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SUMMARY 

 

 A two-legged walking robot was designed, fabricated, 

and controlled through bilateral teleoperation via two 

PHANToM haptic devices.  The Compact Rescue Crawler is a 

collaborative effort between Georgia Institute of 

Technology, Vanderbilt University, and North Carolina A&T 

working through the NSF Center for Compact and Efficient 

Fluid Power.   

 The Georgia Institute of Technology contributions to 

this pneumatic testbed are a haptically controlled two-

legged robot, operator workstation, an augmented reality 

interface, and a guided-gait routine allowing a single 

operator to effectively control six legs while maneuvering 

through treacherous and unknown terrain.  The two-legged 

vehicle was built and is teleoperated from a remote 

operator workstation.  The guided-gait routine was 

designed, as well. 

 A force-based position controller coordinates 3D 

operator inputs into pneumatic cylinder stroke length 

commands and tracks position commands to within 10%.  The 

controller tracks position in both free-space and ground 

contact scenarios, allowing the user to walk the robot 

remotely from the workstation and haptically feel the 

environment, and see the terrain through a head mounted 

display controlling an onboard PTZ camera. 



 1 

CHAPTER 1 

INTRODUCTION 

 

1.1 CCEFP Background 

 The National Science Foundation Center for Compact and 

Efficient Fluid Power is an engineering research center 

focused on, as the name implies, improving the compactness, 

efficiency, and effectiveness of fluid power.  Making 

efficient fluid power ubiquitous in our society allows high 

power density devices to be more commonplace.  Improving 

fluid power effectiveness improves efficiency and unleashes 

the potential to save millions of dollars worldwide.  

Divided into three Thrusts and four Testbeds, the CCEFP 

research is managed across seven universities.  The 

Testbeds not only serve as platforms and showcases for the 

technologies developed through the individual research 

Thrusts, but are also focal points for the new research 

required to achieve Testbed success.   

 Compactness, Efficiency, and Effectiveness are the 

three research Thrusts.  Four testbeds are currently under 

development.  Led by researchers at Purdue University, TB1 

is an excavator testbed on which new developments in 

variable displacement pumps, throttleless valve control, 

and human factors research will be implemented.   

 Led by researchers at the University of Minnesota 

(UMN), TB3 is a small hybrid urban vehicle testbed on which 
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new open accumulator developments and other efficiency 

research will be implemented.  New compact components 

developed through CCEFP research will also find a home on 

the small Urban Vehicle (sUV) testbed. 

 TB6: Fluid Power Assisted Ankle-Foot Orthoses, led by 

researchers at University of Illinois Urbana-Champaign 

(UIUC) seeks to revolutionize the orthoses currently 

available by integrating fluid power assistance and 

resistance.  These orthoses will showcase research products 

in compactness and effectiveness.   

 Finally, TB4: Compact Rescue Crawler (CRC), led 

jointly by Vanderbilt University and Georgia Institute of 

Technology, is a revolutionary hexapedal search and rescue 

robot driven by hot-gas monopropellant.  Harnessing new 

developments in chemofluidic actuation, control, and user 

interfaces, this testbed will eventually become an 

effective and powerful alternative to electric motor-driven 

search vehicles.  The CRC also epitomizes the challenges of 

man-machine interaction prevalent in many fluid power 

applications and will lead to future opportunities for 

human-scale fluid power devices.   

1.1.1 Collaboration 

 The research at Georgia Institute of Technology was 

part of a collaborative effort between Vanderbilt 

University, North Carolina Agricultural and Technical State 

University (NCAT), and Georgia Institute of Technology.  

Georgia Tech research is focused on the multimodal man-
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machine interface and the haptic control of the robot legs 

[1]. 

 Research at Vanderbilt is focused on chemofluidic 

actuation using decomposed H2O2 for a power source.  

Researchers are developing valves and actuators to control 

and harness the high temperature and pressure fluid 

produced through decomposition [2].  

 Vanderbilt research is also focusing on using an 

impedance controller to maneuver legs through a hexapedal 

tripod gait in which the operator will give simple commands 

to move the robot, i.e. “forward,” “right,” etc [3].   

 NCAT research is focused on the human factors areas 

related directly to TB4.  The research covers a task 

analysis for the rescue mission, task analysis for the 

operator driving the CRC, and methods through which 

information should be quickly and effectively displayed to 

the operator.   

1.2 Legged Mobility 

 Numerous advantages arise when legged locomotion is 

chosen over tracked or wheeled methods.  A vehicle with 

redundant legs can alternatively use a spare leg as a 

manipulator as is often seen in nature (Figure 1.1).   
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Figure 1.1: An Ant Uses Redundant Legs to Manipulate its 

Environment 

  

 Legged platforms also display static stability when 

maintaining at least three points of ground contact, but 

can be much more maneuverable in unknown and hazardous 

terrain.  Legs can step over obstacles, whereas tracks must 

rely on motor torque and traction to pull themselves and 

the weight of the entire vehicle over terrain.  

 In a search and rescue scenario, a legged vehicle can 

maneuver through, over, and under debris more nimbly than a 

comparably sized tracked vehicle.  Due to the nature of 

legged locomotion, such methods have been difficult to 

realize because of the low speed and high joint torques 

necessary to exert force at the foot.  Large motors and 

harmonic drives work well for industrial robots, but search 

and rescue vehicles must maintain a small profile while 

remaining strong and maneuverable.   

 Legged vehicles also leave a smaller footprint on the 

environment, providing advantages to the logging industry 

to prevent lasting imprints on the forest bed from road-

building and tracked vehicles destroying the ground (Figure 

1.2). 
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Figure 1.2: John Deere Legged Harvester 

 

1.3 Research Objectives 

 The research objectives for the Testbed 4: Compact 

Rescue Crawler are threefold.  First, the legged robot 

platform must be designed and fabricated.  Secondly, the 

robot legs must be controlled effectively through a real-

time onboard controller and remote workstation.  Thirdly, a 

gait sequence must be designed to guide trailing legs over 

the terrain and obstacles which the operator avoided while 

guiding the front legs. 

1.3.1 Testbed Design and Fabrication 

 Design requirements for the testbed design were fairly 

open due to the pioneering nature of the robot.  The 

testbed was to have two functioning legs and be 

geometrically similar to the testbed already under 

development at Vanderbilt.  The new Georgia Tech CRC 

Testbed remained very close in size to the CRC at 

Vanderbilt, with different actuators and valves.  Range of 

motion was sacrificed slightly to employ prototype 
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actuators with embedded position sensing, and donated Festo 

proportional valves were used because of their 

availability, practicality, and reliability. 

 Significant amounts of time were spent analyzing 

SolidWorks models for mechanical interferences and 

optimizing the range of motion for each joint.  Care was 

also taken while designing joints, selecting fittings, and 

designing rod ends for each actuator, ensuring the robot 

would be functional, compact, and easily maintainable. 

1.3.2 Control and Interface 

 The control system for the robot was designed in 

Simulink and run real-time on an xPC Target computer with 

analog inputs and outputs.  The overall control objective 

is to bilaterally teleoperate the robot through two PHANToM 

haptic devices.  The robot feet positions are coordinated 

with the PHANToM endpoint positions.  PHANToM inputs are 

transformed into joint angle commands which, in turn, are 

transformed into cylinder stroke length commands.  The 

cylinder stroke lengths are position controlled by 

classical methods and newly developed non-contacting 

position sensors with added force control effort by 

pressure sensor feedback.  

 The overall control objective is to provide accurate, 

stable position tracking control of each leg in both free 

space and ground contact.  Since the legs are haptically 

controlled by the operator, importance is placed on 

maintaining low tracking error in order to provide crisp 
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haptic feedback when an outside obstacle impedes leg motion 

and physically induces position error.   

1.3.3 Gait Coordination 

 The objective of the gait planning portion of this 

project is to design a routine for commanding trajectories 

to the rear four legs of the robot when the operator is 

directly controlling the front pair.  Since the operator 

can easily control two legs, and not six simultaneously, 

the gait coordinator must record the trajectories of the 

front legs, calculate the position of the trajectory in the 

global robot coordinates, and play the appropriate 

trajectory back through subsequent leg pairs to avoid known 

obstacles.  This method of locomotion allows the operator 

to manually guide the robot through treacherous and unknown 

terrain without requiring simultaneous user control of all 

six legs simultaneously.   

 

 



 8 

CHAPTER 2 

RESEARCH BACKGROUND AND LITERATURE REVIEW 

2.1 Pneumatic Control Research 

 In many respects, pneumatic actuators are excellent 

devices for producing smooth, reliable, and low-cost linear 

motion.  Cylinders can be created in nearly any diameter to 

produce force for most applications.  Powered by compressed 

air (or other gas), the flow rate of the fluid is 

controlled by valves.  On-off control of pneumatic 

actuators is exceedingly easy, requiring only an 

inexpensive spool valve. 

2.1.1 Servo Control 

 Precise position control of pneumatic actuators, 

however, is much more difficult to achieve.  Two physical 

methods prevail in obtaining position control, pulse-width 

modulation of on-off solenoid valves, and proportional 

servo valves.   

 Pulse-width modulation (PWM) control of a hydraulic 

system was initially investigated by D. Boddy at Purdue 

University in 1966.  The pneumatic system control and 

development was originally experimented in 1987 by T. 

Noritsugu [4], and later expanded upon van Varseveld and 

Bone in 1997 [5].  These systems provide fast, accurate, 

and inexpensive position control with precision comparable 

to that achieved through use of servo valves.  In 1990 Kunt 
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and Singh at Ohio State University developed a linear time 

varying model for open loop PWM control of a pneumatic 

actuator [6].  This work was expanded in 2006 by Shen, 

Zhang, Barth, and Goldfarb at Vanderbilt University through 

development of a nonlinear model-based control structure 

[7].  These methods are novel in the respect that the 

solenoid valves employed are relatively inexpensive and 

very fast.   

 Proportional spool valves, however, are accurate, more 

traditional, and only one valve is required to regulate 

flow and direction into both chambers of the pneumatic 

cylinder.  Position control techniques have been developed, 

tested and refined for myriad uses, from robotic legs to 

high precision positioning systems.   

 Both classical and modern control methods have been 

applied to pneumatic servomechanisms.  While a simple PID 

controller may seem trivial, advances to the classical 

method have been put forth, such as incorporating 

differential pressure feedback into the control effort.  

Pressure feedback accompanying position feedback aids 

control, because through a flow control valve, pressure and 

flow rate (actuator velocity) are coupled.  Wang, Pu, and 

Moore experimented with acceleration feedback rather than 

pressure feedback [8].  The main advantage was the lower 

sensor cost, where only one accelerometer is needed rather 

than two separate pressure sensors.  They were able to use 

a velocity command feed-forward, null-offset compensation, 
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and acceleration damping feedback to supplement a PID 

controller, matching velocity trajectories well.   

 Chillari, Guccione and Muscato compared several 

control techniques applied to pneumatic actuators [9].  

They compared PID control, fuzzy control, PID control with 

pressure feedback, Fuzzy control with pressure feedback, 

sliding mode control, and neuro-fuzzy control.  Their 

results showed that fuzzy logic control yielded the best 

tracking and transient responses, but in the classical 

domain, the PID control with a gain scheduled differential 

pressure feedback performed better than the simple PID 

controller.   

 More advanced, modern control methods yield impressive 

position control results of pneumatic servo systems.  

Tanaka, Yamada, Shimizu, and Shibata developed an advanced 

method of multi-rate adaptive pole placement for pneumatic 

actuators [10].  Korondi and Gyeviki developed a robust 

sliding mode control for a pneumatic actuator [11].  They 

were able to achieve robust position control with only 3.8 

mm steady state position error.  Guvenc developed a 

discrete time model regulator using model inversion and PD 

control to achieve closed loop position control of a 

pneumatic actuator [12].  Energy saving techniques were 

implemented by Al-Dakkan, Barth, and Goldfarb using an 

additional proportional valve to re-route high pressure 

exhaust gasses back into the high-pressure chamber of the 

actuator [13].  They showed that using dynamic energy 
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constraints, energy savings of up to 45% could be achieved.  

This is a particularly poignant breakthrough with respect 

to a mobile, self powered rescue vehicle.  Energy savings 

in a high-risk mission environment could be the difference 

between life and death for victims. 

 Recent research at Vanderbilt University, published by 

Goldfarb, Barth, Fite, Mitchell, Shields, Gogola, and 

Wehrmeyer provide control and implementation techniques for 

monopropellant based fluid power [1, 14-16].  The valve 

developed through their research is capable of controlling 

the flow of H2O2 decomposition gasses.  These exhaust 

products essentially equate to a high quality steam.  A 70% 

H2O2 solution exits the catalytic reactor as H2O and O2 at 

450 degrees F, and 300 psi.  These high temperatures and 

pressures exceed design constraints of any small, 

commercially available proportional valve.   

 Practical servo-pneumatic control is dependent on some 

level of actuator state feedback.  Embedded position 

feedback has been traditionally difficult to integrate into 

fluid power actuators.  Several commercial solutions exist 

to “piggyback” sensors onto cylinders, and the position 

feedback is accurate and reliable.  A more novel solution 

is the capacitively-coupled resistance sensor developed by 

Zhu and Book from Georgia Institute of Technology [17].  

This non-contacting displacement sensor can be compactly 

embedded in fluid power actuators yielding accurate 

position feedback through a small integrated sensor.   
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2.1.2 Robotic Applications 

 Pneumatic position control has been applied to robotic 

applications by several researchers.  More specifically, 

legged robots have been controlled by complex control 

architectures allowing fluid gaits and upright walking.  

McKibben artificial muscles are usually extremely useful 

for emulating muscles with fluid power, but Muscato and 

Spampinato developed a five degree of freedom pneumatic leg 

with cylinders, capable of force interactions with the 

ground plane [18].  Their leg was controlled through a 

multi-level architecture and pre-programmed gaits.   

 Guihard, Gorce, and Fontaine developed a control 

architecture for a bipedal robot, SAPPHYR, designed to pull 

a wheeled cart [19].  This project demonstrated the leg to 

leg interactions coupled with adaptive pneumatic control 

and, again, pre-programmed gaits.  They showed that 

pneumatic actuators make for effective leg actuators with 

the added advantage, for bipeds, that the compressible gas 

acts as a slight damper during foot contact.  The 

compressibility and damping also causes a slight 

orientation shift as each foot sets down, a valuable 

insight.   

 The BIPMAN pneumatic bipedal platform, developed by 

Gorce, Vanel, and Guihard in France exhibits a very 

intricate control architecture [20-22].  Using supervisory 

controls based on biomechanical research, they control 

torso posture and orientation with the legs, just as a 
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human would.  Dynamic impedance controllers control the 

force and stroke length of the leg actuators.  BIPMAN is an 

impressive testbed, able to step over obstacles, 

incorporating biomechanical properties in its feet and 

joint structure. 

 In 1954, Denavit and Hartenberg developed a method for 

describing kinematics of serial links [23].  This method, 

using link and joint geometry to relate the tip position to 

the base, has become the basis for analyzing kinematics and 

dynamics of serial manipulators.  Pieper in 1968 described 

the application of Denavit-Hartenberg parameters to the 

generalized serial robot [24].  They described the 

algorithm by which the end-effector position is described 

by the joint angles, and the inverse, in which the known 

end-effector position determines the possible joint angles 

of the manipulator.   

2.2 Gait Research 

 Every insect walks with a certain gait.  Gaits 

exhibited in nature are intuitive to the creature executing 

them, whether a bipedal gait performed by humans, or a 

hexapedal gait demonstrated as a stick insect moves nimbly 

over terrain (Figure 2.1).   
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Figure 2.1: Stick Insect Carausius morosus 

 

 The execution of hexapedal gaits in robots is commonly 

performed through central pattern generators or finite-

state methods.  In central pattern generated gaits, when 

the robot is commanded to walk forward, it simply plays its 

pre-planned forward walking gait, and the legs move the 

body forward.  Finite-state planners execute pre-planned 

gaits based on the robot state.  A certain gait can be 

planned for flat terrain, and another for stair climbing.  

Coordinated gaits are more autonomous gaits which control 

legs and body position with respect to a general high-level 

command (Figure 2.2).   
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Figure 2.2: Big Dog Military Robots  

 

2.2.1 Coordinated Hexapedal Gaits 

 Cruse investigated the gait coordination and autonomy 

of the stick insect in 1996 [25].  He determined that the 

insect was kept stable by a tripod gait, which keeps at 

least three feet planted on the ground at all times.  

Coordinated gaits are neither pre-planned nor fixed.  The 

Carausius morosus and Obrimus asperrimus, more commonly 

known as stick insects were the main foci of Cruse’s 

analyses.  He noted and analyzed leg trajectories and joint 

angles as the insects walked along varied surfaces.  

Cruse’s later analysis [26] yielded WALKNET, an algorithm 

describing the autonomous gait of the stick insect.  

Through the simulated WALKNET routine, simple high-level 

commands such as “forward” can be used to automatically 
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move all legs in such a way that the body moves stably over 

smooth flat terrain. 

 Wait and Goldfarb expanded on the WALKNET routine in 

2007 with research directly applicable to the Compact 

Rescue Crawler [3].  Their analysis, oriented to robot 

control, showed several drawbacks of the WALKNET routine, 

specifically its joint-space control rather than overall 

task space control.  They modified WALKNET to maintain body 

height and ground contact, rather than joint angles, 

keeping feet in place should the footholds loosen or slip.  

They also added a yaw control feedback loop, controlling 

lateral stability and position during walking.   

2.2.2 Other Gaits 

 Tripod gaits work well for hexapods moving under 

coordinated leg control, but other gaits exist with 

benefits and drawbacks.  A centipede style gait isolates 

leg pairs and moves each in sequence.  Torige, Noguchi, and 

Ishizawa showed how centipede leg movement acts as a wave 

based on the foot positions of previous segments [27].  

Their robot tests of the centipede wave gait showed that 

distributed control architecture allowed for better leg 

control and the option to add more leg segments to the 

robot.   
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CHAPTER 3 

TESTBED DESIGN 

 

3.1 Leg Structure and Design 

 The two robot legs (Figure 3.1) developed through this 

project were constructed primarily from 6061 aluminum 

alloy.  This strong, light metal was chosen due its high 

strength to weight ratio, and its ease of machinability. 

 

 

Figure 3.1: Two CRC Robot Legs 

  

 The support cart holds the rear of the robot, and 

physically emulates the support from the absent four rear 

legs.  The support cart also acts as a mounting structure 

for the computers and power supply that drive the robot.   

 The main spine of the robot is a 48 in. beam of 80/20 

1 in. square extrusion.  The front and rear shoulder are 

fastened to the square extrusion via ¼-20 bolts received by 
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tee nuts.  The square profile prevents the shoulder 

harnesses from rotating on the frame due to moments applied 

by the legs.   

 The shoulder harnesses were waterjet cut from 1 in. 

aluminum plate.  The front shoulder harness provides a 

clevis mount for each shoulder.  The pivot arm is 

constrained to 30 degrees below horizontal within the 

clevis by a 0.375 in. diameter steel pin.  A needle bearing 

assembly is mounted inside each clevis arm, and a bronze 

thrust bearing is nested above and below the swing arm 

(Figure 3.2).   

 

Figure 3.2:  Front Shoulder Bearing Assembly 

 

 These four bearing surfaces on each side resist all 

moments applied by the leg on the shoulder harness. Due to 

the precision needle bearings, the assembly exhibits very 

little mechanical play.   

 The rear shoulder harness, mounted to the spine, is 

pinned to the rear of the swing cylinders, allowing them to 
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pivot as the leg is extended and retracted (Figure 3.3).  

The rear shoulder harness was waterjet cut from 1 in. 

aluminum plate.   

 

 

Figure 3.3: Rear Shoulder Assembly 

 

 The pivot arms, driven by swing cylinders L1 and R1, 

support the entire leg mechanisms.  The pivot arms directly 

support the thrust cylinders L2 and R2, via the mid-leg 

arms.  The mid-leg arms were waterjet cut from 0.375 in. 

aluminum plate.  These arms support the rear of cylinders 

L2 and R2 and provide the pivot points for joints L2 and R2 

(Figure 3.4).  
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Figure 3.4:  Mid-leg Assembly Cradling Cyl. L/R2 

  

 The lower-leg arms pivot on the mid-leg arms and 

cradle cylinders L3 and R3.  These lower-leg arms are 

directly pinned to the rod ends of cylinders L2 and R2, and 

are responsible for supporting much of the robot weight.  

The main A-shaped piece of the lower-leg arm was waterjet 

cut from 1 in. aluminum plate, and the curved rear pieces 

were waterjet cut from 0.375 in. plate (Figure 3.5).   

 

Figure 3.5: Lower Leg Assembly 
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 The final link holding the foot and making ground 

contact is a 0.625 in. 12 in. long aluminum rod.  This rod 

is held by two clamps allowing its length and range of 

motion to be adjusted (Figure 3.6).  Length is adjusted 

simply by sliding the leg rod through the clamps and range 

of motion is adjusted by changing the distance between the 

clamps.  A decrease in range of motion will allow the 

cylinder to apply more torque to the joint.   

 The actual foot of the last link is a silicon rubber 

ball.  This rubber ball exhibited the best traction 

properties to the waxed tile floor in the laboratory test 

environment, and was therefore used throughout development.  

The ball is fastened to the end of the link with one ¼-20 

screw.   

 

 

Figure 3.6: Ground Contact Foot and Final Link 
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3.1.1 Actuator Design and Construction 

 Pneumatic actuators developed for this project were 

custom-made by Sentrinsic for this application.  The 

cylinders feature integrated position and pressure sensors.  

Each NFPA standard tie-rod style cylinder is identical, 

save for the rod ends.  The main barrel is a composite 

wound polymer tube with aluminum endcaps.  The cylinder 

bore is 1.5 in. and stroke length is 1.4 in.  A clevis 

plate joins the rear of the cylinder to its associated 

pivot pin and protects the internal circuitry (Figure 3.7). 

 

 

Figure 3.7: Cylinder Assembly 

 

 Four 0.25 in. tie rods clamp the clevis plate, 

endcaps, and barrel.  Internal o-rings seal the junction 

between endcaps and barrel.  The rod and piston use 

standard pneumatic lip seals.  The piston rod is a 0.50 in. 

fiberglass rod fixed to the piston via a pin.  The aluminum 

rod ends are pinned to the piston rod.  The rod ends were 

milled from 6061 aluminum stock specific to each joint, 

with holes through which their connecting pins mount.   
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 1/8 NPT threads were machined into one side each 

endcap for air fittings.  1/4 NPT threads were machined 

into one side of each endcap, 90 degrees from the air 

fittings for pressure sensors. 

 The fiberglass piston rods are ideal for this search 

and rescue application because they will not permanently 

deform from impacts.  Steel piston rods, once bent, render 

the entire actuator useless.  The light fiberglass rods 

will withstand impacts from debris without undergoing any 

permanent deformation.  Forces large enough to destroy the 

thick fiberglass rods would surely ruin any similar steel 

piston rods.   

 The composite wound barrels, made by Polygon, can 

withstand much higher chamber pressures than could ever be 

provided through H2O2 decomposition.  The composite material 

is also favorable for this application because it will 

resist denting.  A dented steel barrel from debris impacts 

will significantly restrict piston motion, essentially 

crippling the robot.   

 Each pneumatic cylinder is referenced in this document 

by the joint it actuates, e.g. cylinder R1, cylinder L3.  

Each chamber is referenced a or b with respect to Figure 

3.8 below. 
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Figure 3.8: Cylinder Chamber Labeling Convention 

 

3.2 Valves 

 Air flow rate into each chamber of each cylinder is 

controlled by a proportional directional spool valve.  Air 

flow rate is proportional to spool position and direction 

from center.  The FESTO MPYE-5-M5-010-B valves allow a 

maximum flow rate of 100 L/min [28]. 

 The spool is held in it center position by two magnet 

springs.  Each magnet is wrapped with a solenoid.  At a 5V 

signal, the spool remains centered, and no air flows 

through the valve.  As the signal increases, the spool 

moves proportionally as the current through the coils 

changes.  At 0V or 10V, the spool orifice is completely 

open, allowing maximum air flow (Figure 3.9).   
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Figure 3.9:  Flow Rate As Function of Setpoint Voltage U 

 

 The valves were piped on the robot to correspond flow 

direction to stroke direction.  When a high signal (> 5V) 

is applied to the valve, air flow into the cylinder causes 

the actuator to extend.  A low signal (< 5V) retracts the 

actuator.   

3.2.1 Limitations 

 The Festo MPYE-5-M5-010-B valves can control flow up 

to 100 l/min through 5mm (10-32) fittings and provide spool 

position response up to 100 Hz [28].  Given that the 

cylinder bore is 1.5 inches and maximum stroke length is 

1.4 inches, 100 L/min (101.7 in3/s) translates into a 

maximum stroke speed of 57.56 in/s (Equation 3.1). 
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57.56 in/s, or 4.8 ft/s is a stroke speed faster than the 

operator could command, and is likely outside the 

capabilities of the physical system.   

 Rather than analyzing a maximum stroke speed, the 

maximum frequency of operation is instead analyzed by 

calculating the maximum stroking frequency attainable with 

a 101.7 in3/s gas flow rate (assuming no compression) 

(Equations 3.2 and 3.3). 
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 Each valve has the flow capacity to stroke a cylinder 

back and forth over 20 times per second.  This poses 

absolutely no restrictions on design or control 

capabilities of the robot.   

3.2.2 Plumbing 

 The main air supply is provided through a 0.25 in. 

Nylon 12 flexible tube connected to the main distribution 

manifold.  Six flexible lines connect the manifold to each 

valve.  The flexible lines designed for use with barbed 

fittings are braided Tygothane tubing, 0.125 in. ID, 0.375 

in. OD, with a bend radius of only 0.5 in.  0.125 in. OD 

stainless steel tubing connects each valve to its cylinder 

on L1/R1 and L2/R2.  Flexible tubing connects Valves L3/R3 



 27 

to cylinders L3/R3.  Such materials were chosen for their 

workability and pressure ratings.  Each component must be 

able to withstand operating pressures of approximately 300 

psi to conform to chemofluidic research ongoing at 

Vanderbilt University. 

  At cylinders L1/R1 and L2/R2, the valve is mounted 

directly to the cylinder.  This close placement reduces the 

amount of compressibility exhibited by the metered air in 

the lines between valve and actuator.  Valves L3/R3 are 

mounted close to valves L2/R2 and connected to cylinders 

L3/R3 by Tygothane tubing and 1/8 NPT barbed fittings.  

This positioning prevents the relatively heavy valve from 

adding to the load overhanging joint 2.    

3.3 Sensors and Signals 

 Two types of sensors critical to pneumatic control 

were integrated into the CRC.  Position sensors feedback 

cylinder stroke length to the controller, and pressure 

sensors feedback individual chamber pressures to the 

controller.   

3.3.1 Position Sensors 

 Made by Sentrinsic and developed for the CRC project, 

the non-contacting Coupled-Capacitance Resistive Sensors 

(CCRS) measure piston position within the cylinders.  Each 

cylinder houses its own circuit board, which outputs a 0-

10V signal directly proportional to the distance from the 

piston to the bottom of the cylinder.  This signal is 
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converted by the controller to stroke length of the rod end 

to the absolute minimum stroke length.  The prototype 

cylinders used were designed specifically for the CRC and 

design flaws were rectified by improvements to the overall 

Sentrinsic design. 

3.3.2 Pressure Sensors 

 Small absolute pressure sensors were integrated into 

the endcaps of each cylinder.  These 250 psi MEMS sensors 

can withstand pressures up to three times the 250psi 

rating, and measure just 0.30 in. on each side.  Sensors 

are model 1471-250AW made by Measurement Specialties for 

applications in medical devices and internal remote tire 

pressure measurement. 

 These sensors were installed on custom-made 1/4 NPT 

threaded plugs (Figure 3.10).  The sensor housings were 

then sealed and installed into the aluminum cylinder 

endcaps.   

 

Figure 3.10: Pressure Sensor Assembly 

 

 Each sensor behaves like a strain gauge, measuring 

absolute pressure within each cylinder chamber.  A 5V 
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potential is applied across the bridge, and the resultant 

output voltage is proportional to the absolute pressure 

applied.  The output voltage is very small, rated 16 mV at 

the full 250 psi rating [Datasheet].  With a maximum full-

scale voltage output span of 0.016V at 250psi, the linear 

scale of sensor output was determined as: 

16
0.064 /

250
sensor

mV
k mV psi

psi
= =        (3.4) 

The projected sensor output at the maximum 300psi was 

estimated using this scale value ksensor: 

max
0.064 / 300 19.2

press
V mV psi psi mV−∆ = ⋅ =       (3.5) 

 A safe value of 30mV was chosen for amplifier gain 

selection to allow for any variations in the sensor and any 

DC offsets.  Since the maximum analog input value readable 

by the onboard A/D cards is 10V, the maximum pressure 

signal at 300 psi, when amplified, must remain below or at 

the 10V threshold.  Therefore, the highest desirable gain 

was determined: 
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 To produce a readable signal, the sensor output 

voltages are each amplified through op-amps wired in a 

difference amplifier configuration (Figure 3.11).   
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Figure 3.11: Difference Amplifier for Pressure Sensors 

 

 The op-amps are set to a gain of 340 V/V, with R1 = R3 

= 1.5 kOhm, and R2 = R4 = 510 kOhm.  This gain is calculated 

by applying the simple difference amplifier gain formula 

(Equation 3.7), where Vpress is the voltage difference 

generated directly by the pressure sensor. 
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 Several factors played into the selection of 340V/V as 

the op-amp gain.  Firstly, high impedance was desired to 

prevent any high currents from passing through the pressure 

sensors and op-amps.  Secondly, the 510 kOhm and 1.5 kOhm 

resistors are very common, and large quantities were 

quickly obtained at the ME Electric Shop.  Third, since the 

maximum analog input value readable by the onboard A/D 

cards is 10V, the maximum pressure signal at 300psi, when 

amplified, must remain below or at the 10V threshold.  The 

high-rail op-amp voltage was not yet determined at the time 

of the design, but it was known to be 12-15 VDC since it 
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was to share the excitation voltage line with the position 

sensors.   

3.3.3 Signal Routing Board 

 The op-amps that amplify the pressure sensor signals 

were integrated into a custom printed circuit board (PCB).  

This PCB routes all the control input signals to the valves 

from the main analog output wire harness, and routes all 

the feedback signals to the main analog input harnesses.   

 The two pressure sensor leads from each cylinder 

terminate in an eight-pin MOLEX 90142-0008 header plug.  

Each plug mates into a physically shielded, latched header 

mounted directly to the PCB.  Of the eight wires to each 

cylinder, two carry a +5 VDC supply, two carry a ground 

connection, two carry a pressure signal potential from the 

sensor in the rod-side chamber pb, and two carry a pressure 

signal potential from the base-side chamber pa.   

 Each Texas Instruments LM3900N single-supply op-amp 

chip contains four independent amplifiers.  The board was 

routed such that each chip amplifies four pressure sensors 

for two identical cylinders, i.e. R1a, R1b, L1a, and L1b.  

The high rail of the op-amps is a 15 VDC supply line shared 

with the position sensors.  The pressure sensor amplifier 

output header consists of 12 shielded wires sending the 

high impedance signals directly to the analog inputs of the 

onboard controller.   

 The position sensor signals exit each cylinder through 

a standard mini-USB plug.  Four wires are routed through 
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the shielded USB wire, +15 VDC, +6 VDC, 0-10 VDC signal, 

and ground.  The six USB wires connect to six shielded 

header plugs at the rear of the board.  The MOLEX 50-57-

9404 latching header plugs are intuitively ordered and 

labeled to prevent crossed signals and installation errors.  

The PCB routes each position signal to a shielded six-wire 

header leaving the board through a harness and going 

directly to the analog inputs of the onboard controller.  

Each wire carries the positive signal value, and all 

sensors share a common ground. 

 Valve control inputs enter the signal routing board 

through a 12-wire header directly from the analog outputs 

of the onboard controller.  The six control signals each 

consist of two wires carrying the +/- potential generated 

by the analog output card.  From the header wires, each 

signal pair is routed to the sides of the board where they 

terminate in a 09-91-0400 MOLEX four-pin header.  The valve 

control wires utilize four connections, +24 VDC, +Signal, -

Signal, and ground from the signal board to each valve.   

 A six-wire power header connects the signal board to 

incoming voltage supply.  The board uses +6 VDC, +15 VDC, 

and +24 VDC and a common ground for most components and 

sensors.  The pressure sensor supply is an isolated +5VDC 

and ground connection.  Without this isolated connection, 

the pressure sensors become coupled to the ground (low 

rail) of the op-amps, effectively bypassing the op-amps.   
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 The signal routing board is mounted to a thin aluminum 

back plane via small screws and standoffs.  The aluminum 

back plane is mounted to the spine of the CRC between the 

front and rear shoulder harnesses via two long standoffs.  

This placement centralizes the board, provides clearance 

for the shoulder swing, and allows for easy access and 

troubleshooting. 

3.4 Denavit-Hartenberg Parameters 

 Each leg is modeled as a 3 degree of freedom serial 

robot.  Using such a model, the joint angles can be related 

to the foot endpoint using Denavit-Hartenberg parameters 

(DH parameters) and forward and inverse displacement 

analyses [29].  

3.4.1 Link Lengths and Joint Offsets 

 Due to the nature of the robot design, only three link 

lengths (a1, a2, a3) and one joint offset (d1) must be 

determined for accurate displacement analysis.  Per DH 

practice, the robot was drawn and labeled as illustrated 

below in Figure 3.12. 

 

Figure 3.12: CRC Link Lengths and Joint Offset 
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 Joint offset d1 is the axial distance along Joint 1 

from the base (shoulder) to the axis of Joint 2.  Link 

length a1 is the distance from Joint 1 to Joint 2 along Link 

1.  Link length a2 is the distance from Joint 2 to Joint 3 

along Link 2.  Link length a3 is the distance from Joint 3 

to the endpoint of Link 3.   

 Link lengths and joint offsets were measured 

accurately using the SolidWorks model of the leg as 

described below.  Since all links were fabricated directly 

from these drawings, they are considered accurate 

representations of the physical robot (units are inches). 

 Joint offset d1 was measured from the midpoint of the 

front shoulder clevis to Joint 2 along the shoulder axis 

(Joint 1) (Figure 3.13).  Offset d1 = 1.608 inches. 

 

Figure 3.13: Measurement of Joint Offset d1 

 

 Link length a1 was measured from the center of the 

shoulder pin to the center of the pin of Joint 2.  The link 

length is measured perpendicular to the joint offset d1 as 

shown below in Figure 3.14. Link length a1 = 5.75 inches. 
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Figure 3.14: Measurement of Link Length a1 

 

 Link length a2 was determined by measuring the 

straight-line spacing between Joint 2 and Joint 3 as shown 

below in Figure 3.15. Link length a2 = 6.828 inches. 

 

 

Figure 3.15: Measurement of Link Length a2 

 

 The final link length a3 was measured from the Joint 3 

axis to the end of the manipulator (foot).  The measurement 

is shown below in Figure 3.16 where a3 = 12 inches.  



 36 

 

 

Figure 3.16: Measurement of Link Length a3 

 

3.4.2 Joint Notation 

 Serial joints on each leg are denoted in a manner 

consistent with Denavit-Hartenberg conventions (Figure 

3.17).  Starting at the base of the serial manipulator, the 

first shoulder joint is Joint 1, the second is Joint 2, and 

the final joint is Joint 3.  

 

 

Figure 3.17: Joints of Serial Manipulator 
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 In reference, each joint is preceded by a letter 

denoting the leg to which it belongs.  The right leg 

consists of Joints R1, R2, and R3, and the left leg 

consists of Joints L1, L2, and L3 (Figure 3.18). 

 

 

Figure 3.18: Leg Side Naming Convention 

 

3.4.3 Origins and Coordinates 

 Each link on the serial manipulator uses its own 

coordinate system and axes as per standard DH convention.  

The base of the manipulator is origin O0.  Each successive 

origin is placed on a joint axis with the z coordinate 

along the joint axis and the x coordinate along the link 

length (Figure 3.19). 
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Figure 3.19: DH Origins and Coordinates 

 

3.4.4 Joint Angle Convention 

 As per standard DH convention, each joint angle is 

measured about the joint axis, z, at each origin.  The 

angle θi is measured in a positive direction at the ith 

joint from xi-1 to xi.  In this manner, each joint angle is 

standardized and measurable in its particular coordinate 

system regardless of the joint angles on other links 

(Figure 3.20). 

 

 

Figure 3.20: DH Angle Conventions 
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3.5 Force and Torque Analysis 

 The force generated by a pneumatic actuator is 

converted to joint torque by a fixed lever length from the 

rod end to the joint pin.  Each joint must be capable of 

applying enough torque to enable the robot to complete its 

mission.  Joints R1 and L1 must be able to either pull or 

push the robot on flat terrain and up and down obstacles.  

Joints R2 and L2 must be able to supply torque enough to 

counter the weight of the robot and lift the body from the 

ground.  Joints R3 and L3 must provide stabilizing lateral 

forces through the feet.   

 Joint torques, in this particular system, are 

dependent on the direction in which the actuator is 

applying force.  Since the rod area of one chamber 

decreases the available pressure area, the pull stroke is 

weaker than the push stroke: 

( )

( )
( )

2

2

2 2

2

1.767
4

1.571
4

piston

a a a a a

piston rod

b b b b b

d
F p A p in p

d d
F p A p in p

π

π

 
= = =  

 

 −
 = = =
 
 

  (3.8) 

 With a maximum supply pressure ps of 300 psi, the 

maximum push force is calculated as 

2
300 1.767 530.1

a s a
F p A psi in lbf= = ⋅ =     (3.9) 

and the maximum pull force is calculated as 

2
300 1.571 471.2

b s b
F p A psi in lbf= = ⋅ =    (3.10) 
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3.5.1 Joints R1 and L1 

 Actuators R1 and L1 must provide the torque to Joints 

R1 and L1 to physically pull the robot forward during a 

stance phase.  The basic joint geometry is shown below 

(Figure 3.21). 

 

 

Figure 3.21: Max Moment Arm Joint 1 (Bottom View) 

 

 When Link 1 is perpendicular to Cylinder 1, the 

maximum torque is applied to Joint 1 (Equation 3.11). 

( )1max 1 1 1a a b bF r p A p A rτ = = −    (3.11) 

The maximum joint torque will occur when pressure in 

chamber a pa is maximum, zero pressure in chamber b pb and 

when the moment arm r1 is at its maximum of 1.100 inches. 

( ) ( )2

1max 1
300 1.767 1.100 583.1

a a
p A r psi in in in lbfτ = = ⋅ = ⋅   (3.12) 

 The worst possible case for Joint 1 torque occurs when 

the leg is swung fully forward and Cylinder 1 is pulling at 
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the shortest moment arm during the stance phase (Figure 

3.22). 

 

 

Figure 3.22: Shortest Moment Arm on Joint 1 (Bottom) 

 

 In this common case, the maximum torque applied to the 

manipulator by Joint 1 is 

( ) ( )2

1max 1
300 1.571 0.745 351.1a ap A r psi in in in lbfτ = = ⋅ = ⋅   (3.13) 

The 351.1 in-lbf applied by Joint 1 in this pulling 

scenario must exceed the torque required to overcome 

gravity while the robot is climbing.   

 The actual pulling force applied at the foot of the 

robot is calculated by measuring the distance from the foot 

to Joint 1.  Figure 3.23 shows the worst case, in which the 

foot is at its furthest point from Joint 1, creating the 

largest moment arm. 
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Figure 3.23: Maximum Foot Extension (Bottom) 

 

 The maximum forward pulling force Joint 1 can generate 

in this configuration, assuming zero foot slippage, is  

max
351.1

18.35
19.130

pull

foot

in lbf
F lbf

r in

τ ⋅
= = =    (3.14) 

18.35 lbf maximum pulling force, per leg, at the weakest 

leg configuration is more than sufficient for most 

conceivable mission parameters in which this robot may find 

itself.   

3.5.2 Joints R2 and L2  

 Joint 2 of each leg experiences the most extreme cases 

of torque demand.  During a stance phase, Joint 2 provides 

most of the torque required to suspend the entire weight of 

the robot, and must be able to do so for all foot 

positions.  During swing phases, Joint 2 supports the 

overhanging load of links 2 and 3, providing torque in the 
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opposite direction.  In addition to the load disparity 

between swing and stance phases, the moment arm by which 

Cyl. 2 applies torque changes greatly through the range of 

Joint 2 angles (Figure 3.24).  11.2 degrees is the angular 

offset of the cylinder rod end from the true link ray.  

This offset is necessary to provide the cylinder rod 

clearance over the actual joint pin at full extension.  The 

moment arm calculation (Equation 3.15) uses the distance 

between the joint pin and the rod end pin, 0.975 in. and 

the angular offset.  Note that in this configuration, the 

joint angle will always be negative. 

( )( )2
0.975 sin 180 11.2a in θ= ⋅ ° + − °           (3.15) 
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Figure 3.24: Moment Arm Length vs. Joint 2 Angle 

 

 To produce sufficient joint torque, the force applied 

by Cylinder 2 through the moment arm must be adequate to 
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lift the weight of the robot at the lowest mechanical 

advantage.  The lowest mechanical advantage is experienced 

at a joint angle of -10.3 degrees, or full extension of 

Cylinder 2 (Figure 3.25). 

 

 

Figure 3.25: Cylinder 2 at Full Extension/Lowest Mechanical 

Advantage 

 

 Through Equations 3.16 and 3.17, the moment arm rmin 

and available joint torque τ2max at this extreme 

configuration are calculated based on the joint geometry. 

( )( )min
0.975 sin 180 10.3 11.2 0.357r in in= ⋅ °+ − °− ° =   (3.16) 

2

2max min
300 1.767 0.357 189.2a ap A r psi in in in lbfτ = = ⋅ ⋅ = ⋅    (3.17) 

The torque required to lift the robot depends on the 

distance from the foot to the spine and the moment arm 

created.  The largest moment is produced when Cylinder 3 is 

fully extended and the foot is splayed outward (Figure 

3.26).  
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Figure 3.26: Maximum Moment Arm About Joint 2 

 

 Applying maximum torque against the maximum moment arm 

of 12.70 inches, the maximum lifting force per leg in this 

extreme case is evaluated in Equation 3.18. 

max

max

189.2
14.9

12.70
lift

in lbf
F lbf

a in

τ ⋅
= = =    (3.18) 

 Nearly 15 lbf of lifting force per leg at the 

configuration with the least mechanical advantage is well 

within range of required forces for effective operation of 

the robot, assuming the robot weighs less than 90 lbf.   

 The most mechanical advantage occurs when the joint 

angle is at -78.8 degrees (-90 + 11.2 degrees) and the 

actuator applies force to the full 0.975 inch moment arm 

about Joint 2 (Figure 3.27).   
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Figure 3.27: Joint 2 Largest Moment Arm 

 

 The maximum joint torque generated at Joint 2 is 

therefore 516.8 in-lbf (Equation 3.19). 

2

2max max
300 1.767 0.975 516.8a ap A r psi in in in lbfτ = = ⋅ ⋅ = ⋅    (3.19) 

 The maximum lifting force per leg is evaluated while 

Joint 2 is at -78.7 degrees and Cylinder 3 is fully 

retracted, producing the smallest possible moment arm about 

Joint 2 at the highest force configuration (Figure 3.28). 

 

 

Figure 3.28: Shortest Moment Arm About Joint 2 at Highest 

Force Configuration 
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 The moment arm about Joint 2, 12.77 inches, combined 

with the highest possible joint torque, each leg can 

produce a respectable downward lifting force at the foot of 

40.5 lbf (Equation 3.20). 

2max

min

516.8
40.5

12.77
lift

in lbf
F lbf

r in

τ ⋅
= = =      (3.20) 

 

 Multiplied by six legs, this highest possible lifting 

force will allow the robot to thrust its body upwards with 

almost 250 lbf of force.  Such high forces could be useful 

for lifting fallen objects off a pinned victim or carrying 

extra tools and fuel into a mission.   

3.5.3 Joints R3 and L3 

 Joint 3 on each leg produces torque to provide lateral 

stability and thrust relative to the robot spine.  The 

distance between Joint 3 and the point at which the 

actuator applies force is variable.  By loosening the leg 

rod clamps and sliding the clamps along the leg rod, the 

moment arm can be adjusted.  For this project, the moment 

arm was adjusted to bring Cylinder 3 as close to Link 3 as 

possible without inducing mechanical interferences.  This 

configuration reduces the amount of available lateral force 

at the foot, but provides the best range of motion for Link 

3.  The overall length of Link 3 is also adjustable by 

sliding the leg rod up through both rod clamps.  Figure 

3.29 shows the configuration used throughout this project 

and experiments.  
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Figure 3.29: Link 3 Configuration 

 

 As with Joint 1, Joint 3 is at its weakest 

configuration when Cylinder 3 is fully extended and 

pulling, Joint 3 at 38.8 degrees.  The moment arm is 

shortest in this scenario at 1.10 inches (Figure 3.30). 

 

 

Figure 3.30: Shortest Moment Arm Aout Joint 3 

 

 The maximum torque available at Joint 3 in this 

configuration is 518.4 in-lbf (Equation 3.21) 

2

3max 3
300 1.571 1.10 518.4b bp A r psi in in in lbfτ = = ⋅ ⋅ = ⋅   (3.21) 
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 The largest moment about Joint 3 applied by Link 3 is 

experienced when Joint 3 is perpendicular to the direction 

of the lateral force, employing the full length of Link 3 

as the moment arm (Figure 3.31). 

   

 

Figure 3.31: Largest Moment Arm about Joint 3 

 

The 12.0 inch moment arm about Joint 3 will, in the most 

extreme case, apply 43.2 lbf of lateral pulling force 

(Equation 3.22). 

3max

3max

518.4
43.2

12.0
pull

in lbf
F lbf

r in

τ ⋅
= = =      (3.22) 

 This amount of lateral force application in the most 

extreme case should be more than sufficient to stabilize, 

maneuver and manipulate the environment.  
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CHAPTER 4 

TRANSFORMATIONS 

 

 Total system control is attained by individually 

controlling stroke lengths of actuators by sending control 

input signals to the proportional pneumatic spool valves.  

Input signals are generated from transforming operator hand 

motions into three-dimensional command vectors which are 

transformed into stroke length commands. 

 Each control time-step, the actual leg position is 

calculated and compared to the commanded position.  The 

error between the two is displayed to the operator as a 

haptic force in the direction of the position error.   

4.1 System Layout 

 The robot control system consists of three computers 

networked together via User Datagram Protocol (UDP).  The 

three computers are an onboard PC104+ form-factor computer, 

a MATLAB host computer, and a computer at the operator 

workstation receiving PHANToM input commands and sending 

the data over UDP (Figure 4.1). 
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Figure 4.1: Computer Network 

 

4.1.1 PHANToM PC 

 The PHANToM PC is a standard Dell Workstation that 

runs only Windows XP and C++ code for PHANToM control 

(Appendix C).  PHANToM inputs are sent via UDP to the 

MATLAB host PC.  PHANToM position values are also returned 

to the PHANToM PC via UDP from calculations performed on 

the robot.  The C++ code running on the PHANToM PC 

calculates the required force to display to the user and 

sends the data to the PHANToMs.   

 The PHANToM PC also records input trajectories for 

storage, smoothing and later use with the gait coordinator.   

4.1.2 MATLAB Host PC 

 The MATLAB Host PC acts as both a server and a high-

end workstation.  Simulink control diagrams are compiled 

and linked on the MATLAB Host and uploaded to the onboard 

xPC Target computer.  The Host PC runs a high-end dual core 

Intel CPU, and has 2 GB RAM for rapid compilation of large 

Simulink control diagrams.   
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 The MATLAB Host PC acts as a local server by 

forwarding the UDP packets to and from the PHANToM PC to 

the onboard PC104+ target PC.  The packets are sent through 

a pair of Netgear WNHDE111 802.11n wireless bridges.  The 

wireless bridges allow the robot to be untethered from the 

server and code uploader.   

4.1.3 Target PC 

 The Target PC is a small, low-power computer housed 

onboard the robot itself.  This computer is a PC104+ form-

factor stack of 3 boards housed inside an aluminum box 

mounted to the robot spine.  The Target PC is used solely 

for running the real-time controller compiled and uploaded 

by the Host PC.  The real-time controller runs directly on 

the Target PC CPU at 1ms time-steps (1 kHz).   

 The three boards of the Target PC are a main CPU 

module, an analog to digital card (ADC), and a digital to 

analog card (DAC).  Each board fits the standard PC104 

standard dimensions of 4.6 in. x 3.8 in.  The cards stack 

together via an 8-bit ISA bus header, a 16-bit ISA bus 

header, and a 32-bit PCI bus header.  The three busses 

allow for interoperability between manufacturers and 

assembly standards.   

 The CPU board is an Arbor Computing Em104P-i8523 

module with an Intel Celeron 600MHz CPU and a 512MB SO-DIMM 

RAM chip.  The onboard Ethernet chipset is Intel 82562ET, 

which is compatible with the Simulink xPC Target upload 

protocol.   
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 The ADC card, under the CPU board, is a Diamond 

Systems DMM-32X-AT card.  The DMM-32X-AT reads up to 32 

single-ended analog inputs, or 16 differential inputs.  The 

card is configured to base address 0x300 and reads single-

ended inputs from 0-10V.   

 The DAC card, under the ADC at the bottom of the 

stack, is a Diamond Systems RMM-1612-XT card.  The RMM-

1612-XT outputs up to 16 12-bit analog signals at 0-10V.  

The card is configured to a base address of 0x280.   

4.2 Control Input Transformation 

 The operator input to the CRC system is a three-

dimensional vector generated by each PHANToM haptic device.  

The vector, in input task space (x,y,z) is converted to 

joint space (θ1, θ2, θ3) by an inverse displacement 

algorithm evaluating joint angles each time-step.   

4.2.1 Input Task Space to Robot Space 

 The operator physically commands foot position of each 

leg through two PHANToM haptic devices.  Each PHANToM has 

three degrees of freedom and sends data out in the form of 

a 3 dimensional position vector each time-step (1 ms).  

Each PHANToM output is a vector in millimeters from the 

PHANToM origin (set arbitrarily when the device is 

initialized) to the device endpoint.  The coordinates of 

the input space to which the vector is referenced are shown 

below in Figure 4.2.  Looking at the front of the PHANToM 

device, x is to the right, y is up, and z is inward. 



 54 

 

 

Figure 4.2: PHANToM Coordinates 

 

 The input vector is scaled, orthogonally transformed 

and then rotated by 30 degrees to match the downward angle 

of the shoulders on the robot.   

 Using standard Denavit-Hartenberg coordinates for the 

base of the leg, the PHANToM input vector coordinates must 

be orthogonally transformed to properly correspond to the 

leg coordinates (Figure 4.3). 

 

 

Figure 4.3: Left PHANToM Input and Leg Coordinates 

 

 The coordinate transform matrix is applied to the 

PHANToM input vector pinput to transform it into workspace 

coordinates pleft (Equation 4.1). 



 55 

0 0 1
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   − 
    

= −    
        

        (4.1) 

 The input vector in the leg workspace pleft is then 

rotated +30 degrees about the y-axis to properly match the 

downward leg angle yielding the rotated vector prot 

(Equation 4.2), (Figure 4.4). 

 

 

Figure 4.4: Rotated Input Vector 
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      (4.2) 

 Finally, the new transformed input vector prot is 

converted from mm to inches and scaled up by a factor of 2 

so that the physical PHANToM input workspace will encompass 

all areas within the leg workspace (Equation 4.3). 

0

0 0

0

1
2

25.4

com rot

com com rot

com rot

x x
in

p y y
mm

z z

   
    

= =      
      

   (4.3) 
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 The same procedure is performed on the right leg to 

transform the PHANToM input vector into a usable vector in 

the leg workspace.  First the PHANToM input vector 

coordinates are orthogonally transformed to match the 

coordinates of the leg workspace (Figure 4.5), (Equation 

4.4). 

 

 

Figure 4.5: Right PHANToM Input and Leg Coordinates 
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right input
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= −    
        

    (4.4) 

 The +30 degree rotation about the y-axis and scaling 

for the right leg is identical to the procedure performed 

on the left.   

 The complete matrix Aphan-leg transforming the PHANToM 

input vector to the one which is used for joint angle 

evaluation is shown below in Equation 4.5. 

0 0 1 cos30 0 sin 30 0.039 0 0.068
2

1 0 0 0 1 0 0.068 0 0.039
25.4

0 1 0 sin 30 0 cos30 0 0.079 0

phan legA −

− − − −     
       

= − = −        
          

(4.5) 

4.2.2 Leg Space to Joint Space 
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 The transformed and rotated input vector 0pcom relates 

commanded foot position from an arbitrary origin within the 

leg workspace.  Joint angle calculation, however, requires 

a commanded position vector from the robot base, or the 

base origin of the D-H model 0p04.  Since the origin in the 

leg workspace is arbitrary, it is set at a point where the 

PHANToM workspace is able to reach every point in the leg 

workspace without reaching a physical motion limit.  

 Tests revealed that a satisfactory origin O placement 

from the leg origin O0 (base) is 25 inches along the x-axis 

and -10 inches along the z axis, creating vector 0poffset 

(Figure 4.6). 

 

 

Figure 4.6:  Origin O Placement Relative to Leg Base 

 

 Knowing the commanded foot position 0pcom and the origin 

offset vector 0poffset, the vector from the base to the foot 

0p04 can be found by simple vector addition (Equation 4.6). 

0 04 0 0com com offset
p p p= +     (4.6) 
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 The vector 0p04 is used for directly evaluating the 

joint angles necessary to achieve the desired endpoint 

position.  With this 3 degree of freedom serial 

manipulator, 4 solutions emerge from the inverse 

displacement algorithm.  Two solutions emerge for Joint 1, 

and two solutions emerge for the evaluation of Joint 3 from 

each solution of Joint 1.   

 The inverse displacement analysis herein is based on 

the generalized method of analyzing the first 3 joints of a 

Puma robot [29] since both the Puma and the CRC legs have 

very similar joint structures.   

 Only one set of angle solutions is a possible 

configuration for this robot, alleviating the need to solve 

for multiple joint solutions simultaneously. 

 The inverse displacement algorithm functions are drawn 

in a Simulink diagram by their orders of operations through 

which each solution is computed.  The Simulink diagrams are 

located in Appendix B.  Each 1 ms time-step, the joint 

angle solutions are updated based on the new control input 

received via UDP from the PHANToM controllers.   

 Two of these algorithms run simultaneously, one for 

each leg.  Since both legs are identical and have identical 

D-H parameters and coordinates, both algorithms are 

identical, and denoted by Joint 1, Joint 2, Joint 3 rather 

than the leg specific notation R1, R2, R3, etc. 
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 Linear Trigonometric Equations are solved throughout 

the inverse displacement algorithm.  The solution method 

taken from [29] is found in Appendix A.  

4.2.2.1 Joint 1 

 The shoulder pivot angle of Joint 1 is solved from the 

endpoint vector 0p04 first by using the vector 1p14, from O1 

to O4 at the endpoint in coordinate frame 1 (Equation 4.7).   
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x y
x

y y x

z z

x

y

z

p pp

p p p

p p d

p a a a

p d d

a ap

θ θ

θ θ

θ θ θ θ θ

θ θ θ θ θ

   +
   

= −   
   

−      

  + + − 
   

= +   
   − − −   

   (4.7) 

 Since the middle term, (1p14)y contains only the 

variable for Joint 1 as a linear trigonometric equation and 

0p04, this can be easily rearranged and solved for θ1 

(Equation 4.8). 

( ) ( )0 04 1 0 04 1 2 3
cos sin 0

y x
p p d dθ θ− − − =   (4.8) 

The linear trigonometric equation solution yields two sine 

and cosine pairs (Equation 4.9). 

( )

( )

2 2 2

2 2

2 2 2

2 2

cos

sin

ad b a b d

a b

bd b a b d

a b

θ

θ

± + −
=

+

± + −
=

+

∓

∓

     (4.9) 

Where a, b, and d are the sine and cosine coefficients from 

Equation 4.8 (Equation 4.10). 
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( )

( )

0 04

0 04

2 3
0

y

y

a p

b p

d d d

=

= −

= + =

    (4.10) 

 Rewriting and simplifying Equation 4.9, the sine and 

cosine pairs are solved for the positive solution, 

corresponding to the first angle solution for Joint 1: 

( ) ( )

( ) ( )

( )
( )

( ) ( )

0 04

1
2 2 2 2

0 04 0 04

0 04

1
2 2 2 2

0 04 0 04

cos

sin

x

y x

y

y x

pb

a b p p

pa

a b p p

θ

θ

+

+

−
= =

+ +

= =
+ + −

  (4.11) 

 The ATAN2 function of MATLAB is used with the sine and 

cosine solutions to θ1.  This finds the correct angle 

corresponding to the sine and cosine values while 

considering signs of both (Equation 4.12). 

( )1 1 1
2 sin ,cosATANθ θ θ+ + +=    (4.12) 

 In the linear trigonometric equation, the d term is 

zero, this implies that the robot is in a displacement 

singularity at Joint 1.  This scenario would occur when the 

wrist, or in this case, foot, passes over or under the axis 

of Joint 1.  This event physically cannot occur on this 

particular serial robot. 

 Because of this serial link configuration and its 

absence of joint offsets d2 and d3, the evaluation of Joint 

1 can be greatly simplified (Figure 4.7). 
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Figure 4.7: Top View of Joint 1, d2 and d3 = 0 

 

 With this configuration, θ1 can be simply expressed as 

the inverse tangent of the x and y components of the input 

vector 0p04 (Equation 4.13). 

( ) ( )( )1 0 04 0 04
2 ,

y x
ATAN p pθ =     (4.13) 

4.2.2.2 Joint 3 

 Once a single solution for Joint 1 has been evaluated, 

the angle is used in the evaluation of Joint 3.  Since only 

one solution from Joint 1 is chosen, (the other is a 

physically impossible configuration), only two possible 

solutions for Joint 3 emerge.  Only one solution for Joint 

3 will be chosen. 

 Initially, to solve for θ3, the vector 1p14 must be 

found from the input vector 0p04.  Vector 1p14 is the vector 

from O1 to O4 as seen from the reference frame of the 

coordinates of O1 (Figure 4.8). 
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Figure 4.8: Vectors Needed for Joint 3 Evaluation 

   

 Vector 1p14 can be evaluated directly from Equation 4.7 

above: 

( )

( )

( )

( ) ( )

( ) ( )

( )

0 04 1 0 04 1
1 14

1 14 0 04 1 0 04 1

1 14 0 04 1

cos sin

cos sin

x y
x

y y x

z z

p pp

p p p

p p d

θ θ

θ θ

   +
   

= −   
   

−      

    (4.14) 

 The vector 1p12 is expressed in terms of the D-H 

values: 

1 12 1 1 2 2 1 1
p a x d y a x= + =         (4.15) 

Vector addition shows that 

1 14 1 12 1 24
p p p= +       (4.16) 

Rewriting 4.16, 1p24 can be expressed as 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 24 1 14 1 12 1 14 1 1 14

1 24 1 14 1 12 1 14 1 14

1 24 1 14 1 12 1 14 1 14

5.75
x x x x x

y y y y y

z z z z z

p p p p a p in

p p p p p

p p p p p

         − −
         

= − = =         
         
                  

 (4.17) 

 Substituting 1p14 from Equation 4.7 into Equation 4.17 

yields 
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( )

( )

( )

( )

( )

( )

( )

( )

( )

1 24 1 2 2 3 2 3 2 3 1

1 24 2 3

2 2 3 2 3 2 3
1 24

1 24 2 2 3 2 3 2 3

1 24

2 2 3 2 3 2
1 24

cos cos cos sin sin

cos cos sin sin cos

cos cos cos sin sin

0

cos cos sin sin c

x

y

z

x

y

z

p a a a a

p d d

a ap

p a a

p

a ap

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

  + + − − 
   

= +   
   − − +   

  + −
 

= 
  − − +  

( )3
osθ

 
 
 
  

 (4.18) 

 The unknown θ2 term can be eliminated by squaring and 

summing the x and z components of 1p24 (Equation 4.19). 

( ) ( )
2 22 2

2 3 3 2 3 1 24 1 24
2 cos 0

x z
a a a a p pθ + + − − =    (4.19) 

 Equation 4.19 is another linear trigonometric equation 

with coefficients 

( ) ( )( )

2 3

2 22 2

2 3 1 24 1 24

2

0

x z

a a a

b

d a a p p

=

=

= + − −

   (4.20) 

 Again, this will yield two sine-cosine pairs from 

which two angle solutions emerge.  Results have shown that 

the second solution is the one which yields an achievable 

joint angle command.  The coefficients from Equation 4.20 

above are then substituted into Equation 4.9 for evaluation 

and simplified: 

3 2

2 2 2 2

3 2

0
cos

0
sin

ad d

a a

a a d a d

a a

θ

θ

±

±

= =

± − ± −
= =

∓

  (4.21) 



 64 

( ) ( )( )

( ) ( ) ( )( )

2 22

1 24 1 24

3 2

22 2 22 2

1 24 1 24

3 2

190.62
cos

163.87

163.87 190.62

sin
163.87

x z

x z

in p p

in

in in p p

in

θ

θ

−

−

− −
=

− − − −
=

  (4.22) 

 As with the Joint 1 solution, the two sine-cosine 

values are input into the ATAN2 MATLAB function to yield 

one corresponding joint angle (Equation 4.23). 

( )3 3 3
2 sin ,cosATANθ θ θ− −=     (4.23) 

4.2.2.3 Joint 2 

 Once joint angles θ1 and θ3 have been evaluated from 

the PHANToM input vector, Joint 2 is solved based on the 

solutions for Joint 1 and Joint 3. 

 First, the x and z components of Equation 4.18 are 

rearranged into matrix form, pulling out the unknown θ2 

term: 

( )

( )
1 24 2 3 3 3 3 2

1 24 2 3 3 3 3 2

cos sin cos

sin cos sin

x

z

p a a a

p a a a

θ θ θ

θ θ θ

  + −   
=     

− − −    
   (4.24) 

Solving for the sine and cosine pair yields two equations: 
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( ) ( ) ( )( )

( )
( )( ) ( )( )

( )
( )( ) ( ) ( )

( )

( ) ( ) ( )( )

2 3 3 1 24 3 3 1 24

2 2 2

2 3 3 2 3

2 3 3 1 24 3 3 1 24

2 2 2

2 3 3 2 3

3 1 24 3 1 24

2

3

3 1 24 3 1 24

2

cos sin
cos

2 cos

cos sin
sin

2 cos

6.828 12cos 12sin
cos

163.87cos 190.62

6.828 12cos 12sin
sin

x z

z x

x z

z

a a p a p

a a a a

a a p a p

a a a a

p p

p p

θ θ
θ

θ

θ θ
θ

θ

θ θ
θ

θ

θ θ
θ

− + +
=

− + +

+ +
=

− + +

− + +
=

− +

+ +
=

( )3
163.87cos 190.62

x

θ− +

 (4.25) 

 The sine-cosine pair is again input into an ATAN2 

MATLAB function to yield one value for theta2 (Equation 

4.26). 

( )2 2 2
2 sin ,cosATANθ θ θ=     (4.26) 

4.2.3 Joint Space to Cylinder Space 

 Once joint angles are calculated, the information is 

converted to a directly controllable physical parameter, 

cylinder stroke length.  With each individual joint angle 

command related to only one actuator, only one conversion 

per joint angle command is made each time-step.   

 A cosine law function is used for determining the 

required cylinder stroke length necessary to achieve the 

commanded joint angle (Figure 4.9), (Equation 4.27). 
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Figure 4.9: Law of Cosines Configuration 

 

2 2 2
2 cosl r x rx θ= + −     (4.27) 

 With this cosine caw configuration, l is the total 

length of the cylinder and stroke, x is the distance from 

the cylinder base to the joint pin, and r is the distance 

from rod end pin to the joint pin.   

 Cylinders L1 and R1 are described separately because 

as L1 retracts, the joint angle increases positively, and 

as R1 retracts, the joint angle grows negatively (Figure 

4.10). 

 

 

Figure 4.10: Top View of Joints R1 and L1 Coordinates and 

Angle Directions 
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 The maximum stroke length of the Sentrinsic pneumatic 

cylinders made for the CRC is 1.4 inches.   

4.2.3.1 Cylinder L1 

 Cylinder L1 moves Joint 1 from approximately -45 

degrees to +45 degrees.  To apply the Law of Cosines to the 

joint geometry, the static cylinder length is subtracted 

from the dimension l to isolate the exact stroke length 

(Figure 4.11). 

 

 

Figure 4.11: Joint L1 Link Geometry 

 

 The Cosine Law equation is used for evaluating the 

interior angle opposite the cylinder while the commanded 

joint angle is complementary (Figure 4.12). 
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Figure 4.12: Joint L1 Cosine Law Geometry 

 

 Solving for the stroke length ∆l, the cosine law 

equation for Joint 1 is written as: 

( )

( ) ( )

( )

2 2 2

1

2 2 2 2

1 1

2 2

1

1

cos

7.45 1.21 60.92 8.59 cos 90

62.13 8.59 cos 90

7.45

L

L L

L

L

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° −

+ ⋅ ° −
∆ =

(4.28) 

4.2.3.2 Cylinder R1 

 The stroke length for Cylinder R1 is calculated from 

the commanded joint angle θ1 similarly to L1, but the joint 

angle geometry is opposite (Figure 4.13). 
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Figure 4.13: Joint R1 Cosine Law Geometry 

 

 Aside from the opposite coordinates relative to Joint 

L1, the physical dimensions of the parts are identical.  θ1 

is calculated as a partial angle of the interior angle Φ 

(Equation 4.29).   

( )

( ) ( )

( )

2 2 2

1

2 2 2 2

1 1

2 2

1

1

cos

7.45 1.21 60.92 8.59 cos 90

62.13 8.59 cos 90

7.45

R

R R

R

R

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° +

+ ⋅ ° +
∆ =

 (4.29) 

4.3.2.3 Cylinder 2 

 Joint 2 on each leg has the same coordinate system 

whereas when the actuator retracts, the joint angle grows 

negatively, and as it extends, the joint angle increases 

positively.  The geometry of the joint-actuator triangles 

requires careful analysis of the mechanism to isolate the 
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interior angle Φ (needed for stroke length calculation) 

from the commanded joint angle θ2 (Figure 4.14).   

 

 

Figure 4.14: Joint 2 Angle Relationships 

 

 While Φ is the angle needed to calculate stroke 

length, only θ2 is known.  The 11.2 degree static offset, 

mentioned in 3.5.2 completes the three-angle supplement 

(Equation 4.30). 

2 2
180 11.2 168.8φ θ θ= ° − ° + = ° +      (4.30) 

 The physical dimensions of the joint geometry are used 

in the same manner as for Joints L1 and R1 (Figure 4.15). 
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Figure 4.15: Joint 2 Link Geometry 

 

 With joint angle and dimension values known, the 

cosine law equation can be written and arranged to express 

Cylinder 2 stroke length as a function of commanded D-H 

joint angle. 

( )

( ) ( )

( )

2 2 2

2

2 2 2 2

2 2

2 2

2

2

cos

7.45 0.95 63.57 7.77 cos 168.8

64.52 7.77 cos 168.8

7.45

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° +

+ ⋅ ° +
∆ =

 (4.31) 

4.2.3.4 Cylinder 3 

 Cylinder 3 stroke length on either leg uses an 

identical cosine law equation.  Again, careful analysis of 

the joint angle geometry is required to properly isolate Φ 

and θ3 (Figure 4.16). 
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Figure 4.16: Joint 3 Angle Relationships 

 

 As with Joint 2, the Joint 3 angles contain a static 

angle offset due to the lateral distance between the 

physical joint pin and the foot.  The relationship between 

the cosine law interior angle Φ and the commanded joint 

angle θ3 is  

3 3
180 4.8 175.2φ θ θ= ° − ° − = ° −    (4.32) 

 The physical dimensions of the joint geometry are used 

in the same manner as for Joints L1 and R1 (Figure 4.17). 

 

 

Figure 4.17: Joint 3 Link Geometry 
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 With joint angle and dimension values known, the 

cosine law equation can be written and arranged to express 

Cylinder 3 stroke length as a function of commanded D-H 

joint angle. 

( )

( ) ( )

( )

2 2 2

3

2 2 2 2

3 3

2 2

3

3

cos

7.51 2.25 63.65 11.97 cos 175.2

65.90 11.97 cos 175.2

7.51

l l r x rx

in l in in in

in in
l

in

φ

θ

θ

+ ∆ = + +

+ ∆ = + + ⋅ ° −

+ ⋅ ° −
∆ =

 (4.33) 

4.2.4 Cylinder Stroke Length Conversions 

 Each commanded stroke length must be converted from a 

value of 0-1.4 inches to a standard range for control.  0-

10V was chosen for the conversion because the position 

sensor output is within the 0-10V range (Equation 4.34) 

10

1.4
command stroke

V
x x

in
=     (4.34) 

4.3 POSITION OUTPUT TRANSFORMATION 

 During real-time operator control of the robot legs, 

the operator must be made aware of the environment through 

haptic feedback.  Since the operator is using a three-

dimensional position vector as an input to the system the 

system needs to responds back with a similar vector.  This 

response vector indicates the current foot position, so 

that any position error is relayed to the operator via a 

directional haptic spring force.  

 The evaluation of the actual position vector pcom is 

completed by analyzing the stroke length output from the 
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pneumatic cylinders and processing the data through a 

forward displacement algorithm to determine the position 

vector based on joint angle input.  The same four steps 

performed in 4.3 Control Input Transformation are performed 

inversely to produce a position vector in the operator 

input space from stroke length voltage data.  

4.3.1 Cylinder Stroke Length Conversion 

 While reliable and extremely effective, the Sentrinsic 

cylinders equipped on the CRC are each electronically 

different.  Each cylinder has a different range of output 

voltage for a full stroke.  Occasionally the ranges drift 

and shift and the controller responsible for signal 

conversion must be recalibrated approximately every two 

weeks.  Once each position sensor maximum and minimum 

voltage is known, the conversion from voltage signal to 

stroke length is performed (Equation 4.35). 

( )
( )

min

max min

1.4
signal

stroke

x V
x in

V V

−
=

−
    (4.35) 

 Each position sensor is measured with a voltmeter at 

full stroke and full retraction and the corresponding Vmax 

and Vmin values are entered into a MATLAB array read by the 

Simulink diagram for each sensor. 

 The output, then, xstroke is the same range for each 

sensor, 0-1.4 inches.   

4.3.2 Cylinder Space to Joint Space 
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 With each actual cylinder stroke length known, the 

actual joint angles must be evaluated as an input into the 

forward displacement algorithm.  Similar to the Joint Space 

to Cylinder Space method (4.2.3), Joints R1 and L1 are 

calculated separately, while Joints 2 and 3 on each leg are 

identical. 

 Each cylinder stroke length is used in a cosine law 

formula to evaluate the interior angle of the triangle made 

by the joint geometry (Equation 4.36).  The joint angle is 

evaluated from the cosine law value. 

( )2 2 2

2 2 2

1

cos

cos

l r x rx

l r x

rx

φ

φ−

= + +

 − −
= 

 

      (4.36) 

4.3.2.1 Cylinder L1 

 Using Figures 4.11 and 4.12 for evaluation of the 

joint angle geometry, θL1 is found by rewriting Equation 

4.36: 

( )

( )

2 2 2

11

1

2 2

11

1 2

90 90 cos

7.45 62.13
90 cos

8.59

L

L

L

L

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= ° − = ° −  

 
 

 + ∆ −
= ° −  

 
 

    (4.37) 

4.3.2.2 Cylinder R1 

 Using Figures 4.11 and 4.13 for evaluation of the 

joint angle geometry, θR1 is found by rewriting Equation 

4.36: 
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( )

( )

2 2 2

11

1

2 2

11

1 2

90 cos 90

7.45 62.13
cos 90

8.59

R

R

R

R

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − ° = − ° 

 
 

 + ∆ −
= − ° 

 
 

   (4.38) 

4.3.2.3 Cylinder 2 

 Using Figures 4.14 and 4.15 for evaluation of the 

joint angle geometry, θ2 for either leg is found by 

rewriting Equation 4.36: 

( )

( )

2 2 2

21

2

2 2

21

2 2

168.8 cos 168.8

7.45 64.52
cos 168.8

7.77

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − ° = − ° 

 
 

 + ∆ −
= − ° 

 
 

   (4.39) 

4.3.2.4 Cylinder 3 

 Using Figures 4.16 and 4.17 for evaluation of the 

joint angle geometry, θ3 for either leg is found by 

rewriting Equation 4.36: 

( )

( )

2 2 2

31

3

2 2

31

3 2

175.2 175.2 cos

7.51 65.90
175.2 cos

11.97

l l r x

rx

l in

in

θ φ

θ

−

−

 + ∆ − −
= − = ° −  

 
 

 + ∆ −
= ° −  

 
 

   (4.40) 

4.3.3 Joint Space to Leg Space 

 Once each actual joint angle is known, the forward 

displacement algorithm computes the vector from the 

manipulator base to the foot from this data.  The vector 



 77 

describes the foot position relative to the spine before it 

is rotated, transformed, scaled and relayed to the PHANToMs 

for operator feedback. 

 First, the Denavit-Hartenberg homogeneous transform 

matrix i-1,iB is defined and used to transform the 

coordinates and positions of one link to another, starting 

from the base link to the next, serially (Equation 4.41). 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 0 1,

1 1 1 0 1,

1,

1 1 1 0 1,

0 0 0 1

i i i i i i i ix x x x

i i i i i i i iy y y y
i i

i i i i i i i iz z z z

x y z p

x y z p
B

x y z p

− − − −

− − − −

−

− − − −

 
 
 

=  
 
 
 

  (4.41) 

 The D-H homogenous transform matrix is a partitioned 

matrix.  The 3x3 section is the projection of coordinates Oi 

on coordinates Oi-1.  The 3x1 matrix is the vector viewed 

from reference frame O0 from Oi-1 to Oi. 

 Once each homogeneous transform matrix has been 

calculated in terms of θ1, θ2, and θ3, the final transform 

matrix 04B is calculated (Equation 4.42). 

( )( )( )( )04 01 12 23 34
B B B B B=    (4.42) 

 The first transformation matrix 01B is evaluated by 

analyzing the relationship between O1 and O0 (Figure 4.18). 
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Figure 4.18: Projection of O1 onto O0 

   

Using Figure 4.18, the homogeneous transform matrix 01B can 

be evaluated (Equation 4.43). 

1 1

1 1

01

1

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1

B
d

θ θ

θ θ

− 
 
 =
 
 
 

   (4.43) 

 Next, the transform matrix from O1 to O2 is evaluated 

using Figure 4.19 (Equation 4.44). 

 

 

Figure 4.19: Transformation from O1 to O2 
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2 2 1

12

2 2

cos sin 0

0 0 1 0

sin cos 0 0

0 0 0 1

a

B

θ θ

θ θ

− 
 
 =
 − −
 
 

   (4.44) 

 Next, the transform matrix from O2 to O3 is evaluated 

using Figure 4.20 (Equation 4.45). 

 

 

Figure 4.20: Transformation from O2 to O3 

 

3 3 2

3 3

23

cos sin 0

sin cos 0 0

0 0 1 0

0 0 0 1

a

B

θ θ

θ θ

− 
 
 =
 
 
 

   (4.45) 

Finally, the homogenous transform matrix from O3 to O4 is 

evaluated using Figure 4.21 (Equation 4.46). 

 

 

Figure 4.21: Transformation from O3 to O4 
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3

34

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a

B

 
 
 =
 
 
 

    (4.46) 

 With each transformation matrix now in terms of the D-

H parameters and standard joint angles, the total 

transformation matrix 04B is calculated.  Since only the 

vector op04 is of consequence, its result is shown below 

(Equation 4.47). 

( )( )( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

04 01 12 23 34

1 2 3 1 2 3 3 1 2 2 1 1

0 04 1 2 3 1 2 3 3 1 2 2 1 1

2 3 2 3 3 2 2 1

cos cos cos cos sin sin cos cos cos

sin cos cos sin sin sin sin cos sin

sin cos cos sin sin

B B B B B

a a a

p a a a

a a d

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

=

− + + 
 

= − + + 
 − − − + 

(4.47) 

 The foot position vector 0p04 is calculated each time-

step from the stroke length data received by the analog 

card. 

4.3.4 Leg Space to Input Task Space 

 The foot position vector 0p04act is calculated in 

reference to the coordinates of the base joint of the 

robot, which are rotated downward at 30 degrees.  To send a 

meaningful vector to the PHANToM devices, 0p04act must be 

rotated and transformed to match the coordinates and scale 

of the input vector 0p04com. 

 The foot position vector 0p04act must first be moved 

from the serial manipulator base origin O0 to the arbitrary 

origin O set in the leg task space in 4.2.2 (Figure 4.22). 
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Figure 4.22: Leg Origin Placement 

 

Again, simple vector addition yields the vector 0pact 

(Equation 4.48). 

0 0 04 0act act offsetp p p= −    (4.48) 

 With 0pact known, the inverse procedure to the 

transformation described in Equation 4.5 of 4.2.1 is 

performed to transform 0pact into pphan_act(Equation 4.49). 

( )

( )

( )
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0
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0 0 12.66

11.07 6.35 0

act x
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p

p A p p

p

−

−

 − − 
  

= =   
  −    

 (4.49) 

4.4 Conclusions 

 The PC104 CPU performing the lengthy real-time 

coordinate transforms and displacement analyses computes 

the results in less than 30% of each control time-step.  

The forward displacement algorithm yields accurate results 

for the foot position based on the stroke length inputs.  

Accuracy was verified by physically measuring the joint 

angles and foot position and comparing to the displayed 
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results of the algorithm.  The inverse displacement 

algorithm, updated every 1 ms, outputs accurate stroke 

length commands.  This accuracy and coordination can be 

verified visually by powering both the leg sensors and the 

PHANToM controllers.  The legs are able to back-drive the 

PHANToMs due to the bilateral teleoperation condition of 

the system.  When the foot is moved in a straight line, 

relative to the spine (multiple joints moving), the PHANToM 

controller follows in a straight line.  When the entire 

system is powered, the PHANToM can be moved in a straight 

line, and the foot position will follow to the best ability 

of the controller.   
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CHAPTER 5 

LEG CONTROL 

 

 Each leg controller uses the transformations discussed 

in Chapter 4 to apply a control effort to each individual 

pneumatic cylinder.  Each actuator is position controlled 

independently via a PD controller with added force control 

from a differential pressure gain scheduler.   

 The control laws for each cylinder are essentially 

identical, save for different gain values.  The control 

inputs are 0-10V signals to each valve.  The 0-10V analog 

signal corresponds to the valve spool position.  A 5V 

signal commands the spool to the center position, blocking 

all flow to either cylinder chamber (Figure 5.1). 

 

 

Figure 5.1: Spool Position and Cylinder Relationship 

 

 Each cylinder is, by itself, a fourth or fifth order 

nonlinear, discontinuous, time varying system.  Coupled 

with the valve dynamics, the high order system is further 
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complicated by the coupling and discontinuities and 

nonlinearities imposed by cantilevered links, ground 

interaction forces, and the compressibility of air.  

Instead of modeling the entire leg system and optimizing a 

controller for different scenarios and conditions, a 

generally robust PD controller was chosen for servo 

control.  The control variable, spool position, is directly 

proportional to the volumetric flow rate to and from each 

cylinder chamber (Figure 5.2).   

 

 

Figure 5.2: Flow Rate vs. Spool Position Command 

 

 While the direct control input is a voltage signal 

controlling spool position, the physical correlation is 

mass flow rate into and out of each cylinder chamber.  

Directly coupled to the flow rate is a pressure term.  The 

overall control effort becomes a complex relationship 

between fluid flow rate, pressure and temperature.   
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 In a simple analogy, the valve regulates input effort 

similar to the way a motor servo controller regulates 

voltage and current (force and flow) to achieve desired 

position.  The system exhibits traits of internal 

integration behavior (Type I system). 

5.1 Control Objective 

 The goal of establishing control over each cylinder is 

to maintain tracking control of the foot (endpoint) of each 

leg.  Tracking control, rather than tuned responses to pre-

generated inputs, is vital to this application because each 

leg will be driven by an operator giving direct inputs via 

two bilateral teleoperated PHANToM haptic devices.  The 

force generated by the PHANToMs is proportional to the 

position error between the commanded and actual foot 

positions.  If the foot were to strike an obstacle or 

become entangled, the operator will feel the sharp increase 

in position error.  However, if the operator is constantly 

driving the feet while ‘wading’ through a constantly high 

position error, the haptic force increase generated by an 

obstacle will be less noticeable, and the operator will 

quickly tire from the constant forces.   

 Ideal tracking, i.e. zero error between commanded and 

actual position, requires very complex and accurate 

modeling techniques which were neither employable nor 

employed through the course of this project.  Standard PD 

control methods are incompatible with ideal tracking 
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because an error signal is required to generate a control 

signal.   

 Since ideal tracking is, in the scope of this project, 

unattainable, a controller was designed to provide “good” 

tracking.   

5.1.1 Controller Requirements  

 Several requirements were determined during controller 

design and tuning.  These sets of limitations and 

expectations were to be met by the final version of the 

control scheme.   

 Stability – First and foremost, the controller 

designed for this system must produce a stable system 

response.  Stability was required in response to a step 

input, and sinusoidal inputs up to 5 Hz at 80% stroke 

command.  An 80% stroke command was chosen for the 

stability analysis so that the piston would have sufficient 

space in the chamber to overshoot its commanded position.  

Otherwise, the sinusoid would simply be dead-heading the 

cylinder fully back and forth like an on-off valve.  5 Hz 

was chosen as the stability limit because the operator 

should not be able to command the foot position to change 

that rapidly, and such a command would actually approach 

the maximum flow capacity of the Festo valves, introducing 

an entirely new dynamic into the leg systems as the 

actuators become starved for flow (3.2.1). 

 While an exponential rise in position instability will 

not damage the actuators, the wild oscillations caused by 
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certain conditions certainly pose safety risks both to the 

operator and to those who it would rescue. 

 In addition to control parameter tuning, saturations 

and filters are used to adequately harness the pneumatic 

control system.   

 Robustness – A robust controller is obviously 

necessary for such a remote, teleoperated system because 

the operator must rely solely on the control software if 

any hardware or sensor failures occur.  Operating the 

system open-loop in an emergency (due to sensor failure) is 

a desired feature of the system.   

 The controller must maintain control of the system 

when a sensor fails, experiences noise, malfunctions, or 

when the system experiences a fluid leak.  The robustness 

of the controller must also compensate for the sharp 

disparity between ground contact and free-space movements.   

 Tracking response – In order to provide effective 

operator control, the foot position response must be crisp 

and reactive to the operator’s inputs.  Through controller 

tuning and development, good tracking control was 

detectable by feel through the haptic controllers.  Through 

testing, it was determined that a tracking error < 10% 

stroke length (< 0.14 inches) provides a satisfactory 

medium between tracking control and stability.   

5.2 Position Control 

 Servo position control is accomplished by using a 

discrete proportional-derivative (PD) controller with a 
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velocity feed-forward command and velocity damping.  Each 

cylinder is controlled by an individual PD controller, 

using the commanded stroke length xref as the input command.  

Xref is generated for each cylinder by the input coordinate 

transformations.  Each cylinder features a position sensor 

which feeds back actual stroke length xact to the controller 

for comparison to the command position xref.    

5.2.1 Control Law 

 The position control law assigned to each cylinder is  

( )( )
5

PD p ref act d act vff ref

valve PD

y k x x k x k x

V y

= − − +

= +

ɺ ɺ

  (5.1) 

This control law assigns a valve spool position Vvalve based 

on the position error, the position command rate, and the 

actual position rate.  The gain values kp, kd, and kvff are 

tuned for each cylinder pair (L1/R1, L2/R2, L3/R3) because 

each actuator encounters different loading conditions.   

 The proportional gain constants kp were determined 

experimentally through testing.  The derivative gain 

constants kd were also determined experimentally, though the 

method of obtaining a signal derivative also required 

tuning.  Since the signals coming from all the sensors 

included some electrical noise, a standard discrete 

derivative only increased the noise output of the 

controller.  The solution to the noise problem is to 

increase the sampling time over which the value is 

differentiated.  For this case, the derivative values are 
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calculated over a period of 40 sampling intervals, or 0.04 

seconds.  This lengthening of the differentiation span 

greatly reduces the amount of noise introduced by the 

controller derivative functions.  A 10Hz low-pass filter 

completes the signal smoothing operation.  

5.2.2 Position Control Stability 

 Operating each leg cylinder under only closed loop PD 

control, stability of each actuator can be demonstrated 

experimentally via step inputs from 20% to 80% stroke (0.28 

– 1.12 inches).  This stroke limitation is chosen to allow 

for any position overshoot.  A full stroke length step 

input would simply dead-head the piston at the travel 

limits of the cylinder, rendering stability analysis 

impossible due to the lack of information as to whether the 

piston is held in place by a controlled pressure 

differential.  During testing, the robot is vertically 

constrained to its cart, allowing Joint 2 of each leg to 

apply force to the ground as they normally would.  The 

operating pressure is 130 psi.   

 Figures 5.3, 5.4, and 5.5 below show that stability of 

stroke length xact for each cylinder is achievable through 

this position controller.   
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Figure 5.3: Cylinder L1 Step Response, PD Control, kp = 0.5, 

kd = 0.004, kvff = 0.05, 130 psi 
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Figure 5.4: Cylinder L2 Step Response, PD Control, kp = 0.5, 

kd = 0.004, kvff = 0.015, 130 psi 
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Figure 5.5: Cylinder L3 Step Response, PD Control, kp = 0.55, 

kd = 0.01, kvff = 0.03, 130 psi 

 

5.2.3 Tracking Response 

 The tracking response of the individual actuators is 

demonstrated below (Figures 5.6, 5.7, 5.8).  A 3 rad/s 

sinusoid, 20%-80% stroke length is the position input.  No 

other parameters were changed.  
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Figure 5.6: Cylinder L3 3 rad/s Tracking, PD Control, kp = 

0.55, kd = 0.01, kvff = 0.03, 130 psi 
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Figure 5.7: Cylinder L2, 3 rad/s Tracking, PD Control, kp = 

0.5, kd = 0.004, kvff = 0.015, 130 psi 
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Figure 5.8: Cylinder L1, 3 rad/s Tracking, PD Control, kp = 

0.5, kd = 0.004, kvff = 0.05, 130 psi 

 

 The tracking results show good adherence to the input 

sinusoid.  The only exception, though, was the results from 

cylinder 2.  Since Links 2 and 3 are cantilevered around 

Joint 2, the position controller alone cannot regulate 

enough flow and pressure to maintain acceptable tracking.   

 The failure of the lone PD controller when ground 

forces are encountered is more evident when the foot 

position is guided through a stepping sequence, i.e. swing 

and stance phases (Figure 5.9). 
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Figure 5.9: Cylinder Stroke Length Response During One Step 

Cycle, PD Control 

 

 The stroke length error of Cylinder 2 during the 

stance phase becomes rather significant as the actuator 

bears the weight of the robot.  Without any additional 

control terms, the command to the valve is simply not 

sufficient to counter the static loading.  The absolute 

position error through the gait cycle is shown below 

(Figure 5.10). 
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Figure 5.10: Cylinder Stroke Length Error During One Step 

Cycle, PD Control 

 

 The tracking errors in the three cylinders fall 

outside the 0.14 inch requirement set for this control 

system.  Since this high error occurs only when large 

forces are applied to the endpoint, some additional force 

control is obviously needed to correct this position error.  

Elsewhere, though, the PD controller performs 

satisfactorily in controlling the leg through the swing 

phase, so the added force controller should be designed as 
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to not affect the position controller when the leg 

encounters minor forces such as its own inertia, or 

overhanging loads.   

5.3 Force Control 

 Force control is obtained for each cylinder through 

the two pressure sensors installed to measure absolute air 

pressure in chambers a and b.  The pressure measurements 

are converted to force measurements simply by multiplying 

the value by the piston area, and the resultant forces are 

differenced, yielding a single force value, with direction 

and magnitude.  Pressure sensors were used rather than 

actual force or torque sensors because of their 

compactness, simplicity, embedded design, and low cost.   

5.3.1 Force Control Law 

 An added force term, as already discussed, is 

necessary to correct for high loading applications 

experienced during stance phases of gaits.  Cylinders L2 

and R2 experience the highest loading during stance, when 

most of the robot weight is supported by Joints L2 and R2.  

Since the standard PD control doesn’t provide enough 

control effort signal to the valve, a gain scheduler is 

implemented to add the additional control effort needed to 

obtain low position error.  

 A simple differential pressure gain scheduler was 

discussed and tested in [9] and its results compared to 

standard PID control.  The researchers showed that, in 
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their experiment, the position tracking results were better 

than those obtained with a simple PID controller.   

 Initially the simple differential pressure gain 

scheduler was implemented on Joint 2 (Equations 5.2-5.4). 
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  (5.2-5.4) 

 The results proved promising, whereas after some 

tuning, the tracking error was smaller while Joint 2 was 

supporting weight.  Figure 5.11 shows a swing and stance 

phase tracking response for all three cylinders.  Only L2 

is controlled with the supplementary differential pressure 

gain.   
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Figure 5.11: Cylinder Stroke Length Response During One 

Step Cycle, PD + dp Control 

 

 

 The position tracking response for Cylinder L2 has 

been markedly improved, but the gain scheduler has 

introduced an unwanted dynamic into the control effort 

signal.  As the stroke length xact crosses the reference 

value xref, the error changes sign and the gain scheduler 

instantaneously changes the gain value ydp added to the 

control effort (Figure 5.12). 
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Figure 5.12: Cylinder L2 Position Error and Control Effort 

for Swing-Stance Phases in Figure 5.11 

 

 The rapid oscillations commanded to the valve spool 

position cause the robot to physically bounce as the 

control signal changes.  This bouncing symptom would create 

severe instabilities if the gain scheduler output were not 

saturated at +/- 1 V.   

 Compared to Figure 5.9, the tracking error for L2 is 

much lower while the weight of the robot is supported by 

Joint 2 (Stroke length > 1 in.).   

5.3.2 Improved Force Control Law 

 A new force control law was implemented in the gain 

scheduler to prevent the bouncing encountered through the 

use of the differential pressure controller.  First, the 

control term was changed from differential pressure to 

differential force.  This allows an equivalence to be made 
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on each side of the piston.  When the stroke length is 

stationary, the differential pressure will never be zero 

due to the difference in areas of the piston sides.  Using 

differential force as an input (Equation 5.5) means that 

when the stroke length is stationary, the force 

differential is zero. 

( ) ( )( )a a b bF p A p A∆ = −     (5.5) 

 The new gain scheduler was designed considering the 

bouncing symptoms caused by the error changing sign and 

causing the gain to instantaneously change.  To combat the 

zero crossing problems, the structure of the gain scheduler 

was kept essentially the same, except the gain output is 

scaled by the actual error and an adjustable error gain ke 

(Equations 5.6-5.7). 
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  (5.6-5.7) 

 With this new differential force scheduler, the added 

control effort couples position and force feedback signals.  

As the position error decreases, i.e. the volume and 

pressure in the cylinder chambers is approaching the 

correct value to maintain the commanded setpoint, the added 

control effort from the gain scheduler decreases as well.   
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 During the swing phase, when the force differential 

across the piston is low, the supplemental control effort 

ydfe is also low.  When the foot is in ground contact, and a 

large force differential causes a large position error, the 

supplemental control effort ydfe grows to correct the error, 

and then tapers off once the error is zero.  Figure 5.13 

below shows the improved performance during a swing and 

stance cycle as Joint 2 supports the weight of the robot, 

avoids bouncing, and maintains a low tracking error. 
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Figure 5.13: Cylinder Stroke Length Response During One 

Step Cycle, PD + dfe Control 
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 The tracking response of Cylinder L2 has greatly 

improved as compared to the responses seen in Figures 5.9, 

and 5.11.   
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Figure 5.14: Cylinder L2 Position Error and Control Effort 

for Swing-Stance Phases in Figure 5.13 

 

 The improved force control term ydfe improves the 

tracking error and eliminates the bouncing effect caused by 

the simple differential pressure control term ydp.  The 

position error is low enough to fit into the control 

requirements (error < 10% or 0.14 inches).   
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 The error coefficient used ke is 1.0, and the four 

differential force coefficients are kdfe1 = 0.03, kdfe2 = 

0.03, kdfe3 = -0.06, and kdfe4 = 0.   

5.3.3 Improved Force-based Position Controller on Three 

Joints 

 While the improved force-based position controller 

greatly improved the tracking responses of Cylinders L2 and 

R2, the other leg joints also benefit from this control 

structure.  Joints L1 and R1 need this control to allow the 

operator to overcome the inertia of the robot as the 

command is given to pull forward during a stance phase.  

Joints L3 and R3 can greatly benefit from supplementary 

force control during the stance phase, providing enough 

lateral forces to maintain the commanded foot positions. 

 The supplementary force control, for L1 and R1 adds 

force in the most needed portion of the gait, the stance 

phase.  During stance, the pressure and force differential 

is negative (Fa < Fb), and the position error is negative.  

To correct this error, the pressure in chamber b must be 

increased to further retract the cylinder, requiring a 

spool position command Vvalve < 5V.   

 In Figure 5.13 above, tracking errors persist in 

Cylinders L1 and L3.  The same supplementary force control 

applied to L1 yields better results as shown below in 

Figure 5.15.   
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Figure 5.15: Full Controller Applied to L1 and L2 Through 

Multiple Swing-Stance Phases 

  

 The tracking error of L1, specifically, when the 

stroke length is decreasing, has greatly improved over the 

response in Figure 5.13.  The position error (Figure 5.16) 

remains below the required 10% error stipulation.  The 

error coefficient used ke is 1.0, and the four differential 

force coefficients are kdfe1 = 0.01, kdfe2 = 0.005, kdfe3 = 

0.02, and kdfe4 = -0.03. 
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Figure 5.16: Cylinder L1 Position Error and Control Effort 

for Swing-Stance Phases in Figure 5.15 

 

 The tracking response of L3 and R3 benefits from the 

force-based position controller as well.  During a stance 

phase, especially one in which the feet are set wide apart, 

supplementary control effort is needed to prevent the feet 

from spreading further apart under the weight of the robot.  

To accomplish this, extra force is focused on the same case 

as the L1/R1 controller where the pressure and force 

differential is negative (Fa < Fb), and the position error 

is negative.  To correct this error, the pressure in 

chamber b must be increased to further retract the 

cylinder, requiring a spool position command Vvalve < 5V.      
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 Figure 5.13 above shows that as L3 stroke length 

increases, the magnitude of the position error increases as 

well.  This is a symptom of the feet slipping outward as 

weight is applied, and the inability of the PD position to 

correct for the added load.  Care must also be taken with 

Joint 3 to avoid too much supplementary force control.  

Only the case described above requires significant control 

effort due to the low mass and inertia of Link 3 relative 

to the power of its controlling actuator.  Figure 5.17 

shows the improved tracking response of L3 during a gait 

cycle. 
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Figure 5.17: Full Controller Applied to L1, L2, and L3 

 

 The tracking error has been improved and the system 

remains stable.  The supplementary force control keeps the 

stroke length near the reference value, and prevents the 

feet from slipping outward (Figure 5.18). 
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Figure 5.18: Cylinder L3 Position Error for Swing-Stance 

Phases in Figure 5.17 

  

 The position error (Figure 5.18) remains below the 

required 10% error stipulation.  The error coefficient used 

ke is 1.0, and the four differential force coefficients are 

kdfe1 = 0, kdfe2 = 0, kdfe3 = -0.01, and kdfe4 = -0.015. 

5.4 Results and Conclusions 

 The force-based position controller implemented on 

each leg of the Compact Rescue Crawler allows the operator 

to directly control the stroke lengths of each cylinder 

simultaneously to achieve a desired endpoint position.  The 

controller and system responses fulfill all requirements 

set forth at the inception of controller development.  Each 

individual actuator system is stable, and the overall foot 

position is stable.  The tracking error for each stroke 

length remains less than 10% during operator controlled 

walking.  Since the operator-guided walking gait (swing and 

stance phases), requires tight tracking in both free-space 

and ground contact, the success of this one controller for 

both scenarios is all the more significant of a 
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contribution.  The tracking error requirement is perhaps 

the most important to the application of haptic bilateral 

teleoperation discussed later in Chapter 6.   

 Overall, the applied real-time controller is 

successful in achieving the project control goals.  It is 

not, however, the only control solution for this system.  

Other combinations of gains and force control techniques 

could control this system, but the controller presented 

herein was one which, through tuning, provided the 

desirable responses.  The full Simulink diagram of the 

control structure is located in Appendix B.   

 The gains, low-pass filter (LPF) cutoff frequencies 

and constants used to produce the best control responses 

are located below in Table 5.1. 
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Table 5.1: Control Gains and Settings 

  L1/R1 L2/R2 L3/R3 

kp 0.5 0.5 0.7 

kd 0.004 0.005 0.01 

kvff 0.05 0.015 0.05 

PD Output Saturation ±3V ±3V ±3V 

P
D
 
C
o
n
t
r
o
l
l
e
r
 

Derivative Time Constant 0.04s 0.03s 0.04s 

ke 1 1 1 

kdfe1 0.01 0.03 0 

kdfe2 0.005 0.03 0 

kdfe3 0.02 -0.06 -0.01 

kdfe4 -0.03 0 -0.015 

G
a
i
n
 
S
c
h
e
d
u
l
e
r
 

Gain Scheduler LPF cutoff 4Hz 4Hz 4Hz 

 Valve signal LPF cutoff 100Hz 100Hz 100Hz 

 Position input LPF Cutoff 50Hz 50Hz 50Hz 

 Pressure input LPF Cutoff 20Hz 20Hz 20Hz 
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CHAPTER 6 

OPERATOR INTERFACE 

 

 The Compact Rescue Crawler operator interface, 

physically, is a bilateral teleoperation workstation from 

which the operator is immersed into the controller and 

remotely pilots the vehicle (Figure 6.1).   

 

 

Figure 6.1: Operator Remotely Pilots the Crawler 

 

 Virtually, the operator workstation is designed to 

immerse the operator into an augmented reality with visual, 

aural, and haptic cues.  Haptic force is generated by the 
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two PHANToM controllers which generate position inputs to 

the robot.  A head-mounted display feeds live video from 

the robot to the operator.  The head-mounted display is 

equipped with a motion tracker which controls the 

orientation of the pan-tilt-zoom (PTZ) camera on the front 

of the robot.  The head mounted display is also equipped 

with earphones which will relay audio to the operator from 

the sounds “heard” by microphones on the robot.   

 This operator workstation attempts to immerse the 

operator in the remote environment of the robot by 

virtually placing the operator on the front of the robot.  

Searching for survivors will, through future research, be 

aided by information gathering software looking for signs 

of life in the work environment.  

6.1 Workstation Design 

 The workstation was designed and constructed with 

focus on configurability.  The base and uprights are 

fabricated from 80/20 aluminum extrusion.  A comfortable 

task chair is mounted to the base to seat the operator.  

Two uprights arise from the sides of the base to hold the 

PHANToM controllers.  One upright behind the operator chair 

holds the motion tracking hardware and the head mounted 

display when not in use (Figure 6.2). 
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Figure 6.2: Operator Workstation 

 

 The PHANToMs are supported by two planar positioning 

arms, allowing the devices to be moved to a position 

comfortable to the operator.  The planar positioning arms 

also permit the PHANToMs to be moved while the operator is 

entering or exiting the workstation.  PHANToMs are placed 

in an inverted position, with the endpoints facing each 

other rather than away.  The inverted positioning of the 

PHANToMs allows the hand position of the operator to remain 

comfortable while the armrests support the elbows.  

Vertical positioning is adjusted by loosening the 

positioning arm bracket and sliding it up or down on the 

upright.  The uprights are stabilized by a cross-member to 

damp vibrations and prevent unintended inputs.   

6.2 Haptic Interface 

 The PHANToM master devices are active haptic units, as 

opposed to passive.  The directional haptic force is 
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generated by three motors mounted on each axis of the 

device.  When the operator guides the slave legs into an 

obstacle and the position error from the commanded foot 

position pcom to the actual foot position pact increases, the 

haptic force generated by the PHANToM master increases as 

well.  The haptic force vector is generated by scaling the 

position error vector by the constant kspring.   

 The haptic display is a “spring” force generated on 

the endpoint.  As the absolute position error of the foot 

increases away from the endpoint, the PHANToM force guides 

the operator’s hand back toward the current leg position.  

Equation 6.1 evaluates the haptic force to be displayed 

each controller time-step.  When the operator guides the 

foot into an obstacle and the actuators cannot physically 

converge to zero position error, the sudden increase in 

haptic resistance immediately alerts the operator that a 

collision has occurred.   

    ( )haptic spring com act
F k p p= − −
� � �

       (6.1) 

 Achieving reliable and precise tracking control is 

important for the implementation of this type of haptic 

feedback.  Low tracking error is crucial for the repetitive 

motions which the operator will be expected to perform 

while navigating through debris.  A large tracking error in 

this scenario would apply a constantly high spring force 

resisting the operator’s motion inputs.  This “muddy” 

feeling would quickly tire the operator’s arms, effectively 
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reducing the amount of time for which the operator is 

capable of effectively piloting the robot [30].   

 Haptic spring-force feedback can be provided in lieu 

of tight tracking control if the spring constant, kspring set 

in software, is kept low.  Initial experiments with this 

system used a standard PD controller with no velocity feed-

forward and no pressure feedback.  When the foot position 

was commanded downwards to lift the robot, the controller 

could not issue enough control effort voltage to the 

valves, therefore the position error from cylinders R2 and 

L2 was always high.  The swing cylinders L1 and R1, when 

commanded to pull the body forward, also suffered from this 

large position error, as seen in Chapter 5. 

 One method, with the simple PD controller, to provide 

any kind of useful haptic feedback was to set the spring 

constant between 0.02 and 0.04 N/mm.  This low spring 

constant alleviated the “muddy” feeling caused by poor 

tracking. The drawback though, was that when an obstacle 

was encountered in the foot trajectory, the constantly 

present tracking error was not greatly increased, 

therefore, the operator would not perceive that the leg was 

guided into an obstacle.   

 The improved force-based position controller described 

above allows for higher spring constants to be applied to 

the PHANToM endpoints due to its improved tracking 

characteristics in both free-space and ground contact 

scenarios.  The higher spring constants, 0.06 – 0.10N/mm, 
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provide a crisper feel to the operator.  Constants higher 

than 0.10N/mm tend to cause the PHANToM motors to overheat 

quickly and the internal controller shuts them off to 

prevent damage.  As seen in Figs. 6.3 and 6.4, the improved 

error tracking decreases the ambient and false forces 

displayed to the operator due to tracking error.  Data 

taken for these figures was collected from the operator 

guiding the crawler through walking cycles. 
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Figure 6.3: Vertical Haptic Force during Walking, PD Controller Only 
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Figure 6.4: Vertical Haptic Force during Walking, Full Controller 

 

 One factor of the improved tracking control and low 

ambient haptic force is that if the leg strikes a light or 

mobile obstacle such as a small rock, the position 

controller will most likely power the leg through it 

without creating a position error.  This may be beneficial, 

though, because the operator will not receive constant 

haptic signals when the leg strikes small mobile objects 

and debris.  Testing in a controlled environment must be 

conducted before definite results are drawn, though.  

Another benefit of the improved tracking is that the 

operator does not feel the weight of the robot through the 

PHANToMs.  Since only position error creates the haptic 

spring force, a collision with a massive object such as an 
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immobile beam or wall will create a significant force 

feedback.   

 The C++ code that interfaces the PHANToMs to the robot 

through UDP can be found in Appendix C.   

6.3 AUGMENTED REALITY INTERFACE 

 Two computers control the augmented reality visual 

interface for the operator.  One computer, onboard the 

robot is a mini-ITX form factor, fanless PC.  It receives 

the raw video feed from the onboard PTZ camera through a 

frame-grabber PCI card.  The video packets are then sent 

via a TCP/IP routine to the video host PC.  The host PC 

unpacks the video images and displays them to the operator 

via a head-mounted display.  The video feed, seen remotely 

by the operator is interactive whereas the operator’s head 

controls the position of the camera.   

 A Polhemus Minuteman 3-axis motion tracker is mounted 

to the top of the head-mounted display (Figure 6.5).  The 

tracker measures the angle of the operator’s head side-to-

side and up and down.  The angle measurement is then 

calculated into a signal for the PTZ camera and sent via 

TCP/IP back to the onboard mini-ITX PC on the robot.  The 

onboard computer then sends the position commands to the 

camera via an RS-232 communication interface, and internal 

motors move the camera to its commanded orientation. 
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Figure 6.5: Head-Mounted Display with Motion Tracker 

 

6.3.1 Display 

 A temporary display was designed as a place-holder for 

the augmented reality techniques in development at NCAT 

(Figure 6.6).   

 

 

Figure 6.6: Prototype Operator Display 
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Motion 
Tracker 
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The video interface overlay is designed with mission-

specific tools to provide the operator with information as 

quickly and efficiently as possible.  The current prototype 

employs mock gauges and a compass.  Data from the robot 

will, through research at NCAT, be presented in such an 

intuitive manner that the operator will know every 

important detail, yet not be overwhelmed with a flood of 

too much information.   
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CHAPTER 7 

GUIDED GAIT COORDINATION 

 

 While human-machine interfaces have developed rapidly 

over recent years, the evolution of man has not.  Humans 

possess only a limited number of degrees of freedom to 

physically interact with machines.  In piloting a highly 

maneuverable hexapod, the ideal scenario would place the 

operator in direct simultaneous control of all six legs, or 

18 degrees of freedom.  This scenario, unfortunately, is 

infeasible due to the fact that direct, simultaneous 

control of 18 degrees of freedom would overwhelm the 

operator, rendering the vehicle ineffective.   

 A fully autonomous gait, at the other end of the 

control spectrum, is also undesirable for the entire search 

and rescue mission.  The operator will most likely need 

direct control of the robot to inspect areas of interest 

where survivors will likely be found.  Therefore, a hybrid 

guided-gait coordinator has been analyzed and designed for 

use on the CRC and possibly other operator-guided legged 

platforms.   

 A guided-gait coordination routine was designed for 

walking on flat straight terrain as an initial point for 

further research.  The methods developed herein should be 

expandable multi-legged robots and to three and even six-

axis high level coordination. 
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 A few basic assumptions were made during the design of 

the basic guided-gait coordination routine: 

 1.  Terrain is flat, level, and travel is in a 

straight line 

 2.  With one foot at its PEP (Posterior Extreme 

Position), the foot posterior to it can touch it at its AEP 

(Anterior Extreme Point),  

 3.  Feet are not slipping on the ground. 

 4.  The leg pairs are identical, evenly spaced along 

the length of the robot, able to reach the same angle 

whether reaching anterior or posterior.   

 5.  An experienced operator is piloting the robot, 

keen to situational changes and able to take direct control 

of a posterior leg should the environment change and 

ensnare it.   

 CRC legs are annotated in a similar fashion to joints 

and actuators.  Left legs are named L1, L2, L3 with L1 as 

the foremost leg.  Right legs are named R1, R2, R3 

respectively (Figure 7.1). 

 

 

Figure 7.1: Leg Notation of CRC 
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7.1 OVERVIEW 

 The ultimate goal of the guided-gait coordination 

routine is to allow the operator to map a series of 

“stepping stones” using the front two legs, and force the 

rear legs to follow the same steps.  The safely mapped 

trajectories propagate through successive leg pairs as the 

robot progresses through the environment.  To maneuver the 

CRC through rugged terrain via guided-gait coordination, 

the operator must perform a repetitive series of commands 

and tasks, interacting with the gait controller to move to 

the next phase.  A general overview of the gait sequence is 

outlined below in Figure 7.2.  The guided-gait flowchart 

also serves as an outline of the structure of Chapter 7.   
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Figure 7.2: Generalized Guided-Gait Coordination Flowchart 

 

 This guided-gait coordination allows the operator to 

avoid an obstacle with the front legs while propagating 

safe, obstacle-avoiding trajectories automatically to 

subsequent leg pairs.  Therefore, once the operator steps 

over a fallen beam, for example, and moves forward, the 

middle leg pair will step over it when the body reaches 

that position in the environment.  Then, the rear-most leg 

pair will step over it when it reaches the obstacle.  
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Details of the gait coordination are laid out below in the 

order of operation shown above in Figure 7.2. 

7.2 Trajectory Recording 

 The CRC operator, when in guided-gait mode, will need 

to provide input to the coordinator by recording the 

trajectories of the front two legs.  Wielding haptic 

control over the front legs gives the operator the 

advantage of sensory feedback about the environment. 

 Each PHANToM is equipped with a small button to 

receive the record command.  When the operator presses the 

record button, the PHANToM controller code begins storing 

data points from the respective PHANToM each time-step.  

Once a successful leg trajectory has been made, the 

operator simply presses the record button again to stop the 

data saving process.   

 This button-pressing routine could be replaced by 

verbal commands in the future.  When voice commands are 

integrated into the high-level architecture, the operator 

will also be able to command the controller to delete a 

failed trajectory so another, smoother attempt can be 

performed.   

 Ideally, the operator begins recording the swing phase 

leg trajectory from its posterior extreme position (PEP), 

and ends recording when the leg is at its anterior extreme 

position (AEP).  This maximization of workspace will 

optimize the overall speed at which the CRC moves through 

the environment.  If the foot will not reach over an 
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obstacle, or the operator is unsure of the foothold 

conditions, recording should stop when the foot is on the 

ground and supporting the weight of the robot once again.  

Visual and haptic cues can alert the operator to touchdown 

and weight support by monitoring the pressure sensors in 

each actuator. 

7.2.1 Recording Detail 

 When the operator triggers the record command, a 5V 

signal is sent directly to the serial port of the PHANToM 

control computer.  The C++ software running the PHANToMs 

polls the Data Send Ready (DSR) and Clear To Send (CTS) 

pins of the serial port.  DSR is pin 6, and CTS is pin 8 on 

the standard RS-232 9-pin plug.  Since the CTS and DSR pins 

are able to be polled directly from the Windows C++ 

programming environment, the RS-232 serial port doubles as 

a rudimentary digital input card.  Two other pins could be 

used in this manner, the Data Terminal Ready (DTR pin) and 

the Ring Indicator (RI pin).  With a total of four digital 

input bits, up to 15 switches or inputs could technically 

be implemented through this method, if read in binary.   

 The record switches are two Cherry limit switches 

(Figure 7.3).  The 5V supply is taken directly from the PC 

power supply and fed to the switches.  When the switch is 

activated, its respective pin on the RS-232 serial port is 

pulled high to 5V, indicating a digital value of 1, or ON.  

Since the routine only polls the DSR and CTS pins once 
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every 1ms time-step, high frequency electro-mechanical 

switch bouncing is not a significant issue.   

 

 

Figure 7.3: Record Start/Stop Switch Operation 

 

 The switches are positioned in an ergonomic location 

where the operator need only roll the index finger forward 

to lightly depress the switch lever while grasping the ball 

on the PHANToM endpoint.  The switches are wired in such a 

way that the stiffness of the wire adds no additional 

resistance to the joint operation of the PHANToM 

controllers.   

 The points recorded from the PHANToMs are saved each 

time-step as raw points in a space delimited text file.  

When recording stops, the file is saved to disk and named 

with the time at which it was created.  A UNIX timestamp is 

used to provide a consistent time naming convention.  
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7.3 Trajectory Manipulation 

 Once trajectories have been recorded, a smoothing 

operation is performed on the raw trajectories.  Raw 

trajectories recorded directly from PHANToM motion are 

jagged from operator-induced (Figure 7.4).   
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Figure 7.4: Raw PHANToM Points Captured During Left Leg 

Swing Phase 

 

 In 3D view, the captured trajectory shows that the 

operator guided the leg into an obstacle (along x-axis) 

from which the operator retreated and rerouted the foot 

(Figure 7.5). 
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Figure 7.5: Three Dimensional View of Same Trajectory 

 

 Playing the same raw trajectory through the leg would 

yield an acceptable system response, but a smoother profile 

will play more smoothly through the controller, creating an 

overall smoother motion.  The raw trajectory is smoothed by 

wrapping a spline, or piecewise polynomial curves, through 

evenly spaced points along the trajectory.   

 Each successive splined trajectory is made from the 

same number of spline points n for simplicity.  An 

appropriate number of spline points was determined by 

analyzing sample trajectories in a controlled setting, then 

comparing the effects of 5, 20, and 30 spline points.  The 

match of the spline to the original trajectory is desired 

to be close, but not too exact or too general.  Over-

generalization will cause the foot to collide with 
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previously avoided obstacles, and too tight of a fit may 

either take too much computing time and have little 

advantage over a looser fit.  The selected number of spline 

points is used for every recorded trajectory. 

 First, the raw data is split into its x, y, and z 

component vectors.  Then, n points are selected at regular 

intervals along each path.  The number of spline points n 

is determined visually by viewing the different spline 

results and comparing to the original path.  Once n evenly 

spaced points are selected, a piecewise polynomial curve is 

fitted for each segment and sampled at the 1ms time-step.  

The final splined trajectory is exactly the same length as 

the original, with the same start and end points, but the 

sharp edges and jitteriness of the inputs have been 

significantly reduced.   

 A five-point spline was wrapped over a sample swing 

phase trajectory (Figures 7.6, 7.7). 
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Figure 7.6: 5 Point Spline Over Trajectory 
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Figure 7.7: 5 Point Spline Over Foot Trajectory, 3D 
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 Clearly, the 5 point spline is insufficient to cover 

the necessary areas of the trajectory, especially along the 

z-axis.  Subsequently, a 20 point spline was tested to 

analyze its fit to the original trajectory (Figures 7.8, 

7.9). 
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Figure 7.8: 20 Point Spline Over Trajectory 
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Figure 7.9: 20 Point Spline Over Foot Trajectory, 3D 

 

 The 20 point spline fits the original trajectory well 

and does not over-generalize the original trajectory.  A 30 

point spline was then applied to the trajectory for 

analysis (Figures 7.10, 7.11). 
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Figure 7.10: 30 Point Spline Over Trajectory 
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Figure 7.11: 30 Point Spline Over Foot Trajectory, 3D 
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 The 30 point spline fits the original trajectory well, 

but shows very little improvement over the 20 point spline 

in Figures 7.8 and 7.9.  Any additional spline points will 

also show the same diminishing returns.  A 20 point spline 

is sufficient for fitting recorded PHANToM trajectories. 

 After the smoothed trajectory has been resaved over 

the original file, the initial and final record points are 

saved into a master file.  A master file for each side of 

the robot contains records of the particular trajectory 

name (timestamp) and its beginning and endpoints stored in 

a large array.  The beginning and endpoints can be thought 

of as “stepping stones” because they are the specific 

points in the environment where a known, good, foothold is 

known to exist. 

 The MATLAB script written to read, smooth, and resave 

leg trajectories is included in Appendix D.  

7.4 Trajectory Selection for Playback 

 Once a successful trajectory has been found and 

recorded through the motion of a front leg, the rear leg 

pairs will make their moves based on known, safe 

trajectories and the “stepping stones” mapped by the 

operator.   

7.4.1 Global Coordinate System 

 The global coordinates for the robot are split by 

side.  For simplicity, the left side legs and right side 

legs use inverse coordinates which match the coordinates of 
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the PHANToM controllers (Figure 7.12).  Robot origins OL and 

OR are centered at the shoulders of legs L1 and R1 

respectively.   

 

 

Figure 7.12: Global Coordinates and Leg Naming Convention 

 

 The global origins OL,world and OR,world are stationary 

relative to the inertial reference frame, and are set when 

the operator switches into the guided-gait mode.  Once set, 

the distance traveled by the robot is recorded each time 

the body shifts forward, creating vector w pr.  Vector w pr 

is the vector from the global origin to the respective 

robot origin, in the world reference frame of Oworld.   

 Each trajectory Ti is saved as a list of vectors rti 

from the robot origin O to the respective foot, and as a 

list of vectors w pt from the global origin Oworld to the 

respective foot (Figure. 7.13).   
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Figure 7.13: Global Gait Vector Relationship 

 

 With w pr known, and rti the operator-recorded 

trajectory, the vector w pt is simply calculated through 

vector addition (Equation 7.1). 

w t w r w i
p p t= +     (7.1) 

Vector wti is an orthogonal coordinate rotation from the 

global reference frame w to the robot reference frame r.  

In future versions of this guided-gait procedure in which 

the straight-line walking assumption is not held and the 

robot body rotates with respect to the inertial reference 

frame, wti will be required for evaluation of w pt.  

Currently, though, wti is equivalent to rti because the robot 

body is assumed to always be in the same coordinate 
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reference frame as the global origin because of Assumption 

1.   

   From an overhead view, the master list of stepping 

stones and trajectories can be visualized as in Figure 

7.14. 

 

 

Figure 7.14: "Stepping Stone" Trajectories 

 

 Since, through Assumptions 2 and 3, the front feet do 

not slip or move once placed, and can reach the AEPs of the 

middle legs, no gap is left between the safe points without 

a corresponding trajectory.  This enables an assured 

movement of the rear legs. 

7.4.2 Leg Selection and Requirements 

 Once the leg movement sequence has begun, only two 

legs can move simultaneously.  This requirement will 
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maintain the stability of the robot by maintaining four 

points of contact with the ground.  While only three are 

necessary for stability, in the actual mission scenario, a 

fourth point of contact will make the entire platform more 

robust against slipping on loose footholds.  

 The gait controller’s overall goal while moving rear 

legs is “Advance each foot as far as possible while 

stepping only on mapped-out ‘stepping stones’”.  This rule 

will ensure that each leg reaches forward as far as 

possible, maintaining the highest feasible forward speed 

through the search and rescue mission.  This goal also 

maximizes the possible forward body advancement during 

stance phases, explained below in 7.5. 

 Legs L3 and R2 will move through their appropriate 

trajectories first.  Then, legs L2 and R3 will move through 

their trajectories, completing the sequence.  No preference 

is held over moving the L3/R2 set or the L2/R3 set first, 

except that the two legs moving must not be from the same 

pair.  This method is aligned with Cruse’s original WALKNET 

rules, and the modified version by Wait et al. [3].   

 Before the first leg moves, the coordinator must first 

ascertain the foot position relative to the robot shoulder 

and calculate whether the target stepping stone is within 

its workspace or beyond the AEP.  If the target stepping 

stone is reachable, the coordinator will play the next 

trajectory on queue for the leg.  If the target stepping 

stone is beyond the AEP of the leg, the coordinator will 
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withhold movement until the next gait cycle after the body 

has shifted forward bringing the target closer to the 

shoulder joint and within reach.  Since the trajectory was 

first explored and completed by the front leg, Assumption 4 

holds that each successive leg pair will be able to 

traverse the same trajectory.   

 If more than one successive stepping stone is 

reachable by a single leg, the coordinator will move the 

leg to the first one through the proper trajectory, then to 

the next.  This double stepping routine will maintain 

overall speed by not requiring a one gait cycle delay 

between two small steps. 

7.4.3 Playback Detail 

 Leg trajectory playback can be physically accomplished 

simply by using the onboard real-time controller to 

translate trajectory points into physical foot positions.  

The onboard controller presently operates two real-time 

inverse and forward displacement analysis algorithms along 

with six simultaneous pneumatic displacement controllers.  

The expansion of the controller to coordinate six legs is a 

simple Simulink expansion of existing code. 

 The high-level gait coordinator, running alongside the 

PHANToM control software, must send trajectory points to 

the CRC via wireless UDP in the same manner as the PHANToM 

controller.  Through this method, the interface of the gait 

coordinator to the leg controllers will be a simple 

software connection. 
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7.4.4 Conflict Resolution 

 A situation may arise where debris or other unknown 

obstacles may fall into the path of the CRC while en route 

via the guided-gait mode.  The conflicting obstacle may 

upset or impede the intended path of the leg in motion.  

Direct operator intervention will resolve the conflict. 

 The gait coordinator will monitor position and 

pressure sensors from the leg controllers and determine 

whether the leg has touched down or is ensnared on the 

environment.  If the position error grows too large while 

the leg is commanded to be on a trajectory, the leg 

controller will send an error flag to the gait coordinator, 

signaling it to pause.  The trajectory playback must stop 

and alert the operator that a collision has occurred.   

 The operator, at this point, will take direct control 

of the ensnared leg through a PHANToM haptic device.  The 

operator can then ‘feel’ the environment and work to free 

the leg while the other five legs hold the robot 

stationary.  When the leg is no longer in conflict with the 

environment, the operator will then manually guide it to 

the target stepping stone, recording the trajectory to 

replace the one which ensnared the leg.   

7.4.5 Motion Completion 

 Once the legs have successfully finished their 

respective trajectories, the operator must be made aware 

that the gait cycle can continue.  The proposed method is 
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to provide the operator with a video overlay during guided-

gait coordination mode.  The overlay will depict the six 

legs of the robot in either green or red.  Before and 

during the automated swing phase of each leg, the 

corresponding depiction will appear red.  Once the leg has 

completed its trajectory, the corresponding depiction will 

change to green (Figure 7.15). 

 

 

Figure 7.15: Six Legged Status Overlay Example 

 

 In the example shown above, the status message 

inferred by the operator is, “L1/R1 have moved, L2 and R3 

have completed their trajectories, and L3 and R2 are not 

done moving.”  Once all four rear legs have successfully 

moved through their trajectories, all depicted legs become 

green, and the operator may move on to the next sequence in 

the gait cycle. 

7.5 Body Advancement 

 Once the four rear legs have moved through the 

operator guided trajectories (or withheld movement for the 

cycle), the body must shift forward to maintain overall 



 143 

forward progress through the search and rescue mission.  

First, the gait coordination routine will calculate the 

shoulder joint angles of each leg, and the distance of each 

foot from the shoulder using cylinder position feedback and 

a forward displacement algorithm.  Since the CRC is moving 

only straight forward, the gait coordinator can easily 

analyze how far each foot can move within its workspace in 

a straight line parallel to the spine before it reaches its 

PEP.   

 The operator will give either a verbal or manual 

command to begin the body advancement procedure.  The leg 

with the shortest amount of travel distance, predetermined 

by the coordinator, sets the actual distance through which 

the body can advance.  Therefore, if the trajectory 

playback routine is always moving legs as far forward as 

possible, the body advancement routine will always start 

with six legs positioned as far from their PEPs as 

possible, based on the available stepping stones.   

 The body then advances by commanding all six feet to 

move parallel toward the rear of the robot.  The length of 

the forward shift trajectory must be equal to the distance 

of the leg with the shortest amount of travel.  If 

commanded to go further, one leg will stop when it reaches 

the end of its workspace while the other 5 legs will 

continue advancing.  Since, through Assumption 2, the feet 

do not slip, three legs providing thrust on one side of the 
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robot versus two legs on the other side will induce an 

undesired body rotation. 

7.6 Conclusions 

 Figure 7.16 below depicts five demo gait cycles 

through the guided-gait coordinator.  During Cycles 2 and 

3, the operator only records a half step on the left leg, 

not able to completely step over an obstacle.  The 

trajectories propagate through successive leg pairs until, 

in Cycle 5, the double-stepping playback allows Legs L3 and 

R2 to move through two stepping stones in a single gait 

cycle, maximizing overall forward advancement speed of the 

CRC.   

 While not physically present on the robot testbed, the 

guided-gait coordinator designed through this research 

project will be a powerful semi-autonomous tool between 

direct operator inputs and a central gait coordinator.  The 

method describe herein is applicable not only to the CRC, 

but to any multi-legged vehicle which traverses unknown 

terrain via operator input. 
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Figure 7.16: Sample Gait Cycles 
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CHAPTER 8 

RESULTS AND CONCLUSIONS 

 

 The Compact Rescue Crawler Testbed developed through 

this research project has met several goals.  A two-legged 

version of the hexapedal concept was designed, fabricated, 

and tested.  New pneumatic actuators featuring embedded 

position and pressure sensing were developed and installed.  

Real-time control of the pneumatic cylinders to coordinate 

foot movement with user inputs has been designed, tested 

and implemented.  Haptic feedback is provided to the 

operator through the two PHANToMs which provide position 

input commands.  A guided-gait coordination strategy has 

also been developed and presented.     

8.1 Robot Design and Fabrication 

 The robot design described in Chapter 2 has proved to 

be a robust and reliable design.  Placing the valves as 

close as possible to the cylinders and using small air 

lines (0.125 inch) allows little volume for undesirable 

compression to occur.  The joints operate smoothly and very 

little mechanical interference constricts leg movement.   

8.1.1 Recommendations for Future Work 

 The next major redesign of the CRC should include a 

larger cross-section spine.  The 1 inch 80/20 beam has a 



 147 

very small torsional cross-section and suffers from high 

twist angles when large forces are applied by one leg.   

 When newer, smaller cylinders are available from 

Sentrinsic, they should replace the current prototype 

generation cylinders.  A cylinder with shorter top and 

bottom endcaps will improve the overall range of motion of 

the leg.  Both front and rear cylinder mounting shoulders 

for Cylinders L1 and R1 should be redesigned to eliminate 

the slight mechanical interference exhibited on the current 

version.   

 A new Signal Routing PCB should be designed using 

smaller components and an onboard DC power supply.  Surface 

mount op-amps and resistors should be used in conjunction 

with test loops to allow for rapid system diagnoses.   

8.2 Leg Control 

 The force based position controller developed through 

this project accurately positions the robot feet while 

tracking the input commands from the operator.  Control 

requirements were < 10% position tracking error through 

both the swing and stance phases of the gait, robustness to 

external loading and mechanical failures, and stability 

under all loading scenarios.   

 The initial PD controller performed unsatisfactorily 

with a large tracking error during stance phase.  Velocity 

feed-forward input greatly improved tracking during swing 

phase, and a stroke velocity damping term improved 

transient responses.   
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 A gain scheduler was added to the PD controller to 

improve system response under the extreme loading 

variations encountered during a walking gait.  Initially, a 

gain was applied to the pressure differential.  One of four 

gains was selected based on the pressure differential sign 

and the position error sign.  This proved a great 

improvement in tracking, but added an undesired “hopping” 

effect as the position error changed sign, instantaneously 

changing the additive control effort.   

 A revised gain scheduler was developed to continue 

adding supplementary control effort based on the 

differential pressure and position error.  The new 

scheduler scaled the additive effort by the magnitude of 

the position error and the differential force on the 

actuator.  The “hopping” effect disappeared because the 

supplementary control effort decreased with position error, 

so once the actuator reached its commanded stroke length, 

the correct pressure differential was in place across the 

piston.   

 The same controller was applied to all six cylinders 

and the gains were tuned for stability and response.  The 

results of the PD + vff + dfe controller fit within the 

control requirements, yielding a position tracking error < 

10% through the entire gait cycle, stable system responses, 

and robust to the varied loads experienced by each 

different cylinder.  Figure 8.1 below, again, demonstrates 

the satisfactory position responses through a gait cycle.   



 149 

 

45 50 55 60 65
0

0.5

1

Cylinder L1

45 50 55 60 65
0

0.5

1

S
tr

o
k
e
 L

e
n
g
th

 (
in

.)

Cylinder L2

45 50 55 60 65
0

0.5

1

Time (s)

Cylinder L3

 

 

xref

xact

 

Figure 8.1: Full Controller on Left Leg Through Numerous 

Gait Cycles 

 

8.2.1 Recommendations for Future Work 

 While the current controller works well for each 

individual leg and for general robot movement, a new 

controller should be developed based on more modern control 

theories to achieve a tracking error magnitude < 5%.  This 

smaller tracking error will improve the haptic “feel” of 

the robot and yield more desirable system responses.  A 
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model-reference controller may provide a good control 

effort, but will be difficult due to the modeling 

inaccuracies bound to occur when working with pneumatic 

systems.   

 The dynamics of the entire robot body should also be 

modeled for control development.  Since, when standing, the 

robot body is essentially the platform of a parallel 

manipulator, a higher level body controller could assist in 

leg coordination and subdue some of the conflicting lateral 

forces produced by the operator while standing, and more 

effectively coordinate the pulling forces during stance 

phase body movement.   

8.3 Operator Interface 

 A prototype operator workstation was built to seat the 

operator with two PHANToMs and a head-mounted display.  The 

PHANToMs are mounted on movable arms, adjustable to fit any 

operator comfortably.  The motion tracker mounted to the 

head-mounted display provides commands to the PTZ camera on 

the robot.  This setup moves the camera to match the head 

orientation of the operator, placing the viewpoint of the 

operator on the front of the robot.   

 Haptic feedback is produced through the two PHANToM 

controllers.  The operator is provided with a directional 

force relative to the position error.  The scaled position 

error yields a “spring” sensation to the operator as if the 

endpoints of the PHANToMs were attached to the robot feet 

by springs.  Due to the spring sensation, improved tracking 
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control will maintain a low position error, therefore a 

lower ambient force at the PHANToM endpoint.  Tighter 

tracking will produce a crisper rise in force when the leg 

encounters an obstacle.   

 The current state of the haptic feedback allows the 

operator to feel large obstacles, but not the ground itself 

due to the smoothness of the position controller.  Large 

obstacles must also be much more massive than the robot.  

Smaller obstacles are simply pushed out of the way by the 

robot’s powerful legs. 

8.3.1 Recommendations for Future Work 

 The operator workstation should be optimized through 

research on human factors and workstation layouts.  The 

positions of the PHANToMs, size and shape of the chair, and 

posture of the operator should be optimized for long-term 

continuous usage.   

 The video overlay viewed through the head-mounted 

display must also be optimized for ease of access and 

information flow.  Researchers at NCAT are currently 

exploring this, but final implementation must be made with 

the overall robot workstation controller.   

 Specifically, a study should be made evaluating the 

effectiveness of voice commands over strategically placed 

buttons for repetitive operational commands.  The display 

style of mission-critical data should be evaluated as well.  

Optimal camera position must also be determined based on 

mission parameters and practicality.   
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 Future work focused on the CRC haptic interface should 

be coupled to the overall control research.  Since the 

robot is a bilateral teleoperated device, the effectiveness 

of the robot controller can affect the performance of the 

haptic feedback.   

 The haptic control should be improved to the point 

where the operator can bring the foot on a collision 

trajectory and exert only a small amount of force on the 

obstacle before stopping.  A current metric for this 

experiment is to exert less than 1/6 of the robot weight 

into the obstacle during swing phase movement.   

8.4 Guided-Gait Coordination 

 The guided-gait coordination routine designed through 

this research shows one method by which the operator is 

capable of creating specifically guided foot trajectories 

which propagate to subsequent leg pairs.  The network of 

“stepping stones” mapped out through the front legs are the 

known safe, stable footholds in the unknown environment.  

Each following leg is constrained to start and finish its 

foot trajectory on such a point and follow the recorded 

trajectory.   

 The guided gait trajectory designed herein allows for 

straight-line motion on level terrain.  The basic order of 

operations of the gait routine combine simple operator 

commands in harmony with cues from the gait coordinator.  

Once the gait routine has begun, the operator moves and 

records the swing phases of the front two legs.  Then, a 
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simple command, verbal or manual, commands the coordinator 

to move the rear four legs.  A simple visual cue is 

displayed to the operator indicating the status of each leg 

being automatically positioned.  The operator then gives 

another simple command to begin body advancement, a six-

legged coordinated stance phase.  Once complete, the 

operator will begin the sequence again.  

8.4.1 Recommendations for Future Work 

 A global control architecture must be developed to 

execute the guided-gait coordination routine.  Recorded 

trajectories should be more thoroughly analyzed for signs 

of obstacle avoidance so the spline points can be more 

efficiently placed to reduce the overall time of the swing 

trajectory when played through trailing legs.  Experiments 

should be done to validate the straight-line effectiveness 

of the gait routine. 

 Advanced work could combine the onboard camera with 

the guided-gait coordination routine.  To enable body 

rotation, the mapped “stepping stone” points can be 

enlarged to areas where the camera detects no obstacles and 

stable ground.  The mapped trajectories must also be 

manipulated to avoid known obstacles after the robot body 

has rotated in the global coordinate frame.   

 The finale of the guided-gait development should allow 

the robot to traverse chaotic 3D terrain while changing 

body orientation and elevation.  Effective synergy of the 

man-machine interface, coupling haptic, visual, and aural 
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feedback and sensations will greatly expand the reach of 

search and rescue operations in times of dire need.   

8.5 Academic Contributions 

 Several areas of this research project have yielded 

contributions to the engineering and academic communities.    

This robot leg design and construction yielded two rugged, 

powerful, and maneuverable leg structures.  The design and 

construction of the operator interface workstation yielded 

a configurable basis for future work on this high degree of 

freedom fluid power testbed. 

 The force-based position control algorithm controlling 

the six pneumatic cylinders is simple, robust, and stable.  

The ability to track direct user inputs while operating 

under a wide variety of loading conditions is a significant 

contribution. 

 The outline and development of the Guided-Gait 

Coordination routine contributes to the engineering 

community by allowing hybrid control of six or more legs by 

allowing the operator to directly control the two leading 

legs.  The application of this routine to a rescue robot 

will allow an operator to guide the vehicle through unknown 

terrain using haptic and visual feedback as guides. 
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Figure 8.2: Compact Rescue Crawler 
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APPENDIX A: 

SOLUTION OF LINEAR TRIGONOMETRIC EQUATION 
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Figure B.2: PHANToM Input to Stroke Length Voltage 

Transformation (Simulink) 
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Figure B.6: Stroke Length to 0-10V Conversion 
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Figure B.9: Differential Force Gain Scheduler (Simulink) 
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APPENDIX C 

C++ CODE FOR PHANTOM HAPTIC INTERFACE 

 

/**********************************************************  

  Author:  Matt Kontz <mkontz@mail.com> 

  Lab:  IMDL ME nGaTech 

  Created: February 7, 2005 

/********************************************************** 

 PHANToM/Omni coordinates 

  x-axis -> to the right 

  y-axis -> up 

  z-axis -> towards user 

/*********************************************************/ 

#include <stdio.h> 

#include <conio.h> 

#include <assert.h> 

#include <iostream.h>  // for cout, cerr 

#include <iomanip.h>  // for setw, setpreci sion 

#include <fstream.h>  // for writing to files 

#include <windows.h>  // WIN32 Threads 

#include <time.h> 

#include <HD/hd.h> 

#include <HDU/hduVector.h> 

#include <windows.h>  // WIN32 Threads 

#include "Callback.h"  // local header file /w 

callback 

#include "DataStorage.h" // local storage 
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#include "DataStruct.h"  // Phantom, and Hal data 

structures 

#include "ArgStruct.h"  // ThrArgs & CallbackArgs 

#include "Sock.h" 

void sendP2CThread(void*); 

void recvC2PThread(void*); 

typedef struct 

{ 

 //internal device handle 

 HHD handle; 

 const char* name; 

 //phantom data 

 DataStorage* data; 

 HANDLE mutex; 

 HANDLE sendThread; 

 HANDLE; 

 DWORD sendThreadID; 

 DWORD recvThreadID; 

 udpSocket* sendP2C; //P2C 

 udpSocket* recvC2P; //C2P 

 FILE* logFile; 

 bool writeLog; 

} Phantom; 

typedef struct 

{ 

 Phantom phanL; 

 Phantom phanR; 
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} UserData; 

double pi = 3.1415926535897932; 

void handleDev(Phantom phan)//HHD handle, DataStorage* 

data, udpSocket* recv, udpSocket* send) 

{ 

 unsigned short int mode = 1; 

 hduVector3Dd Ph_Pos; 

 hduVector3Dd Ph_Vel; 

 HDdouble Ph_Phi; 

 hduVector3Dd Ph_Theta; 

 hdMakeCurrentDevice(phan.handle); 

 hdEnable(HD_FORCE_OUTPUT); 

 hdBeginFrame(hdGetCurrentDevice()); 

 hdGetDoublev(HD_CURRENT_POSITION, Ph_Pos); 

 hdGetDoublev(HD_CURRENT_VELOCITY, Ph_Vel); 

 hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, Ph_Theta); 

 Ph_Phi = 3*pi/2 + Ph_Theta[2]; 

 static const HDdouble kspring = 0.06; // N/mm 

 hduVector3Dd CRC_Pos; 

 hduVector3Dd CRC_For; 

 HDdouble CRC_phi; 

 hduVector3Dd Delta_Pos; 

 hduVector3Dd Force; 

 CRC_Pos = phan.data->getCRCPos(); 

 CRC_For = phan.data->getCRCFor(); 

 CRC_phi = phan.data->getCRCPhi(); 

 Delta_Pos = Ph_Pos - CRC_Pos; 
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 hduVecScale(Force, Delta_Pos, -kspring); 

    hdSetDoublev(HD_CURRENT_FORCE, Force); 

 phan.data->setPhanData(Ph_Pos, Ph_Vel, Ph_Phi, 0, 

mode); 

 hdEndFrame(hdGetCurrentDevice()); 

 

 ::ResumeThread(phan.sendThread); 

} 

HDCallbackCode Trigger(void *pUserData) 

{ 

 UserData args = *((UserData*)pUserData); 

 handleDev(args.phanL); 

 handleDev(args.phanR); 

 return HD_CALLBACK_CONTINUE; 

} 

//foreign IP address 

char *forIP = "192.168.1.111"; 

//char *forIP = "192.168.1.1"; 

void initPhantom(Phantom* phan, const char* name, int 

sendP, int recvP) 

{ 

 //setup log file 

 //logFile name convention 

 phan->writeLog = false; 

 phan->mutex = CreateMutex(0, false, 0); 

 phan->name = name; 

 //init the internal device handle 
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 phan->handle = hdInitDevice(name); 

 //initialize all of the sockets 

 phan->sendP2C = new udpSocket(forIP, sendP, sendP+1); 

 phan->recvC2P = new udpSocket(forIP, recvP+1, recvP); 

 phan->data = new DataStorage(); 

 phan->recvThread = ::CreateThread( 

  NULL,0, (LPTHREAD_START_ROUTINE) recvC2PThread, 

  (LPVOID) phan,0,(LPDWORD) &phan->recvThreadID); 

 ::SetThreadPriority(phan->recvThread ,15);    

 phan->sendThread = ::CreateThread( 

  NULL,0,(LPTHREAD_START_ROUTINE) sendP2CThread, 

  (LPVOID) phan,0,(LPDWORD) &phan->sendThreadID); 

 ::SetThreadPriority(phan->sendThread,15);  

} 

int main(int argc, char* argv[]) 

{ 

 //two phantoms, left and right 

 UserData userDat; 

 //phantom schedule handler 

 HDSchedulerHandle hServoCallback; 

 

 initPhantom(&userDat.phanL, "Lefty", 26401, 23201); 

 initPhantom(&userDat.phanR, "Righty", 26501, 23301); 

 //Get initialization data from CRC 

 PhanStruct Get_Pos; 

 memset(&Get_Pos, 0, sizeof(PhanStruct));  // 

empty structure 
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 Get_Pos.mode = 3;       // 3 

ques for CRC pos 

 Get_Pos.x = 1; 

 Get_Pos.y = 2.2; 

 Get_Pos.z = 3.33; 

 Get_Pos.flags = 5; 

 CRCStruct Reply; 

 memset(&Reply, 0, sizeof(CRCStruct));  // empty 

structure  

 cout << "TEST MESSAGE." << endl; 

 cout << "x = " << Reply.x  << endl; 

 cout << "y = " << Reply.y  << endl; 

 cout << "z = " << Reply.z  << endl;  

 //clear the phantom data 

 userDat.phanL.data->setCRCData(Reply);  

 userDat.phanR.data->setCRCData(Reply);  

 

 cout << "Next incoming message from CRC" << endl; 

 cout << "x = " << Reply.x  << endl; 

 cout << "y = " << Reply.y  << endl; 

 cout << "z = " << Reply.z  << endl; 

 //set the phantom callback 

 hServoCallback = hdScheduleAsynchronous(Trigger, (void 

*) &userDat, HD_MAX_SCHEDULER_PRIORITY); 

    hdStartScheduler(); 

    // create a com port file for testing CTS and DSR 

 char ch; 
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 short bRet, bCont, bNoChange;  

 Phantom * p = 0; 

 DWORD dwStatus, dwNextSwitch; 

 HANDLE fIn = CreateFile("com1",GENERIC_READ | 

GENERIC_WRITE, 0, NULL,  

                      OPEN_EXISTING, 

FILE_ATTRIBUTE_NORMAL, NULL); 

    if (fIn == INVALID_HANDLE_VALUE) { 

  MessageBox(NULL, "Open of com1 failed", "Error", 

MB_OK); } 

    dwNextSwitch = 0; 

 bCont = TRUE; 

 

 printf("Press 'z' or 'x' to record data from 

phantom\n"); 

    printf("Press any other key to quit.\n\n"); 

 while (bCont) 

 { 

  bNoChange = TRUE; 

  while (bNoChange) { 

   if (kbhit()) { 

     bNoChange = FALSE; 

     ch = getch(); 

     if (ch == 'x') { 

     p = &userDat.phanR; } 

      else if (ch == 'z') { 

     p = &userDat.phanL; } 
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      else { 

    bCont = FALSE; } } 

   if (!bNoChange) break; 

            if (fIn != INVALID_HANDLE_VALUE && 

GetTickCount() > dwNextSwitch) { 

     bRet = GetCommModemStatus(fIn, &dwStatus); 

     if (dwStatus & MS_CTS_ON) { 

    p = &userDat.phanL; 

    dwNextSwitch = GetTickCount() + 1000; 

    bNoChange = FALSE; } 

     else if (dwStatus & MS_DSR_ON) { 

    p = &userDat.phanR; 

    dwNextSwitch = GetTickCount() + 1000; 

    bNoChange = FALSE; } }  

  Sleep(1); } 

  WaitForSingleObject(p->mutex, INFINITE); 

  if (p->writeLog) 

  { 

   //stop rec 

   printf("Stopped recording: %s\n", p->name); 

   p->writeLog = false; 

   fclose(p->logFile); 

   p->logFile = 0; 

  } 

  else 

  { 

   time_t seconds = time(0); 
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   char fname[255]; 

   sprintf(fname, "%s_%d_v1.txt", p->name, 

seconds);  

   printf("Started recording: %s into %s\n", p-

>name, fname); 

 

   p->writeLog = true; 

   p->logFile = fopen(fname, "w"); 

  }  

  ReleaseMutex(p->mutex); 

 } 

 printf("test\n"); 

    // close the com port test handle 

 if (fIn != INVALID_HANDLE_VALUE) CloseHandle(fIn); 

 //stop schedule and distable phantoms 

    hdStopScheduler(); 

 hdDisableDevice(userDat.phanL.handle); 

 hdDisableDevice(userDat.phanR.handle); 

 /// Clean up /// 

 // Destroy Thread 

 ::TerminateThread(userDat.phanL.recvThread,userDat.pha

nL.recvThreadID); 

 ::TerminateThread(userDat.phanL.sendThread,userDat.pha

nL.sendThreadID); 

 ::TerminateThread(userDat.phanR.recvThread,userDat.pha

nR.recvThreadID); 
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 ::TerminateThread(userDat.phanR.sendThread,userDat.pha

nR.sendThreadID); 

 //close open files 

 if (userDat.phanL.logFile != 0) 

 { 

  fclose(userDat.phanL.logFile); 

 } 

 if (userDat.phanR.logFile != 0) 

 { 

  fclose(userDat.phanR.logFile); 

 } 

 return 0; 

} 

void sendP2CThread(void* args) 

{ 

 Phantom* p = (Phantom*)args; 

 PhanStruct msg; 

 char line[255]; 

 while (true) 

 { 

  ::SuspendThread(p->sendThread); 

  //populate msg with new Phantom data 

  msg = p->data->getPhanData(); 

  p->sendP2C->send((char *) &msg, sizeof(msg)); 

 

  WaitForSingleObject(p->mutex, INFINITE); 

  //write out file data 



 177 

  if (p->writeLog && p->logFile != 0) 

  { 

   //PhanStruct ps = p->data->getPhanData(); 

   sprintf(line, "%.2f %.2f %.2f\n", msg.x, 

msg.y, msg.z); 

   fputs(line, p->logFile); 

   fflush(p->logFile); 

  } 

  ReleaseMutex(p->mutex); 

 } 

} 

void recvC2PThread(void* args) 

{ 

 Phantom p = *(Phantom*)args; 

 CRCStruct msg; 

 while (true) 

 { 

  p.recvC2P->recv((char*) &msg, sizeof(msg)); 

  if (msg.time % 1000 == 100) 

  { 

   cout << "CRC POS" << endl; 

   cout << "x = " << msg.x; 

   cout << ", y = " << msg.y; 

   cout << ", z = " << msg.z; 

   cout << ", Time = " << msg.time <<endl;; 

  }  

  p.data->setCRCData(msg); 
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 } 

} 
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//********************************************************* 

//  Filename : DataStruct.h 

// This file declare two different data structures.  One 

is made to store data 

// from the Phantom and the second is to store data from 

Backhoe. 

// Author:  Matt Kontz <mkontz@mail.com> 

// Lab:  IMDL ME GaTech 

// Created: February 8, 2005 

//********************************************************* 

#ifndef _ARG_STRUCTURE_INCLUDE__  // if not defined 

'......' 

#define _ARG_STRUCTURE_INCLUDE__  // defines '......' 

so only happens once. 

#include "DataStorage.h" 

#include "Sock.h" 

#include <windows.h> 

struct CallbackArgs {   

 HANDLE hThread; 

 DataStorage *data; 

}; 

struct ThrArgs {   

 udpSocket *sock; 

 DataStorage *data; 

}; 

#endif 
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/********************************************************** 

   Filename : Callback.h 

/********************************************************** 

  This file handles the call back that the Omni will 

excute each servo-loop;  

  Author:  Matt Kontz <mkontz@mail.com> 

  Lab:  IMDL ME GaTech 

  Created: Februery 7, 2005 

/*********************************************************/ 

#ifndef __Callback_OMNI_INCLUDED__ 

#define __Callback_OMNI_INCLUDED__ 

#include <HD/hd.h> 

#include <HDU/hduVector.h> 

#include "DataStorage.h" // local storage 

#include "DataStruct.h"  // Phantom, and Hal data 

structures 

#include "ArgStruct.h"  // ThrArgs & CallbackArgs 

 

#include <iostream.h> 

//#include "..\..\FlagModelDef.h" 

HDCallbackCode OmniCallback(void *pUserData) 

{ 

 CallbackArgs CbArg = * (CallbackArgs *) pUserData; 

  DataStorage *data = CbArg.data; 

  HANDLE hThreadP2H = CbArg.hThread; 

 int time; 

 // Device State Declartions 
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// HDint ButtonStates[1];   // first bit -> 

blue, second bit -> white button 

    hduVector3Dd Ph_Pos;   // PHANToM Position 

(translational) 

 hduVector3Dd Ph_Center;   // PHANToM Position 

(translational) 

 hduVector3Dd Ph_Vel;   // PHANToM Velocity 

(translational) 

 hduVector3Dd Ph_Theta;   // PHANToM Gimbal 

angle 

 HDdouble Ph_Phi; 

 hduVector3Dd Delta;    //Delta 

 Delta.set(10,10,10); 

 double pi = 3.1415926535897932; 

 //bool BlueButton;    // true if Blue 

button is depressed 

// bool GreyButton;    // true if Grey 

button is depressed 

// bool OnOff; 

 hduVector3Dd Force;    // Force to display 

 // Control variables - Postion Mode 

 static const HDdouble kspring = 0.1; // N/mm 

 hduVector3Dd CRC_Pos; 

 hduVector3Dd CRC_For; 

 HDdouble CRC_phi; 

 hduVector3Dd Delta_Pos; 

 //hduVector3Dd Delta_pos2; 
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 unsigned short int mode; 

/********************************************************** 

 Get latest States from PHANToM 

**********************************************************/ 

    hdBeginFrame(hdGetCurrentDevice());    

 // Update device states 

    hdGetDoublev(HD_CURRENT_POSITION, Ph_Pos);    

 hdGetDoublev(HD_CURRENT_VELOCITY, Ph_Vel); 

 hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, Ph_Theta); 

 printf("cb %f %f %f\n", Ph_Pos[0], Ph_Pos[1], 

Ph_Pos[2]); 

 //hdGetIntegerv(HD_CURRENT_BUTTONS, ButtonStates); 

// if (ButtonStates[0] % 2 == 1)  

// { 

//  BlueButton = true;   // 1 or 3 -> blue 

button is depressed 

// }  

// else  

// { 

//  BlueButton = false; 

// } 

// if (ButtonStates[0] > 1) 

// { 

//  GreyButton = true;   // 2 or 3 -> grey 

button is depressed 

// }  

// else  
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// { 

//  GreyButton = false; 

// } 

/********************************************************* 

 Get latest data from CRC 

**********************************************************/  

 CRC_Pos = data->getCRCPos(); 

 CRC_For = data->getCRCFor(); 

 CRC_phi = data->getCRCPhi(); 

/********************************************************** 

 Send PHANToM data to CRC 

**********************************************************/ 

 time = data->getTime();      // 

get time (ms ~= # callbacks) 

 data->incTime();       // 

increment time 

// if ( (BlueButton == true) || (GreyButton == true) )   

//  OnOff = data->OnOffState(true);  

// else 

//  OnOff = data->OnOffState(false); 

// if (OnOff == true) 

  mode = 1; 

// else  

//  mode = 4;  

 Delta_Pos = Ph_Pos - CRC_Pos; 

 //Delta_Pos2 = Delta_Pos*DeltaPos; 

 //Delta_Pos = Ph_Pos ; 
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 Ph_Phi = 3*pi/2 + Ph_Theta[2]; 

 // Ph_Phi = -pi/2 - Ph_Theta[2]; 

 data->setPhanData(Ph_Pos, Ph_Vel, Ph_Phi, 0, mode); 

  // set PHANToM states 

 ::ResumeThread(hThreadP2H);     // 

trigger P2H thread to start 

 Send New Haptic Force 

    hduVecScale(Force, Delta_Pos, -kspring); 

    hdSetDoublev(HD_CURRENT_FORCE, Force); 

    hdEndFrame(hdGetCurrentDevice()); 

    return HD_CALLBACK_CONTINUE; 

} 

#endif  // #ifndef __Callback_OMNI_BOOM_INCLUDED__ 
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//  Filename : DataStorage.h 

// This file is creates a Data Storage object used to 

store, change and  

//  retrieve data associated with the Phantom.  

// Author:  Matt Kontz <mkontz@mail.com> 

// Lab:  IMDL ME GaTech 

// Created: March 6, 2002 

// Edited:  April 16, 2005 

#ifndef _DATA_STORAGE_INCLUDE__  // if not defined 

'......' 

#define _DATA_STORAGE_INCLUDE__  // defines '......' 

so only happens once. 

#include <HD/hd.h> 

#include <HDU/hduVector.h> 

#include <string.h> 

#include <fstream.h> 

#include <iostream.h> 

#include <math.h> 

#include "DataStruct.h" 

//#include "..\..\FlagModelDef.h" 

//#include <FlagModelDef.h> 

const int RECENT = 1;   // Number of current 

points being stored 

class  DataStorage 

{ 

private: 

// Class variables 
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 unsigned int Time; 

 PhanStruct PhData;   // Recent Phantom data 

for control use 

 CRCStruct CRCData;   // Recent CRC data for 

control use 

 hduVector3Dd Ph_Vel; 

 hduVector3Dd Ph_Pos; 

 hduVector3Dd CRC_Pos; 

 hduVector3Dd CRC_For; 

 hduVector3Dd CRC_Origin; 

 HDdouble CRC_phi; 

 unsigned short int flags; 

 bool flagVector[16]; 

 int k; 

 //bool OnOff; 

 //bool LastButtonState; 

public: 

// Constructors 

 DataStorage()  

 { 

  Time = 0; 

  memset(&PhData, 0, sizeof(PhanStruct)); 

  memset(&CRCData, 0, sizeof(CRCStruct)); 

  memset(&Ph_Vel, 0, sizeof(hduVector3Dd)); 

  memset(&Ph_Pos, 0, sizeof(hduVector3Dd)); 

  memset(&CRC_Pos, 0, sizeof(hduVector3Dd)); 

  memset(&CRC_For, 0, sizeof(hduVector3Dd)); 
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  memset(&CRC_Origin, 0, sizeof(hduVector3Dd)); 

  memset(&flagVector, 0, sizeof(flagVector)); 

  // control/mode flags 

//  flagVector[RATE_MODE_FLAG] = 0;  // 0 = 

position mode, 1 = rate mode 

//  flagVector[HENRE_V_HENRE_FLAG] = 0;  // 0 

= HEnRE, 1 = V-HEnRE  

  flags = 0; 

  for( k = 0 ; k < 16 ; k++ ) 

  { 

   flags = flags + flagVector[k] * (unsigned 

short int) pow(2, k); 

  }  

//  OnOff = 0; 

//  LastButtonState = 0; 

 } 

// Time functions 

 void incTime() { Time++; } 

 int getTime() { return Time; } 

// Time functions 

 void setFlags(unsigned short int num, bool f) {  

  flagVector[num] = f;  

  flags = 0; 

  for( k = 0 ; k < 16 ; k++ ) 

  { 

   flags = flags + flagVector[k] * (unsigned 

short int) pow(2, k); 
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  }  

 } 

 unsigned short int getFlags() { return flags; } 

// On-Off function 

/* bool OnOffState(bool ButtonState) {  

  if ( ButtonState == 1 ) { 

   if (LastButtonState != 1 ) { 

    if ( OnOff == 1)  

     OnOff = 0; 

    else 

     OnOff = 1; 

   } 

  } 

  LastButtonState = ButtonState; 

  return OnOff; 

 }*/ 

// Function to retrieve data structure 

 PhanStruct getPhanData() { return PhData; } 

 hduVector3Dd getCRCPos() { return CRC_Pos; } 

 hduVector3Dd getCRCFor() { return CRC_For; } 

 HDdouble getCRCPhi() { return CRC_phi; }  

// Functions to store CRC data 

 void setCRCOrigin(CRCStruct CRC)   

 { 

  CRCData = CRC; 

  CRC_Origin.set(CRC.x,CRC.y,CRC.z); 

 } 
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// Functions to store CRC data 

 void setCRCData(CRCStruct CRC)   

 { 

  CRCData = CRC; 

  CRC_Pos.set(CRC.x,CRC.y,CRC.z); 

//  Bh_For.set(Bh.fx,Bh.fy,Bh.fz); 

//  Bh_phi = Bh.phi; 

 } 

   

// Functions to store Phan data 

 void setPhanData(hduVector3Dd p, hduVector3Dd v, 

HDdouble Ph_Phi, HDdouble Ph_vPhi, unsigned short int mode) 

 { 

  Ph_Pos = p; 

  Ph_Vel = v; 

  PhData.mode = mode; 

  PhData.flags = flags;  

  PhData.time = Time; 

  PhData.x = p[0]; 

  PhData.y = p[1]; 

  PhData.z = p[2]; 

//  PhData.phi = Ph_Phi;  

//  PhData.vx = v[0]; 

//  PhData.vy = v[1]; 

//  PhData.vz = v[2]; 

//  PhData.vphi = Ph_vPhi;  
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 } 

}; 

#endif // _DATA_STORAGE_INCLUDE__ (ascociated with 

"#ifndef") 
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//*********************************************************

******************** 

//  Filename : DataStruct.h 

// --------------------------------------------------------

-------------------- 

// This file declare two different data structures.  One 

is made to store data 

// from the Phantom and the second is to store data from 

the Backhoe 

// Author:  Matt Kontz <mkontz@mail.com> 

// Lab:  IMDL ME GaTech 

// Created: October 19, 2003 

// Edited:  November 11, 2005 

//*********************************************************

******************** 

#ifndef DATA_STRUCTURE_INCLUDE  // if not defined 

'......' 

#define DATA_STRUCTURE_INCLUDE  // defines '......' 

so only happens once. 

// #include "DataStorage.h" 

// #include "Sock.h" 

#include <windows.h> 

struct PhanStruct  

{ 

 double x;       // 8 bytes = 

64bits 

 double y; 
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 double z; 

 unsigned int time;     // 4 bytes = 

32bits 

 unsigned short int mode;   // 2 bytes = 16bits 

 unsigned short int flags;   // 2 bytes = 

16bits          

}; 

// Stores all relevant data from Backhoe for each sampling 

peroid 

struct CRCStruct  

{  

 double x; 

 double y; 

 double z; 

 unsigned int time;     // 4 bytes = 

32bits*/ 

 unsigned short int mode;   // 2 bytes = 16bits 

 unsigned short int flags;   // 2 bytes = 

16bits 

}; 

#endif
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//  Filename : Sock.h 

// --------------------------------------------------------

-------------------- 

// This file is creates the object udpSocket.  This class 

has four associated  

// functions: a constructor, send, recv and close.  Being 

a class object these 

// classes are stand alone and can be used by function 

using pointers.  

// If you are using Visual C++ you must include the 

wsock32.lib library under  

// "Link" -> "Input".   

// Author:  Matt Kontz <mkontz@mail.com> 

// Lab:  IMDL ME GaTech 

// Created: July 10, 2002 

// Edited:  na 

#ifndef __SOCK_INCLUDED__ 

#define __SOCK_INCLUDED__ 

#include <iostream.h>   // For cout and cerr 

#include <string.h>    // for memset()  

#include <stdlib.h>    // for atoi() and exit()  

#include <stdio.h>    // for printf() and 

fprintf()  

#include <errno.h> 

#ifdef WIN32      

 #include <winsock.h>  // for socket(), 

connect(), send(), and recv() 
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 typedef int socklen_t; 

#else 

 #include <sys/types.h>  // for socket(), 

connect(), send(), and recv() 

 #include <sys/socket.h>  // for socket(), 

connect(), send(), and recv() 

 #include <netdb.h>   // for gethostbyname() 

 #include <arpa/inet.h>  // for sockaddr_in and 

inet_addr() 

 #include <unistd.h>   // for close() 

#endif 

class udpSocket 

{ 

private: 

 int sock;       // Socket  

 unsigned short localPort;   // Local port 

 unsigned short forPort;    // Foreign 

port 

    struct sockaddr_in localAddr;  // Local address  

 struct sockaddr_in forAddr;   // Foreign 

address 

 struct hostent *host;    // pointer to 

server information  

 char *forIP;      // Foreign IP 

address  

 unsigned int addrLen; 

public: 
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 udpSocket(char *fip, unsigned short fp,unsigned short 

lp) 

 { 

  forIP = fip; 

  forPort = fp; 

  localPort = lp; 

  sock = -1;    // Less than 0 mean 

not connected 

  #ifdef WIN32 

   WORD wVersionRequested; 

   WSADATA wsaData; 

   wVersionRequested = MAKEWORD(2, 0);                  

// Request Winsock v2.0  

   if (WSAStartup(wVersionRequested, &wsaData) 

!= 0)   // Load Winsock DLL  

   { 

    cerr << "WSAStartup() failed" << endl; 

    exit(1); 

   } 

  #endif 

  // Create a datagram/UDP socket  

  if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0)  

  { 

   cerr << strerror(errno) << "socket() 

failed!" << endl; 

   exit(1); 

  } 
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  // Construct local address structure  

  memset(&localAddr, 0, sizeof(localAddr));  

 // Zero out structure  

  localAddr.sin_family = AF_INET;    

 // Internet address family  

  localAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 // Any incoming interface 

  localAddr.sin_port = htons(localPort);  

 // Local port  

  // Bind to the local address  

  if (bind(sock, (struct sockaddr *) &localAddr, 

sizeof(localAddr)) < 0) 

  { 

   cerr << strerror(errno) << "bind() failed" 

<< endl; 

   exit(1); 

  } 

  // find foreign address 

  memset((char *) &forAddr, 0, sizeof(forAddr)); 

  int addr = inet_addr(forIP); 

  forAddr.sin_addr.s_addr = addr; 

  if(addr != -1)  

  { 

   forAddr.sin_family = AF_INET; 

  }  

  else  

  { 
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   host = gethostbyname(forIP); 

   if (host)  

   { 

   forAddr.sin_family = host->h_addrtype; 

   forAddr.sin_addr.s_addr = *((unsigned long 

*)host->h_addr_list[0]); 

   }  

   else  

   { 

    cerr << strerror(errno) << "Cannot get 

host information for server." << endl; 

    exit(1); 

   } 

  } 

  forAddr.sin_port = htons(forPort); 

  addrLen = sizeof(forAddr); 

 } 

 void send(char *msg, const int msgLen)  

 {  

  // Send the string to the server  

  if (sendto(sock, msg, msgLen, 0, (struct sockaddr 

*) &forAddr, addrLen) != msgLen)  

  { 

   cerr << strerror(errno) << "sendto() sent an 

incorrent number of bytes" << endl; 

   exit(1); 

  } 
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 } 

 void recv(char *buffer, const int msgLen)  

 { 

  struct sockaddr_in fromAddr;  // Source 

address of echo  

  int recvLen;      // Length 

of received response */ 

  // Recv a response  

  recvLen = recvfrom(sock, buffer, msgLen, 0, 

(struct sockaddr *) &fromAddr, (socklen_t *) &addrLen); 

  if (recvLen != msgLen)  

  { 

   cerr << strerror(errno) << "recvfrom() 

failed: incorrent number of bytes" << endl; 

   //exit(1); 

  } 

  // Check sender of message 

  if (fromAddr.sin_addr.s_addr != 

forAddr.sin_addr.s_addr) 

  { 

   cerr << strerror(errno) << "recvfrom() 

failed: unknown host" << endl; 

   exit(1); 

  } 

 } 

 void close()  

 {  
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  // If the socket is open, close it. 

  if (sock > -1)  

  { 

   #ifdef WIN32 

    ::closesocket(sock); 

   #else 

    ::close(sock); 

   #endif 

   sock = -1; 

  } 

  #ifdef WIN32 

   if (WSACleanup() != 0)  

   { 

    cerr << "WSACleanup() failed" << endl; 

    exit(1); 

   } 

  #endif 

 } 

}; 

#endif 
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APPENDIX D 

MATLAB SCRIPT FOR READING, SMOOTHING, AND SAVING 

RECORDED TRAJECTORIES 

 

function trajcon(time,side,n) 

clear MASTER pinit pfinal 

if side == 2; 

    prefix='Righty_';   

else prefix='Lefty_'; 

end  

sidechar = num2str(side); 

timechar = num2str(time); 

fname = strcat(prefix, timechar, '_v1.txt'); 

lmastername = strcat('LMASTER.txt'); 

rmastername = strcat('RMASTER.txt'); 

%load in the recorded trajectory and it shall be called 

'vec' 

vec = load (fname); 

%load in the master trajectory matrix for the appropriate 

side 

if side == 2 

    MASTER = load('RMASTER.txt');    

else MASTER = load('LMASTER.txt');  

end 

sm=size(MASTER); 

%make a time vector 

t=ones(length(vec(:,1)),1); 

L=length(t); 

for k=1:L; 

    t(k)=k.*.001; 

end 

%split vec into PHANToM xyz vectors 

x = vec(:,1); 

y = vec(:,2); 

z = vec(:,3); 

%plot the vertical plane trajectory 

figure; 

plot(x,y); 

if side == 2 

    title('<----- Forward; View from body looking outward 

to RIGHT'); 
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    xlabel('(body axis) End Swing Phase <-------------- 

Start Swing Phase'); 

else 

    title('View from body looking outward to LEFT; Forward 

----->'); 

    xlabel('(body axis) Start Swing Phase --------------> 

End Swing Phase'); 

end 

ylabel('Down ------------------------> Up');  

%take n points from raw vectors 

tc=fix(L/(n)); 

for k=1:n+1; 

    tt(k)=((k-1)*tc)+1; 

    xx(k)=x(tt(k)); 

    yy(k)=y(tt(k)); 

    zz(k)=z(tt(k));    

end 

tt=tt.*.001; 

%make spline equations from those points (xx yy zz) 

%initial slope = final slope = 0 

spx=spline(tt, [0 xx 0]); 

spy=spline(tt, [0 yy 0]); 

spz=spline(tt, [0 zz 0]);  

%make curves from spline equations 

xxx=ppval(spx,t); 

yyy=ppval(spy,t); 

zzz=ppval(spz,t); 

% plot splines xyz subplotted 

figure; 

subplot(3,1,1); plot(t,x,'k',t,xxx,'r--'); 

title('PHANToM input vector (raw)'); 

%xlabel('Time (s)'); 

ylabel('x (mm)'); 

subplot(3,1,2); plot(t,y,'k',t,yyy,'r--'); 

%xlabel('Time (s)'); 

ylabel('y (mm)'); 

subplot(3,1,3); plot(t,z,'k',t,zzz,'r--'); 

xlabel('Time (s)'); 

ylabel('z (mm)'); 

%plot the 3d steppin action' 

figure; 

plot3(x,z,y,'k',xxx,zzz,yyy,'r--'); 

axis([-250 250 -250 250 -250 250]); 

xlabel('x (mm)'); 

ylabel('z (mm)'); 

zlabel('y (mm)'); 
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%put smoothed trajectories into new vector, and it shall be 

called 'nuvec' 

for k=1:L; 

    nuvec(k,1)=xxx(k); 

    nuvec(k,2)=yyy(k); 

    nuvec(k,3)=zzz(k); 

end 

%pull out first and last points 

pinit=ones(3,1); 

pfinal=ones(3,1); 

for k=1:3; 

    pinit(k,1)=nuvec(1,k); 

    pfinal(k,1)=nuvec(L,k); 

end 

poffset=[0;-127;-762]; %mm; offset from foot origin to 

shoulder in PHANTom reference frame 

pinit=pinit+poffset;    %evaluate distance from shoulder 

base to foot command point 

pfinal=pfinal+poffset;  

pinit1 = (pinit(1)); 

pinit2 = (pinit(2)); 

pinit3 = (pinit(3)); 

pfinal1 = (pfinal(1)); 

pfinal2 = (pfinal(2)); 

pfinal3 = (pfinal(3)); 

%APPEND DATA TO MASTER 

%MASTER IS 7 items WIDE (7 columns) 

% TIME  PINIT(1)  PINIT(2)  PINIT(3)  PFINAL(1)  PFINAL(2)  

PFINAL(3) 

MASTER((sm(1)+1),1)=time; 

MASTER((sm(1)+1),2)=pinit1; 

MASTER((sm(1)+1),3)=pinit2; 

MASTER((sm(1)+1),4)=pinit3; 

MASTER((sm(1)+1),5)=pfinal1; 

MASTER((sm(1)+1),6)=pfinal2; 

MASTER((sm(1)+1),7)=pfinal3; 

%Resave MASTER.txt 

if side == 2; 

    save(rmastername, 'MASTER', '-ascii'); 

else save(lmastername, 'MASTER', '-ascii'); 

end 

%save nuvec as r/ltimestamp.txt  

savefile = strcat(prefix, timechar, 'smoothed.txt'); 

%savefile=timechar; 

save(savefile, 'nuvec', '-ascii') 
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