
HAPTIC CONTROL AND OPERATOR-GUIDED GAIT

COORDINATION OF A PNEUMATIC HEXAPEDAL RESCUE ROBOT

A Thesis

Presented to

The Academic Faculty

by

Brian A. Guerriero

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

August 2008

HAPTIC CONTROL AND OPERATOR-GUIDED GAIT

COORDINATION OF A PNEUMATIC HEXAPEDAL RESCUE ROBOT

Approved by:

Dr. Wayne Book, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Christian Paredis

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Harvey Lipkin

School of Mechanical Engineering

Georgia Institute of Technology

Date Approved: 6-20-2008

 iii

in loving memory of my mother,

Pamela J. Guerriero (1958-99).

Her strength and insight has been my inspiration and

guiding light.

The wisdom and guidance, which she instilled in me, remains

my foundation and personal ethic.

 iv

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Wayne Book, for

his support and guidance through the course of this

project. His gave me an incredible opportunity, confidence

and freedom to design and develop this robot platform.

 JD Huggins also deserves my utmost gratitude for his

assistance. His innate ability to analyze and troubleshoot

problems saved me incalculable amounts of time and

frustration. His advice and experience helped me

throughout my design and fabrication phases, and his

foresight was invaluable and significantly contributory to

my success.

 I would like to thank my committee members Dr. Harvey

Lipkin and Dr. Chris Paredis for their time, advice, and

insights throughout the progress of this project.

 Dr. Haihong Zhu deserves special gratitude for his

tireless efforts in providing this project with functional

and reliable sensing technology.

 Dr. Matt Kontz deserves special thanks for helping me

get started here at Georgia Tech, laying the technical

foundations for my xPC Target communications, and the

PHANToM C++ codes, which were crucial time-saving tools.

 I would like to thank Roman Shtylman for his

assistance in modifying and optimizing my C++ codes. His

work, on his own time, saved me weeks of debugging and

recoding.

 v

 I would also like to give my gratitude to John Graham

and his staff in the ME machine shop for their training,

patience, and time.

 Additionally I would like to thank my friends and

colleagues who gave me advice and guidance who were not

directly involved with this project, namely Matt Rogge,

Jevawn Roberts, Renee Sutherland, Tom Groshans and all my

IMDL lab mates, Mark Elton, Mohsin Waqar, Aaron Enes,

Longke Wang, Heather Humphres, Brian Post, and Ryder Wyck.

 Lastly, I would like to thank my family for their

support, financial and moral.

 I would like to acknowledge the corporate sponsors who

donated parts and time to this project, Festo, Sentrinsic,

Daman, and Enfield Technologies.

 This work was funded through the National Science

Foundation Center for Compact and Efficient Fluid Power,

Grant EEC # 0540834.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES .xii

SUMMARY .xviii

CHAPTER 1: INTRODUCTION 1

 1.1 CCEFP BACKGROUND 1

 1.1.1 Collaboration 2

 1.2 LEGGED MOBILITY 3

 1.3 RESEARCH OBJECTIVES 5

 1.3.1 Testbed Design and Fabrication 5

 1.3.2 Control and Interface 6

 1.3.3 Gait Coordination 6

CHAPTER 2: RESEARCH BACKGROUND AND LITERATURE REVIEW . . 8

 2.1 PNEUMATIC CONTROL RESEARCH 8

 2.1.1 Servo Control 8

 2.1.2 Robotic Applications 12

 2.2 GAIT RESEARCH 13

 2.2.1 Coordinated Hexapedal Gaits 15

 2.2.2 Other Gaits 16

CHAPTER 3: TESTBED DESIGN 17

 3.1 LEG STRUCTURE AND DESIGN 17

 3.1.1 Actuator Design and Construction 22

 3.2 VALVES . 24

 3.2.1 Limitations 25

 3.2.2 Plumbing 26

 vii

 3.3 SENSORS AND SIGNALS 27

 3.3.1 Position Sensors 27

 3.3.2 Pressure Sensors 28

 3.3.3 Signal Routing Board 31

 3.4 DENAVIT-HARTENBERG PARAMETERS 33

 3.4.1 Link Lengths and Offsets 33

 3.4.2 Joint Notation 36

 3.4.3 Origins and Coordinates 37

 3.4.4 Joint Angle Convention 38

 3.5 FORCE AND TORQUE ANALYSIS 39

 3.5.1 Joints R1 and L1 40

 3.5.2 Joints R2 and L2 42

 3.5.3 Joints R3 and L3 47

CHAPTER 4: TRANSFORMATIONS 50

 4.1 SYSTEM LAYOUT 50

 4.1.1 PHANToM PC 51

 4.1.2 MATLAB Host PC 51

 4.1.3 Target PC 52

 4.2 CONTROL INPUT TRANSFORMATION 53

 4.2.1 Input Task Space to Leg Space 53

 4.2.2 Leg Space to Joint Space 56

 4.2.2.1 Joint 1 59

 4.2.2.2 Joint 3 61

 4.2.2.3 Joint 2 64

 4.2.3 Joint Space to Cylinder Space 65

 4.2.3.1 Cylinder L1 67

 4.2.3.2 Cylinder R1 68

 viii

 4.2.3.3 Cylinder 2 69

 4.2.3.4 Cylinder 3 71

 4.2.4 Cylinder Stroke Length Conversion 73

 4.3 POSITION OUTPUT TRANSFORMATION 73

 4.3.1 Cylinder Stroke Length Conversion 74

 4.3.2 Cylinder Space to Joint Space 74

 4.3.2.1 Cylinder L1 75

 4.3.2.2 Cylinder R1 75

 4.3.2.3 Cylinder 2 76

 4.3.2.4 Cylinder 3 76

 4.3.3 Joint Space to Leg Space 76

 4.3.4 Leg Space to Input Task Space 80

 4.4 Conclusions 81

CHAPTER 5: LEG CONTROL 83

 5.1 CONTROL OBJECTIVE 85

 5.1.1 Controller Requirements 86

 5.2 POSITION CONTROL 87

 5.2.1 Control Law 88

 5.2.2 Position Control Stability 89

 5.2.3 Tracking Response 91

 5.3 FORCE CONTROL 96

 5.3.1 Force Control Law 96

 5.3.2 Improved Force Control Law 99

 5.3.3 Improved Force-based Position Controller on

 Three Joints103

 5.4 RESULTS AND CONCLUSIONS108

CHAPTER 6: OPERATOR INTERFACE 111

 ix

 6.1 WORKSTATION DESIGN 112

 6.2 HAPTIC INTERFACE 113

 6.3 AUGMENTED REALITY INTERFACE118

 6.3.1 Display119

CHAPTER 7: GUIDED GAIT COORDINATION 121

 7.1 OVERVIEW 123

 7.2 TRAJECTORY RECORDING AND MANIPULATION125

 7.2.1 Recording Detail 126

 7.3 TRAJECTORY MANIPULATION128

 7.4 TRAJECTORY SELECTION FOR PLAYBACK135

 7.4.1 Global Coordinate System 135

 7.4.2 Leg Selection and Requirements 138

 7.4.3 Playback Detail140

 7.4.4 Conflict Resolution141

 7.4.5 Motion Completion141

 7.5 BODY ADVANCEMENT 142

 7.6 CONCLUSIONS144

CHAPTER 8: CONCLUSIONS146

 8.1 ROBOT DESIGN AND FABRICATION 146

 8.1.1 Recommendations for Future Work146

 8.2 LEG CONTROL147

 8.2.1 Recommendations for Future Work149

 8.3 OPERATOR INTERFACE 150

 8.3.1 Recommendations for Future Work151

 8.4 GUIDED-GAIT COORDINATION 152

 8.4.1 Recommendations for Future Work153

 8.5 ACADEMIC CONTRIBUTIONS 154

 x

APPENDIX A: SOLUTION OF LINEAR TRIGONOMETRIC EQUATION. .156

APPENDIX B: SIMULINK CONTROL DIAGRAMS 157

APPENDIX C: C++ CODE FOR PHANTOM HAPTIC INTERFACE . . .167

APPENDIX D: MATLAB SCRIPT FOR READING, SMOOTHING, AND

SAVING RECORDED TRAJECTORIES 200

REFERENCES .203

 xi

LIST OF TABLES

Table 5.1: Control Gains and Settings 110

 xii

LIST OF FIGURES

Figure 1.1: An Ant Uses Redundant Legs to Manipulate Its

 Environment 4

Figure 1.2: John Deere Legged Harvester 5

Figure 2.1: Stick Insect Carausius morosus 14

Figure 2.2: Big Dog Military Robots 15

Figure 3.1: Two CRC Robot Legs 17

Figure 3.2: Front Shoulder Bearing Assembly 18

Figure 3.3: Rear Shoulder Assembly 19

Figure 3.4: Mid-Leg Assembly Cradling Cyl. L/R2 20

Figure 3.5: Lower Leg Assembly 20

Figure 3.6: Ground Contact Foot and Final Link 21

Figure 3.7: Cylinder Assembly 22

Figure 3.8: Cylinder Chamber Labeling Convention 24

Figure 3.9: Flow Rate As Function of Setpoint Voltage U 25

Figure 3.10: Pressure Sensor Assembly 28

Figure 3.11: Difference Amplifier for Pressure Sensors . 30

Figure 3.12: CRC Link Lengths and Joint Offset 33

Figure 3.13: Measurement of Joint Offset d1 34

Figure 3.14: Measurement of Link Length a1 35

Figure 3.15: Measurement of Link Length a2 35

Figure 3.16: Measurement of Link Length a3 36

Figure 3.17: Joints of Serial Manipulator 36

 xiii

Figure 3.18: Leg Side Naming Convention 37

Figure 3.19: DH Origins and Coordinates 38

Figure 3.20: DH Angle Conventions 38

Figure 3.21: Max Moment Arm Joint 1 (Bottom View) . . . 40

Figure 3.22: Shortest Moment Arm on Joint 1 (Bottom) . . 41

Figure 3.23: Maximum Foot Extension (Bottom) 42

Figure 3.24: Moment Arm Length vs. Joint 2 Angle 43

Figure 3.25: Cylinder 2 at Full Extension/Lowest Mechanical

Advantage . 44

Figure 3.26: Maximum Moment Arm About Joint 2 45

Figure 3.27: Joint 2 Largest Moment Arm 46

Figure 3.28: Shortest Moment Arm About Joint 2 at Highest

Force Configuration 46

Figure 3.29: Link 3 Configuration 48

Figure 3.30: Shortest Moment Arm About Joint 3 48

Figure 3.31: Largest Moment Arm About Joint 3 49

Figure 4.1: Computer Network 51

Figure 4.2: PHANToM Coordinates 54

Figure 4.3: Left PHANToM Input and Leg Coordinates . . . 54

Figure 4.4: Rotated Input Vector 55

Figure 4.5: Right PHANToM Input and Leg Coordinates . . 56

Figure 4.6: Origin O Placement Relative to Leg Base . . 57

Figure 4.7: Top View of Joint 1, d2 and d3 = 0 61

Figure 4.8: Vectors Needed for Joint 3 Evaluation . . . 62

Figure 4.9: Law of Cosines Configuration 66

 xiv

Figure 4.10: Top View of Joints R1 and L1 Coordinates and

Angle Directions 66

Figure 4.11: Joint L1 Link Geometry 67

Figure 4.12: Joint L1 Cosine Law Geometry 68

Figure 4.13: Joint R1 Cosine Law Geometry 69

Figure 4.14: Joint 2 Angle Relationships 70

Figure 4.15: Joint 2 Link Geometry 71

Figure 4.16: Joint 3 Angle Relationships 72

Figure 4.17: Joint 3 Link Geometry 72

Figure 4.18: Projection of O1 onto O0 78

Figure 4.19: Transformation from O1 to O2 78

Figure 4.20: Transformation from O2 to O3 79

Figure 4.21: Transformation from O3 to O4 79

Figure 4.22: Leg Origin Placement 81

Figure 5.1: Spool Position and Cylinder Relationship . . 83

Figure 5.2: Flow Rate vs. Spool Position Command 84

Figure 5.3: Cylinder L1 Step Response, PD Control, kp = 0.5,

kd = 0.004, kvff = 0.05, 130 psi 90

Figure 5.4: Cylinder L2 Step Response, PD Control, kp = 0.5,

kd = 0.004, kvff = 0.015, 130 psi 90

Figure 5.5: Cylinder L3 Step Response, PD Control, kp =

0.55, kd = 0.004, kvff = 0.03, 130 psi 91

Figure 5.6: Cylinder L3 3 rad/s Tracking, PD Control, kp =

0.55, kd = 0.01, kvff = 0.03, 130 psi 92

Figure 5.7: Cylinder L2 3 rad/s Tracking, PD Control, kp =

0.5, kd = 0.004, kvff = 0.015, 130 psi 92

 xv

Figure 5.8: Cylinder L1 3 rad/s Tracking, PD Control, kp =

0.5, kd = 0.004, kvff = 0.05, 130 psi 93

Figure 5.9: Cylinder Stroke Length Response During One Step

Cycle, PD Control 94

Figure 5.10: Cylinder Stroke Length Error During One Step

Cycle, PD Control 95

Figure 5.11: Cylinder Stroke Length Response During One

Step Cycle, PD + dp Control 98

Figure 5.12: Cylinder L2 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.11 99

Figure 5.13: Cylinder Stroke Length Response During One

Step Cycle, PD + dfe Control 101

Figure 5.14: Cylinder L2 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.13 102

Figure 5.15: Full Controller Applied to L1 and L2 Through

Multiple Swing-Stance Phases 104

Figure 5.16: Cylinder L1 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.15 105

Figure 5.17: Full Controller Applied to L1, L1, and L3,

Through Multiple Swing-Stance Phases 107

Figure 5.18: Cylinder L3 Position Error for Swing-Stance

Phases in Figure 5.17108

Figure 6.1: Operator Remotely Pilots the Crawler111

Figure 6.2: Operator Workstation113

Figure 6.3: Vertical Haptic Force During Walking, PD

Controller Only116

Figure 6.4: Vertical Haptic Force During Walking, Full

Controller .117

Figure 6.5: Head-Mounted Display with Motion Tracker . .119

Figure 6.6: Prototype Operator Display119

 xvi

Figure 7.1: Leg Notation of CRC 122

Figure 7.2: Generalized Guided-Gait Coordination Flowchart

. .124

Figure 7.3: Record Start/Stop Switch Operation127

Figure 7.4: Raw PHANToM Points Captured During Left Leg

Swing Phase .128

Figure 7.5: Three Dimensional View of Same Trajectory .129

Figure 7.6: 5 Point Spline Over Trajectory131

Figure 7.7: 5 Point Spline Over Trajectory, 3D131

Figure 7.8: 20 Point Spline Over Trajectory 132

Figure 7.9: 20 Point Spline Over Trajectory, 3D 133

Figure 7.10: 30 Point Spline Over Trajectory134

Figure 7.11: 30 Point Spline Over Trajectory, 3D134

Figure 7.12: Global Coordinate System 136

Figure 7.13: Global Gait Vector Relationship137

Figure 7.14: “Stepping Stone” Trajectories138

Figure 7.15: Six Legged Status Overlay Example142

Figure 7.16: Sample Gait Cycles 145

Figure 8.1: Full Controller on Left Leg Through Numerous

Gait Cycles .149

Figure 8.2: Compact Rescue Crawler148

Figure 8.2: Compact Rescue Crawler155

Figure B.1: Main Simulink Control Diagram 157

Figure B.2: PHANToM Input to Stroke Length Voltage

Transformation (Simulink)158

 xvii

Figure B.3: Inverse Displacement Algorithm from PHANToM

Vector Input to Joint Angles (Simulink)159

Figure B.4: PHANToM Vector Input Transformation and

Rotation (Simulink)160

Figure B.5: Joint Angle to Stroke Length Conversion

(Simulink) .161

Figure B.6: Stroke Length to 0-10V Conversion 162

Figure B.7: Controller Layout, Left Leg (Simulink) . . .163

Figure B.8: PID Controller (Simulink) 164

Figure B.9: Differential Force Gain Scheduler (Simulink)165

Figure B.10: Forward Displacement Algorithm (Simulink) .166

 xviii

SUMMARY

 A two-legged walking robot was designed, fabricated,

and controlled through bilateral teleoperation via two

PHANToM haptic devices. The Compact Rescue Crawler is a

collaborative effort between Georgia Institute of

Technology, Vanderbilt University, and North Carolina A&T

working through the NSF Center for Compact and Efficient

Fluid Power.

 The Georgia Institute of Technology contributions to

this pneumatic testbed are a haptically controlled two-

legged robot, operator workstation, an augmented reality

interface, and a guided-gait routine allowing a single

operator to effectively control six legs while maneuvering

through treacherous and unknown terrain. The two-legged

vehicle was built and is teleoperated from a remote

operator workstation. The guided-gait routine was

designed, as well.

 A force-based position controller coordinates 3D

operator inputs into pneumatic cylinder stroke length

commands and tracks position commands to within 10%. The

controller tracks position in both free-space and ground

contact scenarios, allowing the user to walk the robot

remotely from the workstation and haptically feel the

environment, and see the terrain through a head mounted

display controlling an onboard PTZ camera.

 1

CHAPTER 1

INTRODUCTION

1.1 CCEFP Background

 The National Science Foundation Center for Compact and

Efficient Fluid Power is an engineering research center

focused on, as the name implies, improving the compactness,

efficiency, and effectiveness of fluid power. Making

efficient fluid power ubiquitous in our society allows high

power density devices to be more commonplace. Improving

fluid power effectiveness improves efficiency and unleashes

the potential to save millions of dollars worldwide.

Divided into three Thrusts and four Testbeds, the CCEFP

research is managed across seven universities. The

Testbeds not only serve as platforms and showcases for the

technologies developed through the individual research

Thrusts, but are also focal points for the new research

required to achieve Testbed success.

 Compactness, Efficiency, and Effectiveness are the

three research Thrusts. Four testbeds are currently under

development. Led by researchers at Purdue University, TB1

is an excavator testbed on which new developments in

variable displacement pumps, throttleless valve control,

and human factors research will be implemented.

 Led by researchers at the University of Minnesota

(UMN), TB3 is a small hybrid urban vehicle testbed on which

 2

new open accumulator developments and other efficiency

research will be implemented. New compact components

developed through CCEFP research will also find a home on

the small Urban Vehicle (sUV) testbed.

 TB6: Fluid Power Assisted Ankle-Foot Orthoses, led by

researchers at University of Illinois Urbana-Champaign

(UIUC) seeks to revolutionize the orthoses currently

available by integrating fluid power assistance and

resistance. These orthoses will showcase research products

in compactness and effectiveness.

 Finally, TB4: Compact Rescue Crawler (CRC), led

jointly by Vanderbilt University and Georgia Institute of

Technology, is a revolutionary hexapedal search and rescue

robot driven by hot-gas monopropellant. Harnessing new

developments in chemofluidic actuation, control, and user

interfaces, this testbed will eventually become an

effective and powerful alternative to electric motor-driven

search vehicles. The CRC also epitomizes the challenges of

man-machine interaction prevalent in many fluid power

applications and will lead to future opportunities for

human-scale fluid power devices.

1.1.1 Collaboration

 The research at Georgia Institute of Technology was

part of a collaborative effort between Vanderbilt

University, North Carolina Agricultural and Technical State

University (NCAT), and Georgia Institute of Technology.

Georgia Tech research is focused on the multimodal man-

 3

machine interface and the haptic control of the robot legs

[1].

 Research at Vanderbilt is focused on chemofluidic

actuation using decomposed H2O2 for a power source.

Researchers are developing valves and actuators to control

and harness the high temperature and pressure fluid

produced through decomposition [2].

 Vanderbilt research is also focusing on using an

impedance controller to maneuver legs through a hexapedal

tripod gait in which the operator will give simple commands

to move the robot, i.e. “forward,” “right,” etc [3].

 NCAT research is focused on the human factors areas

related directly to TB4. The research covers a task

analysis for the rescue mission, task analysis for the

operator driving the CRC, and methods through which

information should be quickly and effectively displayed to

the operator.

1.2 Legged Mobility

 Numerous advantages arise when legged locomotion is

chosen over tracked or wheeled methods. A vehicle with

redundant legs can alternatively use a spare leg as a

manipulator as is often seen in nature (Figure 1.1).

 4

Figure 1.1: An Ant Uses Redundant Legs to Manipulate its

Environment

 Legged platforms also display static stability when

maintaining at least three points of ground contact, but

can be much more maneuverable in unknown and hazardous

terrain. Legs can step over obstacles, whereas tracks must

rely on motor torque and traction to pull themselves and

the weight of the entire vehicle over terrain.

 In a search and rescue scenario, a legged vehicle can

maneuver through, over, and under debris more nimbly than a

comparably sized tracked vehicle. Due to the nature of

legged locomotion, such methods have been difficult to

realize because of the low speed and high joint torques

necessary to exert force at the foot. Large motors and

harmonic drives work well for industrial robots, but search

and rescue vehicles must maintain a small profile while

remaining strong and maneuverable.

 Legged vehicles also leave a smaller footprint on the

environment, providing advantages to the logging industry

to prevent lasting imprints on the forest bed from road-

building and tracked vehicles destroying the ground (Figure

1.2).

 5

Figure 1.2: John Deere Legged Harvester

1.3 Research Objectives

 The research objectives for the Testbed 4: Compact

Rescue Crawler are threefold. First, the legged robot

platform must be designed and fabricated. Secondly, the

robot legs must be controlled effectively through a real-

time onboard controller and remote workstation. Thirdly, a

gait sequence must be designed to guide trailing legs over

the terrain and obstacles which the operator avoided while

guiding the front legs.

1.3.1 Testbed Design and Fabrication

 Design requirements for the testbed design were fairly

open due to the pioneering nature of the robot. The

testbed was to have two functioning legs and be

geometrically similar to the testbed already under

development at Vanderbilt. The new Georgia Tech CRC

Testbed remained very close in size to the CRC at

Vanderbilt, with different actuators and valves. Range of

motion was sacrificed slightly to employ prototype

 6

actuators with embedded position sensing, and donated Festo

proportional valves were used because of their

availability, practicality, and reliability.

 Significant amounts of time were spent analyzing

SolidWorks models for mechanical interferences and

optimizing the range of motion for each joint. Care was

also taken while designing joints, selecting fittings, and

designing rod ends for each actuator, ensuring the robot

would be functional, compact, and easily maintainable.

1.3.2 Control and Interface

 The control system for the robot was designed in

Simulink and run real-time on an xPC Target computer with

analog inputs and outputs. The overall control objective

is to bilaterally teleoperate the robot through two PHANToM

haptic devices. The robot feet positions are coordinated

with the PHANToM endpoint positions. PHANToM inputs are

transformed into joint angle commands which, in turn, are

transformed into cylinder stroke length commands. The

cylinder stroke lengths are position controlled by

classical methods and newly developed non-contacting

position sensors with added force control effort by

pressure sensor feedback.

 The overall control objective is to provide accurate,

stable position tracking control of each leg in both free

space and ground contact. Since the legs are haptically

controlled by the operator, importance is placed on

maintaining low tracking error in order to provide crisp

 7

haptic feedback when an outside obstacle impedes leg motion

and physically induces position error.

1.3.3 Gait Coordination

 The objective of the gait planning portion of this

project is to design a routine for commanding trajectories

to the rear four legs of the robot when the operator is

directly controlling the front pair. Since the operator

can easily control two legs, and not six simultaneously,

the gait coordinator must record the trajectories of the

front legs, calculate the position of the trajectory in the

global robot coordinates, and play the appropriate

trajectory back through subsequent leg pairs to avoid known

obstacles. This method of locomotion allows the operator

to manually guide the robot through treacherous and unknown

terrain without requiring simultaneous user control of all

six legs simultaneously.

 8

CHAPTER 2

RESEARCH BACKGROUND AND LITERATURE REVIEW

2.1 Pneumatic Control Research

 In many respects, pneumatic actuators are excellent

devices for producing smooth, reliable, and low-cost linear

motion. Cylinders can be created in nearly any diameter to

produce force for most applications. Powered by compressed

air (or other gas), the flow rate of the fluid is

controlled by valves. On-off control of pneumatic

actuators is exceedingly easy, requiring only an

inexpensive spool valve.

2.1.1 Servo Control

 Precise position control of pneumatic actuators,

however, is much more difficult to achieve. Two physical

methods prevail in obtaining position control, pulse-width

modulation of on-off solenoid valves, and proportional

servo valves.

 Pulse-width modulation (PWM) control of a hydraulic

system was initially investigated by D. Boddy at Purdue

University in 1966. The pneumatic system control and

development was originally experimented in 1987 by T.

Noritsugu [4], and later expanded upon van Varseveld and

Bone in 1997 [5]. These systems provide fast, accurate,

and inexpensive position control with precision comparable

to that achieved through use of servo valves. In 1990 Kunt

 9

and Singh at Ohio State University developed a linear time

varying model for open loop PWM control of a pneumatic

actuator [6]. This work was expanded in 2006 by Shen,

Zhang, Barth, and Goldfarb at Vanderbilt University through

development of a nonlinear model-based control structure

[7]. These methods are novel in the respect that the

solenoid valves employed are relatively inexpensive and

very fast.

 Proportional spool valves, however, are accurate, more

traditional, and only one valve is required to regulate

flow and direction into both chambers of the pneumatic

cylinder. Position control techniques have been developed,

tested and refined for myriad uses, from robotic legs to

high precision positioning systems.

 Both classical and modern control methods have been

applied to pneumatic servomechanisms. While a simple PID

controller may seem trivial, advances to the classical

method have been put forth, such as incorporating

differential pressure feedback into the control effort.

Pressure feedback accompanying position feedback aids

control, because through a flow control valve, pressure and

flow rate (actuator velocity) are coupled. Wang, Pu, and

Moore experimented with acceleration feedback rather than

pressure feedback [8]. The main advantage was the lower

sensor cost, where only one accelerometer is needed rather

than two separate pressure sensors. They were able to use

a velocity command feed-forward, null-offset compensation,

 10

and acceleration damping feedback to supplement a PID

controller, matching velocity trajectories well.

 Chillari, Guccione and Muscato compared several

control techniques applied to pneumatic actuators [9].

They compared PID control, fuzzy control, PID control with

pressure feedback, Fuzzy control with pressure feedback,

sliding mode control, and neuro-fuzzy control. Their

results showed that fuzzy logic control yielded the best

tracking and transient responses, but in the classical

domain, the PID control with a gain scheduled differential

pressure feedback performed better than the simple PID

controller.

 More advanced, modern control methods yield impressive

position control results of pneumatic servo systems.

Tanaka, Yamada, Shimizu, and Shibata developed an advanced

method of multi-rate adaptive pole placement for pneumatic

actuators [10]. Korondi and Gyeviki developed a robust

sliding mode control for a pneumatic actuator [11]. They

were able to achieve robust position control with only 3.8

mm steady state position error. Guvenc developed a

discrete time model regulator using model inversion and PD

control to achieve closed loop position control of a

pneumatic actuator [12]. Energy saving techniques were

implemented by Al-Dakkan, Barth, and Goldfarb using an

additional proportional valve to re-route high pressure

exhaust gasses back into the high-pressure chamber of the

actuator [13]. They showed that using dynamic energy

 11

constraints, energy savings of up to 45% could be achieved.

This is a particularly poignant breakthrough with respect

to a mobile, self powered rescue vehicle. Energy savings

in a high-risk mission environment could be the difference

between life and death for victims.

 Recent research at Vanderbilt University, published by

Goldfarb, Barth, Fite, Mitchell, Shields, Gogola, and

Wehrmeyer provide control and implementation techniques for

monopropellant based fluid power [1, 14-16]. The valve

developed through their research is capable of controlling

the flow of H2O2 decomposition gasses. These exhaust

products essentially equate to a high quality steam. A 70%

H2O2 solution exits the catalytic reactor as H2O and O2 at

450 degrees F, and 300 psi. These high temperatures and

pressures exceed design constraints of any small,

commercially available proportional valve.

 Practical servo-pneumatic control is dependent on some

level of actuator state feedback. Embedded position

feedback has been traditionally difficult to integrate into

fluid power actuators. Several commercial solutions exist

to “piggyback” sensors onto cylinders, and the position

feedback is accurate and reliable. A more novel solution

is the capacitively-coupled resistance sensor developed by

Zhu and Book from Georgia Institute of Technology [17].

This non-contacting displacement sensor can be compactly

embedded in fluid power actuators yielding accurate

position feedback through a small integrated sensor.

 12

2.1.2 Robotic Applications

 Pneumatic position control has been applied to robotic

applications by several researchers. More specifically,

legged robots have been controlled by complex control

architectures allowing fluid gaits and upright walking.

McKibben artificial muscles are usually extremely useful

for emulating muscles with fluid power, but Muscato and

Spampinato developed a five degree of freedom pneumatic leg

with cylinders, capable of force interactions with the

ground plane [18]. Their leg was controlled through a

multi-level architecture and pre-programmed gaits.

 Guihard, Gorce, and Fontaine developed a control

architecture for a bipedal robot, SAPPHYR, designed to pull

a wheeled cart [19]. This project demonstrated the leg to

leg interactions coupled with adaptive pneumatic control

and, again, pre-programmed gaits. They showed that

pneumatic actuators make for effective leg actuators with

the added advantage, for bipeds, that the compressible gas

acts as a slight damper during foot contact. The

compressibility and damping also causes a slight

orientation shift as each foot sets down, a valuable

insight.

 The BIPMAN pneumatic bipedal platform, developed by

Gorce, Vanel, and Guihard in France exhibits a very

intricate control architecture [20-22]. Using supervisory

controls based on biomechanical research, they control

torso posture and orientation with the legs, just as a

 13

human would. Dynamic impedance controllers control the

force and stroke length of the leg actuators. BIPMAN is an

impressive testbed, able to step over obstacles,

incorporating biomechanical properties in its feet and

joint structure.

 In 1954, Denavit and Hartenberg developed a method for

describing kinematics of serial links [23]. This method,

using link and joint geometry to relate the tip position to

the base, has become the basis for analyzing kinematics and

dynamics of serial manipulators. Pieper in 1968 described

the application of Denavit-Hartenberg parameters to the

generalized serial robot [24]. They described the

algorithm by which the end-effector position is described

by the joint angles, and the inverse, in which the known

end-effector position determines the possible joint angles

of the manipulator.

2.2 Gait Research

 Every insect walks with a certain gait. Gaits

exhibited in nature are intuitive to the creature executing

them, whether a bipedal gait performed by humans, or a

hexapedal gait demonstrated as a stick insect moves nimbly

over terrain (Figure 2.1).

 14

Figure 2.1: Stick Insect Carausius morosus

 The execution of hexapedal gaits in robots is commonly

performed through central pattern generators or finite-

state methods. In central pattern generated gaits, when

the robot is commanded to walk forward, it simply plays its

pre-planned forward walking gait, and the legs move the

body forward. Finite-state planners execute pre-planned

gaits based on the robot state. A certain gait can be

planned for flat terrain, and another for stair climbing.

Coordinated gaits are more autonomous gaits which control

legs and body position with respect to a general high-level

command (Figure 2.2).

 15

Figure 2.2: Big Dog Military Robots

2.2.1 Coordinated Hexapedal Gaits

 Cruse investigated the gait coordination and autonomy

of the stick insect in 1996 [25]. He determined that the

insect was kept stable by a tripod gait, which keeps at

least three feet planted on the ground at all times.

Coordinated gaits are neither pre-planned nor fixed. The

Carausius morosus and Obrimus asperrimus, more commonly

known as stick insects were the main foci of Cruse’s

analyses. He noted and analyzed leg trajectories and joint

angles as the insects walked along varied surfaces.

Cruse’s later analysis [26] yielded WALKNET, an algorithm

describing the autonomous gait of the stick insect.

Through the simulated WALKNET routine, simple high-level

commands such as “forward” can be used to automatically

 16

move all legs in such a way that the body moves stably over

smooth flat terrain.

 Wait and Goldfarb expanded on the WALKNET routine in

2007 with research directly applicable to the Compact

Rescue Crawler [3]. Their analysis, oriented to robot

control, showed several drawbacks of the WALKNET routine,

specifically its joint-space control rather than overall

task space control. They modified WALKNET to maintain body

height and ground contact, rather than joint angles,

keeping feet in place should the footholds loosen or slip.

They also added a yaw control feedback loop, controlling

lateral stability and position during walking.

2.2.2 Other Gaits

 Tripod gaits work well for hexapods moving under

coordinated leg control, but other gaits exist with

benefits and drawbacks. A centipede style gait isolates

leg pairs and moves each in sequence. Torige, Noguchi, and

Ishizawa showed how centipede leg movement acts as a wave

based on the foot positions of previous segments [27].

Their robot tests of the centipede wave gait showed that

distributed control architecture allowed for better leg

control and the option to add more leg segments to the

robot.

 17

CHAPTER 3

TESTBED DESIGN

3.1 Leg Structure and Design

 The two robot legs (Figure 3.1) developed through this

project were constructed primarily from 6061 aluminum

alloy. This strong, light metal was chosen due its high

strength to weight ratio, and its ease of machinability.

Figure 3.1: Two CRC Robot Legs

 The support cart holds the rear of the robot, and

physically emulates the support from the absent four rear

legs. The support cart also acts as a mounting structure

for the computers and power supply that drive the robot.

 The main spine of the robot is a 48 in. beam of 80/20

1 in. square extrusion. The front and rear shoulder are

fastened to the square extrusion via ¼-20 bolts received by

 18

tee nuts. The square profile prevents the shoulder

harnesses from rotating on the frame due to moments applied

by the legs.

 The shoulder harnesses were waterjet cut from 1 in.

aluminum plate. The front shoulder harness provides a

clevis mount for each shoulder. The pivot arm is

constrained to 30 degrees below horizontal within the

clevis by a 0.375 in. diameter steel pin. A needle bearing

assembly is mounted inside each clevis arm, and a bronze

thrust bearing is nested above and below the swing arm

(Figure 3.2).

Figure 3.2: Front Shoulder Bearing Assembly

 These four bearing surfaces on each side resist all

moments applied by the leg on the shoulder harness. Due to

the precision needle bearings, the assembly exhibits very

little mechanical play.

 The rear shoulder harness, mounted to the spine, is

pinned to the rear of the swing cylinders, allowing them to

 19

pivot as the leg is extended and retracted (Figure 3.3).

The rear shoulder harness was waterjet cut from 1 in.

aluminum plate.

Figure 3.3: Rear Shoulder Assembly

 The pivot arms, driven by swing cylinders L1 and R1,

support the entire leg mechanisms. The pivot arms directly

support the thrust cylinders L2 and R2, via the mid-leg

arms. The mid-leg arms were waterjet cut from 0.375 in.

aluminum plate. These arms support the rear of cylinders

L2 and R2 and provide the pivot points for joints L2 and R2

(Figure 3.4).

 20

Figure 3.4: Mid-leg Assembly Cradling Cyl. L/R2

 The lower-leg arms pivot on the mid-leg arms and

cradle cylinders L3 and R3. These lower-leg arms are

directly pinned to the rod ends of cylinders L2 and R2, and

are responsible for supporting much of the robot weight.

The main A-shaped piece of the lower-leg arm was waterjet

cut from 1 in. aluminum plate, and the curved rear pieces

were waterjet cut from 0.375 in. plate (Figure 3.5).

Figure 3.5: Lower Leg Assembly

 21

 The final link holding the foot and making ground

contact is a 0.625 in. 12 in. long aluminum rod. This rod

is held by two clamps allowing its length and range of

motion to be adjusted (Figure 3.6). Length is adjusted

simply by sliding the leg rod through the clamps and range

of motion is adjusted by changing the distance between the

clamps. A decrease in range of motion will allow the

cylinder to apply more torque to the joint.

 The actual foot of the last link is a silicon rubber

ball. This rubber ball exhibited the best traction

properties to the waxed tile floor in the laboratory test

environment, and was therefore used throughout development.

The ball is fastened to the end of the link with one ¼-20

screw.

Figure 3.6: Ground Contact Foot and Final Link

 22

3.1.1 Actuator Design and Construction

 Pneumatic actuators developed for this project were

custom-made by Sentrinsic for this application. The

cylinders feature integrated position and pressure sensors.

Each NFPA standard tie-rod style cylinder is identical,

save for the rod ends. The main barrel is a composite

wound polymer tube with aluminum endcaps. The cylinder

bore is 1.5 in. and stroke length is 1.4 in. A clevis

plate joins the rear of the cylinder to its associated

pivot pin and protects the internal circuitry (Figure 3.7).

Figure 3.7: Cylinder Assembly

 Four 0.25 in. tie rods clamp the clevis plate,

endcaps, and barrel. Internal o-rings seal the junction

between endcaps and barrel. The rod and piston use

standard pneumatic lip seals. The piston rod is a 0.50 in.

fiberglass rod fixed to the piston via a pin. The aluminum

rod ends are pinned to the piston rod. The rod ends were

milled from 6061 aluminum stock specific to each joint,

with holes through which their connecting pins mount.

 23

 1/8 NPT threads were machined into one side each

endcap for air fittings. 1/4 NPT threads were machined

into one side of each endcap, 90 degrees from the air

fittings for pressure sensors.

 The fiberglass piston rods are ideal for this search

and rescue application because they will not permanently

deform from impacts. Steel piston rods, once bent, render

the entire actuator useless. The light fiberglass rods

will withstand impacts from debris without undergoing any

permanent deformation. Forces large enough to destroy the

thick fiberglass rods would surely ruin any similar steel

piston rods.

 The composite wound barrels, made by Polygon, can

withstand much higher chamber pressures than could ever be

provided through H2O2 decomposition. The composite material

is also favorable for this application because it will

resist denting. A dented steel barrel from debris impacts

will significantly restrict piston motion, essentially

crippling the robot.

 Each pneumatic cylinder is referenced in this document

by the joint it actuates, e.g. cylinder R1, cylinder L3.

Each chamber is referenced a or b with respect to Figure

3.8 below.

 24

Figure 3.8: Cylinder Chamber Labeling Convention

3.2 Valves

 Air flow rate into each chamber of each cylinder is

controlled by a proportional directional spool valve. Air

flow rate is proportional to spool position and direction

from center. The FESTO MPYE-5-M5-010-B valves allow a

maximum flow rate of 100 L/min [28].

 The spool is held in it center position by two magnet

springs. Each magnet is wrapped with a solenoid. At a 5V

signal, the spool remains centered, and no air flows

through the valve. As the signal increases, the spool

moves proportionally as the current through the coils

changes. At 0V or 10V, the spool orifice is completely

open, allowing maximum air flow (Figure 3.9).

 25

Figure 3.9: Flow Rate As Function of Setpoint Voltage U

 The valves were piped on the robot to correspond flow

direction to stroke direction. When a high signal (> 5V)

is applied to the valve, air flow into the cylinder causes

the actuator to extend. A low signal (< 5V) retracts the

actuator.

3.2.1 Limitations

 The Festo MPYE-5-M5-010-B valves can control flow up

to 100 l/min through 5mm (10-32) fittings and provide spool

position response up to 100 Hz [28]. Given that the

cylinder bore is 1.5 inches and maximum stroke length is

1.4 inches, 100 L/min (101.7 in3/s) translates into a

maximum stroke speed of 57.56 in/s (Equation 3.1).

2

3

max

max 2

1.767
4

101.7 /
57.56 /

1.767

a

a

d
A in

V in s
x in s

A in

π
= =

= = =
ɺ

ɺ

 (3.1)

 26

57.56 in/s, or 4.8 ft/s is a stroke speed faster than the

operator could command, and is likely outside the

capabilities of the physical system.

 Rather than analyzing a maximum stroke speed, the

maximum frequency of operation is instead analyzed by

calculating the maximum stroking frequency attainable with

a 101.7 in3/s gas flow rate (assuming no compression)

(Equations 3.2 and 3.3).

max max

3 3 3

3

max

3

2.474 2.199 4.673

101.7 /
21.8

4.673

stroke a b a b

stroke

stroke

stroke

V V V A x A x

V in in in

V in s
freq Hz

V in

= + = +

= + =

= = =
ɺ

 (3.2-3)

 Each valve has the flow capacity to stroke a cylinder

back and forth over 20 times per second. This poses

absolutely no restrictions on design or control

capabilities of the robot.

3.2.2 Plumbing

 The main air supply is provided through a 0.25 in.

Nylon 12 flexible tube connected to the main distribution

manifold. Six flexible lines connect the manifold to each

valve. The flexible lines designed for use with barbed

fittings are braided Tygothane tubing, 0.125 in. ID, 0.375

in. OD, with a bend radius of only 0.5 in. 0.125 in. OD

stainless steel tubing connects each valve to its cylinder

on L1/R1 and L2/R2. Flexible tubing connects Valves L3/R3

 27

to cylinders L3/R3. Such materials were chosen for their

workability and pressure ratings. Each component must be

able to withstand operating pressures of approximately 300

psi to conform to chemofluidic research ongoing at

Vanderbilt University.

 At cylinders L1/R1 and L2/R2, the valve is mounted

directly to the cylinder. This close placement reduces the

amount of compressibility exhibited by the metered air in

the lines between valve and actuator. Valves L3/R3 are

mounted close to valves L2/R2 and connected to cylinders

L3/R3 by Tygothane tubing and 1/8 NPT barbed fittings.

This positioning prevents the relatively heavy valve from

adding to the load overhanging joint 2.

3.3 Sensors and Signals

 Two types of sensors critical to pneumatic control

were integrated into the CRC. Position sensors feedback

cylinder stroke length to the controller, and pressure

sensors feedback individual chamber pressures to the

controller.

3.3.1 Position Sensors

 Made by Sentrinsic and developed for the CRC project,

the non-contacting Coupled-Capacitance Resistive Sensors

(CCRS) measure piston position within the cylinders. Each

cylinder houses its own circuit board, which outputs a 0-

10V signal directly proportional to the distance from the

piston to the bottom of the cylinder. This signal is

 28

converted by the controller to stroke length of the rod end

to the absolute minimum stroke length. The prototype

cylinders used were designed specifically for the CRC and

design flaws were rectified by improvements to the overall

Sentrinsic design.

3.3.2 Pressure Sensors

 Small absolute pressure sensors were integrated into

the endcaps of each cylinder. These 250 psi MEMS sensors

can withstand pressures up to three times the 250psi

rating, and measure just 0.30 in. on each side. Sensors

are model 1471-250AW made by Measurement Specialties for

applications in medical devices and internal remote tire

pressure measurement.

 These sensors were installed on custom-made 1/4 NPT

threaded plugs (Figure 3.10). The sensor housings were

then sealed and installed into the aluminum cylinder

endcaps.

Figure 3.10: Pressure Sensor Assembly

 Each sensor behaves like a strain gauge, measuring

absolute pressure within each cylinder chamber. A 5V

 29

potential is applied across the bridge, and the resultant

output voltage is proportional to the absolute pressure

applied. The output voltage is very small, rated 16 mV at

the full 250 psi rating [Datasheet]. With a maximum full-

scale voltage output span of 0.016V at 250psi, the linear

scale of sensor output was determined as:

16
0.064 /

250
sensor

mV
k mV psi

psi
= = (3.4)

The projected sensor output at the maximum 300psi was

estimated using this scale value ksensor:

max
0.064 / 300 19.2

press
V mV psi psi mV−∆ = ⋅ = (3.5)

 A safe value of 30mV was chosen for amplifier gain

selection to allow for any variations in the sensor and any

DC offsets. Since the maximum analog input value readable

by the onboard A/D cards is 10V, the maximum pressure

signal at 300 psi, when amplified, must remain below or at

the 10V threshold. Therefore, the highest desirable gain

was determined:

max

max

10
333.3

0.030

amped

op amp

raw

V V
k

V V

−

−

−

= = = (3.6)

 To produce a readable signal, the sensor output

voltages are each amplified through op-amps wired in a

difference amplifier configuration (Figure 3.11).

 30

Figure 3.11: Difference Amplifier for Pressure Sensors

 The op-amps are set to a gain of 340 V/V, with R1 = R3

= 1.5 kOhm, and R2 = R4 = 510 kOhm. This gain is calculated

by applying the simple difference amplifier gain formula

(Equation 3.7), where Vpress is the voltage difference

generated directly by the pressure sensor.

() ()3

2 1

1

510
340

1.5
out press press

R k
V V V V V

R k

Ω
= − = ∆ = ⋅ ∆

Ω
 (3.7)

 Several factors played into the selection of 340V/V as

the op-amp gain. Firstly, high impedance was desired to

prevent any high currents from passing through the pressure

sensors and op-amps. Secondly, the 510 kOhm and 1.5 kOhm

resistors are very common, and large quantities were

quickly obtained at the ME Electric Shop. Third, since the

maximum analog input value readable by the onboard A/D

cards is 10V, the maximum pressure signal at 300psi, when

amplified, must remain below or at the 10V threshold. The

high-rail op-amp voltage was not yet determined at the time

of the design, but it was known to be 12-15 VDC since it

 31

was to share the excitation voltage line with the position

sensors.

3.3.3 Signal Routing Board

 The op-amps that amplify the pressure sensor signals

were integrated into a custom printed circuit board (PCB).

This PCB routes all the control input signals to the valves

from the main analog output wire harness, and routes all

the feedback signals to the main analog input harnesses.

 The two pressure sensor leads from each cylinder

terminate in an eight-pin MOLEX 90142-0008 header plug.

Each plug mates into a physically shielded, latched header

mounted directly to the PCB. Of the eight wires to each

cylinder, two carry a +5 VDC supply, two carry a ground

connection, two carry a pressure signal potential from the

sensor in the rod-side chamber pb, and two carry a pressure

signal potential from the base-side chamber pa.

 Each Texas Instruments LM3900N single-supply op-amp

chip contains four independent amplifiers. The board was

routed such that each chip amplifies four pressure sensors

for two identical cylinders, i.e. R1a, R1b, L1a, and L1b.

The high rail of the op-amps is a 15 VDC supply line shared

with the position sensors. The pressure sensor amplifier

output header consists of 12 shielded wires sending the

high impedance signals directly to the analog inputs of the

onboard controller.

 The position sensor signals exit each cylinder through

a standard mini-USB plug. Four wires are routed through

 32

the shielded USB wire, +15 VDC, +6 VDC, 0-10 VDC signal,

and ground. The six USB wires connect to six shielded

header plugs at the rear of the board. The MOLEX 50-57-

9404 latching header plugs are intuitively ordered and

labeled to prevent crossed signals and installation errors.

The PCB routes each position signal to a shielded six-wire

header leaving the board through a harness and going

directly to the analog inputs of the onboard controller.

Each wire carries the positive signal value, and all

sensors share a common ground.

 Valve control inputs enter the signal routing board

through a 12-wire header directly from the analog outputs

of the onboard controller. The six control signals each

consist of two wires carrying the +/- potential generated

by the analog output card. From the header wires, each

signal pair is routed to the sides of the board where they

terminate in a 09-91-0400 MOLEX four-pin header. The valve

control wires utilize four connections, +24 VDC, +Signal, -

Signal, and ground from the signal board to each valve.

 A six-wire power header connects the signal board to

incoming voltage supply. The board uses +6 VDC, +15 VDC,

and +24 VDC and a common ground for most components and

sensors. The pressure sensor supply is an isolated +5VDC

and ground connection. Without this isolated connection,

the pressure sensors become coupled to the ground (low

rail) of the op-amps, effectively bypassing the op-amps.

 33

 The signal routing board is mounted to a thin aluminum

back plane via small screws and standoffs. The aluminum

back plane is mounted to the spine of the CRC between the

front and rear shoulder harnesses via two long standoffs.

This placement centralizes the board, provides clearance

for the shoulder swing, and allows for easy access and

troubleshooting.

3.4 Denavit-Hartenberg Parameters

 Each leg is modeled as a 3 degree of freedom serial

robot. Using such a model, the joint angles can be related

to the foot endpoint using Denavit-Hartenberg parameters

(DH parameters) and forward and inverse displacement

analyses [29].

3.4.1 Link Lengths and Joint Offsets

 Due to the nature of the robot design, only three link

lengths (a1, a2, a3) and one joint offset (d1) must be

determined for accurate displacement analysis. Per DH

practice, the robot was drawn and labeled as illustrated

below in Figure 3.12.

Figure 3.12: CRC Link Lengths and Joint Offset

 34

 Joint offset d1 is the axial distance along Joint 1

from the base (shoulder) to the axis of Joint 2. Link

length a1 is the distance from Joint 1 to Joint 2 along Link

1. Link length a2 is the distance from Joint 2 to Joint 3

along Link 2. Link length a3 is the distance from Joint 3

to the endpoint of Link 3.

 Link lengths and joint offsets were measured

accurately using the SolidWorks model of the leg as

described below. Since all links were fabricated directly

from these drawings, they are considered accurate

representations of the physical robot (units are inches).

 Joint offset d1 was measured from the midpoint of the

front shoulder clevis to Joint 2 along the shoulder axis

(Joint 1) (Figure 3.13). Offset d1 = 1.608 inches.

Figure 3.13: Measurement of Joint Offset d1

 Link length a1 was measured from the center of the

shoulder pin to the center of the pin of Joint 2. The link

length is measured perpendicular to the joint offset d1 as

shown below in Figure 3.14. Link length a1 = 5.75 inches.

 35

Figure 3.14: Measurement of Link Length a1

 Link length a2 was determined by measuring the

straight-line spacing between Joint 2 and Joint 3 as shown

below in Figure 3.15. Link length a2 = 6.828 inches.

Figure 3.15: Measurement of Link Length a2

 The final link length a3 was measured from the Joint 3

axis to the end of the manipulator (foot). The measurement

is shown below in Figure 3.16 where a3 = 12 inches.

 36

Figure 3.16: Measurement of Link Length a3

3.4.2 Joint Notation

 Serial joints on each leg are denoted in a manner

consistent with Denavit-Hartenberg conventions (Figure

3.17). Starting at the base of the serial manipulator, the

first shoulder joint is Joint 1, the second is Joint 2, and

the final joint is Joint 3.

Figure 3.17: Joints of Serial Manipulator

 37

 In reference, each joint is preceded by a letter

denoting the leg to which it belongs. The right leg

consists of Joints R1, R2, and R3, and the left leg

consists of Joints L1, L2, and L3 (Figure 3.18).

Figure 3.18: Leg Side Naming Convention

3.4.3 Origins and Coordinates

 Each link on the serial manipulator uses its own

coordinate system and axes as per standard DH convention.

The base of the manipulator is origin O0. Each successive

origin is placed on a joint axis with the z coordinate

along the joint axis and the x coordinate along the link

length (Figure 3.19).

 38

Figure 3.19: DH Origins and Coordinates

3.4.4 Joint Angle Convention

 As per standard DH convention, each joint angle is

measured about the joint axis, z, at each origin. The

angle θi is measured in a positive direction at the ith

joint from xi-1 to xi. In this manner, each joint angle is

standardized and measurable in its particular coordinate

system regardless of the joint angles on other links

(Figure 3.20).

Figure 3.20: DH Angle Conventions

 39

3.5 Force and Torque Analysis

 The force generated by a pneumatic actuator is

converted to joint torque by a fixed lever length from the

rod end to the joint pin. Each joint must be capable of

applying enough torque to enable the robot to complete its

mission. Joints R1 and L1 must be able to either pull or

push the robot on flat terrain and up and down obstacles.

Joints R2 and L2 must be able to supply torque enough to

counter the weight of the robot and lift the body from the

ground. Joints R3 and L3 must provide stabilizing lateral

forces through the feet.

 Joint torques, in this particular system, are

dependent on the direction in which the actuator is

applying force. Since the rod area of one chamber

decreases the available pressure area, the pull stroke is

weaker than the push stroke:

()

()
()

2

2

2 2

2

1.767
4

1.571
4

piston

a a a a a

piston rod

b b b b b

d
F p A p in p

d d
F p A p in p

π

π

 
= = =  

 

 −
 = = =
 
 

 (3.8)

 With a maximum supply pressure ps of 300 psi, the

maximum push force is calculated as

2
300 1.767 530.1

a s a
F p A psi in lbf= = ⋅ = (3.9)

and the maximum pull force is calculated as

2
300 1.571 471.2

b s b
F p A psi in lbf= = ⋅ = (3.10)

 40

3.5.1 Joints R1 and L1

 Actuators R1 and L1 must provide the torque to Joints

R1 and L1 to physically pull the robot forward during a

stance phase. The basic joint geometry is shown below

(Figure 3.21).

Figure 3.21: Max Moment Arm Joint 1 (Bottom View)

 When Link 1 is perpendicular to Cylinder 1, the

maximum torque is applied to Joint 1 (Equation 3.11).

()1max 1 1 1a a b bF r p A p A rτ = = − (3.11)

The maximum joint torque will occur when pressure in

chamber a pa is maximum, zero pressure in chamber b pb and

when the moment arm r1 is at its maximum of 1.100 inches.

() ()2

1max 1
300 1.767 1.100 583.1

a a
p A r psi in in in lbfτ = = ⋅ = ⋅ (3.12)

 The worst possible case for Joint 1 torque occurs when

the leg is swung fully forward and Cylinder 1 is pulling at

 41

the shortest moment arm during the stance phase (Figure

3.22).

Figure 3.22: Shortest Moment Arm on Joint 1 (Bottom)

 In this common case, the maximum torque applied to the

manipulator by Joint 1 is

() ()2

1max 1
300 1.571 0.745 351.1a ap A r psi in in in lbfτ = = ⋅ = ⋅ (3.13)

The 351.1 in-lbf applied by Joint 1 in this pulling

scenario must exceed the torque required to overcome

gravity while the robot is climbing.

 The actual pulling force applied at the foot of the

robot is calculated by measuring the distance from the foot

to Joint 1. Figure 3.23 shows the worst case, in which the

foot is at its furthest point from Joint 1, creating the

largest moment arm.

 42

Figure 3.23: Maximum Foot Extension (Bottom)

 The maximum forward pulling force Joint 1 can generate

in this configuration, assuming zero foot slippage, is

max
351.1

18.35
19.130

pull

foot

in lbf
F lbf

r in

τ ⋅
= = = (3.14)

18.35 lbf maximum pulling force, per leg, at the weakest

leg configuration is more than sufficient for most

conceivable mission parameters in which this robot may find

itself.

3.5.2 Joints R2 and L2

 Joint 2 of each leg experiences the most extreme cases

of torque demand. During a stance phase, Joint 2 provides

most of the torque required to suspend the entire weight of

the robot, and must be able to do so for all foot

positions. During swing phases, Joint 2 supports the

overhanging load of links 2 and 3, providing torque in the

 43

opposite direction. In addition to the load disparity

between swing and stance phases, the moment arm by which

Cyl. 2 applies torque changes greatly through the range of

Joint 2 angles (Figure 3.24). 11.2 degrees is the angular

offset of the cylinder rod end from the true link ray.

This offset is necessary to provide the cylinder rod

clearance over the actual joint pin at full extension. The

moment arm calculation (Equation 3.15) uses the distance

between the joint pin and the rod end pin, 0.975 in. and

the angular offset. Note that in this configuration, the

joint angle will always be negative.

()()2
0.975 sin 180 11.2a in θ= ⋅ ° + − ° (3.15)

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

0.4

0.5

0.6

0.7

0.8

0.9

1

Theta 2 Joint Angle (deg.)

M
o
m

e
n
t

A
rm

 L
e
n
g
th

 (
in

.)

Figure 3.24: Moment Arm Length vs. Joint 2 Angle

 To produce sufficient joint torque, the force applied

by Cylinder 2 through the moment arm must be adequate to

 44

lift the weight of the robot at the lowest mechanical

advantage. The lowest mechanical advantage is experienced

at a joint angle of -10.3 degrees, or full extension of

Cylinder 2 (Figure 3.25).

Figure 3.25: Cylinder 2 at Full Extension/Lowest Mechanical

Advantage

 Through Equations 3.16 and 3.17, the moment arm rmin

and available joint torque τ2max at this extreme

configuration are calculated based on the joint geometry.

()()min
0.975 sin 180 10.3 11.2 0.357r in in= ⋅ °+ − °− ° = (3.16)

2

2max min
300 1.767 0.357 189.2a ap A r psi in in in lbfτ = = ⋅ ⋅ = ⋅ (3.17)

The torque required to lift the robot depends on the

distance from the foot to the spine and the moment arm

created. The largest moment is produced when Cylinder 3 is

fully extended and the foot is splayed outward (Figure

3.26).

 45

Figure 3.26: Maximum Moment Arm About Joint 2

 Applying maximum torque against the maximum moment arm

of 12.70 inches, the maximum lifting force per leg in this

extreme case is evaluated in Equation 3.18.

max

max

189.2
14.9

12.70
lift

in lbf
F lbf

a in

τ ⋅
= = = (3.18)

 Nearly 15 lbf of lifting force per leg at the

configuration with the least mechanical advantage is well

within range of required forces for effective operation of

the robot, assuming the robot weighs less than 90 lbf.

 The most mechanical advantage occurs when the joint

angle is at -78.8 degrees (-90 + 11.2 degrees) and the

actuator applies force to the full 0.975 inch moment arm

about Joint 2 (Figure 3.27).

 46

Figure 3.27: Joint 2 Largest Moment Arm

 The maximum joint torque generated at Joint 2 is

therefore 516.8 in-lbf (Equation 3.19).

2

2max max
300 1.767 0.975 516.8a ap A r psi in in in lbfτ = = ⋅ ⋅ = ⋅ (3.19)

 The maximum lifting force per leg is evaluated while

Joint 2 is at -78.7 degrees and Cylinder 3 is fully

retracted, producing the smallest possible moment arm about

Joint 2 at the highest force configuration (Figure 3.28).

Figure 3.28: Shortest Moment Arm About Joint 2 at Highest

Force Configuration

 47

 The moment arm about Joint 2, 12.77 inches, combined

with the highest possible joint torque, each leg can

produce a respectable downward lifting force at the foot of

40.5 lbf (Equation 3.20).

2max

min

516.8
40.5

12.77
lift

in lbf
F lbf

r in

τ ⋅
= = = (3.20)

 Multiplied by six legs, this highest possible lifting

force will allow the robot to thrust its body upwards with

almost 250 lbf of force. Such high forces could be useful

for lifting fallen objects off a pinned victim or carrying

extra tools and fuel into a mission.

3.5.3 Joints R3 and L3

 Joint 3 on each leg produces torque to provide lateral

stability and thrust relative to the robot spine. The

distance between Joint 3 and the point at which the

actuator applies force is variable. By loosening the leg

rod clamps and sliding the clamps along the leg rod, the

moment arm can be adjusted. For this project, the moment

arm was adjusted to bring Cylinder 3 as close to Link 3 as

possible without inducing mechanical interferences. This

configuration reduces the amount of available lateral force

at the foot, but provides the best range of motion for Link

3. The overall length of Link 3 is also adjustable by

sliding the leg rod up through both rod clamps. Figure

3.29 shows the configuration used throughout this project

and experiments.

 48

Figure 3.29: Link 3 Configuration

 As with Joint 1, Joint 3 is at its weakest

configuration when Cylinder 3 is fully extended and

pulling, Joint 3 at 38.8 degrees. The moment arm is

shortest in this scenario at 1.10 inches (Figure 3.30).

Figure 3.30: Shortest Moment Arm Aout Joint 3

 The maximum torque available at Joint 3 in this

configuration is 518.4 in-lbf (Equation 3.21)

2

3max 3
300 1.571 1.10 518.4b bp A r psi in in in lbfτ = = ⋅ ⋅ = ⋅ (3.21)

 49

 The largest moment about Joint 3 applied by Link 3 is

experienced when Joint 3 is perpendicular to the direction

of the lateral force, employing the full length of Link 3

as the moment arm (Figure 3.31).

Figure 3.31: Largest Moment Arm about Joint 3

The 12.0 inch moment arm about Joint 3 will, in the most

extreme case, apply 43.2 lbf of lateral pulling force

(Equation 3.22).

3max

3max

518.4
43.2

12.0
pull

in lbf
F lbf

r in

τ ⋅
= = = (3.22)

 This amount of lateral force application in the most

extreme case should be more than sufficient to stabilize,

maneuver and manipulate the environment.

 50

CHAPTER 4

TRANSFORMATIONS

 Total system control is attained by individually

controlling stroke lengths of actuators by sending control

input signals to the proportional pneumatic spool valves.

Input signals are generated from transforming operator hand

motions into three-dimensional command vectors which are

transformed into stroke length commands.

 Each control time-step, the actual leg position is

calculated and compared to the commanded position. The

error between the two is displayed to the operator as a

haptic force in the direction of the position error.

4.1 System Layout

 The robot control system consists of three computers

networked together via User Datagram Protocol (UDP). The

three computers are an onboard PC104+ form-factor computer,

a MATLAB host computer, and a computer at the operator

workstation receiving PHANToM input commands and sending

the data over UDP (Figure 4.1).

 51

Figure 4.1: Computer Network

4.1.1 PHANToM PC

 The PHANToM PC is a standard Dell Workstation that

runs only Windows XP and C++ code for PHANToM control

(Appendix C). PHANToM inputs are sent via UDP to the

MATLAB host PC. PHANToM position values are also returned

to the PHANToM PC via UDP from calculations performed on

the robot. The C++ code running on the PHANToM PC

calculates the required force to display to the user and

sends the data to the PHANToMs.

 The PHANToM PC also records input trajectories for

storage, smoothing and later use with the gait coordinator.

4.1.2 MATLAB Host PC

 The MATLAB Host PC acts as both a server and a high-

end workstation. Simulink control diagrams are compiled

and linked on the MATLAB Host and uploaded to the onboard

xPC Target computer. The Host PC runs a high-end dual core

Intel CPU, and has 2 GB RAM for rapid compilation of large

Simulink control diagrams.

 52

 The MATLAB Host PC acts as a local server by

forwarding the UDP packets to and from the PHANToM PC to

the onboard PC104+ target PC. The packets are sent through

a pair of Netgear WNHDE111 802.11n wireless bridges. The

wireless bridges allow the robot to be untethered from the

server and code uploader.

4.1.3 Target PC

 The Target PC is a small, low-power computer housed

onboard the robot itself. This computer is a PC104+ form-

factor stack of 3 boards housed inside an aluminum box

mounted to the robot spine. The Target PC is used solely

for running the real-time controller compiled and uploaded

by the Host PC. The real-time controller runs directly on

the Target PC CPU at 1ms time-steps (1 kHz).

 The three boards of the Target PC are a main CPU

module, an analog to digital card (ADC), and a digital to

analog card (DAC). Each board fits the standard PC104

standard dimensions of 4.6 in. x 3.8 in. The cards stack

together via an 8-bit ISA bus header, a 16-bit ISA bus

header, and a 32-bit PCI bus header. The three busses

allow for interoperability between manufacturers and

assembly standards.

 The CPU board is an Arbor Computing Em104P-i8523

module with an Intel Celeron 600MHz CPU and a 512MB SO-DIMM

RAM chip. The onboard Ethernet chipset is Intel 82562ET,

which is compatible with the Simulink xPC Target upload

protocol.

 53

 The ADC card, under the CPU board, is a Diamond

Systems DMM-32X-AT card. The DMM-32X-AT reads up to 32

single-ended analog inputs, or 16 differential inputs. The

card is configured to base address 0x300 and reads single-

ended inputs from 0-10V.

 The DAC card, under the ADC at the bottom of the

stack, is a Diamond Systems RMM-1612-XT card. The RMM-

1612-XT outputs up to 16 12-bit analog signals at 0-10V.

The card is configured to a base address of 0x280.

4.2 Control Input Transformation

 The operator input to the CRC system is a three-

dimensional vector generated by each PHANToM haptic device.

The vector, in input task space (x,y,z) is converted to

joint space (θ1, θ2, θ3) by an inverse displacement

algorithm evaluating joint angles each time-step.

4.2.1 Input Task Space to Robot Space

 The operator physically commands foot position of each

leg through two PHANToM haptic devices. Each PHANToM has

three degrees of freedom and sends data out in the form of

a 3 dimensional position vector each time-step (1 ms).

Each PHANToM output is a vector in millimeters from the

PHANToM origin (set arbitrarily when the device is

initialized) to the device endpoint. The coordinates of

the input space to which the vector is referenced are shown

below in Figure 4.2. Looking at the front of the PHANToM

device, x is to the right, y is up, and z is inward.

 54

Figure 4.2: PHANToM Coordinates

 The input vector is scaled, orthogonally transformed

and then rotated by 30 degrees to match the downward angle

of the shoulders on the robot.

 Using standard Denavit-Hartenberg coordinates for the

base of the leg, the PHANToM input vector coordinates must

be orthogonally transformed to properly correspond to the

leg coordinates (Figure 4.3).

Figure 4.3: Left PHANToM Input and Leg Coordinates

 The coordinate transform matrix is applied to the

PHANToM input vector pinput to transform it into workspace

coordinates pleft (Equation 4.1).

 55

0 0 1

1 0 0

0 1 0

left input

left input

left input

x x

y y

z z

   − 
    

= −    
        

 (4.1)

 The input vector in the leg workspace pleft is then

rotated +30 degrees about the y-axis to properly match the

downward leg angle yielding the rotated vector prot

(Equation 4.2), (Figure 4.4).

Figure 4.4: Rotated Input Vector

cos30 0 sin 30

0 1 0

sin 30 0 cos30

rot left

rot left

rot left

x x

y y

z z

 −   
    

=     
         

 (4.2)

 Finally, the new transformed input vector prot is

converted from mm to inches and scaled up by a factor of 2

so that the physical PHANToM input workspace will encompass

all areas within the leg workspace (Equation 4.3).

0

0 0

0

1
2

25.4

com rot

com com rot

com rot

x x
in

p y y
mm

z z

   
    

= =      
      

 (4.3)

 56

 The same procedure is performed on the right leg to

transform the PHANToM input vector into a usable vector in

the leg workspace. First the PHANToM input vector

coordinates are orthogonally transformed to match the

coordinates of the leg workspace (Figure 4.5), (Equation

4.4).

Figure 4.5: Right PHANToM Input and Leg Coordinates

0 0 1

1 0 0

0 1 0

right input

right input

right input

x x

y y

z z

   − 
    

= −    
        

 (4.4)

 The +30 degree rotation about the y-axis and scaling

for the right leg is identical to the procedure performed

on the left.

 The complete matrix Aphan-leg transforming the PHANToM

input vector to the one which is used for joint angle

evaluation is shown below in Equation 4.5.

0 0 1 cos30 0 sin 30 0.039 0 0.068
2

1 0 0 0 1 0 0.068 0 0.039
25.4

0 1 0 sin 30 0 cos30 0 0.079 0

phan legA −

− − − −     
       

= − = −        
          

(4.5)

4.2.2 Leg Space to Joint Space

 57

 The transformed and rotated input vector 0pcom relates

commanded foot position from an arbitrary origin within the

leg workspace. Joint angle calculation, however, requires

a commanded position vector from the robot base, or the

base origin of the D-H model 0p04. Since the origin in the

leg workspace is arbitrary, it is set at a point where the

PHANToM workspace is able to reach every point in the leg

workspace without reaching a physical motion limit.

 Tests revealed that a satisfactory origin O placement

from the leg origin O0 (base) is 25 inches along the x-axis

and -10 inches along the z axis, creating vector 0poffset

(Figure 4.6).

Figure 4.6: Origin O Placement Relative to Leg Base

 Knowing the commanded foot position 0pcom and the origin

offset vector 0poffset, the vector from the base to the foot

0p04 can be found by simple vector addition (Equation 4.6).

0 04 0 0com com offset
p p p= + (4.6)

 58

 The vector 0p04 is used for directly evaluating the

joint angles necessary to achieve the desired endpoint

position. With this 3 degree of freedom serial

manipulator, 4 solutions emerge from the inverse

displacement algorithm. Two solutions emerge for Joint 1,

and two solutions emerge for the evaluation of Joint 3 from

each solution of Joint 1.

 The inverse displacement analysis herein is based on

the generalized method of analyzing the first 3 joints of a

Puma robot [29] since both the Puma and the CRC legs have

very similar joint structures.

 Only one set of angle solutions is a possible

configuration for this robot, alleviating the need to solve

for multiple joint solutions simultaneously.

 The inverse displacement algorithm functions are drawn

in a Simulink diagram by their orders of operations through

which each solution is computed. The Simulink diagrams are

located in Appendix B. Each 1 ms time-step, the joint

angle solutions are updated based on the new control input

received via UDP from the PHANToM controllers.

 Two of these algorithms run simultaneously, one for

each leg. Since both legs are identical and have identical

D-H parameters and coordinates, both algorithms are

identical, and denoted by Joint 1, Joint 2, Joint 3 rather

than the leg specific notation R1, R2, R3, etc.

 59

 Linear Trigonometric Equations are solved throughout

the inverse displacement algorithm. The solution method

taken from [29] is found in Appendix A.

4.2.2.1 Joint 1

 The shoulder pivot angle of Joint 1 is solved from the

endpoint vector 0p04 first by using the vector 1p14, from O1

to O4 at the endpoint in coordinate frame 1 (Equation 4.7).

()

()

()

() ()

() ()

()

()

()

()

()

()

0 04 1 0 04 1
1 14

1 14 0 04 1 0 04 1

1 14 0 04 1

1 14 1 2 2 3 2 3 2 3

1 14 2 3

2 2 3 2 3 2 3
1 14

cos sin

cos sin

cos cos cos sin sin

sin cos sin sin cos

x y
x

y y x

z z

x

y

z

p pp

p p p

p p d

p a a a

p d d

a ap

θ θ

θ θ

θ θ θ θ θ

θ θ θ θ θ

   +
   

= −   
   

−      

  + + − 
   

= +   
   − − −   

 (4.7)

 Since the middle term, (1p14)y contains only the

variable for Joint 1 as a linear trigonometric equation and

0p04, this can be easily rearranged and solved for θ1

(Equation 4.8).

() ()0 04 1 0 04 1 2 3
cos sin 0

y x
p p d dθ θ− − − = (4.8)

The linear trigonometric equation solution yields two sine

and cosine pairs (Equation 4.9).

()

()

2 2 2

2 2

2 2 2

2 2

cos

sin

ad b a b d

a b

bd b a b d

a b

θ

θ

± + −
=

+

± + −
=

+

∓

∓

 (4.9)

Where a, b, and d are the sine and cosine coefficients from

Equation 4.8 (Equation 4.10).

 60

()

()

0 04

0 04

2 3
0

y

y

a p

b p

d d d

=

= −

= + =

 (4.10)

 Rewriting and simplifying Equation 4.9, the sine and

cosine pairs are solved for the positive solution,

corresponding to the first angle solution for Joint 1:

() ()

() ()

()
()

() ()

0 04

1
2 2 2 2

0 04 0 04

0 04

1
2 2 2 2

0 04 0 04

cos

sin

x

y x

y

y x

pb

a b p p

pa

a b p p

θ

θ

+

+

−
= =

+ +

= =
+ + −

 (4.11)

 The ATAN2 function of MATLAB is used with the sine and

cosine solutions to θ1. This finds the correct angle

corresponding to the sine and cosine values while

considering signs of both (Equation 4.12).

()1 1 1
2 sin ,cosATANθ θ θ+ + += (4.12)

 In the linear trigonometric equation, the d term is

zero, this implies that the robot is in a displacement

singularity at Joint 1. This scenario would occur when the

wrist, or in this case, foot, passes over or under the axis

of Joint 1. This event physically cannot occur on this

particular serial robot.

 Because of this serial link configuration and its

absence of joint offsets d2 and d3, the evaluation of Joint

1 can be greatly simplified (Figure 4.7).

 61

Figure 4.7: Top View of Joint 1, d2 and d3 = 0

 With this configuration, θ1 can be simply expressed as

the inverse tangent of the x and y components of the input

vector 0p04 (Equation 4.13).

() ()()1 0 04 0 04
2 ,

y x
ATAN p pθ = (4.13)

4.2.2.2 Joint 3

 Once a single solution for Joint 1 has been evaluated,

the angle is used in the evaluation of Joint 3. Since only

one solution from Joint 1 is chosen, (the other is a

physically impossible configuration), only two possible

solutions for Joint 3 emerge. Only one solution for Joint

3 will be chosen.

 Initially, to solve for θ3, the vector 1p14 must be

found from the input vector 0p04. Vector 1p14 is the vector

from O1 to O4 as seen from the reference frame of the

coordinates of O1 (Figure 4.8).

 62

Figure 4.8: Vectors Needed for Joint 3 Evaluation

 Vector 1p14 can be evaluated directly from Equation 4.7

above:

()

()

()

() ()

() ()

()

0 04 1 0 04 1
1 14

1 14 0 04 1 0 04 1

1 14 0 04 1

cos sin

cos sin

x y
x

y y x

z z

p pp

p p p

p p d

θ θ

θ θ

   +
   

= −   
   

−      

 (4.14)

 The vector 1p12 is expressed in terms of the D-H

values:

1 12 1 1 2 2 1 1
p a x d y a x= + = (4.15)

Vector addition shows that

1 14 1 12 1 24
p p p= + (4.16)

Rewriting 4.16, 1p24 can be expressed as

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

1 24 1 14 1 12 1 14 1 1 14

1 24 1 14 1 12 1 14 1 14

1 24 1 14 1 12 1 14 1 14

5.75
x x x x x

y y y y y

z z z z z

p p p p a p in

p p p p p

p p p p p

         − −
         

= − = =         
         
                  

 (4.17)

 Substituting 1p14 from Equation 4.7 into Equation 4.17

yields

 63

()

()

()

()

()

()

()

()

()

1 24 1 2 2 3 2 3 2 3 1

1 24 2 3

2 2 3 2 3 2 3
1 24

1 24 2 2 3 2 3 2 3

1 24

2 2 3 2 3 2
1 24

cos cos cos sin sin

cos cos sin sin cos

cos cos cos sin sin

0

cos cos sin sin c

x

y

z

x

y

z

p a a a a

p d d

a ap

p a a

p

a ap

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

  + + − − 
   

= +   
   − − +   

  + −
 

= 
  − − +  

()3
osθ

 
 
 
  

 (4.18)

 The unknown θ2 term can be eliminated by squaring and

summing the x and z components of 1p24 (Equation 4.19).

() ()
2 22 2

2 3 3 2 3 1 24 1 24
2 cos 0

x z
a a a a p pθ + + − − = (4.19)

 Equation 4.19 is another linear trigonometric equation

with coefficients

() ()()

2 3

2 22 2

2 3 1 24 1 24

2

0

x z

a a a

b

d a a p p

=

=

= + − −

 (4.20)

 Again, this will yield two sine-cosine pairs from

which two angle solutions emerge. Results have shown that

the second solution is the one which yields an achievable

joint angle command. The coefficients from Equation 4.20

above are then substituted into Equation 4.9 for evaluation

and simplified:

3 2

2 2 2 2

3 2

0
cos

0
sin

ad d

a a

a a d a d

a a

θ

θ

±

±

= =

± − ± −
= =

∓

 (4.21)

 64

() ()()

() () ()()

2 22

1 24 1 24

3 2

22 2 22 2

1 24 1 24

3 2

190.62
cos

163.87

163.87 190.62

sin
163.87

x z

x z

in p p

in

in in p p

in

θ

θ

−

−

− −
=

− − − −
=

 (4.22)

 As with the Joint 1 solution, the two sine-cosine

values are input into the ATAN2 MATLAB function to yield

one corresponding joint angle (Equation 4.23).

()3 3 3
2 sin ,cosATANθ θ θ− −= (4.23)

4.2.2.3 Joint 2

 Once joint angles θ1 and θ3 have been evaluated from

the PHANToM input vector, Joint 2 is solved based on the

solutions for Joint 1 and Joint 3.

 First, the x and z components of Equation 4.18 are

rearranged into matrix form, pulling out the unknown θ2

term:

()

()
1 24 2 3 3 3 3 2

1 24 2 3 3 3 3 2

cos sin cos

sin cos sin

x

z

p a a a

p a a a

θ θ θ

θ θ θ

  + −   
=     

− − −    
 (4.24)

Solving for the sine and cosine pair yields two equations:

 65

() () ()()

()
()() ()()

()
()() () ()

()

() () ()()

2 3 3 1 24 3 3 1 24

2 2 2

2 3 3 2 3

2 3 3 1 24 3 3 1 24

2 2 2

2 3 3 2 3

3 1 24 3 1 24

2

3

3 1 24 3 1 24

2

cos sin
cos

2 cos

cos sin
sin

2 cos

6.828 12cos 12sin
cos

163.87cos 190.62

6.828 12cos 12sin
sin

x z

z x

x z

z

a a p a p

a a a a

a a p a p

a a a a

p p

p p

θ θ
θ

θ

θ θ
θ

θ

θ θ
θ

θ

θ θ
θ

− + +
=

− + +

+ +
=

− + +

− + +
=

− +

+ +
=

()3
163.87cos 190.62

x

θ− +

 (4.25)

 The sine-cosine pair is again input into an ATAN2

MATLAB function to yield one value for theta2 (Equation

4.26).

()2 2 2
2 sin ,cosATANθ θ θ= (4.26)

4.2.3 Joint Space to Cylinder Space

 Once joint angles are calculated, the information is

converted to a directly controllable physical parameter,

cylinder stroke length. With each individual joint angle

command related to only one actuator, only one conversion

per joint angle command is made each time-step.

 A cosine law function is used for determining the

required cylinder stroke length necessary to achieve the

commanded joint angle (Figure 4.9), (Equation 4.27).

 66

Figure 4.9: Law of Cosines Configuration

2 2 2
2 cosl r x rx θ= + − (4.27)

 With this cosine caw configuration, l is the total

length of the cylinder and stroke, x is the distance from

the cylinder base to the joint pin, and r is the distance

from rod end pin to the joint pin.

 Cylinders L1 and R1 are described separately because

as L1 retracts, the joint angle increases positively, and

as R1 retracts, the joint angle grows negatively (Figure

4.10).

Figure 4.10: Top View of Joints R1 and L1 Coordinates and

Angle Directions

 67

 The maximum stroke length of the Sentrinsic pneumatic

cylinders made for the CRC is 1.4 inches.

4.2.3.1 Cylinder L1

 Cylinder L1 moves Joint 1 from approximately -45

degrees to +45 degrees. To apply the Law of Cosines to the

joint geometry, the static cylinder length is subtracted

from the dimension l to isolate the exact stroke length

(Figure 4.11).

Figure 4.11: Joint L1 Link Geometry

 The Cosine Law equation is used for evaluating the

interior angle opposite the cylinder while the commanded

joint angle is complementary (Figure 4.12).

 68

Figure 4.12: Joint L1 Cosine Law Geometry

 Solving for the stroke length ∆l, the cosine law

equation for Joint 1 is written as:

()

() ()

()

2 2 2

1

2 2 2 2

1 1

2 2

1

1

cos

7.45 1.21 60.92 8.59 cos 90

62.13 8.59 cos 90

7.45

L

L L

L

L

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° −

+ ⋅ ° −
∆ =

(4.28)

4.2.3.2 Cylinder R1

 The stroke length for Cylinder R1 is calculated from

the commanded joint angle θ1 similarly to L1, but the joint

angle geometry is opposite (Figure 4.13).

 69

Figure 4.13: Joint R1 Cosine Law Geometry

 Aside from the opposite coordinates relative to Joint

L1, the physical dimensions of the parts are identical. θ1

is calculated as a partial angle of the interior angle Φ

(Equation 4.29).

()

() ()

()

2 2 2

1

2 2 2 2

1 1

2 2

1

1

cos

7.45 1.21 60.92 8.59 cos 90

62.13 8.59 cos 90

7.45

R

R R

R

R

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° +

+ ⋅ ° +
∆ =

 (4.29)

4.3.2.3 Cylinder 2

 Joint 2 on each leg has the same coordinate system

whereas when the actuator retracts, the joint angle grows

negatively, and as it extends, the joint angle increases

positively. The geometry of the joint-actuator triangles

requires careful analysis of the mechanism to isolate the

 70

interior angle Φ (needed for stroke length calculation)

from the commanded joint angle θ2 (Figure 4.14).

Figure 4.14: Joint 2 Angle Relationships

 While Φ is the angle needed to calculate stroke

length, only θ2 is known. The 11.2 degree static offset,

mentioned in 3.5.2 completes the three-angle supplement

(Equation 4.30).

2 2
180 11.2 168.8φ θ θ= ° − ° + = ° + (4.30)

 The physical dimensions of the joint geometry are used

in the same manner as for Joints L1 and R1 (Figure 4.15).

 71

Figure 4.15: Joint 2 Link Geometry

 With joint angle and dimension values known, the

cosine law equation can be written and arranged to express

Cylinder 2 stroke length as a function of commanded D-H

joint angle.

()

() ()

()

2 2 2

2

2 2 2 2

2 2

2 2

2

2

cos

7.45 0.95 63.57 7.77 cos 168.8

64.52 7.77 cos 168.8

7.45

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° +

+ ⋅ ° +
∆ =

 (4.31)

4.2.3.4 Cylinder 3

 Cylinder 3 stroke length on either leg uses an

identical cosine law equation. Again, careful analysis of

the joint angle geometry is required to properly isolate Φ

and θ3 (Figure 4.16).

 72

Figure 4.16: Joint 3 Angle Relationships

 As with Joint 2, the Joint 3 angles contain a static

angle offset due to the lateral distance between the

physical joint pin and the foot. The relationship between

the cosine law interior angle Φ and the commanded joint

angle θ3 is

3 3
180 4.8 175.2φ θ θ= ° − ° − = ° − (4.32)

 The physical dimensions of the joint geometry are used

in the same manner as for Joints L1 and R1 (Figure 4.17).

Figure 4.17: Joint 3 Link Geometry

 73

 With joint angle and dimension values known, the

cosine law equation can be written and arranged to express

Cylinder 3 stroke length as a function of commanded D-H

joint angle.

()

() ()

()

2 2 2

3

2 2 2 2

3 3

2 2

3

3

cos

7.51 2.25 63.65 11.97 cos 175.2

65.90 11.97 cos 175.2

7.51

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° −

+ ⋅ ° −
∆ =

 (4.33)

4.2.4 Cylinder Stroke Length Conversions

 Each commanded stroke length must be converted from a

value of 0-1.4 inches to a standard range for control. 0-

10V was chosen for the conversion because the position

sensor output is within the 0-10V range (Equation 4.34)

10

1.4
command stroke

V
x x

in
= (4.34)

4.3 POSITION OUTPUT TRANSFORMATION

 During real-time operator control of the robot legs,

the operator must be made aware of the environment through

haptic feedback. Since the operator is using a three-

dimensional position vector as an input to the system the

system needs to responds back with a similar vector. This

response vector indicates the current foot position, so

that any position error is relayed to the operator via a

directional haptic spring force.

 The evaluation of the actual position vector pcom is

completed by analyzing the stroke length output from the

 74

pneumatic cylinders and processing the data through a

forward displacement algorithm to determine the position

vector based on joint angle input. The same four steps

performed in 4.3 Control Input Transformation are performed

inversely to produce a position vector in the operator

input space from stroke length voltage data.

4.3.1 Cylinder Stroke Length Conversion

 While reliable and extremely effective, the Sentrinsic

cylinders equipped on the CRC are each electronically

different. Each cylinder has a different range of output

voltage for a full stroke. Occasionally the ranges drift

and shift and the controller responsible for signal

conversion must be recalibrated approximately every two

weeks. Once each position sensor maximum and minimum

voltage is known, the conversion from voltage signal to

stroke length is performed (Equation 4.35).

()
()

min

max min

1.4
signal

stroke

x V
x in

V V

−
=

−
 (4.35)

 Each position sensor is measured with a voltmeter at

full stroke and full retraction and the corresponding Vmax

and Vmin values are entered into a MATLAB array read by the

Simulink diagram for each sensor.

 The output, then, xstroke is the same range for each

sensor, 0-1.4 inches.

4.3.2 Cylinder Space to Joint Space

 75

 With each actual cylinder stroke length known, the

actual joint angles must be evaluated as an input into the

forward displacement algorithm. Similar to the Joint Space

to Cylinder Space method (4.2.3), Joints R1 and L1 are

calculated separately, while Joints 2 and 3 on each leg are

identical.

 Each cylinder stroke length is used in a cosine law

formula to evaluate the interior angle of the triangle made

by the joint geometry (Equation 4.36). The joint angle is

evaluated from the cosine law value.

()2 2 2

2 2 2

1

cos

cos

l r x rx

l r x

rx

φ

φ−

= + +

 − −
= 

 

 (4.36)

4.3.2.1 Cylinder L1

 Using Figures 4.11 and 4.12 for evaluation of the

joint angle geometry, θL1 is found by rewriting Equation

4.36:

()

()

2 2 2

11

1

2 2

11

1 2

90 90 cos

7.45 62.13
90 cos

8.59

L

L

L

L

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= ° − = ° −  

 
 

 + ∆ −
= ° −  

 
 

 (4.37)

4.3.2.2 Cylinder R1

 Using Figures 4.11 and 4.13 for evaluation of the

joint angle geometry, θR1 is found by rewriting Equation

4.36:

 76

()

()

2 2 2

11

1

2 2

11

1 2

90 cos 90

7.45 62.13
cos 90

8.59

R

R

R

R

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − ° = − ° 

 
 

 + ∆ −
= − ° 

 
 

 (4.38)

4.3.2.3 Cylinder 2

 Using Figures 4.14 and 4.15 for evaluation of the

joint angle geometry, θ2 for either leg is found by

rewriting Equation 4.36:

()

()

2 2 2

21

2

2 2

21

2 2

168.8 cos 168.8

7.45 64.52
cos 168.8

7.77

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − ° = − ° 

 
 

 + ∆ −
= − ° 

 
 

 (4.39)

4.3.2.4 Cylinder 3

 Using Figures 4.16 and 4.17 for evaluation of the

joint angle geometry, θ3 for either leg is found by

rewriting Equation 4.36:

()

()

2 2 2

31

3

2 2

31

3 2

175.2 175.2 cos

7.51 65.90
175.2 cos

11.97

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − = ° −  

 
 

 + ∆ −
= ° −  

 
 

 (4.40)

4.3.3 Joint Space to Leg Space

 Once each actual joint angle is known, the forward

displacement algorithm computes the vector from the

manipulator base to the foot from this data. The vector

 77

describes the foot position relative to the spine before it

is rotated, transformed, scaled and relayed to the PHANToMs

for operator feedback.

 First, the Denavit-Hartenberg homogeneous transform

matrix i-1,iB is defined and used to transform the

coordinates and positions of one link to another, starting

from the base link to the next, serially (Equation 4.41).

() () () ()
() () () ()

() () () ()

1 1 1 0 1,

1 1 1 0 1,

1,

1 1 1 0 1,

0 0 0 1

i i i i i i i ix x x x

i i i i i i i iy y y y
i i

i i i i i i i iz z z z

x y z p

x y z p
B

x y z p

− − − −

− − − −

−

− − − −

 
 
 

=  
 
 
 

 (4.41)

 The D-H homogenous transform matrix is a partitioned

matrix. The 3x3 section is the projection of coordinates Oi

on coordinates Oi-1. The 3x1 matrix is the vector viewed

from reference frame O0 from Oi-1 to Oi.

 Once each homogeneous transform matrix has been

calculated in terms of θ1, θ2, and θ3, the final transform

matrix 04B is calculated (Equation 4.42).

()()()()04 01 12 23 34
B B B B B= (4.42)

 The first transformation matrix 01B is evaluated by

analyzing the relationship between O1 and O0 (Figure 4.18).

 78

Figure 4.18: Projection of O1 onto O0

Using Figure 4.18, the homogeneous transform matrix 01B can

be evaluated (Equation 4.43).

1 1

1 1

01

1

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1

B
d

θ θ

θ θ

− 
 
 =
 
 
 

 (4.43)

 Next, the transform matrix from O1 to O2 is evaluated

using Figure 4.19 (Equation 4.44).

Figure 4.19: Transformation from O1 to O2

 79

2 2 1

12

2 2

cos sin 0

0 0 1 0

sin cos 0 0

0 0 0 1

a

B

θ θ

θ θ

− 
 
 =
 − −
 
 

 (4.44)

 Next, the transform matrix from O2 to O3 is evaluated

using Figure 4.20 (Equation 4.45).

Figure 4.20: Transformation from O2 to O3

3 3 2

3 3

23

cos sin 0

sin cos 0 0

0 0 1 0

0 0 0 1

a

B

θ θ

θ θ

− 
 
 =
 
 
 

 (4.45)

Finally, the homogenous transform matrix from O3 to O4 is

evaluated using Figure 4.21 (Equation 4.46).

Figure 4.21: Transformation from O3 to O4

 80

3

34

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a

B

 
 
 =
 
 
 

 (4.46)

 With each transformation matrix now in terms of the D-

H parameters and standard joint angles, the total

transformation matrix 04B is calculated. Since only the

vector op04 is of consequence, its result is shown below

(Equation 4.47).

()()()()

() () ()

() () ()

() ()

04 01 12 23 34

1 2 3 1 2 3 3 1 2 2 1 1

0 04 1 2 3 1 2 3 3 1 2 2 1 1

2 3 2 3 3 2 2 1

cos cos cos cos sin sin cos cos cos

sin cos cos sin sin sin sin cos sin

sin cos cos sin sin

B B B B B

a a a

p a a a

a a d

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

=

− + + 
 

= − + + 
 − − − + 

(4.47)

 The foot position vector 0p04 is calculated each time-

step from the stroke length data received by the analog

card.

4.3.4 Leg Space to Input Task Space

 The foot position vector 0p04act is calculated in

reference to the coordinates of the base joint of the

robot, which are rotated downward at 30 degrees. To send a

meaningful vector to the PHANToM devices, 0p04act must be

rotated and transformed to match the coordinates and scale

of the input vector 0p04com.

 The foot position vector 0p04act must first be moved

from the serial manipulator base origin O0 to the arbitrary

origin O set in the leg task space in 4.2.2 (Figure 4.22).

 81

Figure 4.22: Leg Origin Placement

Again, simple vector addition yields the vector 0pact

(Equation 4.48).

0 0 04 0act act offsetp p p= − (4.48)

 With 0pact known, the inverse procedure to the

transformation described in Equation 4.5 of 4.2.1 is

performed to transform 0pact into pphan_act(Equation 4.49).

()

()

()

0

1

_ 0 0

0

6.35 11.07 0

0 0 12.66

11.07 6.35 0

act x

phan act phan leg act act y

act z

p

p A p p

p

−

−

 − − 
  

= =   
  −    

 (4.49)

4.4 Conclusions

 The PC104 CPU performing the lengthy real-time

coordinate transforms and displacement analyses computes

the results in less than 30% of each control time-step.

The forward displacement algorithm yields accurate results

for the foot position based on the stroke length inputs.

Accuracy was verified by physically measuring the joint

angles and foot position and comparing to the displayed

 82

results of the algorithm. The inverse displacement

algorithm, updated every 1 ms, outputs accurate stroke

length commands. This accuracy and coordination can be

verified visually by powering both the leg sensors and the

PHANToM controllers. The legs are able to back-drive the

PHANToMs due to the bilateral teleoperation condition of

the system. When the foot is moved in a straight line,

relative to the spine (multiple joints moving), the PHANToM

controller follows in a straight line. When the entire

system is powered, the PHANToM can be moved in a straight

line, and the foot position will follow to the best ability

of the controller.

 83

CHAPTER 5

LEG CONTROL

 Each leg controller uses the transformations discussed

in Chapter 4 to apply a control effort to each individual

pneumatic cylinder. Each actuator is position controlled

independently via a PD controller with added force control

from a differential pressure gain scheduler.

 The control laws for each cylinder are essentially

identical, save for different gain values. The control

inputs are 0-10V signals to each valve. The 0-10V analog

signal corresponds to the valve spool position. A 5V

signal commands the spool to the center position, blocking

all flow to either cylinder chamber (Figure 5.1).

Figure 5.1: Spool Position and Cylinder Relationship

 Each cylinder is, by itself, a fourth or fifth order

nonlinear, discontinuous, time varying system. Coupled

with the valve dynamics, the high order system is further

 84

complicated by the coupling and discontinuities and

nonlinearities imposed by cantilevered links, ground

interaction forces, and the compressibility of air.

Instead of modeling the entire leg system and optimizing a

controller for different scenarios and conditions, a

generally robust PD controller was chosen for servo

control. The control variable, spool position, is directly

proportional to the volumetric flow rate to and from each

cylinder chamber (Figure 5.2).

Figure 5.2: Flow Rate vs. Spool Position Command

 While the direct control input is a voltage signal

controlling spool position, the physical correlation is

mass flow rate into and out of each cylinder chamber.

Directly coupled to the flow rate is a pressure term. The

overall control effort becomes a complex relationship

between fluid flow rate, pressure and temperature.

 85

 In a simple analogy, the valve regulates input effort

similar to the way a motor servo controller regulates

voltage and current (force and flow) to achieve desired

position. The system exhibits traits of internal

integration behavior (Type I system).

5.1 Control Objective

 The goal of establishing control over each cylinder is

to maintain tracking control of the foot (endpoint) of each

leg. Tracking control, rather than tuned responses to pre-

generated inputs, is vital to this application because each

leg will be driven by an operator giving direct inputs via

two bilateral teleoperated PHANToM haptic devices. The

force generated by the PHANToMs is proportional to the

position error between the commanded and actual foot

positions. If the foot were to strike an obstacle or

become entangled, the operator will feel the sharp increase

in position error. However, if the operator is constantly

driving the feet while ‘wading’ through a constantly high

position error, the haptic force increase generated by an

obstacle will be less noticeable, and the operator will

quickly tire from the constant forces.

 Ideal tracking, i.e. zero error between commanded and

actual position, requires very complex and accurate

modeling techniques which were neither employable nor

employed through the course of this project. Standard PD

control methods are incompatible with ideal tracking

 86

because an error signal is required to generate a control

signal.

 Since ideal tracking is, in the scope of this project,

unattainable, a controller was designed to provide “good”

tracking.

5.1.1 Controller Requirements

 Several requirements were determined during controller

design and tuning. These sets of limitations and

expectations were to be met by the final version of the

control scheme.

 Stability – First and foremost, the controller

designed for this system must produce a stable system

response. Stability was required in response to a step

input, and sinusoidal inputs up to 5 Hz at 80% stroke

command. An 80% stroke command was chosen for the

stability analysis so that the piston would have sufficient

space in the chamber to overshoot its commanded position.

Otherwise, the sinusoid would simply be dead-heading the

cylinder fully back and forth like an on-off valve. 5 Hz

was chosen as the stability limit because the operator

should not be able to command the foot position to change

that rapidly, and such a command would actually approach

the maximum flow capacity of the Festo valves, introducing

an entirely new dynamic into the leg systems as the

actuators become starved for flow (3.2.1).

 While an exponential rise in position instability will

not damage the actuators, the wild oscillations caused by

 87

certain conditions certainly pose safety risks both to the

operator and to those who it would rescue.

 In addition to control parameter tuning, saturations

and filters are used to adequately harness the pneumatic

control system.

 Robustness – A robust controller is obviously

necessary for such a remote, teleoperated system because

the operator must rely solely on the control software if

any hardware or sensor failures occur. Operating the

system open-loop in an emergency (due to sensor failure) is

a desired feature of the system.

 The controller must maintain control of the system

when a sensor fails, experiences noise, malfunctions, or

when the system experiences a fluid leak. The robustness

of the controller must also compensate for the sharp

disparity between ground contact and free-space movements.

 Tracking response – In order to provide effective

operator control, the foot position response must be crisp

and reactive to the operator’s inputs. Through controller

tuning and development, good tracking control was

detectable by feel through the haptic controllers. Through

testing, it was determined that a tracking error < 10%

stroke length (< 0.14 inches) provides a satisfactory

medium between tracking control and stability.

5.2 Position Control

 Servo position control is accomplished by using a

discrete proportional-derivative (PD) controller with a

 88

velocity feed-forward command and velocity damping. Each

cylinder is controlled by an individual PD controller,

using the commanded stroke length xref as the input command.

Xref is generated for each cylinder by the input coordinate

transformations. Each cylinder features a position sensor

which feeds back actual stroke length xact to the controller

for comparison to the command position xref.

5.2.1 Control Law

 The position control law assigned to each cylinder is

()()
5

PD p ref act d act vff ref

valve PD

y k x x k x k x

V y

= − − +

= +

ɺ ɺ

 (5.1)

This control law assigns a valve spool position Vvalve based

on the position error, the position command rate, and the

actual position rate. The gain values kp, kd, and kvff are

tuned for each cylinder pair (L1/R1, L2/R2, L3/R3) because

each actuator encounters different loading conditions.

 The proportional gain constants kp were determined

experimentally through testing. The derivative gain

constants kd were also determined experimentally, though the

method of obtaining a signal derivative also required

tuning. Since the signals coming from all the sensors

included some electrical noise, a standard discrete

derivative only increased the noise output of the

controller. The solution to the noise problem is to

increase the sampling time over which the value is

differentiated. For this case, the derivative values are

 89

calculated over a period of 40 sampling intervals, or 0.04

seconds. This lengthening of the differentiation span

greatly reduces the amount of noise introduced by the

controller derivative functions. A 10Hz low-pass filter

completes the signal smoothing operation.

5.2.2 Position Control Stability

 Operating each leg cylinder under only closed loop PD

control, stability of each actuator can be demonstrated

experimentally via step inputs from 20% to 80% stroke (0.28

– 1.12 inches). This stroke limitation is chosen to allow

for any position overshoot. A full stroke length step

input would simply dead-head the piston at the travel

limits of the cylinder, rendering stability analysis

impossible due to the lack of information as to whether the

piston is held in place by a controlled pressure

differential. During testing, the robot is vertically

constrained to its cart, allowing Joint 2 of each leg to

apply force to the ground as they normally would. The

operating pressure is 130 psi.

 Figures 5.3, 5.4, and 5.5 below show that stability of

stroke length xact for each cylinder is achievable through

this position controller.

 90

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.3: Cylinder L1 Step Response, PD Control, kp = 0.5,

kd = 0.004, kvff = 0.05, 130 psi

16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.4: Cylinder L2 Step Response, PD Control, kp = 0.5,

kd = 0.004, kvff = 0.015, 130 psi

 91

16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.5: Cylinder L3 Step Response, PD Control, kp = 0.55,

kd = 0.01, kvff = 0.03, 130 psi

5.2.3 Tracking Response

 The tracking response of the individual actuators is

demonstrated below (Figures 5.6, 5.7, 5.8). A 3 rad/s

sinusoid, 20%-80% stroke length is the position input. No

other parameters were changed.

 92

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.6: Cylinder L3 3 rad/s Tracking, PD Control, kp =

0.55, kd = 0.01, kvff = 0.03, 130 psi

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.7: Cylinder L2, 3 rad/s Tracking, PD Control, kp =

0.5, kd = 0.004, kvff = 0.015, 130 psi

 93

10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Figure 5.8: Cylinder L1, 3 rad/s Tracking, PD Control, kp =

0.5, kd = 0.004, kvff = 0.05, 130 psi

 The tracking results show good adherence to the input

sinusoid. The only exception, though, was the results from

cylinder 2. Since Links 2 and 3 are cantilevered around

Joint 2, the position controller alone cannot regulate

enough flow and pressure to maintain acceptable tracking.

 The failure of the lone PD controller when ground

forces are encountered is more evident when the foot

position is guided through a stepping sequence, i.e. swing

and stance phases (Figure 5.9).

 94

90 95 100 105 110
0

0.5

1

Cylinder L1

90 95 100 105 110
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Cylinder L2

90 95 100 105 110
0

0.5

1

Time (s)

Cylinder L3

Figure 5.9: Cylinder Stroke Length Response During One Step

Cycle, PD Control

 The stroke length error of Cylinder 2 during the

stance phase becomes rather significant as the actuator

bears the weight of the robot. Without any additional

control terms, the command to the valve is simply not

sufficient to counter the static loading. The absolute

position error through the gait cycle is shown below

(Figure 5.10).

 95

90 95 100 105 110

-0.2

0

0.2

Cylinder L1

90 95 100 105 110

-0.2

0

0.2

S
tr

o
k
e
 L

e
n
g
th

 E
rr

o
r

(i
n
.)

Cylinder L2

90 95 100 105 110

-0.2

0

0.2

Time (s)

Cylinder L3

Figure 5.10: Cylinder Stroke Length Error During One Step

Cycle, PD Control

 The tracking errors in the three cylinders fall

outside the 0.14 inch requirement set for this control

system. Since this high error occurs only when large

forces are applied to the endpoint, some additional force

control is obviously needed to correct this position error.

Elsewhere, though, the PD controller performs

satisfactorily in controlling the leg through the swing

phase, so the added force controller should be designed as

 96

to not affect the position controller when the leg

encounters minor forces such as its own inertia, or

overhanging loads.

5.3 Force Control

 Force control is obtained for each cylinder through

the two pressure sensors installed to measure absolute air

pressure in chambers a and b. The pressure measurements

are converted to force measurements simply by multiplying

the value by the piston area, and the resultant forces are

differenced, yielding a single force value, with direction

and magnitude. Pressure sensors were used rather than

actual force or torque sensors because of their

compactness, simplicity, embedded design, and low cost.

5.3.1 Force Control Law

 An added force term, as already discussed, is

necessary to correct for high loading applications

experienced during stance phases of gaits. Cylinders L2

and R2 experience the highest loading during stance, when

most of the robot weight is supported by Joints L2 and R2.

Since the standard PD control doesn’t provide enough

control effort signal to the valve, a gain scheduler is

implemented to add the additional control effort needed to

obtain low position error.

 A simple differential pressure gain scheduler was

discussed and tested in [9] and its results compared to

standard PID control. The researchers showed that, in

 97

their experiment, the position tracking results were better

than those obtained with a simple PID controller.

 Initially the simple differential pressure gain

scheduler was implemented on Joint 2 (Equations 5.2-5.4).

1

2

3

4

: 0, 0

: 0, 0

: 0, 0

: 0, 0

5

a b

dp

dp

dp

dp

dp

valve PD dp

p p p

p k p e

p k p e
y

p k p e

p k p e

V y y

∆ = −

∆ ⋅ ∆ > >


−∆ ⋅ ∆ > <
= 

−∆ ⋅ ∆ < >
 ∆ ⋅ ∆ < <

= + +

 (5.2-5.4)

 The results proved promising, whereas after some

tuning, the tracking error was smaller while Joint 2 was

supporting weight. Figure 5.11 shows a swing and stance

phase tracking response for all three cylinders. Only L2

is controlled with the supplementary differential pressure

gain.

 98

60 65 70 75 80
0

0.5

1

Cylinder L1

60 65 70 75 80
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.) Cylinder L2

60 65 70 75 80
0

0.5

1

Time (s)

Cylinder L3

xref

x actual

Figure 5.11: Cylinder Stroke Length Response During One

Step Cycle, PD + dp Control

 The position tracking response for Cylinder L2 has

been markedly improved, but the gain scheduler has

introduced an unwanted dynamic into the control effort

signal. As the stroke length xact crosses the reference

value xref, the error changes sign and the gain scheduler

instantaneously changes the gain value ydp added to the

control effort (Figure 5.12).

 99

60 65 70 75 80

-0.2

0

0.2

P
o
s
it
io

n
 E

rr
o
r

(i
n
.)

60 65 70 75 80
2

4

6

8

Time (s)

C
o
n
tr

o
l
S

ig
n
a
l
(V

)

Figure 5.12: Cylinder L2 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.11

 The rapid oscillations commanded to the valve spool

position cause the robot to physically bounce as the

control signal changes. This bouncing symptom would create

severe instabilities if the gain scheduler output were not

saturated at +/- 1 V.

 Compared to Figure 5.9, the tracking error for L2 is

much lower while the weight of the robot is supported by

Joint 2 (Stroke length > 1 in.).

5.3.2 Improved Force Control Law

 A new force control law was implemented in the gain

scheduler to prevent the bouncing encountered through the

use of the differential pressure controller. First, the

control term was changed from differential pressure to

differential force. This allows an equivalence to be made

 100

on each side of the piston. When the stroke length is

stationary, the differential pressure will never be zero

due to the difference in areas of the piston sides. Using

differential force as an input (Equation 5.5) means that

when the stroke length is stationary, the force

differential is zero.

() ()()a a b bF p A p A∆ = − (5.5)

 The new gain scheduler was designed considering the

bouncing symptoms caused by the error changing sign and

causing the gain to instantaneously change. To combat the

zero crossing problems, the structure of the gain scheduler

was kept essentially the same, except the gain output is

scaled by the actual error and an adjustable error gain ke

(Equations 5.6-5.7).

1

2

3

4

: 0, 0

: 0, 0

: 0, 0

: 0, 0

5

dfe e

dfe e

dfe

dfe e

dfe e

valve PD dfe

F k e k F e

F k e k F e
y

F k e k F e

F k e k F e

V y y

∆ ⋅ ⋅ ⋅ ∆ > >


∆ ⋅ ⋅ ⋅ ∆ > <
= 

∆ ⋅ ⋅ ⋅ ∆ < >
∆ ⋅ ⋅ ⋅ ∆ < <

= + +

 (5.6-5.7)

 With this new differential force scheduler, the added

control effort couples position and force feedback signals.

As the position error decreases, i.e. the volume and

pressure in the cylinder chambers is approaching the

correct value to maintain the commanded setpoint, the added

control effort from the gain scheduler decreases as well.

 101

 During the swing phase, when the force differential

across the piston is low, the supplemental control effort

ydfe is also low. When the foot is in ground contact, and a

large force differential causes a large position error, the

supplemental control effort ydfe grows to correct the error,

and then tapers off once the error is zero. Figure 5.13

below shows the improved performance during a swing and

stance cycle as Joint 2 supports the weight of the robot,

avoids bouncing, and maintains a low tracking error.

40 45 50 55 60
0

0.5

1

Cylinder L1

40 45 50 55 60
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.) Cylinder L2

40 45 50 55 60
0

0.5

1

Time (s)

Cylinder L3

xref

xact

Figure 5.13: Cylinder Stroke Length Response During One

Step Cycle, PD + dfe Control

 102

 The tracking response of Cylinder L2 has greatly

improved as compared to the responses seen in Figures 5.9,

and 5.11.

40 45 50 55 60

-0.2

-0.1

0

0.1

0.2

P
o
s
it
io

n
 E

rr
o
r

(i
n
.)

40 45 50 55 60
3

4

5

6

7

Time (s)

C
o
n
tr

o
l
S

ig
n
a
l
(V

)

Figure 5.14: Cylinder L2 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.13

 The improved force control term ydfe improves the

tracking error and eliminates the bouncing effect caused by

the simple differential pressure control term ydp. The

position error is low enough to fit into the control

requirements (error < 10% or 0.14 inches).

 103

 The error coefficient used ke is 1.0, and the four

differential force coefficients are kdfe1 = 0.03, kdfe2 =

0.03, kdfe3 = -0.06, and kdfe4 = 0.

5.3.3 Improved Force-based Position Controller on Three

Joints

 While the improved force-based position controller

greatly improved the tracking responses of Cylinders L2 and

R2, the other leg joints also benefit from this control

structure. Joints L1 and R1 need this control to allow the

operator to overcome the inertia of the robot as the

command is given to pull forward during a stance phase.

Joints L3 and R3 can greatly benefit from supplementary

force control during the stance phase, providing enough

lateral forces to maintain the commanded foot positions.

 The supplementary force control, for L1 and R1 adds

force in the most needed portion of the gait, the stance

phase. During stance, the pressure and force differential

is negative (Fa < Fb), and the position error is negative.

To correct this error, the pressure in chamber b must be

increased to further retract the cylinder, requiring a

spool position command Vvalve < 5V.

 In Figure 5.13 above, tracking errors persist in

Cylinders L1 and L3. The same supplementary force control

applied to L1 yields better results as shown below in

Figure 5.15.

 104

100 105 110 115 120
0

0.5

1

Cylinder L1

100 105 110 115 120
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Cylinder L2

100 105 110 115 120
0

0.5

1

Time (s)

Cylinder L3

xref

xact

Figure 5.15: Full Controller Applied to L1 and L2 Through

Multiple Swing-Stance Phases

 The tracking error of L1, specifically, when the

stroke length is decreasing, has greatly improved over the

response in Figure 5.13. The position error (Figure 5.16)

remains below the required 10% error stipulation. The

error coefficient used ke is 1.0, and the four differential

force coefficients are kdfe1 = 0.01, kdfe2 = 0.005, kdfe3 =

0.02, and kdfe4 = -0.03.

 105

100 105 110 115 120

-0.1

0

0.1

P
o
s
it
io

n
 E

rr
o
r

(i
n
.)

100 105 110 115 120
3

4

5

6

7

Time (s)

C
o
n
tr

o
l
S

ig
n
a
l
(V

)

Figure 5.16: Cylinder L1 Position Error and Control Effort

for Swing-Stance Phases in Figure 5.15

 The tracking response of L3 and R3 benefits from the

force-based position controller as well. During a stance

phase, especially one in which the feet are set wide apart,

supplementary control effort is needed to prevent the feet

from spreading further apart under the weight of the robot.

To accomplish this, extra force is focused on the same case

as the L1/R1 controller where the pressure and force

differential is negative (Fa < Fb), and the position error

is negative. To correct this error, the pressure in

chamber b must be increased to further retract the

cylinder, requiring a spool position command Vvalve < 5V.

 106

 Figure 5.13 above shows that as L3 stroke length

increases, the magnitude of the position error increases as

well. This is a symptom of the feet slipping outward as

weight is applied, and the inability of the PD position to

correct for the added load. Care must also be taken with

Joint 3 to avoid too much supplementary force control.

Only the case described above requires significant control

effort due to the low mass and inertia of Link 3 relative

to the power of its controlling actuator. Figure 5.17

shows the improved tracking response of L3 during a gait

cycle.

 107

45 50 55 60 65
0

0.5

1

Cylinder L1

45 50 55 60 65
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Cylinder L2

45 50 55 60 65
0

0.5

1

Time (s)

Cylinder L3

xref

xact

Figure 5.17: Full Controller Applied to L1, L2, and L3

 The tracking error has been improved and the system

remains stable. The supplementary force control keeps the

stroke length near the reference value, and prevents the

feet from slipping outward (Figure 5.18).

 108

45 50 55 60 65

-0.1

0

0.1

Time (s)

P
o
s
it
io

n
 E

rr
o
r

(i
n
.)

Figure 5.18: Cylinder L3 Position Error for Swing-Stance

Phases in Figure 5.17

 The position error (Figure 5.18) remains below the

required 10% error stipulation. The error coefficient used

ke is 1.0, and the four differential force coefficients are

kdfe1 = 0, kdfe2 = 0, kdfe3 = -0.01, and kdfe4 = -0.015.

5.4 Results and Conclusions

 The force-based position controller implemented on

each leg of the Compact Rescue Crawler allows the operator

to directly control the stroke lengths of each cylinder

simultaneously to achieve a desired endpoint position. The

controller and system responses fulfill all requirements

set forth at the inception of controller development. Each

individual actuator system is stable, and the overall foot

position is stable. The tracking error for each stroke

length remains less than 10% during operator controlled

walking. Since the operator-guided walking gait (swing and

stance phases), requires tight tracking in both free-space

and ground contact, the success of this one controller for

both scenarios is all the more significant of a

 109

contribution. The tracking error requirement is perhaps

the most important to the application of haptic bilateral

teleoperation discussed later in Chapter 6.

 Overall, the applied real-time controller is

successful in achieving the project control goals. It is

not, however, the only control solution for this system.

Other combinations of gains and force control techniques

could control this system, but the controller presented

herein was one which, through tuning, provided the

desirable responses. The full Simulink diagram of the

control structure is located in Appendix B.

 The gains, low-pass filter (LPF) cutoff frequencies

and constants used to produce the best control responses

are located below in Table 5.1.

 110

Table 5.1: Control Gains and Settings

 L1/R1 L2/R2 L3/R3

kp 0.5 0.5 0.7

kd 0.004 0.005 0.01

kvff 0.05 0.015 0.05

PD Output Saturation ±3V ±3V ±3V

P
D

C
o
n
t
r
o
l
l
e
r

Derivative Time Constant 0.04s 0.03s 0.04s

ke 1 1 1

kdfe1 0.01 0.03 0

kdfe2 0.005 0.03 0

kdfe3 0.02 -0.06 -0.01

kdfe4 -0.03 0 -0.015

G
a
i
n

S
c
h
e
d
u
l
e
r

Gain Scheduler LPF cutoff 4Hz 4Hz 4Hz

 Valve signal LPF cutoff 100Hz 100Hz 100Hz

 Position input LPF Cutoff 50Hz 50Hz 50Hz

 Pressure input LPF Cutoff 20Hz 20Hz 20Hz

 111

CHAPTER 6

OPERATOR INTERFACE

 The Compact Rescue Crawler operator interface,

physically, is a bilateral teleoperation workstation from

which the operator is immersed into the controller and

remotely pilots the vehicle (Figure 6.1).

Figure 6.1: Operator Remotely Pilots the Crawler

 Virtually, the operator workstation is designed to

immerse the operator into an augmented reality with visual,

aural, and haptic cues. Haptic force is generated by the

 112

two PHANToM controllers which generate position inputs to

the robot. A head-mounted display feeds live video from

the robot to the operator. The head-mounted display is

equipped with a motion tracker which controls the

orientation of the pan-tilt-zoom (PTZ) camera on the front

of the robot. The head mounted display is also equipped

with earphones which will relay audio to the operator from

the sounds “heard” by microphones on the robot.

 This operator workstation attempts to immerse the

operator in the remote environment of the robot by

virtually placing the operator on the front of the robot.

Searching for survivors will, through future research, be

aided by information gathering software looking for signs

of life in the work environment.

6.1 Workstation Design

 The workstation was designed and constructed with

focus on configurability. The base and uprights are

fabricated from 80/20 aluminum extrusion. A comfortable

task chair is mounted to the base to seat the operator.

Two uprights arise from the sides of the base to hold the

PHANToM controllers. One upright behind the operator chair

holds the motion tracking hardware and the head mounted

display when not in use (Figure 6.2).

 113

Figure 6.2: Operator Workstation

 The PHANToMs are supported by two planar positioning

arms, allowing the devices to be moved to a position

comfortable to the operator. The planar positioning arms

also permit the PHANToMs to be moved while the operator is

entering or exiting the workstation. PHANToMs are placed

in an inverted position, with the endpoints facing each

other rather than away. The inverted positioning of the

PHANToMs allows the hand position of the operator to remain

comfortable while the armrests support the elbows.

Vertical positioning is adjusted by loosening the

positioning arm bracket and sliding it up or down on the

upright. The uprights are stabilized by a cross-member to

damp vibrations and prevent unintended inputs.

6.2 Haptic Interface

 The PHANToM master devices are active haptic units, as

opposed to passive. The directional haptic force is

 114

generated by three motors mounted on each axis of the

device. When the operator guides the slave legs into an

obstacle and the position error from the commanded foot

position pcom to the actual foot position pact increases, the

haptic force generated by the PHANToM master increases as

well. The haptic force vector is generated by scaling the

position error vector by the constant kspring.

 The haptic display is a “spring” force generated on

the endpoint. As the absolute position error of the foot

increases away from the endpoint, the PHANToM force guides

the operator’s hand back toward the current leg position.

Equation 6.1 evaluates the haptic force to be displayed

each controller time-step. When the operator guides the

foot into an obstacle and the actuators cannot physically

converge to zero position error, the sudden increase in

haptic resistance immediately alerts the operator that a

collision has occurred.

 ()haptic spring com act
F k p p= − −
� � �

 (6.1)

 Achieving reliable and precise tracking control is

important for the implementation of this type of haptic

feedback. Low tracking error is crucial for the repetitive

motions which the operator will be expected to perform

while navigating through debris. A large tracking error in

this scenario would apply a constantly high spring force

resisting the operator’s motion inputs. This “muddy”

feeling would quickly tire the operator’s arms, effectively

 115

reducing the amount of time for which the operator is

capable of effectively piloting the robot [30].

 Haptic spring-force feedback can be provided in lieu

of tight tracking control if the spring constant, kspring set

in software, is kept low. Initial experiments with this

system used a standard PD controller with no velocity feed-

forward and no pressure feedback. When the foot position

was commanded downwards to lift the robot, the controller

could not issue enough control effort voltage to the

valves, therefore the position error from cylinders R2 and

L2 was always high. The swing cylinders L1 and R1, when

commanded to pull the body forward, also suffered from this

large position error, as seen in Chapter 5.

 One method, with the simple PD controller, to provide

any kind of useful haptic feedback was to set the spring

constant between 0.02 and 0.04 N/mm. This low spring

constant alleviated the “muddy” feeling caused by poor

tracking. The drawback though, was that when an obstacle

was encountered in the foot trajectory, the constantly

present tracking error was not greatly increased,

therefore, the operator would not perceive that the leg was

guided into an obstacle.

 The improved force-based position controller described

above allows for higher spring constants to be applied to

the PHANToM endpoints due to its improved tracking

characteristics in both free-space and ground contact

scenarios. The higher spring constants, 0.06 – 0.10N/mm,

 116

provide a crisper feel to the operator. Constants higher

than 0.10N/mm tend to cause the PHANToM motors to overheat

quickly and the internal controller shuts them off to

prevent damage. As seen in Figs. 6.3 and 6.4, the improved

error tracking decreases the ambient and false forces

displayed to the operator due to tracking error. Data

taken for these figures was collected from the operator

guiding the crawler through walking cycles.

80 85 90 95 100 105 110
-4

-3

-2

-1

0

1

2

3

4

Time (s)

F
o
rc

e
 (

y
-a

x
is

)
(N

)

Haptic Force, Y-axis, PD controller only

Figure 6.3: Vertical Haptic Force during Walking, PD Controller Only

 117

Figure 6.4: Vertical Haptic Force during Walking, Full Controller

 One factor of the improved tracking control and low

ambient haptic force is that if the leg strikes a light or

mobile obstacle such as a small rock, the position

controller will most likely power the leg through it

without creating a position error. This may be beneficial,

though, because the operator will not receive constant

haptic signals when the leg strikes small mobile objects

and debris. Testing in a controlled environment must be

conducted before definite results are drawn, though.

Another benefit of the improved tracking is that the

operator does not feel the weight of the robot through the

PHANToMs. Since only position error creates the haptic

spring force, a collision with a massive object such as an

80 85 90 95 100 105 110
-4

-3

-2

-1

0

1

2

3

4

Time (s)

F
o
rc

e
 (

y
-a

x
is

)
(N

)

Haptic Force, Y-axis, Full controller

 118

immobile beam or wall will create a significant force

feedback.

 The C++ code that interfaces the PHANToMs to the robot

through UDP can be found in Appendix C.

6.3 AUGMENTED REALITY INTERFACE

 Two computers control the augmented reality visual

interface for the operator. One computer, onboard the

robot is a mini-ITX form factor, fanless PC. It receives

the raw video feed from the onboard PTZ camera through a

frame-grabber PCI card. The video packets are then sent

via a TCP/IP routine to the video host PC. The host PC

unpacks the video images and displays them to the operator

via a head-mounted display. The video feed, seen remotely

by the operator is interactive whereas the operator’s head

controls the position of the camera.

 A Polhemus Minuteman 3-axis motion tracker is mounted

to the top of the head-mounted display (Figure 6.5). The

tracker measures the angle of the operator’s head side-to-

side and up and down. The angle measurement is then

calculated into a signal for the PTZ camera and sent via

TCP/IP back to the onboard mini-ITX PC on the robot. The

onboard computer then sends the position commands to the

camera via an RS-232 communication interface, and internal

motors move the camera to its commanded orientation.

 119

Figure 6.5: Head-Mounted Display with Motion Tracker

6.3.1 Display

 A temporary display was designed as a place-holder for

the augmented reality techniques in development at NCAT

(Figure 6.6).

Figure 6.6: Prototype Operator Display

Polhemus

Motion
Tracker

 120

The video interface overlay is designed with mission-

specific tools to provide the operator with information as

quickly and efficiently as possible. The current prototype

employs mock gauges and a compass. Data from the robot

will, through research at NCAT, be presented in such an

intuitive manner that the operator will know every

important detail, yet not be overwhelmed with a flood of

too much information.

 121

CHAPTER 7

GUIDED GAIT COORDINATION

 While human-machine interfaces have developed rapidly

over recent years, the evolution of man has not. Humans

possess only a limited number of degrees of freedom to

physically interact with machines. In piloting a highly

maneuverable hexapod, the ideal scenario would place the

operator in direct simultaneous control of all six legs, or

18 degrees of freedom. This scenario, unfortunately, is

infeasible due to the fact that direct, simultaneous

control of 18 degrees of freedom would overwhelm the

operator, rendering the vehicle ineffective.

 A fully autonomous gait, at the other end of the

control spectrum, is also undesirable for the entire search

and rescue mission. The operator will most likely need

direct control of the robot to inspect areas of interest

where survivors will likely be found. Therefore, a hybrid

guided-gait coordinator has been analyzed and designed for

use on the CRC and possibly other operator-guided legged

platforms.

 A guided-gait coordination routine was designed for

walking on flat straight terrain as an initial point for

further research. The methods developed herein should be

expandable multi-legged robots and to three and even six-

axis high level coordination.

 122

 A few basic assumptions were made during the design of

the basic guided-gait coordination routine:

 1. Terrain is flat, level, and travel is in a

straight line

 2. With one foot at its PEP (Posterior Extreme

Position), the foot posterior to it can touch it at its AEP

(Anterior Extreme Point),

 3. Feet are not slipping on the ground.

 4. The leg pairs are identical, evenly spaced along

the length of the robot, able to reach the same angle

whether reaching anterior or posterior.

 5. An experienced operator is piloting the robot,

keen to situational changes and able to take direct control

of a posterior leg should the environment change and

ensnare it.

 CRC legs are annotated in a similar fashion to joints

and actuators. Left legs are named L1, L2, L3 with L1 as

the foremost leg. Right legs are named R1, R2, R3

respectively (Figure 7.1).

Figure 7.1: Leg Notation of CRC

 123

7.1 OVERVIEW

 The ultimate goal of the guided-gait coordination

routine is to allow the operator to map a series of

“stepping stones” using the front two legs, and force the

rear legs to follow the same steps. The safely mapped

trajectories propagate through successive leg pairs as the

robot progresses through the environment. To maneuver the

CRC through rugged terrain via guided-gait coordination,

the operator must perform a repetitive series of commands

and tasks, interacting with the gait controller to move to

the next phase. A general overview of the gait sequence is

outlined below in Figure 7.2. The guided-gait flowchart

also serves as an outline of the structure of Chapter 7.

 124

Figure 7.2: Generalized Guided-Gait Coordination Flowchart

 This guided-gait coordination allows the operator to

avoid an obstacle with the front legs while propagating

safe, obstacle-avoiding trajectories automatically to

subsequent leg pairs. Therefore, once the operator steps

over a fallen beam, for example, and moves forward, the

middle leg pair will step over it when the body reaches

that position in the environment. Then, the rear-most leg

pair will step over it when it reaches the obstacle.

 125

Details of the gait coordination are laid out below in the

order of operation shown above in Figure 7.2.

7.2 Trajectory Recording

 The CRC operator, when in guided-gait mode, will need

to provide input to the coordinator by recording the

trajectories of the front two legs. Wielding haptic

control over the front legs gives the operator the

advantage of sensory feedback about the environment.

 Each PHANToM is equipped with a small button to

receive the record command. When the operator presses the

record button, the PHANToM controller code begins storing

data points from the respective PHANToM each time-step.

Once a successful leg trajectory has been made, the

operator simply presses the record button again to stop the

data saving process.

 This button-pressing routine could be replaced by

verbal commands in the future. When voice commands are

integrated into the high-level architecture, the operator

will also be able to command the controller to delete a

failed trajectory so another, smoother attempt can be

performed.

 Ideally, the operator begins recording the swing phase

leg trajectory from its posterior extreme position (PEP),

and ends recording when the leg is at its anterior extreme

position (AEP). This maximization of workspace will

optimize the overall speed at which the CRC moves through

the environment. If the foot will not reach over an

 126

obstacle, or the operator is unsure of the foothold

conditions, recording should stop when the foot is on the

ground and supporting the weight of the robot once again.

Visual and haptic cues can alert the operator to touchdown

and weight support by monitoring the pressure sensors in

each actuator.

7.2.1 Recording Detail

 When the operator triggers the record command, a 5V

signal is sent directly to the serial port of the PHANToM

control computer. The C++ software running the PHANToMs

polls the Data Send Ready (DSR) and Clear To Send (CTS)

pins of the serial port. DSR is pin 6, and CTS is pin 8 on

the standard RS-232 9-pin plug. Since the CTS and DSR pins

are able to be polled directly from the Windows C++

programming environment, the RS-232 serial port doubles as

a rudimentary digital input card. Two other pins could be

used in this manner, the Data Terminal Ready (DTR pin) and

the Ring Indicator (RI pin). With a total of four digital

input bits, up to 15 switches or inputs could technically

be implemented through this method, if read in binary.

 The record switches are two Cherry limit switches

(Figure 7.3). The 5V supply is taken directly from the PC

power supply and fed to the switches. When the switch is

activated, its respective pin on the RS-232 serial port is

pulled high to 5V, indicating a digital value of 1, or ON.

Since the routine only polls the DSR and CTS pins once

 127

every 1ms time-step, high frequency electro-mechanical

switch bouncing is not a significant issue.

Figure 7.3: Record Start/Stop Switch Operation

 The switches are positioned in an ergonomic location

where the operator need only roll the index finger forward

to lightly depress the switch lever while grasping the ball

on the PHANToM endpoint. The switches are wired in such a

way that the stiffness of the wire adds no additional

resistance to the joint operation of the PHANToM

controllers.

 The points recorded from the PHANToMs are saved each

time-step as raw points in a space delimited text file.

When recording stops, the file is saved to disk and named

with the time at which it was created. A UNIX timestamp is

used to provide a consistent time naming convention.

 128

7.3 Trajectory Manipulation

 Once trajectories have been recorded, a smoothing

operation is performed on the raw trajectories. Raw

trajectories recorded directly from PHANToM motion are

jagged from operator-induced (Figure 7.4).

0 2 4 6 8 10 12 14 16 18
-200

0

200
PHANToM x

0 2 4 6 8 10 12 14 16 18
0

100

200

300

P
H

A
N

T
o
M

 i
n
p
u
t

(m
m

) PHANToM y

0 2 4 6 8 10 12 14 16 18
-100

-50

0

50

Time (s)

PHANToM z

Figure 7.4: Raw PHANToM Points Captured During Left Leg

Swing Phase

 In 3D view, the captured trajectory shows that the

operator guided the leg into an obstacle (along x-axis)

from which the operator retreated and rerouted the foot

(Figure 7.5).

 129

-150
-50

50
150 -200

-100

0

100
0

100

200

300

z (mm)

x (mm)

y
 (

m
m

) START

END

Figure 7.5: Three Dimensional View of Same Trajectory

 Playing the same raw trajectory through the leg would

yield an acceptable system response, but a smoother profile

will play more smoothly through the controller, creating an

overall smoother motion. The raw trajectory is smoothed by

wrapping a spline, or piecewise polynomial curves, through

evenly spaced points along the trajectory.

 Each successive splined trajectory is made from the

same number of spline points n for simplicity. An

appropriate number of spline points was determined by

analyzing sample trajectories in a controlled setting, then

comparing the effects of 5, 20, and 30 spline points. The

match of the spline to the original trajectory is desired

to be close, but not too exact or too general. Over-

generalization will cause the foot to collide with

 130

previously avoided obstacles, and too tight of a fit may

either take too much computing time and have little

advantage over a looser fit. The selected number of spline

points is used for every recorded trajectory.

 First, the raw data is split into its x, y, and z

component vectors. Then, n points are selected at regular

intervals along each path. The number of spline points n

is determined visually by viewing the different spline

results and comparing to the original path. Once n evenly

spaced points are selected, a piecewise polynomial curve is

fitted for each segment and sampled at the 1ms time-step.

The final splined trajectory is exactly the same length as

the original, with the same start and end points, but the

sharp edges and jitteriness of the inputs have been

significantly reduced.

 A five-point spline was wrapped over a sample swing

phase trajectory (Figures 7.6, 7.7).

 131

0 2 4 6 8 10 12 14 16 18
-200

0

200
PHANToM x

0 2 4 6 8 10 12 14 16 18
0

100

200

300
PHANToM y

P
H

A
N

T
o
M

 i
n
p
u
t

(m
m

)

0 2 4 6 8 10 12 14 16 18
-100

-50

0

50

Time (s)

PHANToM z

Raw Trajectory

Splined Trajectory

Figure 7.6: 5 Point Spline Over Trajectory

-150
-50

50
150 -200

-100

0

100
0

100

200

300

z (mm)

x (mm)

y
 (

m
m

)

Figure 7.7: 5 Point Spline Over Foot Trajectory, 3D

 132

 Clearly, the 5 point spline is insufficient to cover

the necessary areas of the trajectory, especially along the

z-axis. Subsequently, a 20 point spline was tested to

analyze its fit to the original trajectory (Figures 7.8,

7.9).

0 2 4 6 8 10 12 14 16 18
-200

0

200
PHANToM x

0 2 4 6 8 10 12 14 16 18
0

100

200

300

P
H

A
N

T
o
M

 i
n
p
u
t

(m
m

) PHANToM y

0 2 4 6 8 10 12 14 16 18
-100

-50

0

50

Time (s)

PHANToM z

Raw Trajectory

Splined Trajectory

Figure 7.8: 20 Point Spline Over Trajectory

 133

-150
-50

50
150 -200

-100

0

100
0

100

200

300

z (mm)

x (mm)

y
 (

m
m

)

Figure 7.9: 20 Point Spline Over Foot Trajectory, 3D

 The 20 point spline fits the original trajectory well

and does not over-generalize the original trajectory. A 30

point spline was then applied to the trajectory for

analysis (Figures 7.10, 7.11).

 134

0 2 4 6 8 10 12 14 16 18
-200

0

200
PHANToM input vector (raw)

x
 (

m
m

)

0 2 4 6 8 10 12 14 16 18
0

100

200

300
y
 (

m
m

)

0 2 4 6 8 10 12 14 16 18
-100

-50

0

50

Time (s)

z
 (

m
m

)

Raw Trajectory

Splined Trajectory

Figure 7.10: 30 Point Spline Over Trajectory

-150
-50

50
150 -200

-100

0

100
0

100

200

300

z (mm)
x (mm)

y
 (

m
m

)

Figure 7.11: 30 Point Spline Over Foot Trajectory, 3D

 135

 The 30 point spline fits the original trajectory well,

but shows very little improvement over the 20 point spline

in Figures 7.8 and 7.9. Any additional spline points will

also show the same diminishing returns. A 20 point spline

is sufficient for fitting recorded PHANToM trajectories.

 After the smoothed trajectory has been resaved over

the original file, the initial and final record points are

saved into a master file. A master file for each side of

the robot contains records of the particular trajectory

name (timestamp) and its beginning and endpoints stored in

a large array. The beginning and endpoints can be thought

of as “stepping stones” because they are the specific

points in the environment where a known, good, foothold is

known to exist.

 The MATLAB script written to read, smooth, and resave

leg trajectories is included in Appendix D.

7.4 Trajectory Selection for Playback

 Once a successful trajectory has been found and

recorded through the motion of a front leg, the rear leg

pairs will make their moves based on known, safe

trajectories and the “stepping stones” mapped by the

operator.

7.4.1 Global Coordinate System

 The global coordinates for the robot are split by

side. For simplicity, the left side legs and right side

legs use inverse coordinates which match the coordinates of

 136

the PHANToM controllers (Figure 7.12). Robot origins OL and

OR are centered at the shoulders of legs L1 and R1

respectively.

Figure 7.12: Global Coordinates and Leg Naming Convention

 The global origins OL,world and OR,world are stationary

relative to the inertial reference frame, and are set when

the operator switches into the guided-gait mode. Once set,

the distance traveled by the robot is recorded each time

the body shifts forward, creating vector w pr. Vector w pr

is the vector from the global origin to the respective

robot origin, in the world reference frame of Oworld.

 Each trajectory Ti is saved as a list of vectors rti

from the robot origin O to the respective foot, and as a

list of vectors w pt from the global origin Oworld to the

respective foot (Figure. 7.13).

 137

Figure 7.13: Global Gait Vector Relationship

 With w pr known, and rti the operator-recorded

trajectory, the vector w pt is simply calculated through

vector addition (Equation 7.1).

w t w r w i
p p t= + (7.1)

Vector wti is an orthogonal coordinate rotation from the

global reference frame w to the robot reference frame r.

In future versions of this guided-gait procedure in which

the straight-line walking assumption is not held and the

robot body rotates with respect to the inertial reference

frame, wti will be required for evaluation of w pt.

Currently, though, wti is equivalent to rti because the robot

body is assumed to always be in the same coordinate

 138

reference frame as the global origin because of Assumption

1.

 From an overhead view, the master list of stepping

stones and trajectories can be visualized as in Figure

7.14.

Figure 7.14: "Stepping Stone" Trajectories

 Since, through Assumptions 2 and 3, the front feet do

not slip or move once placed, and can reach the AEPs of the

middle legs, no gap is left between the safe points without

a corresponding trajectory. This enables an assured

movement of the rear legs.

7.4.2 Leg Selection and Requirements

 Once the leg movement sequence has begun, only two

legs can move simultaneously. This requirement will

 139

maintain the stability of the robot by maintaining four

points of contact with the ground. While only three are

necessary for stability, in the actual mission scenario, a

fourth point of contact will make the entire platform more

robust against slipping on loose footholds.

 The gait controller’s overall goal while moving rear

legs is “Advance each foot as far as possible while

stepping only on mapped-out ‘stepping stones’”. This rule

will ensure that each leg reaches forward as far as

possible, maintaining the highest feasible forward speed

through the search and rescue mission. This goal also

maximizes the possible forward body advancement during

stance phases, explained below in 7.5.

 Legs L3 and R2 will move through their appropriate

trajectories first. Then, legs L2 and R3 will move through

their trajectories, completing the sequence. No preference

is held over moving the L3/R2 set or the L2/R3 set first,

except that the two legs moving must not be from the same

pair. This method is aligned with Cruse’s original WALKNET

rules, and the modified version by Wait et al. [3].

 Before the first leg moves, the coordinator must first

ascertain the foot position relative to the robot shoulder

and calculate whether the target stepping stone is within

its workspace or beyond the AEP. If the target stepping

stone is reachable, the coordinator will play the next

trajectory on queue for the leg. If the target stepping

stone is beyond the AEP of the leg, the coordinator will

 140

withhold movement until the next gait cycle after the body

has shifted forward bringing the target closer to the

shoulder joint and within reach. Since the trajectory was

first explored and completed by the front leg, Assumption 4

holds that each successive leg pair will be able to

traverse the same trajectory.

 If more than one successive stepping stone is

reachable by a single leg, the coordinator will move the

leg to the first one through the proper trajectory, then to

the next. This double stepping routine will maintain

overall speed by not requiring a one gait cycle delay

between two small steps.

7.4.3 Playback Detail

 Leg trajectory playback can be physically accomplished

simply by using the onboard real-time controller to

translate trajectory points into physical foot positions.

The onboard controller presently operates two real-time

inverse and forward displacement analysis algorithms along

with six simultaneous pneumatic displacement controllers.

The expansion of the controller to coordinate six legs is a

simple Simulink expansion of existing code.

 The high-level gait coordinator, running alongside the

PHANToM control software, must send trajectory points to

the CRC via wireless UDP in the same manner as the PHANToM

controller. Through this method, the interface of the gait

coordinator to the leg controllers will be a simple

software connection.

 141

7.4.4 Conflict Resolution

 A situation may arise where debris or other unknown

obstacles may fall into the path of the CRC while en route

via the guided-gait mode. The conflicting obstacle may

upset or impede the intended path of the leg in motion.

Direct operator intervention will resolve the conflict.

 The gait coordinator will monitor position and

pressure sensors from the leg controllers and determine

whether the leg has touched down or is ensnared on the

environment. If the position error grows too large while

the leg is commanded to be on a trajectory, the leg

controller will send an error flag to the gait coordinator,

signaling it to pause. The trajectory playback must stop

and alert the operator that a collision has occurred.

 The operator, at this point, will take direct control

of the ensnared leg through a PHANToM haptic device. The

operator can then ‘feel’ the environment and work to free

the leg while the other five legs hold the robot

stationary. When the leg is no longer in conflict with the

environment, the operator will then manually guide it to

the target stepping stone, recording the trajectory to

replace the one which ensnared the leg.

7.4.5 Motion Completion

 Once the legs have successfully finished their

respective trajectories, the operator must be made aware

that the gait cycle can continue. The proposed method is

 142

to provide the operator with a video overlay during guided-

gait coordination mode. The overlay will depict the six

legs of the robot in either green or red. Before and

during the automated swing phase of each leg, the

corresponding depiction will appear red. Once the leg has

completed its trajectory, the corresponding depiction will

change to green (Figure 7.15).

Figure 7.15: Six Legged Status Overlay Example

 In the example shown above, the status message

inferred by the operator is, “L1/R1 have moved, L2 and R3

have completed their trajectories, and L3 and R2 are not

done moving.” Once all four rear legs have successfully

moved through their trajectories, all depicted legs become

green, and the operator may move on to the next sequence in

the gait cycle.

7.5 Body Advancement

 Once the four rear legs have moved through the

operator guided trajectories (or withheld movement for the

cycle), the body must shift forward to maintain overall

 143

forward progress through the search and rescue mission.

First, the gait coordination routine will calculate the

shoulder joint angles of each leg, and the distance of each

foot from the shoulder using cylinder position feedback and

a forward displacement algorithm. Since the CRC is moving

only straight forward, the gait coordinator can easily

analyze how far each foot can move within its workspace in

a straight line parallel to the spine before it reaches its

PEP.

 The operator will give either a verbal or manual

command to begin the body advancement procedure. The leg

with the shortest amount of travel distance, predetermined

by the coordinator, sets the actual distance through which

the body can advance. Therefore, if the trajectory

playback routine is always moving legs as far forward as

possible, the body advancement routine will always start

with six legs positioned as far from their PEPs as

possible, based on the available stepping stones.

 The body then advances by commanding all six feet to

move parallel toward the rear of the robot. The length of

the forward shift trajectory must be equal to the distance

of the leg with the shortest amount of travel. If

commanded to go further, one leg will stop when it reaches

the end of its workspace while the other 5 legs will

continue advancing. Since, through Assumption 2, the feet

do not slip, three legs providing thrust on one side of the

 144

robot versus two legs on the other side will induce an

undesired body rotation.

7.6 Conclusions

 Figure 7.16 below depicts five demo gait cycles

through the guided-gait coordinator. During Cycles 2 and

3, the operator only records a half step on the left leg,

not able to completely step over an obstacle. The

trajectories propagate through successive leg pairs until,

in Cycle 5, the double-stepping playback allows Legs L3 and

R2 to move through two stepping stones in a single gait

cycle, maximizing overall forward advancement speed of the

CRC.

 While not physically present on the robot testbed, the

guided-gait coordinator designed through this research

project will be a powerful semi-autonomous tool between

direct operator inputs and a central gait coordinator. The

method describe herein is applicable not only to the CRC,

but to any multi-legged vehicle which traverses unknown

terrain via operator input.

 145

Figure 7.16: Sample Gait Cycles

 146

CHAPTER 8

RESULTS AND CONCLUSIONS

 The Compact Rescue Crawler Testbed developed through

this research project has met several goals. A two-legged

version of the hexapedal concept was designed, fabricated,

and tested. New pneumatic actuators featuring embedded

position and pressure sensing were developed and installed.

Real-time control of the pneumatic cylinders to coordinate

foot movement with user inputs has been designed, tested

and implemented. Haptic feedback is provided to the

operator through the two PHANToMs which provide position

input commands. A guided-gait coordination strategy has

also been developed and presented.

8.1 Robot Design and Fabrication

 The robot design described in Chapter 2 has proved to

be a robust and reliable design. Placing the valves as

close as possible to the cylinders and using small air

lines (0.125 inch) allows little volume for undesirable

compression to occur. The joints operate smoothly and very

little mechanical interference constricts leg movement.

8.1.1 Recommendations for Future Work

 The next major redesign of the CRC should include a

larger cross-section spine. The 1 inch 80/20 beam has a

 147

very small torsional cross-section and suffers from high

twist angles when large forces are applied by one leg.

 When newer, smaller cylinders are available from

Sentrinsic, they should replace the current prototype

generation cylinders. A cylinder with shorter top and

bottom endcaps will improve the overall range of motion of

the leg. Both front and rear cylinder mounting shoulders

for Cylinders L1 and R1 should be redesigned to eliminate

the slight mechanical interference exhibited on the current

version.

 A new Signal Routing PCB should be designed using

smaller components and an onboard DC power supply. Surface

mount op-amps and resistors should be used in conjunction

with test loops to allow for rapid system diagnoses.

8.2 Leg Control

 The force based position controller developed through

this project accurately positions the robot feet while

tracking the input commands from the operator. Control

requirements were < 10% position tracking error through

both the swing and stance phases of the gait, robustness to

external loading and mechanical failures, and stability

under all loading scenarios.

 The initial PD controller performed unsatisfactorily

with a large tracking error during stance phase. Velocity

feed-forward input greatly improved tracking during swing

phase, and a stroke velocity damping term improved

transient responses.

 148

 A gain scheduler was added to the PD controller to

improve system response under the extreme loading

variations encountered during a walking gait. Initially, a

gain was applied to the pressure differential. One of four

gains was selected based on the pressure differential sign

and the position error sign. This proved a great

improvement in tracking, but added an undesired “hopping”

effect as the position error changed sign, instantaneously

changing the additive control effort.

 A revised gain scheduler was developed to continue

adding supplementary control effort based on the

differential pressure and position error. The new

scheduler scaled the additive effort by the magnitude of

the position error and the differential force on the

actuator. The “hopping” effect disappeared because the

supplementary control effort decreased with position error,

so once the actuator reached its commanded stroke length,

the correct pressure differential was in place across the

piston.

 The same controller was applied to all six cylinders

and the gains were tuned for stability and response. The

results of the PD + vff + dfe controller fit within the

control requirements, yielding a position tracking error <

10% through the entire gait cycle, stable system responses,

and robust to the varied loads experienced by each

different cylinder. Figure 8.1 below, again, demonstrates

the satisfactory position responses through a gait cycle.

 149

45 50 55 60 65
0

0.5

1

Cylinder L1

45 50 55 60 65
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Cylinder L2

45 50 55 60 65
0

0.5

1

Time (s)

Cylinder L3

xref

xact

Figure 8.1: Full Controller on Left Leg Through Numerous

Gait Cycles

8.2.1 Recommendations for Future Work

 While the current controller works well for each

individual leg and for general robot movement, a new

controller should be developed based on more modern control

theories to achieve a tracking error magnitude < 5%. This

smaller tracking error will improve the haptic “feel” of

the robot and yield more desirable system responses. A

 150

model-reference controller may provide a good control

effort, but will be difficult due to the modeling

inaccuracies bound to occur when working with pneumatic

systems.

 The dynamics of the entire robot body should also be

modeled for control development. Since, when standing, the

robot body is essentially the platform of a parallel

manipulator, a higher level body controller could assist in

leg coordination and subdue some of the conflicting lateral

forces produced by the operator while standing, and more

effectively coordinate the pulling forces during stance

phase body movement.

8.3 Operator Interface

 A prototype operator workstation was built to seat the

operator with two PHANToMs and a head-mounted display. The

PHANToMs are mounted on movable arms, adjustable to fit any

operator comfortably. The motion tracker mounted to the

head-mounted display provides commands to the PTZ camera on

the robot. This setup moves the camera to match the head

orientation of the operator, placing the viewpoint of the

operator on the front of the robot.

 Haptic feedback is produced through the two PHANToM

controllers. The operator is provided with a directional

force relative to the position error. The scaled position

error yields a “spring” sensation to the operator as if the

endpoints of the PHANToMs were attached to the robot feet

by springs. Due to the spring sensation, improved tracking

 151

control will maintain a low position error, therefore a

lower ambient force at the PHANToM endpoint. Tighter

tracking will produce a crisper rise in force when the leg

encounters an obstacle.

 The current state of the haptic feedback allows the

operator to feel large obstacles, but not the ground itself

due to the smoothness of the position controller. Large

obstacles must also be much more massive than the robot.

Smaller obstacles are simply pushed out of the way by the

robot’s powerful legs.

8.3.1 Recommendations for Future Work

 The operator workstation should be optimized through

research on human factors and workstation layouts. The

positions of the PHANToMs, size and shape of the chair, and

posture of the operator should be optimized for long-term

continuous usage.

 The video overlay viewed through the head-mounted

display must also be optimized for ease of access and

information flow. Researchers at NCAT are currently

exploring this, but final implementation must be made with

the overall robot workstation controller.

 Specifically, a study should be made evaluating the

effectiveness of voice commands over strategically placed

buttons for repetitive operational commands. The display

style of mission-critical data should be evaluated as well.

Optimal camera position must also be determined based on

mission parameters and practicality.

 152

 Future work focused on the CRC haptic interface should

be coupled to the overall control research. Since the

robot is a bilateral teleoperated device, the effectiveness

of the robot controller can affect the performance of the

haptic feedback.

 The haptic control should be improved to the point

where the operator can bring the foot on a collision

trajectory and exert only a small amount of force on the

obstacle before stopping. A current metric for this

experiment is to exert less than 1/6 of the robot weight

into the obstacle during swing phase movement.

8.4 Guided-Gait Coordination

 The guided-gait coordination routine designed through

this research shows one method by which the operator is

capable of creating specifically guided foot trajectories

which propagate to subsequent leg pairs. The network of

“stepping stones” mapped out through the front legs are the

known safe, stable footholds in the unknown environment.

Each following leg is constrained to start and finish its

foot trajectory on such a point and follow the recorded

trajectory.

 The guided gait trajectory designed herein allows for

straight-line motion on level terrain. The basic order of

operations of the gait routine combine simple operator

commands in harmony with cues from the gait coordinator.

Once the gait routine has begun, the operator moves and

records the swing phases of the front two legs. Then, a

 153

simple command, verbal or manual, commands the coordinator

to move the rear four legs. A simple visual cue is

displayed to the operator indicating the status of each leg

being automatically positioned. The operator then gives

another simple command to begin body advancement, a six-

legged coordinated stance phase. Once complete, the

operator will begin the sequence again.

8.4.1 Recommendations for Future Work

 A global control architecture must be developed to

execute the guided-gait coordination routine. Recorded

trajectories should be more thoroughly analyzed for signs

of obstacle avoidance so the spline points can be more

efficiently placed to reduce the overall time of the swing

trajectory when played through trailing legs. Experiments

should be done to validate the straight-line effectiveness

of the gait routine.

 Advanced work could combine the onboard camera with

the guided-gait coordination routine. To enable body

rotation, the mapped “stepping stone” points can be

enlarged to areas where the camera detects no obstacles and

stable ground. The mapped trajectories must also be

manipulated to avoid known obstacles after the robot body

has rotated in the global coordinate frame.

 The finale of the guided-gait development should allow

the robot to traverse chaotic 3D terrain while changing

body orientation and elevation. Effective synergy of the

man-machine interface, coupling haptic, visual, and aural

 154

feedback and sensations will greatly expand the reach of

search and rescue operations in times of dire need.

8.5 Academic Contributions

 Several areas of this research project have yielded

contributions to the engineering and academic communities.

This robot leg design and construction yielded two rugged,

powerful, and maneuverable leg structures. The design and

construction of the operator interface workstation yielded

a configurable basis for future work on this high degree of

freedom fluid power testbed.

 The force-based position control algorithm controlling

the six pneumatic cylinders is simple, robust, and stable.

The ability to track direct user inputs while operating

under a wide variety of loading conditions is a significant

contribution.

 The outline and development of the Guided-Gait

Coordination routine contributes to the engineering

community by allowing hybrid control of six or more legs by

allowing the operator to directly control the two leading

legs. The application of this routine to a rescue robot

will allow an operator to guide the vehicle through unknown

terrain using haptic and visual feedback as guides.

 155

Figure 8.2: Compact Rescue Crawler

 156

APPENDIX A:

SOLUTION OF LINEAR TRIGONOMETRIC EQUATION

1
5
7

A
P
P
E
N
D
I
X

B

S
I
M
U
L
I
N
K

C
O
N
T
R
O
L

D
I
A
G
R
A
M
S

F
i
g
u
r
e

B
.
1
:

M
a
i
n

S
i
m
u
l
i
n
k

C
o
n
t
r
o
l

D
i
a
g
r
a
m

R3

Inverted

PHANToMs

6

5

4

3

2

1

Vf 1

Vf 2

Vf 3

Cy lf 1

Cy lf 2

Cy lf 3

Voltage -->Cyl Length R

Vf 1

Vf 2

Vf 3

Cy lf 1

Cy lf 2

Cy lf 3

Voltage -->Cyl Length L1

Unpack

Unpack
UDP

Send

Binary

UDP

Send

Binary

Ruby-MM-1612

Diamond

Analog Output

1

2

3

4

5

6

Ruby-MM-1612

UDP

Receive

Binary

UDP

Receive

Binary Pack

Pack

pcomR

Out1

Out2

Out3

P2CR

pcomL

V1

V2

V3

P2C

MM-32

Diamond

Analog Input

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
MM-32

 Fo=50Hz

 Fo=100Hz

 Fo=100Hz

 Fo=100Hz

 Fo=100Hz

 Fo=100Hz

 Fo=50Hz

 Fo=100Hz

 Fo=50Hz

 Fo=50Hz

 Fo=50Hz

 Fo=50Hz

uint16

R Pos

R Pres

Vcom R1

Vcom R2

Vcom R3

Valv e R1

Valv e R2

Valv e R3

0-10V pos

Rlbf

Controller RIGHT

L Pos

L Pres

Vcom L1

Vcom L2

Vcom L3

Valv e L1

Valv e L2

Valv e L3

0-10V pos

Llbf

Controller LEFT

1

In1

In2

In3

pactR

C2PR

cy l1

cy l2

cy l3

pactL

C2PL

LEFT

TIME

0-1.17 in L 1

L2

L3

l pos

LEFT

R1

R2

0-1.17 in

r pos

LEFT input p

 158

3

V3

2

V2

1

V1

Theta 1

Theta 2

Theta 3

Cy l 1

Cy l 2

Cy l 3

Theta --> Cyl Length (in)

Phantom

Theta1

Theta 2

Theta 3

IK CRC

Cy l 1

Cy l 2

Cy l 3

V 1

V 2

V 3

Cyl Length --> Voltage

1

pcomL

Figure B.2: PHANToM Input to Stroke Length Voltage

Transformation (Simulink)

1
5
9

F
i
g
u
r
e

B
.
3
:

I
n
v
e
r
s
e

D
i
s
p
l
a
c
e
m
e
n
t

A
l
g
o
r
i
t
h
m

f
r
o
m

P
H
A
N
T
o
M

V
e
c
t
o
r

I
n
p
u
t

t
o

J
o
i
n
t

A
n
g
l
e
s

(
S
i
m
u
l
i
n
k
)

Move CRC origin

-d1

-a1

3

Theta 3

2

Theta 2

1

Theta1

atan2

sincosatan2

cossin

atan2

Phan

CRC X

CRC Y

CRC Z

PHANToM Rotation and

Transformations

sqrt

u
2

u
2

u
2

u
2

-1

12

6.828

12

6.828

12

190.621163.872

163.872

190.621

u-5.75

u-1.608

u-10

u+25

1

Phantom
op05y

op05x

op05z

Theta 1Theta 1

1p15x

1p15z

1p25z

1p15z

1p25z

1p15z

1p25z

1p15z

1p25z

1p25x

a2 2̂+a3 2̂

d

Cos th3Sin th3

Theta 3Theta 3

cos th3

cos th3

2a2a3 a2 2̂+a3 2̂

Denom

a3

a2

a3

sin th3

sin th3

cos th2

sin th2

2a2a3

a

1
6
0

F
i
g
u
r
e

B
.
4
:

P
H
A
N
T
o
M

V
e
c
t
o
r

I
n
p
u
t

T
r
a
n
s
f
o
r
m
a
t
i
o
n

a
n
d

R
o
t
a
t
i
o
n

(
S
i
m
u
l
i
n
k
)

Change coords, Rotate by 30, and scale

3

CRC Z

2

CRC Y

1

CRC X

.866

.866

.5

-.5

2/25.4

2/25.4

-1

-1

2/25.4

1

Phan

Zp

Zp

Xp

Xp

Yp

Yp

Xp

Zp

1
6
1

F
i
g
u
r
e

B
.
5
:

J
o
i
n
t

A
n
g
l
e

t
o

S
t
r
o
k
e

L
e
n
g
t
h

C
o
n
v
e
r
s
i
o
n

(
S
i
m
u
l
i
n
k
)

2rx

r1 = 1.1

x1 = 6.75 (variable)

r^2 + x^2

2rx r2 = 0.975

x2 = 7.973

r^2 + x^2

r^2 + x^2

r3 = 1.5 (variable)

x3 = 7.978
2rx

radian offset

subtract static

cylinder length

subtract static

cylinder length

subtract static

cylinder length

3

Cyl 3

2

Cyl 2

1

Cyl 1

cos

cos

cos

sqrt

sqrt

sqrt

29.93

15.547

17.9

pi
65.90

64.519

67.44

u-7.5

u+0.2339

u-7.56

u+2.946

u-7.44

u-pi/2

3

Theta 3

2

Theta 2

1

Theta 1
TH1

0 - 1.35 inches

TH2

0 - 1.31 inches

0-1.4 in

TH3

 162

10V/1.4"

10V/1.31"

3

V 3

2

V 2

1

V 1

7.634

7.143

7.41

3

Cyl 3

2

Cyl 2

1

Cyl 1
0-1.35 inches

0-1.31 in

0 - 10 V to v alv e

0-1.4 in

Figure B.6: Stroke Length to 0-10V Conversion

1
6
3

F
i
g
u
r
e

B
.
7
:

C
o
n
t
r
o
l
l
e
r

L
a
y
o
u
t
,

L
e
f
t

L
e
g

(
S
i
m
u
l
i
n
k
)

L1 dp

3

Valve L3

2

Valve L2

1

Valve L1

Ref

Error

Pos

PID out

Ref

Error

Pos

PID out

Ref

Error

pos

PID out

E
rr

o
r

F
a

F
b

K
p

x

E
rr

o
r

F
a

F
b

K
p
xL3 dpe

E
rr

o
r

F
a

F
b

K
p

xL2 dpe

-K-

-K-

-K-

 Fo=20Hz

 Fo=20Hz

 Fo=20Hz

 Fo=20Hz

 Fo=20Hz

 Fo=20Hz

u-L1.minV

u-L3.minV

u-L2.minV

L1b

L1a

L2a

L2b

L3a

L3b

L1a lbf

L1b lbf

L2a lbf

L2b lbf

L3a lbf

L3b lbf

5V offset

5

Vcom L3

4

Vcom L2

3

Vcom L1

2

L Pres

1L Pos

0-5.6V

0-5.57V

0-3.95V

L1 err

L1 err PID output L1

1.05-5

1.6-7.2V

.83-6.4V

PID output L3

L2a

L2b

L3a

L3b

L1b

L1a

0-10V

0-10V

0-10V

Vact

Vact

L2 err

L3 err

f eedback

1
6
4

F
i
g
u
r
e

B
.
8
:

P
I
D

C
o
n
t
r
o
l
l
e
r

(
S
i
m
u
l
i
n
k
)

Derivative over kdTC msvff gain

damping gain

Saturation

5V offset

1

PID out

L1.kf

L1.kd

L1.ki

L1.kp

K Ts

z-1

2z-2

0.001+2*L1.kdTcz+0.001-2*L1.kdTc

2z-2

0.001+2*L1.kdTcz+0.001-2*L1.kdTc

u+5

3

pos

2

Error

1

Ref

 165

1

Kpx

AND

AND

AND

AND

L1.dp(4)

L2.ke

L2.ke

L2.ke

L1.dp(2)

L2.ke

L1.dp(3)

L1.dp(1)

 Fo=4Hz

> 0

> 0

<= 0

> 0

> 0

<= 0

<= 0

<= 0

3

Fb

2

Fa

1

Error

error

error

error

error

error

Delta F

Delta F

Delta F

Delta F

Delta F

Delta F

Figure B.9: Differential Force Gain Scheduler (Simulink)

1
6
6

F
i
g
u
r
e

B
.
1
0
:

F
o
r
w
a
r
d

D
i
s
p
l
a
c
e
m
e
n
t

A
l
g
o
r
i
t
h
m

(
S
i
m
u
l
i
n
k
)
 a1 = 5.75

a2 = 6.828

a3 = 12

d1 = 2.155

INCHES

a3

a3

04B = 01B*12B*23B*34B

a3

3

op04z

2

op04y

1

op04x

cos

sin

cos

sin

cos

sin

12

6.828

5.75

6.828

12

5.75

6.828

12

u+1.608

3

Thetaf 3

2

Thetaf 2

1

Thetaf 1

c1

c1

c1

c1

c2

c2

c2

c2

c2

c3

c3

c3

c3

s2

s2

s2

s2

s3

s3

s3

c1c2a2

s1

s1

s1

c1a1

s1a1

s1c2a2

s2a2

 167

APPENDIX C

C++ CODE FOR PHANTOM HAPTIC INTERFACE

/**

 Author: Matt Kontz <mkontz@mail.com>

 Lab: IMDL ME nGaTech

 Created: February 7, 2005

/**

 PHANToM/Omni coordinates

 x-axis -> to the right

 y-axis -> up

 z-axis -> towards user

/***/

#include <stdio.h>

#include <conio.h>

#include <assert.h>

#include <iostream.h> // for cout, cerr

#include <iomanip.h> // for setw, setpreci sion

#include <fstream.h> // for writing to files

#include <windows.h> // WIN32 Threads

#include <time.h>

#include <HD/hd.h>

#include <HDU/hduVector.h>

#include <windows.h> // WIN32 Threads

#include "Callback.h" // local header file /w

callback

#include "DataStorage.h" // local storage

 168

#include "DataStruct.h" // Phantom, and Hal data

structures

#include "ArgStruct.h" // ThrArgs & CallbackArgs

#include "Sock.h"

void sendP2CThread(void*);

void recvC2PThread(void*);

typedef struct

{

 //internal device handle

 HHD handle;

 const char* name;

 //phantom data

 DataStorage* data;

 HANDLE mutex;

 HANDLE sendThread;

 HANDLE;

 DWORD sendThreadID;

 DWORD recvThreadID;

 udpSocket* sendP2C; //P2C

 udpSocket* recvC2P; //C2P

 FILE* logFile;

 bool writeLog;

} Phantom;

typedef struct

{

 Phantom phanL;

 Phantom phanR;

 169

} UserData;

double pi = 3.1415926535897932;

void handleDev(Phantom phan)//HHD handle, DataStorage*

data, udpSocket* recv, udpSocket* send)

{

 unsigned short int mode = 1;

 hduVector3Dd Ph_Pos;

 hduVector3Dd Ph_Vel;

 HDdouble Ph_Phi;

 hduVector3Dd Ph_Theta;

 hdMakeCurrentDevice(phan.handle);

 hdEnable(HD_FORCE_OUTPUT);

 hdBeginFrame(hdGetCurrentDevice());

 hdGetDoublev(HD_CURRENT_POSITION, Ph_Pos);

 hdGetDoublev(HD_CURRENT_VELOCITY, Ph_Vel);

 hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, Ph_Theta);

 Ph_Phi = 3*pi/2 + Ph_Theta[2];

 static const HDdouble kspring = 0.06; // N/mm

 hduVector3Dd CRC_Pos;

 hduVector3Dd CRC_For;

 HDdouble CRC_phi;

 hduVector3Dd Delta_Pos;

 hduVector3Dd Force;

 CRC_Pos = phan.data->getCRCPos();

 CRC_For = phan.data->getCRCFor();

 CRC_phi = phan.data->getCRCPhi();

 Delta_Pos = Ph_Pos - CRC_Pos;

 170

 hduVecScale(Force, Delta_Pos, -kspring);

 hdSetDoublev(HD_CURRENT_FORCE, Force);

 phan.data->setPhanData(Ph_Pos, Ph_Vel, Ph_Phi, 0,

mode);

 hdEndFrame(hdGetCurrentDevice());

 ::ResumeThread(phan.sendThread);

}

HDCallbackCode Trigger(void *pUserData)

{

 UserData args = *((UserData*)pUserData);

 handleDev(args.phanL);

 handleDev(args.phanR);

 return HD_CALLBACK_CONTINUE;

}

//foreign IP address

char *forIP = "192.168.1.111";

//char *forIP = "192.168.1.1";

void initPhantom(Phantom* phan, const char* name, int

sendP, int recvP)

{

 //setup log file

 //logFile name convention

 phan->writeLog = false;

 phan->mutex = CreateMutex(0, false, 0);

 phan->name = name;

 //init the internal device handle

 171

 phan->handle = hdInitDevice(name);

 //initialize all of the sockets

 phan->sendP2C = new udpSocket(forIP, sendP, sendP+1);

 phan->recvC2P = new udpSocket(forIP, recvP+1, recvP);

 phan->data = new DataStorage();

 phan->recvThread = ::CreateThread(

 NULL,0, (LPTHREAD_START_ROUTINE) recvC2PThread,

 (LPVOID) phan,0,(LPDWORD) &phan->recvThreadID);

 ::SetThreadPriority(phan->recvThread ,15);

 phan->sendThread = ::CreateThread(

 NULL,0,(LPTHREAD_START_ROUTINE) sendP2CThread,

 (LPVOID) phan,0,(LPDWORD) &phan->sendThreadID);

 ::SetThreadPriority(phan->sendThread,15);

}

int main(int argc, char* argv[])

{

 //two phantoms, left and right

 UserData userDat;

 //phantom schedule handler

 HDSchedulerHandle hServoCallback;

 initPhantom(&userDat.phanL, "Lefty", 26401, 23201);

 initPhantom(&userDat.phanR, "Righty", 26501, 23301);

 //Get initialization data from CRC

 PhanStruct Get_Pos;

 memset(&Get_Pos, 0, sizeof(PhanStruct)); //

empty structure

 172

 Get_Pos.mode = 3; // 3

ques for CRC pos

 Get_Pos.x = 1;

 Get_Pos.y = 2.2;

 Get_Pos.z = 3.33;

 Get_Pos.flags = 5;

 CRCStruct Reply;

 memset(&Reply, 0, sizeof(CRCStruct)); // empty

structure

 cout << "TEST MESSAGE." << endl;

 cout << "x = " << Reply.x << endl;

 cout << "y = " << Reply.y << endl;

 cout << "z = " << Reply.z << endl;

 //clear the phantom data

 userDat.phanL.data->setCRCData(Reply);

 userDat.phanR.data->setCRCData(Reply);

 cout << "Next incoming message from CRC" << endl;

 cout << "x = " << Reply.x << endl;

 cout << "y = " << Reply.y << endl;

 cout << "z = " << Reply.z << endl;

 //set the phantom callback

 hServoCallback = hdScheduleAsynchronous(Trigger, (void

*) &userDat, HD_MAX_SCHEDULER_PRIORITY);

 hdStartScheduler();

 // create a com port file for testing CTS and DSR

 char ch;

 173

 short bRet, bCont, bNoChange;

 Phantom * p = 0;

 DWORD dwStatus, dwNextSwitch;

 HANDLE fIn = CreateFile("com1",GENERIC_READ |

GENERIC_WRITE, 0, NULL,

 OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

 if (fIn == INVALID_HANDLE_VALUE) {

 MessageBox(NULL, "Open of com1 failed", "Error",

MB_OK); }

 dwNextSwitch = 0;

 bCont = TRUE;

 printf("Press 'z' or 'x' to record data from

phantom\n");

 printf("Press any other key to quit.\n\n");

 while (bCont)

 {

 bNoChange = TRUE;

 while (bNoChange) {

 if (kbhit()) {

 bNoChange = FALSE;

 ch = getch();

 if (ch == 'x') {

 p = &userDat.phanR; }

 else if (ch == 'z') {

 p = &userDat.phanL; }

 174

 else {

 bCont = FALSE; } }

 if (!bNoChange) break;

 if (fIn != INVALID_HANDLE_VALUE &&

GetTickCount() > dwNextSwitch) {

 bRet = GetCommModemStatus(fIn, &dwStatus);

 if (dwStatus & MS_CTS_ON) {

 p = &userDat.phanL;

 dwNextSwitch = GetTickCount() + 1000;

 bNoChange = FALSE; }

 else if (dwStatus & MS_DSR_ON) {

 p = &userDat.phanR;

 dwNextSwitch = GetTickCount() + 1000;

 bNoChange = FALSE; } }

 Sleep(1); }

 WaitForSingleObject(p->mutex, INFINITE);

 if (p->writeLog)

 {

 //stop rec

 printf("Stopped recording: %s\n", p->name);

 p->writeLog = false;

 fclose(p->logFile);

 p->logFile = 0;

 }

 else

 {

 time_t seconds = time(0);

 175

 char fname[255];

 sprintf(fname, "%s_%d_v1.txt", p->name,

seconds);

 printf("Started recording: %s into %s\n", p-

>name, fname);

 p->writeLog = true;

 p->logFile = fopen(fname, "w");

 }

 ReleaseMutex(p->mutex);

 }

 printf("test\n");

 // close the com port test handle

 if (fIn != INVALID_HANDLE_VALUE) CloseHandle(fIn);

 //stop schedule and distable phantoms

 hdStopScheduler();

 hdDisableDevice(userDat.phanL.handle);

 hdDisableDevice(userDat.phanR.handle);

 /// Clean up ///

 // Destroy Thread

 ::TerminateThread(userDat.phanL.recvThread,userDat.pha

nL.recvThreadID);

 ::TerminateThread(userDat.phanL.sendThread,userDat.pha

nL.sendThreadID);

 ::TerminateThread(userDat.phanR.recvThread,userDat.pha

nR.recvThreadID);

 176

 ::TerminateThread(userDat.phanR.sendThread,userDat.pha

nR.sendThreadID);

 //close open files

 if (userDat.phanL.logFile != 0)

 {

 fclose(userDat.phanL.logFile);

 }

 if (userDat.phanR.logFile != 0)

 {

 fclose(userDat.phanR.logFile);

 }

 return 0;

}

void sendP2CThread(void* args)

{

 Phantom* p = (Phantom*)args;

 PhanStruct msg;

 char line[255];

 while (true)

 {

 ::SuspendThread(p->sendThread);

 //populate msg with new Phantom data

 msg = p->data->getPhanData();

 p->sendP2C->send((char *) &msg, sizeof(msg));

 WaitForSingleObject(p->mutex, INFINITE);

 //write out file data

 177

 if (p->writeLog && p->logFile != 0)

 {

 //PhanStruct ps = p->data->getPhanData();

 sprintf(line, "%.2f %.2f %.2f\n", msg.x,

msg.y, msg.z);

 fputs(line, p->logFile);

 fflush(p->logFile);

 }

 ReleaseMutex(p->mutex);

 }

}

void recvC2PThread(void* args)

{

 Phantom p = *(Phantom*)args;

 CRCStruct msg;

 while (true)

 {

 p.recvC2P->recv((char*) &msg, sizeof(msg));

 if (msg.time % 1000 == 100)

 {

 cout << "CRC POS" << endl;

 cout << "x = " << msg.x;

 cout << ", y = " << msg.y;

 cout << ", z = " << msg.z;

 cout << ", Time = " << msg.time <<endl;;

 }

 p.data->setCRCData(msg);

 178

 }

}

 179

//***

// Filename : DataStruct.h

// This file declare two different data structures. One

is made to store data

// from the Phantom and the second is to store data from

Backhoe.

// Author: Matt Kontz <mkontz@mail.com>

// Lab: IMDL ME GaTech

// Created: February 8, 2005

//***

#ifndef _ARG_STRUCTURE_INCLUDE__ // if not defined

'......'

#define _ARG_STRUCTURE_INCLUDE__ // defines '......'

so only happens once.

#include "DataStorage.h"

#include "Sock.h"

#include <windows.h>

struct CallbackArgs {

 HANDLE hThread;

 DataStorage *data;

};

struct ThrArgs {

 udpSocket *sock;

 DataStorage *data;

};

#endif

 180

/**

 Filename : Callback.h

/**

 This file handles the call back that the Omni will

excute each servo-loop;

 Author: Matt Kontz <mkontz@mail.com>

 Lab: IMDL ME GaTech

 Created: Februery 7, 2005

/***/

#ifndef __Callback_OMNI_INCLUDED__

#define __Callback_OMNI_INCLUDED__

#include <HD/hd.h>

#include <HDU/hduVector.h>

#include "DataStorage.h" // local storage

#include "DataStruct.h" // Phantom, and Hal data

structures

#include "ArgStruct.h" // ThrArgs & CallbackArgs

#include <iostream.h>

//#include "..\..\FlagModelDef.h"

HDCallbackCode OmniCallback(void *pUserData)

{

 CallbackArgs CbArg = * (CallbackArgs *) pUserData;

 DataStorage *data = CbArg.data;

 HANDLE hThreadP2H = CbArg.hThread;

 int time;

 // Device State Declartions

 181

// HDint ButtonStates[1]; // first bit ->

blue, second bit -> white button

 hduVector3Dd Ph_Pos; // PHANToM Position

(translational)

 hduVector3Dd Ph_Center; // PHANToM Position

(translational)

 hduVector3Dd Ph_Vel; // PHANToM Velocity

(translational)

 hduVector3Dd Ph_Theta; // PHANToM Gimbal

angle

 HDdouble Ph_Phi;

 hduVector3Dd Delta; //Delta

 Delta.set(10,10,10);

 double pi = 3.1415926535897932;

 //bool BlueButton; // true if Blue

button is depressed

// bool GreyButton; // true if Grey

button is depressed

// bool OnOff;

 hduVector3Dd Force; // Force to display

 // Control variables - Postion Mode

 static const HDdouble kspring = 0.1; // N/mm

 hduVector3Dd CRC_Pos;

 hduVector3Dd CRC_For;

 HDdouble CRC_phi;

 hduVector3Dd Delta_Pos;

 //hduVector3Dd Delta_pos2;

 182

 unsigned short int mode;

/**

 Get latest States from PHANToM

**/

 hdBeginFrame(hdGetCurrentDevice());

 // Update device states

 hdGetDoublev(HD_CURRENT_POSITION, Ph_Pos);

 hdGetDoublev(HD_CURRENT_VELOCITY, Ph_Vel);

 hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, Ph_Theta);

 printf("cb %f %f %f\n", Ph_Pos[0], Ph_Pos[1],

Ph_Pos[2]);

 //hdGetIntegerv(HD_CURRENT_BUTTONS, ButtonStates);

// if (ButtonStates[0] % 2 == 1)

// {

// BlueButton = true; // 1 or 3 -> blue

button is depressed

// }

// else

// {

// BlueButton = false;

// }

// if (ButtonStates[0] > 1)

// {

// GreyButton = true; // 2 or 3 -> grey

button is depressed

// }

// else

 183

// {

// GreyButton = false;

// }

/***

 Get latest data from CRC

**/

 CRC_Pos = data->getCRCPos();

 CRC_For = data->getCRCFor();

 CRC_phi = data->getCRCPhi();

/**

 Send PHANToM data to CRC

**/

 time = data->getTime(); //

get time (ms ~= # callbacks)

 data->incTime(); //

increment time

// if ((BlueButton == true) || (GreyButton == true))

// OnOff = data->OnOffState(true);

// else

// OnOff = data->OnOffState(false);

// if (OnOff == true)

 mode = 1;

// else

// mode = 4;

 Delta_Pos = Ph_Pos - CRC_Pos;

 //Delta_Pos2 = Delta_Pos*DeltaPos;

 //Delta_Pos = Ph_Pos ;

 184

 Ph_Phi = 3*pi/2 + Ph_Theta[2];

 // Ph_Phi = -pi/2 - Ph_Theta[2];

 data->setPhanData(Ph_Pos, Ph_Vel, Ph_Phi, 0, mode);

 // set PHANToM states

 ::ResumeThread(hThreadP2H); //

trigger P2H thread to start

 Send New Haptic Force

 hduVecScale(Force, Delta_Pos, -kspring);

 hdSetDoublev(HD_CURRENT_FORCE, Force);

 hdEndFrame(hdGetCurrentDevice());

 return HD_CALLBACK_CONTINUE;

}

#endif // #ifndef __Callback_OMNI_BOOM_INCLUDED__

 185

// Filename : DataStorage.h

// This file is creates a Data Storage object used to

store, change and

// retrieve data associated with the Phantom.

// Author: Matt Kontz <mkontz@mail.com>

// Lab: IMDL ME GaTech

// Created: March 6, 2002

// Edited: April 16, 2005

#ifndef _DATA_STORAGE_INCLUDE__ // if not defined

'......'

#define _DATA_STORAGE_INCLUDE__ // defines '......'

so only happens once.

#include <HD/hd.h>

#include <HDU/hduVector.h>

#include <string.h>

#include <fstream.h>

#include <iostream.h>

#include <math.h>

#include "DataStruct.h"

//#include "..\..\FlagModelDef.h"

//#include <FlagModelDef.h>

const int RECENT = 1; // Number of current

points being stored

class DataStorage

{

private:

// Class variables

 186

 unsigned int Time;

 PhanStruct PhData; // Recent Phantom data

for control use

 CRCStruct CRCData; // Recent CRC data for

control use

 hduVector3Dd Ph_Vel;

 hduVector3Dd Ph_Pos;

 hduVector3Dd CRC_Pos;

 hduVector3Dd CRC_For;

 hduVector3Dd CRC_Origin;

 HDdouble CRC_phi;

 unsigned short int flags;

 bool flagVector[16];

 int k;

 //bool OnOff;

 //bool LastButtonState;

public:

// Constructors

 DataStorage()

 {

 Time = 0;

 memset(&PhData, 0, sizeof(PhanStruct));

 memset(&CRCData, 0, sizeof(CRCStruct));

 memset(&Ph_Vel, 0, sizeof(hduVector3Dd));

 memset(&Ph_Pos, 0, sizeof(hduVector3Dd));

 memset(&CRC_Pos, 0, sizeof(hduVector3Dd));

 memset(&CRC_For, 0, sizeof(hduVector3Dd));

 187

 memset(&CRC_Origin, 0, sizeof(hduVector3Dd));

 memset(&flagVector, 0, sizeof(flagVector));

 // control/mode flags

// flagVector[RATE_MODE_FLAG] = 0; // 0 =

position mode, 1 = rate mode

// flagVector[HENRE_V_HENRE_FLAG] = 0; // 0

= HEnRE, 1 = V-HEnRE

 flags = 0;

 for(k = 0 ; k < 16 ; k++)

 {

 flags = flags + flagVector[k] * (unsigned

short int) pow(2, k);

 }

// OnOff = 0;

// LastButtonState = 0;

 }

// Time functions

 void incTime() { Time++; }

 int getTime() { return Time; }

// Time functions

 void setFlags(unsigned short int num, bool f) {

 flagVector[num] = f;

 flags = 0;

 for(k = 0 ; k < 16 ; k++)

 {

 flags = flags + flagVector[k] * (unsigned

short int) pow(2, k);

 188

 }

 }

 unsigned short int getFlags() { return flags; }

// On-Off function

/* bool OnOffState(bool ButtonState) {

 if (ButtonState == 1) {

 if (LastButtonState != 1) {

 if (OnOff == 1)

 OnOff = 0;

 else

 OnOff = 1;

 }

 }

 LastButtonState = ButtonState;

 return OnOff;

 }*/

// Function to retrieve data structure

 PhanStruct getPhanData() { return PhData; }

 hduVector3Dd getCRCPos() { return CRC_Pos; }

 hduVector3Dd getCRCFor() { return CRC_For; }

 HDdouble getCRCPhi() { return CRC_phi; }

// Functions to store CRC data

 void setCRCOrigin(CRCStruct CRC)

 {

 CRCData = CRC;

 CRC_Origin.set(CRC.x,CRC.y,CRC.z);

 }

 189

// Functions to store CRC data

 void setCRCData(CRCStruct CRC)

 {

 CRCData = CRC;

 CRC_Pos.set(CRC.x,CRC.y,CRC.z);

// Bh_For.set(Bh.fx,Bh.fy,Bh.fz);

// Bh_phi = Bh.phi;

 }

// Functions to store Phan data

 void setPhanData(hduVector3Dd p, hduVector3Dd v,

HDdouble Ph_Phi, HDdouble Ph_vPhi, unsigned short int mode)

 {

 Ph_Pos = p;

 Ph_Vel = v;

 PhData.mode = mode;

 PhData.flags = flags;

 PhData.time = Time;

 PhData.x = p[0];

 PhData.y = p[1];

 PhData.z = p[2];

// PhData.phi = Ph_Phi;

// PhData.vx = v[0];

// PhData.vy = v[1];

// PhData.vz = v[2];

// PhData.vphi = Ph_vPhi;

 190

 }

};

#endif // _DATA_STORAGE_INCLUDE__ (ascociated with

"#ifndef")

 191

//***

// Filename : DataStruct.h

// --

// This file declare two different data structures. One

is made to store data

// from the Phantom and the second is to store data from

the Backhoe

// Author: Matt Kontz <mkontz@mail.com>

// Lab: IMDL ME GaTech

// Created: October 19, 2003

// Edited: November 11, 2005

//***

#ifndef DATA_STRUCTURE_INCLUDE // if not defined

'......'

#define DATA_STRUCTURE_INCLUDE // defines '......'

so only happens once.

// #include "DataStorage.h"

// #include "Sock.h"

#include <windows.h>

struct PhanStruct

{

 double x; // 8 bytes =

64bits

 double y;

 192

 double z;

 unsigned int time; // 4 bytes =

32bits

 unsigned short int mode; // 2 bytes = 16bits

 unsigned short int flags; // 2 bytes =

16bits

};

// Stores all relevant data from Backhoe for each sampling

peroid

struct CRCStruct

{

 double x;

 double y;

 double z;

 unsigned int time; // 4 bytes =

32bits*/

 unsigned short int mode; // 2 bytes = 16bits

 unsigned short int flags; // 2 bytes =

16bits

};

#endif

 193

// Filename : Sock.h

// --

// This file is creates the object udpSocket. This class

has four associated

// functions: a constructor, send, recv and close. Being

a class object these

// classes are stand alone and can be used by function

using pointers.

// If you are using Visual C++ you must include the

wsock32.lib library under

// "Link" -> "Input".

// Author: Matt Kontz <mkontz@mail.com>

// Lab: IMDL ME GaTech

// Created: July 10, 2002

// Edited: na

#ifndef __SOCK_INCLUDED__

#define __SOCK_INCLUDED__

#include <iostream.h> // For cout and cerr

#include <string.h> // for memset()

#include <stdlib.h> // for atoi() and exit()

#include <stdio.h> // for printf() and

fprintf()

#include <errno.h>

#ifdef WIN32

 #include <winsock.h> // for socket(),

connect(), send(), and recv()

 194

 typedef int socklen_t;

#else

 #include <sys/types.h> // for socket(),

connect(), send(), and recv()

 #include <sys/socket.h> // for socket(),

connect(), send(), and recv()

 #include <netdb.h> // for gethostbyname()

 #include <arpa/inet.h> // for sockaddr_in and

inet_addr()

 #include <unistd.h> // for close()

#endif

class udpSocket

{

private:

 int sock; // Socket

 unsigned short localPort; // Local port

 unsigned short forPort; // Foreign

port

 struct sockaddr_in localAddr; // Local address

 struct sockaddr_in forAddr; // Foreign

address

 struct hostent *host; // pointer to

server information

 char *forIP; // Foreign IP

address

 unsigned int addrLen;

public:

 195

 udpSocket(char *fip, unsigned short fp,unsigned short

lp)

 {

 forIP = fip;

 forPort = fp;

 localPort = lp;

 sock = -1; // Less than 0 mean

not connected

 #ifdef WIN32

 WORD wVersionRequested;

 WSADATA wsaData;

 wVersionRequested = MAKEWORD(2, 0);

// Request Winsock v2.0

 if (WSAStartup(wVersionRequested, &wsaData)

!= 0) // Load Winsock DLL

 {

 cerr << "WSAStartup() failed" << endl;

 exit(1);

 }

 #endif

 // Create a datagram/UDP socket

 if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 {

 cerr << strerror(errno) << "socket()

failed!" << endl;

 exit(1);

 }

 196

 // Construct local address structure

 memset(&localAddr, 0, sizeof(localAddr));

 // Zero out structure

 localAddr.sin_family = AF_INET;

 // Internet address family

 localAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 // Any incoming interface

 localAddr.sin_port = htons(localPort);

 // Local port

 // Bind to the local address

 if (bind(sock, (struct sockaddr *) &localAddr,

sizeof(localAddr)) < 0)

 {

 cerr << strerror(errno) << "bind() failed"

<< endl;

 exit(1);

 }

 // find foreign address

 memset((char *) &forAddr, 0, sizeof(forAddr));

 int addr = inet_addr(forIP);

 forAddr.sin_addr.s_addr = addr;

 if(addr != -1)

 {

 forAddr.sin_family = AF_INET;

 }

 else

 {

 197

 host = gethostbyname(forIP);

 if (host)

 {

 forAddr.sin_family = host->h_addrtype;

 forAddr.sin_addr.s_addr = *((unsigned long

*)host->h_addr_list[0]);

 }

 else

 {

 cerr << strerror(errno) << "Cannot get

host information for server." << endl;

 exit(1);

 }

 }

 forAddr.sin_port = htons(forPort);

 addrLen = sizeof(forAddr);

 }

 void send(char *msg, const int msgLen)

 {

 // Send the string to the server

 if (sendto(sock, msg, msgLen, 0, (struct sockaddr

*) &forAddr, addrLen) != msgLen)

 {

 cerr << strerror(errno) << "sendto() sent an

incorrent number of bytes" << endl;

 exit(1);

 }

 198

 }

 void recv(char *buffer, const int msgLen)

 {

 struct sockaddr_in fromAddr; // Source

address of echo

 int recvLen; // Length

of received response */

 // Recv a response

 recvLen = recvfrom(sock, buffer, msgLen, 0,

(struct sockaddr *) &fromAddr, (socklen_t *) &addrLen);

 if (recvLen != msgLen)

 {

 cerr << strerror(errno) << "recvfrom()

failed: incorrent number of bytes" << endl;

 //exit(1);

 }

 // Check sender of message

 if (fromAddr.sin_addr.s_addr !=

forAddr.sin_addr.s_addr)

 {

 cerr << strerror(errno) << "recvfrom()

failed: unknown host" << endl;

 exit(1);

 }

 }

 void close()

 {

 199

 // If the socket is open, close it.

 if (sock > -1)

 {

 #ifdef WIN32

 ::closesocket(sock);

 #else

 ::close(sock);

 #endif

 sock = -1;

 }

 #ifdef WIN32

 if (WSACleanup() != 0)

 {

 cerr << "WSACleanup() failed" << endl;

 exit(1);

 }

 #endif

 }

};

#endif

 200

APPENDIX D

MATLAB SCRIPT FOR READING, SMOOTHING, AND SAVING

RECORDED TRAJECTORIES

function trajcon(time,side,n)

clear MASTER pinit pfinal

if side == 2;

 prefix='Righty_';

else prefix='Lefty_';

end

sidechar = num2str(side);

timechar = num2str(time);

fname = strcat(prefix, timechar, '_v1.txt');

lmastername = strcat('LMASTER.txt');

rmastername = strcat('RMASTER.txt');

%load in the recorded trajectory and it shall be called

'vec'

vec = load (fname);

%load in the master trajectory matrix for the appropriate

side

if side == 2

 MASTER = load('RMASTER.txt');

else MASTER = load('LMASTER.txt');

end

sm=size(MASTER);

%make a time vector

t=ones(length(vec(:,1)),1);

L=length(t);

for k=1:L;

 t(k)=k.*.001;

end

%split vec into PHANToM xyz vectors

x = vec(:,1);

y = vec(:,2);

z = vec(:,3);

%plot the vertical plane trajectory

figure;

plot(x,y);

if side == 2

 title('<----- Forward; View from body looking outward

to RIGHT');

 201

 xlabel('(body axis) End Swing Phase <--------------

Start Swing Phase');

else

 title('View from body looking outward to LEFT; Forward

----->');

 xlabel('(body axis) Start Swing Phase -------------->

End Swing Phase');

end

ylabel('Down ------------------------> Up');

%take n points from raw vectors

tc=fix(L/(n));

for k=1:n+1;

 tt(k)=((k-1)*tc)+1;

 xx(k)=x(tt(k));

 yy(k)=y(tt(k));

 zz(k)=z(tt(k));

end

tt=tt.*.001;

%make spline equations from those points (xx yy zz)

%initial slope = final slope = 0

spx=spline(tt, [0 xx 0]);

spy=spline(tt, [0 yy 0]);

spz=spline(tt, [0 zz 0]);

%make curves from spline equations

xxx=ppval(spx,t);

yyy=ppval(spy,t);

zzz=ppval(spz,t);

% plot splines xyz subplotted

figure;

subplot(3,1,1); plot(t,x,'k',t,xxx,'r--');

title('PHANToM input vector (raw)');

%xlabel('Time (s)');

ylabel('x (mm)');

subplot(3,1,2); plot(t,y,'k',t,yyy,'r--');

%xlabel('Time (s)');

ylabel('y (mm)');

subplot(3,1,3); plot(t,z,'k',t,zzz,'r--');

xlabel('Time (s)');

ylabel('z (mm)');

%plot the 3d steppin action'

figure;

plot3(x,z,y,'k',xxx,zzz,yyy,'r--');

axis([-250 250 -250 250 -250 250]);

xlabel('x (mm)');

ylabel('z (mm)');

zlabel('y (mm)');

 202

%put smoothed trajectories into new vector, and it shall be

called 'nuvec'

for k=1:L;

 nuvec(k,1)=xxx(k);

 nuvec(k,2)=yyy(k);

 nuvec(k,3)=zzz(k);

end

%pull out first and last points

pinit=ones(3,1);

pfinal=ones(3,1);

for k=1:3;

 pinit(k,1)=nuvec(1,k);

 pfinal(k,1)=nuvec(L,k);

end

poffset=[0;-127;-762]; %mm; offset from foot origin to

shoulder in PHANTom reference frame

pinit=pinit+poffset; %evaluate distance from shoulder

base to foot command point

pfinal=pfinal+poffset;

pinit1 = (pinit(1));

pinit2 = (pinit(2));

pinit3 = (pinit(3));

pfinal1 = (pfinal(1));

pfinal2 = (pfinal(2));

pfinal3 = (pfinal(3));

%APPEND DATA TO MASTER

%MASTER IS 7 items WIDE (7 columns)

% TIME PINIT(1) PINIT(2) PINIT(3) PFINAL(1) PFINAL(2)

PFINAL(3)

MASTER((sm(1)+1),1)=time;

MASTER((sm(1)+1),2)=pinit1;

MASTER((sm(1)+1),3)=pinit2;

MASTER((sm(1)+1),4)=pinit3;

MASTER((sm(1)+1),5)=pfinal1;

MASTER((sm(1)+1),6)=pfinal2;

MASTER((sm(1)+1),7)=pfinal3;

%Resave MASTER.txt

if side == 2;

 save(rmastername, 'MASTER', '-ascii');

else save(lmastername, 'MASTER', '-ascii');

end

%save nuvec as r/ltimestamp.txt

savefile = strcat(prefix, timechar, 'smoothed.txt');

%savefile=timechar;

save(savefile, 'nuvec', '-ascii')

 203

REFERENCES

[1] Guerriero, B. and Book, W., “Haptic Feedback Applied

to Pneumatic Walking,” submitted to ASME Dynamic

Systems Control Conference, Ann Arbor, MI, Oct 20-22,

2008.

[2] Shields, B., Goldfarb, M. 2005. “Design and

Energetic Characterization of a Solenoid Injected

Liquid Monopropellant Powered Actuator for Self-

Powered Robots”. IEEE International Conference on

Robotics and Automation. Vol. 2005. pp. 241-6.

[3] Wait, K., Goldfarb, M. 2007. “A Biologically

Inspired Approach to the Coordination of Hexapedal

Gait”. IEEE International Conference on Robotics and

Automation. April. pp. 275-280.

[4] Noritsugu, T. 1987. “Development of PWM Mode

Electro-Pneumatic Servomechanism. II. Position Control

of a Pneumatic Cylinder”. Journal of Fluid Control.

Vol. 17. Issue 2. pp. 7-31.

[5] van Varseveld, R. B., Bone, G. M. 1997. “Accurate

Position Control of a Pneumatic Actuator Using On/Off

Solenoid Valves”. Proceedings from IEEE International

Conference on Robotics and Automation. Vol. 2. pp.

1196-1201.

[6] Kunt, C., Singh, R. 1990. “A Linear Time Varying

Model for On/Off Valve Controlled Pneumatic

Actuators”. ASME Journal of Dynamic Systems,

Measurement, and Control. Vol. 112. Issue 4. pp.

740-7.

[7] Shen, X., Zhang, J., Barth, E., Goldfarb, M. 2006.

“Nonlinear Model-Based Control of Pulse Width

Modulated Pneumatic Servo Control”. ASME Journal of

Dynamic Systems, Measurement, and Control. Vol. 128.

pp. 663-9.

[8] Wang, J., Pu, J., Moore, P. 1999. “A Practical

Control Strategy for Servo-Pneumatic Actuator

Systems”. Control Engineering Practice. Vol. 2.

Issue 7. pp. 1483-8.

 204

[9] Chillari, S. Guccione, S., Muscato, G. 2001. “An

Experimental Comparison Between Several Pneumatic

Position Control Methods”. Proceedings of the 40th

IEEE Conference of Decision and Control. Dec. pp.

1168-1173.

[10] Tanaka, K., Yamada, Y., Shimizu, A., Shibata, S.

1996. “Multi-Rate Adaptive Pole-Placement Control for

Pneumatic Servo System with Additive External Forces”.

IEEE Advanced Motion Control Proceedings. Pp. 213-8.

[11] Korondi, P., Gyeviki, J. 2006. “Robust Position

Control for a Pneumatic Cylinder”. IEEE International

Power Electronics and Motion Control Conference. Aug.

pp. 513-8.

[12] Guvenc, L. 1999. “Closed Loop Pneumatic Position

Control Using Discrete Time Model Regulation”.

Proceedings of the American Control Conference. June.

pp. 4273-7.

[13] Al-Dakkan, K., Barth, E., Goldfarb, M. 2006.

“Dynamic Constraint-Based Energy-Saving Control of

Pneumatic Servo Systems”. ASME Journal of Dynamic

Systems, Measurement, and Control. Vol. 128. pp.

655-662.

[14] Shields, B., Fite, K., Goldfarb, M. 2006. “Design,

Control, and Energetic Characterization of a Solenoid-

Injected Monopropellant-Powered Actuator”. IEEE/ASME

Transactions on Mechatronics. Vol. 11. Issue 4. pp.

477-486.

[15] Barth, E., Gogola, M., Goldfarb, M. 2003. “Modeling

and Control of a Monopropellant-Based Pneumatic

Actuation System”. IEEE International Conference on

Robotics and Automation. pp. 628-633.

[16] Fite, K., Mitchell, J., Barth, E., Goldfarb, M. 2006.

“A Unified Force Controller for a Proportional-

Injector Direct-Injection Monopropellant-Powered

Actuator”. ASME Journal of Dynamic System,

Measurement and Control. Vol. 128. Issue 1. pp.

159-164.

 205

[17] H. Zhu, W. Book, “Position Sensing for Every Pneumatic

Cylinder”, National Fluid Power Association Fall

Conference, Pittsburg, 2005, National Fluid Power

Association’s Reporter, Vol.53, No.2, 2005.

[18] Muscato, G., Spampinato, G. 2005. “A Multi Level

Control Architecture for a Pneumatic Robotic Leg”.

IEEE Symposium on Emerging Technologies and Factory

Automation. Vol. 2. pp. 773-9.

[19] Guihard, M., Gorce, P., Fontaine, J. 1995. “SAPPHYR:

Legs to Pull a Wheel Structure”. IEEE International

Conference on Systems, Man and Cybernetics. Vol. 2.

pp. 1303-8.

[20] Gorce, P., Vanel, O. 1996. “High Level Strategy to

Control the Dynamic Evolutions of Bipedal Postures”.

IEEE International Conference on Systems, Man, and

Cybernetics. Vol. 2. pp. 1459-1464.

[21] Gorce, P., Guihard, M. 2001. “Dynamic Controller of

BIPMAN”. 8th International Conference on Emerging

Technologies and Factory Automation. pp. 641-4.

[22] Guihard, M., Gorce, P. 2001. “BIPMAN Dynamic

Impedance Controller Based on a Biomechanical

Approach”. IEEE Conference on Systems, Man and

Cybernetics. Vol. 5. pp. 2997-3002.

[23] Denavit, J., Hartenberg, R. 1954 “Kinematic Notation

for Lower-Pair Mechanisms Based on Matrices”.

American Society of Mechanical Engineers Meeting A-34.

Paper 54 A-34.

[24] Pieper, D. 1968. “The Kinematics of Manipulators

Under Computer Control”. PhD Dissertation. Stanford

University CA Department of Computer Science.

[25] Frantsevich, L., Cruse, H. 1996. “The Stick Insect,

Obrimus asperrimus (Phasmida, Bacillidae) Walking on

Different Surfaces”. Journal of Insect Physiology.

Vol. 43. No. 5. pp. 447-455.

[26] Cruse, H., Durr, V., Schmitz, J. 2006. “Insect

Walking is Based on a Decentralized Architecture

Revealing a Simple and Robust Controller”.

 206

Philosophical Transactions of the Royal Society A.

Vol. 365. pp. 221-250.

[27] Torige, A., Noguchi, M., Ishizawa, N. 1993.

“Centipede Type Multi-Legged Walking Robot”. IEEE/RSJ

International Conference on Intelligent Robots and

Systems. July. pp. 567-571.

[28] FESTO. 2003. “Proportional Directional Control

Valves”. 2004/2005 Product Catalog. 5/1.5-1 – 5/1.5-

11.

[29] Lipkin, H. 2006. “Displacement Analysis for the

Generalized Puma Robot”. ME 6407 Class Notes. pp. 1-

15.

[30] Ott, R., Gutierrez, M., Thalmann, D., Vexo, F. 2005

“Improving User Comfort in Haptic Virtual Environments

through Gravity Compensation”. IEEE First Joint

Eurohaptics Conference and Symposium on Haptic

Interfaces for Virtual Environment and Teleoperator

Systems. pp. 401-9.

