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If we get some idea of how the past has shaped us, we may better understand what we see

today and are likely to see tomorrow

UNKNOWN



”Now unto him who is able to keep you from falling”



ACKNOWLEDGEMENTS

There are many, many people who helped me through both my undergraduate and grad-

uate experience at Georgia Tech, too many to name by name. However, a special token of

appreciation goes to:

• All glory be to God!

• Dr. Raheem Beyah, my advisor and mentor, for taking me under his wing my fresh-

man year of college and helping me to grow, learn, and develop into the person I am

today.

• My family, who has been a constant support system for me throughout my entire life,

has always encouraged me and been there for me.

• David Formy, Celine Irvene, Samuel Litchfield, Dominique Paster, and the other

members of the Communications Assurance and Performance Group, for constant

support through my thesis and research.

• My many friends that I refuse to name for so that I don’t leave anyone out, but who

also were a major support system in my life, both in and outside of the classroom,

helping me to maintain sanity and always there to show some love.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Primary Contributions and Thesis Organization . . . . . . . . . . . . . . . 2

Chapter 2: Background and Related Work . . . . . . . . . . . . . . . . . . . . . 4

2.1 SCADA Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Modbus Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Modbus Attacks and Vulnerabilities . . . . . . . . . . . . . . . . . . . . . 15

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3: ModSec Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Security Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Modbus PDU Modifications . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Modbus Device Certificates . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Modbus Secret Key Sharing . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Modbus Message Transmission . . . . . . . . . . . . . . . . . . . . 26

vi



3.2 Permission Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4: ModSec Implementation and Evaluation . . . . . . . . . . . . . . . . 34

4.1 Public Key and Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Function Code 100 (0x64): Begin Key Sharing . . . . . . . . . . . 38

4.2.2 Function Code 101 (0x65); Complete Key Sharing . . . . . . . . . 38

4.3 Modified Code Flow and Structure . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Wireshark Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Performance Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 PDU Size Changes . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Processing Time and Cycle Count . . . . . . . . . . . . . . . . . . 47

4.6 Attacks on Modbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Man-in-the-Middle Attacks . . . . . . . . . . . . . . . . . . . . . . 50

4.6.2 Replay Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.3 Discussion on Lack of Authorization Vulnerabilities . . . . . . . . . 58

Chapter 5: Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Certificate Authority . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Privilege Management Infrastructure . . . . . . . . . . . . . . . . . 60

5.2.3 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.4 Multiple Masters . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



LIST OF TABLES

2.1 Function Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Key Modbus Attack Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 New Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Comparison of packet size. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Digital Signature Performance on Common Modbus Functions. . . . . . . . 47

4.3 HMAC Performance on Common Modbus Functions. . . . . . . . . . . . . 48

ix



LIST OF FIGURES

2.1 Industrial Control System Attacks [11] . . . . . . . . . . . . . . . . . . . . 6

2.2 Client Server Communication . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Modbus Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Modbus Frame using Modbus Serial . . . . . . . . . . . . . . . . . . . . . 10

2.5 Modbus Frame using Modbus/TCP . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Modbus Transaction State Diagram . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Modified Modbus PDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 ModSec Cryptographic Model for Unicasting . . . . . . . . . . . . . . . . 27

3.3 Modified Modbus Transaction State Diagram . . . . . . . . . . . . . . . . 29

3.4 ModSec Cryptographic Model for Broadcasting . . . . . . . . . . . . . . . 31

4.1 ModSec PDU for Key Exchange . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 ModSec Write Register in Wireshark . . . . . . . . . . . . . . . . . . . . . 42

4.3 ModSec Read Register in Wireshark . . . . . . . . . . . . . . . . . . . . . 43

4.4 ModSec Invalid Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Modbus Server/Client Test Setup . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Modbus Server/Client MITM Traffic . . . . . . . . . . . . . . . . . . . . . 52

4.7 Modbus Server/Client Replay Attack Traffic . . . . . . . . . . . . . . . . . 55

x



SUMMARY

Many of todays most critical infrastructures rely on the successful operation of Super-

visory Control and Data Acquisition (SCADA) systems distributed all around the world.

Infrastructures such as water treatment plants, gas stations, and transportation all rely on

SCADA systems, and any form of disruption has the potential to cause grave harm to a

society. As technology has continued to grow and evolve, networks have also been able

to grow in both space and complexity while also allowing for system operators to more

efficiently manage these systems. Despite this growth, many of the communication pro-

tocols that these systems use have failed to change, and systems that were never meant to

be brought to an insecure environment like the Internet are being exposed, bringing forth a

wide range of security vulnerabilities to these infrastructures.

Modbus, introduced in 1979, is one of the original communication protocols used in

SCADA environments and, to this day, is still implemented in nearly all industrial and

automation equipment. The protocol is popularly used by programmable logic controllers

(PLCs) to control actuators and gates within a system through a master-slave architecture.

Despite its popularity, the protocol lacks any form of security and exposes the ability for a

nefarious actor to easily control devices in a network and cause chaos.

This thesis presents ModSec, a protocol that brings practical security enhancements to

the Modbus protocol. The contribution can be separated into two separate goals: to add

security to each of the protocols messages through a means of authentication and integrity,

as well as a permission-based scheme to limit the effects that an unintended message can

pose. ModSec is shown to prevent against many of the attacks that have already been

proven against the Modbus protocol, while also taking into consideration the end systems.

Many of the systems that are implements in SCADA environments are either low or lack

processing power that would be necessary to fully implement common security mecha-

nisms, like encryption. ModSec takes a novel approach to this problem, resulting in little

xi



overhead to the systems or the messages, thus allowing for the protocol to continue to be

used without being effected by a large amount of latency or stress on the system.
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CHAPTER 1

INTRODUCTION

Today many of the worlds most critical infrastructures consist of facilities that are large

and distributed. Infrastructures that include water plants, gas stations, oil refining indus-

tries, and transportation substations play critical roles in the success of a nations economy

and have many moving parts that are necessary in order for it be successful. To main-

tain these systems, it is essential for operators to constantly monitor and control various

components. While these key infrastructures are not new, the implementation of modern

networking has eased the burden of managing these critical systems by allowing operators

to have remote control of the environment. The earliest forms of these critical infrastruc-

tures were simple networks that connected monitoring and command devices with sensors

and actuators. These simple networks have since advanced into complex networks that

allow communication not only within a single system at a single location, but around the

globe. These systems are commonly referred to as industrial control systems (ICSs). An

ICS traditionally has various key components, including supervisory control and data ac-

quisition (SCADA) systems, distributed control systems (DCS), and programmable logic

controllers (PLCs).

As these systems continue to grow in size and complexity, as does the importance of

modernizing these systems in an attempt to increase the overall efficiency while also reduc-

ing costs. It has become popular over the past two decades for these ICSs, and in particular,

SCADA systems, to be connected online to allow remote operations, while also optimizing

processes. This phenomenon, however, has introduced gaping security issues into net-

works that were originally designed to be closed off from the world. Where the problem

of security was commonly solved by increasing physical security mechanisms, the various

potential issues that lie within the Internet have now also been introduced on a much more
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extreme scale. By introducing these processes and controls to the Internet, the threat of

malicious attacks over these networks are not only possible, but can also cause significant

amounts of damage to the infrastructure itself, as well as the safety of the public. Further-

more, many of the devices that are used in these environments are low-powered, focusing

more on single tasks like changing an actuator or a sensor, thus making traditional network

security practices impractical in these environments.

There have been numerous studies within academia that have discussed the increasing

number of threats within critical infrastructures, as well as numerous examples of these

threats coming to fruition with actual attacks that have caused large amounts of damage.

While implementing traditional network security techniques like firewalls and intrusion

detection systems are effective at addressing vulnerabilities within corporate networks [1],

they fail to address attacks targeted specifically at process control networks. A key weak-

ness within these systems are the communication protocols that are used within SCADA

that both control and monitor devices. These protocols, designed for closed networks, fail

to address common security issues like confidentiality, integrity, and authentication but are

still largely used today by nearly all vendors within ICS and SCADA.

The primary focus of this work is to enhance the Modbus protocol, one of the most

common protocols within ICS and SCADA. Modbus is a simple protocol that is used in

a wide variety of environments and is used to control sensors, actuators, and many other

key components within critical infrastructures. To add security, various cryptographic al-

gorithms are used and deployed within the Modbus message protocol prior to and during

transmission over the various transmission mechanisms that Modbus supports.

1.1 Primary Contributions and Thesis Organization

The primary contributions of this thesis are the following:

• A detailed overview of the current vulnerabilities and attacks available on the Mod-

bus protocol.
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• Several key additions to the Modbus protocol to address various security issues that

are present due to the protocol being completely open, focusing on authentication,

integrity, and non-repudiation.

• A permission scheme for the protocol to add authorization to the protocol to prevent

the transmission and action of unauthorized commands.

• An implementation of the newly proposed protocol.

• An evaluation of how the new protocol, ModSec, affects usage and latency compared

to a previous implementation.

• An evaluation of how ModSec addresses the various attacks and vulnerabilities that

are present on Modbus.

The remainder of this thesis is presented as follows: Chapter 2 describes background

of SCADA systems and the Modbus protocol, current vulnerabilities and attacks that have

been proven, and proposed solutions to attempt to address and mitigate various Modbus

vulnerabilities. Chapter 3 introduces ModSec, outlining the new protocol and how it ad-

dresses authentication, authorization, integrity, and non-repudiation. Chapter 4 discusses

the implementation of ModSec and its affects on latency and processing, as well as how

the proposed solution addresses many of the attacks that were presented in various other

works. Finally, Chapter 5 presents the conclusion and potential avenues for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 SCADA Background

While commonly overlooked in industrialized societies, ICS and SCADA systems play a

key role in providing citizens with many basic modern-day conveniences. Today, essen-

tials like power and running water and everyday conveniences like public transit buses and

train stations all rely on ICS (specifically SCADA systems). The disruption of these ser-

vices can immediately cause chaos in a modern day society. Over the past few decades,

the quick advancements in technology have allowed for industries to also advance critical

aspects of SCADA, allowing for these systems to be made more stable and efficient. With

these advancements come new challenges and threats that can lead to global chaos. The

introduction of the Internet to these industrial systems has further progressed the threat to

a level that, if left unaddressed, could be a disaster waiting to happen.

When first introduced, the threats to SCADA were limited and focused on physical

access. The first generation of SCADA systems were completely isolated and connected

to other systems. This allowed for the design of many of the initial protocols introduced to

have open networks, completely ignoring security as whole. The largest threat would be an

attacker that needed to be authorized and have physical access to the machine [2].

As technology continued to advance, the idea of using isolated machines began to trans-

form into the use of distributed architectures. Instead of relying on a single system, the new

paradigm focused on distributing the system to multiple stations that would be connected

through a local area network (LAN). During this period, secure design was largely ignored

and overly complicated. The threat model expanded from solely focusing on physical ac-

cess to also considering remote execution. Furthermore, many vendors did not rely on a
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standard network protocol, requiring security experts to have a deep understanding of each

proprietary network protocol in order to configure and manage the security system. These

complexities opened the door for what became known as one of the first reported attacks

on a SCADA network in 1982. In the attack, a Trojan program was remotely inserted

into a SCADA system’s software, resulting in a massive natural gas explosion along the

Trans-Siberian pipeline [2].

The next generation of SCADA architecture allowed for systems to not only be con-

nected, but also allowed for the system to control devices that were both separated ge-

ographically and connected to multiple local area networks. This phenomenon became

known as process control networks (PCN). Failing to successfully address the issues from

the previous generation, this connection only furthered the complexity of the threat model,

allowing for an attacker to now be physically located anywhere in the world with the poten-

tial to perform remote exploitation. Several attacks came about during this period of time

that had major impacts. In 1999, a Trojan program in a Russian oil corporation disrupted

the control of gas flow for several hours [3, 4]. In 2003, the Sobig worm [5] infected a

railroad company, resulting in the shut down of signaling, dispatching, and other systems

and causing major train delays. Another infamous worm, Slammer [6], attacked a nuclear

power station in the same year. In 2004, the Sasser worm [7], targeted airlines and rail

transportation companies, causing for delays and cancellations of both flights and trains.

In 2009, one of the most infamous worms, Conflicker [8], resulted in the shutdown of an

entire air fleet [2].

The fourth, and current, generation of industrial technologies that has become popular

is known as the Internet of Things. This technology allows for organizations to reduce

cost and improve maintenance management [2]. Similar to the other trends that progressed

the connectivity of SCADA systems and devices, security continued to remain a stagnant

afterthought. Stuxnet [9], one of the most infamous attacks on a SCADA system, began

the influx of many more attacks on SCADA. Stuxnet, occurring in 2010, resulted in the
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Figure 2.1: Industrial Control System Attacks [11]

destruction of approximate a fifth of Iran’s nuclear centrifuges [10]. It has been reported

that the number of attacks between the years of 2012 and 2014 raised by a factor of 636%.

Additionally, the amount of security disclosures has also dramatically increased, showing

that many of the vulnerabilities that were found resulted in buffer overflows. Thus, these

vulnerabilities not only could potentially lead to a denial of service in the network, but

also potentially allow for attackers to gain remote execution and completely take over the

system [2].

A more recent report shows that the number of attacks has continued to spike, where

there was an increase of over 100% between the years of 2015 and 2016. These results

are evident in Figure 2.1. In 2016 alone, there were a significant number of attacks on ICS

aimed at shutting down an energy grid in Europe, a New York Dam, and a power grid in

Ukraine [12, 13, 14]. The number of attacks is directly correlated with the connectivity be-

tween SCADA devices and external networks [11]. By connecting these SCADA systems

6



on-line, the systems have the potential to be made visible to anyone around the world. The

popular search engines ERIPP [15] and SHODAN [16] give anyone with interest the ability

to search for these Internet-facing devices, noting key information about the devices that

can be used to craft an attack [2]. With the constant rise in the number of attacks, as well

as the potential consequences that can be a result, new solutions need to be implemented to

address the lack of security that is inherent within SCADA as a whole. Many SCADA users

assume that by simply implementing a virtual private network (VPN), the control systems

are automatically protected. This, however, has been shown many times to not be the case

[2]. While adding a VPN is an important step to securing SCADA devices a whole, it does

not address vulnerabilities that specifically target process control networks.

Securing SCADA and ICS environments is critical to ensuring the safety of not only

the systems themselves, but also to ensure the safety of the many people around the world

that rely on these systems to live a safe and healthy life. While many research efforts are

focused on addressing the vulnerabilities by means of adding end-to-end communication

security and assurance, it is also critical to take a step deeper and address the protocols

that these systems rely on for communication. There are several key protocols that are

commonly used in SCADA and ICS environments that lack even the most basic security

mechanisms due to the time period of when they were developed and the fact that they were

designed for an isolated network. This thesis focuses on adding security mechanisms to the

Modbus protocol, one of the most common protocols within SCADA that is commonly

used the oil and gas industries, along within many other critical infrastructures. The secu-

rity issues within Modbus are well known, as a large amount of research has been poured

into identifying potential and actual attacks and vulnerabilities [17, 18, 19, 20, 21].

2.2 Modbus Background

Introduced in 1979 by the manufacturer Modicon, the Modbus communication interface

is one of the most popular and widely used protocols in the area of industrial supervisory
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controller and data acquisition (SCADA). To this day, nearly all industrial and automation

equipment vendors continue to support the protocol in their new products [22]. The proto-

col itself was originally created to easily exchange data between programmable logic con-

trollers (PLCs) and other devices on a production floor. The protocol is an open standard,

playing the role of describing the messaging structure while leaving the other aspects of the

communication flexible. This has allowed for the protocol to be leveraged in a wide variety

of devices, ranging from microcontrollers and PLCs, to intelligent sensors and playing a

large role in the Internet of Things (IoT) phenomenon [23]. Modbus can run over virtually

all forms of communication media, including twisted pair wires where it was first lever-

aged, to wireless, fiber optic, Ethernet, telephone modems, cell phones, and microwaves

[23, 22].

Traditionally, Modbus is implemented via a master-slave architecture, where a master

device or server communicates with one, or multiple, slave(s) at a time. Within SCADA, the

master device is typically a PLC, PC, Distributed Control System (DCS), Remote Terminal

Unit (RTU), or Human Machine Interface (HMI). The slave device is typically a field device

that is connected to the network in a multi-drop configuration. This device is typically

connected to the physical world through sensors, actuators, or other forms of PLCs [22].

Within the SCADA environment, Modbus is typically used to provide request and response

message services, allowing for the master to gain insight on the various slave devices. The

four types of messages that are seen within Modbus fall under the categories of (1) request,

(2) response, (3) message confirmation, and (4) message indication.

Figure 2.2: Client Server Communication

1. Modbus Request Message: Usually the master initiates the transmission and sends
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Figure 2.3: Modbus Frame

the request message to the slave

2. Modbus Response Message: Field devices are configured to generate and transmit

a response back to the master that has requested information

3. Modbus Message Confirmation: Upon receiving a response, the master transmits a

confirmation message to the sending slave device

4. Modbus Message Indication: Slave devices generate indication messages that show

the request messages have been received

Within Modbus, only master devices are designed to initiate communication, and slave

devices are designed to only respond to messages that they receive [23]. There are instances

of hybrid devices that act as slaves, but also have write capability [22]. This communication

is visualized in Figure 2.2.

The most common versions of Modbus are Modbus Serial, or RTU, and Modbus/TCP.

Within Modbus Serial, data is transmitted over modem links like RS-232 or RS-485, and is

the original implementation of the protocol. Modbus/TCP, however, has become ever more

popular as it allows for communication over greater distances while taking advantage of

TCP/IP protocols and Ethernet technology. This interaction makes it possible to travel over

routed networks. Within both instances of Modbus, however, there is a common Protocol

Data Unit (PDU) that includes necessary information for the sending and receiving devices

to process the information, visualized in Figure 2.3. The PDU consists of two critical fields,
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a (1) function code field and a (2) data field [23].

1. Function Code Field: The function code field commands the slave device to what

action to perform. There are various functions within Modbus, such as read input

status, read output status, write data, and others that are listed in Table 2.1. The

function code is added in the request message by the master. Once the slave receives

the message, it attempts to perform the requested action, and if unable, it will return

the necessary information.

2. Data Field: The data field contains an arbitrary number of bytes depending on the

function code that is specified and the necessary information for the target device to

perform the requested action. In the case of a read action, the data field might include

the devices memory map in order to read the necessary information. In the case of

a write action, the data field may carry the actual data that needs to be written to the

device.

Figure 2.4: Modbus Frame using Modbus Serial

While the Application Data Unit (ADU) is the same over both forms of media, the Pro-

tocol Data Unit (PDU) differs between Modbus Serial and Modbus/TCP. Within Modbus

Serial, a 1 byte address field is prepended to the PDU, and a 2 byte checksum is appended

to the PDU, visualized in Figure 2.4.

• Address Field: The address field contains one byte of information specifying the

identity for which the message is being directed to or from. The address ranges from
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Table 2.1: Function Codes

Function Name Function Code Description
Read coil or digi-
tal output status

01 The field device responds to the logical coil(s)
ON/OFF status.

Read digital input
status

02 Read discrete inputs from the field device.

Read holding reg-
isters

03 Retrieves the contents of the holding register(s)
from field device.

Read input regis-
ters

04 Retrieves the contents of input register(s) from
the field device.

Force single coil 05 The ON/OFF status of single logic coil is
changed from the field device.

Preset single reg-
ister

06 To change the content of a single holding regis-
ter.

Read exception
status

07 To retrieve the status of eight digital points as a
short message request from the field device.

Loopback test 08 Employs diagnostic features including CRC er-
rors and reports according to exceptions to test
the operation of the system.

Force multiple
coils or digital
outputs

0F To manage the ON/OFF status of the coils (or
group of coils).

Force multiple
registers

10 To change the content of a single register and to
manage a group of coils.

11



Figure 2.5: Modbus Frame using Modbus/TCP

1 to 247, limiting the total number of devices in a logical Modbus network to 246. In

the case where the address is 0, the message is broadcast to all devices instead of a

single device.

• Checksum: The checksum is used for error checking by employing a cyclic redun-

dancy check (CRC) to compute the numeric value of the message. The numeric code

detects errors and changes to the message during transmission. During the process-

ing of the message, if the calculated value of the message and the transmitted value

does not match, then the device asks for a retransmission.

Within Modbus/TCP, the ADU consists of a Modbus application protocol header (MBAP)

to assist in identifying the ADU while the data is carried over the TCP/IP network, visual-

ized in Figure 2.5. The MBAP consists of a 2 byte Transaction Identifier, 2 byte Protocol

Identifier, 2 byte Length Field, and 1 byte Unite Identifier field.

• Transaction Identifier: The transaction identifier field contains two bytes that are

set by the client to uniquely identify each request. The bytes are echoed by the server

in the response to properly identify the response message.

• Protocol Identifier: The protocol identifier field was designed to be used for intra-

system multiplexing. Within the Modbus protocol, the value is always 0.

• Length: The length field identifies the total number of bytes in the message follow-

ing the MBAP.
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• Unit Identifier: The unit identifier field is a single byte used to communicate via

devices such as bridges, routers, and gateways that use a single IP address to support

multiple independent Modbus end units.

Despite these key changes necessary for transmission over the two mediums, upon

receipt, the message is processed in the clear by the end device through the use of the

function code and exception codes, if necessary. The overall flow is visualized in Figure

2.6. Upon receipt of the message, the device performs the following operations:

1. Validate Function Code: The device first checks to see if a valid function code has

been received, and if it has been configured to perform the requested action. In the

case where it does not have the requested capability, an exception is returned to the

sender in a response.

2. Validate Data Address: The device checks the data field of the PDU to see if the

requested data is valid in respect to the mapping of the devices memory map. In the

case where the data address has some error associated with it, an exception code is

returned to the sender.

3. Validate Data Value: The device checks the validity of the data value to determine

if the requested action can be performed. In the case of a write, it will check if the

data value is something can be written before executing the requested action. Again,

in the case where this check fails, an exception is returned to the sender.

4. Execute Function: Once all preliminary checks have been passed, the device exe-

cutes the requested action using the data provided in the PDU. A number of different

exceptions can be returned in the case that an error occurs during the execution.

5. Send Modbus Response: Once execution has been successfully completed, a re-

sponse is generated and sent to the requesting device.
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Figure 2.6: Modbus Transaction State Diagram
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The simplicity in this architecture plays a key role in the overall popularity of this

protocol. Setup and implementation are both easy and straightforward, and because it

can be used in nearly any environment, many vendors and manufacturers do not hesitate

at implementing the protocol in their products and systems [22, 23]. A key feature this

is missing, however, is security. The next subsection outlines how the simplicity of the

protocol has been, and will continue to be, used against it.

2.3 Modbus Attacks and Vulnerabilities

In general, attacks on Modbus can be grouped into three categories: (i) attacks that exploit

the Modbus protocol specifications, (ii) attacks that exploit vendor implementations of the

Modbus protocol, and (iii) attacks that target the infrastructure as a whole, ranging from

the information technology, network, and telecommunication aspects. This work focuses

on attacks are that against the protocol specifications, and thus are common to all Mod-

bus systems and networks that conform to the protocol specifications. There has been a

significant amount of research outlining many vulnerabilities against Modbus, both hypo-

thetical and practical [17, 18, 19, 20, 21]. Additionally, commonly used hacking tools like

Metasploit [24] contain a collection of attacks leveraging weaknesses against the protocol

to perform malicious actions. Many of these attacks take advantage of the simplistic and

open nature of the protocol, and lack of security inherently built in.

There is no way that a Modbus device can distinguish a malicious request from the

proper request that comes from the true sender. As described by the California Energy

Commission this one of Modbus’s critical flaws. ”When the master sends a message to

the field device, it needs to first authenticate the device from which it obtained the packet

and then process the packet. The Modbus protocol lacks this ability and hence middle man

attacks can easily take place in Modbus [17].”

Due to Modbus being a completely open protocol, there are numerous works that show

traditional attack vectors that are present in Modbus [17, 18, 19, 20, 21]. These attacks,
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Table 2.2: Key Modbus Attack Goals

Attacker Goal [19] Severity of Im-
pact

Underlying Critical Vulnera-
bilities

Identify Modbus Device [19] Very Low Lack of Confidentiality
Disrupt Master-Slave Com-
munications [19]

Moderate Lack of authentication

Disable Slave [19] Moderate Lack of authentication
Read Data from Slave [19] Moderate Lack of Confidentiality, Lack

of authentication
Write Data to Slave [19] High Lack of authentication, Lack

of integrity
Program Slave [19] High Possible lack of authentica-

tion, Lack of Integrity
Compromise slave [19] Very High Lack of Integrity, Possible

lack of authentication
Disable master [19] Moderate Lack of authentication
Write Data to Master [19] High Lack of authentication
Compromise Master [19] Extreme Lack of authentication

combined with Man-in-th-Middle (MITM) attacks and replay attacks, can give the attacker

complete control of the entire network, which can lead to catastrophic results.

In 2004, Byres et al. made use of attack trees to further model the various types of

attacks against Modbus, identifying several key goals that an attacker can go after, group-

ing these attacks into the categories of: (i) general attacks, (ii) attacks against the master,

and (iii) attacks against slaves [19]. In 2008, Huitsing et al. further researched attacks

on Modbus and successfully performed and categorized dozens of attacks, finding that a

large proportion of the high-impact attacks involved a form of interception, interruption,

modification, and/or fabrication of control system assets. The attacks were separated based

on attacking either Modbus Serial or Modbus TCP, and 20 distinct attacks on Modbus Se-

rial and 28 distinct attacks on Modbus TCP were found, with many more potential attack

instances [25].

Based on previous research, Table 2.2 outlines key attack goals that are leveraged by
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exploiting the Modbus protocol directly, though there are many others that are not listed.

While many of these attacks require access to the system in order to be performed, gaining

this necessary access has proven to be easier than expected. Tools like ERIPP [15] and

SHODAN [16] show that there are many devices connected directly to the Internet and

openly available to send commands to. Other scenarios have shown that companies tend

to connect these networks with there enterprise networks, thus giving access indirectly

through the Internet. The proposed protocol addresses many of these vulnerabilities and

weaknesses, and will simulate several of these attacks to prove the validity of the solution.

2.4 Related Work

To address the lack of security built into the Modbus protocol, several studies have been

presented that propose solutions by providing authentication and integrity while attempting

to mitigate the various potential attacks. Many of these proposed solutions provide an ad-

equate level of security by using practices that are common in traditional network security.

These proposed solutions, however, fall short in practicality, in large part because they fail

to take into consideration the end systems, which are commonly older and lack the nec-

essary computing power to perform compute intensive cryptographic operations. Others

take these considerations into account, but fall short due to the inability to implement their

proposed solutions, where visibility and monitoring are essential in practice.

Fovino et al. proposed a solution that takes advantage of current security best prac-

tices by focusing on the traditional security requirements of confidentiality, integrity, and

non-repudiation of the message. To provide these guarantees, the authors propose the im-

plementation of a system that uses RSA to encrypt/decrypt messages by using public and

private keys to verify authenticity of messages [1]. This approach, while adding security,

falls short due to the amount of time and processing power that is needed to constantly

perform RSA, making this solution impractical.

More recently, Shahzad et al. proposed a much stronger solution that aims to not only
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improve the security in the communication of the Modbus protocol through the use of

cryptographic tools, but also take into account the limitations on both ends of the protocol,

where systems are much less powerful [26]. This improvement, however, does result in a

shortcoming that would cause issues in practice, in that the secure protocol inhibits visi-

bility in the system as a whole. In many systems currently deployed, visibility is key in

that there are analytical tools employed to ensure the system is performing as intended. To

circumvent this lack of visibility, it would be necessary to deploy even more keys to allow

for the analytical tools to gain insight in the protocol, thus increasing the complexity of the

overall system. Another drawback to the proposed solution is the requirement to change

the overall architecture to support this improvement with the addition of its security devel-

opment module. Without a fall-back solution for older systems which may not support this

change, this solution would cause various issues in practice.

In 2017, Schneider Electric further proposed best practices to secure the Modbus pro-

tocol by taking advantage of TLS to employ tunneling. Beyond the loss of visibility that

was previously mentioned, this solution also has a drawback by failing to accommodate

end systems which may be unable to support the computation power necessary to perform

the necessary encryption.
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CHAPTER 3

MODSEC DESIGN

The proposed research introduces into Modbus a practical enhancement that provides se-

curity to the protocol. The contribution of the ModSec work can be split into two separate

goals: to add security to the protocol itself by introducing a fast, efficient, and practical

methodology for adding authentication and checking the integrity of messages within the

protocol, and to introduce a permission-based scheme to prevent commands that can be

introduced into the network by a nefarious actor.

3.1 Security Enhancements

Traditionally, a communications protocol is deemed to have a base level of security if it

satisfies the requirements of confidentiality, integrity, and availability, commonly referred

to as the CIA triad. These three objectives are traditionally provided through the implemen-

tation of various cryptographic schemes, each with a different impact on the transmission

delay. Within ICS, however, confidentiality is often ranked as the least important [27]. In

systems within ICS, incidents that take the highest priority include the following:

• Blocked or delayed flow of information through ICS networks, which could disrupt

ICS operation.

• Unauthorized changes to instructions, commands, or alarm thresholds, which could

damage, disable, or shut down equipment, create environmental impacts, and/or en-

danger human life.

• Inaccurate information sent to system operators, either to disguise unauthorized changes,

or to cause the operators to initiate inappropriate actions, which could have various

negative effects.
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Figure 3.1: Modified Modbus PDU

• ICS software or configuration settings modified, or ICS software infected with mal-

ware, which could have various negative effects.

• Interference with the operation of equipment protections systems, which could en-

danger costly and difficult-to-replace equipment.

• Interference with operations of safety systems, which could endanger human life.

Based on these potentially critical incidents provided by NIST [27], the primary focus

of this work is to redevelop the Modbus protocol to address potential issues, as well as the

various vulnerabilities that have already been outlined by other research and discussed in

detail in Section 2. In terms of Modbus, the protocol should guarantee: (i) integrity, (ii)

authentication, (iii) non-repudiation, and (iv) replay protection.

3.1.1 Modbus PDU Modifications

To provide these guarantees, the proposed ModSec protocol modifies the PDU that is used

in both Modbus over serial and TCP. The proposed new PDU is seen in Figure 3.1. Because

Modbus is transmitted in an open network, there are numerous vulnerabilities that can

change or corrupt the message. To add authentication and integrity to the communication

channel, the following fields are added to the PDU:

• UID: The proposed protocol requires uniquely identifying the sender of the message.

A one byte field is added to allow for uniquely identifying up to 255 devices, which
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is greater than the current maximum of 247 field devices in a traditional Modbus

configuration.

• Counter: A four byte counter field is added to uniquely identify each message that

is originated from the master node to the slave node. The master node increments

this value for each message that is sent to the slave device. The counter is also used

to track the length of the time the secret key between the master and slave device

lasts. To successfully prevent a potential replay attack, the master must generate a

new secret key with the slave prior to the counter wrapping. If the counter value does

wrap, the master terminates the key and performs the process to create a new secret

key between the devices. Only the master increments this value.

• HMAC: A 16 byte keyed-hash message authentication code is appended to the end

of each message. The HMAC serves the purpose of verifying both the integrity of the

message and the authentication of the message. The HMAC uses the cryptographic

key that is shared between the master and slave device to perform the cryptographic

hash as defined in RFC 2104 [28].

The original size of the Modbus packet is not fixed, but the size of the PDU is limited

due to the original implementation of Modbus using RS232 and RS485. The PDU is limited

to 253 bytes in transmission, which results in the Modbus ADU having a maximum of

256 bytes when transmitting over serial and 260 bytes when transmitting over TCP [29].

The proposed solution uses 21 bytes of the Modbus PDU to add the necessary security

parameters, thus limiting the data component of the PDU to a maximum of 232 bytes.

Because the modifications are limited to the PDU, the implementation will not be affected

by the medium, and is thus easily implemented over Modbus Serial and Modbus TCP.

Two separate security developments have been made to address the different forms of

communication within Modbus, addressing unicasting and broadcasting separately. Uni-

casting occurs when a master sends a message to a specific slave device, which is the most
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common usage of Modbus in production systems. Modbus also allows for message broad-

casting, by which a master sends a message to all slave devices, though this is not very

commonly used in practice. Due to the subtle nuances of the protocol, and the implemen-

tation of cryptographic functions, unicasting and broadcasting must be treated differently.

3.1.2 Modbus Device Certificates

The proposed protocol leverages several different cryptographic algorithms to secure and

verify the Modbus PDU: AES, RSA, SHA-2, and public key cryptography. The algorithms

are used to ensure message authentication, integrity, and non-repudiation. Prior to begin-

ning communication, each device must be undergo an initialization scheme to be added

to the Modbus ”network”. This initialization scheme involves the creation of public and

private keys and X.509 certificates for each device in the network. When adding a new

Modbus master device, the following steps are necessary:

1. Generate the device specific cryptographic keys (private and public key pair) using

RSA.

2. Generate a unique device identifier that will be used as the UID in the protocol. This

identifier needs to be unique in respect to the Modbus network of devices.

3. Identify the permissions this master device must hold to properly operate in the net-

work.

4. Create a X.509 certificate, holding the devices public key, device ID, and permis-

sions.

Similar to the master, each slave device must also undergo an initial setup to be added

to the network of devices, outlined in the following steps:

1. Generate the device specific cryptographic keys (private and public key pair) using

RSA.
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2. Generate a unique device identifier that will be used as the UID in the protocol. This

identifier needs to be unique in respect to the Modbus network of devices.

3. Identify the permissions this slave device must hold to properly operate in the net-

work.

4. Create a X.509 certificate, holding the devices public key, device ID, and permis-

sions.

The proposed initialization process can be done in the devices themselves, or by using

a separate machine. In the case where the process is completed on a separate machine, the

public and private key pairs as well as the X.509 certificate must be securely transfered to

the target device prior to any further action. This secure transfer can be done using secure

transfer protocols like SSH or SFTP, or through off-line measures such as the use of a USB

device.

Following the certificate creation, the master and slave devices must interchange cer-

tificates, where the master would be able to access the certificate of the slave device(s),

and the slave would have access to the master’s certificate. The certificate is important

for determining initial authenticity of the sender of the message, as well as for properly

determining privilege.

Certificate Authority

To further expand the security provided by the use of X.509 certificates in the protocol

would involve introducing a Certificate Authority. By implementing a Certificate Author-

ity, the certificate for each device would be signed and authenticated by a verified entity.

This protection would also prevent any attempts at modifying a certificate, as it would

immediately cause for the certificate authority to become corrupt.

Leveraging a Certificate Authority, however, was not done in ModSec for various rea-

sons. First, introducing and requiring a Certificate Authority would require further inter-
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action with device vendors, as well as constant communication between device vendors

and the user base in order to verify the validity of a certificate, as well as to both issue

new certificates and revoke invalid certificates. The complexity of introducing a Certificate

Authority also largely outweighs the benefits of not having one at all. Beyond relying on

device vendors to correctly implement a system and causing processing delays, assuming

the devices are physically secure, the self-signed certificates that are manually copied to

each device provide the same level of security, as the certificates would not be able to be

successfully modified without causing corruption.

3.1.3 Modbus Secret Key Sharing

In order to successfully ensure the authenticity and integrity of the messages between the

sending and receiving device, the proposed protocol appends an HMAC, otherwise known

as a keyed-hash message authentication code, to each message by hashing the contents of

the message with a secret key shared between the two devices. This key, K, is shared be-

tween the two devices by using the Diffie-Hellman algorithm, which allows for the creation

and sharing of a shared secret over an insecure channel. It additionally allows the devices

to securely share this key without relying on encrypting and decrypting the message.

The key-sharing technique is implemented into the ModSec protocol by using function

codes rather than during the initialization process. Function codes are used because the

key-sharing process will occur multiple times through the life of the protocol, rather than

just at one time during an initial setup. It is necessary to generate a new secret key K each

time the four byte counter value wraps to prevent relay attacks. By allocating four bytes of

data to the counter field, the master and slave devices are able to communicate 232 times

before it would be necessary to exchange keys, but it would also enforce the practice of

exchanging keys.

To properly describe the key-sharing algorithm the following variables are used:
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• Alice = Master device

• Bob = Slave device

• SA = Alice’s private key

• PA = Alice’s public key

• SB = Bob’s private key

• PB = Bob’s public key

• p = prime modulus shared between Alice and Bob

• g = prime base shared between Alice and Bob

• a = secret number chosen by Alice

• b = secret number chosen by Bob

• A = Public number calculated by Alice

• B = Public number calculated by Alice

• KAlice,Bob = Secret shared-key shared between Alice and Bob

To perform the Diffie-Hellman algorithm, Alice initiates a new command that encom-

passes both the prime modulus p and prime base g that will be used by both Alice and

Bob to compute the secret shared key, KAlice,Bob. Through the Diffie-Hellman algorithm,

both of these values, p and g, can be transmitted publicly. To ensure the authenticity of the

message, Alice signs the message using her private key, SA, and the cryptographic hash

function SHA-256 to create a digital signature.

Upon the retrieval of the command to begin the Diffie-Hellman algorithm, Bob first

must ensure the authenticity of the message by verifying the signed portion of the mes-

sage using the Alice’s public key, PA, which was exchanged within the certificate sharing

discussed in the previous section. Assuming the digital signature has been verified, Bob

sends back a message response with the same prime modulus and base, p and g, but signs

the message with his own private key, SB, again using the cryptographic hash function

SHA-256 to create a digital signature.
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A = ga mod p (3.1)

Upon the receipt of the command from Bob, Alice checks the authenticity and integrity

of the message by verifying the signature using Bob public key, PB. Assuming the mes-

sage is verified, the master begins the next step of the Diffie-Hellman algorithm, which is

to select a secret number, a and then calculate the public number A using equation 3.1.

Following this calculation, A is sent to Bob, with the message contents again signed with

SA.

B = gb mod p (3.2)

Bob, following retrieval and verification of the message, also chooses a secret num-

ber, b, and uses it to calculate his public number B using equation 3.2. Following this

calculation, B is sent back to the master. This message is again signed with SB.

KAlice,Bob = Ba mod p == Ab mod p (3.3)

Following the successful transmission of these four messages, the Alice and Bob are

now able to compute the secret key, KAlice,Bob, using equation 3.3. KAB is stored in mem-

ory and is to be used for operations moving forward. This key remains valid until the

counter wraps, or the master sends a request to begin the key sharing process again.

3.1.4 Modbus Message Transmission

Following the successful creation of the shared secret key, the two devices are able to

commence communication similar to the traditional Modbus protocol. The overall flow,

however, has additional security measures prior to transmitting a new message as well as

prior to processing a received message.
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Unicasting

Figure 3.2: ModSec Cryptographic Model for Unicasting

Unicasting is the most common form of messaging within Modbus. The flow of uni-

casting, however, is different than broadcasting. In the case where the master device is

unicasting its messages, or sending a message to a specific device, the new process follows

a state diagram outlined in Figure 3.3. The cryptographic model that is followed is also

visualized in Figure 3.2 with the following parameters:

• M = Contents of the message being transmitted. This information includes the Func-
tion Code, Data, ID, and Counter Value.

• K = Shared cryptographic key between the sending and receiving device, previously
referenced as KAlice,Bob

• H = HMAC Algorithm defined as:

HMAC(K,m) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||m)) (3.4)

The specific implementation of the cryptographic functions is as follows:

1. The master prepares to send a new message, M, to the slave device by selecting

a function code, gathering the necessary data, retrieving the device identifier, and

incrementing the message counter value.

2. The SHA-2 hashing function is deployed on the contents of the message M, using the

secret cryptographic key K that is pre-shared between the master and the anticipated

slave device. The result is appended to the message.
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3. Upon receiving the message, M, at the target device, the device uses the SHA-2

hashing function with the secret key, K, from the sender of the device to verify the

authenticity and integrity of the message.

4. Assuming the message is correct, the device next checks the certificate of the sender

to determine if it has permission to perform the requested action.

5. If all checks are passed, the function is executed, and the response is generated,

following the steps 1 and 2.

The outlined parameters succeed in cryptographically ensuring both the authenticity of

the sender and the integrity of the message by using the shared secret key between the two

devices. Additionally, by leveraging the certificate that is shared between the two devices

during the initial setup, authorization is added. In the case where these checks fail due to

an invalid hash, the certificate does not exist, the secret key does not exist, or the message

is invalid (can potentially occur if the device is not correctly configured to use the proposed

protocol), the necessary error code is returned to the sender. These additional errors codes

are outlined in Table 3.1.4.

Broadcasting

In scenarios where the master needs to broadcast a message to all devices on the network,

the proposed solution does not follow the same process as in the unicasting scenario. Within

unicasting, the sending and receiving devices use a symmetric key shares only between the

two devices to perform the hashing and ensure authenticity and integrity. In broadcasting,

however, it would be infeasible to share another key across all devices in the network.

Instead, the master signs the message contents with its private key, and appends the contents

with the message as seen in Figure 3.4. This solution continues to provide the same level

of security. Authenticity is guaranteed because the master is the only entity able to sign

with their private key, and the receiving slave is able to verify by the master through its
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Figure 3.3: Modified Modbus Transaction State Diagram

29



Table 3.1: New Error Codes

Code Name Description
0C Illegal Message The query is missing parameters to make the

message valid, potentially the the uid, counter,
or HMAC that was introduced in the proposed
protocol

0D Invalid Hash When the receiving device attempts to calculate
recalculate the hash, it fails to match that which
was sent. Error can occur if there was an error
during transmission, a third party attempted to
change the data sent, or the user is not who they
claim to be.

0E Invalid Certifi-
cate

When the receiving device tries to check the
certificate of the sending device and it is either
missing or invalid due to tampering. The initial-
ization process will need to be completed again
to address this error.

0F Insufficient
Permission

When the receiving device checks the permis-
sion of the sender before performing the action
and it has been determined that the sender does
not have permission to perform the requested
action.
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Figure 3.4: ModSec Cryptographic Model for Broadcasting

public key. Similarly, any attempted modifications to the message would discovered with

the difference during hash comparison.

A return message from the slave device to the master device does not have to be created

because slaves do not traditionally respond to broadcast messages.

In the case where a certificate authority is introduced, it could potentially become more

practical to use the same solution provided for unicasting, except additional latency would

be added by constantly communicating with the certificate authority.

3.2 Permission Schema

To further enhance the security of the Modbus protocol, ModSec also incorporates a per-

mission scheme to limit devices in the actions that they can perform. As defined in the

protocol description [29], function codes fall under the category of either public, user-

defined, or reserved by a company or legacy product. Within these categories, the majority

of the functions are for the operations of either reading data from a device or writing data to

a device. In a Modbus network, only specific devices should have permission to do perform

these actions, however. If a nefarious actor were to become apart of the network and send

commands to devices, there would be unanticipated and potentially harmful results. If the

requested command were to read data, critical information relating to the overall network,

or the process that device is connected to, can easily be obtained. By leveraging the di-

agnostics commands, a third party could easily identify other devices that are apart of the
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Modbus network, which is key to the reconnaissance phase of an attack. If the third party

were to request a write command, the resulting device has the potential to close an actuator,

or rewrite memory or data that is key to the system’s overall success. This can also lead to

the potential of completely rewriting a program on a PLC or the PLC’s entire firmware to

execute a remotely triggered attack, in which the effects could be monumental [9, 30].

To address these potential issues, each device is assigned their permission through the

initialization process outlined in Section 3.1.2, and these permissions are stored through

the lifetime of the device. Once a request has been received and verified, the end device

would first check to see if the sender has permission to perform the requested action prior

to performing the action and returning any data. In the case where the user does not have

permission, a related error code is returned to the sender.

To implement the proposed schema, the permissions are stored on the device along side

its public and private keys in a certificate. Introduced in version 3 of X.509, extension

fields are allowed to be added to the certificate [31]. These extensions can be custom, as

long as is follows the guidelines as prescribed in RFC 3280 [31]. The schema incorporates

two custom fields to successfully save and permission information: a permission field and

a device identifier field.

The permission field stores 3 bits that are translated to READ-WRITE-CUSTOM. In

the first digit, a 0 or 1 is used define if the device has permission to perform read operations

from the device. In the second digit, a 0 or 1 is used to define if the device has permission

to preform write operations on the device. In the third bit, a 0 or 1 is used to determine if

the device has permission to perform user defined, or reserved, functions.

The device identifier is used to store the identifier of the respective device, and is used

to lookup the permissions of the requesting device. Storing the device identifier here makes

it possible to easily share these certificates across devices and securely maintain the per-

missions that have been defined during the initialization process.

This extensions field is both a convenient and a secure place to store this information.
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Any attempt to modify the certificate, whether the public key or the permissions, causes

corruption in the certificate itself, and will return an error code as defined in Table 3.1.4.

Additionally, when sharing the certificate with other devices, it is possible to retain these

permissions without having to introduce a completely new storage solution for this critical

information.

In order for a malicious actor to change these permissions, the actor not only has to

sniff the network to learn about the various devices, she/he also must gain physical access

to each machine in the network to modify the certificates, a task that is extremely difficult.
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CHAPTER 4

MODSEC IMPLEMENTATION AND EVALUATION

The Modbus protocol has been implemented in hundreds of thousands of devices around

the world, ranging from the open source community, to the Modicon group, to the vendors

of SCADA devices themselves. While there are numerous attacks that can be potentially

leveraged on the many different implementations, the focus of this thesis is aimed to ad-

dress concerns within the protocol itself. To modify the protocol to meet the specifications

described in the previous section, the open-source Modbus library libmodbus was modified

to display the impact of the proposed protocol, as well as to evaluate the expected perfor-

mance changes that have arisen. The key changes included the addition of new function

codes to perform the cryptographic key sharing, changes in the protocol and flow to support

the additional bytes of the PDU and checking the validity of data, and permission checking

by leveraging the certificates that are generated on each machine.

4.1 Public Key and Certificates

Prior to implementing the protocol and beginning communication, it is necessary for each

device to create their public and private keys, as well as create the certificate that is used to

validate the communication. Following the creation of the certificates, the use of a secure

channel is necessary to transfer the certificates to the device. The secure channel can be

created by leveraging popular protocols like SSH or SCP, or by transferring the certificates

off-line.

To perform the creation of the public key and certificate, the commonly used library

OpenSSL is leveraged. OpenSSL is used commonly to secure communication in many

communication schemes, and provides the ability to generate both public and private cryp-

tographic keys as well as the necessary X.509 certificates. The OpenSSL library is openly
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available to download and use on a system. The size of the library is large and the process

of building OpenSSL requires a a lot of memory, so the creation of the certificates can be

done on a machine that is separate from the target machine. Once the OpenSSL library has

been installed on the machine, it is possible to create the certificate using a series of com-

mands and a custom configuration file. Appendix A shows an example configuration file

that is used to create the certificate. In the configuration file, two unique fields are created

with an OID of ”1.2.3.4.5.6.7.8” and ”1.2.3.4.5.6.7.9”, which are both arbitrarily chosen

for uniqueness. According to the standard, it is necessary that this value does not collide

with other commonly used OID’s, though because the certificate is used in a closed setting,

it is not necessary to undergo the process of registering the value. These values are both

defined using the ANS.1 format, where both values are stored as UTF8 strings that can be

later parsed. The device identifier in the example is set as the value 12. The permissions are

configured as 111, which translated to having the permission to perform the operations of

READ, WRITE, and OTHER. The other information in the configuration file is added for

completeness, but can be modified for accurate usage during implementation. When cre-

ating the certificate for the protocol, it is necessary to ensure that the device id is a unique

value within the network.

To generate the certificate files, the following OpenSSL command can be issued, result-

ing in the certificate files:

Listing 4.1: OpenSSL Generate Certificate Files

openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout

cert.key -out cert.pem -config req.cnf -sha256

The command expects the configuration file to be named as ”req.cnf”, though this can

be easily changed. The output of is a key file and a pem file that is generated using the

RSA algorithm with a 1024 bit key and the SHA-256 algorithm. The certificate is also

valid for 1 year, or 365 days, though this value can also be changed. To examine the
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resulting certificate file, the commands differ depending on if the generating machine is a

Unix machine or a Windows machine.

In the case where the machine is Unix-based, the following command prints out the

certificate file in a readable format:

Listing 4.2: OpenSSL Visualize Certificate File (Unix)

openssl x509 -in cert.pem -noout -text

The command prints out all of the data in a readable format. The necessary protocol

information is printed under the X509v3 extensions section, where under the section with

our custom OID ”1.2.3.4.5.6.7.8”, both the device identifier and the permissions are visible.

In the case where the machine is Windows-based, it is first necessary to convert the

PEM file into a format that is readable by Windows. The tool CertUtil [32] is a command

line tool that is commonly pre-installed on Windows machines because it plays a critical

role in Certificate Services. The tool can be leveraged to convert the format to the CER file

format through the following command:

Listing 4.3: OpenSSL Visualize Certificate File (Windows)

CertUtil -decode cert.pem cert.cer

Following the conversion, it is possible to now simply open the file, where the details

show all information of the certificate, including the necessary device identifier and per-

missions that were initially assigned.

Upon the completion of the generation of the certificate, it is necessary to move the files

to the target machine through a secure method. Assuming devices are on the network, it is

possible to use either secure copy (SCP) or the secure file transfer protocol (SFTP) to move

the files from the primary machine to the target machine. In the case where the devices

are not on the network, other secure methods, like using a USB key, can be leveraged to

also move the files. Insecure methods like telnet, however, cannot be used due to the fact

36



that if a nefarious actor were to be in the network, they would now also be privy to the

certificate file, thus giving them the necessary information to extract messages and pretend

to be another device.

4.2 Key Exchange

Two of the key additions to the Modbus protocol rely on successful cryptographic hashing

the data, and performing validation of the received data. To implement these forms of se-

curity, it was necessary to implement two new function codes to perform the cryptographic

key exchange. By leveraging the logic that is involved in the Diffie-Hellman algorithm, it

is possible to secretly share a key between two parties on an open network.

Figure 4.1: ModSec PDU for Key Exchange

Performing the Diffie-Hellman algorithm is completed by introducing two unique func-

tion codes, 100 and 101, to complete the two part exchange between the master and slave

devices. Unlike the original PDU that is described in Figure 2.3, or the modified PDU

described in Figure 3.1, function codes 100 and 101 will create a PDU that is described

in Figure 4.1. Because the two devices have not already posses a valid secret key shared

between them, the only way to validate the messages are both authentic and maintain in-

tegrity is for the sender to sign the message contents with its private key. The two devices

have already shared their certificates, allowing for the device to use the senders public key

to verify the contents of the received message. The following subsections further describe

the two new function codes, including expected responses.
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4.2.1 Function Code 100 (0x64): Begin Key Sharing

The function code 100 is used to begin the Diffie-Hellman algorithm between a master

(Alice) and slave device (Bob). Alice must first generate, and then send a prime and a

primitive root of the prime, along with the message digitally signed by the private key to

Bob. A normal response from Bob is the same prime and primitive root sent by Alice,

however signed with his own private key. Upon receipt, the two devices begin the first step

of the Diffie-Hellman algorithm. A normal request and response scenario is outlined below.

Request

Function Code 1 byte 0x64
Public (Prime) Modulus 8 bytes Calculated by the master
Public (Prime) Base 4 bytes Calculated by the master
Signed Message 256 bytes Calculated by master

Response

Function Code 1 byte 0x64
Public (Prime) Modulus 8 bytes Calculated by the master
Public (Prime) Base 4 bytes Calculated by the master
Signed Message 256 bytes Calculated by slave

4.2.2 Function Code 101 (0x65); Complete Key Sharing

The function code 101 is used to complete the Diffie-Hellman algorithm between a master

(Alice) and slave device (Bob). This function code is used in combination with the previ-

ous function code introduced to allow for the two devices to successfully share the secret

cryptographic key. Assuming the first part of the key sharing algorithm has been com-

pleted, Alice originates the next message, which contains her newly calculated public key

(in respect to the Diffie-Hellman algorithm) to Bob. A normal response from Bob is to send

its newly calculated public key (in respect to the Diffie-Hellman algorithm). Upon receipt,

the two devices are now able to use the received values to complete Diffie-Hellman with a
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calculated secret key. This secret key is now stored in memory and used for all operations

from this point on. A normal request and response scenario is outlined below.

Request

Function Code 1 byte 0x65
Public Number A 8 bytes 0x0000 to 0xFFFF
Signed Message 256 bytes Calculated by master

Response

Function Code 1 byte 0x65
Public Number B 8 bytes 0x0000 to 0xFFFF
Signed Message 256 bytes Calculated by slave

4.3 Modified Code Flow and Structure

To implement the ModSec protocol, the open source software libmodbus [33] was lever-

aged as a starting point. Libmodbus is an actively developed project that is freely available

on Github [34] to modify, as well as contribute to. The implementation is based on the

Modbus specifications [29], and has numerous pulls and stars, proving that the project is

actively used in the open source community, potentially in commercial industries as well.

A large portion of ModSec relies on the presence of a shared key between two entities.

To implement this process, two function codes were implemented as described in section

4.2. The function codes were added to the source code similar to the other function codes

that are previously available in Modbus. To provide cryptographic security to the messages,

OpenSSL was also leveraged. In the case of both function code 100 and 101, the neces-

sary changes to the Modbus PDU occur at the end of the PDU, and by taking note of the

requested function code, the necessary changes are simply appended.

In the case of function code 100, where the master (Alice) initiates the key sharing

process, Alice leverages the Diffie Hellman portion of the OpenSSL library to generate the

initial parameter necessary for the algorithm. Both of these values are stored internal to the
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program as a part of the entire Modbus context, and both the numbers are also appended

to the message. Following this, the Alice digitally signs the message by using another

portion of the OpenSSL library and the parameters that were initially defined in the devices

certificate file.

Upon the receipt of this message, the recipient (Bob) first verifies Alice’s message

through the same digital signature process and by using Alice’s public key, which was

shared in the certificate file. Bob then saves these two initial parameters to his Modbus

context, and returns the data, except with his own signature. The two values must be the

same in order for the Diffie Hellman algorithm to work as intended. With the use of the

two OpenSSL methods, the first phase of the Diffie-Hellman algorithm is completed.

In the case of function code 101, where the master (Alice) intends to complete the

Diffie-Hellman algorithm began with function code 100, the code flow is again similar to

that of the initial Modbus protocol. The changes are again appended to the message after

the function code, and thus no changes to the overall code flow are necessary to begin with.

Prior to sending the message, however, the first check is to confirm that the generated Diffie

Hellman parameters, the prime modulus and prime base, are stored internally. Next, the

OpenSSL library included the method ”EVP PKEY keygen” to create the public key that

is to be shared with Bob. This key, again stored locally in the Modbus context, is appended

to the message, followed by the digital signature of the message. This message is then sent

to Bob.

Once the slave (Bob) receives function code 101 from the master, it verifies the message

through the signature using OpenSSL as before, and then uses OpenSSL to generate its own

public key to be shared. Along with signed and sending the message back to Alice, Bob

also uses his newly generated public key and Alice’s shared public key to create the private

key using the OpenSSL function ”DH compute key”. Once Alice receives and verifies

Bob’s message, Alice also uses the function ”DH compute key” to calculate the same key.

This private key is then saved internally and used for all future messages between Alice
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and Bob.

Upon the successful sharing of the secret key, the code flow changes to check the au-

thenticity, integrity, and permission of each message prior to actions. Failure to pass these

checks result in an error code being returned.

Throughout the lifetime of each Modbus server instance, their is a context that is used

to saved certain key variables. In addition to public and private keys as described above,

variables such as a the counter are saved and updated upon sending and receiving of mes-

sages from devices. The file ”modbus-private.h” is used define the protocol information

including the header, ADU, and checksum that is implemented when using both Modbus

RTU or Modbus/TCP.

To add security against various forms of integrity attacks, the counter plays a key role

in ensuring messages below the current count are not replayed, thus acting as a window

similar to that as described in the anti-replay sub-protocol that is used in IPsec. Upon

the receipt of each message, a check to confirm the validity of the message is done by

comparing the message’s counter value with the current received counter value. If the value

is lower than the last received message, then the message will be returned with an exception

code, displaying that the message is invalid. This counter variable is only incremented by

the master, and does not have the ability to decrement. It is, however, reset during the

key exchange process. Because the size of the counter field in the ModSec protocol is 32

bits, once the value wraps, all messages will automatically be marked as invalid due to

this check. This is, however, the intended nature by forcing a new key to be exchanged

when this wrapping occurs, thus preventing potential replay attacks that can occur when

the values wraps. This check occurs prior to the sending of any messages.

The newly modified code flow is best depicted in Figure 3.3, where each additional

check is outlined in detail. ModSec introduces several key steps to verify the message, all

of which occur prior to a successful read or write action. To successfully add these security

features, several functions were created and added to the code flow. Upon the successful
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Figure 4.2: ModSec Write Register in Wireshark

validation of authentication, integrity, and permissions, the the resulting traffic resembles

that of Figure 4.2 and Figure 4.3. In Figure 4.2, the master sends a command to the slave

to ”write single register”, but appended to the data to write (00 00 00 00) is also the UID,

counter, and HMAC that is appended to the original Modbus message. Similarly, in Figure

4.3, a slave received a command from the master, and upon checking and validating the

messages authenticity, integrity, and permissions, it performs the ”read holding registers”

command, and thus returns the requested data.

The first function added to the code base, entitled modbus calculate counter, serves the

purpose of ensuring the validity of the shared key. As described earlier, the secret key is

only to be used for a limited number of iterations before needing to be expired and replaced

with a new key. The counter variable is stored in the overall Modbus context and is updated

prior to each message, thus easily accessible. In the case where the counter is too high, an

error code is sent in place of the desired message, notifying the sender and receiver that it

is necessary to create a new secret key.

The next function, entitled modbus calcaulate hmac, calculates the Hashed Message

Authentication code that is to be appended to the message prior to sending. To calculate the
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Figure 4.3: ModSec Read Register in Wireshark

HMAC, the open-source library OpenSSL is leveraged. Using the library, it is possible to

both sign and verify the signature with the secret key that is shared between the sender and

recipient. In the case where no key is shared, the error code OE is sent by the sender instead

of the message, notifying the sender and recipient that the message cannot be sent due to

an invalid secret key. In the situation where the key is valid however, it is used with the

message to create a signature that is then appended to the message. The library leverages

the SHA256 algorithm, resulting in a 32 byte hash digest. As noted in the Figure 3.1,

ModSec uses 16 bytes for the HMAC, not 32, thus requiring for the digest to be truncated

to 16 bytes. The HMAC RFC [28] defines that truncation of the digest is valid as long as

the output length is not less than half of the hash output, as well as over 80 bits; thus the

truncated hash digest is both valid and secure. The truncation is performed by using the

32 leftmost bits of the hash, also which is recommended in the RFC. The results of this

function are used for both appending the hash digest to the message, as well as to verify

the security of the message as whole.

Following the change in the structure, it was necessary to implement the HMAC code

to both perform the hashing operations on the message structure, as well as to verify the
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validity and authenticity of the structure. By leveraging the OpenSSL library, the HMAC

portion of the code was used to perform the keyed-hashing operation on the message prior

to sending the message, as well as upon receipt of a message to confirm validity.

While using an HMAC provides the security guarantees as described in Chapter 3, it

was also discussed that in the case of sending a broadcast message, using an HMAC would

become impractical due to the substantial number of keys that would be required. To add

security to this form of messaging, the sending device signs the message with its private

key, and the receiving device uses the sending devices public key to verify its authenticity.

Prior to sending the message, the UID of the device, the counter of the message, as well

as the HMAC is added to the end of the message.

Upon the receipt of the message, the OpenSSL library is again leveraged to now verify

the authenticity and integrity of the received message. By removing the appended HMAC

from the received message and then calculating the hash digest, leftmost 16 bytes of the

hash digest are compared to that which is transmitted. In the case where their is a mismatch,

then it is known that an error occurred during the transmission of the message, and an error

code is sent as a response. While the cause of the transmission error is unknown, any

further actions are stopped, preventing any unintended or malicious events from occurring.

Prior to any execution of any action, it is necessary to check the device requesting said

action has the proper permissions. Assuming the certificates were exchanged properly. the

certificate can be parsed using the X.509 portion of the OpenSSL library.

When parsing through the certificate, it is necessary to validate the certificate. Because

the protocol uses self-signed certificates instead of leveraging a certificate authority, the

primary form of validation is the issuance and expiration dates.

Following this confirmation, the next goal is to validate the device has permission to

perform the requested action. Within OpenSSL, it is possible to parse the stack of X.509

extensions. In the example certificate, the OID of ”1.2.3.4.5.6.7.8” was chosen to represent

the device ID, and the OID of ”1.2.3.4.5.6.7.9” was chosen to represent the permission.
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Figure 4.4: ModSec Invalid Hash

During this check, the value, which is stored in ANS.1 is parsed and converted to a string,

which is then parsed to determine if permission is granted for the command.

Assuming all of the additional security parameters have passed successfully, the Mod-

bus protocol will proceed as intended and uninterrupted, allowing for all of intended actions

to be performed successfully. The overall code flow does not change greatly, and with the

small footprint of authentication, integrity, and permission checks, the overall security of

the protocol is increased greatly. In the case where one of these checks security checks

fail, however, an error code is instead transmitted, preventing any incorrect or malicious

activity from occurring. Figure 4.4 shows an example of Wireshark traffic where an error

does occur. In the example, the transmitted hash was not incorrect, thus resulting the an

error code and no further action. The modified source code of libmodbus can be found on

Github in my public repository [35].

4.4 Wireshark Modifications

In order to properly display the packets in Wireshark, several modifications to Wireshark

were necessary. Due to the open-source nature of the source code, it was possible to down-
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load the code from GitHub and make modifications directly. In order to make the mod-

ification, it was necessary to create a custom dissector, through which the purpose is to

accurately identify and display the protocol. Using the already provided source code as a

guide, creating the dissector involved noting various protocol fields, lengths, and expected

types and results. The source code is provided also in my public Github repository [35].

4.5 Performance Variances

To properly measure the performance of the proposed protocol, the following section eval-

uates both the changes in message size, as well as the efficiency of the proposed crypto-

graphic algorithms in comparison to encryption the message as a whole, as suggested by

other works.

4.5.1 PDU Size Changes

Function Modbus TCP ModSec Overhead
Write Coil (0x05) 11 bytes 32 bytes 191%
Write Register (0x06) 12 bytes 33 bytes 175%
Write Multiple Coils (0x0F) 260 bytes 281 bytes 8%
Write Multiple Registers (0x10) 260 bytes 281 bytes 8%

Table 4.1: Comparison of packet size.

To add the necessary security measures to the protocol, several bytes were added to the

PDU of the Modbus message, including a 1 byte UID, 4 byte counter, and a 16 byte HMAC.

While adding these additional fields does not extend the maximum size of the PDU, it does

increase the overall size of the message transmitted. Because the maximum PDU size is not

changed, the transmission of the message will not cause for the packet to exceed the size

of the maximum transmission unit (MTU). There will, however, be a longer transmission

time based on the larger packet size, though this speed will be based on the transmission

medium. Table 4.1 shows a comparison in packet size of commonly used Modbus function
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codes, and shows that while there is a difference, the amount of communication latency

should not be noticeable.

4.5.2 Processing Time and Cycle Count

By introducing cryptography to the Modbus protocol, it is necessary to measure the real-

world performance of the cryptographic functions in order to properly evaluate the effi-

ciency of the protocol. To measure the efficiencies of the algorithms chosen, speed bench-

marks provided by [36] are used to display the overall affect on the transmission and han-

dling of messages. The benchmarks provided were calculated using a Skylake Core-i5 with

a CPU frequency of 2.7e09Hz.

Digital Signature

Function # of Bytes Clock Cycles (Signing) Processing Speed (Signing)
Write Coil (0x05) 16 bytes 70,150 Cycles 1.03 milliseconds
Write Register (0x06) 17 bytes 70,159 Cycles 1.03 milliseconds
Write Multiple Coils (0x0F) 265 bytes 72,486 Cycles 1.04 milliseconds
Write Multiple Registers (0x10) 265 bytes 72,486 Cycles 1.04 milliseconds

Table 4.2: Digital Signature Performance on Common Modbus Functions.

To create a secure digital signature for authenticating the message through various por-

tions of the protocol, the SHA-256 hashing algorithm was employed with the 2048-bit RSA

signing algorithm. To evaluate the overall performance of both the signing and verifying

processes, each algorithm is measured separately.

The SHA-256 hashing algorithm is incorporated to first perform a hash on the message

contents. The cryptographic hash of the message is used for the signature creation to reduce

the mutability risk for the RSA signature, as well as to creating the RSA signing process

more efficient. The hashing process for SHA-256 takes an average of 9.38 cycles per byte,

or 275 MiB/second.
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The RSA signature scheme is then employed to create the secure digital secure on

the hash of the contents of the message. For signing a message, RSA takes an average

of 2.78 Megacycles for each operation, or approximately 1.03 milliseconds per operation.

For verifying the signature of the message, RSA takes an average of 0.07 Megacycles, or

approximately 0.03 Milliseconds per operation. Table 4.2 shows the estimated average

number of clock cycles and transmission speed to create and verify the digital signature

appended to the contents of the message.

The process of creating a digital signature for a message occurs in two instances: for

performing the cryptographic key sharing and for signing messages that are broadcast from

the master to all slave devices.

In the example of a master broadcasting a message to the slave devices, the processing

time and speed for the write coil commands is as follows. To perform the SHA-256 hash

on the 16 byte message would take approximately 55.49 nanoseconds. By adding this

time to the 1.03 milliseconds for the signing of the message, it would take approximately

1.03 milliseconds. Once the device received a message, the signature must be verified as

valid. As for the verification of the signature, the process would take approximately 0.0301

milliseconds for the 16 byte message. Table 4.2 shows the performance calculations for

performing the digital signature process prior to the transmission of each message.

HMAC

Function # of Bytes Clock Cycles Processing Speed
Write Coil (0x05) 16 bytes 150.72 Cycles 55.89 ns
Write Register (0x06) 17 bytes 160.14 Cycles 59.34 ns
Write Multiple Coils (0x0F) 265 bytes 2496.3 Cycles 925.72 ns
Write Multiple Registers (0x10) 265 bytes 2496.3 Cycles 925.72 ns

Table 4.3: HMAC Performance on Common Modbus Functions.

Implementation of the HMAC algorithm involves not only the hashing of message and

the key, but also requires the setup of the Setup Key and Initialization Vector. In cryptog-
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raphy, an initialization vector is a fixed-size input to a cryptographic primitive that is either

random or pseudo-random. In the proposed protocol, the HMAC uses SHA-256 with a

128-bit key to ensure the necessary security measures. For this algorithm, the averages

amount of clock cycles necessary to setup the initialization vector is 590, or approximately

0.219 microseconds. The hashing process takes an average of 9.42 cycles per byte, or 273

mebibytes/second.

The calculation of performing the HMAC on the message occurs prior to sending each

message in the protocol, as well as on the receipt of each message to ensure the authenticity

and integrity of the message. Table 4.3 shows the calculated average number of clock

cycles and transmission speed to perform the HMAC on commonly used commands within

the Modbus protocol. To use the Write Coil function code as an example, the message

would contain a total of 16 bytes within ModSec, prior to appending the result of the

hashed message. To perform the keyed hash on the message would take approximates

55.89 nanoseconds. Including the time it would take to setup the initialization vector, the

average time for transmitting the message would be approximately 274.89 nanoseconds.

Within the HMAC algorithm, however, the initialization vector is static, meaning that the

setup of the initialization vector would only occur once. Thus, the average time for each

message transmission is only 55.89 nanoseconds added, a small time sink for adding both

authentication and integrity to the message.

Overall Impact

ModSec does not introduce encryption into the protocol because of the heavy dependencies

that are required, as well as the heavy toll and delays that would be caused by constant

encryption. Considering the age and processing power of many of the devices that use

Modbus, avoiding encryption while adding necessary security measures were key to the

design of ModSec.
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4.6 Attacks on Modbus

In order to measure the performance of the new schema, several attack scenarios were

designed to disrupt the normal flow of communication. Many of the attacks and vulner-

abilities that were discussed in Section 2 are openly available using tools like Metasploit

[24], or can be easily replicated using common open source networking and penetration

testing tools. To evaluate the effects of these attacks, as well as to prove the validity of the

proposed protocol, the basis of many of the common attacks on the Modbus protocol have

been replicated using both the traditional Modbus protocol as well as ModSec. Attacks that

are made by leveraging the lack of confidentiality are not addressed in the proposed proto-

col, though this is a calculated limitation that should be addressed by other security means.

As described in NIST’S guide for ICS security [27], confidentiality is the least important

aspect of security in respect to SCADA and ICS systems, and by implementing encryption

to defend against this weakness, the solution can become impractical to systems that are in

production.

4.6.1 Man-in-the-Middle Attacks

Based on the open nature of the Modbus protocol, once an attacker gains access to the net-

work, viewing the traffic and gaining information on the network is extremely trivial. Using

openly available Modbus scanning tools like ModScan [37], the protocol can be leveraged

to quickly discover available slaves within the network, which is key to the reconnaissance

phase of an attack. Due to the lack of security in the current protocol, particularly the lack

of authentication, performing a man-in-the-middle attack is possible and one of the most

potentially harmful potential on the Modbus protocol. In a man-in-the-middle attack, the

attacker logically takes measures to trick the communication to flow through itself and then

to the targeted device, rather than from the sender to the targeted device itself, as seen in

Figure 4.5. Within Modbus, the target machine has no indication that the message came
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Figure 4.5: Modbus Server/Client Test Setup

from the master, or anyone else, and is configured to simply perform the task if possible,

and return a response. Based on this nature, an attacker can intercept messages on the

network, and send harmful messages to a slave by posing as a master.

To explain this scenario, 3 workstations were configured on a network to simulate the

attack as follows: (1) a master workstation running Windows 7 and Modbus Poll [38]; (2)

a PLC workstation running a standard Linux Debian Operation System and ModbusPal

[39]; and (3) a simulated attacker workstation running Kali Linux. Using Modbus Poll,

an open-source tool provided by Modicon to allow the simulation of a master device in a

Modbus/TCP network, and ModbusPal, another open-source tool used to allow the machine

to act as a slave and visually display the changes the of the internal data, machines 1 and

2 are able to communicate using the traditional Modbus protocol over TCP. The master

is able to perform traditional actions in a Modbus environment like settings coils, reading

and writing data, performing diagnostics, and various other tasks as defined by the Modbus
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Figure 4.6: Modbus Server/Client MITM Traffic

protocol [29].

To demonstrate the man-in-the-middle attack, the third workstation is configured on the

network with the intent of maliciously modifying the target machine. This workstation is

configured using Kali Linux, which is a Debian-based Linux distribution configured with

various, open-source networking tools aimed to assist in performing penetration testing

and security auditing. Because the workstation being within the network, with the help of

Wireshark, the it is able to passively view the network traffic between machines 1 and 2. To

perform the MITM attack itself, the tool Ettercap was leveraged to allow the workstation

to insert itself in the middle of the communication. Ettercap is an open-source networking

tool that is focused on performing man-in-the-middle attacks on a LAN. Within Ettercap,

the following steps were performed to exploit the open Modbus communication channel

between workstation-1 and workstation-2:

1. Enter unified sniffing mode, allowing the tool to sniff network packets and gain in-
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sight on the overall network.

2. Scan over hosts, allowing the tool to find both the master workstation and the PLC

workstation. The results of the scan include the MAC addresses of the two devices

on the network.

3. Use the retrieved MAC address to leverage ARP poisoning. The result of the ARP

poising/spoofing is the linking of the attackers MAC address with the IP address of

the legitimate computer on the network, evident in Figure 4.6

4. Create an Ettercap filter to modify Modbus TCP communications coming from the

Master workstation with a destination of the PLC workstation.

Ettercap allows for the user to create a filter to further sort the data and modify the

network packets. The example below in Listing 4.4 shows a small code snippet that was

used to change a message from the master to the slave device, commanding for coil to be

turned on. The code snippet captures this message, and modifies it forcing the slave to

instead turn off the coil. In a real world scenario where the coil may be connected to an

actuator, flipping this value obviously can lead to a detrimental situation.

Listing 4.4: Example Ettercap Filter

if(ip.proto == TCP && tcp.dst == 502) {

if(search(DATA.data, "\xff\x00") {

replace("\xff\x00", "\x00\x00");

}

}

With the help of Ettercap, the attacker (workstation-3) is able to successfully modify

commands sent from the master device to the slave device. A simple example is where the

master sends a write command, aiming to set the value of a coil to a specific number, but the

attacker is able to successfully change the response nefariously. With this setup, the master
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is completely unaware that this extra activity is going on, and with further configuration,

Ettercap would be able to respond to the master with the relevant information to further

trick the device into believing all operations are performing as intended.

While straightforward, this simple example outlines one of the largest weaknesses of

the Modbus protocol. MITM is the basis for many of the attacks that have been outlined

in the numerous attack taxonomies on the protocol itself, and outlines the importance of

introducing authentication to the protocol itself. While some research suggests relying on

intrusion detection systems and firewalls, even these studies show that an advanced attacker

can bypass the protections afforded by these solutions, and thus successfully modify com-

mands sent to these critical systems. Once inside the network, creating firewalls to find and

prevent this communication will be nearly impossible, as it trying to differentiate malicious

traffic from legitimate traffic would be extremely difficult.

ModSec addresses this attack directly with its security implementation. Once config-

ured as described in previous sections, the communication channel between workstation-1

and workstation-2 becomes secure and insusceptible to this form of MITM attacks. Follow-

ing the same process described using Ettercap, performing ARP poisoning itself will con-

tinue to perform as intended because the attack leverages weaknesses of the TCP commu-

nication itself. Despite this fact, however, the attacker (workstation-3) only has the ability

to forward the traffic from sender (workstation-1) to the intended recipient (workstation-

2). By attempting to modify any information within the packet itself, the Modbus message

is no longer valid due to the appended HMAC. The attacker, assuming physical access to

workstation-1 and/or workstation-2 is impossible, is unable to attain the secret key shared

between the two devices, and is thus unable to calculate the correct hash that is appended

with each message. Due to the checks that are added to the protocols implementation and

work-flow, messages will not be processed unless all checks have been passed, which the

attacker is unable to forge.
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Figure 4.7: Modbus Server/Client Replay Attack Traffic

4.6.2 Replay Attacks

Similar to in the MITM attack, because Modbus occurs in an open network, once an at-

tacker gains access to the network, they are able to easily view the traffic and gain informa-

tion for an attack on a Modbus end device. By focusing on the lack of integrity within the

Modbus protocol, an attacker is able to easily perform a replay attack, which can also be re-

ferred to as a playback attack. A replay attack occurs when the unauthorized actor captures

the network traffic and then later sends the communication to its original destination, acting

as the original sender. Unlike in the MITM attack where the attacker needs to take steps to

sit in the middle of the connection and intercept the communication, within a replay attack,

the attacker can simply listen to and capture the ongoing traffic with the ability to replay

it to perform some malicious activity. Based on the current protocol design, there are no

measures for checking the validity of the message or its sender, allowing for anyone in the

network to execute potentially dangerous actions.
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There are numerous tools at a potential attacker, or researchers, disposal for perform-

ing a replay attack. To perform a replay attack on the Modbus protocol, commonly used

networking and open source tools were used, following the setup described in Figure 4.7.

Performing the replay attack involves a nefarious party intercepting traffic between devices

on the network. After gaining incite on the communication, the attacker has the ability

resend the same traffic, with the idea that the receiving device does not have the ability to

differentiate the malicious sender from a valid one.

To begin, the attacker first needs to view and capture network traffic between the tar-

geted devices. With the use of Wireshark, all of the traffic in the network can be easily

captured. With previous knowledge that Modbus is traditionally captured on port 502, it

becomes even easier to filter out other traffic to focus strictly on the Modbus traffic. Wire-

shark also possesses the ability to parse Modbus traffic beyond the traditional TCP/IP traf-

fic, further allowing the malicious actor to gain understanding of the traffic without needing

to parse the data between the devices. With the ability to easily read the traffic, the actor

can use the published documentation of the Modbus protocol [29] to determine the purpose

of the function code, and as long as the protocol follows the guidelines, all traffic can easily

be determined.

To perform the replay attack, a series of tools can be used to simply replay legitimate

packets. In this attack scenario, the open-source library scapy was used to parse and replay

the Modbus traffic. With the combination of Wireshark and scapy, the packet information

can easily be saved as a PCAP (packet capture) file and replayed. While relatively straight-

forward and simple in its nature, this attack can cause detrimental effects in the receiving

device. One example includes an action that requires for the device to either open or close

an actuator. Replaying a packet that reverses this action could cause for significant damage

in any environment. Within a replay attack, the master may never even be informed of this

attack.

ModSec defends against potential replay attacks with the implementation of a non-
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decreasing, 32-bit counter. This counter is designed similar to the anti-replay protocol,

a sub-protocol that plays a key role in preventing replay attacks within IPsec [40]. The

counter, initialized at 0, is designed to increment at each message sent by the master. The

receiving node is designed to maintain a sliding window record of the counter values re-

ceived from the master. Messages that are received with a lower counter value than the

current window value are thus perceived as invalid, and thus returns an error exception.

Unlike within IPsec, however, the sliding window is limited to as size of 1. By enforcing

this window size, the attacker would be unable to use an earlier counter value. Compara-

tively, TCP traditionally uses Window Scaling, where the TCP Window buffer contains a

copy of all packets sent out in case they are lost in transit. A window size too large could

allow for an attacker to guess a value within this window and cause unexpected actions. By

enforcing a window size of 1, however, ModSec prevents an attacker from this potential

attack. The window value is related to the secret cryptographic key exchanged between the

master and slave nodes in that it is initialized at the creation of a new key, and thus is reset

when a new key is exchanged. This relationship also forces the devices to exchange a new

key before, or when, the counter value wraps. Being as though the field size is 32 bits, when

the value wraps to 0 again, the potential for another replay attack to occur presents itself,

and this mechanism presents this scenario from occurring. Combined with the appended

HMAC, the counter acts as a nonce in relation with the cryptographic key, and prevents

repeated messages from occurring.

Using the same attack scenario described earlier, while Wireshark and scapy provide

the ability to successfully watch and monitor the network, replaying an attack is prevented,

as the target device has already encountered the counter value and prevents any further

action. In combination with the HMAC, this attacker is also unable to change this counter

value without recalculating the HMAC, as simply increasing the counter causes for the

HMAC to be incorrect. As this attacker is not privy to the secret key, they are thus unable

to recalculate the hash, thus rendering this attack useless.
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The introduction of the counter field to the Modbus protocol does not prevent the at-

tacker from snooping into the communication. It does, however, again prevent this attacker

from being able to make potentially critical changes that can negatively impact the system

as a whole.

4.6.3 Discussion on Lack of Authorization Vulnerabilities

Another commonly identified weakness of the Modbus protocol is its lack of authorization

within messages. While the intention of the protocol is for messages to be limited between

the master and slave devices, where the master only has permission to request actions from

its slaves, there are no true checks to limit this action. Furthermore, in the case where a new

device is introduced to the network, using Modbus TCP or Modbus Serial, this device can

easily perform reconnaissance on the network, and begin commanding other slave devices

to perform actions. As seen in the many attack scenarios discussed, this lack of security

can cause detrimental harm to the overall network, and defense measures need to be put in

place to prevent this from occurring.

ModSec introduces a permission scheme that is tied into the certificates that are issued

out in the system. The permissions, tied to the devices public key, cannot be changed unless

through a secure means during the initialization process, and are thus secure enough to rely

on for authorizing communication.

58



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this research, we produced ModSec, a secure Modbus protocol, that adds a much needed

level security to the popular SCADA protocol Modbus. The proposed solution addresses

many of the security issues that were left out of the initial design of Modbus due to the

period of time when Modbus was introduced and implemented by implementing cryp-

tographic functions. The issues of authentication, integrity, and non-repudiation are all

addressed practically. The solution not only fills in various security holes, but also adds

a permission scheme to further lock down various functions that can cause catastrophic

results if executed by a nefarious actor. The proposed solution also shows that the addi-

tional security features have only a small amount of overhead in the protocol size as well

as message transmission, allowing for the Modbus protocol to be implemented in scenarios

where real time transmission is critical, and where end devices are limited in processing

power. Therefore, according to these extreme transmission demands, device vendors are

able to deploy security into the Modbus protocol as part of a true SCADA system. Finally,

the proposed ModSec protocol proves to not only address many of the attacks that have al-

ready been shown to work against the protocol, both hypothetical and theoretical, but also

helps lay the ground work for future implementations of adding security to open protocols

in SCADA environments. While the proposed ModSec protocol is not a solution that can

address all problems in SCADA and ICS environments, the solution does close the gap in

one of the most common protocols used in systems all around the world.
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5.2 Future Work

5.2.1 Certificate Authority

In the proposed ModSec protocol, public key cryptography was implemented in order to

provide key sharing, as well as to store the permissions. These certificates, however, had

to be manually installed and transferred over a secure channel, and any changes would

require another manual initialization process. In a traditional public key infrastructure

(PKI) setting, a certificate authority would help ease this burden and can additionally help

expand the process of managing keys to allow for broadcasting of messages securely. To

expand the work, a single-tiered certificate authority can be leveraged to begin to manage

the certificates in the network of Modbus devices. There has been a significant amount

of research describing the pros and cons of using a multi-tiered network, as well as how

to properly setup certificate authorities in a PKI network [41, 42]. The CA, if added,

would play a critical role in the overall success of the described protocol, and its successful

deployment is critical in ensuring the security of the messages as a whole.

5.2.2 Privilege Management Infrastructure

This proposed research also leverages the extensions component of an X.509 certificate,

introduced in version 3 of the certificate, to implement permissions within the protocol. In

the current state, in order to change the permissions of a device, the initialization setup must

occur again and certificates must be transferred over a secure means. In the case where a

certificate authority were to be introduced, it would not only be responsible for managing

the public key infrastructure, the certificate authority is also responsible for managing the

permissions in proposed architecture. Research, however, has shown that it may be best to

separate permissions from the certificate itself, especially if the permissions were subject

to change often. In 2001, Privilege Management Infrastructures (PMI) were introduced to

address this issue by making use of attribute certificates. By using a PMI, the responsibility
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of privileges and authorizations can be managed separately from keys and authentication.

Making use of a PMI would significantly raise the complexity of deploying the proposed

solution, but could potentially raise both the security and usability of the system as a whole

[43, 44, 45].

5.2.3 Cryptography

This works aims to provide a solution that would not only be practical in defending against

the numerous potential attacks on the Modbus protocol, but also takes into account the

wide range of end devices. In order to support systems that are of low-power, low-memory,

the cryptographic methods that have been selected take into consideration both speed and

efficiency. If a network were to be set up that uses modern equipment only and these

limitations were not in place, stronger cryptographic solutions could replace the ones that

are outlined in the earlier sections, and provide an even greater level of security.

Additionally, as industry continues to move to even greater levels of computing, older

cryptographic methods begin to become antiquated and replaced with newer, stronger and

more efficient algorithms. Examples like SHA-1 and MD-5 were originally cryptograph-

ically secure, but recent advancements allows for solutions to be implemented to bypass

the security measures these algorithms were meant to protect [46, 47]. With that in mind,

the cryptographic methods outlined can easily be replaced in the future with other cryp-

tographic methods that may provide better efficiency, especially on devices that are low

power. It is important, however, that any future solutions provide the same guarantees of

authentication, integrity, and non-repudiation.

5.2.4 Multiple Masters

The work takes into account a traditional network where there is a single master and a wide

number of slaves (ranging from 1 to 247). With the advent of Modbus/TCP, there are ex-

amples where a network could integrate multiple masters into the network, and potentially

61



even use more than the traditional number of slaves [48]. While the designed protocol does

not take this situation into account, minor changes could be implemented to allow for this

situation.

One approach to solving this problem would be for the certificate authority to be re-

sponsible for managing the additional devices. In this case, the network with multiple

masters would could potentially have more the 247 devices in the network, which would

also require a change in the uid field of the proposed protocol. The field length is designed

to consider the traditional maximum device size of the network, and would need to be

expanded to fit the new maximum. This change would negatively impact the number the

maximum number of bytes transmitted for the commands, and would provide latency in

the process of looking up the certificate from the CA as well as transmission.

A second approach to handling multiple masters would be to consider each master as its

own network, and the slave devices would overlap in the various networks. This approach

would allow for the proposed protocol to remain unchanged by assigning a certificate au-

thority to each master device. This solution, however, adds complexity on the slave devices

by requiring for these devices to speak with multiple certificate authorities. An additional

parameter would need to be added to inform the slave which CA it must communicate with.

This approach also has a weakness in having to further manage keys within each network,

and can lead to significantly more keys within the network, as well as on each device.
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