
COVERT/SIDE CHANNEL ANALYSIS, MODELING AND CAPACITY
ESTIMATION

A Dissertation
Presented to

The Academic Faculty

By

Baki Berkay YILMAZ

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2020
Copyright c© Baki Berkay YILMAZ 2020

COVERT/SIDE CHANNEL ANALYSIS, MODELING AND CAPACITY
ESTIMATION

Approved by:

Prof. Alenka Zajic, Advisor
School of Electrical and Com-
puter Engineering
Georgia Institute of Technology

Prof. Milos Prvulovic, Advisor
School of Computer Science
Georgia Institute of Technology

Prof. Matthieu Ratoslav Bloch
School of Electrical and Com-
puter Engineering
Georgia Institute of Technology

Prof. Angelos D. Keromytis
School of Electrical and Com-
puter Engineering
Georgia Institute of Technology

Prof. Alessandro Orso
School of Computer Science
Georgia Institute of Technology

Prof. Gregory David Durgin
School of Electrical and Com-
puter Engineering
Georgia Institute of Technology

Date Approved: March 26,
2020

If one day, my words are against science, choose science.

Mustafa Kemal Atatürk

This thesis is dedicated to my parents Nejla and Erdal Yılmaz, to my

sister İrem Yılmaz, and my beloved wife Sena Türk Yılmaz. Without their

support, love and patience, I would have given up long ago.

Onur Özkutlu, this is also for you brother. You will always be in our

hearts.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and deepest appreciation

to my supervisors Prof. Alenka Zajic and Prof. Milos Prvulovic for their

support, effort and guidance. Moreover, I would also like to express my in-

debtedness to Prof. Matthieu Ratoslav Bloch, Prof. Angelos D. Keromytis,

Prof. Alessandro Orso and Prof. Gregory David Durgin for their critical

reading, insightful comments and appearing in my thesis committee.

In addition, I would like to thank Prof. Alper T. Erdogan, who made

me believe in the importance of research and science even your work is

underappreciated.

I would also like to offer my sincerest gratitude to my friends in Italy,

Switzerland, Germany, Netherlands, UK, US and Turkey. I also feel obliged

to express my deepest appreciation to the members of Electromagnetic

Measurements in Communications and Computing for their profound im-

pact on my work, motivation and knowledge.

My parents, Erdal Yılmaz and Nejla Yılmaz, and my sister, İrem Yılmaz,

desire my heartfelt appreciation for their endless support, camaraderie,

encouragement and caring they provided. Without all these, I might have

quit long ago.

Finally, I want to express my intense devotion to my wife, Sena Türk

Yılmaz. She made me believe in myself and gave me billions of reasons to

wake up with hope every single day. Without her, I might have been lost

in troubles.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xv

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Capacity of the EM Covert/Side-Channel Created by the Exe-
cution of Instructions in a Processor 4

1.3 Electromagnetic Side Channel Information Leakage Created
by Execution of Series of Instructions in a Computer Processor 5

1.4 Communication Model and Capacity Limits of Covert Chan-
nels Created by Software Activities 7

1.5 Covert Channel Information Leakage Capacity: A Generalized
Approach . 8

1.6 A Microarchitecture-Level Modeling Electromagnetic Side-Channel
Signals . 9

1.7 Research Contributions . 10

1.8 Thesis Outline . 11

Chapter 2: Background . 13

2.1 Covert/Side Channels . 13

vi

2.1.1 EM Covert/Side Channels 17

2.1.2 Applications of Covert/Side Channels 18

2.2 Measuring Pairwise Side Channel Signal Power from Proces-
sor Instructions . 20

2.3 Amplitude Modulated Signal Generation by Executing Programs 23

2.4 Channel Capacity . 25

2.4.1 Markov Model Capacity over Noisy Channels 26

2.4.2 Channel Capacity for Insertion & Substitution Channels 27

Chapter 3: Capacity of the EM Covert/Side-Channel Created by
the Execution of Instructions in a Processor 29

3.1 Overview . 29

3.2 Mathematical Relationship Between ESE of Individual Instruc-
tions and The Measured Pairwise Side-channel Signal Power . 30

3.3 A New Method for Evaluation of EM Side/Covert Channel Ca-
pacity Created by the Execution of Instructions in a Processor 33

3.3.1 Quantifying the Side Channel Leakage 33

3.3.2 A Practical Calculation of Transition Probabilities in
EM Side/Covert Channel 36

3.4 Experimental Results and Discussions 42

3.4.1 Experimental Results of Core I7 Laptop 43

3.4.2 Experimental Results of Core 2 Laptop 46

3.4.3 Experimental Results for Turion X2 Laptop 48

3.4.4 Experimental Results for NIOS Processor on the DEI
FPGA . 50

3.4.5 Effect of Alternation Time Talt on ESE 52

vii

3.4.6 Justification of the Proposed Model 53

3.5 Potential Defense Mechanisms 54

3.6 Summary . 55

Chapter 4: Electromagnetic Side Channel Information Leakage
Created by Execution of Series of Instructions in a
Computer Processor . 57

4.1 Overview . 57

4.2 Modeling Information Leakage from a Computer Program as
a Markov Source Over a Noisy Channel 59

4.2.1 Proposed Markov Source Model for Modeling Informa-
tion Leakage from a Sequence of Instructions 60

4.2.2 Introducing Information Leakage Capacity for the Pro-
posed Markov Source Model 62

4.2.3 Reducing the Size of the Markov Source Model 64

4.2.4 An Empirical Algorithm to Evaluate the Leakage Capacity 65

4.3 Estimating Channel Input Power in the Proposed Markov Model 68

4.3.1 Definition for Emanated Signal Power (ESP) of Individ-
ual Instructions as They Pass Through Pipeline 68

4.3.2 Estimating ESP From The Total Emanated EM Signal
Power Created by a Program 70

4.4 Experimental Results and Information Leakage Analysis . . . 72

4.4.1 Experimental Results and Leakage Capacity for FPGA . 74

4.4.2 Experimental Results and Leakage Capacity for AMD
Turion X2 Laptop . 76

4.4.3 Experimental Results and Leakage Capacity for Core 2
DUO Laptop . 78

viii

4.4.4 Experimental Results and Leakage Capacity for Core I7
Laptop . 79

4.5 Utilizing the Proposed Framework for Security Assessment . . 82

4.6 Summary . 86

Chapter 5: Communication Model and Capacity Limits of Covert
Channels Created by Software Activities 87

5.1 Overview . 87

5.2 Wireless Transmission via Covert Channels 89

5.3 Transmission Model for Software-Activity-Created Signals . . . 90

5.4 Quantifying the Information Leakage of Covert Channel Software-
Activity-Created Signals . 96

5.5 Capacity of the Covert Channel Created By a Computer Soft-
ware Activity .101

5.6 Experimental Validation of the Proposed Model105

5.7 Summary .113

Chapter 6: A Generalized Approach to Estimation of Covert Chan-
nel Information Leakage Capacity115

6.1 Overview .115

6.2 Overall Communication Model117

6.2.1 Transmitted Signal and Receiver Model118

6.2.2 Channel Model .123

6.3 Leakage Capacity .129

6.4 Establishing Connection between the Proposed Model and Covert
Channels .131

6.4.1 Power Based Covert Channels131

ix

6.4.2 EM-Based Covert Channels132

6.4.3 Backscattering Covert Channels135

6.4.4 Cache-Based Covert Channels136

6.5 Experimental Setups and Results138

6.6 Summary .147

Chapter 7: A Microarchitecture-Level Modeling Electromagnetic
Side-Channel Signals .149

7.1 Overview .149

7.2 Experimental Methodology for Signal Acquisition151

7.2.1 Signal Acquisition .151

7.3 Signal Reconstruction .153

7.4 EMSim Modeling .155

7.4.1 Signal Amplitude for Individual Sources155

7.4.2 Multi-Input Modeling .159

7.5 Evaluations .161

7.5.1 Evaluating Model Accuracy161

7.5.2 Effects of Distance .165

7.6 Practical Use-cases for EMSim167

7.6.1 Side-Channel Leakage Estimation167

7.6.2 Application to Debugging/Profiling169

7.7 Summary .171

Chapter 8: Research Contributions and Future Work173

x

8.1 Research Contributions .173

8.2 Future Research Directions .176

Appendix A: The Relationship between ESE and Measured Spec-
tral Power of a Microbenchmark178

Appendix B: Execution Location Based Noise Power Estimation187

Appendix C: Discrete Fourier Series188

Appendix D: Gradient Descent Approach for Capacity Calcula-
tion .190

Appendix E: Establishing the Duality Between (4.3) and (4.5) .195

Appendix F: Mathematical Derivation of ESP201

Appendix G: A Microarchitecture-Level Electromagnetic Side-
Channel Signal Modeling207

G.1 Overview .207

G.2 A Method for Generating Training Sequences for Single Inst-
ruction Tracking .209

G.3 Modulo Operation to Increase Effective Signal Sampling Rate .212

G.4 Experimental Results and Discussion218

G.4.1 Experimental Results on Target Device 1 (FPGA)218

G.4.2 Experimental Results on Target Device 2 (ARM Board) .223

G.5 Summary .225

G.6 Sequences Used for Target Device 1228

G.7 Sequences Used for Target Device 2229

xi

Appendix H: PSD of PAM Signal with Random Pulse Position . .230

H.1 PSD of “on-off” Keying (OOK) With Random Pulse Position . .234

Appendix I: Covert Channel Capacity Derivations236

References .253

Vita .254

xii

LIST OF TABLES

2.1 x86 instructions for our X1/X2 ESE measurements. 22

3.1 ESE values (in zJ) for the Core i7 laptop. 38

3.2 Transition probabilities based on ESE measurement in Fig. 3.1 44

3.3 ESE Values (in zJ) for the Core 2 Duo Laptop. 47

3.4 Transition probabilities based on ESE measurement in Table
3.3 . 48

3.5 ESE Values (in zJ) for the AMD Turion X2 Laptop. 49

3.6 Transition probabilities based on ESE measurement in Table
3.3 . 50

3.7 Transition probabilities based on ESE measurement in [58] . . 51

3.8 Occurrence Probabilities of Instructions From Measurements
Collected at Different Frequencies 52

3.9 Capacity comparison with classical Shannon’s capacity 53

4.1 ESP values (in zJ) for DE1 FPGA board. 75

4.2 ESP values (in zJ) for AMD Turion X2 Laptop. 76

4.3 ESP values (in zJ) for Core 2 DUO Laptop. 78

4.4 ESP values (in aJ) for Core I7 Laptop. 79

5.1 Comparison of experimental and theoretical results in terms
of BER for NIOS processor on the DE1 FPGA board.107

xiii

5.2 Experimental results for computer systems with distance. . .113

6.1 Parameters utilized for the leakage capacities for covert chan-
nels. .141

7.1 RISC-V (R32IM) instruction-set and their cluster used in this
chapter. .162

7.2 Signal Available to Attacker metric [51] for Real measure-
ments (R) and Simulations (S).168

G.1 Correlation between the EM signatures and their one-time-
run versions for Altera DE1 Cyclone II. The columns denote
the EM signatures and the rows denote the one-time-run ver-
sions. The diagonal entries dominate the other terms, there-
fore, the generated EM signatures can identify the executed
sequences and corresponding instructions (The values given
in the table is correlation coefficient × 100).222

G.2 Correlation between the EM signatures and their one-time-
run versions for A13-OLinuXino board. The columns denote
the EM signatures and the rows denote the one-time-run ver-
sions. The diagonal entries dominate the other terms, there-
fore, the generated EM signatures can identify the executed
sequences and corresponding instructions (The values given
in the table is correlation coefficient × 100).227

G.3 Instruction sequences that are used in the FPGA experiments 228

G.4 Instruction sequences that are used in the ARM Board exper-
iments .229

xiv

LIST OF FIGURES

2.1 The X1/X2 alternation pseudo-code. 21

2.2 Power spectrum of ADD/LDM instruction pair at 79 kHz and
80 kHz. 23

2.3 Illustration of how microbenchmark induces emanations at a
specific radio frequency by alternating half-periods of A and
B activity. 24

2.4 Illustration of how microbenchmark modulates the signal
into the carrier using on-off keying (bottom). 25

2.5 Cascaded channels equivalent to the binary discrete mem-
oryless noisy, jittery, synchronization channel with n input
symbols. 27

3.1 Noisy channel model for covert/side channel. 34

3.2 An example of instruction ordering based on a measurements
in Table 3.1. 39

3.3 An illustration of the process for calculation transition prob-
abilities for a given instruction. 41

3.4 Measurement setup. 43

4.1 Markov Source Model for the instruction execution when the
pipeline depth is m, and the cardinality of the considered
instruction set is three. 61

4.2 Simplified version of Markov Source Model for the instruction
execution when the cardinality of the considered instruction
set is three. 65

xv

4.3 Markov Model for the instruction execution as it goes through
sub-states that take equal amount of time. 67

4.4 Measurement setups used in the experiments. 72

4.5 Leakage Capacity for NIOS Processor on the DEI FPGA. 75

4.6 Leakage Capacity for AMD Turion X2 Laptop. 77

4.7 Leakage Capacity for Core 2 DUO Laptop 79

4.8 Leakage Capacity for Core I7 Laptop 80

4.9 The methodology to assess information leakage. 85

5.1 Illustration of two timing distributions of symbols for an EM
covert channel, one when memory activity is used and one
with on-chip instructions is used. 91

5.2 (a) PAM with sequence xk and (b) distribution of pulses per-
turbed randomly in time and modulated in amplitude when
the shaping pulse is a square wave. 93

5.3 Illustration of two distributions of pulse shift for an EM covert
channel, one when memory activity is used and one with on-
chip instructions is used. 95

5.4 PSD of normalized signal and jitter noise due to random
pulse position when T ≈ 15σ. 98

5.5 BER for the covert wireless communication system with vary-
ing jitter noise power. .100

5.6 SNRjitter vs. σ/T .101

5.7 Binary discrete memoryless noisy, jittery, synchronization
channel. .102

5.8 Upper and lower bounds of information rates for deliberate
side channel with several probabilities of insertion for a syn-
chronized channel. .103

xvi

5.9 Comparison of the lower bound of information rates for covert
channel with no jitter and AWGN channel with insertions
with the lower bound of information rate derived in [15]. . . .104

5.10 Upper and lower bounds of information rates of the covert
channel with different jitter variances when pi = 0.05.105

5.11 The meausrement setup for devices: a) FPGA, b) FPGA, c)
OLinuXino, d) Laptops with distance.106

5.12 The received baseband signal with period T = 1µs.107

5.13 PSD of a) the transmitted signal and b) its filtered version at
the receiver side for the symbol without memory activity. . . .109

5.14 Theoretical and experimental BER for the symbols with and
without memory activity. .110

5.15 The received signal at distance of a) 50 cm, b) 1 m.111

5.16 a) BER vs. distance, b) The received signal power vs. distance
where the noise level of the instrument sensitivity level is
about -130dBm. .112

6.1 The received signal for a) ideal conventional communication
system, b) covert channel communication system.119

6.2 The equivalent version of the received signal under the as-
sumption that the receiver employs a matched filter in (6.1). .122

6.3 One cycle corrupted received signal that was modified by sig-
naling time variation, and modified such that the raising time
is equivalent to (n− 1)T .123

6.4 Channel Model for the communication system.128

6.5 Received signal generated by the covert channel in [29]. The
black (solid) curve represents the measured signal and the
red (dotted) curve is for the modeled signal.132

6.6 Received signal generated by the covert channel in [21]. The
black (solid) curve represents the measured signal and the
red (dotted) curve is for the modeled signal.133

xvii

6.7 Received signal generated by the covert channel in [5]. The
black (solid) curve represents the measured signal and the
red (dotted) curve is for the modeled signal.134

6.8 Received signal generated by the covert channel in [95]. The
black (solid) curve represents the measured signal and the
red (dotted) curve is for the modeled signal.136

6.9 Experimental setups for the measurements.139

6.10 Distributions for the signaling time for various covert channels.140

6.11 Bit/Channel Use for various covert channels.142

6.12 Bit per second (Bps) for various covert channels.143

6.13 Bit/Channel Use while pc and SNR vary.145

6.14 The proposed leakage capacity and bounds given in [21] while
SNR changes. .146

7.1 Reconstructing the original signal using three different ap-
proaches. Using a combination of a sinusoidal and an expo-
nential function (f(t) in Equ. 7.5) can achieve the best accu-
racy. .154

7.2 The signal amplitude for an ADD as it progress in the pipeline
(while all other instructions are NOP). The actual signal is
shown in light color (green). Darker color (black) shows the
simulated signal when considering each pipeline stage as a
separate source (top), and when considering the entire pro-
cessor as a single source (bottom), and the largest differences
between the two are pointed out using red ellipses.156

7.3 Effect of the activity factor on the amplitude. The actual sig-
nal shown in green. The simulation is shown in black when
activity factor is modeled using a linear regression model
(top) and when an average activity is used (bottom).158

xviii

7.4 An example of how individual sources (pipeline stages) are
combined to form the final signal. Top: how the actual EM
signal looks like when the instructions are executed in isola-
tion (NOP, inst, NOP). Bottom: The actual EM signal when
the instruction sequence is NOP, ADD, SHIFT, NOP (i.e., a
combination of multiple instruction in the pipeline).160

7.5 A comparison between the signal generated by a real hard-
ware (top) and the simulated signal (bottom) in EMSim.164

7.6 Effect of distance on the signal amplitude. For both figures,
the plots with darker color correspond to reconstructed sig-
nal, and the other ones correspond to the original signal. . . .166

7.7 A case-study to show how EMSim can be used for debugging.
The measured signal (top) does not match with the reference
model obtained by the simulation model (bottom) which in-
dicates that there is a potential error/issue in the hardware.
. .170

D.1 Gradient descent approach to achieve optimal solution192

G.1 Pseudocode for Training Setup.211

G.2 Pseudocode for Testing Setup.211

G.3 Pseudocodes for Training and Testing setups used for gen-
erating EM signatures and testing the generated signatures .211

G.4 The solid curves represent the continuous target signal y(t) =
sin (2πt), whereas the markers represent ys[n] (samples ob-
tained from y(t) with sampling rates Ts1 = 2.01 (a) and Ts2 =
2.53 (b)). One should note that this is a case where the signal
is heavily undersampled that causes aliasing.215

G.5 Time axis is extended to [0, 1000] s for Figure G.4, and the
markers start to resemble y(t) in (a) but not in (b)216

G.6 When samples are sorted by their modular sampling timing
(tmodn), the reconstructed signal fully resembles y(t) in its fun-
damental period for both (a) and (b).216

xix

G.7 Measurement Setup: Magnetic near field probe is located on
top of the processor of the FPGA219

G.8 Recorded signal for the given sequence in Training Setup
before modulo operation. .221

G.9 The plot on the top presents the result of the modulo op-
eration obtained by using Training Setup, plot on the bot-
tom presents the single execution of the same instruction
sequence obtained by Testing Setup.221

G.10 Resampled modulo operation result (solid curve) vs. single
execution of the same instruction sequence (dashed curve). .222

G.11 Recorded Training Setup of Sequence 1 from Table G.4. . . .224

G.12 The plot on the top presents the result of the modulo oper-
ation, plot on the bottom presents the single execution of
the same instruction sequence obtained by modified Test-
ing Setup, where the signal is preceded and followed by the
same instruction sequence. Instruction Sequence used for
this figure is Sequence 1 from Table G.4.225

G.13 The plot on the top presents the result of the modulo oper-
ation obtained by using modified Training Setup (concate-
nating different instances of Testing Setup) for Sequence 1
from Table G.4, plot on the bottom presents the single ex-
ecution of the a different instruction sequence (Sequence 3
from Table G.4) obtained by Testing Setup. The correlation
of those signals are very low as expected.226

xx

SUMMARY

This thesis develops methods to analyze and model covert/side chan-

nels and electromagnetic signals emitted during program execution, and

estimate their channel capacity to comprehend the severity of information

leakage that is a result of hardware and software activities, and provides

guidelines to minimize emanations to enable system designs more resilient

to side/covert channel attacks.

Side/Covert channels are asynchronous channels which are not de-

signed nor intended to transfer information. These channels are generated

as a byproduct of performing legitimate program activities on the hardware

of computer systems. Various approaches have been proposed in the liter-

ature to model such channels to analyze and estimate information leakage

capacity. Main drawbacks of current approaches are that they do not

consider 1) asynchronous nature of side/covert channels, 2) variability in

execution time of each instruction, and 3) interrupts due to other software

activities. Ignoring any of these features can result in underestimating the

severity of information leakage, and inaccurate models that can mislead

the analysis of these channels.

Likewise, having a tool to analyze the emanated electromagnetic sig-

nals in the design-stage can reduce the cost of production since designs

can be tested before they are manufactured. This tool also helps reducing

the flaws that causing information leakages through side/covert channels

and securing sensitive information of customers. To successfully evaluate

the severity of side/covert channels, our research has 1) defined a metric

that calculates the emanated signal power difference of two instructions

and modeled the covert/side channels as a discrete memoryless channel

xxi

with uneven symbol transmission length, 2) defined another metric to cal-

culate the emanated signal power for a single instruction and established

a connection with Markov Source Models to model side channels con-

sidering the dependency among instructions as a consequence of proces-

sor pipeline and program functionality, 3) modeled and analyzed a covert

channel, which is deliberately generated with electromagnetic (EM) ema-

nations due to computer activities, by adopting methodologies from con-

ventional communication systems, and proposed bounds for the capacity

of these channels, 4) introduced a generalized model for covert channels

with different sources (i.e. power, cache, EM, etc.) and an assessment

methodology that can be utilized by designers to analyze their systems

against attacks based on these channels, and 5) modeled side channel

signals emanated while executing instruction sequences on a processor,

which leverages design-stage investigation of new products. The work pro-

vides a deep understanding of side/covert channels generated by program

activities which can be utilized to secure devices by optimizing their de-

signs to minimize information leakage.

xxii

CHAPTER 1

INTRODUCTION

1.1 Motivation

A side/covert channel is a communication channel that is neither designed

nor intended to transfer information [1]. Signals from these channels are

generated as a side effect of performing legitimate program activity on the

hardware of a device. Since program activity and the resulting hardware

activity are dependent on data processed by the program, the resulting

side/covert channel signals can (and usually do) carry information about

those data values. This allows attackers to obtain sensitive information

by analyzing side/covert channel signals that are produced by programs

which process this sensitive information.

Covert/side-channel attacks have been acknowledged as a serious se-

curity threat [2]. The severity of that threat dramatically increases as

computer systems are increasingly getting mobile and may be physically

controlled or placed close to potentially malicious entities. For example,

previous work [3, 4, 5] confirm that modulated EM emanations from lap-

top and desktop systems can be created by executing seemingly innocuous

code, and EM covert channel transmission of thousands of bits per second

has been demonstrated to distances of at least several meters and even

through a wall. Because the “transmitter” code for EM covert channel at-

tacks is innocuous-looking, and because reception of the emanations does

not require direct contact with the system under attack, numerous EM

side/covert channel attacks may be carried out completely undetected.

1

In information theory, covert channels refer to low probability of de-

tection communications [6]. These communications are designed to pre-

vent the existence of transmission in the first place. In these channels,

secondary users communicate covertly over the existent communication

channels that are utilized by the primary users. Another description for

these channels is that users desire to transmit information in secret through

a known communication channel to maintain their privacy, etc. The gen-

eral practice for these channels is to exploit Gaussian channels, pure loss

quantum channels and thermal noise quantum channels [7]. Please keep

in mind that the covert communication in the information theory litera-

ture aims to embed the information into the existent synchronous chan-

nel so that the entropy between the transmitted bit sequence and zero se-

quence is almost zero. In other words, an adversary could not differentiate

whether the transmitted bit sequence is either zeros or any other non-zero

bit sequence [8]. However, in this thesis, covert channels refer to a means

of communication between two parties that are not permitted to commu-

nicate. Contrary to covert channels in the information theory, they do

not embed information into an already-existent channel. They are covert

in the sense that legitimate activities in computer systems can generate

them without being aware of doing it. In other words, the covert channels

due to software activities are totally separate and individual channels are

such that they do not exploit any synchronous channel that already exists.

The severity of a side/covert channel is often measured in terms of bit

rates, i.e. how rapidly it can transmit information. Millen was the first to

establish a connection between Shannon’s information theory and infor-

mation flow models in computer systems [9] to calculate the capacity of

such a covert channel. Considering instructions as the inputs of covert/-

2

side channels, the proposed method in [9] ignores the variability in execu-

tion time of instructions. The model also assumes a synchronous channel

which is not a realistic assumption for side/covert channels. Moreover,

transmission through covert/side channels is often corrupted by insertion

and erroneous transfer of bits due to their unintentional nature.

In the conventional communication literature, there is a large num-

ber of papers discussing bounds on the capacity of channels corrupted

with synchronization errors [10]-[14]. Also, the work in [15, 16] discusses

bounds on the capacity of channels corrupted with synchronization and

substitution errors. The main drawbacks of these methods for side/covert

channels are ignoring the signaling time deviations due to computer activi-

ties, insertions or deletions due to stalls, interrupts, etc., and not having a

proper channel model that reflects the characteristics of side/covert chan-

nels.

These shortcomings demonstrate that new approaches are required to

quantify the actual information leakages through side/covert channels.

Having such a leakage quantification reveals the resiliency of a device

against attacks based on these unintended channels. Therefore, the ap-

proaches must be easily applied by system designers to test whether their

systems are resilient against side/covert channel attacks. Moreover, the

new approaches must consider the worst-case scenarios and motivate

minimizing leakages as much as possible to overcome any attacks in the

near future. Therefore, these approaches have to provide a detailed analy-

ses of covert/side channels, proper modeling of these channels to quantify

worst-case scenarios, a simulation tool to analyze emanated EM signals

in design-state and a design assessment methodology that guides systems

designers for more secure devices.

3

1.2 Capacity of the EM Covert/Side-Channel Created by the Execu-

tion of Instructions in a Processor

Covert/Side channels are unintentional channels that are byproducts of

computer activities. These channels can be a source of security flaws be-

cause they can enable unauthorized transmission of secret information.

Here, the question is how to measure severity of these channels. In that

respect, Millen was the first to establish a connection between Shannon’s

information theory and information flow models in computer systems [9].

The covert channel is modeled as a synchronous channel and the chan-

nel capacity of the model is calculated by utilizing Shannon’s capacity

definition. In other words, the paper established a connection between

the channel capacity and the severity of the channel. However, the syn-

chronous channel assumption is not realistic for these channels. Although

most communication systems are designed to avoid symbol loss and/or

insertion with little or no overhead, the covert channel is not designed

to transfer information at all and its transmission is often corrupted by

insertion, deletion and erroneous transfer of bits.

In conventional communication literature, there are a large number

of papers discussing bounds on the capacity of channels corrupted with

synchronization errors. There are also some papers discussing the ca-

pacity bounds for channels that are corrupted with synchronization and

substitution errors. Likewise, in some work, the capacity bounds when

codewords have different lengths are derived. However, the main problems

with side channels are non-existence of codeword definition and an accu-

rate communication model between source and the attacker to quantify

information leakage. Moreover, previous research does not provide the an-

4

swer to how much information is “transmitted” by execution of particular

sequence of instructions that do not have equal timing and are transmit-

ted through erroneous channel. In that respect, a measurement technique

is devised to quantify the emanated power that is a result of execution of a

pair of instructions. This chapter aims to calculate the information leak-

age by establishing a connection with Shannon’s capacity and properly

modeling the side channel with realistic assumptions that preserve the

characteristic of side channels. To achieve our goal, we first derive a mat-

hematical relationship between electromagnetic side channel energy (ESE)

of individual instructions and the measured pairwise side-channel signal

power. Then, we model the side channel communications as a discrete

memoryles channel where instructions are the codewords and transition

probabilities are calculated based on ESE. The leakage limit is defined as

the channel capacity of the proposed model where the codewords have

variable length. Finally, we provide leakage capacities of different devices

and demonstrate the severity of possible threats that these channels can

cause. We need to note here that the instructions behave as the code-

words of the side channel communication, and the goal is to investigate

how much information these instructions can convey for the worst-case

scenario. The increase in the leakage capacity means better ability to esti-

mate the instruction sequences, hence, predicting the computer activities

with higher accuracy.

1.3 Electromagnetic Side Channel Information Leakage Created by

Execution of Series of Instructions in a Computer Processor

Side channels are a consequence of program execution in a computer pro-

cessor. To estimate information leakage and its capacity limits, under-

5

standing the relationship between code execution and information leakage

is a necessary step. The methodology given in the previous section is ap-

propriate for low complex devices where the pipeline has a simpler struc-

ture. However, as the systems evolve, the pipeline gets more complex to

prevent stalls due to branching operations, etc. One critical observation is

that each stage of a pipeline emits EM signals that can carry some informa-

tion about the executed instruction and we collect the mixture of signals

that are emanated from all stages. Moreover, the programs are written to

serve a purpose, therefore, the execution order of instructions shows de-

pendency to previously executed instructions. To consider the dependency

among instructions due to program functionality and pipeline effect, this

chapter proposes a Markov Source Model to relate program execution to

electromagnetic side channel emanations, and estimates side channel in-

formation capacity created by execution of series of instructions (e.g. a

function, a procedure, or a program) in a processor. Since the emanated

signals are a result of executed instructions, the sources of the model are

considered to be instructions. The signal emitted when these instructions

are executed is considered as the channel input of the model. Since ob-

taining the emanated signal of a single instruction is extremely difficult

especially in complex devices, we derive a mathematical relationship be-

tween the emanated instruction signal power (ESP) and total emanated

signal power while running a program. Then, we derive leakage capacity

of electromagnetic (EM) side channels created by execution of series of in-

structions in a processor. We provide experimental results to demonstrate

that leakages could be severe and that a dedicated attacker could obtain

important information. Finally, we provide an assessment approach that

can be utilized by system designers to make their devices more secure

6

against EM based side channel attacks.

1.4 Communication Model and Capacity Limits of Covert Channels

Created by Software Activities

Digital and/or analog characteristics of electronic devices during executing

programs can create a side channel. This channel can be exploited by a

motivated attacker to extract sensitive information such as cryptographic

keys. If an attacker modifies the software application to deliberately exfil-

trate sensitive information through a side channel, this channel is called

a covert channel. Although covert channels are not designed to search for

secret information within a system, they can be used as a tool to trans-

mit information to outside world, Here, information is provided by another

mechanism that is not allowed to communicate with outside world. This

work first demonstrates a covert channel based on EM signals that are

generated by legitimate program activities. To show the severity of possi-

ble attacks with this covert channel, we model this channel to obtain the

maximum leakage capacity. Because the covert channels are not designed

to transmit information, they are exposed not only to the errors created by

the transmission, but also by varying the execution time of computer activ-

ities, and/or by insertions from other activities such as interrupts, stalls,

etc. Therefore, the model needs to include all the undesired characteristic

of the covert channels that is not observed in conventional communication

systems. Therefore, to consider insertions and variation in signaling time,

we propose to model the covert channel as an insertion channel with ran-

dom insertion and substitution due to the noise and jitter errors. Since the

goal is to transmit information in terms of zeros and ones, we model the

transmitted sequence as a pulse amplitude modulated signal with random

7

pulse positions. We also propose a receiver design that can correctly detect

the computer-activity-created signals. Then, we derive capacity bounds of

this covert channel by utilizing the proposed model. Finally, we perform

experiments with high clock speed devices at some distance to illustrate

the severity of leakages. We observe that the theoretical derivations and

empirical results show good agreement.

1.5 Covert Channel Information Leakage Capacity: A Generalized

Approach

Foreseeing severity of leakages through covert channels is a necessity for

designers to minimize security flaws. These vulnerabilities occur because

of software activities and are a result of digital and/or analog character-

istics of computers. To make these designs more resilient to any covert

channel attacks, a judicious approach has to be followed. Having a tool to

unveil possible leakage sources of devices in design-state can circumvent

these attacks because it provides an opportunity for designers to modify

their systems to minimize leakages for worst-case scenarios.

In the previous section, a covert channel and its model are proposed to

demonstrate how covert channels can cause irreparable damages. How-

ever, attackers can exploit every possible source to achieve their goals,

hence, a generalized model that is not limited to EM signals, but compris-

ing other covert channels with various sources, i.e., backscattering, cache,

power, etc, is required. Having such a generalized model, a detailed anal-

ysis of systems can be performed to make them more resilient to covert

channel attacks. In that respect, this work proposes a methodology to

estimate the worst-case information leakage through various covert chan-

nels. The methodology can be adopted for both analog and digital covert

8

channels. To model the channels, we first define and derive effective chan-

nel noise which is shown to be a combination of additive channel noise

and jitter noise. We also propose signal and receiver models to mimic the

use-cases of covert channels. The model also contains deletions and in-

sertions that are commonly observed for any covert channels. The model

helps to utilize Shannon’s capacity definition to calculate leakage capacity

of these chanels. Based on the model and observations, an assessment

technique which exploits the proposed model is presented to help design-

ing more secure systems. Finally, the assumptions to model the covert

channels are verified with experimental result.

1.6 A Microarchitecture-Level Modeling Electromagnetic Side-Channel

Signals

The concern for information leakage through side channels raises as the

chances of attackers to physically access computing systems increase. For

Internet-of-Things (IoT) systems, the ability of attackers to be in close prox-

imity becomes a threatening problem since these systems contain sensitive

data, such as sensor data, login information for over-the-network man-

agement of the system, etc. Therefore, these systems are required to be

designed carefully such that they are resilient to any side channel attacks.

In other words, these systems have to be quantitatively assessed in the

early design stage such that every weak aspect of the design is revealed.

This early stage assessment methodology not only secures systems against

side channels attacks, but also decreases the cost of production.

Existence of such an assessment methodology can change the per-

spectives of designers because they can also include information leakages

through side channels among their design considerations. Although there

9

are some assessment methodologies to quantify EM side channel leakages,

they are mainly focus on the emanated signal after the system is manufac-

tured. Since the analysis is done after production of the system, previous

techniques could not help decreasing the cost of production, and prevent-

ing information leakages, but behave as an indicator of the vulnerability

level of the designs. In that respect, this work introduces a simulation

tool for emanated EM signals on the instruction granularity level to unveil

the vulnerable aspects of any given design. To achieve our goal, we first

propose a model for the emanated signal when an instruction is executed

in any stage of a processor pipeline. Since measuring devices capture

a mixture of signals emanated from each pipeline stages, we propose a

multiple-input-single-output (MISO) communication system to represent

the collected signals. Finally, we present our experiments which demon-

strate the accuracy of the proposed model. The experimental results and

the theoretical signals show good agreement, hence, the proposed signal

model can be used in the design-stage to analyze possible flaws in the

system.

1.7 Research Contributions

The research contributions of the thesis are

• Definition of ESE (Electromagnetic Side-channel Energy) to calculate

the relative signal power difference between two instructions [17],

• A discrete memoryless channel (DMC) model to quantify the informa-

tion leakages for side channels [18],

• ESP (EM Signal Power), a definition and methodology to calculate the

emanated EM signal power while an instruction is executed through

10

pipeline stages of a processor,

• A Markov source channel model to quantify side channel capacity

which considers the dependency among instructions due to pipeline

and program functionality [19],

• Definition and derivation of jitter error that is a result of variations in

signaling time of transmitted bits in covert channels [20],

• An EM based covert channel and its model to demonstrate its severity

[21],

• A generalized model for various covert channels to quantify their

channel capacity [22],

• EMSim, a tool to simulate emanated EM signals to analyze systems

for information leakage at design-stage [23].

1.8 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 provides infor-

mation on covert/side channels, their use-cases, and previous attempts

on qualifying information leakage, definitions that are heavily exploited

in both conventional communication and information theory literature,

Chapter 3 defines ESE and proposes a DMC channel model to quantify the

worst-case information leakage that is available to an attacker. Chapter

4 defines ESP and models the side channel as a Markov Source Model to

consider the instruction dependency that is a result of processor pipeline

and program functionality. Chapter 5 introduces a covert channel based

on EM side channels, defines jitter error, models the communication be-

tween the source and sink as an insertion channel corrupted with noise,

11

and provides capacity bounds for such channels. Chapter 6 proposes a

communication channel model that can be generalized to various covert

channels which employ on-off-keying modulation scheme. Chapter 7 in-

troduces EMSim which is a tool to simulate emanated EM signals while

executing a program. Finally, Chapter 8 summarizes the contributions of

the thesis and provides possible future directions.

12

CHAPTER 2

BACKGROUND

Understanding side/covert channels to model, analyze, and estimate leak-

age capacity requires an interdisciplinary research to accurately expose

the severity of these unintentional channels. In this chapter, we provide

some important concepts from information and communication theory lit-

erature as well as EM based side/covert channel signals that are heavily

exploited throughout the thesis.

2.1 Covert/Side Channels

Communication channels are designed carefully to interchange informa-

tion, resources, etc., between parties. Each party participating in this

process can control and limit the extent of shared data to protect company

secrets, plans etc. Also, both end-users are required to agree on some

standards and/or principles for legitimate transfer of information.

However, in 1967, Dr. Willis H. Wore demonstrated a computer network

vulnerability caused by radiations from processors, communication lines,

and output devices [24]. Existence of these undesired signals raised ques-

tion about the possibility of “side channels”, which are unintentionally

created as a consequence of hardware/software activities in a computer

system [25]. Detecting and processing these emanated signals can lead to

serious information leakages which could be a significant threat against

one of the basic human rights: privacy.

The threat became real when Lampson in [1] exploited a side channel

to send some information of customers to the owner of a program even

13

though this transmission process is not permitted. He called these chan-

nels “covert” for the first time, defined them as not intended channels for

information transfer, and proposed countermeasures to prevent such at-

tacks. Later, Eck in [26] demonstrated the possibility of eavesdropping

on video display units to reconstruct the video content, and claimed the

possibility of picking up signals at a distance over 1 kilometer.

Another type of side channel attacks was introduced when Kocher in

[27] demonstrated timing attacks to break some cryptosystems, i.e. RSA,

DSS. His idea was to exploit slight differences on the amount of time to

process different inputs due to branching, conditional statements, etc.

Extension of this work was proposed by Schindler in [28] to compromise

secret keys of RSA with Chinese Remainder Theorem assuming that the

attacker can access to hardware device. The main drawbacks of these

timing attacks were that the attacks were performed on simple comput-

ing devices, and required a direct access. However, the severity of these

attacks gained more attention when practicality of remote timing attacks

was illustrated by Bonech in [29]. Bonech et al. broke secret keys of

OPENSSL, a cryptosystem commonly used in web servers and SSL appli-

cations, remotely.

Attacks based on power analysis made side channel attacks even more

menacing when Kocher in [30] demonstrated differential power analysis

(DPA) to break various cryptosystems’ secret keys on microcontrollers. He

collected thousands of power traces to build a high order statistical model

to estimate the intermediate secret bits of cryptosystems. He claimed

that unanticipated security faults can occur if hardware designers ignore

and/or underestimate the attacks based on “side effects” of computing de-

vices. Goubin et al. [31] compared DPA with simple power analysis (SPA),

14

which aims to deduce parts of secret keys from power consumption val-

ues, and revealed that DPA can circumvent the countermeasures against

SPA attacks. Messerges et al. extended this work by extracting secret

exponent bits from tamper resistant hardware [32]. Comprehending the

severity of attacks based on power analysis, some methods have been pro-

posed as countermeasures for these attacks. Chari et al. added random-

ness while computing the key exponent to prevent the statistical attacks

(DPA) [33]. In [34], an application, which first identifies sensitive instruc-

tions and then transforms the code to make it more robust to attacks,

was proposed to automatically prevent information leakage. Motivated by

these approaches, many covert/side channels are investigated and named

based on the sources that generate such channels. These channels can

be classified into two broad categories of digital/micro-architectural and

analog/physical covert/side channels. These channels can be explained

in detail as follows:

i) Digital/Micro-architectural Covert/Side Channels: They typically rely

on shared hardware resources in the computer between a source and

a sink application. The source application (also called Trojan), has ac-

cess to sensitive information, however, its communication to outside

world (e.g. network or I/O ports) is well-protected by the operating

system (OS) and/or other security monitoring modules. Due to these

limitations, the source can not “extract” the sensitive information by

itself through conventional covert channels without being scrutinized,

and hence detected by the existing protection mechanisms in the sys-

tem. Alternatively, to successfully extract the data, the source ap-

plication can secretly communicate to another malicious application

15

(called sink or spy), via a covert channel. The sink application is a

seemingly benign application that has access to the outside world

(e.g. through network, I/O ports, etc.) but is not likely to be scru-

tinized by the OS or other security enforcer modules since it does

not have access to any sensitive data in the system. Hence, by re-

ceiving the data from the source, the sink can successfully “extract”

the data and send it to the outside world. Examples of digital/micro-

architectural covert/side channels include caches [35, 36, 37, 38, 39,

40, 41], branch predictors [42, 43], micro-architectural units [44, 45],

DRAM and memory bus [46, 47], GPUs [48], etc. In all these cases,

the information can be transmitted by modulating certain (micro-

architectural) events (e.g. accessing a pre-defined line in cache).

ii) Analog/Physical Covert/Side Channels: These are the channels that

rely on physical characteristics of a system such as unintentional

electromagnetic emanations from different electronic circuits in a com-

puter [3, 49, 50, 51], variation in power consumption [27, 30, 29, 34,

33, 52, 31, 32, 53], sound/acoustic [53, 50], temperature [54, 55],

etc. Unlike digital covert/side channels which create a digital link

between two applications within the processor, physical covert/side

channels create an analog external link which acts as a wireless com-

munication link that can transmit sensitive data from the computer,

through the air or via a pin/cable, to nearby systems. For example,

it is shown that exfiltrating data from an air-gapped (physically and

logically separated from public networks) computer through covert

channels is possible [4, 56].

16

2.1.1 EM Covert/Side Channels

Demonstrating the video content reconstruction from emanated signals

of a video display unit on BBC in 1985, Eck [26] opened a new era for

side channel attacks. The main result of his work was that unintentional

EM signals, emitted while a legitimate activity is running on a device,

can cause information leakage if a sophisticated attacker detects and pro-

cesses these signals. Khun [49] extended the work by reconstructing con-

fidential information displayed on a cathode-ray-tube via an unauthorized

access exploiting EM side channel. Moreover, [57] demonstrated attacks

based on EM analysis on CMOS chips and smart cards to reveal secret

bits of RSA and DES cryptosystems. They exploited the correlation be-

tween secret data and corresponding variations in EM field. The main

conclusion of their experiments was that EM measurements are as pow-

erful as power analysis. However, Agrawal et al. [25] first described EM

emanations as a consequence of current flows due to hardware/software

activities, then showed that existence of correlation between the processed

data and current flow causes information leakage, and finally made an

even stronger argument that EM side channel leakage is even more pow-

erful than the other side channels. Inspired by the information leakage

through EM emanations, Zajic et al. [3] generated a covert channel which

transmits the morse code of “All data is belong to us.” They exploited

program activity signals which are modulated by the clock frequency of

a device. The achievement with this experiment is that even under close

scrutiny, emanated EM signals can be achieved reliably at a distance over

2 meters without raising any suspicion. To measure the signal available

to an attacker for instruction-level events, Callan et al. [51] devised a

methodology called SAVAT. The method relies on the instruction-level dif-

17

ferences while running the same code except one instruction. They first

tested the methodology in a device with weaker computing ability (FPGA

board), then expanded to more complex computer systems. The similar

results were obtained across various devices [58]. Later, Monjur et al. [59]

broke secret keys of OpenSSL’s blinded RSA without relying on the cache

organization or timing variations. They first identified the vulnerable part

of the program, collected hundreds of training EM traces during modu-

lar exponentiation calculations, and then exfiltrated the secret key bits by

only measuring one trace.

2.1.2 Applications of Covert/Side Channels

Although covert/side channels can provide an unauthorized access to con-

fidential information through legitimate activities, it is also possible to uti-

lize them to secure computer systems. An example for the use-case of

covert side channels is program profiling. Program profiling is an essential

tool for monitoring, compiler optimization, performance analysis, user pro-

filing, debugging, software maintenance and paralellization [60]. Although

there are many profiling methodologies, the most common approach is

to add instrumentation, i.e. logging considered events. These events are

generally the paths that are heavily executed and called hot paths of the

program [61]. Identifying these paths can be very advantageous for ef-

ficient code optimization and monitoring. However, instrumentation can

cause overhead and change the dynamic behavior of the profiled systems.

In that respect, covert/side-channels are utilized to handle the overhead

caused by instrumentation and protect the dynamic behavior of the pro-

filed systems. An instruction-level side-channel profiling is proposed in

[62], which exploits power side-channels on embedded devices. Similarly,

18

a classification of hardware-based monitoring techniques and a power-

channel based disassembler are provided in [63]. In [64], a method is

proposed to detect and monitor a system by processing the power con-

sumption. A zero-overhead profiling method exploiting EM side-channels

is proposed in [65]. Although the methodology does not require any mod-

ifications to the software/hardware of the profiled device, it fails reporting

anomalies with zero false negative rate (it reports benign instead of mal-

ware for some cases). By improving these shortcomings, a new input gen-

eration technique, called progressive symbolic execution, and an advanced

execution-trace-prediction method are proposed in [66]. Likewise, an EM

signal model and simulator are proposed in [67, 23], which can be helpful

for obtaining signatures of a program even in the design-stage. In [68], a

profiling scheme that leverages EM side-channels is introduced. The pa-

per exploits the idea that whenever a loop is executed in a program, an RF

signal is generated with a so-called alternation frequency. This frequency

corresponds to reciprocal of the average time required to run an iteration of

a loop [69]. Since loops are an example of hot paths and the program run-

time is dominated by the loops, the scheme profiles the program based on

these emitted RF signals. Later, this profiling scheme is modified to detect

deviations in program execution without any characterization of malware

[70]. After creating a statistical model for the deviation of a benign pro-

gram in terms of loop-timing, a test signal is compared against the model

to determine whether the deviations belong to the same distribution.

19

2.2 Measuring Pairwise Side Channel Signal Power from Processor

Instructions

In [51], it was assumed that an attacker has access to a program’s source

or executable code, and can observe EM emanations from the victim’s sys-

tem while this program is running. The attacker attempts to extract sen-

sitive information by recording EM emanations, using them to infer which

instructions are executed, and then infers sensitive data from knowledge

of the executed instructions.

The most direct approach to quantifying the EM emanations from side-

channel signal created by executing instruction X1 vs. executing instruc-

tion X2 is to measure the EM emanations while instruction X1 is active,

measure the EM emanations while instruction X2 is active, and then take

the difference between these two signals. This approach is impractical in

high performance systems for several reasons. First, equipment capable

of recording the x1(t) and x2(t) signals at greater than 10 Gsamples/sec (as

required to test a processor using a GHz clock) and with thermal, quantiza-

tion, etc. noise that is low enough to not obscure the (extremely small) dif-

ference between the two signals, is prohibitively expensive or non-existent.

Second, complex processors heavily optimize the scheduling and execution

of instructions, so determining the times where the test instructions X1 or

X2 are actually active would be problematic. Third, some other instruc-

tions must be present around X1 and X2 to make the measurement prac-

tical (to trigger the measurement, setup the registers and memory used

by instructions X1 and X2, etc.), and these unrelated components of the

received signal can easily obfuscate the signal components created by the

X1 and X2 instructions themselves.

20

1 for(j=0;j< n_out; i++){

2 // Do some instances of the X1 instruction

3 for(i=0;i< n_inst; i++){

4 ptr1=(ptr1&~mask1)|((ptr1+offset)&mask1);

5 // The X1-instruction, e.g. a load

6 value=*ptr1;

7 }

8 // Do some instances of the X2 instruction

9 for(i=0;i< n_inst2; i++){

10 ptr2=(ptr2&~mask2)|((ptr2+offset)&mask2);

11 // The X2-instruction, e.g. a store

12 *ptr2=value;

13 }

14 }

15

Figure 2.1: The X1/X2 alternation pseudo-code.

To overcome these problems, a program has been designed in [51] that

causes the system to execute X1 and X2 instructions in a controlled way

that minimizes the effect of all other unrelated system activities, while con-

centrating the side channel energy into a narrow spectral band to minimize

the impact of noise on the measurement. We produced these controlled

emanations by choosing a repetition period Talt and then create a small

test program (microbenchmark) containing a for loop such that the first

half of the loop does many repetitions of activity X1 and the second half

does many repetitions of activity X2. The microbenchmark in Figure 2.1

implements this idea by executing X1 and X2 instructions ninst times (de-

noted as ninst in Figure 2.1) in each iteration of the outer loop. Lines 2

through 7 execute ninst instances of the X1 instruction, and then lines 8

through 13 execute the same number of instances of the X2 instruction.

Thus lines 2 through 13 represent one X1/X2 alternation, and this alterna-

21

tion is repeated (line 1) until the measurement of the side-channel signal

is complete. It is critical to note that the value of Talt is controlled directly

by varying ninst. For example, increasing ninst increases the time required

to execute one iteration of the outer loop (Talt). The value of Talt can be di-

rectly measured using counters available through processor instructions

(e.g. the x86 rdtsc instruction) or the operating system (e.g. the Windows

API QueryPerformanceCounter() function). We can then select the ninst value

that produces the desired alternation frequency (falt = 1/Talt).

Instruction Description

LDM mov eax,[esi] Load from main memory
STM mov [esi],0xFFFFFFFF Store to main memory
LDL2 mov eax,[esi] Load from L2 cache
STL2 mov [esi],0xFFFFFFFF Store to L2 cache
LDL1 mov eax,[esi] Load from L1 cache
STL1 mov [esi],0xFFFFFFFF Store to L1 cache
ADD add eax,173 Add imm to reg
SUB sub eax,173 Sub imm from reg
MUL imul eax,173 Integer multiplication
DIV idiv eax Integer division
NOP nop No operation
NOI No instruction

Table 2.1: x86 instructions for our X1/X2 ESE measurements.

Instructions refers to basic commands that a processor can execute.

Some examples of common x86 instructions are listed in Table 2.1, in-

cluding loads and stores that go to different levels of the cache hierarchy,

simple (ADD and SUB) and more complex (MUL and DIV) integer arith-

metic, and the “No Instruction” case where a specific line is simply left

empty.

Therefore, EM side channel energy available to the attacker is defined

as the total power around the alternation frequency which is equivalent to

following equation in time domain:

22

76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81 81.5

−145

−140

−135

−130

−125

Frequency (kHz)

M
ag
n
it
u
d
e
(d
B
m
)

79 kHz ADD/ADD

79 kHz ADD/LDM

80 kHz ADD/LDM

Figure 2.2: Power spectrum of ADD/LDM instruction pair at 79 kHz and
80 kHz.

PA(s1(t), s2(t)) ≡ 1

R

∫ To

0

(s1(t)− s2(t))2dt (2.1)

where s1(t) and s2(t) are voltages measured across a resistance R (typically

instruments have R = 50Ω), t = (0, To) is the time interval while program

execution occurs and can be written as To = Talt × nout, and nout is the

number of repetition of the outer for loop. This difference can be an if-

then-else statement that causes one path or the other to be executed, a

memory access that either does or does not suffer a cache miss, etc.

2.3 Amplitude Modulated Signal Generation by Executing Programs

In this section, we first describe how carrier signals can be created by soft-

ware activities and then, describe a method to generate modulated signals.

To create a carrier, we use repetitive variations in a software activity as de-

scribed in [3], [17]. We choose T , the period (duration) of each repetition,

two types of activities (A and B), and write a small software code (i.e., a

microbenchmark) shown in Fig. 2.1 that in each period does activity A in

the first half and B in the second half. Please note that the intuition be-

23

hind this is that if activity A and activity B result in non-identical EM fields

around the processor (or the system), repetition of this A-then-B pattern

will create oscillations (with period T) in this EM field, i.e., it will result in

a “carrier” RF signal at frequency 1/T . The period T will be selected to cor-

respond to a specific frequency, e.g., to produce a radio signal at 1 MHz,

we should set T = 1µs. This carrier-generation approach is illustrated in

Fig. 2.3.

Spectral component at 𝑓 =
1

𝑇

 In-system signal due to A/B activity

 Period (T)

 Activity B Activity A

Figure 2.3: Illustration of how microbenchmark induces emanations at a
specific radio frequency by alternating half-periods of A and B activity.

Next, the symbols are amplitude modulated by inserting intervals dur-

ing which only activity B is performed in both half-periods which means

any carrier signal produced by the differences between A and B should be

absent when only B is used, resulting in the simplest form of AM modu-

lation (on-off keying). This approach is illustrated in Fig. 2.4. Note that

other modulations (e.g., frequency modulation or even some non-standard

modulation) can just as easily be used to create a truly covert transmis-

sion. Also note that the assumption here is that the code for generating

this software modulation and creating a covert channel is already injected

to the system through advanced-persistent threat scenarios [71], or man-

ually entered/created on the target system by a trusted insider (e.g., a

24

 A/B B/B A/B

 Silence (pause) Tone (dash/dot)

 B/B A/B B/B

Modulation using A/B (carrier) and B/B (no carrier)

 Demodulated signal

Figure 2.4: Illustration of how microbenchmark modulates the signal into
the carrier using on-off keying (bottom).

rogue employee). Moreover, the transmission code itself is not responsible

to find the sensitive data, but it is only a mean of communication for send-

ing the sensitive data from trusted inside to the outside world. The sensitive

information (to this transmitter code) is supplied by an injected/created

malware in the system (e.g., a worm that infiltrated to the system and

found some sensitive documents in the system). Note that both of these

assumptions are realistic and commonly used in the existing literature.

2.4 Channel Capacity

Defining leakage capacity requires deep understanding of channel capac-

ity in conventional communication systems and information theory liter-

ature. In this section, we provide essential topics that will be extensively

exploited.

25

2.4.1 Markov Model Capacity over Noisy Channels

Channel capacity provides the limit for a reliable information transmission

in a communication system. Assuming Y n
1 and Sn1 represent the channel

output and state sequences between t = 1 to t = n, the capacity of the

Markov sources over noisy channels is defined as [72]

C = max
Pij

(i,j)∈T

lim
n→∞

1

n
I (Sn1 ;Y n

1 |S0) (2.2)

where I(•) is the mutual information, Pij is the transition probability from

state i to j, and T is a set of valid state transitions. To maximize the overall

mutual information between input and output sequences, we need to find

the probability distribution of state transitions under the constraint that

state transitions are only possible if T contains these paths. The equation

given in (2.2) can be simplified further by using chain rule, Markov, and

stationary properties of the model. In [72], it is shown that the capacity

can be simplified as

C = max
Pij

∑
i,j:(i,j)∈T

µiPij

[
log

1

Pij
+ Tij

]
. (2.3)

where

Tij = lim
n→∞

1

n

n∑
t=1

log
Pt(i, j|Y n

1)
Pt(i,j|Y n1)

µiPij

Pt(i|Y n
1)

Pt(i|Y n1)

µi

 , (2.4)

and where µi is the stationary probability of state i, which satisfies µi =∑
k∈S

µkPki,∀i ∈ S, and S is the set of states. In this equation, Pt(i|Y n
1) is the

probability that the state at time t− 1 is i, and Pt(i, j|Y n
1) is the probability

that the states at times t−1 and t are i and j respectively, given the received

sequence, Y n
1 .

26

There is no closed form solution to the optimization problem given in

(2.3) because the calculation of Tij is still an open problem. However, in

[72], a greedy algorithm to calculate C is introduced. The experimental

findings show that the performance gap between the actual results and

the algorithm’s results is small.

2.4.2 Channel Capacity for Insertion & Substitution Channels

One of the main challenges that side/covert channels encounter is inser-

tions and inaccurate acquisition of transmitted information signal. Find-

ing the capacity of channels that suffer from both insertions and substi-

tutions is even challenging for conventional communication systems. To

simplify the capacity definitions for such channels, [16], [15] show that

a memoryless discrete channel with insertions and substitutions can be

decomposed into a cascade of two channels, channel with insertions and

channel with substitutions as shown in Figure 2.5.

Random

Insertion Channel
Noisy and Jittery

Channel

nW 101 ii pp

n

X
 101 ii pp

n

Y

Figure 2.5: Cascaded channels equivalent to the binary discrete memory-
less noisy, jittery, synchronization channel with n input symbols.

In [73], it is shown that the capacity of a discrete memoryless synchro-

nization channel exists and is given by

C = sup
Ξ

lim
n→∞

1

n
· I(W n;Y N̄n), (2.5)

where the supremum is taken over all stationary Markov chains Ξ model-

ing the input source, n is the number of input bits, W n and Y N̄n represent

the input and observed sequence respectively. Here, N̄ is the average num-

27

ber of received symbols per transmitted symbol.

28

CHAPTER 3

CAPACITY OF THE EM COVERT/SIDE-CHANNEL CREATED BY THE

EXECUTION OF INSTRUCTIONS IN A PROCESSOR

3.1 Overview

The goal of this chapter is to answer how much information is “trans-

mitted” by execution of particular sequence of instructions in a processor

[18]. Introducing such a measure would provide quantitative guidance for

designing programs and computer hardware that minimizes inadvertent

(side channel) information leakage, and would also help detect parts of a

program or hardware design that have unusually high leakage (i.e. were

designed to function as covert channel “transmitters”).

To address this problem, we need to establish relationship between

software activity, observed emanations, and side-channel capacity. The

first attempt to quantify which instructions have the greatest potential

to create side-channel vulnerabilities was reported in [51], where a mea-

surement technique is devised to quantify the emanated power that can

be attributed to the difference in execution between a pair of individual

instructions.

In this chapter, we derive a mathematical relationship between elec-

tromagnetic side-channel energy (ESE) of individual instructions and the

measured pairwise side-channel signal power and use this measure to cal-

culate the transition probabilities needed for estimating capacity. Then, we

propose a new method to estimate side/covert channel capacity created by

the execution of instructions in a processor. Finally, we illustrate how the

29

proposed method works through evaluation of capacity in several practical

systems.

The organization of the section is as follows: Section 3.2 analytically

quantifies the difference in energy available to an attacker between two

instructions, Section 3.3 describes a new method to quantify covert/side-

channel capacity, Section 3.4 analyzes capacity of several systems, Sec-

tion 3.5 proposes some possible defensive methods for EM based attacks,

and Section 3.6 provides the summary.

3.2 Mathematical Relationship Between ESE of Individual Instruc-

tions and The Measured Pairwise Side-channel Signal Power

Establishing mathematical relationship between ESE of individual instruc-

tions and the measured pairwise side-channel signal power available to an

attacker [51] can not only help programmers and computer hardware de-

signers to anticipate the vulnerability of the system, but can also help us

relate codeword probabilities with energy levels of particular codewords,

i.e., instructions.

Total EM side-channel energy available to the attacker is defined in

(2.1). Note that PA represents the overall emitted power during the execu-

tion of the microbenchmark including many repetition of instructions X1

and X2. However, ESE is defined as the available energy for an attacker

when two instructions are executed only one time by filtering any other

EM signals and noise present in measurements.

Assume x1(t) and x2(t) is the characteristic signals belong to execution

of instructions X1 and X2. Then, ESE is defined as

ESE(X1, X2) ≡ 1

R

∫ Tx

0

(E[x1(t)− x2(t)])2 dt (3.1)

30

where Tx is the maximum of the execution times of the instructions and E

is the expectation operation.

To make our derivations mathematically traceable, we introduce follow-

ing notations and assumptions.

1. The for-loops of the microbenchmark given in Fig. 2.1 generate s1(t)

and s2(t) respectively. Because the emitted signal from each loop

depends on the type of instruction used in the loop, to discard the

ambiguities regarding the inserted instruction and the taken branch,

we denote produced signals as s
(Xi)
i (t) which is generated by the ex-

ecution of the ith inner-for-loop and Xi represents any instruction

inserted into that loop.

2. s(X1)
1 (t) and s

(X2)
2 (t) are voltages sampled at frequency 1/TI to create the

sequences s(X1)
1 [n] and s

(X2)
2 [n] of length Ns = Ts/TI.

3. The frequency content of s(X1)
1 (t) and s

(X2)
2 (t) above 1/(2TI) is negligible

(i.e. s(X1)
1 (t) and s

(X2)
2 (t) have bandwidth 1/(2TI)).

4. s(X1)
1 (t) and s

(X2)
2 (t) are voltages measured across a resistance R.

5. The discrete energy available to the attacker PA

[
s
(X1)
1 , s

(X2)
2

]
is then de-

fined as

PA

[
s
(X1)
1 , s

(X2)
2

]
≡ TI

Ns−1∑
l=0

(
s

(X1)
1 [l]− s(X2)

2 [l]
)2

R
. (3.2)

6. Sampled voltages can be represented as s
(X1)
1 [l] = µ1[l] + w1[l] and

s
(X2)
2 [l] = µ2[l] + w2[l] where µ1[l] and µ2[l] are the mean voltage values,

w1[l] and w2[l] are the additive noises which are i.i.d. N (0, σ2
l). Here,

σ2
l , µ1[l], and µ2[l] are depended on the instruction. For example, if the

31

sample is taken during the execution of the first-inner-loop and the

embedded instruction is X1, the sample can be written as

s1[l] = µ1[l] + w1[l] = Xv
1 + w1[l] (3.3)

where w1[l] ∼ N (0, σ2
X1

) and Xv
1 is the average power instruction X1

emits. We assume that additive noise describes all the variation in

the signal and that noise power is dependent on the executed inst-

ruction since the electromagnetic emissions can vary according to

the execution location.

7. Finally, the discrete ESE is defined as

ESE [X1,X2] ≡ TI

R
nX (Xv

1 −Xv
2)2 . (3.4)

where nX = Tx/TI is the number of samples taken during only the

execution of the instructions.

The micro-benchmark described in Section 2.2 creates an alternation

signal at frequency falt by repeatedly executing instruction X1 ninst times,

followed by ninst executions of instruction X2. We then measure P (falt),

the spectral power at frequency falt. Finally, ESE[X1,X2] can be calculated

from the spectral power P (falt) observed at falt (while running the X1/X2

alternation microbenchmark) as follows:

ESE[X1,X2] ≈
(π

2

)2 P (falt) ·N
nX · ninst · falt

+ C(X1, X2), (3.5)

where N is the number of samples taken during only one inner for-loop,

nX is the maximum of the number of samples taken during the execution

of instructions X1 and X2 and C(X1, X2) is a constant term that depends

32

on the instruction pair, i.e.,

C(X1, X2) = −
PA

(
s
(X1)
1 , s

(X1)
2

)
+ PA

(
s
(X2)
1 , s

(X2)
2

)
2nXninst

. (3.6)

The proof of the relationship in (3.5) is shown in Appendix A. Note that

although expectation for PA value to be same when the same instruction is

inserted into the for-loops given in Fig. 3.7, because of the additive noise

given in (3.3), the observed ESE through the execution of the code results

in a non-zero value.

3.3 A New Method for Evaluation of EM Side/Covert Channel Capac-

ity Created by the Execution of Instructions in a Processor

In a covert/side channel, identifying the channel capacity is of some inter-

est to attackers who desire to maximize the rate at which information is

obtained, but it is of paramount interest to defensive actors (programmers

and hardware designers) to gain an insight about how vulnerable a pro-

gram or a computer system is to an attack and quantify how a potential

design change would affect this vulnerability. Thus, in this section, we

propose a new method to quantify the amount of information that can be

obtained through unintended EM emanations of instructions in a compu-

ter system.

3.3.1 Quantifying the Side Channel Leakage

To quantify the leakage capacity through the execution of instruction se-

quences, we consider each instruction as an independent codeword, and

the covert/side channel “transmission” consists of a sequence of code-

words that corresponds to the sequence of instructions actually executed

33

by the program. Note that some hardware events can significantly affect

the duration and the emanated signal of specific instructions. We account

for this by treating these as distinct instructions. For example, a load

(read memory) instruction behaves very differently when it finds the de-

sired value in the first-level cache, in the second level cache, or in main

memory, which we view as three separate instructions: LDL1, LDL2, and

LDM, respectively.

Fig. 3.1 illustrates the noisy channel model for a covert/side channel

where the input codewords are instructions, Pi represents the probability

of the ith instruction occurrence and pij is the transition probability that

given ith instruction is used in the code but detected as the jth instruction

based on EM emanation observations.

STL2𝐏𝟏
𝑝11

...

...

...

...
STM

LDL1

STL2

STM

LDL1

𝐏𝐢

𝐏𝐌

𝑝1𝑖
𝑝1𝑀

𝑝𝑖1

𝑝𝑖𝑖
𝑝𝑖𝑀

𝑝𝑀1

𝑝𝑀𝑖

𝑝𝑀𝑀

Figure 3.1: Noisy channel model for covert/side channel.

There are several unique properties of this EM side/covert channel that

require new methods for evaluating side/covert channel capacity.

First, all codewords are typically equally probable in traditional com-

munication systems, but this is not true for the channel analyzed in this

section. Since our codewords are processor instructions, we need to note

34

that different instructions have different probability of occurrence in a

program. For example, a typical program executes on-chip instruction

(e.g. arithmetic operations) more often than memory accesses. Further-

more, processor designers put extra-efforts to ensure that among memory

accesses the number of LDL1 executions is larger than the number of

LDL2 occurrences and much larger than the number of LDM occurrences.

Hence, it is realistic to expect that our codewords (i.e. instructions) do not

have equal probability of occurrence.

Second, codewords in this channel do not have equal length. For ex-

ample, it takes more energy and time to execute LDM in comparison to the

time to execute ADD instruction.

Finally, this channel is inherently noisy due to variations in activity in

the processor (i.e. different data values for a given instruction) and due to

noise created by other electronic components near the processor.

All this implies that the Shannon-based channel capacity [16, 74, 75]

overestimates the available capacity in the side/covert channel that trans-

mits instructions as codewords. Therefore, we need to compute channel

capacity in a way that considers the distinct instruction lengths, variable

instruction probabilities, and maximum mutual information at the same

time.

If we assume that we have a finite-length sequence where codewords

can have different lengths, the goal is to invoke codewords into the se-

quence such that total information gathered from the sequence is maxi-

mized. Therefore, the length of the input and the entropy of this input are

the issues critical to consider. Hence, we need to find a distribution for

the input set such that total information achievable from the sequence is

maximized, i.e., the information per sample is optimized. To achieve that,

35

we propose the following optimization problem:

Setting I :

maximize

∑
i,j

Pipij log

 pij∑
k

Pkpkj

∑
i

PiLi

subject to∑
i

Pi = 1

Pi ≥ 0 for ∀i, j ∈ {1, · · · , K} .

where K is the number of instructions in the input set. Through the opti-

mization process, the variables that maximize the problem are

{Pi | i ∈ {1, · · · , K}} .

These variables are the probabilities or frequencies of each instruction

such that maximum information leakage occurs and we assume that oc-

currences of instructions are independent of each other. Transition prob-

abilities pij are calculated based on ESE measurements as described in

Section 3.3.2. The optimization problem is solved using gradient descent

approach detailed in Appendix D.

Note that the optimization problem given above simplifies to Shannon’s

channel capacity if the length of each instruction is the same and all in-

structions are equally probable.

3.3.2 A Practical Calculation of Transition Probabilities in EM Side/Covert

Channel

In this section, we propose a method for finding transition probabilities

defined in (3.7) using the measured pairwise side-channel signal power.

36

We start the process by obtaining ESE values as illustrated in Table 3.1.

Each entry in this table is the ESE between the X1 instruction (row) and

X2 instruction (column) computed using (3.5). The pairwise side-channel

signal power needed to compute ESE is measured using method described

in Section 2.2. We measure a signal power of each instruction pair in

the table 10 times over multiple days and take the mean to minimize the

impact of changes in radio signal interference, room temperature, and

slight differences in antenna position. For each pair of instructions, X1 and

X2, we run the X1/X2 micro-benchmark and measure the power spectral

density from 2.5 kHz above to 2.5 kHz below the alternation frequency.

Then we integrate over this band to get the total power P (falt) generated

by the difference between X1 and X2. Finally the ESE[X1,X2] is calculated

using (3.5).

The benchmarks were run as single-threaded Windows 7 32-bit user

mode console applications on the Intel Core i7 (L1 Data Cache: 64 KB, 2

way L2 Cache: 1024 KB, 16 way). No other user-mode applications were

active and wireless devices were disabled to minimize interference with the

intentionally generated signals. Aside from this, the system was operating

normally.

As an example, the ESE values for an Intel Core i7 laptop are given in

Table 3.1.

Estimating the Voltage of a Specific Instruction

In this part, we provide the steps to estimate the voltage of an instruc-

tion. Please note that ESE can be viewed as a metric that measures the

Euclidean distance between voltages produced by the execution of the in-

structions. Here, we introduce our approach to obtain these distances. As

37

Table 3.1: ESE values (in zJ) for the Core i7 laptop.

LDM STM LDL2 STL2 LDL1 STL1 ADD SUB MUL DIV

LDM 0 128 377 1344 237 246 283 279 247 1392

STM 53 0 944 1389 114 163 153 150 164 1213

LDL2 336 1394 0 24 84 112 149 143 109 736

STL2 1160 1248 21 0 42 56 99 100 114 536

LDL1 463 236 190 76 0 0 0 0 0 169

STL1 464 274 219 97 4 0 0 0 0 135

ADD 509 255 256 136 21 11 0 3 0 107

SUB 487 244 207 145 11 15 5 0 4 131

MUL 487 252 221 143 8 13 3 15 0 116

DIV 1188 812 651 293 82 90 92 93 134 0

the first step, we are required to estimate the voltages generated by the

instructions. However, since ESE is considered as an Euclidean distance

and only provides the voltage differences, i.e. the distances in generated

voltages among instructions, rather than generated actual voltage values

of each instruction, we are required to obtain the distances among the

instructions. In that respect, since voltage is a one-dimensional quantity,

i.e. the EM emanations caused by different instructions differ only in mag-

nitude, we first focus on the locations of these instructions with respect

to each other. Therefore, we are only interested in how instructions are

ordered on a line with respect to the quantity of leakage they produce.

We also need to emphasize that sorting the instructions can be from the

instructions which cause more leakages to the ones which generate less

leakages, or the other way around. Let us first consider an example of ESE

shown in Table 3.1. From the table, we can deduce that

* LDL1, STL1, ADD, MUL, and SUB have similar ESE values and,

therefore, we consider them as one instruction which is called as G6.

* Spacing between DIV and LDM is the largest (e.g., 1392). Therefore,

they must be positioned at the corners, and the rest of the instruc-

38

tions lie between these two instructions.

* STM is the closest to LDM since LDM produces the smallest ESE

value with STM among all instructions (e.g., 128).

* The closest instruction to LDL2 is STL2 since it produces the smallest

EM leakage with LDL2.

* G6 generates smaller ESE value with LDM and STM than STL2 and

LDL2. In the same manner, ESE produced by the execution of LDM

and LDL2 is larger than the one produced by LDM and G6. Therefore,

G6 is positioned between STM and LDL2.

Based on the observations above, the order of instructions is provided

in Fig. 3.2 and we denote this ordered sequence as S.

LDM STM G6 LDL2 STL2 DIV

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

Figure 3.2: An example of instruction ordering based on a measurements
in Table 3.1.

Here we note that the order of instructions does not give any intuition

about the voltage values of instructions but clarifies the distances among

the instructions. We do not give any importance to exact voltage values

of each instruction due to the definition of ESE. To calculate the transi-

tion probabilities, we only need the distances between each instruction.

Therefore, we set the following optimization problem to determine the dis-

tances when our input set includes {DIV, MUL, STM, LDM, LDL2, STL2}

as follows:

39

Setting II : minimize
d,ε

‖ε‖2

subject to

ESE[LDM, STM]− κd2
1 = ε1

ESE[LDM,MUL]− κ(d1 + d2)2 = ε2

...

ESE[STL2,DIV]− κd2
5 = ε15

where d(S) = [d1 d2 d3 d4 d5]T is the distance vector required to be revealed,

ε = [ε1 ε2 · · · ε15]T is the estimation error vector needed to be minimized

and κ = TI/R. We also note that to verify the given order of instructions

is the optimum one, we run Setting II for different orders and checked the

objective value ‖ε‖2 is smallest for the order given in Fig. 3.2 among all of

the orders of the instructions.

Calculation of Transition Probabilities

After obtaining the relative voltage differences, the next step is to deter-

mine the decision boundaries among instructions. Since our inputs lie on

the same axis and only ordering of instructions and distances among them

are important for transition probability calculations, we assume the mean

of the instruction with the leftmost position in the ordered instruction se-

quence is zero. Then, means of the remaining instructions are calculated

based on the obtained distances. Finally, the decision boundaries are

calculated using maximum likelihood estimation between two consecutive

instructions. For example, if instruction X1 and X2 are neighbors, the

40

decision boundary is the point such that

N (x|µX1 , σ̄
2
X1

) = N (x|µX2 , σ̄
2
X2

) (3.7)

where N (•) is the normal pdf distribution, µXi = Xv
i is the mean (position)

of the ith instruction and

σ̄2
Xi

=
PA

(
s
(Xi)
1 , s

(Xi)
2

)
− PA

(
s
(NOI)
1 , s

(NOI)
2

)
κ

. (3.8)

The derivation of σ̄2
Xi

is given in Appendix B. σ̄2
Xi

characterizes the addi-

tive noise and impact of other program and hardware variabilities present

in measurements.

7
MUL

7
LDL2

7
STL2

7
DIV

Location of Instructions

0

0.03

0.06

0.09

0.12

0.15

P
ro

b
ab

ili
ty

Gaussian Dist. Curve
Mean Values of Instuctions
Decision Boundaries

Figure 3.3: An illustration of the process for calculation transition proba-
bilities for a given instruction.

Thereafter, this Gaussian distribution is fit to the graph whose mean

equals to the instruction X’s mean, and whose standard deviation is σ̄2
X.

Here we note that scaling mean and the variance of the distances and

variances will not change probability distributions, hence we can simplify

41

the notations by defining σ̂2
X = κσ̄2

X and

d̂(S) =
√
κ[d1 d2 d3 d4 d5]T .

Finally, the probability of each interval is assigned to each correspond-

ing instruction as a conditional probability. An illustration of the process

is given in Fig. 3.3.

3.4 Experimental Results and Discussions

In the previous section, we have introduced a method to compute side/-

covert channel capacity from noisy measurements of ESE. Here we note

that the proposed algorithm is general and can be applied to any compu-

tational device with any set of instructions. In this section, we give a few

examples explaining how to calculate the leakage capacity in (3.7).

Before presenting experimental results, we first summarize the steps

for the proposed approach in this chapter:

• To measure the ESE, first install the code given in Fig. 2.1 and mea-

sure the power at the frequency falt which will be depended on ninst.

• By exploiting the equation in (3.5), calculate the alternation energy of

every two combinations of instructions.

• Apply Setting II as explained in Section 3.3.2 to estimate the emitted

EM voltages by the execution of any instructions.

• Estimate the noise power w.r.t. an instruction based on (3.8), and

then, calculate the decision boundaries to obtain the cross-transition

probabilities of the proposed side/covert channel as described in Sec-

tion 3.3.2.

42

• Obtain the probability distribution of instruction occurrences which

maximizes mutual information rate of the modeled side/covert chan-

nel by exploiting Setting I.

• Use (3.7) to compute capacity.

Figure 3.4: Measurement setup.

For the experiments, we use a spectrum analyzer (Agilent MXA N9020A)

and a magnetic loop antenna (AOR LA400) as shown in Figure 3.4. This

antenna does not use a tuning capacitor and is terminated with a 50Ω

load, so it has a flat frequency response between 10 kHz and 1 MHz. Unless

otherwise noted, the measurements used an X1/X2 alternation frequency

of 80 kHz (note that this frequency can be arbitrarily changed) and a mea-

surement distance of 10 cm. A resolution bandwidth of 1 Hz was used to

minimize noise.

3.4.1 Experimental Results of Core I7 Laptop

As the first example, we consider the ESE values in Table 3.1. ESE val-

ues are from a Core i7 laptop with the 10 cm distance and the intended

alternation frequency 80 kHz. We constrain the input set to

{LDM, STM,DIV,MUL,LDL2, STL2},

43

using MUL as a representative of the “G6” group of instructions

{LDL1, STL1,ADD, SUB,MUL}.

Table 3.2: Transition probabilities based on ESE measurement in Fig. 3.1

.

LDM STM MUL LDL2 STL2 DIV

LDM 0.53 0.38 0.09 0 0 0

STM 0.49 0.26 0.19 0.04 0.01 0.01

MUL 0 0 0.94 0.06 0 0

LDL2 0 0 0.11 0.85 0.04 0

STL2 0 0 0 0.06 0.5 0.44

DIV 0 0 0 0 0.39 0.61

As the first step, cross-transition probabilities must be obtained. There-

fore, we require to find the distances among the instructions with re-

spect to emitted EM signal powers. The distances are acquired by feed-

ing Setting II with Table 3.1. The order of instruction is as given in Sec-

tion 3.3.2. The resulting distance vector d̂, which contains the interval

lengths between two neighbouring instructions in the magnitude space, is

d̂(S) = [1 18.8 5.9 9.5 1].

The next step is to calculate the decision boundaries and noise devia-

tions for each instruction. Noise powers for each instruction are calculated

based on (3.8) such that σ2(S) = [7.87 13.64 1.47 2.6 3.21 6.38]. Since both

noise deviations and distances in emanated powers are in hand, cross-

transition probabilities can be calculated by following instructions given

in Section 3.3.2. The resulting transition probabilities for the Core i7 lap-

top are provided in Table 3.2. Once transition probabilities are computed,

it is possible to find the maximum channel rate and achievable capac-

ity. The Intel Core i7 processor is very complex, featuring out of order

44

execution and many other microarchitectural optimizations. These opti-

mizations often result in multiple instructions being executed in parallel,

which results in reduced instruction length in our simplified model. There-

fore, we define the length of each instruction as the excess amount of time

caused by appending the same instruction to both for-loops given in Fig.

1 with respective to inserting nothing. For example, if TNOI and TX are the

times, which takes to execute the microbenchmark in Fig. 1 when noth-

ing is inserted and instruction X is inserted respectively, the length of the

instruction X is

LX =
TX − TNOI

2ninst

. (3.9)

Then, the instruction lengths (execution times) are normalized and quan-

tized such that the smallest length is equivalent to one and the lengths of

all instructions are integers – this is reasonable because processor activity

is in terms of clock cycles, with many instructions taking only one cycle to

execute while several instructions take a number of cycles. Therefore, we

consider the length vector for Setting I as L(S) = [13 20 1 1 3 8]T . The ca-

pacity rate is attained as 0.72 Bits/Quantum, where Quantum is defined

as average instruction length per symbol. Although, in the information

theory literature, the corresponding capacity is called Channel Capacity

per Unit Cost [76], we use the term Quantum to indicate that our results

are respect to both the minimum number of clock cycles to execute an

instruction and the clock frequency of the device. The resulting instruc-

tion probabilities are

PS = [0.005 0 0.377 0.354 0.264 0]T .

The results are reasonable since the lengths of LDM, STM and DIV are

45

longer and the deviations of these instructions are high, which increases

uncertainty about the outputs of the instructions. On the other hand, al-

though the entropy of STL2 is large, its probability is the largest because

its uncertainty is provoked due to existence of DIV. Since the optimal prob-

abilities of occurrence of DIV is zero and the length of STL2 is small, the

uncertainty about STL2 is largely eliminated and having a smaller execu-

tion time makes it more favourable.

3.4.2 Experimental Results of Core 2 Laptop

In this section, we will provide the experimental results on an Intel Core 2

Duo laptop with 1.8GHz CPU clock, 333MHz DDR2 memory, 32KB 8 way

L1 Data Cache and 4096 KB 16 way L2 cache. The considered instruction

set is {LDM, LDL2, STL2, LDL1, STL1, ADD, SUB, MUL, DIV}. As the first

step, we perform experiments to calculate the ESE power of instruction

pairs at 10cm and 80kHz. The measured ESE values are given in Table

3.3.

We observe that the ESE pattern observed in the Core I7 laptop also

exists for the ESE values of the Core 2 Duo laptop. For example, all arith-

metical instructions except DIV emit similar leakages whereas DIV behaves

like a completely different functional instruction. Therefore, for the leak-

age capacity calculation, one of these will be selected. Another observation

is that the maximum leakage occurs when STM and DIV are embedded

into the microbenchmark. Moreover, the tableau is almost symmetrical

which supports our earlier observation that the instruction order in the

microbenchmark does not affect the EM leakage.
To be able to calculate the leakage capacity through Setting I, we order

the instructions with respect to their emitted voltage potentials. The sorted

46

Table 3.3: ESE Values (in zJ) for the Core 2 Duo Laptop.

STM LDL2 STL2 LDL1 STL1 ADD SUB MUL DIV

STM 0 61 100 19 25 21 21 21 56

LDL2 62 0 1 79 80 84 82 81 101

STL2 101 1 0 101 104 108 105 105 160

LDL1 19 70 103 0 0 0 0 0 2

STL1 26 79 104 0 0 0 0 0 2

ADD 21 84 109 0 0 0 0 0 1

SUB 20 82 107 0 0 0 0 0 1

MUL 21 83 108 0 0 0 0 0 1

DIV 57 99 161 2 2 1 1 1 0

sequence of instructions which minimizes the objective function of Setting

II is obtained as

S = {STL2,LDL2, STM,ADD,DIV}

where ADD is chosen to represent the algorithmic operation set. The dis-

tances between the emitted voltages are d̂(S) = [2.1 7.3 1.45 1.85].

The next step is to obtain the cross-transition probabilities of the pro-

posed model. In that respect, the noise powers conditioned on the execu-

tion locations of instructions are calculated as

σ̄2(S) = [0.23 0.23 17.64 0.23 0.23]

by the equation given in (3.8). Since we have both the noise powers and

distances among the emitted powers resulting from the execution of in-

structions, it is time to calculate the cross translation probabilities of the

model as described in Section 3.3.2. The transition probabilities are given

in Table 3.4. We observe that the transition probability matrix is diago-

nally dominated expect the instruction STM as in the case of the Core I7

47

laptop.

Table 3.4: Transition probabilities based on ESE measurement in Table
3.3

.

STL2 LDL2 STM ADD DIV

STL2 0.99 0.01 0 0 0

LDL2 0.01 0.98 0.01 0 0

STM 0.02 0.05 0.49 0.15 0.29

ADD 0 0 0.07 0.9 0.03

DIV 0 0 0 0.03 0.97

For this processor, we obtain the relative instruction times as L(S) =

[3 1 31 1 8] by employing (3.9). We attain the capacity rate as 1.09 Bit-

s/Qauntum with the instruction occurrence probabilities

PS = [0.09 0.44 0 0.47 0].

We can observe again that the probabilities of longer instructions in terms

of execution times are set to zero although these instructions have larger

ESE values. Since execution times of these instructions are longer, the

information, they provide at each quantum interval, is much smaller than

the instruction with shorter execution times.

3.4.3 Experimental Results for Turion X2 Laptop

In this section, we provide the experimental results for AMD Turion X2

processor with 64 KB, 2 way L1 Data Cache and 1024 KB, 16 way L2

Cache. As usual, the first step is to measure the ESE values of instruction

pairs which are given in Table 3.5.

The order which minimizes the objective function of Setting II is same

as for the Core 2 Duo laptop. As the side product of Setting II, the dis-

48

Table 3.5: ESE Values (in zJ) for the AMD Turion X2 Laptop.

STM LDL2 STL2 LDL1 STL1 ADD SUB MUL DIV

STM 0 16 26 5 8 5 5 2 18

LDL2 14 0 0 31 33 34 33 34 53

STL2 30 0 0 40 40 42 41 42 70

LDL1 4 32 40 0 0 0 0 0 1

STL1 4 32 40 0 0 0 0 0 0

ADD 6 35 43 0 0 0 0 0 0

SUB 5 34 41 0 0 0 0 0 0

MUL 6 34 42 0 0 0 0 0 0

DIV 25 54 71 1 0 0 0 0 0

tance vector providing the distances between the neighbouring instruc-

tion voltages is d̂(S) = [1.01 3.74 1.97 1.74]. The next step is to calculate

the cross-transition probabilities of instructions. Thus, we calculate noise

powers conditioned on instructions as σ̄2(S) = [0.4 0.34 24.22 0.34 0.34]. By

following the steps given in Section 3.3.2, we calculated the cross transi-

tion probabilities which are given in Table 3.6. The final step is to obtain

the optimal solution for Setting I. Relative instruction execution times are

L(S) = [3 1 30 1 8]. The rate is attained as 0.97 Bits/Quantum with inst-

ruction occurrence probabilities PS = [0 0.498 0 0.502 0]. If we compare the

results with the Core 2 Duo laptop, this time we observe STL2 is set to

zero. The reason can be justified as follows: We observe that the existence

of STL2 and LDL2 creates more uncertainty, therefore, instead of keeping

these two instructions in the codebook, removing one of these instructions

increases the reliability of the communication channel. Since the execu-

tion time of STL2 is longer, forcing its occurrence probability to be zero

enhances the overall rate obtained through Setting I.

49

Table 3.6: Transition probabilities based on ESE measurement in Table
3.3

STL2 LDL2 STM ADD DIV

STL2 0.79 0.21 0 0 0

LDL2 0.19 0.79 0.02 0 0

STM 0.19 0.11 0.27 0.14 0.28

ADD 0 0 0.04 0.89 0.07

DIV 0 0 0 0.07 0.93

3.4.4 Experimental Results for NIOS Processor on the DEI FPGA

As our last example, we use the ESE values from [58]. The measurements

are done 10 cm above the NIOS processor on the DE1 FPGA board. As-

suming that an instruction could not have smaller magnitude than NOI,

i.e.

PA

[
s
(X)
1 , s

(X)
2

]
> PA

[
s
(NOI)
1 , s

(NOI)
2

]
where X is any instruction rather than NOI, we assume that minimum ESE

measurement with an instruction is 0.015 zJ. The main difference between

FPGA and Core i7 measurements is that arithmetic operations and LDL1

are distinguishable in the FPGA case. This time, the order of instructions

is S ={LDM-DIV-LDL1-MUL-ADD-SUB}. As the first step, we find the in-

terval lengths among instructions which is d̂(S) = [2.29 0.39 0.27 3.39 0.91].

Furthermore, noise power is calculated as

σ2(S) = [0.008 0.0075 0.0075 0.0075 0.0075 0.0075].

Then, the transition probabilities for FPGA are calculated and given in Fig.

3.7. For the Setting I, we assume L(S) = [7 5 4 4 1 1]T and obtain 1.14 Bit-

s/Quantum channel capacity rate where the probabilities of instructions

50

are assigned as

PS = [0.004 0.018 0.032 0.035 0.455 0.456]T .

Observe that although the entropy of LDM and DIV is similar to ADD and

SUB, assigned probabilities are much higher for ADD and SUB because

their lengths are much smaller than other instructions, therefore, they

can transmit more information in a second. Likewise, the optimum oc-

currence probabilities also explain which instructions create more vulner-

ability when an alternation created with them. For example, if a script

generates an alternation due to ADD with another instruction, the leakage

caused by this alternation will be huge presumably.

Table 3.7: Transition probabilities based on ESE measurement in [58]

.

LDM DIV LDL1 MUL ADD SUB

LDM 1 0 0 0 0 0

DIV 0 0.99 0.01 0 0 0

LDL1 0 0.01 0.93 0.06 0 0

MUL 0 0 0.06 0.94 0 0

ADD 0 0 0 0 1 0

SUB 0 0 0 0 0 1

Since a modern processor executes several billion instructions per sec-

ond, the computed EM side/covert channel capacity of 1.14 Bits/Quan-

tum implies that the attacker might obtain several gigabytes of informa-

tion per second. Although this is an extremely high information leakage

rate, the rate actually achieved by practically demonstrated side channel

attacks on cryptographic implementations is much lower. This apparent

discrepancy is primarily caused by different assumptions about how the

program is designed and different definitions of what constitutes infor-

51

mation. Our capacity derivations are for the worst-case scenario where

the program is specifically designed to leak information, whereas cryp-

tographic implementations are designed to have significant resilience to

side channel attacks. Furthermore, cryptographic attacks only consider

the rate of leakage for encryption keys, whereas our capacity derivations

account for any information about program execution.

3.4.5 Effect of Alternation Time Talt on ESE

In this section, the effect of measurement frequencies on leakage capac-

ity is investigated. The measurements are done at the side of the NIOS

processor on the DE1 FPGA board with 10 cm distance. For each fre-

quency, we follow the procedure given in the beginning of Section 3.4.

Occurrence probabilities of instructions are provided in Table 3.8. Fur-

Table 3.8: Occurrence Probabilities of Instructions From Measurements
Collected at Different Frequencies

LDM DIV LDL1 MUL ADD SUB

40 kHz 0.005 0.019 0.024 0.034 0.459 0.459

50 kHz 0.004 0.017 0.035 0.036 0.454 0.454

70 kHz 0.004 0.018 0.041 0.041 0.447 0.449

80 kHz 0.004 0.018 0.032 0.035 0.455 0.456

thermore, R(S) = [1.12 1.14 1.16 1.14] Bits/Quantum is the vector con-

taining resulting rates of the setups with varying frequencies where S =

[40 kHz, 50 kHz, 70 kHz, 80 kHz]. These results indicate that as long as

the same setup is considered but different values of Talt are used, the

change on the capacity and probability distribution of instructions are

minimal.

52

3.4.6 Justification of the Proposed Model

In this part, we compare our results with classical Shannon capacity and

provide the underlying reasons why the proposed methodology is needed.

Table 3.9 provides the capacities for different platforms. Note that Shan-

non capacity presumes that the codewords have the same length which

means the number of channel uses by each codeword is same.

In Table 3.9, PS, SC and USC represent the capacity results obtained

by the proposed framework, by assuming equal codeword length and ex-

ploiting Shannon’s capacity, and by Shannon’s capacity divided by the

average code-length calculated via the occurrence probabilities which are

utilized to obtain Shannon’s capacity. These results clarify why the pro-

posed method is more informative in terms of leakage capacity.

Table 3.9: Capacity comparison with classical Shannon’s capacity

AMD Turion Core 2 Duo Core I7 NIOS

PS (Bits/Quantum) 0.97 1.09 0.72 1.14

SC (Bits/Symbol) 1.46 1.86 1.64 2.46

USC (Bits/Quatum) 0.42 0.48 0.27 0.68

Executed instructions take different amount of time, therefore, the

number of channel uses for each instruction varies which could not be

reflected by the classical Shannon capacity. On the other hand, if we nor-

malize the Shannon’s capacity with the average channel uses, we obtain

the information per channel uses. If we compare the results, which are

USC and the proposed method, we observe that the proposed method in-

creases the effectiveness of the channel per use. Therefore, we can claim

that the proposed method provides better information on the severity of

the leakage.

53

3.5 Potential Defense Mechanisms

Our technique can help defensive efforts for both covert and side-channels,

although in somewhat different ways. For covert channels, the assumption

is that the developer of the program is crafting the code so as to maximize

the leakage. Since our technique allows potential leakage to be computed

given the instruction frequencies (how often each type of instruction exe-

cutes in the program), one defensive approach would be to determine the

instruction mix (there are a number of program execution profiling tools

that can do that), compute the potential leakage and use that to drive the

decision about what to do (e.g. subject high-potential-leakage programs

to additional scrutiny, “sandbox” them to limit their access to potentially

sensitive information, etc.).

For side-channels, the assumption is that the developer is interested

in reducing the leakage produced by the code they are developing. Our

technique allows the programmer to quantify the potential leakage of vari-

ous parts of the program (or the program as a whole), identify parts of the

program whose leakage may be higher than tolerable, and then make sure

that these parts of the program do not operate on sensitive data, change

instruction mix in a way that reduces the potential leakage (e.g. reduce

the use of high-ESE instructions, or even use our technique to quantify

the reduction in leakage that would be obtained through each potential

code change), or surgically apply one of the known techniques for reduc-

ing information leakage through side-channels.

In terms of insight that we can offer to programmers and hardware de-

signers, our results indicate that most of the potential information leakage

is a result of using a very small number of instructions that are much

54

easier to correctly distinguish. For software designers, this means that

a program’s use of these instructions should not be dependent on sensi-

tive data values. For hardware designers, this means that reduction of a

hardware design’s overall vulnerability to EM side channel attacks largely

depends on addressing the EM side channel signals produced by this very

small subset of the processor’s overall instruction set.

The goal of this chapter is to find out which instructions are the most

promising to be used as codewords in a covert channel or to be checked

for in side-channel. One may assume that instructions that have the

strongest EM signatures (e.g. cache misses) are the best to be used as

codewords for information transmission. However, as our analysis shows,

that is not the case because cache misses also take the longest time to be

executed, hence carrying much smaller Bits/Quantum information. The

future work will be on how to design a code-book that consists of these

codewords and achieves capacity limits derived in this chapter. Some sim-

ple examples of an attack based on the selection of instructions are shown

in [50] and [4], but more systematic approach is needed and is part of our

future work.

3.6 Summary

This section offers an answer to how much information is “transmitted”

by execution of particular sequence of instructions in a processor. We

first propose a new method to estimate the maximum information leakage

through EM signals generated by execution of instructions in the proces-

sor. Then, we derive a mathematical relationship between electromagnetic

side-channel energy (ESE) of individual instructions and the measured

pairwise side-channel signal power. Furthermore, we use this measure to

55

calculate the transition probabilities needed for estimating capacity, and

propose a new method to estimate side/covert channel capacity created by

the execution of instructions in a processor. Finally, we illustrate how the

proposed method works on several practical examples. The reason behind

naming the proposed structure as covert/side channel can be claimed as

follows: Covert channels are the channels can be exploited for a hidden

communication. Therefore, by taking advantage of side channels gen-

erated by EM leakage, a covert channel communication system can be

created. However, how to exploit this side channel as a communication

system is still an open question we will address in following chapters.

56

CHAPTER 4

ELECTROMAGNETIC SIDE CHANNEL INFORMATION LEAKAGE

CREATED BY EXECUTION OF SERIES OF INSTRUCTIONS IN A

COMPUTER PROCESSOR

4.1 Overview

This chapter introduces a methodology to relate program execution to elec-

tromagnetic side-channel emanations, and estimates side-channel infor-

mation capacity created by execution of series of instructions (e.g. a func-

tion, a procedure, or a program) in a processor. To model dependence

among program instructions in a code, we propose to use Markov Source

model, which includes the dependencies among sequence of instructions

as well as dependencies among instructions as they pass through a pipeline

of the processor.

We know that side channels are not designed to transfer information at

all, and its transmission is often corrupted by insertion, deletion and erro-

neous transfer of bits. While there is a large number of papers discussing

1) bounds on the capacity of channels corrupted with synchronization er-

rors, 2) bounds on the capacity of channels corrupted with synchroniza-

tion and substitution errors, or 3) bounds on the capacity when codewords

have variable length but no errors in the channel, none of them provides

the answer to how much information is “transmitted” by execution of par-

ticular sequence of instructions that do not have equal timing and are

transmitted through erroneous channel. The first attempts to answer this

question were presented in [77, 20], where covert channels are generated,

57

and upper and lower leakage capacities were derived. In Chapter 3, a

side-channel leakage capacity is derived for a discrete memoryless chan-

nel where the assumption is that each transmitted quantum of information

(i.e. instruction in the code) is mutually independent but do not have equal

length. Although all these efforts make an important step toward assess-

ing information leakage from side-channels, they fall short of considering

the relationship among sequence of instructions, which is a result of pro-

gram functionality as well as a processor pipeline depth, which impacts

how much signal energy will be emanated.

This chapter addresses these problems by

• Deriving side-channel information capacity created by execution of

series of instructions (e.g. a function, a procedure, or a program) in a

processor,

• Using Markov Source model to model dependence among program

instructions in a code, which includes the dependencies that exist in

instruction sequence since each program code is written systemati-

cally to perform a specific task,

• Deriving a mathematical relationship between the emanated instruc-

tion signal power (ESP) as it passes through processor pipeline and

total emanated signal power while running a program (This is in con-

trast to work in Chapter 3 where all energy emanated through side-

channels is assigned to an instruction, without taking into account

effect of processor pipeline depth, which significantly impacts the em-

anated signal),

• Considering sources for channel inputs are emitted EM signals dur-

ing instruction executions,

58

• Providing experimental results to demonstrate that leakages could be

severe and that a dedicated attacker could obtain important informa-

tion.

Moreover, the work in this chapter considers processors as the trans-

mitters of a communication system with multiple antennas. The antennas

correspond to different pipeline stages of any processor. Also, inputs of the

transmitter show dependency based on a Markov model which reflects the

practicality of a program. Therefore, the goal in this chapter is to obtain

the channel capacity of a communication system, or the severity of the

side channels.

The rest of the chapter is organized as follows: Section 4.2 defines the

proposed leakage capacity and introduces the Markov Source model. Sec-

tion 4.3 derives a mathematical relationship between the emanated inst-

ruction power (ESP) as it passes through processor pipeline and total em-

anated signal power while running a program. Section 4.4 provides exper-

imental results and leakage capacities for various devices. Finally, Section

4.5 provides a recipe for the leakage capacity calculation, and Section 4.6

provides the summary of the chapter.

4.2 Modeling Information Leakage from a Computer Program as a

Markov Source Over a Noisy Channel

In this section, we propose a Markov source model whose states are series

of instructions in a pipeline. We assume that channel inputs at each state

are the emanated signal powers produced as combination of different in-

structions in a pipeline, and the channel outputs are the noise corrupted

versions of the emitted signals. The reason for considering such a Markov

model is that individual instructions are not independent from each other

59

in the code as well as that ordering of instructions as they pass through

pipeline significantly impacts emitted signal patterns.

4.2.1 Proposed Markov Source Model for Modeling Information Leakage

from a Sequence of Instructions

Here, we describe a Markov source model that characterizes relationship

among sequence of instructions as they pass through pipeline stages in a

processor. Note that a processor pipeline is an assembly line for comput-

ing, and contains groups of activities related to computational tasks, i.e.

fetching, decoding, executing, etc. [78]. We assume that channel inputs

at each state are the emanated signal powers obtained as a combination

of different power levels that instructions experience as passing through a

pipeline, and the channel outputs are the noise corrupted versions of the

emitted signals. To include the effect of pipeline depth, states are assumed

to be all possible instruction combinations because each stage performs

an operation on the instruction in the queue. For example, if a pipeline

has a depth of m, and the cardinality of S is q, the number of states will be

qm.

To illustrate how the proposed Markov Model works, Fig. 4.1 shows an

example of Markov Source Model for the instruction execution when the

pipeline depth is m, and the cardinality of the considered instruction set

is three. In the figure, Pi,j represents the state transition probability from

state i to state j, and circles denote the states of the model. The instruc-

tion set used in the example is {D, S, M}, which corresponds to division,

subtraction, and multiplication, respectively. We utilize trellis diagram to

explain the model explicitly although transitions are time invariant, i.e.

Pi,j does not vary in time. Moreover, the labels of the states are chosen

60

DD· · ·DD DD· · ·DD

...
...

MD· · ·DD MD· · ·DD

...
...

SD· · ·DD SD· · ·DD

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

t t+1

PDD···DD,DD···DD

PDD···DD,MD···DD

PDD···DD,SD···DD

...

...

...
q transitions

Time

S
ta
te
s

m

Figure 4.1: Markov Source Model for the instruction execution when the
pipeline depth is m, and the cardinality of the considered instruction set
is three.

as the combination of letters representing the instructions in the pipeline.

Considering these three instructions, one of the states can be labeled as

“DDISDD” where IS is a sequence of instructions whose length is m − 4.

Interpretation of the state corresponding to the label is that instructions

in the 1th, 2nd, ..., m− 1th and mth stages of the pipeline are D, D, ..., D, and

61

D, respectively.

For each state, the number of possible paths is q, i.e. it is equal to

the number of instructions in the set. For example, for the considered

example, there exist only three paths from each state since the instruction

set contains only three elements. For example, the possible states after

“DDISDD” could be “DDDISD”, “MDDISD” or “SDDISD”. Furthermore, we

assume that any instruction can be followed by any other instruction. This

assumption helps the proposed model to be an indecomposable channel,

therefore, the mutual information definition given in (2.3) is applicable to

the proposed scheme.

We need to note that by considering the Markov source model, we can

successfully capture the pipeline effect because it puts constraints on the

state transitions. Moreover, Pi,j explains the frequency of the instruction

order encountered in the program. Therefore, the capacity of the proposed

model provides the worst instruction sequence distribution which leaks

information the most.

4.2.2 Introducing Information Leakage Capacity for the Proposed Markov

Source Model

The capacity definition given in (2.3) is well suited for Markov source mod-

els if the states take the same amount of time. In other words, the defi-

nition is valid for the models where the transitions last equal amount of

time, and the transition time is not dependent on a given state. Unfor-

tunately, applying the same capacity definition to the proposed scheme is

not appropriate because different instructions take different time to ex-

ecute. Therefore, we need a capacity definition which also accounts for

instruction execution times. Hence, we propose a method to quantify the

62

information leakage, which considers both execution time of each state

and the mutual information between input and output sequences.

Definition 1. Assuming varying execution time of instructions, maximum

possible information leakage through a processor is defined as

C = max
Pij

(i,j)∈T

lim
n→∞

I (Sn1 ;Y n
1 |S0)

n∑
i=1

L(i)
(4.1)

where L(i) is the length of the state executed at the ith transition.

Following the analogy between equations (2.2) and (2.3), we can rear-

range the equation in (4.1) as follows

lim
n→∞

I (Sn1 ;Y n
1 |S0)

n∑
i=1

L(i)
=

lim
n→∞

1
n
I (Sn1 ;Y n

1 |S0)

lim
n→∞

1
n

n∑
i=1

L(i)
(4.2)

=

∑
i,j:(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
i∈S
µiLi

(4.3)

where S is the set containing all existing states, i.e. all instruction com-

binations, and Li is the execution length of the state i. Therefore, our

definition can also be written as

C = max
Pij

(i,j)∈T

∑
i,j:(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
i∈S
µiLi

. (4.4)

The result of this optimization provides the possible information leakage

in bits per smallest number of clock cycles required to execute a state in

S (which we call Bits/Quantum), not bits per second. The reason is that

each instruction takes at least one clock cycle for any device, but clock

frequencies can vary from one device to another. Since the goal is to an-

63

alyze the leakage capacity on instruction level, we provide our results in

Bits/Quantum (similar to previous chapter, we use the term Quantum in-

stead of Capacity per Unit Cost [76]). Please note here that even the leakage

capacity of a device is small, the number of bits, a device can transmit in

a second, could be large. Therefore, while examining the vulnerability of

any device against side channel attacks, combining the leakage capacity

with clock frequency leads to the most accurate results.

4.2.3 Reducing the Size of the Markov Source Model

The main problem of the proposed Markov source model is the number of

possible states and transitions. As the depth of the pipeline and the num-

ber of considered instructions increase, the number of states increases

exponentially. This increase causes the iterative algorithm given in [72]

to be more complex. Choosing states as individual instructions will sim-

plify the proposed scheme. For these states, the channel input signal is

assigned as the emanated EM signal while executing the corresponding

instruction through all pipeline stages. With this approach, the number of

states increases linearly, not exponentially, as the number of instructions

increases.

In Fig. 4.2, we provide an example of the state diagram when the inst-

ruction set is {D, M, S}. This model is still indecomposable based on the

assumption that each instruction can follow any other instruction. There-

fore, the capacity definition given in (4.3) can be used to calculate leakage

capacity limits. However, this definition also does not have a closed form

solution, and an empirical algorithm similar to expectation-maximization

(ExMa) algorithm in [72] is needed to solve the problem.

64

D

M

S

PSS

PMM

PDD

PDM

PDS

PSD

PMS

PSM

PMD

1

Figure 4.2: Simplified version of Markov Source Model for the instruction
execution when the cardinality of the considered instruction set is three.

4.2.4 An Empirical Algorithm to Evaluate the Leakage Capacity

To utilize the ExMa algorithm, we have to adjust the proposed model given

in the previous section to remove the execution time of the instructions

from the optimization problem. To achieve this goal, we propose to split

the instructions into unit length sections, i.e., one clock cycle segments,

and treat each of these segments as an individual state. To protect the

overall framework and instruction sequence, we have to introduce some

constraints for possible state transitions.

Let K ∈ S be a state whose length is LK > 1. For the proposed model, we

divide it into LK different states, where the states are named as Ki where

i ∈ {1, · · · , LK}. Each sub-state is called:

• Initial state if i = 1, i.e. K1,

• Exit state if i = LK, i.e. KLK ,

65

• Intra-state if i ∈ {2, · · · , LK − 1}

of an instruction K. However, if the length of the instruction K equals to

one, we keep the instruction set unmodified. Note that the initial and

exit states of K will refer to full set K for the scenario when K takes only

one clock cycle. Let SM and TM be the set of states and state transitions,

respectively, after splitting the states to have a new instruction set whose

members take same amount of time. Therefore, we can rewrite (4.3) as

C = max
Pij

(i,j)∈TM

∑
(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(4.5)

where Pij refers the modified state transition probabilities, ui is the sta-

tionary distribution of the new states, and Tij is defined as in (2.4) in the

new model.

Dividing the original states into substates is not enough to protect the

duality between the optimization settings given in (4.3) and (4.5). We also

have to make sure that the state transitions occur in a way that the inst-

ruction sequences for both settings follow the same path. For example,

let LK be equal to 2. To ensure the duality, PK1j must be nonzero only

if j is K2. More formally, to guarantee the duality between the equations

(4.3) and (4.5), we employ constraints on transitions which only allow state

transitions in the following scenarios:

R1. An exit state of any instruction to an initial state of any instruction,

R2. Ki to Ki+1 of instruction K where i ∈ {1, · · · , LK − 1}.

Fig. 4.3 illustrates the proposed framework. This figure is a trans-

formed version of the Markov source model given in Fig. 4.2 based on

the rules imposed by R1 and R2. We assume that D and M take four and

66

three times of the execution time of S, respectively. Here, M1 and D1 are

the initial states, M3 and D4 are the exit states of M and D, respectively.

D2 and D3 are the intra-states of DIV, and M2 corresponds the intra-state

of M. Note that these values are chosen arbitrarily, and only given as an

illustration.

D4

D3

D2

D1

SUB M2

M1

M3

PS,S

PD3,D4

PM1,M2

PM2,M3

PM3,M1PD2,D3

PD1,D2

PD4,D1

PD4,M1

PD4,S PS,M1

PS,D1

PM3,D1

PM3,S

1

Figure 4.3: Markov Model for the instruction execution as it goes through
sub-states that take equal amount of time.

By applying the transformations introduced above, we have removed

the problem of variable time of execution per instruction. The following

theorem proves the models given in Section 4.2.3 and Section 4.2.4 are

dual, and will lead to the same capacity results.

Theorem 1 (Duality). The optimization settings given in (4.3) and (4.5) are

dual problems if the constraints imposed by R1 and R2 are satisfied.

67

Proof. Please see Appendix E.

Figure 4.3 illustrates that although we pose some constraints on the

possible state transitions, the state transition diagram is still indecompos-

able. Therefore, the capacity definition and corresponding iterative algo-

rithms given in [72] can be utilized. However, to apply the algorithm, the

channel inputs have to be known. In the following section, we introduce

a methodology to calculate the channel input power, i.e., emitted signal

power while processing an instruction through the pipeline.

4.3 Estimating Channel Input Power in the Proposed Markov Model

To obtain the channel inputs for the proposed model, in this section,

we derive a mathematical relationship between the emanated instruction

power as it passes through processor pipeline and total emanated signal

power while running a program. This is in contrast to work in [18] where

all energy emanated through side-channel is assigned to an instruction,

without taking into account effect of processor pipeline, which significantly

impacts the emanated signal. Another advantage of this approach to cal-

culate emanated energy per instruction is that capacity can be directly

related to signal to noise ratio (SNR).

4.3.1 Definition for Emanated Signal Power (ESP) of Individual Instructions

as They Pass Through Pipeline

In this section, we define Emanated Signal Power (ESP) which is the chan-

nel input power for the proposed Markov source model.

For activity A1, let assume TA1
is the execution time, TPA1

is the total time

spent in the pipeline except the execution stage, aA1(t) is the characteristic

68

signal emanated only when A1 is executed, and aPA1
(t) is the signal em-

anated as a consequence of processing the activity throughout the pipeline

excluding the execution stage. We define ESP(A1) as:

ESP(A1) =

∫ TPA1

0 |aPA1
(t)|2dt+

∫ TA1

0
|aA1(t)|2dt

R
(4.6)

where we assume the activity A1 stays in the pipeline for the time interval

(0, TA1
+ TPA1

) only once, R is the resistance of the measuring instrument,

and the execution step is the last step of the pipeline. Here, we need to

emphasize that aA1(t) and aPA1
(t) are desired signals emanated while pro-

cessing activity A1 through the pipeline only. They do not contain any

components from any other signals and interrupts ideally. We also need

to note that although we assume that the execution of an instruction hap-

pens at the very end of the pipeline, it is only for better illustration of the

equation given in (4.6), and the execution could be done at any stage of

a pipeline. We need to note that ESP provides the mean available power

while executing an instruction, therefore, we assume that the noise term

comprises all variations in the emanated power.

Although ESP is defined in continuous time domain, we have to alter

this equation to cope with discrete time analysis since measurements are

done on digital devices. Let assume sampling frequency of the measuring

instrument is fs = 1/Ts. We also assume that the number of samples taken

during the execution of the instruction A1 is NI = TA1
/Ts, and the number

of samples taken, when the instruction A1 is processed in a pipeline except

for execution stage, is PS = TPA1
/Ts. Then, ESP in discrete time can be

written as

ESP[A1] =

PS−1∑
m=0

|aPA1
[m]|2 +

NI−1∑
m=0

|aA1 [m]|2

R/Ts
. (4.7)

69

4.3.2 Estimating ESP From The Total Emanated EM Signal Power Created

by a Program

Measuring ESP is not a trivial task. Execution of any instruction is over-

lapped with execution of other instruction in the code as well as other

activities in the other stages of the pipeline. Therefore, we need a method

to separate signal components that do not belong to the considered inst-

ruction from the desired signals related to a particular instruction. In [51],

a program is designed to calculate the emanated energy difference between

two instructions.

In this section, we modify the work in [51] to evaluate energy emanated

by a single instruction. For ease of explanation, we show the code from [51]

in Fig. 2.1. The code has two inner for-loops such that the first for-loop

repeats the execution of Activity A, and the second for-loop repeats the

execution of Activity B. Work in [51] shows that given the activities in the

inner for-loops are non-identical, a spectral component at the alternation

frequency, falt = 1/Talt, is generated where Talt is the one period of outer

for-loop.

Instead of inserting two different activities into for-loops of the code,

we insert instruction under observation in the first for-loop of the code,

and NOP instruction into the second for-loop of the code. We note here

that NOP instruction keeps the processor idle for one clock cycle. Hence, if

the execution time of the activity in the first for-loop takes more than one

clock cycle, the number of NOPs in the second for-loop has to be chosen

carefully so that both loops take equal amount of time. In other words,

the number of iterations of the first for-loop, n_inst, has to be equal

to number of iterations of the second for-loop n_inst2=ninst. Here, we

assume the emitted signal power at all stages of a pipeline for NOP forms

70

the baseline that we use to normalize the power consumption of other

instructions relative to NOP. Therefore, for the mathematical tractability of

the derivations given in Appendix F, we assume that the signal measured

while execution of NOP is a consequence of additive Gaussian white noise.

After running the modified code in [51] and measuring the power at the

alternation frequency, the next step is to derive the relationship between

the total emitted power and ESP. Let s(t) be the emanated signal when the

outer loop iterates for one time. We assume that the frequency content of

s(t) is negligible for the frequencies above fs/2, and lasts for TE seconds.

Therefore, the total number of samples taken during the experiment is

equal to NT = TE/Ts. Let TL be the execution time of any inner for-loop

only for one period. Then, the number of samples taken in a period can

be written as NL = TL/Ts. Therefore, the relationship between NT and NL

becomes NT = 2× ninst ×NL.

Now, let the power measured around this frequency be PA1(falt) while

executing the code under the assumptions stated above. The following

theorem gives the relationship between the total emanated signal power

and the instruction power.

Theorem 2 (ESP). Let PA1(falt) be the normalized emanated power which

is defined as

PA1(falt) = PA1(falt)− PNOP(falt) (4.8)

where PNOP(falt) is the measured emanated power when both for-loops of

the code are employed with NOP. The mathematical relationship between

ESP[A1] and PA1(falt) while running the activity A1 in the first for-loop can be

71

written as:

ESP[A1] =
(π

2

)2 PA1(falt) ·NL

(NI + PS) · falt · ninst
. (4.9)

Proof. Please see Appendix F.

4.4 Experimental Results and Information Leakage Analysis

Figure 4.4: Measurement setups used in the experiments.

In this section, we provide the experimental results for emanated sig-

nal power of each instruction, and evaluate leakage capacity of various

computer platforms.

The experimental setup is shown in Fig. 4.4. We used a spectrum an-

alyzer (Agilent MXA N9020A), and magnetic loop probe (AAronia H field

probe PBS-H3) for FPGA board and a magnetic loop antenna (AOR LA400)

for other devices. We performed our measurements by setting the alter-

nation frequency, falt, to 80 kHz. We keep the distance as close as pos-

sible to the processor since our goal is to reveal the input powers of the

transmitter, i.e. ESP. The activities used in this section correspond to x86

instructions given in Fig. 2.1.

To obtain the experimental results, the steps we follow are:

72

• Run the program given in Fig. 2.1 as described in Section 4.3.2 to

measure the available total signal power at the alternation frequency.

• Calculate ESP of each instruction for all available devices based on

the equation given in (4.9).

• Transform the Markov Chain of instructions, and define the new con-

straints for the new model in terms of allowable paths as in Section

4.2.4.

• Define the signal to noise ratio (SNR) as:

SNR =

∑
i∈S

(ESP[i])2

|S| ×N0/2
(4.10)

where |S| is the cardinality of instruction set S.

• For a given SNR, run the algorithm given in [72] to obtain the station-

ary probabilities of each sub-state and corresponding leakage capac-

ities.

• If the stationary probability of instructions is required, solve the fol-

lowing equations

µi = L× ui1, ∀i ∈ S (4.11)

where µi is the stationary probability of ith instruction for the original

case, and ui1 is the initial sub-state of ith instruction for the trans-

formed scenario, and L is a constant which can be written as

L =

(∑
k∈S

uk1

)−1

. (4.12)

• Define “Quantum” as the ratio between number of required clock cy-

73

cles to execute an instruction and minimum number of clock cycles

to execute at least one instruction.

Please note that for some experiments, Quantum is equivalent to a

clock cycle, but for some experiments, it can correspond to a couple of

clock cycles. Additionally, abbreviations used in this section can be listed

as follows:

• CP : Capacity in Bits/Quantum obtained with the proposed scheme.

• C0: Capacity in Bits/Instruction obtained by assuming execution

time of all instruction takes only one clock cycle and using capacity

definition given in (2.2). We also assume that the optimal stationary

distribution for this capacity definition is denoted as µ0.

• CN : Capacity in Bits/Quantum which is calculated as

CN =
C0∑

i∈S
µ0[i]Li

. (4.13)

This capacity definition maps C0 into Bits/Quantum for a fair com-

parison.

• C∞: Capacity in Bits/Quantum obtained by setting SNR =∞ and ex-

ploiting the proposed scheme to obtain the maximum possible leak-

age.

4.4.1 Experimental Results and Leakage Capacity for FPGA

This section presents the experimental results and leakage capacity for

NIOS Processor on DE1 FPGA board. The ESP and corresponding execu-

tion length of each instruction are provided in Table 4.1. Please note that

74

length of an instruction means total execution time of each instruction in

terms of Quantum.

Table 4.1: ESP values (in zJ) for DE1 FPGA board.

LDM LDL1 DIV ADD SUB MUL

ESP 139.38 69.98 87.60 0.32 6.10 55.14

Length 7 4 5 1 1 4

In Fig. 4.5, we plot the leakage capacity for FPGA as a function of SNR.

We observe that C0 exceeds CP because C0 considers that each instruction

takes only one clock cycle. However, if we normalize C0 to obtain CN ,

we can observe that applying traditional Shannon theory underestimates

available leakage capacity and that proposed leakage capacity estimation

CP is needed to establish relationship between sequence of instructions as

they pass through pipeline and leakage capacity.

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S 1.157

C
P

C
0

C
N C

Figure 4.5: Leakage Capacity for NIOS Processor on the DEI FPGA.

Additionally, we observe that leakage capacity for SNR = 59.96 dB in

[18] is 1.14 Bits/Quantum. Please note that the method in [18] does not

allow for capacity calculation as a function of SNR. On the other hand,

75

with the proposed scheme, the estimated leakage capacity is higher and

reaches 1.157 Bits/Quantum when SNR is around 30 dB. This result in-

dicates that considering the pipeline depth and the dependence between

instructions, which are not included in [18], more realistically estimates

leakage capacity. We also note that the leakage capacity is high even for

low SNR regimes allowing for transmission of thousands of bits per second

because the clock frequencies of the current devices are high. Therefore,

software and hardware designers need to consider side-channels and de-

vise countermeasures to decrease side-channel leakages as much as pos-

sible.

4.4.2 Experimental Results and Leakage Capacity for AMD Turion X2

Laptop

This section provides the leakage capacity for a laptop with AMD Turion

X2. It has 64 KB 2 way L1 Cache and 1024 KB 16 way L2 Cache. ESP

values and execution lengths are given in Table 4.2.

Table 4.2: ESP values (in zJ) for AMD Turion X2 Laptop.

LDL2 LDM STM STL2 STL1 MUL DIV

ESP 150.08 84.66 64.74 188.17 0.49 0.21 7.26

Length 1 26 30 3 1 1 8

We need to note here that LDL1, ADD, and SUB are not included into

our analysis because ESP values and execution lengths of these instruc-

tions are almost equal to STL1. Therefore, including these instructions

does not affect overall leakage capacity. However, if we consider STL1,

LDL1, ADD, and SUB as a sub-instruction set whose members are almost

identical, STL1 could be thought as a representative of this set.

We observe that the deviation of the execution length of instructions is

76

much larger compared to FPGA. The effect of having such a deviation can

be seen from Fig. 4.6 where the gap between C0 and CP is significantly

larger. Additionally, the leakage capacity given in [18] is 0.97 Bits/Quan-

tum when SNR is 23.78 dB, but the new proposed leakage capacity CP

shows that the leakage can be up to 1.36 Bits/Quantum for the same SNR

region. This result indicates that all signals emanated from all stages of

a pipeline carry some information, therefore, ignoring these signals can

cause underestimation of the leakages.

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S

1.634

C
P

C
0

C
N C

Figure 4.6: Leakage Capacity for AMD Turion X2 Laptop.

The results also show that the capacity of the laptop is moderately high

even for low SNR regimes. For example, we observe that the leakage ca-

pacity of this system is approximately 1 Bits/Quantum around 0 dB SNR.

Unfortunately, if the attacker is in very close proximity, and has the ideal

decoder to reveal the secret information, CP could raise up to 1.634 Bit-

s/Quantum, which corresponds to 1.634*109 bits/second for a processor

with 1 GHz processor clock and all instructions taking one clock cycle. We

also observe that CP could not achieve the data rate of C∞ in the given

77

SNR regime. For CP to achieve maximum rate, it requires about 57 dB

SNR. However, for the consistency among figures, we keep the considered

SNR regime same for each plot.

4.4.3 Experimental Results and Leakage Capacity for Core 2 DUO Laptop

In this section, we provide the results for Core 2 DUO laptop. It has 1.8

GHz CPU clock, 32 KB 8 way L1 and 4096 KB 16 way L2 caches. ESP

values and lengths of instructions are given in Table 4.3. Similar to AMD

laptop, the deviation of the instruction length is large, which causes the

capacity gap between the proposed and Shannon based methods to be

larger.

Table 4.3: ESP values (in zJ) for Core 2 DUO Laptop.

STL2 LDM STM LDL2 LDL1 MUL DIV

ESP 422.16 181.58 79.94 320.48 0.75 0.06 7.02

Length 1 26 31 3 1 1 8

We do not consider the results for STL1, SUB and ADD because the

lengths and ESP values of these instructions are almost same with LDL1.

For this device, we assume that LDL1, STL1, SUB and ADD form a sub-

instruction set, and LDL1 as the representative of this set. We observe

that CP can be up to 1.634 Bits/Quantum if the attacker can find a way

to capture emanated signals with high SNR. Furthermore, at 23.82 dB

SNR, CP is 1.36 Bits/Quantum, again higher then 1.09 Bits/Quantum

capacity predicted in [18]. The difference between these results reveals

the importance of considering both pipeline depth and ordering of instruc-

tions.

We also observe that the required SNR for CP to achieve C∞ must be

at least 56 dB. However, with a moderate gain antenna and proximity to

78

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S

1.634

C
P

C
0

C
N C

Figure 4.7: Leakage Capacity for Core 2 DUO Laptop

the laptop, the attacker can steal sensitive information since the leakage

capacity is 0.5 Bits/Quantum when SNR is around -10dB. Considering the

clock frequency of the computer, the side channel can have a transmission

rate of thousand of bits per second under ideal circumstances.

4.4.4 Experimental Results and Leakage Capacity for Core I7 Laptop

The last example we provide is for Core I7 laptop which has 3.4 GHz CPU

clock with 64 KB 2 way L1 Data and 1024 KB 16 way L2 caches. Table

4.4 provides ESP and execution length of each instruction. The first ob-

servation here is that the deviation of the execution length of instructions

is not as large as the other laptops, which causes the gap between CP and

C0 results to decrease as given in Fig. 4.8.

Table 4.4: ESP values (in aJ) for Core I7 Laptop.

LDL2 LDM STM STL2 SUB STL1 ADD MUL DIV

ESP 1.03 1.38 1.23 0.56 0.05 0.09 0.08 0.06 0.54

Length 1 12 15 4 1 1 1 1 8

We observe that LDL1 and SUB have approximately same ESP. There-

79

fore, SUB is considered as the representative of the group of these in-

structions. For ideal scenarios, CP can go up to 2.32 Bits/Quantum. To

achieve this rate, the setup must ensure at least 47 dB SNR. In addition,

when SNR is 23.84 dB, the leakage capacity with the model in [18] is 0.72

Bits/Quantum, although it is obtained as 1.65 Bits/Quantum with the

proposed model. Hence, including both pipeline depth and dependencies

between instructions helps better quantification of leakage capacity.

-10 0 10 20 30

SNR(dB)

0

1

2

3

B
IT

S 2.32

C
P

C
0

C
N C

Figure 4.8: Leakage Capacity for Core I7 Laptop

Also, for the low SNR scenarios, CP is high enough, i.e. 0.7 Bits/Quan-

tum around 0 dB. Considering the clock frequency of the laptop, the ca-

pacity values given in Fig. 4.8 could be a messenger to warn any users

about the possible vulnerabilities that computer systems might have.

Another evaluation methodology to assess the severity of side channels

is given in [79]. They define success rate to demonstrate the performance

of an adversary attack. It is possible to establish a connection between

the success rate and the proposed information leakage. This connection is

achieved if the probabilities which lead to maximum information leakages

80

are utilized to calculate the success rate. As a simple example, if the goal

of an attack is to reconstruct instructions (although this chapter does not

consider a specific attack, but aims to provide a universal upper bound for

EM side channels), we can define the success rate as

Succsc−ir−1,I
AI,ESP

(D, σ) =
∑
i∈I

µ[i]

diU∫
diL

f(x|ESP(i), σ)dx

 (4.14)

where D is the set of decision boundaries for all instructions, I is the set

containing all considered instructions, diU and diL are the upper and lower

decision boundaries for the ith instruction, f(x|α, σ) is the pdf of white

Gaussian noise distribution with mean α and standard deviation σ, µ[i]

is the stationary probability of ith instruction that is the result of the op-

timization problem given in (7). The decision boundaries are calculated

based on ESP values of neighboring instructions. Therefore, if the target

of an attack is known, it is possible to provide success rate of an attack by

exploiting the parameters which optimize (7).

Welch’s T-test is an evaluation methodology which is heavily exploited

in the security assessment of cryptographic implementations against side

channel attacks [80, 81, 82]. The proposed framework can be also asso-

ciated with T-test assessment methodology if we assume there exists an

attack which can separate emitted signals of different pipeline stages, and

depends on the emitted signal power of individual instructions when the

same instruction is executed successively. If these assumptions hold, the

attacker will receive samples which will be the noise added version of emit-

ted signal power while performing activity i, i.e, yij = ESP(i) + noise, where

81

yij denotes the jth successive execution of the instruction i. Let yi be

yi =
[
yi1 y

i
2 · · · yiNi

]
(4.15)

where Ni is the number of successive execution of the instruction i. Let

also ∆m,n be the T statistic of instruction m and n, which is given as

∆m,n =
E (ym)− E (yn)√

var(ym)
Nm

+ var(yn)
Nn

(4.16)

where E(•) is the expectation operation, and var(•) gives the variance of

its input. The T statistic for the instruction m will be significant only if

∆m,n is above a threshold for any n ∈ I. Therefore, the T statistic could

be an empirical methodology, which can provide required repetition of an

instruction for a successful side channel attack.

4.5 Utilizing the Proposed Framework for Security Assessment

The leakage capacity definition given in this section provides the maximum

leakage amount that any EM side/covert channel can achieve on a given

device. This capacity can help designers to predict possible vulnerabili-

ties of their products at the design-stage and provide the opportunity to

design countermeasures, or to redesign their systems to prevent possible

side-channel attacks. Comparing with the evaluation method based on

success rate, which quantifies accurate retrieval rate of an attack’s tar-

get (i.e., secret key bit estimation), leakage capacity defines the maximum

information leakage through side channels without specifying the attack

itself. Therefore, it provides a universal upper bound for EM side channels.

This section provides a recipe to check whether the considered system is

82

secure enough against side channel attacks, and explains steps to justify

why they are required. The procedure for the assessment is given in Figure

4.9, and can be explained as follows:

• The first step is to collect emanated EM signal power available to an

attacker while executing an instruction. Considering the clock fre-

quency of modern computer systems, measuring the single instruc-

tion power could be problematic because of synchronization, complex

pipeline structure, etc. To handle these problems, the designed mic-

robenchmark given in Figure 4 is run to obtain both PA1(falt) and

PNOP(falt) where Pi(falt) is the total emanated signal power when inst-

ruction i and NOP are inserted into the first and second inner-for-

loops, respectively.

• The measurements to obtain Pi(falt) are done from near-field because

the goal is to capture all emanated signal as much as possible. This

approach helps to have close empirical results for signal power be-

cause actual emanated instruction power is not available. Then, ESP

of each considered instruction is calculated based on the formula

given in (12).

• Because of the functionality of a program, a script, etc., and the

complex pipeline structure of modern computer systems, instructions

shows dependency to each other. To consider the dependency among

instructions, a Markov Model is created as given in Section II.

• The next step is to calculate the limit for information leakage. To ob-

tain the limit, the algorithm given in [72] will be exploited. For the

algorithm, it is required that the channel inputs from each source

have to last for the same amount of time. However, instructions can

83

take different number of clock cycles to execute. Therefore, the Quan-

tum length of each instruction has to be revealed. Please note that

the Quantum length is defined as the ratio between actual execu-

tion time of an instruction and the minimum execution time within

instruction set.

• After having the execution length and utilizing the duality given in

Theorem 1, the next step is to apply the transformation in Section

II-E. This transformation makes sure that each channel input takes

same amount of time so that the algorithm given in [72] can be uti-

lized to calculate the leakage capacity for a targeted SNR regime.

• The result of the algorithm provides the leakage capacity which is

denoted as CP . We use this number later as the baseline to compare

with the leakages of designs to understand the relative resistance of

them against any possible side channel attack.

• To find the leakage of any code, program, design, etc., the number of

transitions from ith to jth instructions is counted. These numbers are

normalized to calculate Pij for the inspected source code.

• Having the state transition probabilities, Pij, our next goal is to reveal

the available mutual information for the test code. Please note that

our goal is to find the mutual information with the given Pij, therefore,

we do not need to update the state transition probabilities. Hence, we

run the algorithm given in [72] only once without updating the state

transition probabilities. The mutual information obtained as a result

of the algorithm is denoted as MC.

84

Run the microbenchmark given in Figure 2.1

Measure the emanated EM signal power

Calculate ESP
(Theorem 2)

Generate Markov Source Model

(Section 4.2.4)

Calculate Quantum lengths of instruction

Calculate Leakage Capacity by exploiting

the model, ESP and the algorithm in [69]

Store the leakage capacity

Generate instruction sequence for the

code under test

Calculate transition probabilities of the

sequence

Run the algorithm in [69] to obtain the

mutual information for the code .

Compare with

is relatively small enough thanTrue False

The code is resistant to side channel

attack

Come up with some countermeasures or

revise the design

Figure 4.9: The methodology to assess information leakage.

85

• As the last step, we compare CP with MC. If MC is much smaller then

CP , and very close to zero, the designer can conclude that the source

code is secure. Otherwise, a new design or some countermeasures,

i.e. shielding, etc., has to be considered. Then, the same steps given

in this section have to be followed again until achieving MC � CP .

Please note that the procedure given here does not specify the attack

methodology, but provides the worst case scenario for a victim in terms

of information leakage. It is still an ongoing research to have an attack

that achieve the limits given in this chapter. However, designers can uti-

lize the procedure to prevent any future attacks.

4.6 Summary

This chapter proposed a methodology to relate program execution to EM

side-channel emanations and estimate side-channel information capacity

created by execution of series of instructions (e.g. a function, a procedure,

or a program) in a processor. To model dependence between program in-

structions in a code, we have proposed to use Markov Source model, which

includes the dependencies that exist in instruction sequence since each

program code is written systematically to perform a specific task. The

sources for channel inputs are considered as the emitted EM signals dur-

ing instruction executions. To obtain the channel inputs for the proposed

model, we derive a mathematical relationship between the emanated IP

and total emanated signal power while running a program. Then, we have

derived leakage capacity of EM side channels created by execution of series

of instructions in a processor. Finally, we have provided experimental re-

sults to demonstrate that leakages could be severe enough for a dedicated

attacker to obtain some prominent information.

86

CHAPTER 5

COMMUNICATION MODEL AND CAPACITY LIMITS OF COVERT

CHANNELS CREATED BY SOFTWARE ACTIVITIES

5.1 Overview

In this chapter, we model an electromagnetic covert channel as a commu-

nication channel and derive upper and lower capacity bounds [21]. Covert

channels can be used to communicate sensitive data between two pro-

cesses inside a processor - typically a privileged process that has access to

secret data but no/limited access to the outside world and a non-privileged

process with no access to the data but connected to the outside world, or

alternatively, they can be used to “exfiltrate” data from an air-gapped com-

puter which is physically and logically separated from public networks [4,

56]. In both cases, the secret data can be secretly transferred to the out-

side world through a wireless channel which, in turn, breaks the existing

assumptions about the security of sensitive data inside a system.

Covert channels are considered as a serious security threat [2] since

they can circumvent and break existing defense mechanisms (e.g., memory

isolation, partitioning, etc.) for protecting secrets inside a computer. Typi-

cally, wireless communication is a carefully designed process that encom-

passes the coordinated design of transmitter and receiver and usually, the

transmitted and received signals are well-synchronized. In contrast, covert

channels lack these characteristics. Moreover, contrary to most communi-

cation systems, which are designed to avoid symbol loss and/or insertion

with little or no overhead, covert channels are not designed to transfer

87

information at all and their transmission is often corrupted by insertion,

deletion, and erroneous transfer of bits. While there is a large number

of papers discussing bounds on the capacity of channels corrupted with

synchronization errors [10], [11], [12], [13], [14] and more recently, papers

discussing bounds on the capacity of channels corrupted with synchroni-

zation and substitution errors [15], [16], none of them provide bounds for

the capacity of the wireless covert channel which can be modeled as a

cascaded insertion-substitution channel that suffers from random pulse

position shifts, and that insertions occur with different probabilities for

zero and one.

Similar to traditional wireless communications, some errors in the covert

channel occur due to variations in the propagation environment. How-

ever, in addition to channel errors, the software activity “transmitter” lacks

precise synchronization, causing jitter that reduces the signal’s effective

bandwidth and increases the noise level. Also, the “transmitter” gets in-

terrupted with other (system) activities, and the transmitted signal may go

through a channel obstructed by metal, plastic, etc. To capture all effects

of the observed behavior, we have modeled the transmitted sequence as a

pulse amplitude modulated (PAM) signal with randomly varying pulse po-

sitions. In summary, the main contributions of the chapter can be listed

as follows:

• Model the transmitted signal as a pulse amplitude modulated signal

with random pulse positions to avoid problems due to variation in the

execution time of computer activities,

• Model the covert channel as an insertion channel to consider other

activities such as interrupts, stalls, etc.,

88

• Derive power spectral density and the bit error rate (BER) of the trans-

mitted signal with only substitution errors,

• Derive capacity bounds with random insertion and substitution due

to the noise and jitter errors,

• Provide a receiver design that can correctly detect the computer-

activity-created signals,

• Perform experiments with high clock speed devices at some distance.

The organization of the chapter is as follows: Section 5.3 describes

the transmission model for a covert channel caused by EM emanations

of the processor, Section 5.4 explains reception model and BER for two

case studies, Section 5.5 derives lower and upper bounds of the covert

channel capacity, Section 5.6 presents the experimental results to validate

the proposed framework, and Section 5.7 summarizes the chapter.

5.2 Wireless Transmission via Covert Channels

Even an idle computer system produces RF signals that, after AM demodu-

lation, result in clicking, whining, and other sounds (this can be confirmed

by placing an AM radio receiver close to a computer). To confirm that the

received communication sequence is indeed the transmitted message, we

performed two experiments. First, we modulated our transmitted signal

with the A5 note (880 Hz), and turned this tone on/off to transmit Morse

code for “All your data belong to us” [3]. Second, we placed our micro-

benchmark code around the keyboard driver, which allowed us to transmit

keystrokes wirelessly [83]. In both cases, we were able to correctly receive

and demodulate transmitted signals.

89

However, we observed that the timing of the instructions was not per-

fectly synchronized. This issue confirmed that the baseband pulses gen-

erated with on-off keying do not have equal timing, and the created carrier

is spread over several kilohertz in contrast to traditional communications

where the carrier is well concentrated around a single frequency. This lack

of synchronization in the transmitter causes significant jitter and has to

be carefully modeled, as described in the following sections.

5.3 Transmission Model for Software-Activity-Created Signals

In this section, we propose a model for covert channel communication

systems. Before introducing the proposed model, we briefly review the

baseband PAM signal and corresponding notations used in the rest of the

chapter.

The baseband PAM signal with a period of T can be written as [84]

xp(t) =
∑
k

xkδ(t− kT) ∗ p(t), (5.1)

where δ(•) is Dirac delta function, ∗ is the convolution operator, xk =

(xk, xk−1, xk−2, . . .) is the sequence of data symbols that are chosen from

a finite alphabet, and p(t) is a shaping pulse. The power spectral density

(PSD) of xp(t) can be written as [84]

Sxp(f) =
|P (f)|2
T Sx(f), (5.2)

where P (f) is the Fourier transform of the shaping pulse,

Sx(f) =
∞∑

k=−∞
Rx[k]e−j2πfkT (5.3)

90

is PSD of the stationary sequence xk, and Rx[k] is the autocorrelation

function of sequence xk. Furthermore, if an impulse function is used as

the shaping pulse, the power spectral density can be simply written as

Sxp(f) = Sx(f)/T . 1

0 0.2 0.4 0.6 0.8 1

·10−6

0

1

2

3

·106

Sample Timing
(a)

PD
F

With memory activity
Without memory activity

−2 0 2

·10−7

0

2

4

6

·106

Sample Shift
(b)

PD
F

With memory activity
Without memory activity

Figure 5.1: Illustration of two timing distributions of symbols for an EM
covert channel, one when memory activity is used and one with on-chip
instructions is used.

The baseband signal shown in (5.1) assumes perfect symbol timing.

However, the transmitted signals created by computer software activities

are exposed to synchronization problems due to variations in symbol tim-

ing. As an example, Fig. 5.1 illustrates how the mean and the variance

of the symbol timing vary with software activities when a covert channel

is created based on emanated EM signals [3]. While the on-chip activities

have a more concentrated distribution with a smaller variation, off-chip

activities such as memory create more variations in symbol timing.

To deal with the pulse width variations and establish a connection us-

91

ing conventional communication theories, we assume the pulse width is

fixed, but the center of the pulse changes due to the non-synchronous na-

ture of the channel. Therefore, we propose to model the baseband signal as

a pulse amplitude modulated (PAM) signal with a random pulse position.

Then, the baseband received signal can be written as

yp(t) =
∑
k

xkp(t− kT −Tk), (5.4)

where Tk is a random shift associated with a particular pulse for the trans-

mitted symbol, xk, whose probability density function (pdf) is denoted by

fTk(tk). As illustrated in Fig. 2.4, the pulses are assumed to have a 50%

duty cycle and the neighboring pulses do not overlap. Here, we need to

note that although symbol timing varies as given in Fig. 5.1, our model

contains a pulse function whose width is fixed and whose position is ran-

domized. Also, the position of the pulse is chosen as the mid-point of

the actual pulse width. This can be explained as follows: in traditional

PAM modulation, pulse duty cycles are assumed to be fixed and do not

vary. However, in a covert communication system, duty cycles generated

by software activities can vary from one execution to another. Hence, to

capture the variation in symbol timing in software activities and link the

covert communication with the existing approaches, the transmitted sig-

nal is modeled as a PAM signal with a fixed pulse duty cycle.

To ensure that neighboring pulses do not overlap, the support set of

fTk(tk) is set to {tk ∈ [−T /4, T /4)}. We also assume probability density

functions,

{fTk(•) |∀k ∈ {−∞,∞}} ,

are identical and independent distributions (i.i.d.). As an example, Fig. 5.2

92

1

0 T 2T 3T 4T 5T
0

0.5

1

1.5

2

Time
(a)

A
m

pl
itu

de

PAM Signal Uncorrupted Pulse Location

0 T 2T 3T 4T 5T
0

0.5

1

1.5

2

Time
(b)

A
m

pl
itu

de

Figure 5.2: (a) PAM with sequence xk and (b) distribution of pulses per-
turbed randomly in time and modulated in amplitude when the shaping
pulse is a square wave.

illustrates a typical PAM signal with 50% duty cycle and its randomly

shifted version. We can observe that the time difference between neigh-

boring pulses can increase or decrease, which mimics the variations in

software activities and reflects the lack of synchronization.

To simplify (5.4) further, we will assume that p(t) is an impulse function,

δ(t), and the modulated baseband signal can be written as

y(t) =
∑
k

xkδ(t− kT −Tk). (5.5)

To evaluate the impact which the jitter introduces to the system due

to the variation in symbol timing, we need to find PSD of baseband PAM

signal with a random pulse position. The following theorem provides PSD

of the signal with a random pulse position:

93

Theorem 3. Let Φ(f) be the Fourier transform of φ(τ) and

φ(τ) =

∫
fT(τ + t)fT(t)dt = fT(τ) ∗ fT(−τ), (5.6)

where the subscript k is removed to represent the random position distribu-

tion of the kth pulse since all distributions are assumed to be i.i.d. Then, PSD

of the received signal, y(t), in (5.5) can be written as

Sy(f) =
1

T Sx(f)Φ(f) +
Rx[0]

T (1− Φ(f)). (5.7)

Proof. Please see Appendix H.

Furthermore, for an arbitrary pulse shape, PSD of PAM signal with a

random pulse position becomes

Syp(f) =
|P (f)|2
T

(
Sx(f)Φ(f) +Rx[0]

(
1− Φ(f)

))
. (5.8)

This result shows that PAM with a random pulse position is equivalent

to passing the PAM signal through a filter with power spectral density Φ(f),

and having a jitter noise whose power is redistributed as a continuous

wideband noise.

The characteristics of the filter and the noise are completely determined

by the probability distribution of the pulse positions. By fitting the mea-

sured samples of symbol duration into different probability distributions,

we have found that the best fit for the pulse position variations is a Gaus-

sian distribution with the mean µ and the standard deviation σ. Although

fitting Gaussian distribution for the pulse positions contradicts our previ-

ous assumption that pulses can be only between −T /4 and T /4, we can

still approximate the pulse positions with a Gaussian random distribu-

94

1

0 0.2 0.4 0.6 0.8 1

·10−6

0

1

2

3

·106

Sample Timing
(a)

PD
F

With memory activity
Without memory activity

−2 0 2

·10−7

0

2

4

6

·106

Sample Shift
(b)

PD
F

With memory activity
Without memory activity

Figure 5.3: Illustration of two distributions of pulse shift for an EM covert
channel, one when memory activity is used and one with on-chip instruc-
tions is used.

tion by assuming that the tail probability beyond −T /4 and T /4 is almost

zero. Moreover, for the tractability of the derivations, we will assume that

the means of these Gaussian distributions are equal. Fig. 5.3 plots the

shift distributions of these pulse positions. We can observe that the pulse

shift distributions are concentrated around zero. Therefore, (5.6) can be

specified further for the memory and non-memory activities.

Given that Gaussian distribution has a Fourier transform

F {f(t)} = e−2πjfµe−2π2σ2f2 , (5.9)

where F {•} takes Fourier transform of its argument and f(t) is any Gaus-

sian distribution with mean µ and standard deviation σ, we then combine

95

(5.9) with (5.6) and obtain

Φ(f) = e−2π2f2(
√

2σ)2 . (5.10)

Finally, inserting (5.10) into (5.7), we calculate PSD of PAM signal with

Gaussian distributed pulse positions as

Sy(f) =
1

T Sx(f)e−2π2f2(
√

2σ)2

+
Rx(0)

T

(
1− e−2π2f2(

√
2σ)2
)

= Sxt(f) + Snt(f), (5.11)

where Sxt(f) denotes the spectrum of the transmitted sequence and Snt(f)

denotes the noise spectrum due to random pulse position.

5.4 Quantifying the Information Leakage of Covert Channel Software-

Activity-Created Signals

Traditionally, the performance of a communication system is evaluated by

estimating symbol error rate or BER of the system. The error probability

of pulse amplitude modulated signal (PAM) can be written as [84]

PPAM = Q

(√
Ps

2Pn

)
, (5.12)

where Q(·) function denotes the tail probability of the standard normal

distribution, Ps is the averaged transmitted power of a symbol, and Pn is

the averaged noise power.

For the proposed scenario, BER represents the severity of the covert

channel. Quantifying the information leakage in terms of BER reveals how

fast we can transmit the information by establishing a reliable communi-

96

cation link using the computer systems. To estimate BER, we need PSD

of the signal derived in (5.11). Then, we assume that the transmitted sig-

nal, y(t), defined in (5.5) has been affected by the channel noise, and that

received signal can be written as

r(t) = y(t) + n(t), (5.13)

where n(t) denotes the white Gaussian noise with zero mean and standard

deviation, σn. We also assume that the noise and the transmitted sequence

are independent. By observing that a communication system based on the

covert channels described in Section 5.2 typically occurs at low frequencies

(∼ 1 MHz) where the multi-path effect does not play a significant role, it

is reasonable to assume that the received signal is mostly impacted by

noise and that inter-symbol interference (ISI) has almost negligible effect

on the reliability of the covert communication. Here, we assume that the

noise component contains both additive channel noise and all corruptive

signals due to other activities in the system. Then, utilizing (5.11), the

power spectral density of the received signal can be written as

Sr(f) = Sxt(f) + Snt(f) +N0/2, (5.14)

where N0/2 denotes the power spectral density of the additive white noise.

Obtaining PSD of the transmitted symbols facilitates the calculation

of BER. To utilize (5.12), we need to know the signal and noise powers.

Since our transmitted signal experiences jitter due to the variations in the

symbol position, we start by calculating PSD of the jitter noise and the

signal.

Corollary. Considering the variation in the symbol position, PSD of the

97

transmitted sequence for on-off keying (OOK) is given as

Sy(f) =
Rx[0]

T
(
S̄xt(f) + S̄nt(f)

)

=
Rx[0]

T

(

1

2
+

1

2T
∑
m

δ(f −m/T)

)
Φ(f)︸ ︷︷ ︸

S̄xt(f)

+ (1− Φ(f))︸ ︷︷ ︸
S̄nt(f)

 (5.15)

where S̄xt(f) and S̄nt(f) are the normalized signal and jitter noise powers.

Proof. Please see Appendix H.1.

Fig. 5.4 illustrates the behavior of the normalized signal and noise

power when T ≈ 15σ. 1

− 2
T − 1

T
0 1

T
2
T

0

0.2

0.4

0.6

0.8

frequency (Hz)

A
m

pl
itu

de

S̄xt(f) S̄nt(f)

September 4, 2017 DRAFT

Figure 5.4: PSD of normalized signal and jitter noise due to random pulse
position when T ≈ 15σ.

Since the noise power due to jitter behaves like a white noise when

Φ(f) ≈ 0, at the receiver front-end, we employ a low-pass filter whose band-

width and magnitude are 1/2T and 1, respectively. The total signal power

can be obtained as

Pst =
Rx[0]

T ·
∫ 1

2T

− 1
2T

S̄xt(f)df

=
Rx[0]

T ·
(

1

2T +

√
π

4T erf (πσ/T) /(πσ/T)

)
, (5.16)

98

and total noise power due to jitter is equivalent to

Pnt =
Rx[0]

T ·
∫ 1

2T

− 1
2T

S̄nt(f)df

=
Rx[0]

T ·
(

1

T −
√
π

2T erf (πσ/T) /(πσ/T)

)
, (5.17)

where erf(•) is the error function.

Having the power for both jitter noise and the received signal, we can

estimate BER by using (5.12) assuming we have a channel without synch-

ronization problems. However, this is not the case for a software-activity-

based covert channels because synchronization can hurt the stealthy na-

ture of these covert channels. Fortunately, after filtering the received sig-

nal at the receiver side, the jitter power becomes flat and behaves like an

extra power source for the channel noise. Therefore, the receiver sees the

channel noise with power N̂0/2 = N0/2 +T Pnt. With that approximation, we

can treat our communication system as a synchronized system with extra

channel noise power. Hence, BER for the system can be approximated as

BER = Q

(√
Pxt/T
N̂0

)
. (5.18)

The effect of varying jitter noise on BER is given in Fig. 5.5 where SNRi

is defined as

SNRi = Rx[0]/(N0/2). (5.19)

As the power of additive channel noise increases, the effect of the lack

of synchronization on the erroneous transfer of bits becomes negligible.

However, while the channel noise power decreases, the impact of jitter

99

noise can be observed explicitly. In Section 5.6, we will demonstrate that

assuming the jitter as an another source for the channel additive noise is a

proper assumption to model the characteristics of BER of a covert channel.1

0 2 4 6 8 10 12 14 16 18 20 22 24

10−7

10−5

10−3

10−1

SNRi (dB)

Pr
ob

ab
ili

ty
of

E
rr

or

σ = 0 σ = T /20
σ = T /15 σ = T /12

Figure 5.5: BER for the covert wireless communication system with vary-
ing jitter noise power.

Finally, we investigate how the variation in the symbol position corrupts

the transmitted sequence. The signal to jitter noise power ratio, SNRjitter,

at the transmitter side, due to random pulse positioning, can be written

as

SNRjitter =
Pst
Pnt

=
1
2

+
√
π

4
erf (πσ/T) /(πσ/T)

1−
√
π

2
erf (πσ/T) /(πσ/T)

. (5.20)

Fig. 5.6 depicts how SNRjitter changes with respect to σ/T . Since we

assume 12σ ≤ T , we limit σ/T to be between 0 and 1/12 (due to the as-

sumption that the distribution of the pulse shift has non-zero probability

in the region [−T /4, T /4) and considering three-sigma rule). As expected,

as the variation in pulse position decreases, the distortion in the transmit-

ted signal, due to jitter noise, decreases.

100

1

0 1 2 3 4 5 6 7 8
·10−2

20

40

60

80

σ/T
S
N
R

ji
tt
er

(d
B

)

Figure 5.6: SNRjitter vs. σ/T .

5.5 Capacity of the Covert Channel Created By a Computer Software

Activity

The conventional method to assess the capacity of a communication sys-

tem over Gaussian channels is to employ Shannon’s capacity definition

[84]. However, in addition to errors due to the Gaussian channel and pulse

position, covert communication channels are exposed to insertion errors

due to random software activities. We assume covert transmission occurs

continuously, and the insertions are due to processor optimization, stalls,

cache misses, queues, etc. These activities in a computer system can stall

the covert channel communication and produce unintended signals. The

receiver interprets these signals as ones or zeros, and these received bits

are considered as the inserted symbols of the covert wireless communica-

tion. To model this covert channel, we assume binary discrete memoryless

channel for the random insertions, as illustrated in Fig. 5.7. The chan-

nel parameters are (pi0, pi1, pe), where pi0 denotes the probability that the

random inserted symbol is 0, pi1 denotes the probability that the random

inserted symbol is 1, and pe denotes the probability of substitution error

during transmission due to channel noise and jitter. To be able to cal-

culate pe, we follow the procedure given in Section 5.4, where we assume

the jitter behaves like another power source for the additive channel noise.

101

This model is a modified version of the channel model used by Davey and

MacKay [11], where we additionally account for the fact that symbols for

zero and one do not have equal probabilities of insertion, and the channel

is noisy and jittery.

Input

jw
Input

1jw

Insert random 0

Insert random 1

Transmit

uncorrupted
jw

Transmit

corrupted
jw

0ip

1ip

)1)(1(10 eii ppp

eii ppp)1(10

Figure 5.7: Binary discrete memoryless noisy, jittery, synchronization
channel.

With the model and the parameters defined above, the following the-

orem provides the upper and lower bounds of the covert channels which

exhibit an OOK structure:

Theorem 4. The covert channel capacity with probabilities (pi0, pi1, pe) and

(pi0 + pi1) < 0.5 is upper bounded by

C ≤ 1−Hb(pe), (5.21)

and lower bounded by

C ≥ max

(
0,

1−Hb(pe)−Hb(pi0 + pi1)

1− pi0 − pi1

)
, (5.22)

where Hb(•) is the entropy of a binary source.

102

Proof. Please see Appendix I.

1

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

SNR[dB]A
ch

ie
va

bl
e

in
fo

rm
at

io
n

ra
te

(b
its

/c
ha

nn
el

us
e) Lower Bound, pi = 0.005 Lower Bound, pi =0.01

Lower Bound, pi = 0.05 Lower Bound, pi =0.1
Lower Bound, pi = 0.25 Upper Bound

August 15, 2017 DRAFT

Figure 5.8: Upper and lower bounds of information rates for deliberate side
channel with several probabilities of insertion for a synchronized channel.

Fig. 5.8 shows achievable information rates for the covert channel with

various insertion probabilities. Here, we plot the upper bound derived in

(5.21) and lower bound in (5.22) for several different insertion probabilities.

We can observe that unless pi0 = pi1 = pi = 0, the existence of insertions

greatly limits the transmission capabilities, and reliable communication is

not possible without channel coding even when SNR is high.

Moreover, Fig. 5.9 compares the lower bound derived in (5.22) with a

prior method [15] for several insertion probabilities. We observe that when

the system is in the proper SNR regime for a reliable communication, the

proposed lower bound is tighter than the one given in [15] for the capacity

of a channel with insertion and substitution. We compare our results with

work in [15] because it is the most similar channel scenario to the covert

channels analyzed in this paper and their lower bound is shown to be

103

1

2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1

SNR[dB]

A
ch

ie
va

bl
e

in
fo

rm
at

io
n

ra
te

(b
its

/c
ha

nn
el

us
e)

Lower Bound, pi = 0.05
Lower Bound, pi = 0.1
Lower Bound, pi = 0.25

Lower Bound[15], pi = 0.05
Lower Bound[15], pi = 0.1
Lower Bound[15], pi = 0.25

Upper Bound

Figure 5.9: Comparison of the lower bound of information rates for covert
channel with no jitter and AWGN channel with insertions with the lower
bound of information rate derived in [15].

tighter than all previously reported lower bounds for this type of a channel.

We need to note that for Fig. 5.8 and Fig. 5.9, the jitter variance is set to

zero for a fair comparison of the proposed bounds with the previous lower

bound results because they are derived without considering the channels

with jitter. However, assuming no jitter for a covert channel is not proper.

Fig. 5.10 illustrates the relation between achievable information rates and

jitter variance. Here, we assume the insertion probability is pi = 0.05.

We can observe that the achievable information rate increases with SNR

and decreases with jitter variance. While the existence of jitter limits the

transmission capabilities, with high enough SNR, reliable communication

can be achieved.

104

1

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

SNRi (dB)

A
ch

ie
va

bl
e

In
fo

rm
at

io
n

R
at

e
(b

its
/c

ha
nn

el
us

e)

Lower bound, σ = 0 Upper bound, σ = 0

Lower bound, σ = T /15 Upper bound, σ = T /15
Lower bound, σ = T /12 Upper bound, σ = T /12

Figure 5.10: Upper and lower bounds of information rates of the covert
channel with different jitter variances when pi = 0.05.

5.6 Experimental Validation of the Proposed Model

In this section, we first demonstrate the existence of physical/analog covert

channels generated by EM emanations, and then analyze this covert chan-

nel based on the proposed model, and also justify the assumption that the

received signal is a PAM signal with insertions and substitutions for a va-

riety of devices, i.e., FPGA, IoTs, laptops.

Analysis of the Covert Channel

To create a covert channel, we ran a microbenchmark (i.e., a spy appli-

cation to transmit the sensitive data outside of the device) shown in Sec-

tion 5.2 (also described in [17, 18]) on an Altera NIOS-II (soft) processor

using a commercial Terassic DE1 SoC board [85]. This board is equipped

with an Altera/Intel Cyclone-II FPGA chip and a variety of I/O protocols

such as VGA, Serial, etc., and represents a popular class of embedded

systems commonly used in the market. The application was written in

standard C language and was compiled using the publicly available NIOS-

II toolchain.

105

(c)

(d)(b)

(a)

Figure 5.11: The meausrement setup for devices: a) FPGA, b) FPGA, c)
OLinuXino, d) Laptops with distance.

To receive the transmitted EM signals created by the spy application

inside the system, we placed a magnetic probe, PBS-M [85], about 10

cm above the board so that it covers the processor area as shown in Fig.

5.11(a). We intentionally put the probe very close to the board to receive

the EM signal with the highest achievable SNR to avoid the limitations due

to low SNR. In the later sections, we will show how this covert channel per-

forms under more realistic scenarios where the receiver is placed several

meters away from the device.

The EM signals were recorded using a spectrum analyzer (Agilent MXA

N9020A). We set the sampling rate to 10 MHz, and set the spectrum an-

106

0 2 4 6 8 10 12

Time (s)

0

1

2

Sa
m

pl
e

V
al

ue
 (

V
ol

t)

10-4

Figure 5.12: The received baseband signal with period T = 1µs.

alyzer’s center frequency to 50 MHz (i.e., the clock frequency of the FPGA

chip), and the span to 4 MHz (i.e., 2 MHz for each side-band) since the

designed microbenchmark creates periodic activities (i.e., A/B or A/A al-

ternations) at 1 MHz so the device can pick up spikes from this periodic

activity and its multiple harmonics.

The received signal is shown in Fig. 5.12 when the activity A and activity

B of the microbenchmark are chosen as a load from main memory and load

from an L1 cache, respectively. We can observe that the received signal has

a shape of a PAM signal whose pulse width fluctuates due to uncertainties

in the execution times of computer-software activities.

Table 5.1: Comparison of experimental and theoretical results in terms of
BER for NIOS processor on the DE1 FPGA board.

SNR (dB) Experimental BER Theoretical BER

1 6 0.096 0.0829

2 13 0.0013 0.0016

3 14 0.0008 0.0009

4 24 0 0

To compare the theoretical results with the experimental results, we

107

perform experiments with different activities and bandwidth. The esti-

mated SNRs and the corresponding experimental and theoretical results

are given in Table 5.1. The activities and the corresponding bandwidth

used for the experiments can be listed as follows: 1) Addition-Multiplication

with 4 MHz bandwidth, 2) Addition-Multiplication with 2 MHz bandwidth,

3) Load from Main Memory-Load from L1 cache with 4 MHz bandwidth,

and 4) Load from Main Memory-Load from L1 cache with 2 MHz band-

width. The sampling frequency for all these experiments is 10 MHz. We

need to note that we only provide these results because we do not control

SNR of the communication, therefore, generation of a plot with various

SNR values is hard and unreliable. These results illustrate that proposed

model is a realistic model for covert channels and can be used as a simu-

lation tool.

The second example illustrates the presence of jitter and why our as-

sumption that the jitter power can be added as an extra power source of

white noise to calculate the BER, i.e., why assumption in (5.18) is valid.

The following discussion considers the jitter distributions given in Fig 5.3.

First, we plot PSD of the information signal and jitter noise. Here, we

study the scenario without memory activity and the baseband transmitted

pulses are sent with period T = 1 µs. The standard deviation of the jitter

noise is calculated as σ = 5.91×10−8. The theoretical PSD of the transmitted

signal and the jitter noise are given in Fig. 5.13(a), and PSD of the filtered

signal at the receiver side is given in Fig. 5.13(b). We observe that the

jitter noise power dominates the transmitted signal for higher frequencies.

Filtering the received signal removes this redundancy and helps to retrieve

the information signal.

As the final step, to verify BER estimation given in (5.18) based on

108

1

− 4
T − 2

T 0 2
T

4
T

0

0.2

0.4

0.6

0.8

1

1
2T δ(f)

δ(f+ 1
T)Φ(− 1

T)

2T

frequency (Hz)
(a)

A
m

pl
itu

de

S̄xt(f) S̄nt(f)

− 1
2T 0 1

2T
0

0.2

0.4

0.6

0.8

frequency (Hz)
(b)

A
m

pl
itu

de

S̄xt(f)

Figure 5.13: PSD of a) the transmitted signal and b) its filtered version at
the receiver side for the symbol without memory activity.

PSD of the transmitted signal and jitter noise, we design the following

experiment: We create an impulse train with period T and apply jitter

noise by altering the location of pulses based on the normal distribution

with variance σ2. Then, we disturb the signal further by adding white

noise, whose distribution can be given as N (0, N0/2). The received signal is

filtered with an ideal low pass filter on the receiver side and sampled with

frequency 1/T . Finally, the sampled outputs are thresholded to estimate

the transmitted inputs. The results are shown in Fig. 5.14. Here, we

plot the simulation and theoretical BER results for the cases with and

without memory activity. The results assert that simulated results agree

with theoretically derived BER and verify the intuition that as the jitter

variance increases, BER also increases.

Please note that not only PAM, but also frequency shift keying (FSK)

modulation scheme can be generated with the microbenchmark. However,

the detection of FSK signals can be harder since the variations in execution

time of the microbenchmark will cause scrambling of different frequencies

109

1

0 4 8 12 16
10−4

10−3

10−2

10−1

SNRi

Pr
ob

ab
ili

ty
of

E
rr

or

Experimental BER without memory activity
Theoretical BER without memory activity
Experimental BER with memory activity
Theoretical BER with memory activity

Figure 5.14: Theoretical and experimental BER for the symbols with and
without memory activity.

and increase in BER. Therefore, more sophisticated receiver designs and

more complex mathematical derivations are needed to achieve the same

performance levels with the PAM case.

Demonstration of the Analog Covert Channel on More Complex Systems

In this section, we provide examples to show the practicality of the EM

covert channel on more complex devices and more realistic distances.

We first study the impact of distance (i.e., the position of the probe/an-

tenna and the receiving signal’s SNR) on the bit-error-rate (BER). To mea-

sure the EM signals, we used a panel antenna [86]. We set the spec-

trum analyzer’s center frequency to 2.3 GHz (i.e., the 46th harmonic of the

FPGA’s clock frequency, 50 MHz). This frequency is chosen to maximize

the antenna’s gain. We placed the board 50 cm and 1 m away from the

board. The setup is shown in Fig. 5.11(b).

Fig. 5.15 shows the signal received from these distances. Please note

110

that received signals preserve the square-wave-structure like the signals

in Fig. 5.12. These experiments confirm that the proposed EM covert

channel is not sensitive to the position of the probe, and can be exploited

from longer distances.

0 0.5 1 1.5 2

Time (ms)

-2

0

2

4

Sa
m

pl
e

V
al

ue
 (

V
ol

t) 10-5

(a)

0 0.5 1 1.5 2

Time (ms)

-2

0

2

4

Sa
m

pl
e

V
al

ue
 (

V
ol

t) 10-5

(b)

Figure 5.15: The received signal at distance of a) 50 cm, b) 1 m.

To further study the possible range of an EM covert-channel attack

and investigate its possibility on other (more complex) types of devices, we

perform another experiment, this time using an embedded single-board

computer called OlinuXino [87]. This board is equipped with a modern

Cortex A8 ARM core with two levels of caches, 4 MB main memory, and

runs a Debian Linux operating system. OlinuXino represents a popular

class of single-board computers widely used in the market to control a

variety of critical and commercial tasks in factory lines, hospitals, etc.

To receive the EM signals, we leveraged two different antennas: a com-

mercially available horn antenna [88], and a high-gain custom-made disk-

array based antenna [89]. Similar to the FPGA, we use our microbench-

mark (written in C and compiled with Gnu-gcc tool) to establish the covert

channel. We use the same spectrum analyzer for recording the signals with

111

50 60 70 80

Distance (m)

10-3

10-2

10-1

B
E

R

Exp. BER
Pred. BER

(a)

20 40 60 80

Distance (m)

-130

-120

-110

-100

-90

P
ow

er
 (

dB
m

) Signal Power
Noise Level

(b)

Figure 5.16: a) BER vs. distance, b) The received signal power vs. distance
where the noise level of the instrument sensitivity level is about -130dBm.

a center frequency set to 1 GHz (i.e., the clock frequency of the ARM core),

and span of 5 MHz, while setting the microbenchmark to generate alter-

nations at 2 MHz. Please note that Fig. 5.11(c) shows our measurement

setup and demonstrates that communication is conducted in a realistic

indoor environment.

The results for BER and the signal power are given in Fig. 5.16. In Fig.

5.16(a), we plot the BER of measurements when the distance is more than

45 m. For closer distances, the success rate of the measurements is almost

100% (i.e., BER < 10−3). As can be seen from this figure, the success rate

(BER) linearly decreases as the distance increases (as shown by the fitted

line). From the results we note that covert channel can achieve more than

99.9% of success rate if the distance is less than 45 m and the signal level

is at least 8 dB above the noise level of the measuring device (i.e., -130

dBm in this experiment).

Finally, to show that this EM covert channel can be created for complex

computing systems such as laptops, we performed experiments on four

112

different laptops with different processors, namely: AMD Turion X2 Ultra,

Intel Core Duo T2600, Intel I7 2620M, and Intel Core 2 Extreme X9650.

In all these measurements, we use the same experimental setup given

in [69] which utilizes a magnetic loop antenna with a radius of 30 cm [90]

as shown in Fig. 5.11(d). The center frequency for the measurements is

set to 1.024 MHz. The results are shown in Table 5.2. In this table, we

Table 5.2: Experimental results for computer systems with distance.

Platform CPU Distance BER

AMD Turion 2.1 GHz 2.5 m 10−3

Intel Core DUO 2.16 GHz 0.81 m 10−3

Intel i7 2.7 GHz 1.75 m 10−3

Intel Core 2 3 GHz 1.17 m 10−3

provide the maximum distances that we achieve a reliable communication

(i.e., BER ≈ 10−3) when the transmission rate for the covert channel is

800 bits per second (bps). We observed that the signal power leaked from

different platforms shows variation (depending on the packaging, board,

etc.), and that affects the range of the covert channel. Compared to the

state-of-the-art [4, 56, 91], our studied covert channel provides up to 5x

higher data-rate and 5x lower bit-error-rate.

5.7 Summary

A covert channel generated by program activities in a computer system is

described and modeled. These covert channels experience jitter errors in

addition to channel errors due to noise. This is a result of the compu-

ter activity “transmitter” which lacks precise synchronization. Also, the

“transmitter” gets interrupted by other (system) activities, and the trans-

113

mitted signal goes through a channel obstructed by metal, plastic, etc. To

capture all these effects, we have modeled the transmitted sequence as a

pulse amplitude modulated (PAM) signal with random varying pulse posi-

tion. From the model, we have derived the power spectral density and the

bit error rate of the transmitted signal with insertion and substitution er-

rors. We have also derived capacity bounds of these covert channels with

insertion and substitution errors due to interrupts, noise, and jitter. The

theoretical derivations are compared to empirical results and show good

agreements.

114

CHAPTER 6

A GENERALIZED APPROACH TO ESTIMATION OF COVERT CHANNEL

INFORMATION LEAKAGE CAPACITY

6.1 Overview

In this chapter, we propose a methodology to estimate the worst-case in-

formation leakage through various covert channels which can be adopted

for both analog and digital covert channels. In that respect, we first model

the communication channel as a deletion-insertion channel to mimic the

possible losses due to software activities. Unlike conventional communi-

cation systems where the noise is assumed to be Additive White Gaussian

Noise (AWGN), covert channels also suffer from changes in signaling time

of transmitted bits. We show that the noise caused by signaling time vari-

ation can be combined with AWGN to explain the overall effective noise on

the covert channel communication system. Secondly, based on the effec-

tive noise, we model the communication channel between the receiver and

the transmitter. Then, we define the channel capacity as the maximum

leakage for a given covert channel. Finally, we provide experimental re-

sults for various covert channels to show that the proposed model is an

effective and a general method to attain the resilience of a given system.

In the communication literature, many papers discuss bounds on the

capacity of channels corrupted by synchronization errors [10, 11, 12,

13, 14]. These papers are followed by capacities of channels corrupted by

synchronization and substitution errors [15], [16]. Applying these capacity

definitions to measure covert channel leakage for the worst-case scenarios

115

is not valid since they do not consider the variation in signaling time. A

micro-level investigation on side channel capacities is considered in [18,

19] assuming instructions (which are the lowest level order to computer

processor) are the transmitted symbols between the transmitter (source)

and the receiver (sink). These papers exploit emanated EM signal power

while executing instructions, and model the channel based on the differ-

ences in signal power levels of different instructions. However, these pa-

pers overestimate the covert channel capacities because they do not con-

sider insertions and deletions that are encountered in macro-level (pro-

gram level) scenarios. In that respect, a program-level channel model is

proposed including insertions and deviation in signaling time while trans-

mitting signals [77, 21]. Then, leakage capacity bounds are defined for

only EM covert channels under the assumption that signaling time devia-

tion can be modeled by changing the position of the pulses and by keeping

the pulse width fixed. However, the scope of these papers is limited to EM

based covert channels, ignores the losses due to deletions, fixes the pulse

width while modeling the channel, and provides capacity bounds instead

of exact values.

The proposed model in this chapter is a generalized approach for vari-

ous covert channels and overcomes the issues regarding insertions, dele-

tions, and asynchronous nature of the considered channels. The main

contributions of the chapter can be listed as follows:

• We propose a communication model for covert channels including

insertions and deletions to comply with software activities.

• We experimentally demonstrate that the distribution of signaling time

variation exhibits a normal behavior, therefore, it can be fitted to a

normal distribution with mean µ and standard deviation σ.

116

• Effective channel noise is introduced after deriving that the jitter er-

ror (error due to variation in signaling time) can be combined with

additive channel noise. The behavior of the effective channel noise

can change for different symbols.

• Based on the communication model and combined effective channel

noise, we model channel to calculate the worst-case leakage through

a covert channel. With this channel model, exact leakage capacity is

obtained instead of providing capacity bounds.

• The proposed model is generalized for various covert channels, there-

fore, the same framework can be utilized by system designers to as-

sess security of their systems against different types of already exist-

ing covert channels.

The rest of the chapter is organized as follows: In Section 6.2, we in-

troduce the model for transmitted signal, receiver, and communication

channel, Section 6.3 provides the derivation for effective channel noise

and lekage capacity, Section 6.4 demonstrates how the proposed model

can be utilized for various covert channel analysis, Section 6.5 provides

experimental setup and results, and Section 6.6 is the conclusion.

6.2 Overall Communication Model

In this section, we first describe the proposed model for the transmitter

of a covert channel considering its asynchronous nature and the variation

in signaling time. Then, we analyze the design of a receiver by describing

how a pulse-shape filter, similar to conventional communication systems,

is used for receiving the data. This is followed by deriving effective chan-

nel noise which is a combination of additive and jitter noise caused by

117

the variation in signaling time. Finally, we propose the channel model by

considering the effective channel noise, insertions, and deletions.

To obtain the worst-case information leakage that can be achieved by

covert channels, we first need to model the transmitter and emanated sig-

nal. Note that the covert channels considered in this section do not seek

for relevant information in the system. A trusted insider or a Trojan pro-

vides this information to these channels to transmit to an outsider, which

is not an allowed action. In other words, the proposed method builds a

bridge between the trusted insider and adversarial outsider by creating a

covert channel. Also note that this section does not propose a new covert

channel. The goal of the section is to analyze already existing covert chan-

nels and evaluate their severity.

6.2.1 Transmitted Signal and Receiver Model

Transmitted Signal: In conventional communication systems, transmit-

ters and receivers are designed carefully to prevent any synchronization

problems. However, covert channels are not designed to communicate at

all [1]. Considering a connection between covert and conventional commu-

nication systems, the question is whether different modulation schemes

(e.g., pulse amplitude-width modulation, pulse width modulation, and

pulse amplitude modulation) are suitable for covert channels as well. How-

ever, employing such modulation schemes with various width and ampli-

tude choices are not practical for covert channels since the width and

amplitude of the transmitted signals deviate due to other program activi-

ties [65]. To avoid these difficulties arising because of these deviations, the

general practice in covert channel community is to employ a modulation

scheme that can transmit zeros and ones [56, 21, 5]. Therefore, we make

118

(a)

(b)

Figure 6.1: The received signal for a) ideal conventional communication
system, b) covert channel communication system.

the following assumptions and introduce notations for the model of the

transmitted signal:

A1: The Transmitted Signal Assumptions and Notations

– The receiver samples the signal at every T seconds under the

assumption that the transmission time of the covert channel is

T .

– On-Off-Keying (OOK) is considered as the modulation scheme to

119

transmit information signal (i.e., the source exploits a specific

side-channel such as cache to transmit bits).

– The targeted duty cycle changes based on the implementation of

the covert channel. In other words, the ratio between the width

of the pulse and the transmission time T can vary for different

channels.

– There is no overlapping among the bits transmitted by the covert

channel transmitter. Therefore, a bit is transmitted only if the

transmission of the previous bit is complete.

– The signal is on for T 0 and T 1 seconds if the transmitted bit is

zero and one, respectively. Please note that T 0 could be also

zero, which represents the transmission period when nothing is

transmitted.

In Fig. 6.1(a), an ideal OOK modulated signal is shown when the trans-

mitted bit sequence is all ones (Although the behavior of any bit sequence

is the same, all-one-bit-sequence is used for better explanation of the pro-

cess). Unfortunately, obtaining such a signal is not possible with an un-

intentional channel. Because of the delays and synchronization problems

in covert channels, the system experiences shifts in transmitted signals

as shown in Fig. 6.1(b). This undesired behavior appears in almost all of

the covert channels, and needs to be modeled to understand and estimate

leakage capacity.

Receiver Model: For the receiver model, we need to combine the knowl-

edge of conventional communication theory and all the practices utilized

in the security community. The common approach in conventional sys-

120

tems is to apply a match filter under the assumption that the system is

well-synchronized [84]. Motivated by this approach, we make the following

assumptions and observations:

A2: The Receiver Model Assumptions

– The receiver employs a filter which mimics a match filter to cap-

ture the transmitted information.

– Since the modulation is a result of software-hardware activities,

the transmitted keys encounter problems with changes in duty

cycle and non-synchronization, i.e., delays while transmitting

modulated signal.

Since synchronization problems limit the capability of the match filter for

covert channels, the first step to design the receiver is to relax these synch-

ronization requirements in order to handle shifts in signaling-time. To

capture the transmitted bit sequence, the receiver employs a matched fil-

ter with 100% duty cycle (irrespective of the actual duty cycle of the trans-

mission) to capture the changes in signaling time as

mc(t) =
1√
T
rect

(
t

T

)
, (6.1)

where rect(t) is a function with amplitude one, and has only nonzero

values between −0.5 and 0.5. Assuming r(t) is the received signal, we can

write the match filtered sequence after sampling with period T as

y(nT) = r(t) ∗mc(t− nT)|t=nT

=
1√
T

nT∫
(n−1)T

r(nT − τ)rect
(τ
T − (n− 0.5)

)
dτ

= yn (6.2)

121

where ∗ is the convolution operation and n is the sample index. Under

this receiver implementation, the received signal can be considered as a

signal which only experiences variation in duty cycles. Please observe

that raising time of the received signals can be altered such that the total

area under the signaling period stays the same. Therefore, an equivalent

version of the original signal in Fig. 6.1(b) can be presented as in Fig. 6.2.

The equivalence of these two signal models stems from the fact that the

receiver does not consider the shift within the sampling period, but the

existence of the signal components.

Figure 6.2: The equivalent version of the received signal under the as-
sumption that the receiver employs a matched filter in (6.1).

Let us consider a noiseless environment where the received signals only

experience asynchronous nature of the covert channel. Fig. 6.3 shows the

received signal between (n − 1)T and nT when, without loss of generality,

the transmitted bit is one after modifying the raising time as given above

(the same discussion can be made for bit-zero).

122

Figure 6.3: One cycle corrupted received signal that was modified by sig-
naling time variation, and modified such that the raising time is equivalent
to (n− 1)T .

The received sample for this time slot can be written as

yn =
1√
T

nT∫
(n−1)T

r(nT − τ)rect
(τ
T − (n− 0.5)

)
dτ

=
A√
T
Tn =

A√
T
(
T 1 + Tx

)
(6.3)

where Tx is a random variable for the width variation of the received signal.

For the rest of the section, we refer to Tx as the effective variation. Please

note that Tx can also be negative and the outputs of the match filter can

be smaller or larger than the expected output value.

6.2.2 Channel Model

In this section, we introduce our discrete memoryless channel model for

the covert communication. Having such a model is essential for establish-

ing connection with information theory which allows us to calculate the

channel capacity.

For the channel model, we make the following assumptions:

123

A3: Bit-Deletion

The covert channel transmitter continuously sends information bits

unless it encounters interrupts, stalls, etc. Due to other program ac-

tivities that can run in parallel with the covert channel source, the

received signal is masked and can be randomized because of the con-

structive and destructive interference. From the receiver perspective,

the received bit has the highest entropy, hence, this scenario is con-

sidered as the deletion.

A4: Bit-Insertion

When stalls, interrupts, etc., force the source of covert channel to stop

transmitting information, the insertion of random bits occurs. Since

the receiver is not aware of such an interrupt, it keeps interpreting

the sampled symbols as the actually transmitted symbols.

A5: Additive Gaussian White Noise (AWGN)

The transmitted signals are also corrupted by additive white Gaus-

sian noise. We assume that this noise covers all unrelated signals

that are produced by the environment and the system.

Under these assumptions, signal-to-noise-ratio (SNR) for the conven-

tional communication systems can be written as

SNR =
Ps
σ2
n

(6.4)

where Ps is the signal power and σn is the standard deviation of the noise

after sampling. However, the conventional SNR definition does not reflect

the variation in the width of the transmitted signal. Therefore, the first

goal is to combine the channel noise and the noise due to width variation,

which is called jitter noise. First we consider the noiseless scenario given

124

in (6.3). If we define the ideally received sampled symbol, yo, as

yo = T i
A√
T

(6.5)

and the jitter noise term, nx as

nx = Tx
A√
T
, (6.6)

the received sampled symbol can be written as

yn = yo + nx (6.7)

where i ∈ {0, 1}. Let Tx be normally distributed as

Tx ∼ N
(
µx, σ

2
x|Bit-i is transmitted

)
.

This equation exposes two main intuitions about the characteristics of

covert channels: 1) the mean and standard deviation of the signaling

time variation could be different for different bits, and 2) the distributions

can exhibit differences for each system since they can correspond to non-

identical program activities. Hence, different jitter-noise schemes need to

be considered. With this assumption, the distribution of nx can be written

as

N
(
µxA√
T
,
(σxA)2

T

∣∣∣∣∣Bit-i is transmitted

)
= N

(
µx,i, σ

2
x,i

)
.

Equation 6.7 reveals that even with noiseless scenario assumption, the

covert channel system still encounters noise due to jitter in the system.

Including the additive channel noise (AWGN), the received symbol can be

125

written as

yn = yo + nx + no (6.8)

where no ∼ N (0, σ2
n) is the channel noise sample. Here, jitter and channel

noise can be combined as a single random variable because both have

Gaussian distribution. Let’s define nc as the effective noise component

which is given as

nc = nx + no.

Therefore, the distribution of nc can be written as

nc ∼ N
(
µx,i, σ

2
n + σ2

x,i

)
. (6.9)

Moreover, it is also possible that bit-zero signal can also be nonzero for a

while if T 0 > 0. Therefore, the average transmitted signal can be written as

Ps =
A2

T
(
p0

(
T 0
)2

+ p1

(
T 1
)2
)

(6.10)

where pj ({j ∈ {0, 1}}) represents the probability that bit-j is transmitted

without deletion. Likewise, average effective noise power can be written as

Pn = σ2
n + p0

(
µ2
x,0 + σ2

x,0

)
+ p1

(
µ2
x,1 + σ2

x,1

)
(6.11)

Therefore, the effective SNR (SNReff) in these covert channels can be defined

as

SNReff = Ps/Pn. (6.12)

These equations show that covert channels suffer not only from channel

noise but also variations in signaling time. With the modeling assumptions

from Section 6.2, we can observe that signaling time variation behaves like

126

an extra source of channel noise. Therefore, for the simplicity of discus-

sion, we assume additive channel noise has two components which are

independent of each other: jitter and additive channel noise.

Having the model for the noise term in the system, the received samples

given in (6.8) can be written as

yn = yo + nc. (6.13)

Therefore, overall channel between the transmitter and receiver can be

modeled as a discrete memoryless channel since the transmitted bits show

no dependency to other bits in the sequence. Another important point is

that if the communication is insertion/deletion-free, the overall channel

can be considered as a binary channel. However, because of other activ-

ities in the computer system, ignoring insertions/deletions in the covert

communication overestimates the possible information leakage through

these systems.

The channel model based on these assumptions is given in Fig. 6.4. To

simplify explanations, we divide the model into two parts Bit-Generation

and Communication Channel. The Bit-Generation shows the probabilities

of different types of signals that exist in the system. In this part, xi rep-

resents the transmitter (the actual source of the covert channel). I rep-

resents the other activities that can cause insertions in the channel. The

probabilities p0 and p1(= 1 − p0) are the probabilities to send bit zero and

one, pd is the deletion probability, pi is the insertion probability, and pc is

equivalent to pi + pd. The second part, Communication Channel, presents

the transition probabilities of different symbols. Here, s0, s1 and s? repre-

sent the transmitted bit zero, one, or an insertion/deletion. The received

127

xi s1

s0

s?I

y0

y1

(1
− p c

)p 0

(1− pc)p1

pd

1− p
s
0ps0

ps1

1− ps1

0.5

0.5

pi

Bit-Generation Communication Channel

Figure 6.4: Channel Model for the communication system.

symbols corresponding to bits zero and one are denoted by y0 and y1, re-

spectively. We need to note here that based on the assumptions A3 and

A4 given in Section 6.2, whenever a deletion/insertion occurs, the receiver

only guesses whether the received signal corresponds to one or zero.

The transmitter behaves like a ternary source, which generates zero,

one or an insertion(or deletion), however, the receiver always interprets the

received symbols as zero or one since it is unaware of insertion (or deletion)

locations. Another observation is that the timing variation while transmit-

ting bit-zero or bit-one could be different, which leads to differences in Tx

distribution. This means the channel does not exhibit a binary-symmetric

feature even if there are no insertions (or deletions). To incorporate this

asymmetrical feature of the system, the substitution probabilities for bit-

128

zero and bit-one are represented as ps0 and ps1, respectively.

6.3 Leakage Capacity

Having a model for the covert channels enables calculation of leakage ca-

pacity because leakage capacity corresponds to channel capacity of the

model. In conventional communication systems, the channel capacity is

calculated based on Shannon’s theorem [75]. The channel capacity is de-

fined as

C = sup
p(x)

I (X;Y) (6.14)

where X and Y are the random variables for inputs and outputs, and

p(x) is the probability distribution for the inputs. In our scenario, X and

Y represent the symbols sent from the transmitter (a source), and the

received symbols (by an sink), respectively.

To calculate the leakage capacity, the first step is to obtain the tran-

sition probabilities, psi where i ∈ {0, 1}. We know that the threshold is

calculated based on the posterior distribution of the inputs [84], and that

the asymmetric nature of the system affects the threshold while calculat-

ing substitution probability. Combining these information, the threshold

has to fulfill the following equations:

p0f
(
zthr

∣∣µ̂0, σ̂
2
n,0

)
= p1f

(
zthr

∣∣µ̂1, σ̂
2
n,1

)
p0f0(zthr) = p1f1(zthr) (6.15)

where

µ̂i = T i
A√
T

+ µx,i and σ̂2
n|i = σ2

n + σ2
x,i,

which represent the effective symbol mean power and the effective noise

129

variation when bit-i is transmitted, respectively, f(x|µ, σ2) is the probability

density function (pdf) for Gaussian distribution with mean µ and standard

deviation σ, and zthr is the threshold value to calculate substitution prob-

abilities which preserve the equality in (6.15). Therefore, considering all

these features of a covert channel, we define the leakage capacity as

maximize
p(x)

I (X;Y)

subject to

p(x is insertion) = pi

p0f0(zthr) = p1f1(zthr)

ps0 = P0(Y > zthr)

ps1 = P1(Y ≤ zthr)

(6.16)

where Pi(•) provides the probability of its event with respect to the pdf

of the corresponding bit, fi(•). The solution to this optimization problem

provides the worst-case information leakage through covert channels.

We need to note here that the insertion (or the deletion) probability

depends on the targeted computer system. Therefore, pi and pd have to

be kept fixed while calculating the leakage capacity. A further analysis

can be done to find the effect of insertion/deletion on the leakage ca-

pacity. We can observe that increase in these probabilities decreases the

channel capacity. This means that systems can be designed more chaotic

(randomly pumping power to the systems, activating some random com-

ponents, etc.) to increase insertion/deletion probability (which can be

thought as a shielding strategy). Hence, having an investigation on the

130

effect of deletion/insertion on the channel capacity gives insight into the

required level of this chaotic regime.

6.4 Establishing Connection between the Proposed Model and Covert

Channels

In this section, we explain how the proposed framework can be used to

model various covert channels. By establishing such a connection, we

demonstrate that the model can be utilized to calculate leakage capacity of

these channels, and define a metric measuring the resilience of any system

to covert channel attacks.

6.4.1 Power Based Covert Channels

The connection between covert channels based on Simple Power Analysis

(SPA) and the proposed model can be established explicitly because power

covert channel attacks utilize total power consumption of the system. For

example, they exploit variation in power consumption while executing bits

for signing operation in crypto-systems [30, 92]. The main goal is to mea-

sure the total power, and to estimate whether the signed bit is zero or one,

therefore, the system can be represented by OOK modulation.

To calculate the leakage capacity of power covert channel, we can as-

sume that T is the average time required to sign a bit for a cryptosystem,

or processing one bit of information. However, processing this information

can take different amount of time due to other software activities, opti-

mization, etc. Therefore, it can cause some shifts in time, and variation in

processing time, which can be explained by the proposed model as long as

the distribution of the effective variation is known. Also, due to stalls, in-

terrupts, etc., some of the bits correspond to deletions or insertions. Both

131

of these issues are covered by the proposed model, therefore, the power

based covert channel can be analyzed theoretically.

Figure 6.5: Received signal generated by the covert channel in [29]. The
black (solid) curve represents the measured signal and the red (dotted)
curve is for the modeled signal.

An example of the received signal for power analysis is given in Fig. 6.5

when the microbenchmark in [51] is executed to transmit 0 - 1 sequence

repetitively. Because power channels are very noisy channels, we filter

the signal with move-median filter that helps exposing the OOK structure

of the received signal. Since the proposed framework is flexible to model

any OOK signal with any duty cycle, it is possible to define and obtain

the leakage capacity by collecting the statistics about timing variation,

insertions, and deletions.

6.4.2 EM-Based Covert Channels

EM covert channels are a consequence of computer activities and their ef-

fects on EM fields. By measuring the variation in the EM field, it is possible

to steal information from a distance [5, 21, 59, 93]. Requiring no direct ac-

132

cess to the system and having larger available frequency band can be listed

as the main advantages of these channels over other covert channels. In

this section, we consider two channel types that exploit the variation in

EM field caused by different units of a modern computer system.

EM-Based Covert Channels Due to Processor Activities

It is already shown that a covert channel can be generated by running a

microbenchmark that causes systematic changes in the surrounding EM

field, and a motivated attacker can monitor these changes to infer the

transmitted bits [3, 21]. An example of the generated signal is given in Fig.

6.6. The main observation is that similar to the power covert channels,

the received signal displays OOK structure, but suffers from variation in

signaling time.

Figure 6.6: Received signal generated by the covert channel in [21]. The
black (solid) curve represents the measured signal and the red (dotted)
curve is for the modeled signal.

Considering the same arguments with power based covert channels, we

can see that the proposed model can explain the leakage in the worst-case

133

scenario for a given design. To achieve our goal, the critical step is to ob-

tain the variable values for deletion, insertion, T , and the distribution for

the effective variation. Then, the proposed methodology can be utilized to

assess the resilience of a system against EM-based covert channels.

EM-Covert Channels Based on Power Management Units

These covert channels are generated by exploiting power management

units (PMU) and voltage regulator module (VRM) of modern computers.

PMU is responsible for power alteration to optimize the power consump-

tion of the system. Since the priority of designers is to minimize the con-

sumption of power, not security, they do not put enough effort on the

security aspect of their design. By leveraging such a security flaw, a covert

channel that transmits sensitive information from air-gapped computers

is generated in [5].

Figure 6.7: Received signal generated by the covert channel in [5]. The
black (solid) curve represents the measured signal and the red (dotted)
curve is for the modeled signal.

To transmit information, a microbenchmark is designed causing changes

134

in the power state of a system. An example of the demodulated signal for

the covert channel is given in Fig. 6.7. The main observation here is that

the received signals are active for a while even for the off case. However,

this is also included in the proposed model since we do not restrict T 0 to be

zero. Furthermore, this channel suffers from insertions, deletions and sig-

naling time variation as previously considered covert channels. Although

the received signal is not a perfect square signal, the proposed method-

ology can be exploited to calculate the leakage limit assuming distortions

are due to additive channel noise.

6.4.3 Backscattering Covert Channels

This covert channel is created by deliberately exploiting the recently intro-

duced backscattering side-channel. It exploits circuits as a semi-passive

RFID and relies on switching activities on the level of transistor gates (be-

tween low and high states). The switching activities change the impedance

of circuits, hence, the circuit behaves as an RFID tag. For example, by

utilizing this channel, circuits with Trojans are identified because the

backscattered signals show different characteristics due to change in the

impedance of the circuits [94]. Although there is no registered attack, or

a paper investigating attack scenarios based on these channels, we still

consider this channel to obtain its capacity because impedance change

can result in exfiltration of some sensitive information.

An example of the received signal for the backscattering covert channel

is given in Fig. 6.8. The same characteristic features with other covert

channels, i.e., insertions, deletions, timing variation, are observed as well.

Therefore, the proposed methodology can calculate the maximum leakage

(or information transfer) given that the statistics about deletion, insertion,

135

Figure 6.8: Received signal generated by the covert channel in [95]. The
black (solid) curve represents the measured signal and the red (dotted)
curve is for the modeled signal.

and timing distribution are known.

6.4.4 Cache-Based Covert Channels

To improve the performance of a computer system by reducing the effective

main memory latencies originating from data accesses, faster hardware

caches are used for storing the frequently used data. Based on the speed of

the caches, they are divided into levels i.e., L1, L2, etc., where the highest

cache level i.e. L1 is the smallest, fastest and closest to the processor,

and subsequent lower levels are placed closer to the main memory with

varying higher latencies. Thus, more recent and/or frequent the data is,

the higher it will placed in the cache levels.

The cache-based covert channel attacks exploit this difference in data

access time to steal sensitive information of a victim. For example, based

on the time differences in recalling cache entries, secret keys of different

cryptosystems are broken [37, 38]. We need to note here that the recall

136

time can be used not only for evil purposes. For example, a methodology

is proposed in [96] to profile the memory access that does not cause any

overhead on the system. The method exploits emanated EM signals for

performance analysis, and provides statistical information on the recall

time of the system.

The question here is that how the proposed method can model the cache

based covert channels since the only data collected during these attacks is

the recall time. Let us start with the following observation: These attacks

request recall time at every pre-defined time interval. In our case, this

pre-defined interval is equivalent to T . Moreover, the recall time can be

considered as the output of the receiver after filtering with mc(t). Let TR

be the current recall time of an experiment or attack. If we assume the

transmitted signal, TS(t), is a pulse function whose width and amplitude

are equivalent to the recall time and
√
T with a random shift, we have

y(nT) = TS(t) ∗mc(t− nT)|t=nT

=

nT∫
(n−1)T

TS(nT − τ)
1√
T
rect

(τ
T − (n− 0.5)

)
dτ

=

t′+TR∫
t′

√
T 1√
T
rect

(τ
T − (n− 0.5)

)
dτ

=

t′+TR∫
t′

rect
(τ
T − (n− 0.5)

)
dτ

= TR (6.17)

where

t′ = max((n− 1)T , (n− 1)T + td)

137

and td is the time shift. Since the output is equivalent to TR, our model

can represent the cache based covert channels with the assumed trans-

mitter and receiver. Please also observe that the recall time varies at each

operation, and that is represented by the timing distribution in the model.

Another observation is that based on these transmitter and receiver as-

sumptions, the additive channel noise power is equivalent to zero, and all

of the effective noise is represented by the jitter noise. Finally, cache-based

covert channels generally suffer from deletions and insertions, which is

also considered in the proposed model. Therefore, the proposed method-

ology can calculate the leakage capacity of these channels if the required

statistics are available.

6.5 Experimental Setups and Results

In this section, we first provide signaling time distributions for various

covert channels to demonstrate that assuming normal distribution with

a specified mean and standard deviation is a valid assumption, and then

provide the capacity results for these channels.

For the experiments, the devices we consider are an Altera NIOS-II

processor with a commercial Terassic DE1 SoC board [85], an OlinuX-

ino board [87] which has a modern Cortex A8 ARM core with two levels

of caches, 4 MB main memory that is commonly used in factory lines,

etc., and a Dell Precision 7730 laptop [97]. The antennas to collect em-

anated signals can be listed as a high-gain custom-made disk-array based

antenna [89], near EM field probes [98], a power rail probe [99], a horn

antenna [88] and a lab-made near field probe. We record the signals using

a spectrum analyzer (Agilent MXA N9020A) [100].

The first goal of these experiments is to collect data while transmitting

138

(a) EM based covert channel [19]. (b) Based on power unit management [5].

(c) Backscatter covert channels [95].

(d) Power covert channels [29]. (e) Cache based covert channels [37, 96].

Figure 6.9: Experimental setups for the measurements.

bits to experimentally obtain the distribution of Tx for both bits. In that re-

spect, we follow the experiments done in [3] for EM, [5] for power unit, [95]

for backscattering, and [37, 96] for cache-based covert channels. For the

139

(a) EM based covert channel [19]. (b) Based on power unit management [5].

(c) Backscatter covert channels [95].

(d) Power covert channels [29]. (e) Cache based covert channels [37, 96].

Figure 6.10: Distributions for the signaling time for various covert chan-
nels.

power covert channel, we collect the signal from a capacitor while running

the code given in [69] and following the attack scenario given in [29]. The

setup for all these measurements are given in Fig. 6.9. For more accu-

rate distribution results of Tx, we collect signals closer to the device under

inspection, and then perform an edge detection to obtain the width of the

pulses. Empirical cumulative distribution functions (CDF) of bit-1 for vari-

140

Table 6.1: Parameters utilized for the leakage capacities for covert chan-
nels.

Parameter Power Power Unit EM Backscatter Cache

T 50 0.5 3 20 2

T 1 10 0.4 1.5 10 0.15

T 0 0 0.2 0 0 0

µ0 0.12 0.03 0.14 1.02 ≈ 0

µ1 -0.02 0.02 -0.05 -0.01 -0.1

σ0 0.05 0.01 0.03 0.66 ≈ 0

σ1 0.29 0.02 0.02 0.66 0.04

Unit ms ms ms µs µs

ous covert channels are given in Fig. 6.10. Furthermore, in this figure, we

provide CDF of normal distributions that are fitted to these data. As seen

from these figures, the signaling time distributions have a Gaussian char-

acteristic, which means the assumption in Section 6.2 holds. Actually, the

assumption is also supported by Law of Large numbers [101] because of

ubiquitous software activities.

The experimental variables required for the leakage capacity calcula-

tion for the experiments are given in Table 6.1. Here, σ0 and σ1 represent

standard deviations of the signaling time (σx) when bit-0 and bit-1 are

transmitted, respectively. Since the performance of these covert chan-

nels, in terms of bandwidth, noise characteristics, etc., are different from

each other, we choose different transmission time for more reliable results.

For example, in the literature, the reported transmission rates for various

covert channel attacks vary from 5 bit/s to a couple of kbits/s [102, 4, 56,

5].

141

(a) EM based covert channel [19]. (b) Based on power unit management [5].

(c) Backscatter covert channels [95].

(d) Power covert channels [29]. (e) Cache based covert channels [37, 96].

Figure 6.11: Bit/Channel Use for various covert channels.

The leakage capacities as the result of the optimization problem given

in Section 6.3 are provided in Fig. 6.11 and Fig. 6.12. In the first figure,

we provide the results in terms of Bit/Channel-Use [15] to show whether

maximum gain from each bit transmission can be achieved at any SNR.

The figures contain behavior of maximum leakage as the sum of deletion

and insertion, pc, changes. For a fair comparison of channel capacity for

various deletion and insertion probabilities, SNR is defined as

SNR =
A2
(

(T 0)
2

+ (T 1)
2
)

2T σ2
n

. (6.18)

142

(a) EM based covert channel [19]. (b) Based on power unit management [5].

(c) Backscatter covert channels [95].

(d) Power covert channels [29]. (e) Cache based covert channels [37, 96].

Figure 6.12: Bit per second (Bps) for various covert channels.

We observe that the maximum gain is only possible if there is no inser-

tion and deletion, and the communication takes place in high SNR, which

is an unrealistic scenario because of unintentional nature of covert chan-

nels. However, it does not mean that systems are secure enough against

these channels. If the attacker can establish a longer connection, even

transmission with slow data rate could be a disaster. For example, if SNR

is 5 dB, and pc = 0.8, a communication with at least 0.1 Bit/Channel-Use

could be possible for any given covert channel. Considering the attacker

aims to steal some passwords, credit card information, etc., even this rate

143

could be severe enough. In the second figure, we provide the results in

terms of Bit-per-second (Bps). The goal of providing this result is to show

that although leakage capacity is small in terms of Bit/Channel-Use, hun-

dreds of information bits can be transmitted in a second through these

channels. For example, when Fig. 6.11(e) is compared with the rest of

covert channels, we can conclude that it is the most inefficient channel

for an attacker. However, Fig. 6.12(e) demonstrates that this channel can

achieve higher data rates than others.

Another interesting observation here is that although all but cache-

based covert channels achieve almost the maximum gain in terms of Bit/

Channel -Use for high SNR, the cache-based covert channel converges to

0.6 Bit/Channel-Use. The reason is higher signaling time deviation when

a cache-miss occurs. This introduces powerful jitter noise to the system,

which could not be removed even the attacker measures the signal when

SNR=∞. This result shows that the signaling time variation causes an

additive noise which decreases the transmission rate further.

Finally, in Fig. 6.13, we provide the same results with Fig. 6.11 for

backscattering and cache-based covert channels to observe the behavior in

a 3-D surface plot. These figures reveal the general behavior of the worst-

case leakage scenario through different covert channels. As said before,

we observe that the characteristic of the cache-based covert channel is

different than other covert channels. Here, as the representative of other

covert channels, we provide the result for backscattering covert channels.

Our observation here is that the decrease in the leakage capacity of cache-

based covert channel is sharper in both pc and SNR directions than the

backscattering channel due to jitter noise. However, both figures illustrate

the possibility of severe information leakages through covert channels.

144

(a) Backscatter covert channels [95].

(b) Cache based covert channels [37, 96].

Figure 6.13: Bit/Channel Use while pc and SNR vary.

145

Finally, we compare our capacity results with the results given in [21].

In that paper, capacity bounds for the leakage capacity are provided. To

compare our results with these bounds, we need to assume there is no

deletion, the signal deviation for both bits are same with zero mean be-

cause the bounds are obtained when there is no deletion, and the signal-

ing variation has zero mean with fixed standard deviation irrespective of

bits. In Fig. 6.14, we provide the upper and lower bounds in [21], and

the proposed leakage capacity for EM covert channel. We observe that our

leakage capacity lies within the region defined by the bounds, and closer

to the upper bound. We conclude that the decrease in the leakage capacity

is much less than the decrease in the lower bound in [21] as the insertion

probability increases.

Figure 6.14: The proposed leakage capacity and bounds given in [21] while
SNR changes.

146

Although all these results demonstrate the possible threat through these

covert channels, the methodology in this chapter can be utilized by de-

signers to make their systems more resilient to covert channels. In the

design-stage, designers can collect the statistics for pc, and estimate signal

power that can be generated by any covert channel attack. Then, SNR vs.

leakage capacity analysis can be done by solving the optimization problem

given in Section 6.3. If the leakage is zero or very close to zero at the tar-

geted SNR, they can conclude their system is secure enough. Otherwise,

they need to modify their design to protect privacy of their customer.

6.6 Summary

As the systems get more mobile, the likelihood that an attacker and a vic-

tim to be in the same place increases. Although there are many defense

mechanisms, attacks based on covert channels can circumvent and break

the existing protection because these channels are a consequence of com-

puting, and not intended for a conventional communication.

In this chapter, we proposed a methodology to estimate the worst-case

information leakage through various covert channels. We showed that the

method can be adopted to both analog and digital covert channels. To

mimic the losses due to software activities, we first modeled the commu-

nication channel as a deletion-insertion channel. Then, we introduced the

jitter noise that is an extra source for additive white noise. This jitter noise

is a result of signaling time variation due to stalls, interrupts, optimiza-

tion, etc., which conventional communication systems do not suffer. We

showed that these noise sources can be combined and called effective ad-

ditive noise. Secondly, based on the effective noise, we modeled the com-

munication channel between the receiver (an attacker) and transmitter (a

147

victim). Then, we defined the channel capacity as the maximum leakage

for a given covert channel. Finally, we provide experimental results for

various covert channels to show that the proposed model is an effective

and a general method to attain the resilience of a given system.

148

CHAPTER 7

A MICROARCHITECTURE-LEVEL MODELING ELECTROMAGNETIC

SIDE-CHANNEL SIGNALS

7.1 Overview

Side-channel attacks have become a serious security concern for comput-

ing systems, especially for embedded devices, where the device is often

located in, or in close proximity to, a public place, and yet the system

contains sensitive information. To design systems that are highly resilient

to such attacks, an accurate and efficient design-stage quantitative anal-

ysis of side-channel leakage is needed. For many system properties (e.g.,

performance,power, etc.), cycle-accurate simulation can provide such an

efficient-yet-accurate design-stage estimate. Unfortunately, for an impor-

tant class of side-channels, electromagnetic emanations, such a model

does not exist, and there has not even been much quantitative evidence

about what level of modeling detail (e.g., hardware, micro-architecture,

etc.) would be needed for high accuracy. Please remember that EM side-

channel signals are created due to bit-flips at the transistor-level [26, 3].

In principle, all transistors and metal-layer interconnect components con-

tribute to the signal, thus the signal could be modeled using all transistors

and on-chip wires as predictor variables, which should be highly accurate

but is practically infeasible. As a result, the main challenge in model-

building is to select (or discard) potential predictors in a systematic man-

ner, to achieve a trade-off where feasibility (or even efficiency) is achieved

without a major sacrifice in accuracy.

149

To achieve a simple yet accurate model, existing methods are mainly fo-

cused on individual instructions and their operands, and they attribute an

“average” behavior to each of the instructions, rather than model its cycle-

by-cycle effect on the processor’s hardware. In effect, these methods model

a simplified one-instruction-at-a-time implementation, essentially ignoring

pipeline effects and other important aspects of the micro-architecture.

In this chapter, we introduce EMSim which is a tool to simulate em-

anated EM signals from devices [23]. For more accurate EM signal simula-

tion, we model micro-architectural components as independent sources

of EM emanations and then further group these units in each pipeline

stage as an individual source. We used pipeline stages as the sources

mainly because we observed that each instruction has different footprint

in each cycle, and the side-channel generated at each cycle is a combina-

tion of these activities in ALL stages. Using this methodology, we model a

multi-input (pipeline stages), single-output (EM signal) system (MISO).

Leveraging this approach, the main contributions of this chapter are to

• Model the signal for individual sources,

• Establish a connection between MISO systems and mixture of signals

due to execution of instructions at pipeline stages.

In that respect, we first describe the experimental methodology for ob-

taining EM signals generated by actual hardware, introduce the single

instruction signal model, provide the MISO model for the signal mixtures,

and finally demonstrate experimental results which show great consis-

tency with the theoretical work.

150

7.2 Experimental Methodology for Signal Acquisition

While signals can be collected from an actual off-the-shelf processor, such

a processor would be difficult to model in detail because many of its mi-

croarchtiectural details (of even entire microarchitectrual blocks) are not

publicly available, and unceratinty about how well the model used in EM-

Sim matches the actual microarchitecture would make direct comparison

of real and simulated signals difficult. Therefore, we implement a RISC-

V [103] processor on an FPGA (using Verilog), giving us full knowledge of

the actual microarchitecture of the processor [23]. The designed proces-

sor has five pipeline stages namely: Fetch, Decode, Execute, Memory,

and Writeback.

Using the implemented processor, we then use a magnetic probe and

a signal acquisition device (an oscilloscope) to receive and record the EM

signals (more details on Section 7.5.1).

7.2.1 Signal Acquisition

Capturing the emanated signal is the first step to properly modeling the

signal. Unfortunately, measuring the ideal emanated signal (i.e., not cor-

rupted by additive channel white noise) is not possible if only one-time-

run of any instruction sequence is considered. One option is to collect

many one-time-run signals and take the average. The problem with this

approach is capturing synchronized signals, i.e., the starting points of cap-

tured signals may not correspond to the same processing-time of the given

instruction sequence. To address this problem, we use a novel signal-

processing method called “modulo operation” [67] to create a highly ac-

curate estimate of the ideal emanated signal, i.e., to remove most of the

151

noise and distortion that was present in the actual signal due to under-

sampling, synchronization, noise, and other imperfections that are un-

avoidable during practical collection of signals (Please see Appendix G).

The main parameters for the modulo operation are the number of clock

cycles to execute a given sequence, noc, the sampling-rate of the instru-

ment, and the clock frequency of the device. After having these param-

eters, the next step is to collect the emanated signal. For that, a given

sequence is executed several times (1000 times in our measurements).

Each set of measurements consists of a sequence of instructions (called

sequence). The goal is to retrieve the emanated signal for the sequence.

The next step is to utilize the modulo operation to map each received

samples to average these many measurements. Assuming Ts is the total

time to execute the sequence once (i.e., Ts = noc × Tclk), it applies the fol-

lowing operation to the sampling time of each sample to map each sample

to its fundamental period:

∆m = mod(Tm, Ts), (7.1)

where Tclk is the clock time, ∆m is called the modular offset, and Tm is

the sampling time of mth sample. After obtaining the modular offsets for

each sample, the modulo operation takes the mean of the samples that

have same modular offset, to produce the desired signal. Further signal-

processing techniques such as moving average, Gaussian filtering, etc.,

can be applied to this generated signal to obtain smoother reference sig-

nals.

152

7.3 Signal Reconstruction

Simulating an analog signal can be considered a signal-processing re-

construction problem where a continuous signal (i.e., EM in this case)

needs to be determined from a sequence of equally-spaced samples with

sampling-rate T , where T is preferably much smaller than Tclk. Such a

signal can be ideally reconstructed using Whittaker-Shannon interpola-

tion formula [104], however, it is well-known that such a method is not

feasible in practice. Instead, a popular method for signal reconstruction

is zero-order hold (ZOH) technique where a continuous signal, y, can be

reconstructed from a sample sequence x[n], assuming one sample per time

interval is T :

y(t) =
+∞∑

n=−∞
x[n]× rect

(
t− T/2− nT

T

)
. (7.2)

To improve the ZOH accuracy, in this chapter we make an observation

that switching activity in a processor is synchronized to its clock and most

of the switching happens right after the positive/negative edge of the clock.

Thus, instead of using a rectangular function (which implies that activity

is evenly spread over a cycle), a decaying function can be used:

f1(t) = e−θtu(t), (7.3)

where θ is a positive normalization factor that changes the width of the

signal, and u(t) is the unit step function. Substituting rect() in Equ. 7.2 by

the exponential we get:

y(t) =
+∞∑
n=0

x[n]× e−θ(t−nT) × u(t− nT). (7.4)

However, we observed that the received signal is also exposed to oscilla-

153

tions with decreasing magnitude. To meet the requirements for both oscil-

lations and decreasing amplitude, combining sinusoidal with exponential

can increase the accuracy further:

f(t) = sin(2πt/T0)× e−θt × u(t), (7.5)

where T0 is the periodicity of the sinus function. Again, substituting rect()

in Equ. 7.2 by f(t), we will have:

y(t) =
+∞∑
n=0

x[n] sin(
2π(t− nT)

T0

)e−θ(t−nT)u(t− nT). (7.6)

0 5 10

-2.5

-1.5

-0.5

0.5

1.5

Figure 7.1: Reconstructing the original signal using three different ap-
proaches. Using a combination of a sinusoidal and an exponential func-
tion (f(t) in Equ. 7.5) can achieve the best accuracy.

In Figure 7.1, we plot a measured signal and its reconstructions with

these options. We observe that f(t) explains the behavior of the received

signal much better. Thus, by finding x[n] for each cycle and using Equ. 7.6,

the analog side-channel signal can be modeled.

154

7.4 EMSim Modeling

7.4.1 Signal Amplitude for Individual Sources

In practice, there are two contributors in creating EM side-channel signals

for each pipeline stage. The first group of contributors, which we call

instruction-dependent activities, are caused by the switching activities of

micro-architectural units (e.g., register-file, ALU, etc.) that are utilized in

that stage (e.g., whether the register-file is being written or not).

The second group, data-dependent activities, are created due to bit-flips

on the data-bus, address-bus, and any other registers that hold operand’s

values. These bit-flips are independent from the instruction-type but are

dependent to the previous state of the bus. In the following, we will de-

scribe how we independently measure each of these two groups.

Instruction-Dependent Activities. To independently measure these groups,

we first minimize the effect of the data-dependent activities by setting all

the operands, addresses, and immediate values to zero. This approach

enables us to measure the baseline signal for each stage which is only

created by the switching activities of the micro-architectural units used in

that stage.

After decoupling the data-related activities from the signal, the second

challenge is to minimize the effects of other stages on the generated EM

signal. Recall that we mentioned ALL pipeline stages contribute to the

overall signal, however, ideally we want to be able to measure the effect

of each stage separately so that we can use them as the basic-blocks to

reconstruct the overall signal. To achieve that, we use NOP instruction

as the baseline since it has the minimum possible switching activity, and

155

-2.5

0

2.5

2 4 6 8

-2.5

0

2.5

Figure 7.2: The signal amplitude for an ADD as it progress in the pipeline
(while all other instructions are NOP). The actual signal is shown in light
color (green). Darker color (black) shows the simulated signal when consid-
ering each pipeline stage as a separate source (top), and when considering
the entire processor as a single source (bottom), and the largest differences
between the two are pointed out using red ellipses.

then create NOP → inst → NOP instruction sequence (for all instructions),

while operands for inst are all set to r1 (and r1 = 0). Using this method, no

data/operand-dependent bit-flips are created, but register-file, ALU, etc.

may be used (depending on the instruction type). We then measure the

signal amplitude for all instructions and every pipeline stages. We call this

baseline hardware amplitude or A.

Figure 7.2 shows how the (actual) EM signal (shown in green/light

color) changes as an ADD instruction progresses through the pipeline while

all the other instructions are NOP. Using Equ. 7.6 and NOP→ inst→ NOP

instruction sequence, we used our simulator to generate the signal. Fur-

ther, to show why individual stages should be modeled separately, Fig-

ure 7.2 (bottom) shows the simulated signal when the “average” amplitude

156

is used for all stages. As can be seen, failing to model each stage individu-

ally (as used in previous work [105]) can lead to significant inaccuracies in

some stages (note that using max instead of average also leads to similar

inaccuracies).

Data-Dependent Activities. Once the baseline amplitude is measured,

the next step is to find how this amplitude changes as the number of bit-

flips changes due to value/operand used in the instruction and the previ-

ous state of the bus/register. Intuitively, the more bit-flips, the higher the

amplitude should be thus we define activity-factor, α, as a scaling factor

to the baseline activity, A. To find α, we first treat each bit-flip equally,

and assume that each bit-flip has similar effect on the signal amplitude.

We then calculate α as:

α = 1 +
(flipsnew − flipsbase)

flips total
, (7.7)

where flipsnew is the total number of flips for the current instruction, flipsbase

is the total number of flips when previous instruction is NOP, and flips total is

the maximum possible number of flips for the current instruction. Using

this equation, we then define A′ = α× A, and use it to simulate the signal.

Figure 7.3 (bottom) shows the original signal (shown in light green), and

the simulated signal using this approach (shown in black) for the similar

NOP→ inst→ NOP instruction sequence discussed in the previous section.

As can be seen in the figure (bottom), this “averaging” modeling can not ac-

curately predict the amplitude of the signal which indicates that not all the

bit-flips have the similar impact on the amplitude. Our further investigation

confirmed this theory. Particularly, we found that flips in the output of

157

 -2

0

 2

3 7 11

-2

0

2

 ADD
(low activity)

 ADD
(high activity)

Figure 7.3: Effect of the activity factor on the amplitude. The actual signal
shown in green. The simulation is shown in black when activity factor is
modeled using a linear regression model (top) and when an average activity
is used (bottom).

the ALU and memory have the most significant impacts on the signal. We

believe this difference is mainly due to the different physical parameters of

transistors and/or lengths of the connecting wires.

Using this observation, to systematically calculate the activity factors,

we use a linear regression model:

α = δ + T × c+ ε, (7.8)

where T is a vector of transition bits across all the existing registers in

the targeted pipeline stage, δ and ε are the vector of scalar intercept and

error terms respectively, and c is the vector of activity factors to be pre-

dicted by the model. As mentioned before, α is the scaling factor for the

baseline amplitude, A, thus α = Ameas/Asimul. Note that to find T , a de-

tailed micro-architecture model is needed to track all the bit-flips for every

158

gate in the processor (except cache/memory). However, to significantly

reduce the complexity and simulation time, the size of T can be reduced

using the step-wise regression method [106] where, iteratively, the size

of the fitted model (i.e., α and T in our case) is reduced using standard

statistical metrics such as F-tests [106]. In other words, since not all the

bit-flips have statistically significant impact on the emanated signal, the

non-contributing factors can/should be removed from the model. In our

processor, using this method we managed to reduce the size of T by more

than 65%.

Figure 7.3 (top) shows the simulated signals when the linear regression

(LR) model is used for activity factors. Compared to the averaging method

(bottom), using LR has significantly improved the simulation accuracy.

7.4.2 Multi-Input Modeling

Once the signal amplitude for individual sources are calculated, the next

step is to combine the signals generated by these individual sources to cre-

ate the simulated EM signal. In principle, the generated EM signal is the

superposition of individual waves thus depending on each source’s phase,

the superposition of each pair can be either constructive or destructive.

Using this fact, the overall signal can be approximated as a linear combi-

nation of these individual sources where the coefficients may vary between

±1, depending on the phases.

Due to the complex nature of the generated EM signals, accurately mod-

eling each and every source mathematically is significantly time-consuming

and often infeasible in practice. To tackle this problem and find coeffi-

cients for each source, a model-fitting approach can be used. We use a

linear-regression model to find (predict) the overall EM signal. Specifically,

159

-2
0
2

1 2 3 4 5 6 7 8 9 10
Clock Cycle

-2

0

2
A

m
pl

itu
de

 (m
V

)

SHIFTADD

Figure 7.4: An example of how individual sources (pipeline stages) are
combined to form the final signal. Top: how the actual EM signal looks like
when the instructions are executed in isolation (NOP, inst, NOP). Bot-
tom: The actual EM signal when the instruction sequence is NOP, ADD,
SHIFT, NOP (i.e., a combination of multiple instruction in the pipeline).

we use:

X = δs + (αA)×M + εs, (7.9)

where αA is the vector of individual sources amplitudes (α is the activity

factor and A is the baseline amplitude), δ and ε are the intercept and error

vectors, M is the predicted coefficients, and X is the final amplitude which

will be used in (7.6) to simulate the signal.

Figure 7.4 shows an example of how two individual sources are com-

bined in each cycle to form the final signal. Figure 7.4 (top) shows ADD and

SHIFT instructions when they are executed in isolation (i.e., NOP, inst,

NOP), and Figure 7.4 (bottom) shows how the final signal looks like when

the executed sequence is NOP, ADD, SHIFT, NOP. Specifically, cycle 6 is

when the ADD instruction is in WB stage and SHIFT is in MEM, and the re-

sulting signal is a linear combination of these two sources. Note that to

find M , we need to measure all the possible combinations of the entire

160

instructions in the ISA, however, as we will show in Section 5, the num-

ber of required measurements can be significantly reduced using standard

clustering algorithms.

7.5 Evaluations

We divide our evaluations into two main parts. First to show the cor-

rectness, accuracy, and robustness of our simulator, we present our ex-

perimental evaluations on how well the simulated signal matched with

the original side-channel signal generated by the target hardware for ALL

possible combinations of the instructions. We then explore the impact of

variations such as manufacturing, environmental, etc. on the accuracy of

EMSim.

The second part of our evaluations (presented in Section 7.6.2) is fo-

cused on the EMSim use-cases and its application in different domains

such as security, debugging, etc.

7.5.1 Evaluating Model Accuracy

Setup. We implemented a RISC-V based processor on a Terrasic DE0-

CV board with an Altera Cyclone-V FPGA [107] with 50 MHz clock-rate.

To record side-channel signals, we used a Keysight digital oscilloscope

(DSOS804A), with 1 GHz bandwidth and 10 GSa/s rate. We further stud-

ied the effect of changing the sampling-rate on the accuracy and found that

similar accuracy can be achieved with much lower sampling-rate (about

200 MSa/s in our measurements). As a result, similar results can be

achieved using a less expensive device (e.g., TBS1032B Tektronix Digital

Oscilloscope [108] costs around $300) and/or a high sampling-rate device

can be used for modeling devices with faster clock-rates. To receive EM

161

Cluster Type Inst. No. Inst.
1 ALU ADD,XOR,JAL, ... 13
2 Shift SLLI,SRT, SRA, ... 10
3 MUL/DIV MUL, DIV, REM, ... 8
4 Load LB, LW, LH, ... 5
5 Store SB, SH, SW 3
6 Cache LB, LW, LH, ... 5
7 Branch BEQ, BLT, BGE, ... 6

Table 7.1: RISC-V (R32IM) instruction-set and their cluster used in this
chapter.

signals, we used a magnetic probe [98], placed 5 cm above the FPGA.

Model Building. In Section 7.3, we discussed that in order to fit a model,

ALL possible combinations of instructions should be measured (i.e., about

three hundred million combinations in RISC-V ISA). Clearly such a re-

quirement makes the model building extremely time-consuming in prac-

tice. However, intuitively, we expect instructions with similar behaviors

(e.g., ALU-type, memory-type, etc.) have similar side-channel signals since

they share identical hardware activities. Using this intuition, we used the

hierarchical agglomerative algorithm [109] with the cross-correlation as the

distance metric to cluster instructions with similar EM pattern into a same

cluster. We found that RISC-V ISA can be clustered into 7 categories (when

the operands are similar) where a single instruction in each category can

be a representative of all instructions in that category.

These categories are shown in Table 7.1. Using this table, we then

used only a representative instruction of the cluster for model building

which, in turn, reduce the model building complexity significantly. In

our setup, the number of measurements was reduced from 300 million to

only 16 thousands. Note that while the clustering algorithm did not use

the micro-architecture model as a prior knowledge, the clusters confirmed

that instructions with similar micro-architecture activities should be clus-

162

tered in a same group.

Metric. To measure how well the simulated signals “match” with the real

signals, we leverage normalized cross-correlation as our metric. To com-

pute that, we first normalize both signals, real and simulated, to have

similar average. We then divide each signal to individual clock cycles, and

then compare each cycle (between the simulated and the real signals) us-

ing cross-correlation as the distance metric. We then define accuracy as

the average of this cross-correlation across all cycles for all measurements

(i.e., we were able to match the waveform in this degree across all possi-

ble instruction sequences). Note that we specifically used this approach

to show how well the time-domain signal matches with the original signal

instead of relying on a specific leakage metric such as Hamming weight.

However, to show the usefulness and versatility of our tool, those results

will be shown in the next section.

Benchmark. To prove that our approach provides accurate simulated sig-

nals for ALL possible instruction combinations thus can be applicable

to ANY complex program that uses the mixture of the implemented ISA

(R32IM), we created a microbenchmark using all possible combinations

of the representative instructions shown in Table 7.1. Particularly, for a

5-stage pipeline and 7 distinct clusters, there are 75 = 16807 possible com-

binations that can appear together (in the pipeline) in a cycle. We created

a program to generate all these combinations with random operands. We

then manually modified branch instructions and assigned the target ad-

dress and branch condition to create loops with random instruction and

iteration sizes. To limit the execution time, we then randomly put these

instructions into groups of 1024 combinations (i.e., 5120 instructions in

163

-2

0

2

0 1 2 3 4 5 6 7 8 9

10-7

-2

0

2

Figure 7.5: A comparison between the signal generated by a real hardware
(top) and the simulated signal (bottom) in EMSim.

each group which were executed one after another similar to a real pro-

gram). To cover all the combinations, 17 of such groups were needed (no

two groups were similar). We then executed these randomly-generated

groups on the processor normally, and recorded the real and simulated

signals. To further prove the validity and correctness of our simulator, we

also randomly created another 17 groups, this time from all instructions

in the ISA and not just the representatives.

Results. Using these 34 groups/applications described above, we then

compared the simulated signals with the actual ones using the our metric

defined earlier. Each group/application takes about 9000 cycles to finish

on average. The execution-time varied depending on the instructions used

and microarchitectural events.

Figure 7.5 shows the simulated and actual EM-side-channel signals

164

for one of the groups tested in our evaluation (for clarity, only the first

50 cycles are shown in the figure). As can be seen from the figure, the

simulated signal matches the real signal with high accuracy. We found

that, on average, EMSim has about 94.1% accuracy in simulating side-

channel signals across all possible instruction combinations.

7.5.2 Effects of Distance

Transferring the ideas from communication theory literature, to find the

effect of the distance (i.e., the position of the probe and its distance to the

center of borad) on each source, a parameter, called loss-coefficient or β,

can be considered as the channel coefficient of a flat-fading channel. Here,

we need to note that, regardless of the position of the probe, the baseline

amplitude, A, can not be measured solely because we do not have any

control on the power distribution of the board for each instruction at each

pipeline stage. Hence, the resulting signal power is always a combination

of the actual signal amplitude and the corresponding loss coefficient (i.e.,

Aβ). However, to deal with this problem, we choose the probe’s location

at the center of the processor as the base point, and define β0 as the loss

coefficient at this point. Further denoting A0 is the actual emanated signal

amplitude, we assume the amplitude of the signal can be written as A =

A0β0 with respect to the base point. Therefore, with these assumptions, β

is assumed to be one for all the measurements done in this section.

To further investigate the effect of β on the amplitude, we measured the

signal (with the same input trace) at a different location, and compared the

results with the base case. Figure 7.6 illustrates the effect of the antenna

location on the loss coefficient factor β. Here, the training signals for the

reconstruction are obtained from the base measurement, and the figure

165

-2.5

0

2.5

1 4 7
-2.5

0

2.5

Figure 7.6: Effect of distance on the signal amplitude. For both figures,
the plots with darker color correspond to reconstructed signal, and the
other ones correspond to the original signal.

at the bottom is obtained by neglecting the effect of β (i.e., β = 1) during

the simulation. The figure at the top is generated by solving the same

linear regression model given in Equ. 7.9, this time by substituting A by

Aβ, where β is not constrained to one any more (while A is the signal

obtained in the base case). We can conclude that considering the effect

of β is crucial to explain the changes due to antenna location since better

correlation and root mean square results are obtained with the adjusted β.

Note that, adjusting the β is only required during the model building (i.e.,

during measurements if the position of the probe changes), however, the

user of the tool does not require to change/adjust β for his/her leakage

estimation and can use the base case or numerous cases (depending on

the availability) to obtain an “average” leakage estimation, or “worst” case

166

for β = 1.

7.6 Practical Use-cases for EMSim

This section describes several example use cases for EMSim ’s ability to

accurately simulate side-channel signals.

7.6.1 Side-Channel Leakage Estimation

An important step for defending against side-channel attacks (SCA) is esti-

mating how much (sensitive) information can be possibly leaked (through

a specific or set of side-channels) during the execution of an application.

To estimate this leakage, different metrics can be used. Particularly, for

EM side-channels one of the state-of-the-art methods is Signal Available

to Attacker (SAVAT) [51] methodology.

Due to the lack of simulation tools, to properly calculate these met-

rics, several actual measurements should be performed. Unfortunately,

these measurements often require sophisticated equipment and experts

with various skills which, in turn, makes them expensive and difficult in

practice. Using our approach, however, we show that EMSim is capa-

ble of generating highly-accurate simulated signals which can be used to

calculate these metrics precisely which eliminates the need for an actual

measurement infrastructure.

The following describes how EMSim can be used to obtain SAVAT val-

ues. It is important to mention that unlike prior work [105, 110, 111, 112],

EMSim is NOT limited to a specific metric or analysis, and it can be used for

ANY analysis based on the EM signal.

Signal Available to Attacker (SAVAT). This metric measures the side-

167

LDM LDC NOP ADD MUL DIV

R S R S R S R S R S R S

LDM 0.02 0 3.71 3.91 5.34 5.32 5.24 5.20 5 5.02 4.98 4.98

LDC 3.72 3.91 0.04 0 0.81 0.85 0.74 0.74 0.21 0.24 0.21 0.23

NOP 5.35 5.32 0.8 0.86 0.01 0 0.08 0.1 0.67 0.69 0.66 0.69

ADD 5.24 5.20 0.74 0.75 0.07 0.1 0.03 0 0.98 1.05 1.03 1.1

MUL 4.98 5.01 0.22 0.21 0.66 0.68 0.94 1 0.03 0 0.04 0.01

DIV 4.97 4.99 0.21 0.21 0.65 0.68 1.05 1.13 0.03 0.01 0.02 0

Table 7.2: Signal Available to Attacker metric [51] for Real measurements
(R) and Simulations (S).

channel signal created by a specific single-instruction difference in pro-

gram execution, i.e., the amount of signal made available to an attacker

who wishes to decide whether the program has executed instruction/event

A or instruction/event B.

To measure this metric, Callan et al. [51] developed a microbenchmark

which creates a controlled alternation between A and B instructions many

times. Such alternation creates a periodic signal with period tp = tA + tB,

where for the half of the period A is executing and for the other half B.

Such a periodic activity can then be observed in the frequency domain as

a spike at fp = 1/tp. The key insight is that the corresponding energy of

the spike (i.e., area under the curve) indicates how different A and B are

from each other (in terms of side-channel signals) hence reveals how much

signal would be available to an attacker when the difference between two

samples is whether A was executed or B.

To compute SAVAT in both real measurements and simulated signals,

we implemented the microbenchmark proposed by Callan et al. [51], and

used the setup explained in §7.5.1 to collect the signals. Table 7.2 shows

168

SAVAT values in our processor for 6 pairs of instructions. As can be seen,

the values retrieved from simulations are highly matched with the values

computed using the real measurements. SAVAT can then be utilized to

reveal the information leakage capacity of the system [19].

7.6.2 Application to Debugging/Profiling

While so far we have shown how EMSim can be utilized to accurately model

EM side-channel signals and thus can be used for leakage estimation dur-

ing developing secure software, in this section, we present another poten-

tially useful use-case of EMSim and show how hardware designers and

computer architects can also leverage this framework during hardware

development.

Given that EMSim can accurately model the system for each pipeline

stage and each micro-architecture event, it can potentially be used as a

debugging tool in the chip-design flow such as a debugging tool for finding

design bugs in post-place-and-route stage and/or for finding manufactur-

ing bugs/defects in post-fabrication. In contrary with signal modeling, in

this scenario, the signals simulated by the simulator can be assumed as

the “ground-truth” or “expected” signal where the signals emanated by the

hardware have to be matched to these reference models. A deviation from

the reference model obtained by the simulations indicates that there is an

unwanted change/error in the hardware.

The main advantage of this approach compared to existing standard

testing methods is that the proposed approach is zero-overhead and does

not require any testing infrastructure on the system which, in turn, saves

a significant amount of area and reduces complexity.

To further demonstrate the feasibility of this approach, Figure 7.7 shows

169

-2

0

2
10-3

1 6 11

-2

-1

0

1

2
10-3

Figure 7.7: A case-study to show how EMSim can be used for debugging.
The measured signal (top) does not match with the reference model ob-
tained by the simulation model (bottom) which indicates that there is a
potential error/issue in the hardware.

a scenario where there is a bug in designing a multiplier in the Execution

stage. The multiplier is designed such that it calculates the result of mul-

tiplying two 16-bits operands in three cycles where the majority of the

activity (i.e., writing the output register, etc.) takes place in the last (third)

cycle. However, as seen from the figure, the amplitude of the measured

signal (top) in the third cycle of the execution (shown in a red circle) is

significantly lower than that of in the simulation (bottom). Further in-

vestigation reveals that instead of properly multiplying two 16-bits data,

the designed multiplier only uses the lower half (i.e., 8-bit data) of each

operand and ignores the upper half of those inputs hence results in a sig-

nificantly lower activity factor and thus much smaller signal strength.

It is important to mention that this method, fundamentally, relies on

170

the signal detection granularity (i.e., how fine-grained changes can be de-

tected), thus it may not be useful in cases where the change in the signal

is smaller than the algorithm’s detection granularity.

7.7 Summary

This chapter presented EMSim, an approach that enables simulation of the

EM side-channel signals cycle-by-cycle using a detailed micro-architectural

model of the device. Our evaluation of EMSim finds that its simulation-

derived signals closely matches signals measured from real hardware. To

gain further insight, we also experimentally identified how the accuracy of

the simulated signals degrades when key micro-architectural features and

other hardware behaviors are omitted from the simulation model.

We envision a variety of uses for EMSim. For hardware, software, and

compiler developers, it allows EM leakage to be quantified without having

to build actual hardware and/or actually measure signals. More impor-

tantly, it allows simulated signals to be broken down and attributed to

specific parts of the hardware and software. Furthermore, when hardware

prototypes are available, significant discrepancies between the signal gen-

erated by EMSim and actual EM emanations can be used to identify where

the actual design differs from the simulated microachitecture, which can

be used to debug the hardware and/or to refine the simulation model to

more closely match the hardware.

We believe that EMSim can be extended to more complex processors by

using a similar multi-input-single-output methodology, where each pipeline

stage acts as a single source. For out-of-order processors, we expect higher

baseline hardware amplitude for each stage as the hardware of each stage

becomes more complex. We also expect different values for activity fac-

171

tors and coefficients for individual stages. Further, since an OoO proces-

sor has more shared units, to accurately model the signal, these shared

units should be carefully simulated and their signals added to each cy-

cle. Nonetheless, since the root cause of creating side-channel signals

are bit-flips at the gate-level, we do not expect any fundamental modeling

difference between in-order and OoO designs.

172

CHAPTER 8

RESEARCH CONTRIBUTIONS AND FUTURE WORK

8.1 Research Contributions

This research investigated the severity of side/covert channels. We have

demonstrated that covert/side channels can transmit thousands of bits

per second. Considering the latest improvements that make computer

systems more mobile, attacks based on these unintended channels become

more threatening. The techniques proposed in this thesis provide a good

solution for identifying vulnerable parts of devices and a tool for designers

to test the resiliency of their systems. Hence, the assessment techniques

can be utilized to circumvent information leakage to unauthorized parties.

The research contributions of this work are:

1. We derived a mathematical relationship between electromagnetic side

channel energy (ESE) of individual instructions and the measured

pairwise side channel signal power [17, 18]. Assuming that only ex-

ecution of an instruction is the source of emanated EM signals and

instructions are ordered independently, we proposed a DMC channel

model to quantify the leakage capacity. For the transition probabil-

ities needed for estimating capacity, we utilized ESE measure. We

modified Shannon’s channel capacity theorem to address instead of

deal with the variation in execution time of instruction. After propos-

ing the model and the leakage capacity as the channel capacity of the

model, we provided an assessment technique to analyze the vulner-

ability of a system. Finally, we illustrated how the proposed method

173

works by showing capacity of several practical systems.

2. A side channel information capacity created by execution of series of

instructions (e.g. a function, a procedure, or a program) in a pro-

cessor was proposed [19, 113]. Considering the structure of proces-

sor pipeline and that each program code is written systematically to

perform a specific task, we proposed Markov Source model, which

includes the dependencies that exist in instruction sequence. Emit-

ted EM signals during instruction executions were considered as the

sources for channel inputs and the states of the model were assumed

to be instructions. We derived a mathematical relationship between

the emanated instruction signal power (ESP) as it passes through

processor pipeline and total emanated signal power while running a

program to obtain the channel inputs for the proposed model. Fi-

nally, we provided experimental results to demonstrate that leakages

could be severe and that a dedicated attacker could obtain important

information.

3. An EM based covert channel was introduced as a communication

channel [20, 21, 77]. These channels are not designed to transmit

information. They are exposed errors created by 1) the transmission

environment (the transmitted signal propagates through a channel

hindered by metal and plastic), 2) varying execution time of computer

activities, and 3) insertions from other computer activities such as in-

terrupts. Considering these effects, we proposed to model the covert

channel as an insertion channel where the transmitted sequence is

a pulse amplitude modulated signal with random pulse position. We

derived capacity bounds of this covert channel with random inser-

174

tion and substitution due to noise and jitter errors by utilizing the

proposed channel model. We also proposed the receiver design that

can correctly detect and demodulate computer-activity created sig-

nals. Finally, the theoretical derivations were compared to empirical

results and show agreement.

4. A generalized channel model for various covert channels was pro-

posed, which considers insertions, deletions, and asynchronous na-

ture of covert channels [22]. We defined effective channel noise af-

ter deriving that the jitter error (error due to variation in signaling

time) can be combined with additive channel noise. The derivation

requires that the signaling time distribution has a normal behavior.

In that respect, we experimentally demonstrated that the signaling

time is normally distributed with mean µ and standard deviation σ.

Based on the communication model and combined effective channel

noise, we calculated the worst-case leakage through various covert

channels. With this channel model, exact leakage capacity was ob-

tained instead of providing loose capacity bounds. We also proposed

an assessment technique for various covert channel attacks. Finally,

we provided experimental results which demonstrated the severity of

these channels and importance of including covert channel leakages

into design considerations.

5. EMSim, a simulation tool that enables estimation of the electromag-

netic side channel signals cycle-by-cycle was introduced considering

micro-architectural model of the device [23, 67]. To obtain such a

tool, the shape of the signals during execution of an instruction at

any pipeline stage was experimentally obtained, and a mathematical

175

signal model that explains the mean behavior of emanated signals

was proposed. Since the collected signals were a mixture of signals

that were emitted from all pipeline stages, we proposed the chan-

nel between the processor and the antenna as a MISO channel. We

compared the simulated signals against actual EM signals emanated

from real hardware, which matched very closely. Finally, we provided

some experiments illustrating how the simulation tool can be used to

analyze system at design-stage.

8.2 Future Research Directions

Although this thesis provides leakage capacity bounds, it does not provide

any method or communication scheme that can achieve these bounds. The

main problem with side channel analysis arises especially when systems

get more complex and faster as the clock frequencies of the sophisticated

systems increase. For a proper analysis of these channels, measuring de-

vices must have lower noise levels and higher sampling rates. However,

the measuring devices with these capabilities either do not exist or are

very expensive. Therefore, new techniques have to be developed such that

the side channel analysis that can achieve capacity bounds will be possi-

ble even with much simpler measuring devices as software-defined radios

(SDR). For example, tracking executed instruction order could be an ap-

plication. As the new methods can achieve leakage capacities with less

expensive measuring devices, these channels can be the main candidate

for profiling system against malware. However, from the perspective of an

attacker, this method means a perfect opportunity to steal secret informa-

tion. Therefore, a method leads to be introduced for real-time monitoring

of instruction-level signals to analyze whether having such a leakage jeop-

176

ardizes the sensitive information within the system.

Another direction related to side channels is the source separation

problem. When the measurement is done from a distance, the collected

signal contains components that are leaked from not only processor but

also other components, i.e. memory, power unit, etc. Because of destruc-

tive/constructive effect of these signals on each other, developing a source

separation algorithm can help improving insights about the system since

each source will be processed individually. This approach can be also

leveraged in profiling systems with no-overhead. Having such an informa-

tive tool, a system can be monitored to control whether it is working as it

is supposed to.

Finally, a methodology that generalizes the information obtained from

one device to estimate the behavior of others is required. The current

approaches are generally ad-hoc and specific to devices that are studied.

Hence, the same measurements have to be performed for each device to

analyze their resilience to side channels, to train a system for monitor-

ing the program activities, etc. This is because computer systems gen-

erally have different clock frequencies and operating systems, therefore,

emanated signals can show differences in terms of spectral components.

Therefore, developing a systematic mapping algorithm to estimate the be-

havior of side channel signals of a device from the signals that belong to

another type of a device can reduce training time or data collection time

extensively. Moreover, with this method, a design-stage analysis can be

done since the signal mapping will provide information about side channel

signal characteristic of a design.

177

APPENDIX A

THE RELATIONSHIP BETWEEN ESE AND MEASURED SPECTRAL

POWER OF A MICROBENCHMARK

In this section, we show that ESE [X1,X2] defined in (3.1) is related to the

alternation power P (falt) as in (3.5) where s(Xm)
m [n] denotes the sampled sig-

nal when instruction Xm is inserted into the mth loop given in Fig. 2.1. The

assumptions given in Section 3.2 will be considered through derivations.

We start by noting that the signals generated by the ESE benchmarks

can be represented as a specific mixture of two periodic signals with period

N . For n = 0, ..., N − 1, the first signal obtained from the first iteration of

the first inner loop is denoted as

ŝ
(X1)
1 = [o1[0], o1[1], · · · , o1[nO − 1], x1[0], x1[1], · · · , x1[nX − 1]]

such that N = nO + nX. Note that E
[
s

(X1)
1 [n+N]

]
= E

[
s

(X1)
1 [n]

]
because

s
(X1)
1 [n] is periodic which leads that we also assume the additive noise are

also periodic. Following the same procedure for the second inner loop, we

have

ŝ
(X2)
2 =

[
o2[0], o2[1], · · · , o2[nO − 1], x2[0], x2[1], · · · , x2[nX − 1]

]
.

We denote the sampled voltage at the time points where instruction X1 is

active as x1[i] and the sampled voltage at the time points where instruction

X2 is active as x2[i] where i ∈ {0, 1, · · · , nX − 1}. Similarly om[n] represents

the other instructions in the benchmark necessary to make the benchmark

practical (e.g. to create a loop around instruction X1 or instruction X2) for

the mth loop.

178

First, we derive the ESE between two instructions from the measure-

ment given in (3.2) as follows:

PA

[
s
(X1)
1 , s

(X2)
2

]
≡ TI

Ns−1∑
l=0

(
s

(X1)
1 [l]− s(X2)

2 [l]
)2

R

=
TI

R

Nninst−1∑
k=0

(
s

(X1)
1 [k]− s(X2)

2 [k]
)2

≈ κ

2

[
N−1∑
k=0

(
ŝ

(X1)
1 [k]− ŝ(X2)

2 [k]
)2
]

(A.1)

where κ = (2TIninst)/(R) and (A.1) follows the periodicity of s(X1)
1 [n] and

s
(X2)
2 [n]. Based on the assumption in Section 3.2, we can write x1[i] = Xv

1 +

w
(X1)
1 [i], x2[i] = Xv

2 + w
(X2)
2 [i] and om[i] = Ov + w

(O)
m [i] where w(X1)

1 [i] ∼ N (0, σ2
X1

),

w
(X2)
2 [i] ∼ N (0, σ2

X2
), w(O)

m [i] ∼ N (0, σ2
O) and m ∈ {1, 2}. Therefore,

PA

[
s
(X1)
1 , s

(X2)
2

]
≈ κ

2

nX−1∑
k=0

(
Xv

1 −Xv
2 + w

(X1)
1 [k]− w(X2)

2 [k]
)2

−κ
2

nO−1∑
k=0

(
w

(O)
1 [k]− w(O)

2 [k]
)2

=
κnX

2

1

nX

nX−1∑
k=0

(
Xv

1 −Xv
2 + w

(X1)
1 [k]− w(X2)

2 [k]
)2

−κnO
2

1

nO

nO−1∑
k=0

(
w

(O)
1 [k]− w(O)

2 [k]
)2

(A.2)

Assuming the number of samples taken during executions of instructions

are large enough, sum operations given in (A.2) can be considered as the

179

expectation operation. Therefore, we can claim

PA

[
s
(X1)
1 , s

(X2)
2

]
≈ κnX

2
E
[(
Xv

1 −Xv
2 + w

(X1)
1 (k)− w(X2)

2 (k)
)2
]

−κnO
2

E
[(
w

(O)
1 [k]− w(O)

2 [k]
)2
]

=
κ

2

(
nX(Xv

1 −Xv
2)2 + nXσ

2
X1

+ nXσ
2
X2

+ 2nOσ
2
O

)
. (A.3)

Furthermore, observe that (A.3) can be modified in terms of ESE as

follows:

PA

[
s
(X1)
1 , s

(X2)
2

]
≡ ninstESE[X1,X2] +

1

2

(
PA

[
s
(X1)
1 , s

(X1)
2

]
+ PA

[
s
(X2)
1 , s

(X2)
2

])
. (A.4)

If we define

Ĉ(X1, X2) = PA

[
s
(X1)
1 , s

(X1)
2

]
+ PA

[
s
(X2)
1 , s

(X2)
2

]
, (A.5)

ESE of two instructions in time domain can be written as

ESE[X1,X2] =
2PA

[
s
(X1)
1 , s

(X2)
2

]
− Ĉ(X1, X2)

ninst

. (A.6)

Although, we derive ESE power of two instructions in time domain,

measuring ESE of two sequences can be cumbersome because the num-

ber of samples required can be huge. In that perspective, we derive the

equation given in 3.5 which clarifies the relation between the ESE power

of two instructions and the power at falt.

To relate s(X1)
1 [n] and s(X2)

2 [n] to our benchmarks, we define a square wave

p[n] with a 50% duty cycle as

p[0 ≤ n < Nninst] = 1 (A.7)

p[Nninst ≤ n < 2Nninst] = 0, (A.8)

180

where p[n], s(X1)
1 [n] and s

(X2)
2 [n] are periodic with period 2Nninst, since we

assume the additive noise is also periodic. Then, we can take the discrete

Fourier series of these signals over 2Nninst samples. We refer to S
(X1)
1 [k],

S
(X2)
2 [k], and P [k] as the discrete Fourier series (DFS) of s(X1)

1 [n], s(X2)
2 [n] and

p[n] respectively, defined for 0 ≤ k < 2Nninst.

We next define

v[n] = p[n]s
(X1)
1 [n] + (1− p[n])s

(X2)
2 [n], (A.9)

which represents the signal created by the sequence of instructions exe-

cuted by the microbenchmarks.

We start the derivation of relationship between ESE and measured

spectral power by observing that the DFS of v[n] defined in (A.9) can be

written as
V [k] = P [k] ∗ S(X1)

1 [k] + (1− P [k]) ∗ S(X2)
2 [k]

= S
(X2)
2 [k] + P [k] ∗

(
S

(X1)
1 [k]− S(X2)

2 [k]
)
,

(A.10)

where ∗ denotes periodic convolution, defined as in Appendix C.

Now we consider V [1], the 2nd Fourier coefficient (the first harmonic) of

the v[n] sequence:

V [1] = S
(X2)
2 [1] +

2Nninst−1∑
m=0

P [1−m]
(
S

(X1)
1 [m]− S(X2)

2 [m]
)

2Nninst
.

(A.11)

Using the equation (C.3) from Appendix C, we can observe that S(X1)
1 [k]

and S
(X2)
2 [k] are non-zero only for k = 2ninstl for l = 0, 1, ..., N − 1. Then V [1]

simplifies to

V [1] =

N−1∑
l=0

P [1− 2ninstl]
(
S

(X1)
1 [2ninstl]− S(X2)

2 [2ninstl]
)

2Nninst

(A.12)

181

Then, V [1] can be further expanded as follows

V [1] =
P [1]

(
S

(X1)
1 [0]− S(X2)

2 [0]
)

2Nninst

+
P [1− 2ninst]

(
S

(X1)
1 [2ninst]− S(X2)

2 [2ninst]
)

2Nninst

+ . . .

(A.13)

Here we note that next few higher order odd harmonics can be similarly

expanded while the even harmonics are zero. Additionally, we note that

P [k] is the kth coefficient of the discrete Fourier series for a square wave

with period 2Nninst and can be written as ([104], Example 8.3)

|P [k]|
2Nninst

=
sin(πk/2)

2Nninst · sin(
πk

2Nninst

)

⇒ |P [k]|
2Nninst

≈ sin(πk/2)

πk

⇒ |P [1]|
2Nninst

≈ 1

π
. (A.14)

The last two steps follow by recognizing that

2Nninst · sin
(

πk

2Nninst

)
= πk ·

sin

(
πk

2Nninst

)
πk

2Nninst

(A.15)

and noting that sin(x)/x→ 1 as x→ 0 (i.e. large ninst). Since ninst is typically

> 100, this approximation is valid. For ninst > 100, |P [1]| > 100|P [1− ninst]|, so

182

the higher order terms in (A.13) can be neglected, giving

|V [1]| ≈ |P [1]|
2Nninst

·
∣∣∣S(X1)

1 [0]− S(X2)
2 [0]

∣∣∣
⇒ π |V [1]| ≈

∣∣∣S(X1)
1 [0]− S(X2)

2 [0]
∣∣∣ . (A.16)

The next step is to calculate the difference between S
(X1)
1 [0] and S

(X2)
2 [0].

Here we note that , we decompose s
(X1)
1 [n] = ô1[n] + i

(X1)
1 [n] where the first

N samples of ô1[n] = [o1[0], o1[1], ..., o1[nO − 1], 0, · · · , 0] and the first N sam-

ples of i(X1)
1 [n] = [0, ..., 0, x1[0], x1[1], · · · , x1[nX − 1]]. We can decompose s(X2)

2 [n]

similarly. By the linearity of the Fourier transform

S
(X1)
1 [k]− S(X2)

2 [k] = I
(X1)
1 [k] + Ô1[k]−

(
I

(X2)
2 [k] + Ô2[k]

)
= I

(X1)
1 [k]− I(X2)

2 [k] +
(
Ô1[k]− Ô2[k]

)
.

(A.17)

The DFS coefficient I(X1)
1 [0] is

I
(X1)
1 [0] =

2Nninst−1∑
n=0

i
(X1)
1 [n]

=

2ninst−1∑
r=0

nX−1∑
s=0

i
(X1)
1 [rninst + nO + s]

=

2ninst−1∑
r=0

nX−1∑
s=0

(
Xv

1 + w
(X1)
1 [rninst + nO + s]

)
= 2ninstnXX

v
1 + 2ninst

N∑
n=nO

w
(X1)
1 [n]. (A.18)

where the last equality follows the assumption that noise is also circular.

Similarly, I(X2)
2 [0] = 2ninstnXX

v
2 + 2ninst

∑N
n=nO

w
(X2)
2 [n] and Oi[0] = 2ninstnOO

v +

183

2ninst

nO−1∑
l=0

w
(O)
i where i ∈ {1, 2}. Therefore,

S
(X2)
1 [0]− S(X2)

2 [0] = 2ninst

[
nX(Xv

1 −Xv
2)

+

nO−1∑
l=0

(
w

(O)
1 [l]− w(O)

2 [l]
)

+

nX−1∑
l=0

(
w

(X1)
1 [l]− w(X2)

2 [l]
)]

. (A.19)

Assuming nO and nX are large enough and additive noises are indepen-

dent, we have

∣∣∣S(X2)
1 [0]− S(X2)

2 [0]
∣∣∣2 ≈ (2ninst)

2

[
(nX(Xv

1 −Xv
2))2

+2nOσ
2
O + nXσ

2
X1

+ nXσ
2
X2

]
= 4n2

instDab (A.20)

where

Dab = nX

(
nX(Xv

1 −Xv
2)2 + σ2

X1
+ σ2

X2

)
+ 2nOσ

2
o . (A.21)

As the next step, we need to relate (A.20) to the power observed with

the spectrum analyzer. The power observed with the spectrum analyzer is

described by ([114, 115])

P (falt) =
2

R

(|V [1]|
2Nninst

)2

, (A.22)

where 2Nninst is the number of samples taken in one period Talt. We also

note that

ninstfalt =
1

2NTI
. (A.23)

184

So, by plugging (A.16) and (A.20) into (A.22), we have

P (falt) =
2

R

∣∣∣S(X1)

1 [0]− S(X2)
2 [0]

∣∣∣
2Nninst · π

2

=
2

R

(
4n2

instDab

4N2n2
inst · π2

)
=

2

R

(
Dab

N2π2

)
. (A.24)

As mentioned before, since working on time domain is cumbersome, our

main goal is to measure ESE in frequency domain. Therefore, using (A.23),

(A.22) and (A.24), we obtain the relationship between ESE and P (falt) as

follows:

P (falt) =
2

R

(
Dab

N2 · π2

)
(A.25)

⇒ Dab

R
=
P (falt) ·N2 · π2

2· (A.26)

⇒ Dab

RNninst

=
P (falt) ·N · π2

2 · ninst

(A.27)

⇒ 2 · faltTIDab

R
=
P (falt) ·N · π2

2 · ninst

(A.28)

⇒ 2TIninst

R
Dab =

P (falt) ·N · π2

2 · falt

(A.29)

⇒ κDab = π2P (falt) ·N
2 · falt

(A.30)

where (A.28) follows the equality given in (A.23). Relating the equation in

185

(A.30) with (A.3) and (A.4), we have

κDab = κ
(
nX
(
nX(Xv

1 −Xv
2)2 + σ2

X1
+ σ2

X2

)
+ 2nOσ

2
o

)
= 2nXninst ESE[X1,X2]

+ PA

[
s
(X1)
1 , s

(X1)
2

]
+ PA

[
s
(X2)
1 , s

(X2)
2

]
. (A.31)

To simplify the notation, we define

C(X1, X2) = −
PA

[
s
(X1)
1 , s

(X1)
2

]
+ PA

[
s
(X2)
1 , s

(X2)
2

]
2nXninst

(A.32)

which can be considered as the noise term added to ESE of (X1, X2) instruc-

tion pair because of the measurement done in frequency domain. There-

fore, we have

ESE[X1,X2]=
1

2nXninst
π2P (falt) ·N

2 · falt
+ C(X1, X2) (A.33)

=
(π

2

)2 P (falt) ·N
nX · ninst · falt

+ C(X1, X2) (A.34)

which concludes the proof.

186

APPENDIX B

EXECUTION LOCATION BASED NOISE POWER ESTIMATION

In this section, we provide a method to estimate the additive noise power

corresponding to the execution location of any instruction. Note that when

the same instruction is inserted into both for-loops, we have

PA

[
s
(X1)
1 , s

(X1)
2

]
= κ

2

(
nX(Xv

1 −Xv
1)2 + nXσ

2
X1

+nXσ
2
X1

+ 2nOσ
2
O

)
= κ

2

(
2nXσ

2
X1

+ 2nOσ
2
O

)
. (B.1)

On the other hand, if we do not insert any instruction into these loops, we

have

PA

[
s
(NOI)
1 , s

(NOI)
2

]
=

κ

2

(
2nOσ

2
O

)
. (B.2)

Therefore, to obtain the noise power related to any instruction can be

found by combining (B.1) and (B.2) as

κnXσ
2
X1

= PA

[
s
(X1)
1 , s

(X1)
2

]
− PA

[
s
(NOI)
1 , s

(NOI)
2

]
⇒ nXσ

2
X1

=
PA

[
s
(X1)
1 , s

(X1)
2

]
− PA

[
s
(NOI)
1 , s

(NOI)
2

]
κ

⇒ σ̄2
X1

=
PA

[
s
(X1)
1 , s

(X1)
2

]
− PA

[
s
(NOI)
1 , s

(NOI)
2

]
κ

. (B.3)

187

APPENDIX C

DISCRETE FOURIER SERIES

The discrete Fourier series pair of a periodic signal x[n] with period M can

be defined as [104]

X[k] =
M−1∑
n=0

x[n]e−j(2π/M)kn (DFS)

x[n] =
1

M

M−1∑
n=0

X[k]e−j(2π/M)kn (IDFS).

(C.1)

Multiplying two sequences x1[n] and x2[n] in time domain is equivalent

to their periodic convolution in the frequency domain and can be written

as [104]

x1[n]x2[n]
DFS−−→ X1[k] ∗X2[k] =

1

M

M−1∑
l=0

X1[l]X2[k − l]. (C.2)

The discrete Fourier series of a periodic signal x[n] taken over a period

of ML samples is equal to

X[k] =
ML−1∑
n=0

x[n]e−j
2π
ML

kn

=
M−1∑
m=0

(
x[m]

L−1∑
l=0

e−j
2π
ML

k(m+Ml)
)

=
M−1∑
m=0

(
x[m]e−j

2π
ML

km

L−1∑
l=0

e−j2πk
l
L

)
=

M−1∑
m=0

(
x[m]e−j

2π
ML

kmL
∞∑

l=−∞
δ[k − lL]

)

=

L
∑M−1

m=0 x[m]e−j
2π
ML

km for k = Ll

0 for k 6= Ll

(C.3)

188

The discrete time periodic impulse train with period M can be written

as [104]
∞∑

l=−∞
δ[k − Ll] =

1

L

L−1∑
l=0

e
−j2πk

l

L . (C.4)

189

APPENDIX D

GRADIENT DESCENT APPROACH FOR CAPACITY CALCULATION

In this section, we provide the gradient descent algorithm to solve the

optimization problem in (3.7). We also derive a closed form solution to

attain the probability of each instruction. First, we take the derivative of

(3.7) with respect to an instruction probability Pm. Therefore,

∂f(P)

∂Pm
=

∂(Ω
Ψ

)

∂Pm
(D.1)

∂(
Ω

Ψ
)

∂Pm
=

∂

∑
i,j

Pipij log pij −
∑
i,j

Pipij log
∑
k

Pkpkj∑
i

PiLi

∂Pm

=

(∑
j

pmj log pmj −Gm

)
Ψ− ΩLm

Ψ2
(D.2)

where Lm is the length of mth instruction, and

P = [P1 P2 · · · PK]T (D.3)

190

and

Gm =
∑
j

pmj log
∑
k

Pkpkj +
∑
i,j

Pipij
pmj∑

k

Pkpkj

=
∑
j

pmj log
∑
k

Pkpkj +
∑
j

pmj
∑
i

Pipij
1∑

k

Pkpkj

=
∑
j

pmj log
∑
k

Pkpkj +
∑
j

pmj

=
∑
j

pmj log
∑
k

Pkpkj + 1. (D.4)

Since transition probabilities are calculated based on ESE measure-

ments as explained in Appendix 3.3.2, we can calculate entropy for each

instruction beforehand. Let Hm = −∑
j

pmj log pmj be the entropy for the mth

instruction. So, the gradient vector for the optimization problem can be

given as

∇P

(
Ω

Ψ

)
= ∇Pf(P) =

∂(
Ω

Ψ
)

∂P1

∂(
Ω

Ψ
)

∂P2

· · ·
∂(

Ω

Ψ
)

∂PK

T

(D.5)

where (•)T is the transpose operation and

∂(
Ω

Ψ
)

∂Pm
= −(Hm +Gm) Ψ + ΩLm

Ψ2
. (D.6)

Fig. D.1 delivers the insights about the algorithm to achieve the optimal

solution. In the algorithm, IK in line 12 stands for the identity matrix with

size K and sum(•) in line 13 returns the sum of its vector argument.

Another goal of the section is to derive a closed-form solution to the de-

fined problem in (3.7). We exploit the result in (D.2) and set the derivative

equals to zero. Let us write the overall optimization problem in Lagrangian

191

1 //Initialization of the state probabilities
2 P(0) = 1K\K;
3 //-- K is the number of instruction
4 //-- 1K is the vector with full of zeros
5 //and whose length is K.
6 converge = false;
7 while(!converge){
8 ∇P ← Calculate the gradient at time k
9 P(k+1) = P(k+1) + µ∇Pf(P(k))

10 // µ is the step size
11 // Project into the feasible region

12 P(k+1) =
(
IK − 1K1TK

)
P(k+1) + 1K;

13 P(k+1) = P(k+1) / sum (P(k+1));
14 if [(|f(P(k+1))− f(P(k))|) /|f(P(k))|] < ε{
15 converge = true;
16 }
17 }

Figure D.1: Gradient descent approach to achieve optimal solution

form such that

L(P) = f(P) + λ(1−
∑
i

Pi) + µTP (D.7)

where µ and λ are the dual variables. For the rest of the derivations, we

will assume that each instruction occurs with nonzero probability so that,

from KKT (Karush-Kuhn-Tucker) conditions, µ must equal to a zero vector.

So,

∂L(P)

∂Pm
= 0 (D.8)

⇒ (Hm +Gm) Ψ + ΩLm
Ψ2

− λ = 0 (D.9)

⇒ (Hm +Gm) +RLm
Ψ

= λ (D.10)

where R = maxP f(P) which represents the value for the optimum solu-

tion. The reason for the insertion of R instead of the ratio Ψ/Ω is simply

because calculations are done in derivative space and the optimization set-

ting ensures convexity. Observe that left hand side of (D.10) simple equals

to partial derivative of f(P). Hence, for the optimal solution, the partial

derivative of the objective function with respect to each instruction proba-

192

bility must equal to each other. By keeping that in mind and plugging the

exact definition of Gm, we have

(Hm +Gm) +RLm = λΨ (D.11)

⇒ Gm = −Hm −R · Lm + λΨ (D.12)

⇒ ∑
j

pmj log
∑
k

Pkpkj + 1 = −Hm −R · Lm + λΨ (D.13)

⇒ ∑
j

pmj log
∑
k

Pkpkj = −(Hm +R · Lm − λΨ + 1) (D.14)

If we define the equality
∑
m

hmipmj = δij where δ is the Kronocker delta

function such that δij = δ[i− j], introduce the notation σm = (Hm +R · Lm −

λΨ + 1), multiply both sides with hmi and sum over m, we have

∑
m,j

hmipmj log
∑
k

Pkpkj = −∑
m

σmhmi (D.15)

⇒ ∑
j

δij log
∑
k

Pkpkj = −∑
m

σmhmi (D.16)

⇒ log
∑
k

Pkpki = −∑
m

σmhmi (D.17)

⇒ ∑
k

Pkpki = exp(−∑
m

σmhmi). (D.18)

Finally, let us define
∑
i

ztipki = δtk and perform the same operations as

before, we have

∑
i,k

Pkztipki =
∑
i

ztiexp(−
∑
m

σmhmi) (D.19)

⇒ ∑
k

Pkδkt =
∑
i

ztiexp(−
∑
m

σmhmi) (D.20)

⇒ Pt =
∑
i

ztiexp(−
∑
m

σmhmi) (D.21)

⇒ Pt =
∑
i

ztiexp(−
∑
m

(Hm +R · Lm − λΨ + 1)hmi) (D.22)

Hence, we can extract the instruction probabilities if we have the op-

timal rate R. Since our purpose is to obtain the maximum rate and the

193

point which maximizes this rate, we can scan for a value of R in the range

between 0 to log2K and λ such that it satisfies the conventional probability

distribution constraints i.e.
∑
Pi = 1. Our search is limited by log2K for

the rate since the lengths of each instruction are at least unity, but unlim-

ited for λ. Fortunately, proposed algorithm given in Fig. D.1 provides the

rate, λ and the corresponding point, therefore, we do not need to perform

such a scan. However, we can use the closed-form solution for inspection

purposes.

194

APPENDIX E

ESTABLISHING THE DUALITY BETWEEN (4.3) AND (4.5)

Transforming the optimization problem given in (4.3) to the problem given

in (4.5) helps to utilize the ExMa algorithm presented in [72]. However, the

necessary step for that is to show that the duality holds between (4.3) and

(4.5).

Let YnM
1 be the adjusted version of Y n

1 for the transformation of the

proposed model in Section 4.2.3 to the model in Section 4.2.4 where nM

is the number of states after dividing each n state properly. We assume

the leakage occurs at the exit state, and the rest of the states do not emit

any signal for instructions which take more than one clock cycle. Actually,

most accurate approach is to split the available leakage power to all sub-

states. However, we note that for any intra/initial state, we can write Tij

as

Tij = g (Tij) (E.1)

where g (•) is a function of Tij, and Tij can be written as

Tij = log
Pt(i, j|YnM

1)
Pt(i,j|Y

nM
1)

uiPij

Pt(i|YnM
1)

Pt(i|Y
nM
1)

ui

(E.2)

=
Pt(i, j|YnM

1)

Pt(i|YnM
1)Pij

log
Pt(i, j|YnM

1)

Pt(i|YnM
1)

. (E.3)

195

Applying Bayesian rule, we have

Tij =
Pt(i|YnM

1)Pt(j|i,YnM
1)

Pt(i|YnM
1)Pij

log
Pt(i|YnM

1)Pt(j|i,YnM
1)

Pt(i|YnM
1)

=
Pt(j|i,YnM

1)

Pij
logPt(j|i,YnM

1). (E.4)

For the intra/initial states, we have

Pt(j|i,YnM
1)

(a)
= Pt(j|i)

(b)
= Pij

where (a) follows that there exists only one path from state i, where i is an

intra/initial state, to any other state independent of any given sequence,

and (b) follows that the transition probability for the Markov chain provides

sufficient information to describe any transition probability from one state

to another at any given time. Therefore, assigning an arbitrary power val-

ues for these states do not affect the transition probability at time t given

the output sequence. For the tractability of the mathematical derivations,

we assume these states produce no signal at all. Moreover, for these states,

we can simplify (E.4) further as

Tij =
Pt(j|i)
Pij

logPt(j|i) =
Pij
Pij

logPij = 0 = Tij (E.5)

for any j ∈ SM , which means

ui
∑
j∈SM

Tij = 0.

Therefore, given an instruction with an execution time larger than one,

the intra/initial states of this instruction do not contribute to the equation

given in (4.5) in terms of Tij. As the second step, we have to check the con-

196

tribution of these intra/initial states to the definition of leakage capacity.

In that respect, we have

−ui
∑
j∈SM

Pij logPij = 0

since Pij is equal to zero or one. Therefore, for the intra/initial states, we

have

ui
∑
j∈SM

Pij (Tij − logPij) = 0

which means total contribution is zero if the considered state is an in-

tra/initial state of an instruction whose execution time takes more than

one clock cycle.

Now, let’s check the values obtained from the exit states. Here, our

analysis is based on the assumption that the leakage occurs at exit states.

To proceed further, we define Tij as

Tij = lim
n→∞

1

n

n∑
t=1

log
Pt(k, l|Y n

1)
Pt(k,l|Y n1)

uiPij

Pt(k|Y n
1)

Pt(k|Y n1)

ui

 (E.6)

where i is the exit state of instruction k and j is the initial state of inst-

ruction l. The reason to redefine Tij is to satisfy the duality between the

problems because it is obvious that Tkl = Tij after redefining Tij. Moreover,

the transition probabilities for an exit state to an initial state are kept ex-

actly the same with the corresponding instruction to instruction transition

probabilities, i.e. PDIV,SUB = PD4,SUB, PMUL,SUB = PM3,SUB, etc. (Here, transi-

tions are based on Fig. 4.2 and Fig. 4.3), to preserve the duality.

Therefore, for the exit state k of instruction i, we can write the following

197

equality: ∑
j∈S

Pij

[
log

1

Pij
+ Tij

]
=
∑
j∈SM

Pkj
[
log

1

Pkj
+ Tkj

]
. (E.7)

Note that the number of states in the original Markov Model is the same

as the number of exit states in the transformed Markov Model.

Since the transformed Markov Model is also an indecomposable model,

it has a stationary distribution which can be written as

u = uP

where u is the state probabilities, and P is the matrix containing the

state transition probabilities. To derive mathematical results, we utilize

the classical probability constraints. For that, let ui be the stationary dis-

tribution of kth sub-state of instruction M , and uMk be its mapped version.

The constraints for the transformed model are

∑
i

ui =
∑
i,j

uji = 1

and

uji = ujk, ∀i, k ∈ {1, · · · , Lj} and j ∈ S,

i.e., uM1 = uM2 = uMLMUL
. Therefore, we have

∑
i∈SM

ui =
∑

i∈E(SM)

LiuiLi = 1 (E.8)

where E (SM) is the set containing exit states of instructions. Let us rewrite

198

the capacity definition for the transformed model as

CT = max
Pij

∑
i,j:(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(E.9)

= max
Pij

∑
i,j:(i,j)∈E(TM)

uiPij

[
log

1

Pij
+ Tij

]
(E.10)

where (E.10) follows the equality given in (E.7), and E (TM) represents the

state transition set of all exit states. To proceed forward, we define

ujLj =
µj∑

k∈S
Lkµk

which obeys the probability constraint that

1 =
∑
i∈SM

ui =
∑

i∈E(SM)

Liui =
∑
j∈S

Lju
j
Lj

(E.11)

=
∑
j∈S

Ljµj∑
k∈S

Lkµk
=

∑
i∈S

Liµi∑
k∈S

Lkµk
= 1 (E.12)

where (E.11) follows the equality given in (E.8). Therefore, we have

CT = max
Pij

∑
(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(E.13)

= max
Pij

∑
(i,j)∈E(TM)

uiPij
[
log

1

Pij
+ Tij

]
(E.14)

= max
Pij

∑
(i,j)∈T

µi∑
k∈S

Lkµk
Pij

[
log

1

Pij
+ Tij

]
(E.15)

= max
Pij

∑
(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
k∈S

Lkµk
(E.16)

where (E.15) follows the equality given in (E.7). Since (E.16) is exactly

199

same with (4.3), the proposed transformation preserves the duality which

ends the proof.

200

APPENDIX F

MATHEMATICAL DERIVATION OF ESP

In this section, we show how ESP is related to the alternation power at the

corresponding frequency. For measurement and derivation purposes of

ESP, the code given in Fig. 2.1 is used. Here, we assume that the sampled

sequence of s(t) is s[m], and each sample can be written as s[m] = i[m]+w[m]

where i[m] is the emanated signal sample and w[m] is additive independent

and identically distributed (i.i.d.) white noise with zero mean and variance

σ2
w. We assume that the noise term contains all disruptive signal powers

and their variations.

Let sL1
1 [m] be the sequence corresponding to only one period of the first

for-loop signal, and the length of sL1
1 [m] is NL. We can decompose sL1

1 [m]

into three different sequences. Assuming the depth of the pipeline is PS,

these sequences are:

* The samples of the considered instruction including all pipeline stages:

aA1 [m] =
[
0, · · · , 0, a1

A1
, a2
A1
, · · · , apA1

, aA1 [0], · · · , aA1 [NI − 1], ap+1
A1

, · · · , aPSA1

]
where aiA1

is the ith sample of the emitted signal when A1 is in a

pipeline stage rather than execution.

* The samples of other activities rather than A1 to make the micro-

benchmark practical including the pipeline effect:

oL1 [m] = [o[0], o[1], · · · , o[NL − 2], o[NL − 1]] .

201

Here, we need to note that the samples taken for the first iteration

of the inner for-loop will be different than the other iterations even

for the ideal case due to pipeline depth. Although it looks like the

periodicity is not valid for oL1 [m], we can able to ignore it thanks to

the assumption that ninst is large.

* Finally, the last sequence compromises all other components which

are assumed to be Gaussian and given as

wL1 [m] = [w[0], w[1], · · · , w[NL − 1]] .

Combining all these sequences, we have

sL1
1 [m] = aA1 [m] + oL1 [m] + wL1 [m].

Following the same decomposition for the second for-loop signal, called

sL2
2 [n], we have

* oL2 [m] = [o[0], o[1], · · · , o[NL − 2], o[NL − 1]],

* wL2 [m] = [w[0], w[1], · · · , w[NL − 1]],

which leads to

sL2
2 [m] = oL2 [m] + wL2 [m].

Here, we assume that NOP consumes very little energy as it passes through

the stages of a pipeline, which means it produces a signal whose power is

close to zero. Observe here that since both loops are almost identical ex-

cept the part where A1 is inserted, we assume that oL1 [m] and oL2 [m] are

identical to each other, therefore, we refer both sequences as o[m]. Let p[m]

202

be a square wave with 50% duty cycle and period of 2NLninst samples, and

s[m] be the one period signal of the outer for-loop. Let also aA1 [m] and o[m]

be generated by concatenating aA1 [m] and oL1 [m] by 2 · ninst times, respec-

tively. Furthermore, we can simply assume that the noise components are

i.i.d. for both for-loops. Therefore, we have

s[m] = p[m]aA1 [m] + o[m] + w[m].

The first harmonic of s[m] can be written as

S[1] =

2NLninst−1∑
γ=0

P [1− γ]AA1 [γ]

2NLninst
+ O[1] + W[1]. (F.1)

We know that O[k] and AA1 [k] have nonzero frequency components only if

k = 2 · ninst · l, ∀l ∈ {0, · · · , NL− 1}, and |P [1]| � |P [1− 2ninst]|. Therefore, (F.1)

can be approximately written as

S[1] ≈ P [1]

2NLninst
AA1 [0] + W[1]. (F.2)

If we take the magnitude square of both sides, we have

|S[1]|2 =

∣∣∣∣ P [1]

2NLninst
AA1 [0] + W[1]

∣∣∣∣2
=

∣∣∣∣ P [1]

2NLninst
AA1 [0]

∣∣∣∣2 + |W[1]|2 − <e {P [1]AA1 [0]W∗[1]}
NL · ninst

(F.3)

where (·)∗ is conjugation and <e {·} takes the real part of its argument.

Assuming ∣∣∣∣ P [1]

2NLninst
AA1 [0]

∣∣∣∣� <e {P [1]AA1 [0]W∗[1]} ,

203

the first harmonic of s[m] can be simplified further as

|S[1]|2 ≈
∣∣∣∣ P [1]

2NLninst
AA1 [0]

∣∣∣∣2 + |W[1]|2 . (F.4)

To proceed further, we need to have the expression for AA1 [0]. Utilizing

the DFS, we have

AA1 [0] =

2NLninst∑
γ=0

aA1 [γ]
(a)
= 2ninst

NL∑
γ=0

aA1 [γ] (F.5)

where (a) follows the fact that aA1 [m] is periodic with NL samples. Since,

at each period, only NI + PS of aA1 [m] have nonzero values, and assuming

NI + PS is large enough, (F.5) can be written as

AA1 [0] = 2(NI + PS)ninstE [aA1 [m]]

= 2(NI + PS)ninstµA1 (F.6)

Note that exploiting (4.7), ESP[A1] can also be written as

ESP[A1] =
Ts(NI + PS)

R
E
[
|aA1 [m]|2

]
=

Ts(NI + PS)

R

(
µ2
A1

+ σ2
A1

)
≈ Ts(NI + PS)

R
µ2
A1

(F.7)

where σA1 is the standard deviation of the samples while an instruction

signal is executed, and (F.7) follows the assumption that the variation in

measured signal during the execution of an instruction is much smaller

than its mean value. Combining (F.6) with (F.7), we have

ESP[A1] ≈ Ts
4R(NI + PS)n2

inst

|AA1 [0]|2. (F.8)

204

The final step is to show how ESP[A1] and the alternation power P(falt)

are related to each other. The relation between the first harmonic of the

signal and the power measure through the spectrum analyzer is given as

[115], [114]

P(falt) =
2

R

(|S[1]|
2 ·NL · ninst

)2

. (F.9)

Let PA1(falt) be the measured alternation power when A1 is inserted into

first for-loop, and the second loop is kept empty. On the other hand, let

P0(falt) be the measured power when both for-loops are kept empty (Here,

we need to remark that keeping the loops empty means inserting NOP as

many as the total number of clock cycles required to execute A1). Finally,

let PA1(falt) be the normalized alternation power for the instruction A1

which is defined as

PA1(falt) = PA1(falt)− P0(falt).

The critical observation is that the term related to A1 in (F.4) is zero

when both for loops are kept empty. Assume SA1 [1] and S0[1] denote the

first harmonics of the signal when 1) A1 is inserted, and 2) both loops are

kept empty, respectively. Considering this setup, we can write

|SA1 [1]|2 − |S0[1]|2 ≈ 1

π2
|AA1 [0]|2 (F.10)

where we utilize the approximation that π|P [1]| ≈ 2NLninst. Exploiting the

definition of normalized alternation power, and employing the equations

205

given in (F.8), (F.9), and (F.10), we can write

PA1(falt) = PA1(falt)− P0(falt)

=
2/R

(2NLninst)
2

(
|SA1 [1]|2 − |S0[1]|2

)
=

2/R

(2NLninst)
2

1

π2
|AA1 [0]|2

=
ESP[A1]

(πNL)2

2(NI + PS)

Ts
. (F.11)

To emphasize the relation between the power at the alternation fre-

quency and ESP, we can write

falt · ninst =
1

2 ·NL · Ts
. (F.12)

Plugging the equation (F.12) into (F.11), we have

PA1(falt) =

(
2

π

)2
ESP[A1]

NL/(NI + PS)

1

2NLTs

=

(
2

π

)2
ESP[A1]

NL/(NI + PS)
faltninst. (F.13)

To finalize our proof, we need to keep ESP[A1] alone on the one side.

Therefore, we have

ESP[A1] =
(π

2

)2 PA1(falt) ·NL

(NI + PS) · falt · ninst
(F.14)

which concludes the proof.

206

APPENDIX G

A MICROARCHITECTURE-LEVEL ELECTROMAGNETIC

SIDE-CHANNEL SIGNAL MODELING

G.1 Overview

Monitoring computer system activities on the instruction level provides

more resilience to malware attacks because these attacks can be analyzed

better by observing the changes on the instruction level. Assuming the

source code is available, many training signals can be collected to track

the instruction sequence to detect whether a malware is injected or the

system works properly. Most of the previous work on side channel inst-

ruction tracking has been concentrated on building side-channel-based

disassembler [116, 117, 118]. As much as their work is a specific reverse

engineering application and they take a different approach, our works are

similar in the sense that we both try to extract the executed instruction

of a device through side-channel analysis. Eisenbath et. al. [116] use a

microcontroller with the simplest form of pipelining (two stages: prefetch

and execute) and the clock frequency of the target device is as low as 1

MHZ. Park et. al. [117] works on a device whose operating clock frequency

is 16 MHz, but the pipeline has again only two stages. Unlike the former

papers which utilize the power side channel, Strobel et al. [118] uses EM

side-channel; the operating frequency of the microcontroller used in their

study is 4 MHz and the pipeline has only two stages. They also modify

the target device by decapculating the IC to locate the probe closer to the

die of the microcontroller [118]. Another similar application of instruction

207

tracking is Msnga et al.[62]’s instruction-level side channel profiling ap-

proach, where they use a microcontroller with 4 MHz clock frequency and

two pipeline stages. The previous work demonstrates the feasibility of inst-

ruction tracking either through power or EM side channels for the specific

target devices. However, the target devices that are used in previous work

do not represent the modern computers due to the following reasons:

• The operating clock frequency of the target devices are very low.

• Target devices employ the simplest form of pipelining architecture

whereas the modern computers have much more advanced pipelining

architectures with more than several pipeline stages.

Therefore, training signals have to be collected with high sampling rate to

ensure that the significant features of these signals do not vanish. Since

the clock frequencies of the current computer systems are extremely high,

we need to have a commercial device with high sampling rate, i.e. 10 GHz,

which either costs remarkably high, or does not exist. To eliminate the

deficiencies regarding the insufficient sampling rate, we propose a method

to increase the sampling rate with the moderate commercial devices for

training symbols. In that respect, we first generate some random inst-

ruction sequences which exist in the inspected source code. Then, these

sequences are executed in a for-loop, and emanated electromagnetic (EM)

signals from the processor are collected by a commercially available device

with moderate sampling rate, i.e. sampling rate is much smaller than the

clock frequency. Lastly, we apply a mapping of the gathered samples by

utilizing modulo of their timings with respect to execution time of overall

instruction sequence. As the final step, we provide some experimental re-

sults to illustrate that we successfully track the instruction sequence by

208

applying the proposed approach.

G.2 A Method for Generating Training Sequences for Single Instruc-

tion Tracking

In order to track instructions through emanated EM signals, it is neces-

sary to have EM signatures for each instruction that can be used for com-

parison. Earlier work demonstrates several ways of generating signatures

such as applying dimensionality reduction methods to the recorded signal

and using machine learning classification techniques [116, 62, 118], and

recording the signature of the instruction for several times and simply av-

eraging them [119]. In this chapter, modulo operation technique that is

explained in detail in Section G.3 is adapted for generating the EM signa-

tures.

As mentioned earlier, two of the main challenges of our work can be

expressed as the inadequate sampling rate and not having a model that

describes the pipeline effect on the emanated EM signal. In order to ad-

dress the latter issue, it’s been established to use sequences of instructions

instead of single instructions. When an instruction is executed, pipeline is

filled with neighboring instructions that are just before or after that inst-

ruction, and those neighboring instructions are included in the instruction

sequence. As much as the individual contributions from the neighboring

instructions that appear in different stages of pipeline are not known, us-

ing the whole sequence as signature allows us to include their aggregate

effect.

Regarding inadequate sampling rate, modulo operation becomes a very

useful technique. Assuming we have a signal that is composed of samples

from a periodic signal, modulo operation can be used to upsample that

209

signal (reader can refer to Section G.3 for detailed analysis of modulo oper-

ation). One should note that, when the instruction sequence is executed,

the emanated EM signal occurs only once and hence it is not a periodic

signal. However, since we have access to the device during training phase,

we can artificially mimic the required periodicity condition by executing

the same sequence consecutively. It should also be noted that the repeti-

tion of the instruction sequence is only used in the training phase and not

in the testing phase, where instruction sequence is executed only once.

Considering the requirements above, we can summarize the setups

used for training and testing phases as follows.

• Training Setup: This setup is used to generate EM signatures. There-

fore, the instruction sequence is executed for N consecutive times by

utilizing a for loop. The pseudo code for this setup can be seen in

Figure G.1. The empty for-loops before and after the execution of the

instruction sequence are used as markers to detect the beginning and

ending of the instruction sequence.

• Testing Setup: This setup is used for testing the generated EM signa-

tures. Unlike Training Setup, the instruction sequence is executed

only once. Therefore, it is not possible to apply modulo operation in

this case. This means that the sampling frequency of the captured

EM signal in this setup is not as high as the resulting EM signatures.

The pseudo code for this setup can be seen in Figure G.2. The empty

for-loops before and after the execution of the instruction sequence

are similarly used as markers to detect the beginning and ending of

the instruction sequence.

Implementing modulo operation while generating the EM signatures

210

for
#empty for loop
end

for N times
#Instruction sequence
end

for
#empty for loop
end

Figure G.1: Pseudocode for
Training Setup.

for
#empty for loop
end

#Instruction sequence

for
#empty for loop
end

Figure G.2: Pseudocode for
Testing Setup.

Figure G.3: Pseudocodes for Training and Testing setups used for gener-
ating EM signatures and testing the generated signatures

does not only increase the sampling rate, but also the resulting EM sig-

nature is, in a way, an averaged version of N executions of the same inst-

ruction sequence. This characteristic of the operation is especially useful

when the noise level is very high. The averaging nature of the modulo oper-

ation can be used to filter out the noise, and the underlying EM emanation

that has been formerly overshadowed by the noise can be recognized and

extracted as signature. One should also note that, repeating the inst-

ruction sequence consecutively results in a different pipeline effect. As

opposed to the single execution case, Training Setup helps to decrease

the contribution coming from the previous and subsequent instructions.

By using sequences of instructions instead of single instructions, we

are inevitably increasing the total possible number of EM signatures that

needs to be generated. On the other hand, the longer the sequence, the

better the pipeline effect is included in the generated EM signature. This

situation indicates the trade off between the total number of EM signatures

and the ability to address the pipeline effect.

211

G.3 Modulo Operation to Increase Effective Signal Sampling Rate

The technique that we propose in this section, modulo operation, is a very

simple but effective method that enables generating well-conditioned EM

signatures. In this section, first, we explain the theory behind the tech-

nique, then illustrate the result of the technique through simple examples

and finally discuss the required conditions for this operation to be appli-

cable.

Theoretical Perspective: Let’s assume that y(t) is a long periodic signal

with period T , and Ts is the sampling period of the measuring instrument,

which (without loss of generality) can be formulated as

Ts = kT + ∆m. (G.1)

Here, k is a fixed non-negative integer, T is the period of the target signal

y(t) and ∆m (that will be referred as modular offset) is defined as:

∆m = mod(Ts, T). (G.2)

It should be noted any Ts can be expressed with the formulation given

in (G.1). Now, let ys[n] be a discrete time sequence which is constructed by

sampling y(t) with the sampling period Ts as

ys[n] = y(nTs), for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (G.3)

Since Ts is known, sampling times, tn’s, for each sample n are also

known:

tn = nTs, for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (G.4)

212

Let tmodn be the time indicating where the nth sample corresponds in the

fundamental period of y(t) and it can be found as

tmodn = mod (tn, T) = mod (n (kT + ∆m) , T)

= mod (n∆m, T) , for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (G.5)

It should be noted that 0 ≤ tmodn < T . In a way, the value of the nth sample

(ys[n]) can be wrapped around and used to fill in the value for tmodn . After

repeating this process for all samples and sorting tmodn ’s accordingly, we

can obtain several samples in y(t)’s fundamental period [0, T]. Determining

the exact number of the new samples in y(t)’s fundamental period [0, T] is

more subtle.

Number of Samples: As we repeat calculating tmodn for increasing n’s, every

sample fills in a distinct point within [0, T] until tmodn becomes zero again

(other than n = 0 for which tmodn is always zero). Let M denote the smallest

nonzero sample index n for which tmodn = 0. For any sample with index

number M or greater than M , it is not possible to fill in a distinct point

within [0, T] because the value at tmodn is already filled by a previous sample.

In other words, any subsequent sample whose sample index n ≥ M does

not increase the total number of sample points within the fundamental

period. Then, determining the exact number of new samples transforms

into finding M , the nonzero sample index for which tmodn = 0. In order to

find that, we should focus on the definition that is given in (G.5): tmodn =

mod (n∆m, T). One should realize that tmodn = 0 for n = 0, but we are looking

for the sampling index n > 0. Then, it is not very difficult to see that

mod (n∆m, T) becomes zero when n∆m is the same as the least common

multiple of ∆m and T .

213

Let lcm(x, y) correspond to an operator whose result is the least common

multiple of its operands x and y. It should be noted that we are using a

looser least common multiple operator for which the result and operands

x and y do not necessarily have to be integers, i.e., lcm(0.01, 0.02) = 0.02.

Hence, the total number of samples in one period of y(t) is equal to M

which can be found as:

M =
lcm(∆m, T)

∆m

. (G.6)

New samples are spaced by T ns = T/M , therefore, the new sampling

frequency fns is:

fns =
1

T ns
=
M

T
=
lcm(∆m, T)

T∆m

. (G.7)

If the total number of samples, N , is at least as much as M , we can

make sure that we have at least one sample that represents the value of

the signal at t = 0, T ns , 2T
n
s , ..., (T − T ns). Therefore, when this condition is

satisfied, new sampling time of the signal becomes T ns . Consequently, it

can be concluded that the effective sampling rate has been increased from

1
Ts

to 1
Tns

= lcm(∆m,T)
T∆m

.

Detailed Explanation: In order to illustrate what modulo operation does,

consider the following signal:

y(t) = sin (2πt). (G.8)

We consider two different cases of Ts: Ts1 = 2.01 and Ts2 = 2.53. Since

the period of y(t) is 1, the modular offsets are ∆m1 = 0.01 and ∆m2 = 0.53,

respectively. After sampling y(t) with sampling periods Ts1 and Ts2, we

obtain the following discrete time signals:

214

0 5 10 15

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(a) y(t) (solid curve) and ys[n] (markers) for
Ts1 = 2.01.

0 5 10 15

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(b) y(t) (solid curve) and ys[n] (markers) for
Ts1 = 2.01.

Figure G.4: The solid curves represent the continuous target signal y(t) =
sin (2πt), whereas the markers represent ys[n] (samples obtained from y(t)
with sampling rates Ts1 = 2.01 (a) and Ts2 = 2.53 (b)). One should note
that this is a case where the signal is heavily undersampled that causes
aliasing.

ys1 [n] = y(nTs1) = sin (2πnTs1) and ys2 [n] = y(nTs2) = sin (2πnTs2), for ∀n

(G.9)

where n ∈ {0, 1, 2, ..., N − 1}.

The solid curves in Figure G.4 illustrate y(t), whereas the markers

in Figure G.4(a) and G.4(b) represent ys1 [n] and ys2 [n], respectively. One

should note that for both cases Ts > T and we have less than 1 sample for

each period of y(t). This situation presents a scenario where the sampling

rate is very low with respect to the frequency of the signal under investiga-

tion. In classical signal processing terms, sampling frequency is much less

than the Nyquist rate and consequently, aliasing occurs. Due to aliasing,

ys1 [n] and ys2 [n] are completely different from each other even though they

are obtained from the same signal. Without any further assumption, ys1 [n]

and ys2 [n] cannot be used to recover the target signal y(t).

In Figure G.5, time axis is extended to [0, 1000] s, and one can note that

215

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(a) ys[n] for Ts1 = 2.01.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(b) ys[n] for Ts2 = 2.53.

Figure G.5: Time axis is extended to [0, 1000] s for Figure G.4, and the
markers start to resemble y(t) in (a) but not in (b)

the waveform that is generated by the markers in Figure G.5(a) resembles

the sinusoidal target signal y(t) on a different timing scale. However, Figure

G.5(b) does not resemble y(t) at all. Aliasing in Figure G.5(b) is, therefore,

very obvious, but one should also realize that aliasing occurs in Figure

G.5(a) as well. Although the shape of the markers resemble the target

signal, the period of the signal generated by markers is completely different

than the period of the target signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(a) Samples sorted (tmod
n) for Ts1 = 2.01.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(b) Samples sorted by (tmod
n) for Ts2 = 2.53.

Figure G.6: When samples are sorted by their modular sampling timing
(tmodn), the reconstructed signal fully resembles y(t) in its fundamental pe-
riod for both (a) and (b).

The results obtained after applying the modulo operation are presented

in Figure G.6 and it can be easily noted that the reconstructed signals from

216

both ys1 [n] and ys1 [n] are identical to y(t) for t ∈ [0, T]. These figures expose

the strength of the proposed approach to increase the sampling rate. We

have first showed that ys1 [n] and ys2 [n] are samples obtained from the same

target signal y(t), but they are completely different signals due to aliasing.

However, applying the modulo operation helped us to recover the under-

lying target signal in both of the cases. Therefore, beyond increasing the

sampling rate, modulo operation is especially useful to deal with aliasing.

This example represents how modulo operation can be used to recon-

struct a periodic signal in its fundamental period with higher effective

sampling rate. One should note that we assume a few conditions that

are required for modulo operation to be useful:

• The target signal is a periodic signal and its period is known or easily

estimated.

• Modular offset (∆m = mod(T, Ts)) is nonzero, in other words, the sam-

pling period Ts is not an integer multiple of the period of the target

signal.

For any signal that satisfies the forementioned conditions, modulo oper-

ation can be applied. We now show that the signal obtained by using

Training Setup in Section G.2 indeed satisfied those conditions:

• Same instruction sequence is executed several times consecutively

by using a for loop, and therefore, the signal becomes periodic during

the execution of the for loop. Also, because the total number of exe-

cutions of the instruction sequence is determined by us (thus, known

to us), the period of the instruction sequence (the time it takes for

the instruction sequence to be executed only once) can be estimated

through dividing the total execution time by the number of iterations.

217

With this specific setup, the periodicity condition can be satisfied and

the period can be easily estimated.

• Sampling period, Ts, is determined by the sampling equipment. Usu-

ally, it is very unlikely to have Ts be an integer multiple of T , but

even if this occurs, sampling time of the equipment can be slightly

adjusted in a way to avoid Ts from being an integer multiple of T .

The discussion above shows that Training Setup used in our experi-

ments satisfies the required conditions for applying modulo operation. It is

worth re-emphasizing that this setup is used for generating the EM signa-

tures (where we have much more degree of freedom in modifying the source

code), but it is not repeated for the actual instruction tracking stage Test-

ing Setup, because, the instructions are executed only once in the actual

tracking stage.

Finally, it may be worthwhile to note that modulo operation is not in-

creasing the real-time sampling rate. Instead, modulo operation uses the

samples that are recorded from several repetitions of a periodic signal and

creates a new signal whose time scope is limited to one period of the signal,

but the new signal contains samples that are spaced much closer to each

other in time.

G.4 Experimental Results and Discussion

G.4.1 Experimental Results on Target Device 1 (FPGA)

The first target device that is used in our experiments is Altera DE1 Cy-

clone II, a high-density, low cost FPGA (Field Programmable Gate Array).

For implementing our code on the device, we use Altera’s embedded pro-

cessor Nios II that employs a relatively advanced pipeline architecture with

218

6 pipeline stages (Fetch, Decode, Execute, Memory, Align and Writeback)

and operates at 50 MHz clock frequency. The considered instructions are

given in Table 2.1.

In this section, we consider 20 instruction sequences that are listed

in Appendix G.6. As it can be noted, the instructions include the basic

arithmetic operations such as ADD, SUB, MUL, DIV, as well as load (LDM)

and store (STM) instructions. We would like to point out that the number

of sequences that are used in the experiment is not enough to conclude

instruction tracking at single instruction level. However, recognition of the

presented sequences with reasonably high success rate supports the ap-

plicability of our proposed method. After having high success rate with the

provided instruction sequences, instruction level tracking can be achieved

by a rigorous sequence selection and experimentation.

Figure G.7: Measurement Setup: Magnetic near field probe is located on
top of the processor of the FPGA

Earlier work has shown that EM emanations occur at different frequen-

cies [3]. In our study, we are particularly interested in the EM emanations

around the clock frequency of our target device. We measure the emanated

EM signals with a near field magnetic probe (AAronia PBS H3) that is lo-

219

cated above the processor of the target device as shown in Figure G.7.

For recording the measured data, we use a spectrum analyzer (Keysight

N9020A MXA). Main reason behind using this device is the built-in fea-

tures of the device to downconvert the recorded signal and the visualize

the signal around the clock frequency. However, any other less expensive

device with similar sampling rate features can be used to repeat the same

experiments.

To give the reader more insight on how the emanated EM signals and

the result of modulo operation look like, Figure G.8 displays the recorded

signal for a specific instruction sequence (DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-

ADD-DIV). The top and bottom plots in Figure G.9 represent the modulo op-

eration result and the single execution of the same instruction sequence,

respectively. One should note that the plot on the top is a much more

smooth plot due to higher resulting sampling rate and the averaging na-

ture of modulo operation. In fact, for this specific instruction sequence, the

sampling rate is increased by a factor of 125. In order to compare those

two signals, we use Pearson correlation coefficient [120]. Clearly, these

two discrete time signals have different number of samples. Therefore, the

modulo operation result is resampled at the same time instances of the sin-

gle execution signal. Resampled modulo operation result and the original

single execution result are plotted on top of each other in Figure G.10 and

the resulting correlation coefficient is 0.96. Promisingly, when the same

modulo operation result is correlated with single execution of other instruc-

tion sequences, the correlation coefficient is less than 0.9 for all different

sequences.

Table G.1 presents the correlation matrix between the EM signatures

that are obtained with modulo operation and the single execution of the

220

Figure G.8: Recorded signal for the given sequence in Training Setup
before modulo operation.

Figure G.9: The plot on the top presents the result of the modulo operation
obtained by using Training Setup, plot on the bottom presents the single
execution of the same instruction sequence obtained by Testing Setup.

instruction sequences. It can be easily noted that the dominant terms

in the matrix are the diagonal terms, which supports the claim that the

generated EM signatures by modulo operation can be used to detect the

corresponding instruction sequences. One should also note that, similar

instruction sequences (such as instruction sequence 10 and 11, which

differ only in one instruction) have higher cross correlation coefficients,

221

Figure G.10: Resampled modulo operation result (solid curve) vs. single
execution of the same instruction sequence (dashed curve).

Table G.1: Correlation between the EM signatures and their one-time-run
versions for Altera DE1 Cyclone II. The columns denote the EM signatures
and the rows denote the one-time-run versions. The diagonal entries dom-
inate the other terms, therefore, the generated EM signatures can identify
the executed sequences and corresponding instructions (The values given
in the table is correlation coefficient × 100).

Generated EM signatures

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A

O
n
e-

ti
m

e-
ru

n
ve

rs
io

n
s

1B 91 54 73 15 23 11 21 19 28 43 21 23 7 54 18 37 27 24 14 2

2B 12 95 50 16 57 43 50 21 39 56 58 6 65 58 50 57 10 46 9 18

3B 61 67 93 6 55 42 50 2 18 62 66 28 52 68 24 55 8 46 5 16

4B 19 6 20 94 46 61 42 73 62 10 29 73 50 14 44 4 67 27 78 66

5B 9 53 18 52 97 79 80 75 72 30 49 39 55 32 53 50 55 62 61 67

6B 11 31 2 66 80 91 87 85 75 16 50 67 61 16 59 43 70 72 68 79

7B 2 43 20 32 70 80 92 64 73 24 54 48 50 38 61 55 55 72 54 76

8B 27 8 34 41 30 47 38 97 66 19 26 83 42 21 56 2 76 24 77 66

9B 41 3 31 57 44 62 57 80 98 19 37 82 62 19 76 0 90 34 68 69

10B 22 57 53 20 55 40 44 11 20 96 88 22 70 76 33 83 3 47 4 11

11B 20 49 33 44 57 53 50 50 62 65 93 26 82 58 58 70 46 51 47 47

12B 12 41 48 42 10 18 7 80 52 47 7 94 10 50 47 33 68 14 75 66

13B 20 41 20 59 61 60 57 69 80 36 80 45 98 40 62 39 75 58 61 57

14B 33 65 72 11 65 44 46 8 31 76 83 30 81 95 29 62 7 49 7 10

15B 39 20 25 34 33 46 47 64 80 3 45 66 54 4 96 17 70 25 56 55

16B 13 53 41 26 53 57 66 25 36 82 78 1 60 60 48 96 12 66 17 36

17B 32 25 41 57 28 51 36 78 85 38 15 82 42 32 64 21 95 20 74 56

18B 12 42 27 49 61 81 91 49 58 38 48 32 54 38 45 63 45 97 31 53

19B 23 11 20 46 40 42 25 77 59 23 19 66 32 16 51 9 70 4 92 70

20B 8 6 17 40 46 55 59 72 66 13 23 71 34 8 57 14 58 25 77 94

but none of the cross correlation coefficients are above 0.9. Therefore, the

corresponding threshold for these instruction sequences can be set as 0.9.

222

As mentioned earlier, in order to reach single instruction level tracking,

we should include all possible instruction sequences. In this chapter, we

have included only 20 instruction sequences as a preliminary result in

order to demonstrate the applicability of our proposed modulo operation

technique.

G.4.2 Experimental Results on Target Device 2 (ARM Board)

In order to demonstrate that modulo operation technique can be applied to

devices with very high clock frequencies, we include another target device

that has higher clock frequency. The second target device that is used in

our experiments is A13-OLinuXino board, a single-board computer with

Cortex A8 ARM processor. The operating frequency of the device is 1 GHz

and the pipeline architecture is very complex with 13 pipeline stages.

For this device, we consider 7 instruction sequences that are listed in

Appendix G.7. Similar to Section G.4.1, the instructions include the basic

arithmetic operations such as ADD,SUB,MUL, as well as load (LDR) and

store (STR) instructions. The instructions that considered are for this

device are given in Table 2.1.

We measure the emanated EM signals with the same near field magnetic

probe (AAronia PBS H3) that is located above the processor of the target

device. For recording the measured data, we use a different spectrum

analyzer (Keysight N9030B PXA), which enables us to sample the signal

with 400 MHz span. Note that this is still not providing enough samples

per clock cycle, because the operating clock frequency is much higher, i.e.

1 GHz.

Here, we would like to point out a modification in the Testing Setup.

When we use the Testing Setup that is explained in Section G.2, we realize

223

that the the training signals do not resemble the testing signals due to

the different pipeline effects that training and testing signals go through.

One should note that, this is not the case in Section G.4.1, because the

pipeline architecture of FPGA is not as complex as this board. In order to

circumvent this problem, we modify the Testing Setup by repeating the

instruction sequence within the for loop, but only crop one period of it.

This enables us to make sure that the testing signal has the same pipeline

effect as the training signal.

Figure G.11 displays the signal recorded by using Training Setup be-

fore modulo operation for a specific instruction sequence (Sequence 1 in

Table G.4). This signal is used as the input to the modulo operation. .

0 1 2 3 4 5 6

time (Seconds) 10-7

0.5

1

1.5

2

2.5

3

3.5

4

M
ag

n
it

u
d

e

10-3

Figure G.11: Recorded Training Setup of Sequence 1 from Table G.4.

The top and bottom plots in Figure G.12 represent the modulo operation

result and the single execution of the same instruction sequence, respec-

tively. Similar to previous section, when we correlate the modulo operation

result for this instruction sequence with other testing signals obtained

from different instruction sequences, the correlation is much less than

0.9. Figure G.13 illustrates one example of this.

Table G.2 illustrates the correlation matrix of training and testing sig-

224

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (Seconds) 10-7

0

1

2

3

4

M
a
g

n
it

u
d

e
10-3

Correlation: 0.97743

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (Seconds) 10-7

1

2

3

4

M
a
g

n
it

u
d

e

10-3

Figure G.12: The plot on the top presents the result of the modulo oper-
ation, plot on the bottom presents the single execution of the same inst-
ruction sequence obtained by modified Testing Setup, where the signal
is preceded and followed by the same instruction sequence. Instruction
Sequence used for this figure is Sequence 1 from Table G.4.

nals obtained from experiments on A13-OLinuXino board. It is not very

difficult to realize that the diagonal terms are dominant, and the other

terms are much less than 0.8. This indicates that we can detect the inst-

ruction sequences that are used in this experiment by using the training

signals obtained by modulo operation. Therefore, we can conclude that

modulo operation is applicable for devices with high clock frequencies as

much as 1 GHz.

G.5 Summary

Earlier work have illustrated the usage of EM emanations for instruction

tracking on processors with simple pipeline architectures and low operat-

ing frequencies. In this chapter, we show how EM emanations can be used

to track instructions on a more advanced device (an FPGA) with a proces-

225

0 0.5 1 1.5

time (Seconds) 10-7

0

0.5

1

1.5

2

M
a
g

n
it

u
d

e

10-3

Correlation: 0.30978

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (Seconds) 10-7

1

2

3

4

M
a
g

n
it

u
d

e

10-3

Figure G.13: The plot on the top presents the result of the modulo oper-
ation obtained by using modified Training Setup (concatenating different
instances of Testing Setup) for Sequence 1 from Table G.4, plot on the bot-
tom presents the single execution of the a different instruction sequence
(Sequence 3 from Table G.4) obtained by Testing Setup. The correlation
of those signals are very low as expected.

sor that has a more complex pipeline structure and higher operating clock

frequency.

In order to track the instructions, we generate reference signals (called

as EM signatures) to be compared with the emanated signals. The complex

structure of the target device has motivated us to develop a new technique

and modified experiment setups to generate EM signatures. Firstly, in

order to incorporate the pipeline effect, EM signatures are generated for

sequences of instructions rather than single instructions. Furthermore,

we propose and implement a technique called modulo operation, which

addresses the issues introduced by low sampling rate and the pipeline

effect. Results show that modulo operation is successful not only to obtain

an EM signature with higher sampling rate, but also to eliminate possible

226

Table G.2: Correlation between the EM signatures and their one-time-run
versions for A13-OLinuXino board. The columns denote the EM signatures
and the rows denote the one-time-run versions. The diagonal entries dom-
inate the other terms, therefore, the generated EM signatures can identify
the executed sequences and corresponding instructions (The values given
in the table is correlation coefficient × 100).

Generated EM signatures

1A 2A 3A 4A 5A 6A 7A
O

n
e-

ti
m

e-
ru

n
ve

rs
io

n
s 1B 98 43 48 29 60 35 40

2B 34 98 72 47 42 59 44

3B 37 72 98 33 37 62 46

4B 31 55 32 95 30 62 25

5B 58 41 47 31 96 43 71

6B 37 61 59 67 47 89 51

7B 45 66 66 32 59 53 92

measurement noise. Results demonstrate that a specific EM signature is

highly correlated with the single execution of the same sequence and much

less correlated with all other sequences. This confirms the applicability of

EM signals that are generated by using modulo operation.

As much as the EM signatures for instruction sequences used in our

experiment can be used to detect the corresponding sequences, achieving

instruction tracking at instruction level necessitates generating EM sig-

natures for all possible sequences. To this end, our experimental results

show that using modulo operation for generating EM signatures for all pos-

sible sequences is a feasible approach to obtain high success rate.

227

G.6 Sequences Used for Target Device 1

In this section, we provide the instruction sequences investigated in Table

G.1 (instruction sequences used on FPGA):

Table G.3: Instruction sequences that are used in the FPGA experiments

Seq. No. Sequence

1 SUB-DIV-STM-DIV-STM-MUL-LDM-MUL-SUB-MUL-ADD-DIV-LDM-DIV-ADD-MUL

2 LDM-MUL-ADD-MUL-LDM-DIV-SUB-MUL-ADD-DIV-SUB-DIV-STM-DIV-STM-MUL

3 STM-MUL-STM-DIV-SUB-MUL-LDM-MUL-SUB-DIV-ADD-MUL-LDM-DIV-ADD-DIV

4 MUL-ADD-ADD-SUB-DIV-SUB-DIV-ADD-MUL-SUB

5 ADD-SUB-ADD-SUB-DIV-SUB-DIV-ADD-MUL-MUL

6 ADD-ADD-MUL-SUB-ADD-DIV-DIV-MUL-SUB-SUB

7 SUB-DIV-SUB-DIV-MUL-ADD-MUL-SUB-ADD-ADD

8 SUB-DIV-ADD-DIV-ADD-MUL-SUB-MUL-ADD-SUB

9 ADD-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

10 DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

11 MUL-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

12 ADD-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

13 DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

14 MUL-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

15 DIV-SUB-DIV-MUL-SUB-MUL-ADD-DIV-SUB-MUL-ADD-DIV-SUB-SUB

16 DIV-SUB-DIV-MUL-ADD-DIV-SUB-MUL-ADD-DIV-SUB-SUB

17 DIV-SUB-DIV-DIV-SUB-MUL-ADD-DIV-SUB-SUB

18 DIV-SUB-DIV-MUL-ADD-DIV-SUB-SUB

19 DIV-SUB-DIV-DIV-SUB-SUB

20 DIV-SUB-DIV-SUB

228

G.7 Sequences Used for Target Device 2

In this section, we provide the instruction sequences investigated in Table

G.2 (instruction sequences used on ARM Board):

Table G.4: Instruction sequences that are used in the ARM Board experi-
ments

Seq. No. Sequence

1

SUB-STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR-

SUB-STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR-SUB-

STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR-SUB-STR-LDR-ADD-STR

2

ADD-MUL-MUL-ADD-MUL-MUL-ADD-MUL-MUL-ADD-MUL-MUL-ADD-MUL-MUL-

ADD-MUL-MUL-ADD-MUL-MUL-ADD-MUL-MUL-ADD-MUL-MUL-

ADD-MUL-MUL-ADD-AND

3

SUB-MUL-MUL-SUB-MUL-MUL-SUB-MUL-MUL-SUB-MUL-MUL-SUB-

MUL-MUL-SUB-MUL-MUL-SUB-MUL-MUL-SUB-MUL-MUL-SUB-MUL-

MUL-SUB-MUL-MUL-SUB-AND

4

SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-

SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-

SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-SUB-SUB-SUB-MUL-MUL-

SUB-SUB-SUB-MUL-MUL-SUB-AND

5

SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-

SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-

SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-SUB-ADD-SUB-MUL-AND-

SUB-ADD-SUB-MUL-AND

6

SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-

STR-LDR-AND-SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-STR-LDR-AND-

SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-

STR-LDR-AND-SUB-MUL-MUL-STR-LDR-AND-SUB-MUL-MUL-

STR-LDR-AND-SUB-ADD

7

ADD-MUL-ADD-MUL-STR-LDR-ADD-AND-ADD-MUL-ADD-MUL-STR-LDR-ADD-

AND-ADD-MUL-ADD-MUL-STR-LDR-ADD-AND-ADD-MUL-ADD-MUL-STR-LDR-

ADD-AND-ADD-MUL-ADD-MUL-STR-LDR-ADD-AND-ADD-MUL-ADD-MUL-STR-

LDR-ADD-AND-ADD-MUL-ADD-MUL-STR-LDR-ADD-AND-ADD-MUL-ADD-MUL-

STR-LDR-ADD-AND-ADD-MUL-ADD-MUL-STR-LDR-ADD-AND-ADD-

MUL-ADD-MUL-STR-LDR-ADD-AND

229

APPENDIX H

PSD OF PAM SIGNAL WITH RANDOM PULSE POSITION

The PAM signal with random pulse position y(t) is given by y(t) =
∑

k xkδ(t−

kT −Tk). y(t) is an impulse train whose amplitude is modulated by the se-

quence xk and the impulse positions are randomly shifted by Tk. Further-

more, the autocorrelation function and the power spectral density of xk are

denoted as Rx[k] and Sx(f) =
∑

k Rx[k]e−j2πfkT , respectively. Here, we note

that the signals xp(t) and y(t) in (5.1) and (5.5) are cyclostationary random

processes if the amplitude modulating sequence xk and the random pulse

position variation Tk are stationary [121]. For a cyclostationary random

processes of period T , the average autocorrelation function between 0 and

T can be computed as [122]

Ry(τ) =
1

T

∫ T
0

Ry(t, τ)dt, (H.1)

where Ry(t, τ) = E

[
y(t), y(t − τ)

]
and E[·] denotes the expectation. Here,

Ry(t, τ) can be written as

E

[∑
i

∑
j

xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
. (H.2)

It can be shown that Ry(t, τ) is also periodic in time with a period T .

Therefore, y(t) is a cyclostationary random process. Using (H.1), we can

230

rewrite the correlation function Ry(τ) as

=

T∫
0

E

[∑
i,j

xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T

=

∑
i,j

T∫
0

E

[
xixjδ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T

=

∑
i,j

T∫
0

E
[
xixj

]
E

[
δ(t− iT −Ti)δ(t− τ − jT −Tj)

]
dt

T
(H.3)

where (H.3) follows the assumption that xk and Tk are independent. Let

λ = t− iT . So, (H.3) can be written as

∑
i,j

−(i−1)T∫
−iT

E
[
xixj

]
E

[
δ(λ−Ti)δ(λ− τ − (j − i)T −Tj)

]
dλ

T .

Letting j − i = m, we can rewrite the correlation function as follows:

Ry(τ) =
1

T
∑
m

∑
i

−(i−1)T∫
−iT

(
E
[
xixi+m

]
×

E

[
δ(λ−Ti)δ(λ− τ −mT −Tm+i)

])
dλ.

(H.4)

Since xk is a stationary sequence, we can deduce E[xixj] = Rx[i− j]. Ex-

ploiting that {Tk, ∀k ∈ (−∞,∞)} are statistically identical and independent

231

of each other, we can rewrite (H.4) as

1

T
∑
m,i

−(i−1)T∫
−iT

Rx[m]E

[
δ(λ−T0)δ(λ− τ −mT −Tm)

]
dλ

=

∑
mRx[m]

∞∫
−∞

E

[
δ(λ−T0)δ(λ− τ −mT −Tm)

]
dλ

T .

Taking the integration inside the expectation operator, Ry(τ) simplifies

to

1

T
∑
m

Rx[m]E

[∫ ∞
−∞

δ(λ−T0)δ(λ− τ −mT −Tm)dλ

]
=

1

T
∑
m

Rx[m]E

[
δ(−τ −mT + T0 −Tm)

]
. (H.5)

Considering that the pulse positions Tk are independent and identically

distributed (i.i.d.), the autocorrelation function Ry(τ) can be calculated as

E

[
Rx[0]δ(τ)

]
+
∑
m 6=0

Rx(m)E

[
δ(−τ −mT + T0 −Tm)

]
T

=

Rx(0)δ(τ) +
∑
m 6=0

Rx(m)E
[
δ(−τ −mT + T0 −Tm)

]
T . (H.6)

To proceed further, let us introduce zm(τ) = E
[
δ(−τ − mT + T0 − Tm)

]
.

232

Therefore,

zm(τ) =

T /4+µ∫∫
−T /4+µ

δ(−τ −mT + t0 − tm)fT0(t0)fTm(tm)dt0dtm

=

∫ T /4+µ

−T /4+µ

fT0(τ +mT + tm)fTm(tm)dtm

(a)
=

∫ T /4+µ

−T /4+µ

fT(τ +mT + tm)fT(tm)dtm

(b)≈
∫ ∞
−∞

fT(τ +mT + tm)fT(tm)dtm

= fT(−τ +mT) ∗ fT(τ)

= δ(τ −mT) ∗ fT(−τ) ∗ fT(τ)

= δ(τ −mT) ∗ φ(τ) (H.7)

where (a) follows all distributions {Ti|∀i ∈ {−∞,∞}} are i.i.d., (b) is due to

support set assumption of distribution functions and ∗ denotes convolu-

tion. Plugging (H.7) into (H.6), we can write Ry(τ) as

Rx(0)δ(τ) +
∑
m=0

Rx(m) (δ(τ −mT) ∗ φ(τ))−Rx(0)φ(τ)

T
=(∑

m

Rx(m)δ(τ −mT)

)
∗ φ(τ)+Rx(0)

(
δ(τ)− φ(τ)

)
T . (H.8)

The PSD Sy(f) of the signal yp(t) is obtained by taking the Fourier trans-

form of the above result. Using these results, we can write the spectrum

of PAM signal with random pulse position as

Sy(f) =
1

T Sx(f)Φ(f) +
Rx(0)

T (1− Φ(f)), (H.9)

where Φ(f) is the Fourier transform of φ(τ).

233

H.1 PSD of “on-off” Keying (OOK) With Random Pulse Position

The power spectrum of the PAM with random pulse position has already

been derived in (5.11). In this section, we specify the equation in (5.11)

for OOK modulation case. As the first step, we need to calculate Sx(f) to

investigate the effect of random pulse position on the spectral power of the

signal. We assume the amplitude of a symbol is A when the symbol is

“on” and 0 otherwise. Therefore, autocorrelation of these symbols can be

written as

Rx[m] =

A2/2 if m = 0,

A2/4 otherwise.
=

Rx[0] if m = 0,

Rx[0]/2 otherwise.

If we convert this discrete signal into continuous signal with period T , we

have

Rx(τ) =
∑
m

Rx[m]δ(τ −mT). (H.10)

To obtain the power spectral density of the signal, Fourier transform of

Rx(τ) can be calculated as follows:

Sx(f) =

∞∫
−∞

∑
m

Rx[m]δ(τ −mT)e−j2πfτdτ

=
∑
m

Rx[m]e−j2πfmT

=
Rx[0]

2
+
Rx[0]

2

∑
m

e−j2πfmT

=
Rx[0]

2

(
1 +

1

T
∑
m

δ(f −m/T)

)
(H.11)

If we insert (H.11) into (5.5), the power spectrum Sy(f) can be written

234

as

Rx[0]

2T

1 +

∑
m
δ(f − n/T)

T

Φ(f) +
Rx(0)

T (1− Φ(f))

=
Rx[0]

T

1

2
+

∑
m
δ(f −m/T)

2T

Φ(f)

︸ ︷︷ ︸
S̄xt(f)

+ (1− Φ(f)︸ ︷︷ ︸
S̄nt(f)

 . (H.12)

Here, we need to note that since we assume that the random shift posi-

tion is in the interval
(
−T

4
, T

4

]
that has a Gaussian distribution, we consider

T & 12σ to ensure our interval assumption holds with very high probabil-

ity.

235

APPENDIX I

COVERT CHANNEL CAPACITY DERIVATIONS

In this section, we provide the derivations for channel capacity bounds of

the covert channel communications. The capacity of a discrete memoryless

synchronization channel is given in (2.5). Here, N̄ is the average number

of received symbols per transmitted symbol. The number of insertions

between consecutive input symbols are geometrically distributed and the

average number of insertions per input symbol is

(pi0 + pi1)(1− pi0 − pi1) + 2(pi0 + pi1)2(1− pi0 − pi1)

+3(pi0 + pi1)3(1− pi0 − pi1) + . . .

=
pi0 + pi1

1− pi0 − pi1
. (I.1)

Hence, the average number of output symbols per input symbols is

N̄ =
1

1− pi0 − pi1
. (I.2)

In [16], [15], it is shown that channels with insertions and substitu-

tions can be decomposed into a cascade of two channels, channel with in-

sertions and channel with substitutions as shown in Fig. 2.5. Since both

inputs and outputs of the covert channel are assumed to be equiprobable,

it follows that

H(W n) = n, and H
(
Xn/(1−pi)) =

n

1− pi
, (I.3)

where n is the number of input bits, pi = pi0 + pi1, and H(·) denotes the

236

entropy. From (2.5), it follows that we need to calculate mutual informa-

tion I
(
W n, Y

n
1−pi

)
between the input sequence and output of the second

cascaded channel. This mutual information can be written as

I
(
W n, Y

n
1−pi

)
= I

(
X

n
1−pi , Y

n
1−pi

)
− I

(
X

n
1−pi , Y

n
1−pi |W n

)
. (I.4)

To find a lower bound for I
(
W n, Y

n
1−pi

)
, we are required to obtain an

upper bound for I
(
X

n
1−pi , Y

n
1−pi |W n

)
. Therefore,

0 ≤ I
(
X

n
1−pi , Y

n
1−pi |W n,

)
= H

(
X

n
1−pi |W n

)
−H

(
X

n
1−pi |W n, Y

n
1−pi

)
= H

(
X

n
1−pi

)
− I

(
W n, X

n
1−pi

)
−H

(
X

n
1−pi |W n, Y

n
1−pi

)
≤ H

(
X

n
1−pi

)
− I

(
W n, X

n
1−pi

)
. (I.5)

Combining (2.5), (I.4) and (I.5), C can be written as

sup
Ξ

lim
n→∞

1

n
· I(W n;Y N̄n)

=sup
Ξ

lim
n→∞

1

n

(
I
(
X

n
1−pi , Y

n
1−pi

)
− I

(
X

n
1−pi , Y

n
1−pi |W n

))

≥ sup
Ξ

lim
n→∞

1

n

(
I
(
X

n
1−pi , Y

n
1−pi

)
−H

(
X

n
1−pi

)
+ I

(
W n, X

n
1−pi

))
(I.6)

=sup
Ξ

lim
n→∞

1

n

(
n
I (X, Y)

1− pi
− n

1− pi
+ I

(
X

n
1−pi ,W n

))
=
I (X, Y)

1− pi
− 1

1− pi
+ sup

Ξ
lim
n→∞

1

n

(
I
(
X

n
1−pi ,W n

))
=
I (X, Y)

1− pi
− 1

1− pi
+ Ci(pi) (I.7)

where Ci(pi) is the channel capacity of insertion channel with insertion

probability pi and (I.6) follows the assumption that the noisy substitu-

237

tion channel is a discrete memoryless channel (DMC), and the output are

statistically independent and identical because of the random insertions

[123]. To obtain a lower bound for the insertion channel, we exploit the

relation between deletion and insertion channels, and previous results for

the capacity lower bound of deletion channels. In [16], the relation be-

tween deletion and insertion channels is given as

Cd(pi) = (1− pi)Ci(pi) (I.8)

where Cd(pi) is the information rate of a deletion channel with equiprobable

iid inputs whose deletion probability equals to insertion probability of the

insertion channel. Morover, in [124], the capacity lower bound for the

deletion channel is given as

Cd(pi) ≥ 1−Hb(pi) (I.9)

where Cd(pi) represents the actual channel capacity of the deletion channel

with deletion probability pi and Hb(•) denotes the binary entropy.

The equation given in (I.9) is valid for any deletion channel. Therefore,

1−Hb(pi) ≤ Cd(pi) = (1− pi)Ci(pi)

⇒ Ci(pi) ≥
1−Hb(pi)

1− pi
. (I.10)

238

If we combine (I.7) and (I.10), we have

C ≥ I (X, Y)

1− pi
− 1

1− pi
+ Ci(pi)

≥ I (X, Y)

1− pi
− 1

1− pi
+

1−Hb(pi)

1− pi

=
1−Hb(pi)−Hb(pe)

1− pi
(I.11)

where the last equation follows the assumption that the noisy channel is

binary symmetric channel with substitution probability pe. By definition,

mutual information could not be less than zero, therefore, the lower bound

can be written as

C ≥ max

(
0,

1−Hb(pi)−Hb(pe)

1− pi

)
. (I.12)

To prove the upper bound for the covert-channel capacity, we consider

a channel where the receiver is provided with the positions of all insertions

caused by the covert channel and the sequence Zn = {z0, z1 · · · , zn} with

zk =

0 if the kth bit is inserted bit,

1 otherwise
(I.13)

which provides further information whether a bit is an information bit or

an inserted bit. Therefore,

I(W n;Y N̄n) ≤ I(W n;Y N̄n) + I(W n;ZN̄n|Y N̄n)

= I(W n;Y N̄n, ZN̄n)

= I(W n; Ŷ n) (I.14)

= n(1−Hb(pe)) (I.15)

239

where Ŷ is the sequence obtained by removing the inserted bits. The equa-

tion given in (I.14) can be explained as follows: Knowing where the synch-

ronization errors are located, the receiver can discard the inserted sym-

bols. The capacity of this channel, therefore, is as large as the capacity of

the channel with no synchronization errors. Finally, combining again (2.5)

and (I.15), we can obtain the upper bound as

C = sup
Ξ

lim
n→∞

1

n
· I(W n;Y N̄n)

≤ sup
Ξ

lim
n→∞

1

n
· I(W n; Ŷ n)

= 1−Hb(pe) (I.16)

which concludes the proof.

240

REFERENCES

[1] B. W. Lampson, “A note on the confinement problem,” Commun.
ACM, vol. 16, no. 10, pp. 613–615, Oct. 1973.

[2] J. Millen, “20 years of covert channel modeling and analysis,” in Se-
curity and Privacy, 1999. Proceedings of the 1999 IEEE Symposium
on, IEEE, 1999, pp. 113–114.

[3] A. Zajic and M. Prvulovic, “Experimental demonstration of electro-
magnetic information leakage from modern processor-memory sys-
tems,” IEEE Transactions on Electromagnetic Compatibility, vol. 56,
no. 4, pp. 885–893, 2014.

[4] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici,
“Gsmem: Data exfiltration from air-gapped computers over GSM
frequencies,” in 24th USENIX Security Symposium (USENIX Security
15), Washington, D.C.: USENIX Association, 2015, pp. 849–864,
ISBN: 978-1-931971-232.

[5] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “A new
side-channel vulnerability on modern computers by exploiting elec-
tromagnetic emanations from the power management unit,” IEEE
International Symposium on High-Performance Computer Architec-
ture (HPCA-26), 2020.

[6] B. A. Bash, D. Goeckel, and D. Towsley, “Limits of reliable com-
munication with low probability of detection on awgn channels,”
IEEE journal on selected areas in communications, vol. 31, no. 9,
pp. 1921–1930, 2013.

[7] M. R. Bloch, “Covert communication over noisy channels: A re-
solvability perspective,” IEEE Transactions on Information Theory,
vol. 62, no. 5, pp. 2334–2354, 2016.

[8] L. Wang, G. W. Wornell, and L. Zheng, “Limits of low-probability-
of-detection communication over a discrete memoryless channel,”
in 2015 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2015, pp. 2525–2529.

[9] J. K. Millen, “Covert channel capacity,” in 1987 IEEE Symposium
on Security and Privacy, IEEE, 1987, pp. 60–60.

241

[10] Z. Wang and R. Lee, “Capacity estimation of non-synchronous covert
channels,” in Distributed Computing Systems Workshops, 2005. 25th
IEEE International Conference on, 2005, pp. 170–176.

[11] M. C. Davey and D. J. MacKay, “Reliable communication over chan-
nels with insertions, deletions, and substitutions,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 687–698, 2001.

[12] R. Venkataramanan, S. Tatikonda, and K. Ramchandran, “Achiev-
able rates for channels with deletions and insertions,” IEEE Trans-
actions on Information Theory, vol. 59, no. 11, pp. 6990–7013, 2013.

[13] A. Kirsch and E. Drinea, “Directly lower bounding the information
capacity for channels with iid deletions and duplications,” IEEE
Transactions on Information Theory, vol. 56, no. 1, pp. 86–102,
2010.

[14] J. Hu, T. M. Duman, M. F. Erden, and A. Kavcic, “Achievable infor-
mation rates for channels with insertions, deletions, and intersym-
bol interference with iid inputs,” IEEE Transactions on Communica-
tions, vol. 58, no. 4, 2010.

[15] M. Rahmati and T. M. Duman, “Bounds on the capacity of random
insertion and deletion-additive noise channels,” IEEE Transactions
on Information Theory, vol. 59, no. 9, pp. 5534–5546, 2013.

[16] H. Mercier, V. Tarokh, and F. Labeau, “Bounds on the capacity
of discrete memoryless channels corrupted by synchronization and
substitution errors,” IEEE Transactions on Information Theory, vol. 58,
no. 7, pp. 4306–4330, 2012.

[17] B. B. Yilmaz, R. Callan, M. Prvulovic, and A. Zajic, “Quantifying
information leakage in a processor caused by the execution of in-
structions,” in MILCOM 2017-2017 IEEE Military Communications
Conference (MILCOM), IEEE, 2017, pp. 255–260.

[18] B. B. Yilmaz, R. Callan, A. Zajic, and M. Prvulovic, “Capacity of the
em covert/side-channel created by the execution of instructions in
a processor,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 13, no. 3, pp. 605–620, 2018.

[19] B. B. Yilmaz, M. Prvulovic, and A. Zajic, “Electromagnetic side chan-
nel information leakage created by execution of series of instruc-
tions in a computer processor,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 776–789, 2019.

242

[20] B. B. Yilmaz, M. Prvulovic, and A. Zajic, “Capacity of deliberate side-
channels created by software activities,” in MILCOM 2018 - 2018
IEEE Military Communications Conference (MILCOM), 2018, pp. 237–
242.

[21] B. B. Yilmaz, N. Sehatbakhsh, A. Zajić, and M. Prvulovic, “Com-
munication model and capacity limits of covert channels created by
software activities,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 3, pp. 605–620, 2018.

[22] B. B. Yilmaz, N. Sehatbakhsh, M. Dey, C. L. Cheng, M. Prvulovic,
and A. Zajic, “Covert channel information leakage capacity: A gen-
eralized approach,” Submitted to IEEE Transactions on Information
Forensics and Security, vol. 1, pp. 1–13, 2020.

[23] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “ EMSim:
A microarchitecture-level simulation tool for modeling electromag-
netic side-channel signals,” IEEE International Symposium on High-
Performance Computer Architecture (HPCA-26), 2020.

[24] H. J. Highland, “Electromagnetic radiation revisited,” Computers &
Security, vol. 5, no. 2, pp. 85–93, 1986.

[25] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side-channel(s),” in Cryptographic Hardware and Embedded Sys-
tems - CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, 2002, pp. 29–45.

[26] W. van Eck, “Electromagnetic radiation from video display units: An
eavesdropping risk?” Computers and Security, vol. 4, no. 4, pp. 269
–286, 1985.

[27] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Annual International Cryptology
Conference, Springer, 1996, pp. 104–113.

[28] W Schindler, “A timing attack against RSA with Chinese remainder
theorem,” in Proceedings of Cryptographic Hardware and Embedded
Systems - CHES 2000, 2000, pp. 109–124.

[29] D. Boneh and D. Brumley, “Remote Timing Attacks are Practical,”
in Proceedings of the USENIX Security Symposium, 2003.

243

[30] P Kocher, J Jaffe, and B Jun, “Differential power analysis: leak-
ing secrets,” in Proceedings of CRYPTO’99, Springer, Lecture notes in
computer science, 1999, pp. 388–397.

[31] L Goubin and J Patarin, “DES and Differential power analysis (the
”duplication” method),” in Proceedings of Cryptographic Hardware
and Embedded Systems - CHES 1999, 1999, pp. 158–172.

[32] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis
attacks of modular exponentiation in smart cards,” in Proceedings
of Cryptographic Hardware and Embedded Systems - CHES 1999,
1999, pp. 144–157.

[33] S Chari, C. S. Jutla, J. R. Rao, and P Rohatgi, “Towards sound
countermeasures to counteract power-analysis attacks,” in Proceed-
ings of CRYPTO’99, Springer, Lecture Notes in computer science, 1999,
pp. 398–412.

[34] A. G. Bayrak, F Regazzoni, P Brisk, F.-X. Standaert, and P Ienne, “A
first step towards automatic application of power analysis counter-
measures,” in Proceedings of the 48th Design Automation Conference
(DAC), 2011.

[35] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ACM SIGARCH Computer Ar-
chitecture News, ACM, vol. 35, 2007, pp. 494–505.

[36] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi, “Crypt-
analysis of block ciphers implemented on computers with cache,”
Jan. 2002.

[37] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 719–732.

[38] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on
Security and Privacy, IEEE, 2015, pp. 605–622.

[39] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party com-
pute clouds,” in Proceedings of the 16th ACM conference on Compu-
ter and communications security, ACM, 2009, pp. 199–212.

244

[40] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” In 2018 IEEE
International Symposium on High Performance Computer Architec-
ture (HPCA), IEEE, 2018, pp. 168–179.

[41] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing
access-based cache attacks on aes to practice,” in Security and Pri-
vacy (SP), 2011 IEEE Symposium on, IEEE, 2011, pp. 490–505.

[42] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of sim-
ple branch prediction analysis,” in Proceedings of the 2Nd ACM
Symposium on Information, Computer and Communications Secu-
rity, ser. ASIACCS ’07, Singapore: ACM, 2007, pp. 312–320, ISBN:
1-59593-574-6.

[43] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “Branch-
scope: A new side-channel attack on directional branch predictor,”
in Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Williamsburg, VA, USA: ACM, 2018, pp. 693–707, ISBN: 978-
1-4503-4911-6.

[44] S. K. Khatamifard, L. Wang, S. Köse, and U. R. Karpuzcu, “A new
class of covert channels exploiting power management vulnerabil-
ities,” IEEE Computer Architecture Letters, vol. 17, no. 2, pp. 201–
204, 2018.

[45] D. Evtyushkin and D. Ponomarev, “Covert channels through ran-
dom number generator: Mechanisms, capacity estimation and mit-
igations,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, ACM, 2016, pp. 843–857.

[46] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “{drama}:
Exploiting {dram} addressing for cross-cpu attacks,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 565–581.

[47] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-
speed covert channel attacks in the cloud,” in Presented as part of
the 21st USENIX Security Symposium (USENIX Security 12), Belle-
vue, WA: USENIX, 2012, pp. 159–173, ISBN: 978-931971-95-9.

[48] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and

245

Communications Security, ser. CCS ’18, Toronto, Canada: ACM, 2018,
pp. 2139–2153, ISBN: 978-1-4503-5693-0.

[49] M. G. Khun, “Compromising emanations: eavesdropping risks of
computer displays,” The complete unofficial TEMPEST web page:
http://www.eskimo.com/˜joelm/tempest.html, 2003.

[50] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” in 19th USENIX Secu-
rity Symposium, Washington, DC, USA, August 11-13, 2010, Proceed-
ings, 2010, pp. 307–322.

[51] R. Callan, A. Zajic, and M. Prvulovic, “A Practical Methodology for
Measuring the Side-Channel Signal Available to the Attacker for
Instruction-Level Events,” in Proceedings of the 47th International
Symposium on Microarchitecture (MICRO), 2014.

[52] B Coppens, I Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors,” in Proceedings of the 30th IEEE Sympo-
sium on Security and Privacy, 2009, pp. 45–60.

[53] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my lap-
top: Physical side-channel key-extraction attacks on pcs,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2014, ser. Lec-
ture Notes in Computer Science, L. Batina and M. Robshaw, Eds.,
vol. 8731, Springer Berlin Heidelberg, 2014, pp. 242–260, ISBN:
978-3-662-44708-6.

[54] J. Brouchier, T. Kean, C. Marsh, and D. Naccache, “Temperature
attacks,” Security Privacy, IEEE, vol. 7, no. 2, pp. 79–82, 2009.

[55] M. Hutter and J.-M. Schmidt, “The temperature side channel and
heating fault attacks,” in Smart Card Research and Advanced Ap-
plications, ser. Lecture Notes in Computer Science, A. Francillon
and P. Rohatgi, Eds., vol. 8419, Springer International Publishing,
2014, pp. 219–235, ISBN: 978-3-319-08301-8.

[56] M. Guri, M. Monitz, and Y. Elovici, “Usbee: Air-gap covert-channel
via electromagnetic emission from USB,” CoRR, vol. abs/1608.08397,
2016. arXiv: 1608.08397.

[57] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Sys-

246

https://arxiv.org/abs/1608.08397

tems - CHES 2001, Third International Workshop, Paris, France, May
14-16, 2001, Proceedings, 2001, pp. 251–261.

[58] R. Callan, N. Popovic, A. Daruna, E. Pollmann, A. Zajic, and M.
Prvulovic, “Comparison of electromagnetic side-channel energy avail-
able to the attacker from different computer systems,” in Electro-
magnetic Compatibility (EMC), 2015 IEEE International Symposium
on, 2015, pp. 219–223.

[59] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. L. Callan, A. G. Zajic,
and M. Prvulovic, “One&done: A single-decryption em-based attack
on openssl’s constant-time blinded RSA,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-
17, 2018., 2018, pp. 585–602.

[60] A. Ketterlin and P. Clauss, “Profiling data-dependence to assist par-
allelization: Framework, scope, and optimization,” in 2012 45th An-
nual IEEE/ACM International Symposium on Microarchitecture, IEEE,
2012, pp. 437–448.

[61] R. Joshi, M. D. Bond, and C. Zilles, “Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems,”
in Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization, IEEE
Computer Society, 2004, p. 239.

[62] M. Msgna, K. Markantonakis, and K. Mayes, “Precise instruction-
level side channel profiling of embedded processors,” in Interna-
tional Conference on Information Security Practice and Experience,
Springer, 2014, pp. 129–143.

[63] J. Park, F. Rahman, A. Vassilev, D. Forte, and M. Tehranipoor,
“Leveraging side-channel information for disassembly and secu-
rity,” ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 16, no. 1, pp. 1–21, 2019.

[64] G. T. Becker, D. Strobel, C. Paar, and W. Burleson, “Detecting soft-
ware theft in embedded systems: A side-channel approach,” IEEE
Transactions on Information Forensics and Security, vol. 7, no. 4,
pp. 1144–1154, 2012.

[65] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zero-
overhead profiling via em emanations,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ACM,
2016, pp. 401–412.

247

[66] R. Rutledge, S. Park, H. Khan, A. Orso, M. Prvulovic, and A. Zajic,
“Zero-overhead path prediction with progressive symbolic execu-
tion,” in Proceedings of the 41st International Conference on Soft-
ware Engineering, IEEE Press, 2019, pp. 234–245.

[67] B. B. Yilmaz, E. M. Ugurlu, A. Zajic, and M. Prvulovic, “Instruction
level program tracking using electromagnetic emanations,” in Cy-
ber Sensing 2019, International Society for Optics and Photonics,
vol. 11011, 2019, 110110H.

[68] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
profiling: Observer-effect-free profiling by monitoring em emana-
tions,” in The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, IEEE Press, 2016, p. 59.

[69] R. Callan, N. Popovic, A. Zajic, and M. Prvulovic, “A new approach
for measuring electromagnetic side-channel energy available to the
attacker in modern processor-memory systems,” in 2015 9th Eu-
ropean Conference on Antennas and Propagation (EuCAP), 2015,
pp. 1–5.

[70] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“Eddie: Em-based detection of deviations in program execution,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), IEEE, 2017, pp. 333–346.

[71] E. Cole, Advanced persistent threat: understanding the danger and
how to protect your organization. Newnes, 2012.

[72] A Kavcic, “On the capacity of Markov sources over noisy channels,”
in 2009 IEEE Global Telecommunications Conference (GLOBECOM),
vol. 5, 2001, pp. 2997–3001.

[73] R. L. Dobrushin, “Translated from problemy peredachi informatsii,”
Probl. Inf. Transmiss., vol. 3, no. 4, pp. 11–26, 1967.

[74] S. Verdú and S. Shamai, “Variable-rate channel capacity,” IEEE
Transactions on Information Theory, vol. 56, no. 6, pp. 2651–2667,
2010.

[75] C. E. Shannon, “A mathematical theory of communication,” Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[76] S. Verdú, “On channel capacity per unit cost,” IEEE Transactions
on Information Theory, vol. 36, no. 5, pp. 1019–1030, 1990.

248

[77] B. B. Yilmaz, A. Zajic, and M. Prvulovic, “Modelling jitter in wire-
less channel created by processor-memory activity,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 2037–2041.

[78] D. A. Patterson and J. L. Hennessy, Computer Organization and De-
sign MIPS Edition: The Hardware/Software Interface. Newnes, 2013.

[79] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Annual
international conference on the theory and applications of crypto-
graphic techniques, Springer, 2009, pp. 443–461.

[80] G. Becker, J Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G Kenwor-
thy, T Kouzminov, A Leiserson, M Marson, P. Rohatgi, et al., “Test
vector leakage assessment (tvla) methodology in practice,” in Inter-
national Cryptographic Module Conference, vol. 1001, 2013, p. 13.

[81] T. Schneider and A. Moradi, “Leakage assessment methodology,” in
International Workshop on Cryptographic Hardware and Embedded
Systems, Springer, 2015, pp. 495–513.

[82] F.-X. Standaert, “How (not) to use welch’s t-test in side-channel se-
curity evaluations,” in International Conference on Smart Card Re-
search and Advanced Applications, Springer, 2018, pp. 65–79.

[83] M. Prvulovic and A. Zajic, Rf emanations from a laptop, http://
youtu.be/ldXHd3xJWw8, 2012.

[84] J. Proakis, Digital Communications, ser. McGraw-Hill Series in Elect-
rical and Computer Engineering. Computer Engineering. McGraw-
Hill, 2001, ISBN: 9780072321111.

[85] DE1 FPGA on NIOS Processor, https://www.terasic.com.tw/
cgi-bin/page/archive.pl?Language=English&CategoryNo=
53&No=83&PartNo=2..

[86] Dual Polarized Panel Antenna, http://www.l-com.com/wireless-
antenna-24-ghz-16-dbi-dual-polarized-panel-antenna-n-
female-connectors..

[87] OlinuXino A13, https://www.olimex.com/Products/OLinuXino/
A13/A13-OLinuXino/open-source-hardware..

249

http://youtu.be/ldXHd3xJWw8
http://youtu.be/ldXHd3xJWw8
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=83&PartNo=2.
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=83&PartNo=2.
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=53&No=83&PartNo=2.
http://www.l-com.com/wireless-antenna-24-ghz-16-dbi-dual-polarized-panel-antenna-n-female-connectors.
http://www.l-com.com/wireless-antenna-24-ghz-16-dbi-dual-polarized-panel-antenna-n-female-connectors.
http://www.l-com.com/wireless-antenna-24-ghz-16-dbi-dual-polarized-panel-antenna-n-female-connectors.
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/open-source-hardware.
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/open-source-hardware.

[88] AH-118, Double Ridge Horn Antenna, https://www.com-power.
com/ah118_horn_antenna.html.

[89] P. Juyal, S. Adibelli, N. Sehatbakhsh, and A. Zajić, “A directive an-
tenna based on conducting disks for detecting unintentional em
emissions at large distances,” IEEE Transactions on Antennas and
Propagation, vol. 66, no. 12, pp. 6751–6761, 2018.

[90] U. R. Inc., Aor la390 wideband loop antenna, https://www.universal-
radio.com/catalog/sw_ant/2320.html, 2014 (accessed Feb.,
2019).

[91] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S.
Capkun, “Thermal covert channels on multi-core platforms,” in 24th
USENIX Security Symposium (USENIX Security 15), Washington, D.C.:
USENIX Association, 2015, pp. 865–880, ISBN: 978-1-931971-232.

[92] S. Mangard, “A simple power-analysis (spa) attack on implementa-
tions of the aes key expansion,” in Information Security and Cryptol-
ogy — ICISC 2002, P. J. Lee and C. H. Lim, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 343–358, ISBN: 978-3-540-
36552-5.

[93] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Stealing keys
from pcs using a radio: Cheap electromagnetic attacks on win-
dowed exponentiation,” in Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, 2015, pp. 207–228.

[94] L. N. Nguyen, C.-L. Cheng, M. Prvulovic, and A. Zajic, “Creating a
backscattering side channel to enable detection of dormant hard-
ware trojans,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2019.

[95] C.-L. Cheng, L. N. Nguyen, M. Prvulovic, and A. Zajic, “Exploiting
switching of transistors in digital electronics for rfid tag design,”
IEEE Journal of Radio Frequency Identification, vol. 3, no. 2, pp. 67–
76, 2019.

[96] M. Dey, A. Nazari, A. Zajić, and M. Prvulovic, “Emprof: Memory
profiling via em-emanation in iot and hand-held devices,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), IEEE, 2018, pp. 881–893.

250

https://www.com-power.com/ah118_horn_antenna.html
https://www.com-power.com/ah118_horn_antenna.html
https://www.universal-radio.com/catalog/sw_ant/2320.html
https://www.universal-radio.com/catalog/sw_ant/2320.html

[97] D. Precision, https : / / www . dell . com / en - us / work / shop /
workstations-isv-certified/sc/workstations/precision-
laptops..

[98] AARONIA PBS, https://www.tequipment.net/Aaronia/PBS1-
5/Standard/Passive-Oscilloscope-Probes/?rrec=true..

[99] Power Rail Probe, https://www.keysight.com/en/pd-2471132-
pn-N7020A/power-rail-probe?&cc=US&lc=eng..

[100] Keysight Signal Analyzer, https://www.keysight.com/en/pdx-
x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-
ghz?pm=spc&nid=-32508.1150426&cc=US&lc=eng..

[101] W. Mendenhall, R. J. Beaver, and B. M. Beaver, Introduction to prob-
ability and statistics. Cengage Learning, 2012.

[102] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” in 19th USENIX Secu-
rity Symposium, Washington, DC, USA, August 11-13, 2010, Proceed-
ings, 2010, pp. 307–322.

[103] A. Waterman and K. Asanovic, Risc-v instruction reference, https:
//content.riscv.org/wp-content/uploads/2017/05/riscv-
spec-v2.2.pdf, 2019 (accessed Nov. 6, 2019).

[104] A. V. Oppenheim, Discrete-time signal processing. Pearson Educa-
tion India, 1999.

[105] D. McCann, E. Oswald, and C. Whitnall, “Towards practical tools
for side channel aware software engineering: Grey box’ modelling
for instruction leakages,” in Proceedings of the 26th USENIX Confer-
ence on Security Symposium, ser. SEC’17, Vancouver, BC, Canada:
USENIX Association, 2017, pp. 199–216, ISBN: 978-1-931971-40-
9.

[106] D. J. Hand, “Statistical concepts: A second course, fourth edition by
richard g. lomax, debbie l. hahs-vaughn,” International Statistical
Review, vol. 80, no. 3, pp. 491–491, 2012.

[107] Terassic, De0-cv, http://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=364, 2019 (accessed Nov. 6,
2019).

251

https://www.dell.com/en-us/work/shop/workstations-isv-certified/sc/workstations/precision-laptops.
https://www.dell.com/en-us/work/shop/workstations-isv-certified/sc/workstations/precision-laptops.
https://www.dell.com/en-us/work/shop/workstations-isv-certified/sc/workstations/precision-laptops.
https://www.tequipment.net/Aaronia/PBS1-5/Standard/Passive-Oscilloscope-Probes/?rrec=true.
https://www.tequipment.net/Aaronia/PBS1-5/Standard/Passive-Oscilloscope-Probes/?rrec=true.
https://www.keysight.com/en/pd-2471132-pn-N7020A/power-rail-probe?&cc=US&lc=eng.
https://www.keysight.com/en/pd-2471132-pn-N7020A/power-rail-probe?&cc=US&lc=eng.
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?pm=spc&nid=-32508.1150426&cc=US&lc=eng.
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?pm=spc&nid=-32508.1150426&cc=US&lc=eng.
https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-signal-analyzer-10-hz-to-265-ghz?pm=spc&nid=-32508.1150426&cc=US&lc=eng.
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=364
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=364

[108] Tektronix, Tbs1000-digital-storage-oscilloscope, https://www.tek.
com/oscilloscope/tbs1000-digital-storage-oscilloscope,
2019 (accessed Nov. 6, 2019).

[109] W. B. Frakes and R. Baeza-Yates, Information retrieval: Data struc-
tures & algorithms. Prentice Hall Englewood Cliffs, NJ, 1992, vol. 331.

[110] A. Barenghi and G. Pelosi, “Side-channel security of superscalar
cpus: Evaluating the impact of micro-architectural features,” in Pro-
ceedings of the 55th Annual Design Automation Conference, ser. DAC
’18, San Francisco, California: ACM, 2018, 120:1–120:6, ISBN: 978-
1-4503-5700-5.

[111] A. Heuser, W. Schindler, and M. Stöttinger, “Revealing side-channel
issues of complex circuits by enhanced leakage models,” in 2012
Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pp. 1179–1184.

[112] T. Ming, W. Pengbo, M. Xiaoqi, C. Wenjie, Z. Huanguo, P. Guojun,
and J. Danger, “An efficient sca leakage model construction method
under predictable evaluation,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 12, pp. 3008–3018, 2018.

[113] B. B. Yilmaz, M. Prvulovic, and A. Zajic, “Capacity of em side chan-
nel created by instruction executions in a processor,” in 2019 IEEE
10th Annual Information Technology, Electronics and Mobile Commu-
nication Conference (IEMCON), IEEE, 2019, pp. 0340–0345.

[114] G. Heinzel, A. Rüdiger, and R. Schilling, “Spectrum and spectral
density estimation by the discrete fourier transform (dft), includ-
ing a comprehensive list of window functions and some new at-top
windows,” 2002.

[115] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in c, 1988.

[116] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a side channel
based disassembler,” in Transactions on computational science X,
Springer, 2010, pp. 78–99.

[117] J. c. Park, X. Xu, Y. Jin, D. Forte, and M. Tehranipoor, “Power-
based side-channel instruction-level disassembler,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), IEEE, 2018,
pp. 1–6.

252

https://www.tek.com/oscilloscope/tbs1000-digital-storage-oscilloscope
https://www.tek.com/oscilloscope/tbs1000-digital-storage-oscilloscope

[118] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar,
“Scandalee: A side-channel-based disassembler using local electro-
magnetic emanations,” in Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, EDA Consortium,
2015, pp. 139–144.

[119] D. Vermoen, M. Witteman, and G. N. Gaydadjiev, “Reverse enginee-
ring java card applets using power analysis,” in Information Security
Theory and Practices. Smart Cards, Mobile and Ubiquitous Comput-
ing Systems, D. Sauveron, K. Markantonakis, A. Bilas, and J.-J.
Quisquater, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 138–149, ISBN: 978-3-540-72354-7.

[120] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing, Springer, 2009,
pp. 1–4.

[121] A. Papoulis, Probability, random variables, and stochastic processes,
ser. McGraw-Hill series in electrical engineering. New York: McGraw-
Hill, 1991, ISBN: 0-07-100870-5.

[122] W. A. Gardner, “Two alternative philosophies for estimation of the
parameters of time-series,” IEEE Transactions on Information The-
ory, vol. 37, no. 1, pp. 216–218, 1991.

[123] J. Massey, “Causality, feedback and directed information,” in Proc.
Int. Symp. Inf. Theory Applic.(ISITA-90), Citeseer, 1990, pp. 303–
305.

[124] S. Diggavi and M. Grossglauser, “On information transmission over
a finite buffer channel,” IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1226–1237, 2006.

253

VITA

Baki Berkay Yılmaz grew up in Çameli, Turkey, received B.Sc. and M.Sc.

degrees in Electrical and Electronics Engineering from Koc University,

Turkey in 2013 and 2015, respectively. During his studies in Koc Uni-

versity, he worked as a Teaching Assistant and did research on channel

equalization and sparse reconstruction.

He joined Georgia Institute of Technology in Fall 2016 where he also

received a M.Sc degree in Electrical and Computer Engineering in 2018.

He has pursued a Ph.D. degree in School of Electrical and Computer Engi-

neering and has worked as a Graduate Research Assistant in the Electro-

magnetic Measurements in Communications and Computing Lab focusing

on quantifying covert/side-channel information leakage. His research in-

terests span areas of electromagnetic, machine learning, signal processing

and information theory.

254

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Capacity of the EM Covert/Side-Channel Created by the Execution of Instructions in a Processor
	Electromagnetic Side Channel Information Leakage Created by Execution of Series of Instructions in a Computer Processor
	Communication Model and Capacity Limits of Covert Channels Created by Software Activities
	Covert Channel Information Leakage Capacity: A Generalized Approach
	A Microarchitecture-Level Modeling Electromagnetic Side-Channel Signals
	Research Contributions
	Thesis Outline

	Background
	Covert/Side Channels
	EM Covert/Side Channels
	Applications of Covert/Side Channels

	Measuring Pairwise Side Channel Signal Power from Processor Instructions
	Amplitude Modulated Signal Generation by Executing Programs
	Channel Capacity
	Markov Model Capacity over Noisy Channels
	Channel Capacity for Insertion & Substitution Channels

	Capacity of the EM Covert/Side-Channel Created by the Execution of Instructions in a Processor
	Overview
	Mathematical Relationship Between ESE of Individual Instructions and The Measured Pairwise Side-channel Signal Power
	A New Method for Evaluation of EM Side/Covert Channel Capacity Created by the Execution of Instructions in a Processor
	Quantifying the Side Channel Leakage
	A Practical Calculation of Transition Probabilities in EM Side/Covert Channel

	Experimental Results and Discussions
	Experimental Results of Core I7 Laptop
	Experimental Results of Core 2 Laptop
	Experimental Results for Turion X2 Laptop
	Experimental Results for NIOS Processor on the DEI FPGA
	Effect of Alternation Time Talt on ESE
	Justification of the Proposed Model

	Potential Defense Mechanisms
	Summary

	Electromagnetic Side Channel Information Leakage Created by Execution of Series of Instructions in a Computer Processor
	Overview
	Modeling Information Leakage from a Computer Program as a Markov Source Over a Noisy Channel
	Proposed Markov Source Model for Modeling Information Leakage from a Sequence of Instructions
	Introducing Information Leakage Capacity for the Proposed Markov Source Model
	Reducing the Size of the Markov Source Model
	An Empirical Algorithm to Evaluate the Leakage Capacity

	Estimating Channel Input Power in the Proposed Markov Model
	Definition for Emanated Signal Power (ESP) of Individual Instructions as They Pass Through Pipeline
	Estimating ESP From The Total Emanated EM Signal Power Created by a Program

	Experimental Results and Information Leakage Analysis
	Experimental Results and Leakage Capacity for FPGA
	Experimental Results and Leakage Capacity for AMD Turion X2 Laptop
	Experimental Results and Leakage Capacity for Core 2 DUO Laptop
	Experimental Results and Leakage Capacity for Core I7 Laptop

	Utilizing the Proposed Framework for Security Assessment
	Summary

	Communication Model and Capacity Limits of Covert Channels Created by Software Activities
	Overview
	Wireless Transmission via Covert Channels
	Transmission Model for Software-Activity-Created Signals
	Quantifying the Information Leakage of Covert Channel Software-Activity-Created Signals
	Capacity of the Covert Channel Created By a Computer Software Activity
	Experimental Validation of the Proposed Model
	Summary

	A Generalized Approach to Estimation of Covert Channel Information Leakage Capacity
	Overview
	Overall Communication Model
	Transmitted Signal and Receiver Model
	Channel Model

	Leakage Capacity
	Establishing Connection between the Proposed Model and Covert Channels
	Power Based Covert Channels
	EM-Based Covert Channels
	Backscattering Covert Channels
	Cache-Based Covert Channels

	Experimental Setups and Results
	Summary

	A Microarchitecture-Level Modeling Electromagnetic Side-Channel Signals
	Overview
	Experimental Methodology for Signal Acquisition
	Signal Acquisition

	Signal Reconstruction
	EMSim Modeling
	Signal Amplitude for Individual Sources
	Multi-Input Modeling

	Evaluations
	Evaluating Model Accuracy
	Effects of Distance

	Practical Use-cases for EMSim
	Side-Channel Leakage Estimation
	Application to Debugging/Profiling

	Summary

	Research Contributions and Future Work
	Research Contributions
	Future Research Directions

	The Relationship between ESE and Measured Spectral Power of a Microbenchmark
	Execution Location Based Noise Power Estimation
	Discrete Fourier Series
	Gradient Descent Approach for Capacity Calculation
	Establishing the Duality Between (??) and (??)
	Mathematical Derivation of ESP
	A Microarchitecture-Level Electromagnetic Side-Channel Signal Modeling
	Overview
	A Method for Generating Training Sequences for Single Instruction Tracking
	Modulo Operation to Increase Effective Signal Sampling Rate
	Experimental Results and Discussion
	Experimental Results on Target Device 1 (FPGA)
	Experimental Results on Target Device 2 (ARM Board)

	Summary
	Sequences Used for Target Device 1
	Sequences Used for Target Device 2

	PSD of PAM Signal with Random Pulse Position
	PSD of ``on-off'' Keying (OOK) With Random Pulse Position

	Covert Channel Capacity Derivations
	References
	Vita

