
Grow & Fold: Compression of Tetrahedral

Meshes

SM99-021

Andrzej Szymczak

School of Mathematics

Georgia Inststute of Technology

Atlanta GA 30332

andrzej@math.gatech.edu

Jarek Rossignac

Graphics, Visualization & Usability Center

College of Computing

801 Atlantic Drive

Georgia Institute of Technology

Atlanta, GA, 30332-0280

jarek@gvu.gatech.edu

October 30, 1998

1 Abstract

Standard representations of irregular �nite element meshes combine vertex
data (sample coordinates and node values) and connectivity (tetrahedron-
vertex incidence). Connectivity speci�es how the samples should be inter-
polated. It may be encoded for each tetrahedron as four vertex-references,

1

which together occupy 128 bits. Our `Grow&Fold' format reduces the con-
nectivity storage down to 7 bits per tetrahedron: 3 of these are used to
encode the presence of children in a tetrahedron spanning tree; the other
4 constrain sequences of `folding' operations, so that they produce the con-
nectivity graph of the original mesh. Additional bits must be used for each
handle in the mesh and for each topological `lock' in the tree. However, as
our experiments with a prototype implementation show, the increase of the
storage cost due to this extra information is typically no more than 1-2%.
By storing vertex data in an order de�ned by the tree, we avoid the need to
store tetrahedron-vertex references, and facilitate variable coding techniques
for the vertex data. We provide the details of simple, loss-less compression
and decompression algorithms.

2 Problem Statement

This paper addresses the problem of a bit-e�cient loss-less encoding of the
incidence of a tetrahedral mesh whose boundary is a manifold surface. A
simple representation of such a mesh consists of two tables: the vertex table

keeping vertex coordinates and vertex data, such as temperature or pressure,
and the tetrahedron table storing quadruples of vertex indices, representing
vertex sets for each one of the m tetrahedra in the mesh (see Figure 1).
The tetrahedron table describes explicitly only the vertex incidence for each
tetrahedron. However, all other connectivity information, like tetrahedron-
face or triangle-vertex incidence can be derived from it algorithmically. For
a mesh with one Million vertices and six Million tetrahedra, the tetrahedron
table requires 128m � 7:68� 108 bits if 4-byte pointers are used to reference
vertices or 80m � 4:8� 108 bits if the vertex references are stored as 20-bit
integers crossing the byte boundaries. The total size of the vertex coordinates
and data (12-bit coordinates and 16-bit for a single scalar value) of such
a mesh amounts to 5:2 � 107 bits: almost 10 times less. Therefore, the
connectivity information dominates the storage cost and it is important that
it is compressed. In this paper we are concerned only with the compression
of this incidence information (described by the tetrahedron table); we do not
discuss compression of the vertex data.

Our coding algorithm takes a tetrahedron table as input and produces its
encoding - a string of about 7 bits per tetrahedron, thus achieving a 10-to-1

2

vertex tetrahedron

x y z data
1
2
3
...
n

v1 v2 v3 v4
1
2
3
.
.
.
.

m

Figure 1: Standard representation of a tetrahedral mesh; empirical evidence
indicates that, for large meshes, m is about 4-6.7 times greater than n.

compression ratio for common meshes. The decoding algorithm is able to
produce a tetrahedron table based on that string. The decoded mesh will be
identical to the original one, but its tetrahedra and vertices will be listed in a
di�erent order. Even without applying any compression scheme to the vertex
coordinates and data, our algorithm is able to encode both connectivity and
geometry of our one Million vertex mesh using about 9:4�107 bits, achieving
the compression ratio of about 5.7/1. Furthermore, because our scheme
permits to transmit and decode the incidence independently of the vertex
information, it makes it possible to use various prediction-based techniques
to compress the vertex location and data ([26], [11], [12], [4]).

3 Prior Art

3.1 Representation Schemes for Tetrahedral Meshes

Numerous data structures have been proposed that combine adjacency and
incidence information (see [21] for a review). Examples include winged-edge
representation ([1],[2]), face-adjacency hypergraph ([7]), half-edge structure
([17],[13]), radial-edge structure ([8],[9]) and selective geometric complex
([20]). The goal behind the design of these data structures is to provide
an e�cient way of accessing di�erent kinds of adjacency information without

3

taking up much storage space. A common idea is to store some of the adja-
cency relations (possibly in a partial form) explicitly and use them to derive
the ones which are not explicitly stored. For example, in the winged-edge
representation, each face and vertex point to one of the adjacent edges and
each edge { to its endpoints, the two adjacent faces and the four edges adja-
cent to that edge and the neighboring two faces. Using the above relations it
is possible to compute all others (for example, all edges adjacent to a face or
all edges adjacent to a vertex) in time proportional to the local complexity
of the mesh (for our two examples, the number of edges of the face and the
number of edges out of a vertex, respectively). One of the concerns of the
boundary data structures is to reduce storage space needed to keep adjacency
information. However, they take up a lot of space since they also attempt to
minimize the time needed to access adjacency information. Therefore, it is
not fair to treat boundary data structures as compression schemes. In fact,
as shown in [30], such a data structure requires at least 4E pointers, where
E is the number of edges of the mesh { more than a tetrahedron table.

3.2 Compression Schemes for Tetrahedral and Trian-

gle Meshes

Staadt and Gross [24] and Trotts et al. [28] independently propose a tetra-
hedral mesh simpli�cation process, which removes tetrahedra by collapsing
their edges in a sequence that attempts to minimize, at each stage, the error
computed using di�erent cost functions. Such a simpli�cation may be viewed
as a lossy compression technique and complements our loss-less compression,
which may be used to compactly encode the simpli�ed meshes.

We are not aware of any other work in compressing tetrahedral meshes.
However, several approaches that have been proposed for compressing tri-
angle meshes in 2D or 3D could inspire new approaches for compressing
tetrahedra.

Deering's approach [4] is a compromise between a standard triangle strip
and a general scheme for referencing any previously decoded vertex. Deering
uses a 16 register cache to store temporarily 16 of the previously decoded
vertices for subsequent uses. He suggests to use one bit per vertex to indicate
whether a newly decoded vertex should be saved in the cache. Two bits per
vertex are used to indicate how to form a triangle. One bit per triangle

4

indicates whether the next vertex should be read from the input stream
or retrieved from the cache. 4 bits of address allow random access of a
vertex in the stack-bu�er every time an old vertex is reused. One could
envision extending the notion of a triangle strip to tetrahedra. Keeping 3
registers for the last 3 vertices used, each new tetrahedron will be de�ned
by these 3 vertices and a fourth vertex either new (the next vertex received
in the compressed input stream) or previously received (and identi�ed by its
location or id in main memory or cache). One of the vertices in the registers
will be replaced by the forth one and the operation repeated. Unfortunately,
we do not know of simple and e�cient algorithms for identifying the suitable
sequence of tetrahedra.

Hoppe's Progressive Meshes [11] permit to transfer a 3D mesh progres-
sively, starting from a coarse mesh and then inserting new vertices one by
one. Instead of a vertex insertion to split a single triangle, as suggested in
[6] for convex polyhedra, Hoppe applies a vertex insertion that is the inverse
of the edge collapse operation popular in mesh simpli�cation techniques [12],
[19], [10]. A vertex insertion identi�es a vertex v and two of its incident edges.
It cuts the mesh open at these edges and �lls the hole with two triangles.
The vertex v is thus split into two vertices. Each vertex is transferred only
once in the Hoppe's scheme.

Hoppe suggests that it may be possible to extend this scheme to tetra-
hedra. Each vertex split would require identifying one vertex of the current
(simpli�ed) version of the mesh and a cone of incident triangles. As the
vertex is extruded into an edge, these triangles would be extruded into new
tetrahedra. The cost of this approach is the identi�cation of each vertex
(log2v per vertex) and the identi�cation of the cone of incident edges, which
on average would require 15 bits per vertex. Although simple, this approach
would require roughly (3log2jV j+ 45)=20 bits per tetrahedron.

The Topological Surgery method recently developed by Taubin and
Rossignac [26] also builds a vertex spanning tree of T that splits the sur-
face of the mesh into a binary tree of corridors (generalized triangle strips).
The two trees are encoded using a run length code, which for highly complex
meshes yields an average of less than two bits per triangle. In addition, one
bit per triangle is used to indicate whether the next triangle in the corridor
is attached to the left or to the right edge of the previous one. The compact-
ness of the encoding of both trees comes from the fact that, by construction,
both trees tend to have very few nodes with more than one child. Sequences

5

of consecutive nodes with a single child are grouped into runs and encoded
by simply storing their length. For pathological cases, with a non-negligible
proportion of multi-child nodes, the above approach no longer guarantees
linear storage cost. The vertices are stored in depth-�rst traversal order of
the vertex spanning tree. The entire mesh is represented by the list of ver-
tex coordinates, an encoding of the sparse vertex and corridor trees and the
string of left/right bits. The application of this technique for VRML �les
is discussed in [27]. Taubin and Rossignac's technique could be extended
to tetrahedral meshes by encoding the tetrahedron spanning tree (as we do)
and then by encoding the boundary and the `cut' which is a two dimensional
non-manifold triangulated surface. In some sense, our folding scheme o�ers
a compact encoding of this surface.

Inspired by [15] and improving on [18],[23], Denny and Sohler proposed
a technique for compressing planar triangulations of su�ciently large size
as a permutation of its vertices [5]. They show that there are less than
28:2jV j+O(log

2
jV j) valid triangulations with jV j vertices, and that for su�ciently

large jV j, each triangulation may be associated with a di�erent permuta-
tion of these vertices (there are certainly more than 2jV jlog2(jV j=2)=2 of such
permutations). Their approach requires transmitting an auxiliary triangle
that contains all the vertices and the vertices themselves in a suitable order
computed by the compression algorithm. The decoding process sorts V lex-
icographically and then sweeps over the progressively re�ned triangulation,
from left to right. At each vertex, the enclosing triangle is identi�ed [16] and
the vertex is inserted according to the incidence information derived from
the permutation. The vertices of V are transmitted progressively in batches.
The successive batches are constructed through repetitive plane sweeps, dur-
ing which all vertices with degree at most six are removed incrementally and
the resulting holes retriangulated. For each point, the information needed to
reconstruct the triangulation is encoded in the permutation of the vertices
of the batch. The batches are compressed in inverse order. Although for
su�ciently complex models the cost of storing the mesh incidence is null, the
unstructured order in which the vertices are received and the absence of the
incidence graph during their decompression makes it di�cult to use predic-
tive techniques for vertex data encoding. We believe that this approach may
be directly adapted to tetrahedral meshes. However, as in the 2D case, it
will make it di�cult to compress the vertex data, because the connectivity
of each new vertex is derived from its position and hence cannot be used to

6

estimate the position.
Edgebreaker, introduced by Rossignac [22], allows to compress the con-

nectivity of a triangular mesh using only about 2 bits per triangle. Similarly
to Grow&Fold, the compression starts with a depth-�rst search traversal of
the dual graph of the mesh. The traversal is topological, i.e. after a triangle
is discovered we �rst visit the triangle adjacent along its right edge whenever
it is possible (in the Grow&Fold scheme, the traversal order is arbitrary).
Whenever a new triangle is discovered, it is classi�ed as one of �ve possi-
ble types according to which of its edges are shared with triangles which
remain undiscovered. A variable length encoding technique is then applied
to encode the sequence of types of triangles encountered during the traversal
using about 2 bits per triangle. That sequence of triangle types turns out to
be su�cient to reconstruct the original mesh. In principle, the Edgebreaker
could be extended to 3D case. However, it will no longer be that simple. For
example, sometimes extra information would be needed to encode the o�set
of the fourth vertex when a new tetrahedron without any new vertices is
added to the mesh during decompression. Also, the number of ways in which
a removal of a tetrahedron can split the mesh into connected components is
considerably larger than in the 2D case. Grow&Fold seems to be a simpler
and cleaner alternative.

Other compression schemes for planar graphs and triangulations are dis-
cussed in [29] and [14].

4 Overview of the Compressed Format

Our encoding of a tetrahedral mesh consists of two parts:

- The tetrahedron spanning tree string, de�ning a tetrahedron tree { a com-
plex containing all tetrahedra appearing in the encoded mesh and some
of the incidence relations.

- The folding string, de�ning how to uncover incidence relations absent from
the tetrahedron tree by means of folding and gluing operations.

7

4.1 The Tetrahedron Spanning Tree String

A tetrahedron tree is a three-dimensional simplicial complex which can be
obtained from a single tetrahedron as a result of growing, i.e. incrementally
applying the operation of attaching a tetrahedron to an external face. As
shown in Figure 2, attaching a tetrahedron to an external face with vertices
v0, v1 and v2 is equivalent to creating a new vertex w and adding a tetrahe-
dron with vertices v0, v1, v2 and w to the mesh. The tetrahedron tree string
stores information about which external faces are attachable, i.e. to which of

v

v
v

v

v

v

w

0

1
2

0

1

2

Figure 2: The attaching operation. v0v1v2 is an external triangle of the
starting mesh and w is a new vertex.

them tetrahedra are attached later in the growing process. Right after each
attaching operation, the decompression procedure reads a triple of bits of the
encoding string and marks each of the three new external faces (v0v1w, v1v2w
and v0v2w on Figure 2) as either attachable or not, according to the value of
the corresponding bit of the triple. The tetrahedron tree string consists of
one triple of bits per tetrahedron, which yields a total of 3m bits.

4.2 Folding String

Using the tetrahedron spanning tree string, the decoding algorithm is able
to grow a tetrahedron tree with a tetrahedron table T 0, having m rows and
referencing m+3 vertices where m is the number of tetrahedra in the original
mesh M. The tetrahedron tree can be thought of as the result of cutting
M along the surface formed by cut triangles (de�ned in the next section).

8

Therefore, tetrahedra of the tree correspond to tetrahedra of M in a one-
to-one fashion and each external triangle of the tree either corresponds to
an external triangle of M or belongs to a pair of triangles corresponding to
a single cut triangle of M. In order to reconstruct the mesh M from the
tree we must identify the triangles belonging to the same pair. We do it by
incrementally applying gluing and folding operations. A folding operation
(Figure 3) `folds' the boundary of a mesh at an edge. It can be executed
only if that edge is the fold edge in both external triangles adjacent upon it.
As a result, the two incident triangles are identi�ed and become an internal
face of the mesh and their two vertices (the ones that bound the two incident
triangles but not their common edge) are equated. The folding operation
changes the adjacency of nearby faces, so it may make two triangles of the
starting mesh which do not share an edge be adjacent along a fold edge. Such
triangles are identi�ed by a fold operation later during decompression. Thus,
the way in which fold edges are assigned to external triangles (later referred
to as the folding scheme) imposes restrictions on the order of execution of
folding operations.

The need for the gluing operation, which identi�es two arbitrary exter-
nal triangles, arises when two external triangles do correspond to the same
triangle of the mesh M but never become adjacent along the fold edge in
both. Being more general than the folding operation, gluing operation alone
su�ces to construct M from the tree. However, the advantage of the folding
operation is that it is cheaper to encode.

The folding string associates two bits of information with each external
triangle of the tetrahedron tree given by the tetrahedron table T 0 except for
the one corresponding to the entry face (which is never identi�ed with any
other face during decompression). This 2-bit fold code distinguishes faces on
which the folding operation is to be executed (fold faces) from other faces
and, for each fold face, identi�es one of its edges as the fold edge. Gluing
operations are encoded as two integers identifying the two external triangles
to be glued and a two bit code which speci�es the `twist' which has to be
applied to one of them before the identi�cation. Thus, gluing operations
are considerably more expensive to encode. Fortunately, their number in a
typical mesh is relatively small compared to the number of folding operations
(for our test cases it was 200-700 times smaller), so that they usually do not
contribute to more than 1-2% of the encoding size.

9

v

v2

w
1

w
1
=w

2

v1

v2

1

t t1

w
2

t
2

Figure 3: The folding operation as seen from the outside of the mesh. v1v2
is the fold edge of both t1 and t2 and w1 and w2 are the identi�ed vertices.
After the identi�cation is done, t1 and t2 have the same vertices and therefore
become one internal triangle t.

4.3 Compression Results

The total size of our encoding is 7m+2+ (dlog2(g+ e� 1)e+1)g, where m,
g and e are the numbers of tetrahedra, glue faces of the tetrahedron tree and
external faces of the original mesh. This cost can be broken as follows. The
encoding of the tetrahedron spanning tree takes 3m bits. Storing the fold
codes requires two bits per external face of the tetrahedron tree except for
the one corresponding to the entry face. Since a tetrahedron has 4 external
faces and attaching a tetrahedron to an external face increases the number of
external faces by 2, the total number of external triangles in any tetrahedron
tree with m tetrahedra is 2m+2. It follows that we need 2(2m+1) = 4m+2
bits to store the fold codes. Fold triangles get nonzero fold codes, while all
others (either glue, i.e. identi�ed by means of gluing or corresponding to
external faces of the original mesh) get the code of 00. Thus, we can specify
a glue face using dlog2(g+e�1)e bits, where by e and g we denote the number
of external faces of the original mesh and glue faces of the tetrahedron tree
(respectively). Including the two bit code specifying the twist, each glue
triangle pair requires 2dlog2(g + e � 1)e + 2 bits to encode. The total size
of the encoding of all glue triangle pairs is therefore (dlog2(g + e� 1)e+ 1)g

10

bits.

5 Details of our Approach

5.1 Compression

The compression procedure breaks into three major steps:

1. Building and encoding a tetrahedron spanning tree

2. Creating a folding scheme

3. Building the folding string

The details of each of the above three steps are given below.

5.1.1 Building and Encoding a Tetrahedron Spanning Tree

In order to build a tetrahedron spanning tree one chooses an external triangle
of the mesh to be the entry face and uses the incident tetrahedron as the
root. Starting from the root, we traverse each tetrahedron once using a
recursive procedure which systematically selects the next candidate from the
undiscovered neighbors of the current tetrahedron. For a tetrahedron which
is not the root, by its door we mean the triangle which separates it from its
parent.

This recursive procedure corresponds to a depth-�rst search traversal of
the dual graph of the mesh, in which nodes correspond to tetrahedra and links
to triangles that separate two tetrahedra. Given a tetrahedron spanning tree,
there are three types of triangle faces in the mesh.

- external faces (those on the boundary of the mesh),

- doors (triangles corresponding to tree edges of the dual graph of the mesh;
equivalently those which are door faces to some tetrahedron),

- cut faces (all others, i.e. internal faces which are not doors).

The encoding of the tetrahedron tree is a sequence of triples of bits, one
per tetrahedron, arranged in the traversal order. The i-th bit in a triple

11

encodes whether the i-th face of the corresponding tetrahedron is a door.
To make this precise, we need an enumeration order of faces of tetrahedra.
Below we discuss how to obtain such an order.

During the traversal, we order vertices of each tetrahedron in the mesh.
By convention, the vertices of a tetrahedron are listed in an order v0, v1, v2,
v3 such that v0, v1 and v2 bound its door face (entry face for the root) and
de�ne clockwise rotation around the outward pointing normal vector to the
tetrahedron at that face. For the root, we choose any ordering such that
the �rst three vertices are vertices of the entry face and orient it clockwise.
The order of vertices of a child is determined by that of its parent as follows.
Assume that the parent's vertices (in order) are v0; v1; v2; v3 and let v4 be
the vertex of the child which is not a vertex of the parent. Depending on
which three vertices the two tetrahedra share, we assign to the child one of
the following orders:

- v0; v1; v3; v4 if they share v0, v1 and v3,

- v1; v2; v3; v4 if they share v1, v2 and v3,

- v2; v0; v3; v4 if they share v2, v0 and v3.

The above rule allows to assign an order of vertices to a tetrahedron right
after it is discovered. Note that the two tetrahedra cannot share v0, v1 and
v2 because these three vertices bound the door to the parent.

With all this information in hand, we can assign a triple of bits b0b1b2 to
each tetrahedron as follows. Let v0; v1; v2; v3 be its vertices (in order). Set
bi to 1 if and only if the face with vertices vi; v(i+1) mod 3; v3 is a door face
to some other tetrahedron. In order to obtain the tetrahedron spanning tree
string, one needs to concatenate these triples of bits in the traversal order.

We also use the traversal order of tetrahedra to obtain the order in which
the vertices have to be rearranged before being made a part of the encod-
ing string. Consider the sequence s of vertices obtained by concatenating
sequences of vertices of all tetrahedra in the traversal order (for each sin-
gle tetrahedron, we always list its vertices in the order assigned during the
traversal). Clearly, the length of s is 4m and each vertex of the mesh appears
as its entry. However, most vertices appear in it more than once (except for
those which are vertices of precisely one tetrahedron). To get rid of the
repeating vertices, we scan the sequence s, leaving only the entries encoun-
tered for the �rst time and removing all others. The resulting permutation

12

of vertices de�nes the order in which the vertex data has to be transmitted
to ensure correct reconstruction of the mesh geometry by the decompression
algorithm.

5.1.2 Creating a Folding Scheme

Recall that the folding scheme imposes restrictions on the order of execution
of folding operations so that the decompression procedure restores the struc-
ture of the original mesh from the tetrahedron tree. The process of building
a folding scheme is essentially an inversion of the gluing and folding opera-
tions performed during decompression. This can be seen very clearly when
one thinks of it in terms of the complex C resulting from the original mesh
by cutting it along the surface formed by the cut triangles. To construct a
folding scheme we delete the cut triangles one at a time. Such a removal of a
cut triangle is equivalent to identifying the two external triangles of C which
correspond to that triangle. If the identi�ed triangles share an edge, the
identi�cation is a folding operation. This happens if and only if the removed
triangle has a free edge, i.e. an edge which is an internal edge of the original
mesh and, at the same time, is not shared with any other cut triangle. If this
is the case, we mark t as an f-triangle (f for fold) and one of its free edges
as its f-edge. Otherwise, t is classi�ed as a g-triangle (g for glue). Clearly,
the numbers of the f- and g-triangles depend on the order in which they are
removed (Figure 4). Since glue triangles cost more and, as we shall see later,

1
2

3

4 1

23

4

(a) (b)

Figure 4: The numbers of g-triangles for the two removal orders are (a) 2,
(b) 0. The thick edges are external edges of the mesh. Our greedy strategy
leads to the removal order shown in (b), possibly with the third and fourth
triangle switched.

13

their number is twice the number of g-triangles, we would like to make the
number of g-triangles as small as we can. In order to do that, we use a greedy
strategy: we do not remove cut triangles with no free edges unless there is
no other choice.

5.1.3 Building the Folding String

First, we assign two-bit fold codes to all pairs (T; t) with T a tetrahedron and
t any cut or external triangle (excluding the entry face) adjacent to it. In
what follows, we shall call such pairs cut pairs. If t is either an external face
or a g-triangle, the code is 00. If t is an f-triangle, the code depends on which
of its edges is the f-edge. Recall that during the traversal which we did when
constructing the tetrahedron spanning tree, we ordered the vertices of each
tetrahedron. In particular, we have an ordering v0; v1; v2; v3 of vertices of T ,
which permits to introduce an ordering of faces of T . In our implementation,
the faces come in order v0v1v2, v1v0v3, v2v1v3, v0v2v3. The vertices of these
faces are enumerated (relative to T) in the order of being listed above. The
ordering of vertices of triangles can be used to de�ne an ordering of their
edges (again, relative to T): for a triangle with vertices (in order) w0,w1,w2

its edges come in order w0w1,w1w2,w2w0. The ordering conventions described
above are, to some extent, arbitrary, and can be changed without a�ecting
the correctness of our algorithms. Their only special property which will be
important later on is that the orders of vertices of faces of a tetrahedron
T induce clockwise rotation around its outward pointing normal vectors.
Using the orderings, we assign the code of 01, 10 or 11 to the cut pair (T; t)
according to whether the f-edge of t is its �rst, second or third edge.

Apart from the fold code, we need to associate 2 extra bits of information
with a g-triangle t. Since it is an internal triangle, there are exactly two
tetrahedra T1 and T2 adjacent to it. Assuming that T1 comes before T2 in
the traversal order, the two bit glue code simply encodes whether the �rst
vertex of T1 matches the �rst, second or third vertex of T2.

The traversal order together with the orderings of vertices of tetrahedra
induce an ordering of cut pairs in the following way. If a tetrahedron T is
traversed before T 0, then any cut pair whose tetrahedron is T precedes any
cut pair whose tetrahedron is T 0. For cut pairs with the same tetrahedra,
i.e. of the form (T; t) and (T; t0) we use the ordering of faces of T to break
the tie: (T; t) comes before (T; t0) if and only if t precedes t0 in the ordering

14

of faces of T .
To obtain the folding string, we concatenate:

1. the fold codes of all cut pairs in the above order, obtaining a string of
4m+ 2 bits

2. the encodings of all g-triangles.

The encoding of a g-triangle t consists of:

- The encoding of the two cut pairs having t as their triangle. This requires
2dlog2(g + e � 1)e bits, where e is the number of external faces of the
original mesh and g is twice the number of g-triangles (equivalently, the
number of glue triangles of the tetrahedron spanning tree reconstructed
during decompression). This is because we encode each cut pair as an
integer, being the number of cut pairs with the fold code of 00 preceding
it in our order and there are e+ g � 1 such cut pairs.

- the two-bit glue code.

The resulting folding string takes 2(2m + 1) + (dlog2(g + e � 1)e + 1)g
bits.

5.2 Decompression

In order to restore the original mesh from its encoding we need to do the
following:

1. Grow a tetrahedron tree based on the tetrahedron tree encoding

2. Read and interpret the folding string: classify the external triangles as
glue, fold or boundary, assign fold edges to fold triangles, pair up glue
triangles and assign a glue code to each pair

3. Initialize datas tructures representing the boundary of the mesh and keep-
ing track of vertex identi�cations

4. Glue, applying the correct twist determined by the glue code

5. Fold

6. Map the m + 3 vertex labels in the tetrahedron tree table into n vertex
labels corresponding to vertices of the decoded mesh

15

5.2.1 Growing a Tetrahedron Tree

procedure grow tree (s: bit sequence)

: tetrahedron table;

var

t : tetrahedron table;

next unused reference,current bit, i : integer;

v0,v1,v2,v3 : integer; # vertex references

begin

empty the stack and the table t;

push(0,1,2);

next unused reference := 3;

current bit := 0;

while current bit < length(s) do :

(v0,v1,v2) := pop();

v3 := next unused reference++;

put (v0,v1,v2,v3) at the end of the table t;

if s[current bit+2]=1 then

push(v2,v0,v3);

if s[current bit+1]=1 then

push(v1,v2,v3);

if s[current bit]=1 then

push(v0,v1,v3);

current bit += 3;

end;

Figure 5: Growing a tetrahedron tree

The purpose of this part of the decompression algorithm is to build a tetra-
hedron tree based on the information provided by the tetrahedron tree string
and to de�ne the orderings of vertices and tetrahedra consistent with the or-
derings introduced during compression. The tree growing procedure (whose
pseudocode is given in Figure 5) starts with a single tetrahedron and builds
a tetrahedron tree by incrementally applying the attaching operation to it.
In our implementation, the vertices are represented by integers which can
be thought of as vertex labels, which are increasing integers for consecu-
tive vertices as they are �rst encountered in their construction. A stack is

16

used to keep triples of vertices de�ning attachable external triangles of the
mesh. Initially, the mesh is empty and the stack contains a triple of vertices
(represented by the integers 0,1,2) bounding the triangle corresponding to
the entry face of the original mesh. The growing procedure pops a list of
vertices from the stack and attaches a tetrahedron to the face bounded by
those vertices. This is done by creating a new vertex (represented by the
least nonnegative integer which has not been used to reference a vertex) and
inserting it, together with the three popped vertices, into the tetrahedron
table. Then, a triple of bits is read from the encoding string and, for each
nonzero bit of that triple, a face of the newly added tetrahedron is pushed on
the stack. The way in which the bits of the triple are associated with faces of
tetrahedra as well as the order in which the vertices of the pushed triple are
listed are the same as used during compression. The output of the growing
procedure is a tetrahedron table describing a tetrahedron tree together with
an ordering of tetrahedra (given by the order in which they appear in the
tetrahedron table) and ordering of vertices for each tetrahedron (the order
in which they appear in a corresponding row of the table). Note that the
decoding procedure is able to detect where the tetrahedron tree string ends
without the need of any separator between it and the folding string.

5.2.2 Reading and Interpreting the Folding String

Although the tetrahedron tree grown based on the tetrahedron tree string
contains all tetrahedra and some of the adjacency relations of the original
mesh, they do not have the same structure unless the mesh is a tetrahedron
tree itself. Geometrically speaking, the tetrahedron tree can be thought of
as a result of cutting the original mesh along the surface formed by the
cut triangles. A two dimensional example of cutting is shown in Figure 6.
Cutting may replicate vertices (in the Figure, the three vertices of the cut
marked with `*' are replica of the same vertex of the original mesh). The
purpose of folding and gluing is to identify these replicated vertices to a single
vertex.

The folding string is used to categorize the external triangles of the
tetrahedron tree as fold, glue and boundary, corresponding to f-triangles,
g-triangles and external triangles of the original mesh. To each fold triangle,
one of its edges is assigned as the fold edge. The glue triangles are paired up
and aligned using the two-bit glue code.

17

* *

*

Figure 6: A cut of a two-dimensional mesh along the bold edges; the three
vertices of the complex on the right correspond to the same vertex of the
original mesh.

This is done by visiting the external faces of the tetrahedron tree in the
same order as during compression and using the fold codes in the folding
string to identify the face type and the fold edge for fold faces. Faces whose
fold code is 01, 10 or 11 become fold faces and have the �rst second and
third edge assigned as the fold edge. Faces with the fold code of 00 become
either boundary or glue. Let l be the number of such faces. In order to
distinguish boundary triangles from glue triangles we read the g-triangle
encodings, which start with the (4m + 3)-th bit of the folding string and
occupy 2dlog2le + 2 bits each. Their interpretation is as follows. The �rst
and second dlog2le bits encode two triangles with the fold code of 00, each
one of them as an integer being the number of triangles preceding it with
that fold code. These two triangles become a pair of glue triangles and they
obtain the last two bits of the g-triangle encoding as their associated glue
code.

5.2.3 Initialization of the Dastructure Representing the Boundary

of the Mesh; Mapping Vertices

The basic building blocks of the representation of the boundary of the mesh
are:

- The triangle record, keeping three vertex references (integers, the same as
those in the tetrahedron table), three pointers to adjacent edges and a

18

procedure glue;

begin

for all glue pairs do :

Let t and u be pointers to the two triangles in the

pair, ^t precedes ^u in the tetrahedron table

and v0,v1,v2 and w0,w1,w2 the vertex

references of these triangles (in order);

twist according to the glue code

if the glue code is 00, (ww0,ww1,ww2):=(w0,w2,w1);

if the glue code is 10, (ww0,ww1,ww2):=(w2,w1,w0);

if the glue code is 01, (ww0,ww1,ww2):=(w1,w0,w2);

update the boundary of the mesh;

identify pairs of references (v0,ww0), (v1,ww1)

and (v2,ww2);

end;

Figure 7: Gluing procedure

set of ags allowing to determine if the triangle is a fold triangle and,
if so, which of its edges is the fold edge.

- The edge record, keeping two pointers to adjacent triangles.

The construction of the above data structure can be implemented as a part
of the tree growing procedure: it is initialized it so that it describes the
boundary of a single tetrahedron on startup and then updated right after
each attaching operation.

Both gluing and folding identify two external triangles of the mesh and
therefore change the structure of its boundary. Thus, the data structure
storing the boundary of the mesh has to be updated after each glue or fold
operation. For a fold operation, an update may be produced by an edge
swap followed by an edge collapse (cf [12], [11]). While updating that data
structure, we identify the corresponding vertices of the identi�ed triangles.
For vertices with labels i < j, their identi�cation is equivalent to replacing
each occurrence of j in the tetrahedron table by i and subtracting 1 from all
labels greater than j. Our actual implementation performs the label changes
as a postprocessing step. More precisely, when we glue and fold, we maintain

19

a graph whose vertices are labels 0; 1; : : : ; m+2 and edges join the identi�ed
pairs of labels. After all gluing and folding operations are performed, we
compute the mapping of the original labels into target ones by computing
and ordering the connected components of the outcoming graph.

5.2.4 Gluing and Folding

We start with performing gluing operations. We go over all glue triangle pairs
and identify the two triangles in each pair and their corresponding vertices,
updating our representation of the boundary of the mesh. The glue code of
each pair provides information about what twist to apply before identifying
the two triangles. The pseudocode which performs all the necessary gluing
is given on Figure 7.

After all the gluing operations are done, we start folding. Recall that
folding along an edge is allowed if and only if that edge is the fold edge
of both adjacent external triangles. To avoid scanning edges in search of
admissible fold ones, we adopt the following strategy. After any folding
operation we recursively attempt to fold along the two external edges of
the internal triangle resulting from the folding. In order to do all the folding
operations, we call this recursive procedure for all external edges of the mesh.

It can be shown (see [25]) that, at this point, all glue and fold bound-
ary faces have disappeared from the boundary of the mesh (i.e. have been
identi�ed with other faces becoming internal triangles). In other words, all
exterior triangles of the current mesh are in fact boundary.

6 Complexity

In this section we argue that the compression and decompression algorithms
can be implemented so that they run in O(mlog m) and O(s) time (respec-
tively), wherem is the number of tetrahedra in the mesh and s is the encoding
size.

6.1 Compression

Building a tetrahedron spanning tree requires linear time in the number of
tetrahedra, since the dual graph of the mesh has m vertices and O(m) edges.

20

In order to create a folding scheme, we remove cut triangles one at a time,
always removing one with a free edge whenever possible. To implement this
process so that it runs in O(m) time one can use a procedure which removes
a speci�ed triangle and calls itself recursively for triangles adjacent to those
of its edges which become free as a result of that removal. This recursive
procedure is �rst called for all cut triangles with a free edge. After this
is done, there are no cut triangles with a free edge left. To get rid of all
cut triangles, we simply keep calling the above procedure for an arbitrarily
chosen remaining cut triangle (which is then removed and tagged as a g-
triangle). Equipping each triangle with an active ag which is reset when
the triangle is deleted and storing a count of adjacent active cut triangles
for each edge enables to delete cut triangles and test whether an edge is free
or not in constant time. Since there are O(m) triangles, the folding scheme
can be constructed in O(m) time. The length of the folding string is clearly
O(mlog m). Assuming that it takes unit time to write a bit into a string, the
process of creating the folding string takes O(mlog m) time. Since the input
to the compression procedure is a raw tetrahedron table, it has �rst to be
converted into a dual graph. To do that, one can use a table with 4m rows,
each of them containing three vertex labels sorted in the increasing order
and a pointer to a tetrahedron adjacent to the face bound by these vertices.
We build this table by simply scanning the tetrahedra of the mesh and, for
each face of the current tetrahedron, putting the labels of its vertices and
the pointer to the tetrahedron at the end of the table. This table can then
be sorted with respect to lexicographical (or any other) order on triples of
vertex labels. By doing that, we put the pointers to adjacent tetrahedra into
neighboring rows of the table, therefore making it possible to build the dual
graph in linear time (excluding O(mlog m) time spent on sorting). A similar
procedure can be used to compute adjacency relations between cut triangles,
although this can also be done more e�ciently during the mesh traversal.

6.2 Decompression

It takes linear time to build a tetrahedron tree and the data structure rep-
resenting the mesh boundary (constant time update is necessary for each
attaching operation). Reading and interpretation of the folding string takes
O(s) time. Each gluing and folding operation can be done in constant time
and there are O(m) of them. Thus, folding and gluing takes linear time inm.

21

Similarly, vertex mapping takes O(m) time since it boils down to computing
connected components of a graph with O(m) vertices and edges.

7 Discussion and Open Questions

In this section we discuss future work which may lead to improving the
compression ratio achieved by the Grow&Fold algorithm.

First of all, one could encode the glue codes in a more compact way.
Instead of using two bits to represent one of the three possible glue codes,
it is possible to use only dlog23

(g=2)e = dglog23
2
e bits to encode all of them. If

the number of glue triangles is large, this leads to savings of over 0.4 bits per
glue triangle pair.

Perhaps a more promising (and challenging, too) idea is to look for im-
provements of the coding scheme for tetrahedron trees. A simple observation
that there are exactly m � 1 bits set to one in our encoding of a tetrahe-
dron tree leads immediately to the conclusion that our coding algorithm for
tetrahedron trees is not optimal: for m large, about

lim
m!1

log2

3m

m� 1

!

m
= 3log23� 2 � 2:75

bits per tetrahedron are enough to encode such a tree. One may hope for
even better results here, since not all sequences with exactly m� 1 nonzero
entries are a valid encodings of tetrahedron trees (any encoding string must
have the property that there are at least k entries equal to one among the
initial 3k symbols for any k < m).

Another interesting question concerns the number of glue triangles which
are the reason for the nonlinear term in our estimate of the encoding length.
Glue triangles are certainly needed for meshes with handles. Moreover, the
number of glue triangles cannot be smaller than the number of handles. This
is because each handle gives rise to a shell of cut triangles with boundary
contained in the boundary of the mesh. No matter what the removal order of
cut triangles during compression is, each such shell has to be broken at some
point by removing a cut triangle with no free edges. However, even for meshes
with no holes or handles glue triangles may be necessary. One can imagine a
triangulation of the three dimensional ball and its tetrahedron spanning tree

22

for which the cut triangles form a superset of the house with two rooms ([3,
section I.2]): a two dimensional simplicial complex which is contractible but
whose triangulation has no triangle with a free edge (Figure 8). If this is the

R

R
2E

2

E

 1

1

Figure 8: The house with two rooms. It de�nes two `rooms' R1 and R2. In
order to enter Ri one has to walk through the corridor through the other
room, starting with the `door' Ei. The house consists of the walls of the two
rooms with the corridors' entrances and exits removed and the corridors'
boundaries.

case, at least one glue triangle is needed (because the �rst triangle removed
from the house must not have a free edge). However, it may be possible to
change the tetrahedron tree so that no house with two rooms appears in the
cut complex. For example, one could `close' the entrance E1 in Figure 8 and,
simultaneously, remove some triangle from the wall ofR1. The resulting space
has the property that triangles can be removed from it one at a time in such
a way that each removed triangle has a free edge. We see it as an indication
that by changing the cut (or, equivalently, tetrahedron spanning tree) it is
possible to decrease the number of glue triangles and therefore improve the
performance of our coding algorithm. It would be interesting to develop an
e�cient algorithm which, by changing the tetrahedron tree, decreases the
number of glue triangles (perhaps to the number which is optimal for the
input mesh).

23

n m l lg lg=l l=m Tc Td
100 514 3628 28 0.008 7.058 0.09 0.04
1000 6298 44430 342 0.008 7.055 1.19 0.52
10000 66487 469657 4246 0.009 7.064 14.99 6.27
50000 335188 2373774 27456 0.012 7.082 80.43 31.93
100000 672212 4767534 62048 0.013 7.092 166.84 70.84

Figure 9: Results of our experiments

8 Experimental results

We tested our algorithm by running its prototype implementation for
Delaunay tetrahedralizations of random sets of points in a cube. The tetra-
hedralizations were generated using the program qhull from the Geometry
Center of the University of Minnesota. The results are given in Figure 9. In
particular, they show that it is quite easy to obtain meshes which require
nonzero number of g-triangles. However, the number of such triangles is rel-
atively small, so that the encodings of the glue triangle pairs usually do not
contribute to more than 1-2% of the total encoding size. The explanation of
symbols used to describe the meaning of the columns of the table in Figure
9 is given below.

l - the total length of the encoding string

lg - length of the encoding of the glue triangle pairs

n - number of points

m - number of tetrahedra

Tc - running time of the compression algorithm (in seconds)

Td - running time of the decompression algorithm

The running times are the real time measurements. We ran our implemen-
tation on an SGI Power Challenge, with no e�ort to optimize or parallelize
the code. One can notice that the running time growth is close to linear in
the number of vertices of the mesh.

24

9 Conclusion

We discussed a simple topological compression scheme for connectivity of
tetrahedral meshes which allows to store it using about 7 bits per tetrahe-
dron. Our scheme can be compared to the standard representation via a
tetrahedron-vertex incidence table, which requires 4dlog ne bits per tetra-
hedron, where n is the number of vertices of the mesh. We described e�-
cient compression and decompression algorithms, running in O(mlogm) time
(compression) and linear time in the encoding size (decompression), where
m is the number of tetrahedra in the mesh. We do not have a linear bound
on the encoding size, but the results of experiments with our prototype im-
plementation show that our algorithm produces encodings whose length is
nearly linear in m.

References

[1] B.G.Baumgart, Winged Edge Polyhedron Representation, AIM-79,
Stanford University, Report STAN-CS-320, 1972.

[2] B.G.Baumgart, A Polyhedron Representation for Computer Vision,
AFIPS Nat. Conf. Proc., Vol.44, 589-596, 1975.

[3] M.M.Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag
1970.

[4] M.Deering, Geometric Compression, Computer Graphics (Proc. SIG-

GRAPH), p.13-20, August 1995.

[5] M.Denny and C.Sohler, Encoding a triangulation as a permutation of
its point set, Proc.9th Canadian Conference on Computational Geom-

etry, pp.39-43, Ontario, August 11-14, 1997.

[6] D.Dobkin and D.Kirkpatrick, A linear algorithm for determining the
separation of convex polyhedra, Journal of Algorithms, Vol.6, pp.381-
392, 1985.

[7] L.Floriani and B.Falcidieno, A Hierarchical Boundary Model for Solid
Object Representation, ACM Transactions on Graphics 7(1), pp.42-
60, 1988.

25

[8] E.Gursoz and F.Prinz, Boolean Set Operators on Non-Manifold
Boundary Representation Objects, Computer-Aided Design 23(1),
pp.33-39, January/February 1991.

[9] E.Gursoz, Y.Choi and F.Prinz, Node-Based Representation of Non-
Manifold Surface Boundaries in Geometric Modeling, In: J.Turner,
M.Wozny and K.Preiss eds., Geometric Modeling for Product Engi-

neering, North-Holland 1989.

[10] P.Heckbert and M.Garland, Survey of Polygonal Surface Simpli�ca-
tion Algorithms, in Multiresolution Surface Modeling Course, ACM
SIGGRAPH Course Notes, 1997.

[11] H.Hoppe, Progressive Meshes, Computer Graphics (Proc. SIG-

GRAPH), p.99-108, August 1996.

[12] H.Hoppe, T.DeRose, T.Duchamp, J.McDonald and W.Stuetzle, Mesh
Optimization, Computer Graphics (Proc. SIGGRAPH), p.19-26, Au-
gust 1993.

[13] Y.E.Kalay, The Hybrid Edge: A Topological Data Structure for Verti-
cally Integrated Geometric Modeling, Computer-Aided Design 21(3),
pp.130-140, 1989.

[14] K.Keeler and J.Westbrook, Short Encodings of Planar Graphs and
Maps, Discrete Applied Mathematics, No. 58, pp.239-252, 1995.

[15] D.Kirkpatrick, Optimal search in planar subdivisions, SIAM Journal
of Computing, vol 12, pp 28-35, 1983.

[16] D.T.Lee and F.P.Preparata, Location of a point in a planar subdivision
and its applications, SIAM Journal on Computing, Vol.6, pp.594-606,
1977.

[17] M.M�antyl�a, An Introduction to Solid Modeling, Computer Science
Press, Rockville, Maryland 1988.

[18] M.Naor, Succinct representation of general unlabeled graphs, Discrete
Applied Mathematics, vol. 29, pp. 303-307, North Holland, 1990.

26

[19] R.Ronfard and J.Rossignac, Full-range approximation of triangulated
polyhedra, Proc. Eurographics'96, Computer Graphics Forum, pp. C-
67, vol.15, no.3, August 1996.

[20] J. Rossignac and M. O'Connor, SGC: A Dimension-independent
Model for Pointsets with Internal Structures and Incomplete Bound-
aries, in Geometric Modeling for Product Engineering, Eds. M. Wosny,
J. Turner, K. Preiss, North-Holland, pp. 145-180, 1989.

[21] J.Rossignac, Through the cracks of the solid modeling milestone,
From Object Modeling to Advanced Visual Communication, Eds.
S.Coquillart, W.Strasser, P.Stucki, Springer-Verlag, pp. 1-75, 1994.

[22] J.Rossignac, Edgebreaker: Compressing the connectivity of triangle
meshes, GVU Technical Report GIT-GVU-98-17, Georgia Institute of
Technology, http://www.cc.gatech.edu/gvu/reports/1998.

[23] J.Snoeyink and M.van Kerveld, Good orders for incremental
(re)construction, Proc. ACM Symposium on Computational Geom-
etry, pp.400-402, Nice, France, June 1997.

[24] O. Staadt and M. Gross, Progressive Tetrahedralization, Proc. IEEE
Visualization, pp. 397:402, Research Triangle Park, October 18-23,
1998.

[25] A.Szymczak and J.Rossignac, Grow & Fold: Compression of Tetrahe-
dral Meshes, GVU Technical Report GIT-GVU-98.

[26] G.Taubin and J.Rossignac, Geometric Compression Through Topolog-
ical Surgery, ACM Transactions on Graphics, Vol.17, no.2, pp.84-115,
April 1998.

[27] G.Taubin, W.Horn, F.Lazarus and J.Rossignac, Geometry Coding and
VRML, Proceedings of the IEEE, pp.1228-1243, vol.96, no.6, June
1998.

[28] I. Trotts, B. Hamann, K. Joy, D. Wiley, Simpli�cation of Tetrahe-
dral Meshes, Proc. IEEE Visualization, pp. 287:295, Research Triangle
Park, October 18-23, 1998.

27

[29] G.Turan, On the Succint Representation of Graphs, Discrete Applied
Mathematics 8, pp.289-294, 1984.

[30] T.C.Woo, A Combinatorial Analysis of Boundary Data Structure,
IEEE Computer Graphics and Applications, Vol.5, pp.19-27, 1985.

28

