (since d ≥ 1 and k ≥ r + 5)

≤ −( k+3
4 )2 + 2r − 3

4 (since c ≥ k+1
2 )

≤ −( r+8
4 )2 + 2r − 3

4 (since k ≥ r + 5)

< 0 (because r ≥ 6), a contradiction.

So d ≤ 0. Then c ≥ k + 1, because c + d ≥ k + 1. By the assumption that Claim 3 fails,

d ≥ r + 4 − k. Hence

y2y3 − y1 ≤ (r + 3 − 2−c
2 )(r + 2−c

2 ) − (r2 + k − 3 + d)

= −( c+1
2 )2 + 3r − k + 21

4 − d

≤ −( c+1
2 )2 + 2r + 5

4 (since d ≥ r + 4 − k)

≤ −( k+2
2 )2 + 2r + 5

4 (since c ≥ k + 1)

< −( r+7
2 )2 + 2r + 5

4 (since k ≥ r + 5)

< 0 (because r ≥ 6), a contradiction.

Subcase 2.2. f > b
m
2 c−c−1

2 .

Therefore, since f + h ≤ bm
2 c − c, we have h < bm

2 c−c+1
2 , and so, h ≤ bm

2 c−c
2 (because h is an

integer). Then z3 = r + h ≤ r + b
m
2 c−c
2 < r (because c ≥ 5). Recall that z1 + z3 = 2r. So by

Lemma 7.2.6, z1z3 ≤ (2r − (r + b
m
2 c−c
2 ))(r + b

m
2 c−c
2 ).
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If m = 5 then by (P1),

z1z3 − z2 ≤ (r − 2−c
2 )(r + 2−c

2 ) − (r2 + k − (c + d))

≤ −( c−2
2 )2 − k + 2c (since d ≤ c)

= −( c−6
2 )2 + 8 − k

≤ 0 (because k = r + 3 ≥ 9), a contradiction.

So m = 6. Then c + d ≥ k + 1. Again by (P1),

z1z3 − z2 ≤ (r − 3−c
2 )(r + 3−c

2 ) − (r2 + k + 1 − (c + d))

≤ −( c−3
2 )2 − k + 2c − 1 (since d ≤ c)

= −( c−7
2 )2 − k + 9

< 0 (since k ≥ r + 5 ≥ 11 by (ii) of Lemma 7.2.7), a contradiction. �

Claim 4. c ≤ r + bm
2 c − k.

Suppose c ≥ r + bm
2 c − k + 1. Then a + b ≥ 2 (by (P10)) and d ≤ r + bm

2 c − k (by Claim 3). In

particular, d < c. We consider two cases.

Case 1. d ≤ bm
2 c − k.

Then by (P2), bm
2 c − k ≥ 3bm

2 c−m+1−c
2 . Thus, c ≥ bm

2 c − m + 1 + 2k. Since c ≤ 2r + 1 + bm
2 c − k

(by Claim 2), we have 2r + m ≥ 3k, which implies m ∈ {2, 3}.

Suppose m = 2. Then k = 1, d ≤ 0, and c ≥ r + 1. So by (P4), z3 ≤ 2r − 1 − c ≤ r − 2 < 2r−1
2 .

By (P3), c ≤ 2r − 3. Then by (P2), d ≥ 2−c
2 > 2 − r, and so, e + f ≥ 0 by (P10). Therefore, since

a+b ≥ 2 and by (P8), we have g+h ≤ −1. Hence, z1 + z3 = r+g+ r+h ≤ 2r−1. By Lemma 7.2.6,

z1z3 ≤ (2r− 1− (2r − 1− c))(2r − 1− c). Then by (P1), z1z3 − z2 ≤ c(2r − 1− c)− (r2 + 2− (c+ d)) =

−(c − r)2 − 2 + d < 0 (because d ≤ 0), a contradiction.

Thus, m = 3. Then d ≤ 1 − k and c ≥ r + 2 − k. In particular, c ≥ 3 because k < r (by (i) of

Lemma 7.2.7). By (P2) and since c ≤ 2r+2− k (by Claim 2), d ≥ 1−c
2 ≥

k−1
2 − r > 2− r− k (because

k ≥ 4 by (i) of Lemma 7.2.7). Hence e + f ≥ 0 (by (P10)). Since a + b ≥ 2 and by (P8), we have

g + h ≤ 0. Hence, z1 + z3 = r + g + r + h ≤ 2r. By (P9), f + h ≤ 1 − c.

Suppose h ≤ 1−c
2 . Then, z3 = r + h ≤ r + 1−c

2 < r (because c ≥ 3). Therefore, by Lemma 7.2.6,
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we have z1z3 ≤ (2r − (r + 1−c
2 ))(r + 1−c

2 ). So by (P1),

z1z3 − z2 ≤ (r − 1−c
2 )(r + 1−c

2 ) − (r2 + k − (c + d))

= −( 1−c
2 )2 − k + c + d

≤ − (c−3)2

4 − 2k + 3 (because d ≤ 1 − k)

< 0 (because k ≥ 4 by (i) of Lemma 7.2.7), a contradiction.

So h > 1−c
2 . Then f ≤ 1− c− h < 1−c

2 . Since f is an integer, f ≤ − c
2 . Note that c+ d ≤ (2r + 2−

k)+(1−k) = 2r+3−2k. By (P7), (r+g)(r+h) ≥ r2+k−(c+d) ≥ r2+3k−2r−3 ≥ r2−2r+9 (because

k ≥ 4 by (i) of Lemma 7.2.7), we see that g+h ≥ −1; otherwise, (r+g)(r+h) ≤ ( 2r+g+h
2 )2 ≤ r2−2r+1,

a contradiction. Since a + b ≥ 2 and by (P8), e + f ≤ 1. Hence, y2 + y3 = r + e + r + f ≤ 2r + 1.

Since y3 = r + f ≤ r − c
2 <

2r+1
2 , we have from Lemma 7.2.6 that y2y3 ≤ (2r + 1 − (r − c

2 ))(r − c
2 ).

Hence,
y2y3 − y1 ≤ (r + 1 + c

2 )(r − c
2 ) − (r2 + k − 1 + d)

= −( c
2 )2 − c

2 + r + 1 − k − d

≤ −( c
2 )2 + r − k + 1

2 (because d ≥ 1−c
2 by (P2))

≤ −( c−2
2 )2 − 1

2 (because c ≥ r + 2 − k)

< 0, a contradiction.

Case 2. d ≥ bm
2 c − k + 1.

Then by (P10), e + f ≥ 1. Since a + b ≥ 2 and by (P8), we have g + h ≤ m − 4. Hence

z1 + z3 = r + g + r + h ≤ 2r + m − 4.

Suppose m = 2. Then k = 1, c ≥ r + 1, d ≤ r (by Claim 3), and z1 + z3 ≤ 2r − 2. By (P4),

z3 ≤ 2r−1−c ≤ r−2 < 2r−2
2 . Hence, by Lemma 7.2.6, we have z1z3 ≤ (2r−2−(2r−1−c))(2r−1−c).

Therefore, by (P1), z1z3 − z2 ≤ (c − 1)(2r − 1 − c) − (r2 + 2 − (c + d)) < −(c − r − 1)2 ≤ 0 (because

d < c), a contradiction.

Therefore, m ∈ {3, 5, 6}.

Subcase 2.1. m = 3.

Then z1 + z3 ≤ 2r − 1, c ≥ r + 2 − k (by the assumption that Claim 4 fails), d ≥ 2 − k (by

assumption of Case 2), and d ≤ r + 1 − k. By (P9), f + h ≤ 1 − c.

Suppose h ≤ 2−c
2 . Since c ≥ r + 2 − k ≥ 3 (because k < r by (i) of Lemma 7.2.7), z3 = r + h ≤
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r + 2−c
2 ≤

2r−1
2 . By Lemma 7.2.6, z1z3 ≤ (2r − 1 − (r + 2−c

2 ))(r + 2−c
2 ). By (P1),

z1z3 − z2 ≤ (r − 1 − 2−c
2 )(r + 2−c

2 ) − (r2 + k − (c + d))

= −( c−5
2 )2 − r − k + d + 17

4

≤ −( c−5
2 )2 − 2k + 21

4 (because d ≤ r + 1 − k)

< 0 (because k ≥ 4 by (i) of Lemma 7.2.7), a contradiction.

So h > 2−c
2 . Then f ≤ 1 − c − h < − c

2 . Since f is an integer, f ≤ − c+1
2 . Since c + d ≤

(2r + 2 − k) + (r + 1 − k) = 3r + 3 − 2k and by (P7), ( 2r+g+h
2 )2 ≥ (r + g)(r + h) ≥ r2 + k − (c + d) ≥

r2 + 3k − 3r − 3 ≥ r2 − 3r + 9 (because k ≥ 4 by (i) of Lemma 7.2.7), we see that g + h ≥ −2. By

the same argument, if c + d ≤ 2r + k − 2 then we must have g + h ≥ −1. Because a + b ≥ 2 and by

(P8), we have e + f ≤ 2, and e + f ≤ 1 if c + d ≤ 2r + k − 2. Note that y3 = r + f ≤ r − c+1
2 <

2r+1
2

(because c > 0 by (P3)).

Suppose c + d ≥ 2r + k − 1. Since y2 + y3 = r + e + r + f ≤ 2r + 2 and by Lemma 7.2.6,

y2y3 ≤ (2r + 2 − (r − c+1
2 ))(r − c+1

2 ). Hence,

y2y3 − y1 ≤ (r + 2 + c+1
2 )(r − c+1

2 ) − (r2 + k − 1 + d)

= −( c+1
2 )2 + 2r − k − (c + d)

≤ −( c+1
2 )2 − 2k + 1 (because c + d ≥ 2r + k − 1)

< 0 (because k ≥ 4 by (i) of Lemma 7.2.7), a contradiction.

Thus, c + d ≤ 2r + k − 2. Then y2 + y3 = r + e + r + f ≤ 2r + 1. By Lemma 7.2.6, y2y3 ≤

(2r + 1 − (r − c+1
2 ))(r − c+1

2 ). Hence,

y2y3 − y1 ≤ (r + 1 + c+1
2 )(r − c+1

2 ) − (r2 + k − 1 + d)

= −( c+2
2 )2 + r − k − d + 5

4

≤ −( c+2
2 )2 + r − 3

4 (because d ≥ 2 − k)

≤ −( r+4−k
2 )2 + r − 3

4 (because c ≥ r + 2 − k)

< 0 (by (i) of Lemma 7.2.7), a contradiction.

Subcase 2.2. m ∈ {5, 6}.

First, we show that if m = 6 then c ≥ 2k − 2r − 2 > 0. Suppose m = 6. Then d ≤ r + 3 − k,

d ≥ 4−c
2 (by (P2)), and k ≥ r + 5 (by (iii) of Lemma 7.2.7). Thus c ≥ 4 − 2d ≥ 2k − 2r − 2 > 0.

By (P9), f + h ≤ bm
2 c − c.
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Assume h ≤ b
m
2 c−c
2 . Since c ≥ 1 (by (P3)), z3 = r + h ≤ r + b

m
2 c−c
2 ≤ 2r+m−4

2 . By Lemma 7.2.6,

z1z3 ≤ (2r + m − 4 − (r + b
m
2 c−c
2 ))(r + b

m
2 c−c
2 ). If m = 5 then d ≤ r + 2 − k, and by (P1),

z1z3 − z2 ≤ (r + 1 − 2−c
2 )(r + 2−c

2 ) − (r2 + k − (c + d))

= −( c−3
2 )2 − k + d + r + 9

4

≤ −( c−3
2 )2 − 2k + 2r + 17

4 (because d ≤ r + 2 − k)

< 0 (because k = r + 3), a contradiction.

So m = 6. Then d ≤ r + 3 − k and c ≥ 2k − 2r − 2. By (P1),

z1z3 − z2 ≤ (r + 2 − 3−c
2 )(r + 3−c

2 ) − (r2 + k + 1 − (c + d))

= −( c−3
2 )2 − k + 2r + d + 2

≤ −( c−3
2 )2 − 2k + 3r + 5 (because d ≤ r + 3 − k)

≤ −( 2k−2r−5
2 )2 − 2k + 3r + 5 (because c ≥ 2k − 2r − 2)

= −(k − r − 3
2 )2 + r + 1

< 0 (by (ii) of Lemma 7.2.7), a contradiction.

So h > bm
2 c−c
2 . Then f < bm

2 c−c
2 . Since f is an integer, f ≤ bm

2 c−c−1
2 . By Claim 2 and since

d ≤ r+ bm
2 c− k, c+d ≤ 3r+2bm

2 c+1−2k. By (P7), (r+g)(r+h) ≥ r2 + k+1−m+2bm
2 c− (c+d) ≥

r2 + 3k − 3r − m ≥ r2 + 3 (because k ≥ r + 3). So we must have g + h ≥ 1; for otherwise,

(r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2, a contradiction. Since a + b ≥ 2 and by (P8), e + f ≤ m − 4. So

y2 + y3 = r+ e+ r + f ≤ 2r+m−4. Since f ≤ b
m
2 c−c−1

2 and c ≥ 1, y3 = r+ f ≤ r+ b
m
2 c−c−1

2 < 2r+m−4
2 .

By Lemma 7.2.6, y2y3 ≤ (2r + m − 4 − (r + b
m
2 c−c−1

2 ))(r + b
m
2 c−c−1

2 ). If m = 5, then

y2y3 − y1 ≤ (r + 1 − 1−c
2 )(r + 1−c

2 ) − (r2 + k − 2 + d)

= −( c−1
2 )2 − c

2 − d − k + r + 5
2

≤ −( c−1
2 )2 − k + r + 3

2 (because d ≥ 2−c
2 by (P2))

< 0 (because k = r + 3), a contrdiction.
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So m = 6. Then

y2y3 − y1 ≤ (r + 2 − 2−c
2 )(r + 2−c

2 ) − (r2 + k − 3 + d)

= −( c−2
2 )2 − c − d − k + 2r + 5

≤ −( c−1
2 )2 − k + 2r + 9

4 (because d ≥ 4−c
2 by (P2))

≤ −( c−1
2 )2 + r − 11

4 (because k ≥ r + 5)

≤ −(k − r − 3
2 )2 + r − 9

11 4 (because c ≥ 2k − 2r − 2)

< 0 (by (ii) of Lemma 7.2.7), a contradiction. �

Claim 5. d ≤ bm
2 c − k.

Otherwise, by Claim 3 and Claim 4, we have bm
2 c − k + 1 ≤ d ≤ c ≤ r + bm

2 c − k. By

(P10), a + b ≥ 1 and e + f ≥ 1. Therefore, it follows from (P8) that g + h ≤ m − 3, and so,

z1 + z3 = r + g + r + h ≤ 2r + m − 3.

We claim g + h ≥ −1. For otherwise, (r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − 2r + 1. However, since

c+d ≤ 2r+2bm
2 c−2k and by (P7), (r+g)(r+h) ≥ r2+k+1−m+2bm

2 c−(c+d) = r2−2r+3k+1−m ≥

r2 − 2r + 2, a contradiction. The final inequality holds because k = 1 when m = 1, k ≥ 4 when

m ∈ {3, 5, 6} (see Lemma 7.2.7).

By (P3), we have c ≥ 1. Hence, 1 ≤ c ≤ r + bm
2 c − k, which implies k ≤ r + bm

2 c − 1. So by (ii)

of Lemma 7.2.7, we have m ∈ {2, 3}.

Case 1. m = 2.

Then k = 1 and d ≥ 2 − k = 1. We claim that c + d ≥ r + 2. For otherwise, it follows from (P7)

that (r + g)(r + h) ≥ r2 + 2 − (c + d) ≥ r2 − r + 1. However, since g + h ≤ m − 3 = −1, we have

(r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − r + 1

4 , a contradiction. In particular, c ≥ r+2
2 ≥ 4 (because r ≥ 6).

Since −1 ≤ g+ h ≤ m− 3 = −1, we have g+ h = −1. Because a+ b ≥ 1 and c + d ≥ 1, we have

a + b = 1 and e + f = 1. By (P9), f + h ≤ 1 − c.

Suppose f ≤ 1−c
2 . Then y3 = r + f ≤ r + 1−c

2 <
2r−1

2 (because c ≥ 4). Hence, since y2 + y3 =
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r+e+r+ f = 2r+1, it follows from Lemma 7.2.6 that y2y3 ≤ (2r+1− (r+ 1−c
2 ))(r+ 1−c

2 ). Therefore,

y2y3 − y1 ≤ (r − 1 − 1−c
2 )(r + 1−c

2 ) − (r2 + d)

= −( 1−c
2 )2 − 1−c

2 − d − r

≤ −( 1−c
2 )2 − 3 1−c

2 − 1 − 2r (because d ≥ r + 2 − c)

= −( 4−c
2 )2 − 2r + 5

4

< 0 (because r ≥ 6), a contradiction.

So f > 1−c
2 . Then h ≤ 1 − c − f < 1−c

2 . Since h is an integer, we have h ≤ − c
2 . Hence,

z3 = r + h ≤ r − c
2 <

2r−1
2 (because c ≥ 4). Because z1 + z3 = r + g + r + h = 2r − 1, it follows from

Lemma 7.2.6 that z1z3 ≤ (2r − 1 − (r − c
2 ))(r − c

2 ). Hence by (P1), we have

z1z3 − z2 ≤ (r − 1 + c
2 )(r − c

2 ) − (r2 + 2 − (c + d))

= −( c
2 )2 + c

2 − r − 2 + (c + d)

≤ −( c
2 )2 + 5 c

2 − r − 2 (because d ≤ c)

= −( c−5
2 )2 − r + 17

4

< 0 (because r ≥ 6), a contradiction.

Case 2. m = 3.

Then c + d ≥ k. For otherwise, we have r2 + 1 ≤ r2 + k − (c + d) ≤ (r + g)(r + h) (by (P7)).

However, since g + h ≤ m − 3 = 0, we have (r + g)(r + h) ≤ ( 2r+g+h
2 ) ≤ r2, a contradiction.

Subcase 2.1. c + d ≥ r + k.

Then c ≥ r+k
2 . By (i) of Lemma 7.2.7, r ≥ k+1. Hence c ≥ k+ 1

2 , and so, c ≥ k+1 ≥ 5 (because

c is an integer and k ≥ 4). Because g + h ≥ −1 and a + b ≥ 1, it follows from (P8) that e + f ≤ 2.

So y2 + y3 = r + e + r + f ≤ 2r + 2. By (P9), f + h ≤ 1 − c.

Suppose f ≤ 1−c
2 . Then y3 = r + f ≤ r + 1−c

2 <
2r+2

2 . By Lemma 7.2.6, y2y3 ≤ (2r + 2 − (r +
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1−c
2 ))(r + 1−c

2 ). Hence,

y2y3 − y1 ≤ (r + 2 − 1−c
2 )(r + 1−c

2 ) − (r2 + k − 1 + d)

= −( c−1
2 )2 − c − d − k + 2r + 2

≤ −( c−1
2 )2 − 2k + r + 2 (because c + d ≥ r + k)

< −( k
2 )2 − 2k + r + 2 (because c ≥ k + 1)

= −( k+4
2 )2 + r + 6

< 0 (by (i) of Lemma 7.2.7), a contradiction.

So f > 1−c
2 . Then h ≤ 1−c− f < 1−c

2 . Since h is an integer, h ≤ − c
2 . Then z3 = r+h ≤ r− c

2 <
2r
2 .

Since z1 + z3 ≤ 2r, it follows from Lemma 7.2.6 that z1z3 ≤ (2r − (r − c
2 ))(r − c

2 ). Then by (P1),

z1z3 − z2 ≤ (r + c
2 )(r − c

2 ) − (r2 + k − (c + d))

= −( c
2 )2 − k + c + d

≤ −( c−4
2 )2 − k + 4 (because d ≤ c)

< 0 (because k ≥ 4 and c ≥ k + 1 ≥ 5), a contradiction.

Subcase 2.2. k ≤ c + d ≤ r + k − 1.

Then by (P7), (r + g)(r + h) ≥ r2 + k − (c + d) ≥ r2 − r + 1. This implies that g + h ≥ 0. Recall

that g + h ≤ m − 3 = 0. So g + h = 0. Hence (r − h)(r + h) ≥ r2 + k − (c + d), which implies

|h| ≤ b
√

c + d − kc.

Because g + h = 0, a + b ≥ 1, and e + f ≥ 1, it follows from (P8) that a + b = 1 and e + f = 1.

Thus from our matrix representation of x and by (P1), we have
∑3

i=1(xi + yi + zi) ≥ 3r2 + 6r + 3k.

By (iv), (v) and (vi) of (14), xi + yi + zi ≤ r2 + 2r + k for 1 ≤ i ≤ 3. Hence, xi + yi + zi = r2 + 2r + k

for (1 ≤ i ≤ 3) and z2 = r2 + k − (c + d). Therefore, a + d + g = 1, c + f + h = 1, and c + d = b + e.

Since m = 3, we have k > 2
√

r + 2 − 2 when k is even, and k > 2
√

r + 4 − 3 when k is odd.

Hence, r < k2

4 + k − 1 when k is even, and r < k2

4 +
3k
2 −

7
4 when k is odd. We consider three cases.

First, suppose h ≥ 0. Then by (P9), f ≤ 1 − c, and hence, y3 = r + f ≤ r + 1 − c < 2r+1
2

(because c ≥ 1 by (P2)). Since y2 + y3 = r + e + r + f = 2r + 1, it follows from Lemma 7.2.6 that
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y2y3 ≤ (2r + 1 − (r + 1 − c)))(r + 1 − c). Hence,

y2y3 − y1 ≤ (r + c)(r + 1 − c) − (r2 + k − 1 + d)

= −c2 + c + r − k + 1 − d

≤ −c2 + 2c + r − 2k + 1 (because d ≥ k − c)

= −(c − 1)2 + r + 2 − 2k.

If k is even, then c ≥ k
2 ≥ 2 (because c + d ≥ k ≥ 4 and c ≥ d) and r < k2

4 + k − 1, and so,

y2y3−y1 < −( k
2 −1)2+ k2

4 −k+1 = 0, a contradiction. So k is odd. Then c ≥ k+1
2 and r < k2

4 +
3k
2 −

7
4 ,

and hence, y2y3 − y1 < −( k+1
2 − 1)2 + k2

4 −
k
2 +

1
4 = 0, a contradiction.

Now suppose h = −1. Then g = 1, a = −d, b = 1 + d, e = c − 1, and f = 2 − c. Also,
√

c + d − k ≥ |h| = 1 implies c + d ≥ k + 1. If d ≥ k−1
2 , then

x1 x2 − x3 = (r − d)(r + 1 + d) − (r2 + k − 1 + c)

= −d2 − k + r + 1 − (c + d)

≤ −d2 − 2k + r (because c + d ≥ k + 1)

< −d2 + k2

4 −
k
2 −

7
4 (since r < k2

4 +
3
2 k − 7

4 )

< 0 (bceause d ≥ k−1
2 ), a contradiction.

So d ≤ k−2
2 . Then c ≥ k + 1 − d ≥ k+4

2 . Hence,

y2y3 − y1 = (r + c − 1)(r + 2 − c) − (r2 + k − 1 + d)

= −(c − 2)2 + r − k + 3 − (c + d)

≤ −(c − 2)2 + r − 2k + 2 (because c + d ≥ k + 1)

< −(c − 2)2 + k2

4 −
k
2 +

1
4 (since r < k2

4 +
3
2 k − 7

4 )

< 0 (bceause c ≥ k+4
2 and k ≥ 4), a contradiction.

Therefore, we have h ≤ −2. This implise that c + d − k ≥ h2 ≥ 4. Thus c + d ≥ k + 4 and

|h| ≤
√

c + d − k < c+d−k
2 . Hence, f = 1 − h − c ≤ 1 − c + c+d−k

2 = 1 − k+c−d
2 . Since f is an integer,

f ≤ 1 − d k+c−d
2 e. Hence y3 = r + f ≤ r + 1 − d k+c−d

2 e < r (because c ≥ d and k ≥ 4). Since y2 + y3 =

r+e+r+ f = 2r+1, it follows from Lemma 7.2.6 that y2y3 ≤ (2r+1−(r+1−d k+c−d
2 e))(r+1−d k+c−d

2 e).

Hence,
y2y3 − y1 ≤ (r + d k+c−d

2 e)(r + 1 − d k+c−d
2 e) − (r2 + k − 1 + d)

= −d k+c−d
2 e2 + d k+c−d

2 e + r − k − d + 1

= −(d k+c−d
2 e − 1

2 )2 + r − k − d + 5
4 .
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If c − d ≥ 5, then because d ≥ 2 − k and k ≥ 4, we have y2y3 − y1 < −( k+5
2 −

1
2 )2 + ( k2

4 +
3k
2 −

7
4 ) −

k − (2 − k) + 5
4 ≤ 0, a contradiction. So c − d ≤ 4. Since c + d ≥ k + 4, we have d ≥ k

2 . If k is

even then y2y3 − y1 < −( k
2 −

1
2 )2 + ( k2

4 + k − 1) − k − k
2 +

5
4 = 0, a contradiction. So k is odd. Then

d k+c−d
2 e ≥ k+1

2 . Hence y2y3 − y1 < −( k+1
2 −

1
2 )2 + ( k2

4 +
3k
2 −

7
4 ) − k − k

2 +
5
4 < 0, a contradiction. �

By Claim 4 and Claim 5, c ≤ r + bm
2 c − k and d ≤ bm

2 c − k. By (P3), c ≥ bm
2 c −

m−1
3 > 0.

So r + bm
2 c − k ≥ c ≥ 1, which implies m ∈ {2, 3} (by definition of m). Since c ≥ 1, we have

c ≥ bm
2 c − k + 1, and hence, a + b ≥ 1 (by (P10)). Since c ≤ r + bm

2 c − k and d ≥ 3bm
2 c−m+1−c

2 (by

(P2)), we have d > bm
2 c − k − r + 1, and hence, e + f ≥ 0 (by (P10)). Thus, g + h ≤ m − 2 (by (P8)),

and so, z1 + z3 = r + g + r + h ≤ 2r + m − 2.

Note that, when m = 2 we have 2−c
2 ≤ d (by (P2)) and d ≤ 1 − k = 0, and when m = 3 we have

1−c
2 ≤ d (by (P2)) and d ≤ 1 − k (which implies c ≥ 2k − 1). By (P9), f + h ≤ 1 − c.

Assume h ≤ − c
2 . Then z3 = r + h ≤ r − c

2 <
2r+m−2

2 (because c ≥ 1). By Lemma 7.2.6,

z1z3 ≤ (2r + m − 2 − (r − c
2 ))(r − c

2 ). If m = 2, then d ≤ 0 and, by (P1),

z1z3 − z2 ≤ (r + c
2 )(r − c

2 ) − (r2 + 2 − (c + d))

= −( c
2 )2 + c + d − 2

≤ −( c−2
2 )2 − 1 (because d ≤ 0)

< 0, a contradiction.

So m = 3. Then by (P1),

z1z3 − z2 ≤ (r + 1 + c
2 )(r − c

2 ) − (r2 + k − (c + d))

= −( c−1
2 )2 + 1

4 + r − k + d

≤ −( c−1
2 )2 + r + 5

4 − 2k (because d ≤ 1 − k)

≤ −(k − 1)2 + r + 5
4 − 2k (because c ≥ 2k − 1)

= −k2 + r + 1
4

< 0 (by (i) of Lemma 7.2.7), a contradiction.

Therefore, h > − c
2 . Then f ≤ 1 − c − h < 1 − c

2 . Since f is an integer, f ≤ 1−c
2 . Note that

c + d ≤ r + 2bm
2 c − 2k. Hence by (P7), (r + g)(r + h) ≥ r2 + k + 1 − m + 2bm

2 c − (r + 2bm
2 c − 2k) =

r2 − r + 3k + 1 − m ≥ r2 − r + 1 (because k ≥ 1 and m ≤ 3). We see that g + h ≥ 0; for otherwise,

(r + g)(r + h) ≤ ( 2r+g+h
2 )2 ≤ r2 − r + 1

4 , a contradiction. Since a + b ≥ 1 and by (P8), e + f ≤ m − 2.
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This implies y2 + y3 = r + e + r + f ≤ 2r + m − 2. Since y3 = r + f ≤ r + 1−c
2 ≤

2r+m−2
2 (because

c ≥ 1), it follows from Lemma 7.2.6 that y2y3 ≤ (2r + m − 2 − (r + 1−c
2 ))(r + 1−c

2 ). If m = 2, then

y2y3 − y1 ≤ (r − 1−c
2 )(r + 1−c

2 ) − (r2 + d)

= −( 1−c
2 )2 − d

≤ −( 2−c
2 )2 − 1

4 (because d ≥ 2−c
2 by (P2))

< 0, a contrdiction.

So m = 3. Then

y2y3 − y1 ≤ (r + 1 − 1−c
2 )(r + 1−c

2 ) − (r2 + k − 1 + d)

= −( 1−c
2 )2 + 1−c

2 − d − k + r + 1

≤ −( 1−c
2 )2 − k + r + 1 (because d ≥ 1−c

2 by (P2))

≤ −k2 + k + r (because c ≥ 2k − 1)

= −(k − 1
2 )2 + r + 1

4

< 0 (by (i) of Lemma 7.2.7), a contradiction.

�

7.3 The Proof of (5)

In this section, we complete the proof of (5). We first prove F(3, q) increases linearly in q.

Because r ≥
√

q + 2 − 2, we see that F(3, q) ≥ 3r2 > 2q − 5. This fact will be used in the proof of

next lemma.

Lemma 7.3.1. For any integer q ≥ 15, F(3, q) + 1 ≤ F(3, q + 1) ≤ F(3, q) + 3.

Proof. To see F(3, q) + 1 ≤ F(3, q + 1), let C be a maximum IPP code over Q of length 3, where

Q = {α1, . . . , αq}. Let Q′ := {α1, . . . , αq+1}. Define C′ := C ∪ {(αq+1, αq+1, αq+1)}. Clearly, the

codeword (αq+1, αq+1, αq+1) does not share any coordinate with codewords in C, and hence, C ′ is an

IPP code over Q′ of length 3. This shows F(3, q) + 1 ≤ F(3, q + 1).

To prove F(3, q+1) ≤ F(3, q)+3, we assume for a contradiction that F(3, q+1) ≥ F(3, q)+4 for

some integer q ≥ 1. Let Nq+1 = {2, 3, · · · , q − 3}, and Nq = {2, 3, · · · , q − 4}. Because F(3, q + 1) ≥

F(3, q) + 4 and by Theorem 6.3.1, there exists x = (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ N9
q+1 satisfying

(14) (with q replaced by q + 1), such that x3 + y1 + z2 = F(3, q + 1) ≥ F(3, q) + 4.
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In what follows, we shall find x′ = (x′1, x
′
2, x
′
3, y
′
1, y
′
2, y
′
3, z
′
1, z
′
2, z
′
3) ∈ N9

q satisfying (14) such that

x′3 + y′1 + z′2 ≥ F(3, q) + 1, a contradiction. Recall from (14) that x3 ≥ x1 + x2 − 1, y1 ≥ y2 + y3 − 1,

and z2 ≥ z1 + z3 − 1.

Let x′3 = x3 − 1, y′1 = y1 − 1, and z′2 = z2 − 1. If x3 ≥ x1 + x2, then let x′1 = x1 and x′2 = x2;

if x3 = x1 + x2 − 1, let x′1 = x1 − 1 and x′2 = x2 when x1 ≥ x2, and let x′1 = x1 and x′2 = x2 − 1

when x1 < x2. If y1 ≥ y2 + x3, then let y′2 = y2 and y′3 = y3; if y1 = y2 + y3 − 1, then let y′2 = y2 − 1

and y′3 = y3 when y2 ≥ y3, and let y′2 = y2 and y′3 = y3 − 1 when y2 < y3. If z2 ≥ z1 + z3, then let

z′1 = z1 and z′3 = z3; if z2 = z1 + z3 − 1, let z′1 = z1 − 1 and z′3 = z3 when z1 ≥ z3, and let z′1 = z1 and

z′3 = z3 − 1 when z1 < z3.

When x3 ≥ x1 + x2, x′3 − x′1x′2 = (x3 − 1) − x1x2 < x3 − x1x2 ≤ 0. So we may assume

x3 = x1+ x2 −1. Suppose x1 ≥ x2. Then x′3− x′1 x′2 = (x1 + x2 −2)− (x1 −1)x2 = x1+2x2 − x1x2 −2.

If x2 = 2, then x′3 − x′1 x′2 = 2 − x1 ≤ 0; otherwise, x2 ≥ 3, and so, x′3 − x′1 x′2 ≤ 2x2 − 2x1 − 2 < 0.

Hence, x′3 − x′1 x′2 ≤ 0. By exchanging the roles of x1 and x2 in the above argument, we can show

x′3 − x′1x′2 ≤ 0 when x1 < x2. Similarily, we can show y′1 − y′2y′3 ≤ 0 and z′2 − z′1z′3 ≤ 0. So x′ satisfies

(i), (ii) and (iii) of (14).

Clearly, for 1 ≤ i ≤ 3, x′i + y′i + z′i ≤ xi + yi + zi − 1 ≤ (q+ 1)− 1 = q. So x′ satisfies (iv), (v) and

(vi) of (14).

If x3 ≥ x1 + x2 then x′1+ x′2 −1− x′3 = x1 + x2− x3 ≤ 0; if x3 = x1+ x2 −1 then x′1 + x′2−1− x′3 =

x1 + x2 − 1 − x3 = 0. So x′1 + x′2 − 1 − x′3 ≤ 0. Similarly, we have y′2 + y′3 − 1 − y′1 ≤ 0, and

z′1 + z′3 − 1 − z′2 ≤ 0. Hence x′ satisfies (vii), (viii) and (ix) of (14).

Therefore, we have shown that x′ satisfies (14). It remains to show that x′ ∈ N9
q . In fact, it

suffices to show x′i , y
′
i , z
′
i ≥ 2 for 1 ≤ i ≤ 3, because x′i , y

′
i , z
′
i satisfy (iv)-(vi) of (14).

Since x ∈ N9
q+1, xi, yi, zi ≥ 2 for i = 1, 2, 3. Therefore, if x3 ≥ x1 + x2, then x′1 = x1 ≥ 2,

x′2 = x2 ≥ 2, and x′3 = x3 − 1 ≥ x′1 + x′2 − 1 > 2. So we may assume x3 = x1 + x2 − 1. We may

further assume x1 ≥ x2, as the case x2 > x1 can be treated in the same way. So x′1 = x1 − 1 ≥ 1,

x′2 = x2 ≥ 2, and x′3 = x′1 + x′2 − 1 ≥ 2. If x′1 = 1 then x1 = 2, and x2 = 2 (since x1 ≥ x2), which

implies x3 = 3. Then because y1 ≤ q − 3 and z2 ≤ q − 3, F(3, q + 1) = x3 + y1 + z2 ≤ 2q − 3.

However, from Lemma 4.2.7, we know that F(3, q + 1) ≥ 2q − 3, a contradiction. Hence, x′2 ≥ 2.

Thus, we have shown x′i ≥ 2 for i = 1 ≤ i ≤ 3. By similar arguments, we can show y′i , z
′
i ≥ 2 for
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1 ≤ i ≤ 3. Therefore, x′ ∈ N9
q . �

We proceed according to the values of k = q − (r2 + 2r).

Lemma 7.3.2. Let q = r2 + 2r + k for some integer r ≥ 6. Then (5) holds when k ∈ I1.

Proof. We apply induction on k. When k = 1, F(3, q) = 3r2 + 1 by Lemma 7.2.8. So assume

that k is odd and 3 ≤ k ≤ 2
√

r + 4 − 3 or k is even and 2 ≤ k ≤ 2
√

r + 2 − 2, and assume

F(3, r2 + 2r + k − 1) = h(r2 + 2r + k − 1) = 3r2 + 3(k − 1) − 2. From Lemma 7.3.1, we have

F(3, r2 + 2r + k) ≤ F(3, r2 + 2r + k − 1) + 3. So F(3, r2 + 2r + k) ≤ 3r2 + 3k − 2 = h(r2 + 2r + k).

Since we already know from Lemma 4.2.7 that F(3, r2 + 2r + k) ≥ 3r2 + 3k − 2 when k is odd and

2 ≤ k ≤ 2
√

r + 4−3 or when k is even and 2 ≤ k ≤ 2
√

r + 2−2, we have F(3, q) = 3r2+3k−2. �

By the same proof as for Lemma 7.3.2, we can prove the following three lemmas.

Lemma 7.3.3. Let q = r2 + 2r + k for some integer r ≥ 6. Then (5) holds when k ∈ I2.

Lemma 7.3.4. Let q = r2 + 2r + k for some integer r ≥ 6. Then (5) holds when k ∈ I4.

Lemma 7.3.5. Let q = r2 + 2r + k for some integer r ≥ 6. Then (5) holds when k ∈ I5.

Now (5) holds by Lemmas 7.1.1, 7.2.3, 7.2.5, 7.3.2, 7.3.3, 7.3.4, 7.3.5, and Theorem 4.2.7.
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CHAPTER VIII

IPP CODES OF LENGTH 5

In this Chapter, we study IPP codes of length 5 over an alphabet Q when q = |Q| is a prime

power. For each code C ⊆ Q5, we associate an edge colored graph G with C. The vertices of

G represent the codewords in C, and two vertices of G are joined by an edge of color i if their

corresponding codewords have the same ith coordinate, 1 ≤ i ≤ 5. Hence, edges of an associated

graph of an IPP code of length 5 may use colors from {1, 2, 3, 4, 5}.

Unless stated explicitly otherwise we assume through this Chapter, q is a prime power.

8.1 Bounds on F(5, q)

As a trivial case, F(5, 1) = 1. We next develop bounds on F(5, q) when q is a prime power.

Lemma 8.1.1. F(5, 2) = 2.

Proof. Let Q = {α1, α2}. It is easy to see that F(5, 2) ≥ 2, since we can simply construct an IPP

code C ⊆ Q5 with C = {(αi, αi, αi, αi, αi) : αi ∈ Q, i = 1, 2}.

To prove F(5, 2) ≤ 2, we consider any code C ⊆ Q5 with |C| ≥ 3. Let a = (a1, a2, a3, a4, a5),

b = (b1, b2, b3, b4, b5), and c = (c1, c2, c3, c4, c5) be three distinct codewords in C. So for each 1 ≤

i ≤ 5, {ai, bi, ci} ⊆ Q and since Q is a binary alphabet, at least two of {ai, bi, ci} are the same, that is,

|({ai}∩{bi})∪({ai}∩{ci})∪({bi}∩{ci})| = 1. For 1 ≤ i ≤ 5, let {xi} = ({ai}∩{bi})∪({ai}∩{ci})∪({bi}∩{ci}),

then

x = (x1, x2, x3, x4, x5) ∈ desc(a,b) ∩ desc(a, c) ∩ desc(b, c).

This implies x has no identifiable parent. Hence, C has no IPP. This proves F(5, 2) ≤ 2. Therefore,

F(5, 2) = 2. �

The proof of Lemma 8.1.1 in fact shows F(n, 2) = 2 for all n ≥ 1.

Lemma 8.1.2. F(5, 3) ≥ 9.
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Proof. Without loss of generality, suppose Q = GF(3) = {0, 1, 2}. Recall the ternary Hamming

code mentioned in Chapter1, we can extend the ternary Hamming code to obtain an IPP code of

length 5 over Q by a very simple encoding procedure. Choose the parity check matrix

H =









































1 0 1 1 1

0 1 1 2 1

0 0 0 0 1









































, (30)

and let C = {c ∈ Q5 : Hc = 0}, then C is an extended (5,3,2)-code as follows,

C =











































c1 = (0, 0, 0, 0, 0), c4 = (1, 0, 1, 1, 0), c7 = (2, 0, 2, 2, 0)

c2 = (0, 1, 1, 2, 0), c5 = (1, 1, 2, 0, 0), c8 = (2, 1, 0, 1, 0)

c3 = (0, 2, 2, 1, 0), c6 = (1, 2, 0, 2, 0), c9 = (2, 2, 1, 0, 0)











































. (31)

Or, we can think the above extended Hamming code is obtained by adding 0 as the 5th coordinate

to each codeword in the ternary Hamming code. Since the ternary Hamming code is an IPP code,

it follows quickly from Lemma 2.2.1 that the extended code above is also an IPP code. Therefore,

F(5, 3) ≥ 9. �

Next, we consider q ≥ 4 and q is a prime power. The following two results are proved in [31]

(Theorem 4).

Lemma 8.1.3. Let C be a q-ary code of length n. If the minimum distance dmin of C satisfies

dmin >
3n
4

, then C has the IPP.

Lemma 8.1.4. Let q be a prime power. If q ≥ n−1 then a (shortened, extended, or doubly extended)

(n, dn/4e, n − dn/4e + 1)-Reed-Solomon code over GF(q) exists and has the IPP.

As a consequence of Lemma 8.1.4, when n = 5 and q ≥ 4 is a prime power, then there exists a

(shorted, extended, or doubly extended) (5,2,4)-IPP Reed-Solomon code, and this IPP code has q2

codewords. From Lemma 8.1.4, we also realize that when q ≥ 4 and q is a prime power, there exists

an IPP code C ⊆ Q5 with size q2 and its associated graph is a simple graph. By combining it with

Lemma 8.1.2, we obtain the following result.

Theorem 8.1.5. Let q ≥ 3 be a prime power. Then F(5, q) ≥ q2. Moreover, if q ≥ 4 and q is a prime

power, then there exists an IPP code C ⊆ Q5 with size q2 whose associated graph is a simple graph.
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With the help of Theorem 8.1.5, we are now ready to study the structure of the associated graphs

of IPP codes of length 5. If the associated graph of an IPP code C ⊆ Q5 consists of only isolated

vertices, then clearly |C| ≤ q and hence is not a maximum IPP code. Therefore, we may assume

from now on the edge set of any associated graph is not empty.

8.2 Structural Characterization of IPP Graphs

We saw that the associated graphs of all maximum IPP codes of length 3 are simple graphs

and they consist of three bi-color components. Now, some natural questions come up: Are the

associated graphs of maximum IPP codes of length 5 simple? Should they also contain some special

components? In this section, we look for answers to these questions.

The following result gives an upper bound on the size of an IPP code of length 5 if its associated

graph is simple. It is a direct consequence of Lemma 8.1.3.

Lemma 8.2.1. Let C ⊆ Q5 be an IPP code and G be its associated graph. If G is simple then G is

an IPP graph and hence C is an IPP code. Moreover, |C| ≤ q2.

Proof. Suppose G is simple then any two vertices of G are joined by at most one edge, so any

two codewords in C share at most one coordinate. This means the Hamming distance of any two

codewords in C is 4 or 5, thus, the minimum distance of C is 4. By Lemma 8.1.3, C has the IPP.

For any pair (αi, α j), αi and α j occur as the first and second coordinate in at most one codeword, so

|C| ≤ q2. �

The following result describes an upper bound on the size of an IPP code of length 5 if two

vertices of its associated graph are joined by more than two edges.

Lemma 8.2.2. Let C ⊆ Q5 be an IPP code and G be its associated graph. If there exist two vertices

of G which are joined by more than two edges, then |V(G)| ≤ q2.

Proof. Without loss of generality, suppose two vertices u, v ∈ V(G), which correspond to two code-

words (α1, α1, α1, β1, β2) and (α1, α1, α1, γ1, γ2) in C, are joined by three edges using colors 1, 2,

3, respectively. Now let w = (αi, α j, αk, x, y). Then the descendant d = (α1, α1, α1, x, y) shows

that (x, y) , (β1, β2), (x, y) , (γ1, γ2) and that no other codeword has (x, y) as the fourth and fifth

coordinate simultaneously. Hence |V(G)| = |C| ≤ q2. �
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As a result of Lemma 8.2.2 and Theorem 8.1.5, we obtain the following,

Theorem 8.2.3. There exists a maximum IPP code of length 5 so that any two vertices in its asso-

ciated graph are joined by no more than two edges.

Thus, in the rest of this chapter, we consider these IPP codes whose associated graphs have

multiplicity less than or equal to 2. That is, we assume any two vertices of associated graphs of IPP

codes of length 5 are joined by no more than two edges. Next, let us consider the components of

associated IPP graphs.

Lemma 8.2.4. Let C ⊆ Q5 and G be its associated graph, and let S ,T be unions of components of

G such that S ∩ T = ∅ and S ∪ T = G. If S and T are IPP graphs and no two vertices of G are

joined by more than two edges, then G is an IPP graph.

Proof. This proof is slightly different from Lemma 3.2.1. We mark the following fact: (*) Since

S ,T are unions of components of G such that S ∩ T = ∅ and S ∪ T = G, for each i ∈ {1, 2, 3, 4, 5},

a component of S (i) or a component of T (i) is a component of G(i). This fact will be used heavily

through the rest of this proof.

It suffices to prove that G satisfies (IPP1) and (IPP2) of Lemma 2.2.2. To prove that G satisfies

(IPP1) of Lemma 2.2.2, let u, v,w be three distinct vertices of G. We need to show that there exists

some i ∈ {1, 2, 3, 4, 5} such that u, v,w belong to three different components of G(i).

First, assume {u, v,w} ⊆ V(S ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3, 4, 5} such

that u, v,w belong to three different components of S (i). By (*), u, v,w belong to three different

components of G(i).

So we may assume that {u, v,w} * V(S ). Similarly, we may assume that {u, v,w} * V(T ).

Then by symmetry, we may assume that u, v ∈ V(S ) and w ∈ V(T ). Since S is an IPP graph,

there exists some i ∈ {1, 2, 3, 4, 5} such that u and v belong to two different components of S (i).

Because S ∩ T = ∅, the component of T (i) containing w is disjoint from S (i). By (*), u, v,w belong

to three different components of G(i). So G satisfies (IPP1) of Lemma 2.2.2.

To prove that G satisfies (IPP2) of Lemma 2.2.2, let u, v,w, x be four distinct vertices of G.

We need to show that there exists some i ∈ {1, 2, 3, 4, 5}, no component of G(i) containing u or v

contains w or x.
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Suppose {u, v,w, x} ⊆ V(S ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3, 4, 5} such that

no component of S (i) containing u or v contains w or x. By (*), no component of G(i) containing u

or v contains w or x.

Therefore, we may assume that {u, v,w, x} * V(S ). Similarly, we may assume that {u, v,w, x} *

V(T ).

Assume for the moment that one of S and T contains three of {u, v,w, x}, and the other contains

one of {u, v,w, x}. By symmetry, we may assume that u, v,w ∈ V(S ) and x ∈ V(T ). Since S is an

IPP graph, there exists some i ∈ {1, 2, 3, 4, 5} such that u, v,w belong to three different components

of S (i). Because S ∩ T = ∅, the component of T (i) containing x is disjoint from S (i). By (*), no

component of G(i) containing u or v contains w or x.

Thus, we may assume that each of S and T contains exactly two vertices from {u, v,w, x}. We

need to consider two cases.

First, one of S and T contains {u, v} and the other contains {w, x}. By symmetry, we may assume

{u, v} ⊆ V(S ) and {w, x} ⊆ V(T ). Since S is an IPP graph, there exists some i ∈ {1, 2, 3, 4, 5} such

that u, v belong to different components of S (i). Note that any component of T (i) containing w or x

is contained in T , and hence, is disjoint from S (i). By (*), no component of G(i) containing u or v

contains w or x.

The remaining case to be considered is when neither S nor T contains {u, v} or {w, x}. By

symmetry, we may assume {u,w} ⊆ V(S ) and {v, x} ⊆ V(T ). Since u,w ∈ V(S ) are joined by no

more than two edges, there exists {i1, i2, i3} ∈ {1, 2, 3, 4, 5}, such that for each i ∈ {i1, i2, i3}, u,w

belong to different components of S (i). Since v, x ∈ V(S ) are joined by no more than two edges,

there exists { j1, j2, j3} ∈ {1, 2, 3, 4, 5}, such that for each j ∈ { j1, j2, j3}, u,w belong to different

components of S ( j). Note that {i1, i2, i3} ∩ { j1, j2, j3} , φ. Choose some k ∈ {i1, i2, i3} ∩ { j1, j2, j3},

by (*), u, v,w, x belong to four different components of G(k). Therefore, G satisfies (IPP2) of

Lemma 2.2.2. �

Lemma 8.2.5. Let C ⊆ Q5 be a maximum IPP code and G be its associated graph. Then G contains

at least one five-color component.
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Proof. Assume G does not contain any five-color components. Let S 1, S 2, · · · , S m be the compo-

nents of G, each S i for 1 ≤ i ≤ m is uni-color, bi-color, tri-color or four color component. Then

|S i| ≤ q and the inequality holds if m ≥ 2. Clearly m ≤ q, so ∑m
i=1 |S i| < q2. Hence, C is not

maximum, a contradiction. �

Lemma 8.2.6. Suppose C ⊆ Q5 is a maximum IPP code which is chosen so that its associated

graph G has the minimum number of components. Then G contains no uni-color component and

bi-color component.

Proof. Assume G contains a uni-color component (respectively, a bi-color component) S , whose

edges are colored by color i for some i ∈ {1, 2, 3, 4, 5} (respectively, whose edges are colored by

colors i, j for {i, j} ⊂ {1, 2, 3, 4, 5}). LetA = {i} (respectively, A = {i, j}). By Lemma 8.2.5, let T be

a five-color component. Then the edges of T use five colors from {1, 2, 3, 4, 5}. Then T (i) contains

a component with at least two vertices, let T ′ be such a component of T (i). Let S ′ be a component

of S (i) (If S is a uni-color component, then S ′ = S (i) = S ). Let G′ be the graph obtained from G

by adding edges uv of color i for all u ∈ V(S ′) and v ∈ V(T ′).

Clearly, G′ is the graph associated with a code C′ ⊆ Q5 obtained from C by changing the ith

coordinate of those codewords in C corresponding to vertices of S ′ to the ith coordinate of the

codewords in C corresponding to vertices of T ′. Let H be the component of G′ containing S ′ ∪ T .

Note that G − V(H) consists of components of G, and hence, is an IPP graph.

To prove H is an IPP graph, it suffices to prove that H satisfies (IPP1) and (IPP2) of Lemma 2.2.2.

Since G is an IPP graph, S and T are also IPP graphs. We mark the following fact: (**) for each

l ∈ {1, 2, 3, 4, 5}, a component of T (l) other than T ′ is a component of H(l), a component of S (l)

other than S ′ is a component of H(l), and T ′ ∪ S ′ is a component of H(i). This fact will be used

heavily through the rest of the proof.

First, assume {u, v,w} ⊆ V(S ). Choose k ∈ {1, 2, 3, 4, 5} − A, u, v,w belong to three different

components of S (k). Since a component of S (k) is also a component of H(k), u, v,w belong to three

different components of H(k).

Now assume {u, v,w} ⊆ V(T ). Since T is an IPP graph, there exists some k ∈ {1, 2, 3, 4, 5} such

that u, v,w belong to three different components of T (k). Let these three components be T1,T2,T3.
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By (**), if T1,T2,T3 are distinct from T ′, then u, v,w belong to three different components T1,T2,T3

of H(k). Otherwise, one of T1,T2,T3 is T ′, say T1 is T ′, then u, v,w belong to three different

components T ′ ∪ S ′,T2,T3 of H(k).

So we may assume that one of V(S ) and V(T ) contains two of {u, v,w} and the other one contains

one of {u, v,w}.

First assume u, v ∈ V(S ) and w ∈ V(T ). Choose k ∈ {1, 2, 3, 4, 5} − A, then u, v belong to two

different components of S (k), w belong to a component of T (k). By (**), u, v,w belong to three

different components of H(k).

Otherwise, suppose u, v ∈ V(T ) and w ∈ V(S ). Since any two vertices of T are joined by no

more than two edges, there exist at lease three colors k1, k2, k3 ∈ {1, 2, 3, 4, 5} such that u, v belong

to different components of T (k) for each k ∈ {k1, k2, k3}. Choose k ∈ {k1, k2, k3}−A, then u, v belong

to two different components of T (k), w belong to a component of S (k). By (**), u, v,w belong to

three different components of H(k).

To prove that H satisfies (IPP2) of Lemma 2.2.2, let u, v,w, x be four distinct vertices of H.

We need to show that there exists some k ∈ {1, 2, 3, 4, 5}, no component of H(k) containing u or v

contains w or x.

First, assume {u, v,w, x} ⊆ V(S ). Choose k ∈ {1, 2, 3, 4, 5} −A, u, v,w, x belong to four different

components of S (k). By (**), no component of H(k) containing u or v contains w or x.

Now assume {u, v,w, x} ⊆ V(T ). Since T is an IPP graph, there exists some k ∈ {1, 2, 3, 4, 5}

such that no component of T (k) containing u or v contains w or x. By (**), if k , i, clearly no

component of H(k) containing u or v contains w or x. If k = i and T ′ contains neither u nor v, then

T ′ ∪ S contains neither u nor v, and so no component of H(k) containing u or v contains w or x.

Finally, if k = i and T ′ contains u or v, since T ′ contains neither w neither x and so does S, T ′ ∪ S

contains neither w nor x. Hence, no component of H(k) containing u or v contains w or x.

Therefore, we may assume that {u, v,w, x} * V(S ) and {u, v,w, x} * V(T ).

Assume for the moment that one of S and T contains three of {u, v,w, x}, and the other contains

one of {u, v,w, x}.

We first consider V(S ) contains three of {u, v,w, x} and V(T ) contains one of {u, v,w, x}. By

symmetry, there are two cases: u, v,w ∈ V(S ) and x ∈ V(T ), or u,w, x ∈ V(S ) and v ∈ V(T ) .
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Assume u, v,w ∈ V(S ) and x ∈ V(T ), then choose k ∈ {1, 2, 3, 4, 5}−A, it follows that u, v,w belong

to three different components of S (k), and x belong to some component of T (k). By (**), u, v,w, x

belong to four different components of H(k). In the same way, we can show if u,w, x ∈ V(S ) and

v ∈ V(T ) then {u, v,w, x} belong to four different components of H(k). Hence, no component of

H(k) containing u or v contains w or x.

Now consider V(T ) contains three of {u, v,w, x} and V(S ) contains one of {u, v,w, x}. By symme-

try, there are also two cases: u, v,w ∈ V(T ) and x ∈ V(S ), or u,w, x ∈ V(T ) and v ∈ V(S ) . Assume

that u, v,w ∈ V(T ) and x ∈ V(S ). Since T is an IPP graph, there exists some k ∈ {1, 2, 3, 4, 5} such

that u, v,w belong to three different components of T (k), say these three components are T1,T2,T3,

and u ∈ V(T1), v ∈ V(T2), w ∈ V(T3). Let x belong to some component of S (k). By (**), if either

T1,T2,T3 are all distinct from T ′ or x < V(S ′), then {u, v,w, x} belong to four different compo-

nents of H(k). So no component of H(k) containing u or v contains w or x in this case. If one of

{T1,T2,T3} is T ′ and x ∈ V(S ′), then k = i. We may assume T1 = T ′. Since |V(T ′)| ≥ 2, there

must be x′ ∈ V(T ′) with x′ , u. Since T is an IPP graph, there exists some k′ ∈ {1, 2, 3, 4, 5} − {k},

such that no component of T (k′) containing u or v contains w or x′. By (**), no component of H(k′)

containing u or v contains w or x′. Hence, no component of H(k′) containing u or v contains w or

x. We can show in the same way that if u,w, x ∈ V(T ) and v ∈ V(S ), then no component of H(k)

containing u or v contains w or x.

Thus, we may assume that each of S and T contains exactly two vertices from {u, v,w, x}. We

need to consider two cases.

First, one of S and T contains {u, v} and the other contains {w, x}. Assume that u, v ∈ V(S ) and

w, x ∈ V(T ). Then for each k ∈ {1, 2, 3, 4, 5} −A, u, v belong to different components of S (k). Since

any two vertices of T are joined by no more than two edges, there exists {k1, k2, k3} ⊆ {1, 2, 3, 4, 5}

such that for each k ∈ {k1, k2, k3}, w, x belong to different components of T (k). Choose some

k ∈ {k1, k2, k3} ∩ ({1, 2, 3, 4, 5} − A). By (**), {u, v,w, x} belong to four different components of

H(k). Hence, no component of H(k) containing u or v contains w or x. Again, we can show in the

same way that if u, v ∈ V(T ) and w, x ∈ V(S ), then there exists some k ∈ {1, 2, 3, 4, 5} such that no

component of H(k) containing u or v contains w or x.

The remaining case to be considered is when neither S nor T contains {u, v} or {w, x}. By
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symmetry, we may assume {u,w} ⊆ V(S ) and {v, x} ⊆ V(T ). For each k ∈ {1, 2, 3, 4, 5} − A,

u,w belong to different components of S (k). Since v, x ∈ V(T ) are joined by no more than two

edges, there exists {k1, k2, k3} ⊆ {1, 2, 3, 4, 5}, such that for each k ∈ {k1, k2, k3}, v, x belong to

different components of T (k). Note that ({1, 2, 3, 4, 5} − A) ∩ {k1, k2, k3} , φ. Choose some k ∈

({1, 2, 3, 4, 5} − {i}) ∩ {k1, k2, k3}. By (**), u, v,w, x belong to four different components of H(k).

Therefore, H satisfies (IPP2) of Lemma 2.2.2.

Since both H and G−V(H) are IPP graphs, it follows from Lemma 8.2.4 that G ′ is an IPP graph.

However, |V(G′)| = |V(G)| and G′ has fewer components than G, contradicting the choice of C and

G. �

In Figure 16, we use red, blue, green, magenta and cyan to represent colors 1, 2, 3, 4, 5, respec-

tively. A five-color component T is given in (a) and a bi-color component S is given in (b). Let T ′

be a subgraph of T spanned by {v7, v8, v9}, then T ′ is a component of G(1). Let S ′ be a subgraph

of S spanned by {u2, u3}, then S ′ is a component of S (1). Join every pair of vertices between V(T ′)

and V(S ′) by an edge of color 1, we obtain the resulted graph H in (c), which is a new five-color

component. It is easy to check that S ,T,H are all IPP graphs.

Lemma 8.2.7. Let C ⊆ Q5 and G be the associated graph of C. Let S be a component of G. If S is

a uni-color component, a bi-color component, a tri-color component or a four-color component of

G, then S is an IPP graph.

Proof. Suppose S is a uni-color, a bi-color component, a tri-color component or a four-color com-

ponent. Let i ∈ {1, 2, 3, 4, 5} be a color not used by edges of S . Then every component of S (i) is an

isolated vertex. Hence, (IPP1) and (IPP2) of Lemma 2.2.2 hold. Since G is associated with C, S is

also associated with a code (whose codewords are the codewords in C corresponding to the vertices

of S ). Hence, S is an IPP graph. �

Lemma 8.2.8. There exists a maximum IPP code of length 5 such that its associated graph has the

minimum number of components and contains no tri-color component.

Proof. Suppose C ⊆ Q5 is a maximum IPP code and its associated graph G has the mimum number

of components. If G contains a tri-color component S , then |E(S )| ≥ 3. Let the three colors used

by the edges of S belong to {i, j, k} ⊆ {1, 2, 3, 4, 5}. It is easy to see that |V(S )| ≥ 3, since any two
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Figure 16: Combining a bi-color component and a five-color component

vertices of S are joined by no more than two edges, if |V(S )| ≤ 2, then |E(S )| ≥ 2, a contradiction.

Hence, |V(S )| ≥ 3.

We claim that there exist two vertices in V(S ) such that these two vetices are joined by no more

than one edge. Suppose this is not true, then any two vertices of V(S ) are joined by two edges.

Since S is a tri-color component, there must exist three vertices v1, v2, v3 ∈ V(S ) such that v1, v2

are joined by two edges, say e1, e2, v1, v3 are joined by two edges, say e3, e4, v2, v3 are joined by

two edges, say e5, e6, and the six edges em (1 ≤ m ≤ 6 use three colors. By the definition of the

associated graph, two edges incident with the same two vertices use different colors. Hence, e1 and
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e2 use different colors, e3 and e4 use different colors, and e5 and e6 use different colors. Since six

edges ek (1 ≤ m ≤ 6 use three colors, by the Pigeon-hole Principle, at least one color is used by

two edges. Without loss of generality, say e1, e3 use color i. e1 using color i implies that the two

codewords corresponding to vertices v1, v2 share the ith coordinate, e2 using color i implies that

the two codewords corresponding to vertices v1, v3 share the ith coordinate, so the two codewords

corresponding to vertices v1, v3 also share the ith coordinate. Hence, there is an edge incident with

v1, v3 that uses color i, say this edge is e5. Again, since ek (1 ≤ m ≤ 6) use three colors and e1, e3, e5

all use color i, it follows that e2, e4, e6 use colors j, k. By the symmetry, assume e2, e4 use color j and

e6 uses color k. As before, e2 using color j implies that the two codewords corresponding to vertices

v1, v2 share the jth coordinate, e4 using color j implies that the two codewords corresponding to

vertices v1, v3 share the jth coordinate, so the two codewords corresponding to vertices v1, v3 also

share the jth coordinate. Hence, there is an edge, say e8, incident with v1, v3 that uses color j. So

there are three edges e3, e4, e8 incident with v1, v3, a contradiction. Therefore, there must exist two

vertices in V(s) that are joined by no more than one edge. Let such two vertices be u, v.

Let H be the four-color component obtained from S by joining u, v by an edge of color l for some

l ∈ {1, 2, 3, 4, 5}− {i, j, k}, and let G′ = (G−V(S ))∪H. Clearly, G′ is the graph associated with C′ ⊆

Q5 obtained from C by changing the lth coordinate of the codeword in C corresponding to vertex v

to the lth coordinate of the codeword in C corresponding to vertex u. Note that G − V(S ) consists

of components of G, and hence, is an IPP graph. H is a four-color component, by Lemma 8.2.7, H

is an IPP graph. Since G′ = (G −V(S ))∪H and (G −V(S ))∩H = φ, by Lemma 8.2.4, G′ is an IPP

graph. However, |V(G)| = |V(G′)| and G′ has no tri-color component. �

By Lemma 8.2.5, Lemma 8.2.6 and Lemma 8.2.8, we obtain the following result to close this

section.

Theorem 8.2.9. There exists a maximum IPP code of length 5 such that its associated graph has at

least one five-color component, but it has no uni-color component, bi-color component and tri-color

component.
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8.3 Forbidden Subgraphs

In this section, we characterize that a code C ⊆ Q5 has the IPP if and only if its associated graph

does not contain certain edge colored subgraphs.

In Figure 17, four edge colored graphs are given, where {i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5} repre-

sents five different colors. For example, in the edge colored graph (a), the two edges incident with

u, v are colored by i1 and i2 respectively, and the edge incident with u,w is colored by i5. Define the

four edge colred graphs in Figure 17 as forbidden graphs,

(a) (b)

(c)    (d)
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Figure 17: Forbidden edge-colored subgraphs

Lemma 8.3.1. Let C ⊆ Q5 be a code and G be its associated graph. If G is an IPP graph then G

doesn’t contain any forbidden graphs.

Proof. Assume G contains a forbidden graph (a) as its subgraph, then u, v,w ∈ V(G) and there exists

no i ∈ {1, 2, 3, 4, 5} such that u, v,w belong to three different components of G(i), a contradiction to

(IPP1) of Lemma 2.2.2.

Assume G contains a forbidden graph (b), then u, v,w, x ∈ V(G) and there does not exist i ∈

{1, 2, 3, 4, 5} such that no component of G(i) containing u or v contains w or x, a contradiction to

(IPP2) of Lemma 2.2.2. In the same way, we can show that if G contains a forbidden graph (c) or

(d), then G doesn’t satisfy (IPP2) of Lemma 2.2.2. �
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Lemma 8.3.2. Let C ⊆ Q5 be a code and G be its associated graph. If G is not an IPP graph, then

G must has a subgraph isomorphic to one of the forbidden graphs.

Proof. Suppose G is not an IPP graph. Then either there exist three vertices u, v,w ∈ V(G) such

that u, v,w contradict (IPP1) of Lemma 2.2.2, or there exist four vertices u, v,w, x ∈ V(G) such that

u, v,w, x contradict (IPP2) of Lemma 2.2.2.

First, we assume there exist three vertices u, v,w ∈ V(G) such that u, v,w contradict (IPP1) of

Lemma 2.2.2. Let H be a subgraph of G such that V(H) = {u, v,w} and E(H) consists of edges

incident with {u, v}, {u,w} or {v,w}. Then E(H) must contain five edges which use five different

colors. Since any two vertices of G are joined by no more than two edges, we see that H contains a

subgraph isomorphic to forbidden graph (a). A subgraph of H is also a subgraph of G, so G contains

a subgraph isomorphic to forbidden graph (a).

Thus, we may assume there exist four vertices u, v,w, x ∈ V(G) such that u, v,w, x contradict

(IPP2) of Lemma 2.2.2. That is, there does not exist any i ∈ {1, 2, 3, 4, 5} such that no component

of G(i) containing u or v contains w or x. Note that any edge incident with {u, v} or {w, x} does

not contribute to the violation of (IPP2) here. Hence, let H be a subgraph of G such that V(H) =

{u, v,w, x} and E(H) consist of edges incident with {u,w}, {u, x}, {v,w} or {v, x}. It suffices to assume

E(H) is minimal so that u, v,w, x contradict (IPP2). Then E(H) contains exactly five edges which

use five different colors. Since there is no edge incident with {u, v} and {w, x}, H is a bipartite graph

and hence all cycles of H have even length. Since V(H) = 4 and E(H) = 5, H has at least one cycle

with possible length 2 or 4. Hence, we discuss in two cases according to g(H), the girth of H. If

g(H) = 2, then H must be isomorphic to forbidden graph (b) or forbidden graph (c). If g(H) = 4,

then H must be isomorphic to forbidden graph (d). �

By Lemma 8.3.1 and Lemma 8.3.2, we characterize the structure of IPP graphs associated with

IPP codes of length 5.

Theorem 8.3.3. Let C ⊆ Q5 be a code and G be its associated graph. Then G is an IPP graph if

and only if G does not contain any forbidden subgraphs.
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