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Abstract—For many promising application areas, au-
tonomous mobile manipulators do not yet exhibit sufficiently
robust performance. We propose the use of tags applied to
task-relevant locations in human environments in order to help
autonomous mobile manipulators physically interact with the
location, perceive the location, and understand the location’s
semantics. We call these tags physical, perceptual and semantic
tags (PPS-tags). We present three examples of PPS-tags, each
of which combines compliant and colorful material with a UHF
RFID tag. The RFID tag provides a unique identifier that
indexes into a semantic database that holds information such
as the following: what actions can be performed at the location,
how can these actions be performed, and what state changes
should be observed upon task success?

We also present performance results for our robot operating
on a PPS-tagged light switch, rocker light switch, lamp, drawer,
and trash can. We tested the robot performing the available
actions from 4 distinct locations with each of these 5 tagged
devices. For the light switch, rocker light switch, lamp, and
trash can, the robot succeeded in all trials (24/24). The robot
failed to open the drawer when starting from an oblique angle,
and thus succeeded in 6 out of 8 trials. We also tested the ability
of the robot to detect failure in unusual circumstances, such as
the lamp being unplugged and the drawer being stuck.

I. INTRODUCTION

Autonomous mobile manipulation within human envi-
ronments represents both an exciting opportunity for new
robotic applications and a grand challenge for robotics [11].
Although researchers continue to make progress in this
area, autonomous mobile manipulators do not yet exhibit
sufficiently robust performance to support many promising
applications. For example, if assistive mobile manipulators
could robustly operate within real homes for extended peri-
ods of time, they could provide valuable in-home assistance.
We see the critical deficiencies of current robots as falling
into the following three inter-related categories:

Physical:

The robot’s mechanical structure may be poorly
matched to the task. For example, a robot with
a primitive gripper may be unable to pull on a
recessed handle, or a small mechanism may be too
difficult to grasp reliably.

Perceptual:

The robot may be unable to reliably perceive the
task-relevant features required for consistent suc-
cess at the task. For example, a thin pull chain
may be too small for a robot’s laser range finder to
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Left: Example of a PPS-tag for a light switch Right: Robot using

detect, or the robot may be unable to reliably detect
drawer handles due to the wide variety of handles
found in human environments.
Semantic:

The robot may be unable to infer the task-relevant
semantics, such as what actions it can perform with
a particular mechanism or the implications of those
actions. For example, the robot may not realize that
it can pull on a chain to operate a lamp and that this
should either increase or decrease the light from the
lamp.

Many approaches seek to address one or more of these
shortcomings. In this paper, we propose augmenting envi-
ronments to directly help robots with these three challenges.
Specifically, we present PPS-tags, which stands for physical,
perceptual, and semantic tags. We have designed these tags to
be affixed to sparse task-relevant locations in the environment
in order to help the robot physically interact with the
location, perceive the location, and understand the location’s
semantics.

While we ultimately hope to develop robots that will
not require modifications of the environment, we believe
PPS-tags offer several advantages at this time. For example,
PPS-tags have the potential to accelerate the deployment of
autonomous mobile manipulators in real-world applications.
This could have societal and economic benefits. It could also
benefit robotics research by providing data from real-world
usage scenarios. Also, PPS-tags could represent a beneficial
path for system development and research. One can imagine
first developing a robotic system that uses PPS-tags and then



Fig. 2.
trashcan. Bottom: EL-E manipulating the corresponding PPS-tags.

gradually removing them or altering them in conjunction
with the development of improved mechanical, perceptual, or
semantic capabilities. Similarly, researchers can use PPS-tags
to immediately explore system-level questions, rather than
waiting for the solutions to long standing problems such as
object recognition. Additionally, we believe PPS-tags might
enable simple inexpensive robots to perform complex tasks.

II. RELATED WORK

Here we provide a brief overview of related work.

A. Robots in Augmented Environments

People often alter environments for robots. For example,
in factories people create robotic work cells matched to
the tasks performed by the robot. There are also many
examples of environmental modification for robots outside
of industrial settings. For example, most high performing
systems in RoboCup competitions depend on environments
that are easy to perceive with color vision [2], [21]. Also,
many robots have depended on perceptual augmentation of
the environment, such as with ARTags and QR tags [8],
[9]. Roomba owners roombarize their homes, a process that
often involve changing furniture layouts, cleaning up wires,
and tucking in rug tassel [20]. People sometimes attach
fabric to the handles of doors and drawers so that service
dogs can operate them. We have previously demonstrated the
use of towels as a physical and perceptual aid for a robot
[16]. In contrast to prior work, PPS-tags combine physical,
perceptual, and semantic assistance to enable a robot to
perform a variety of tasks using similar behaviors. Unlike
methods that depend on complex sensing, such as cameras
throughout the environment [22], PPS-tags can be simple,

Top: PPS-tags affixed to (from left to right): flip-type light switch, ADA-compliant rocker-type light switch, lamp pull chain, cabinet drawer, and

sparsely distributed, inexpensive, and independent from one
another. In our current implementation, the robot does not
require detailed models of the environment nor the tagged
objects, and instead uses sparse task-relevant information.

B. RFID-assisted Robots

Radio-frequency identification (RFID) represents another
important example of environmental augmentation for robots.
Due to the low cost of tags and the opportunity for non line-
of-sight perception, RFID tags have enjoyed a great amount
of attention in robotics. Researchers have developed robots
that can navigate to RFID-tags, localize them, and build maps
with respect to them [14], [5], [13]. Researchers have also
explored opportunities for associating semantic information
with the unique identifier provided by an RFID-tag. Using
XML profiles, the authors of [12] defined object properties
such as weight, and grip force for a table mounted robot.
Ha et al [4] proposed a knowledge architecture based on
the semantic web language, OWL-S, to describe objects,
possible actions, and the expected effects of actions. Baeg
[1] described a smart home environment with interoperating
devices such as RFID enabled tables, shelves, and mobile
robots. Jang, Sohn, and Cho [6] presented an architecture for
associating semantic labels and properties such as indicating
what areas are restricted within a physical space. Hidaya et.
al. [19] proposed that objects should be tagged with their
affordances.

Although many researchers have previously suggested that
RFID-indexed databases could be used by robots, there is
a lack of published results describing real robots making
use of the proposed information. The authors of [15] may
be the first to have implemented their architecture on a



Fig. 3. Two commonly sold assistive devices used in this research. Left:
High-friction Dycem polymer. Right: Compliant, slip resistant foam tubing.

mobile manipulator, and is the only work we have found that
describes a real mobile manipulator making use of RFID-
indexed semantic information. Their robot moved a cup and
a chair using object properties loaded from an RFID indexed
database.

In contrast to previous work, we have implemented our
system with a mobile manipulator and tested it with 5 differ-
ent devices. We have found that a relatively simple semantic
structure with only a handful of entries is sufficient to support
these tasks. We pursued a bottom-up design strategy in which
the goal of the robot performing specific, well-defined tasks
dictated the contents of the semantic database. PPS-tags
also combine this semantic assistance with physical, and
perceptual help.

III. PPS-TAGS ILLUSTRATED IN THREE EXAMPLES

In this section, we present our concept for PPS-tags and
our current implementation. The PPS-tag concept is general
and could take many forms. A PPS-tag is a tag that can help
a robot physically, perceptually, and semantically.

To operate within a PPS-tagged environment, a mobile
manipulator needs to be able to (1) physically interact with
the tags, (2) perceive the tags, and (3) detect the tags’
identities so that corresponding queries can be made in an
associated semantic database. Ideally, a robot would only
need to perceive, understand, and physically interact with
these tags in order to perform useful tasks.

A. Physical: Manipulating High-Friction, Well-Sized, Com-
pliant Materials

Each of the three tags shown in Figure 2 (first, second, and
fourth panel) provides a different form of physical assistance.
All of them are compliant with high friction, and, except for
the red patch, significantly increase the target volume over
which the robot can successfully grasp.

For the first type of PPS-tag, we use a non-slip, compli-
ant red foam tube. This tubing is normally used to make
eating utensils and cylindrical objects, such as toothbrushes
and pencils, easier for people with motor-impairments to
manipulate. We purchased this foam tube from an online
store (Rehabmart.com) that supplies materials and devices
to assist people with physical disabilities.

For the second PPS-tag example, we use patches of red
Dycem polymer, a high friction, compliant material com-
monly affixed to wheel chairs and walkers to prevent grip
slippage (Figure 3). We purchased this material from the
same store.

For the third PPS-tag, we use a red towel. As in our
previous work, the towel is affixed to drawers and doors [16].
In contrast to our previous paper, which included results for
two drawers and two doors, we only present results from one
drawer in this work. The towel provides a large compliant
target for grasping, which is easier for our robot to grasp onto
than the large variety of possible handles found in human
environments.

B. Perceptual: Segmenting Point Clouds Based on Registered
Color Images

For the work in this paper, we assume that our robot is first
given a rough 3D location in the environment near which it
is supposed to perform an action. This 3D location could
come from a number of sources, such as long-range RFID
localization [3]. In this work, we provide the 3D location
using our laser pointer interface, where the user selects 3D
locations by briefly illuminating them with a laser pointer
[10].

All three types of tags share a very similar red color that
occupies a large area. Our robot uses the same method to
perceive all three tag types. First, using a camera and a tilting
laser range finder that are calibrated and registered with one
another, our algorithm acquires a color image and a 3D point
cloud. The image is taken using the camera’s flash. The next
step segments parts of the 3D point cloud that correspond
with red in the camera image.

The segmentation proceeds in the following order. First,
our algorithm performs a 2D segmentation of red patches in
the image using minimum and maximum thresholds defined
in HSV space, as describe in [7]. The next step post processes
this raw segmented image with a series of morphological
operations: hole filling, closing, then opening. Using the
known 3D rigid body transformation between the point cloud
and the camera, the algorithms projects the 3D point cloud
into the color segmented image. Points projected onto red-
segmented regions are kept, all others are discarded. From
these 3D points with associated red labelings, the algorithm
constructs a 3D occupancy grid (resolution 1 ¢m?). It uses
this grid to separate the point cloud into 3D connected
components keeping only the centroid of the connected
component closest to the target 3D location.

The large red materials make this simple perceptual algo-
rithm effective even at a distance.

C. Semantic: An RFID-Indexed Database with Grounded
Semantics

In addition to the red compliant material, each of our three
examples of PPS-tags includes a self-adhesive UHF RFID
tag. Our robot reads this tag using short-range RFID antennas
embedded in its fingers. Using this unique identifier, the
robot queries a semantic database. Currently, this database
is implemented as a series of nested hashtables with the
first level of hashtables indexed by the RFID tag’s unique
identifier. A sample of one top-level entry in the database
for a rocker switch can be seen in Figure 4.



'properties’: {’type’: ’"ada light switch’,
"name’: 'A D A light switch 1’,
"pps_tag’: ’'dycem’,
’change’: ’'overall brightness’,
’switch_travel’: 0.02,
"height’: 1.22,
"on_plane’: True,
'direction’: "up’,
"ele’: {’color_segmentation’:
[[34, 255], [157, 255],
[0, 1111},
o
"actions’: {’off’: ’'push_bottom’,

"on’: ’push_top’},

"push_bottom’: {’force_threshold’: 3.0,
"height_offset’: -0.02
"ele’: { 'gripper’: 5}
by

’push_top’: {’ force_threshold’: 3.0,
"height_offset’: 0.02,
"ele’: {’gripper’: 5}

}

Fig. 4. A semantic database entry for operating an ADA light switch. The
current database is written in Python.

We focus on grounded semantics for robot manipulation.
By this, we mean that we restrict the semantic database to
hold information that directly informs the robot’s manipula-
tion behaviors. Each object-specific entry in our database
contains three main components: properties, actions, and
details of how to perform each action. In our work, we have
designated “properties” as a place for information about the
object that is not specific to an action (Figure 4). Within
“actions”, we map user-friendly names for the actions that
can be performed to associated robot behaviors. Finally,
in separate hashtables (e.g. “push_bottom”, “push_top”) we
store parameters used by each of the robot’s behaviors.

To illustrate the semantic database and its use by the robot,
we now describe the example entry in detail, see Figure 4.

1) properties: In “type”, we store the class of object,
such as “ada light switch”, “light switch”, or “trash can”.
In “name”, we store a unique name that is specific to this
particular object instance, such as “A D A light switch 17,
“light switch 17, or “trash can 1”. Both of these levels of
naming, class and instance, could potentially be useful to the
robot, such as when collecting data from experience which
may relate to the specific instance or the class of object being
used. “pps_tag” defines the type of tag being used, such as
“dycem”, “towel”, or “foam tube”. “change” describes the
change in state that should be observed upon using the object
successfully, such as “overall_brightness” for lighting and
“location” for the drawer. “direction” tells the robot where
to look to observe this state change, such as “up” for the
light switches and “forward” for the lamp. “ele” contains a
hash table with information specific to the robot EL-E. In
this case it holds the HSV color segmentation boundaries
that segment the PPS-tag with EL-E’s camera.
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Fig. 6. Top: Our robot EL-E (pronounced “Ellie”). Bottom: Fingers with
short range RFID antennas.

2) actions and behaviors: For this “ada light switch”,
the two associated actions are turning the light “on” and
turning the light “off”. These map to the “push_top” and
“push_bottom” behaviors respectively. Each of these behav-
iors also has an entry which stores information important to
performing the action. For example, “push_bottom” holds in-
formation critical to pushing the bottom of the rocker switch
in order to turn the light off. It has the entries “height_offset”
with a value of -0.02 meters, and “force_threshold” with a
value of 3 Newtons. These describe how far below the center
of the PPS-tag to push and the force to apply when pushing.
The “ele” entry for the “push_bottom” behavior how close the
opening angle that should be used by EL-E’s gripper when
performing this action. 5 degrees places EL-E’s gripper in a
pinching configuration that is useful for pushing the button.

IV. A ROBOT AND BEHAVIORS THAT USE THE TAGS

Within this section, we describe the robot we used to
evaluate our implementation of PPS-tags and its behaviors.

A. Our Platform

We performed this work on the robot EL-E as shown in
Figure 6 and described in previous papers, such as [16].
The most pertinent sensors to this work are EL-E’s laser
pointer interface, DSLR camera (Nikon D40), tilting laser
range finder (Hokuyo UTM-30LX mounted on a Robotis
Dynamixel RX-28 servo motor), finger-mounted force-torque
sensors, palm-mounted IR range sensor, and finger-mounted
RFID readers. The laser pointer interface detects a green
laser spot from a laser pointer held by the user and estimates
its 3D location [10].
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Left Pair: Camera image and point cloud used to segment the drawer’s PPS-tag and find an approach direction. Right Pair: Camera image

and point cloud used to segment the lamp’s PPS-tag and find an approach direction. (Key for point cloud colors: Cyan points lie within the volume of
interest. Red points were found to correspond to the PPS-tag. Dark green points denote the plane found closest to the PPS-tag’s centroid. The yellow-green

bounding boxes check for potential collisions with EL-E’s body and arm.)

In order to associate a unique identifier with each tag,
we equipped EL-E’s fingers with RFID sensing capabilities.
On each tagged object we use an Alien Technologies’ Gen2
“Squiggle” Ultra High Frequency (UHF) tag. These tags
are passive, economical (20 cents each), easily applied,
and able to communicate with our short range antennas.
On each of EL-E’s fingers we used a pair of ceramic
920MHz microstrip antennas (Johnson Technology part num-
ber 0920AT50AO080E) mounted at 90° offsets to provide
comprehensive RF coverage for each finger and expected
read ranges of up to 15 cm. However, in practice we have
observed read ranges of up to 50 cm. The robot uses the tag
with the strongest receive signal strength indicator (RSSI) in
order to avoid ambiguities that might be caused by this read
range. Since metals are opaque to RF signals, we fabricated
fingers for EL-E out of 3D-printed ABS plastic. Although
we do not use the capability in this paper, the same RFID
tags support long-range reading and localization using long
range antennas [3]. These capabilities would complement the
work in this paper, allowing us to localize, approach, and
read semantic information from a tag that is across a room.

B. Behaviors

We now describe EL-E’s behavior after the user selects
a 3D location in the world using the laser pointer interface.
We have broken the task of approaching this 3D location and
manipulating it into four phases. In the first phase, when EL-
E is further than a threshold distance away (1.0 m), the robot
will drive towards the given location. If it travels for longer
than a threshold distance, it asks for the user to designate
the location again in order to reduce 3D estimation errors.
In the second phase, described in more detail in section V-
B.1.a, EL-E uses its laser range finder and camera to locate
and drive to the selected PPS-tag. It orients itself so that it
is perpendicular to the estimated flat surface on which the
selected PPS-tag rests. In the third phase, EL-E drives slowly
forward with its gripper closed and fingers pointed forward.
It stops when its fingers are estimated to be within 10 cm
of the selected location (detailed in section IV-B.1.b), or the
force on the fingers goes above a threshold. Once EL-E stops,

it attempts to read the unique identifier for the nearest RFID
tag by reading the ID of the tag with the strongest signal
strength.

In the final phase, EL-E reads the entry in the semantic
database associated with the PPS-tag’s RFID. If there is only
one possible action, EL-E performs it. If there are two, EL-E
asks the user to select between the two choices by pointing
the laser pointer either up or down, such that the laser point is
either more than 50cm off of the ground or less. Depending
on the object identified, users can select between on, off
(section I'V-B.2.b), pull-back (section IV-B.2.c), push (section
IV-B.2.d), pull-lamp (section IV-B.2.e), or drop (section
IV-B.2.f). After selection, the robot executes the selected
behavior, asks the user whether if it was successful in its
execution, and then records this response in the database
along with the time when the task started, the time that
it finished, the force-torque information measured during
execution, and additional behavior-specific information.

1) Navigation to the PPS-tag: In the following two
sections we describe in detail the process that EL-E uses
to navigate to the user-selected object in preparation for
manipulating it.

a) Approaching the PPS-tag: As many task-relevant
locations in human environments are situated on or near
vertical surfaces (e.g., walls and the front sides of appliances,
doors, and drawers). We heuristically assume that an effective
way to approach the selected PPS-tag will be the direction
perpendicular to the closest vertical surface.

After orienting toward and approaching the 3D location
selected by the user, the robot uses its tilting laser range
finder to acquire a point cloud. The robot then defines a
cylindrical volume of interest (VOI) around the 3D location
selected by the user, such that the axis of the cylinder is
parallel to gravity and passes through the selected location.
Within this VOI, the robot uses MLSAC, a variant of
RANSAC which attempts to find all planes in the portion
of the point cloud that falls within the VOI. For MLSAC we
use the implementation provided through the ROS personal-
robots repository [18], [17]. The robot then throws out all of
the planes it found with fewer than 100 points and selects



Fig. 7.
switched on.

the remaining plane whose member points come closest to
the user-selected 3D location.

Next, the robot finds the location of the PPS-tag closest
to the user-select location using the algorithm previously
described in section III-B. Given the estimated location and
orientation of the plane and the estimated location of the
PPS-tag, the robot calculates a waypoint 50 cm from the
selected tag in the direction perpendicular to the plane. The
robot then checks if it can be centered at the waypoint facing
the PPS-tag with its arm extended without colliding with
points in the point cloud. If this test passes, EL-E drives
towards the waypoint. Once it reaches the waypoint, it orients
to the PPS-tag.

b) Determining the PPS-tag’s Identity: While driving
towards the waypoint, EL-E updates its estimates of the
PPS-tag’s location using odometry. This results in substantial
accumulated error, so the robot now performs an additional
navigation step so that it can read the PPS-tag’s RFID
and manipulate the PPS-tag. To achieve this, EL-E visually
servos to the PPS-tag using its eye-in-hand camera. While
readjusting its pose, EL-E monitors the forces on its fingers,
and stops if it detects a collision. When EL-E’s arm is
estimated to be 10 cm from the PPS-tag, it closes its gripper
to face the finger mounted antennas forward and attempts to
read the RFID tag.

2) Manipulating the PPS-tag: We now describe the be-
haviors used by EL-E to manipulate PPS-tags.

a) Close Range Alignment: After the two navigation
steps described above, the robot assumes that its end effector
is approximately 10 cm away from the PPS-tag. In order to
refine its pose, EL-E moves forward until it detects contact
with the force/torque sensors in the base of its fingers or near
contact with the IR range sensor in its palm. Upon detection,
EL-E backs off a fixed distance (8 to 12 cm depending on the
behavior). In our tests, contact or near contact was typically
made with the tag or the vertical plane behind the tag.

b) Light Switch: To operate a light switch, EL-E moves
the carriage up (or down depending on the command), closes
the gripper (but not all the way), moves the gripper forward
until contact has been made with the wall (using a 2 N
threshold), moves the gripper away from the wall by 2 cm (to
clear the plate on which the light switch is mounted), then
moves the carriage down (or up) using torque control with
the gripper extended, and stops when the maximum force on
EL-E’s gripper is greater than 12 N or has traveled 15 cm.

To monitor the effects of using the light switch, EL-E takes
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Left Pair: EL-E turning off a light switch. Right Pair: Brightness changes resulting from the light being switched off and from the light being

a picture of the expected location of the light source with its
stereo camera prior to, and after moving the carriage up or
down. To determine the effect of its attempt to use the light
switch, EL-E takes the average intensity of the image before
the action and subtracts the average intensity of the image
after the action. If the magnitude of the change is greater
than a threshold and the result is positive, EL-E concludes
that the light has been turned off, and if it is negative EL-E
concludes that the light has been turned on.

¢) Pull Back: To pull on a towel, EL-E first moves its
arm forward to grasp the towel. As there is only one degree
of freedom for both of EL-E’s fingers, the towel grasping
behavior in our previous work [16] would sometimes cause
large forces to accumulate if EL-E’s grippers were not posi-
tioned close to the center of the towel. To some extent, this
issue was mitigated by the compliance provided by the towel.
In this work, we have implemented a new grasping behavior
that uses the force-torque sensors to move the end effector
laterally while grasping to correct for small misalignments.
This grasping behavior has the effect of centering the towel
in the middle of EL-E’s gripper making it more likely that
forces on EL-E’s fingers will be distributed evenly across the
two fingers as the towel is pulled backwards.

If the grasping behavior detects that it has been successful
(forces on both of EL-E’s fingers exceed 2 N), then EL-E
proceeds to pull on the towel by moving backwards with its
mobile base. EL-E moves back in steps of 20 cm, stopping
when either a force threshold is exceeded (drawer is fully
opened), the force on the fingers drops below a threshold
(fingers lose their grip), or the robot has moved back farther
than a defined distance (drawer is fully open). At the end
of each complete pulling step, EL-E runs the towel grasping
behavior again to maintain its grip on the towel.

During this pull back behavior, EL-E records the dis-
placement of its end effector between the time when it
successfully grasps the towel and when the robot either loses
its grip or finishes pulling. If this distance is greater than
50% of the expected pull distance, EL-E declares its action
successful. Otherwise it declares a failure. The robot records
this displacement in its semantic database for future use.

d) Push: The goal of the push behavior is for the
robot to apply a force normal to the detected plane upon
which the PPS-tag rests. The push behavior can be used
to either activate a light switch or close a drawer. EL-E
first sets its gripper to the settings specified in the semantic
database. In this work, for the ADA light switch, EL-E makes



Fig. 8. Visualization of the drop behavior. The segmented planar front face
of the trash can is in red. The large red dot is the centroid of the detected
PPS-tag, and the large blue dot is the location at which EL-E will attempt
to release the object.

the gripper more appropriate for poking by closing it. For
pushing drawers, EL-E’s gripper fully opens to maximize
the chances that its end-effector will make contact with the
drawer’s surface. Next, EL-E moves its end-effector forward
stopping if a force greater than 2 N is detected or the IR
sensor in the palm reports an obstruction. Having made
contact, or coming close to it, EL-E then pushes forward with
its base for the requested distance or until a force threshold
is exceeded.

Prior to pushing, EL-E loads the appropriate success state
detector for this PPS-tag from the semantic database. At
this time, the two possible success criteria are detecting
brightness changes and detecting how far forward EL-E has
pushed, for the light switch and drawer respectively. As in
the other behaviors, the push behavior records whether it has
succeeded and the information used to make this decision in
the semantic database.

e) Pull Lamp: In this behavior EL-E pulls on the pull
chain of a commonly available IKEA free standing living
room lamp. For this behavior, EL-E has only moved back
8 cm after contact to place the PPS-tag in the forward part
of its gripper. EL-E then closes its gripper, stopping when
a threshold force has been reached. After gripping the pull
chain, EL-E uses the same carriage control as in the light
switch operation to apply a downward force directly on the
lamp’s chain, stopping when EL-E’s fingers either detect a
force greater than 10 N or have moved down more than 7
cm. As with the other lighting related behaviors, the pull
lamp behavior monitors the change in lighting to determine
success or failure. Unlike with the switches that operate
ceiling lights, the lamp pull chain points the stereo camera
forward prior to performing the action. The final step is to
record the result of this behavior along with the captured
images.

f) Drop: The goal of the drop behavior is for EL-E
to take an object from its hand and drop that object into a
user indicated container. The object in EL-E’s hand often
obstructs the eye-in-hand camera, so visual servoing is not
used to refine the robot’s pose prior to executing this behavior
(section IV-B.2.a). Instead, EL-E uses its laser range finder
to calculate a location above the container where the object
can be dropped.

In a manner similar to the initial localization of the PPS-

tag, EL-E first uses its tilting laser range finder to scan the
container, segment out all planes in a cylindrical volume
around the PPS-tag, select the closest plane to the PPS-tag,
calculate the orientation of the plane, and find a point above
the container from which to drop the object.

After this, EL-E drives towards the container stopping 45
cm from the drop location, moves its end effector to the
location, and releases the object. For this behavior, EL-E
detects success based on whether or not it senses the object
in its grasp using its finger-mounted force-torque sensors and
the palm-mounted IR range sensor.

V. EXPERIMENTAL EVALUATION

We now present results from our tests of EL-E’s ef-
fectiveness in operating PPS-tagged devices. Our first goal
was to test the behaviors multiple times to estimate their
reliability. Our second goal was to evaluate the system’s
dependence on the relative orientation of the robot to the
object being operated. Thirdly, we wanted to test EL-E’s
ability to recognize when it failed to operate a device. All the
trials that we report here were performed in the Healthcare
Robotics Lab using standard office fluorescent lighting.

In the first set of trials, we varied the tagged device used by
the robot, the robot’s position with respect to the device, and
the action selected for a total of 32 trials. At the beginning
of each trial, we positioned EL-E 1.5 meters away from the
device’s PPS-tag in one of four directions. The robot was
always facing towards the tag at the beginning of the trial. We
then provided EL-E with a 3D location via the laser pointer
interface. If multiple actions were available, we would also
select the action to perform using the laser pointer interface.

In detail, for the regular and ADA light switch (rocker) we
placed EL-E on evenly spaced locations along the 1.5 meter
radius half-circle centered at the light switch. We placed the
lamp, drawer, and trashcan next to a wall and performed the
same procedure. However, we also placed the lamp such that
its pull chain faced outwards in the direction perpendicular
to the wall, as required by our current implementation.

In the second set of trials, we tested EL-E on an unplugged
lamp, a stuck drawer, and a sticky object to test the robot’s
ability to detect failure. The sticky object used in this case
was a sphere of double-sided tape in order to simulate
potential failures in releasing normal objects. In this case,
we defined success as EL-E attempting to perform the task,
performing what would usually be a successful action, and
reporting that it was not able to perform the task as indicated.

A. Results

We present the results from these two sets of trials in table
I. In the first set, EL-E was able to carry out all tasks with
the exception of a pulling and a pushing trial on the drawer.

In contrast to our previous work where EL-E had an
80%-90% success rate operating the drawers, our current
implementation failed at pushing and pulling once for each
of the trials in the first set of experiments. These errors
corresponded with oblique angles of the robot relative to
the front face of the drawer. We believe this led to failures
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