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SUMMARY

Seismic imaging and parameter estimation are an import class of inverse problems

with practical relevance in resource exploration, carbon control and monitoring systems

for geohazards. The goal of seismic inverse problems is to image subsurface geological

structures and estimate physical rock properties such as wave speed or density. Mathe-

matically, this can be achieved by solving an optimization problem in which we minimize

the mismatch between numerically modeled data and observed data from a seismic sur-

vey. As wave propagation through a medium is described by wave equations, seismic

inverse problems involve solving a large number of partial differential equations (PDEs)

during numerical optimization using finite difference modeling, making them computation-

ally expensive. Additionally, seismic inverse problems are typically ill-posed, non-convex

or ill-conditioned, thus making them challenging from a mathematical standpoint as well.

Similar to the field of deep learning, this calls for software that is not only optimized for per-

formance, but also enables geophysical domain specialists to experiment with algorithms

in high-level programming languages and using different computing environments, such as

high-performance computing (HPC) clusters or the cloud. Furthermore, they call for the

adaption of dimensionality reduction techniques and stochastic algorithms to address com-

putational cost from the algorithmic side. This thesis makes three distinct contributions to

address computational challenges encountered in seismic inverse problems and to facili-

tate algorithmic development in this field. Part one introduces a large-scale framework for

seismic modeling and inversion based on the paradigm of separation of concerns, which

combines a user interface based on domain specific abstractions with a Python package

for automatic code generation to solve the underlying PDEs. The modular code structure

makes it possible to manage the complexity of a seismic inversion code, while matrix-free

linear operators and data containers enable the implementation of algorithms in a fashion

that closely resembles the underlying mathematical notation. The second contribution of
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this thesis is an algorithm for seismic imaging, that addresses its high computational cost

and large memory imprint through a combination of on-the-fly Fourier transforms, stochas-

tic sampling techniques and sparsity-promoting optimization. The algorithm combines the

best of both time- and frequency-domain inversion, as the memory imprint is independent

of the number of modeled time steps, while time-to-frequency conversions avoid the need

to solve Helmholtz equations, which involve inverting ill-conditioned matrices. Part three

of this thesis introduces a novel approach for adapting the cloud for high-performance

computing applications like seismic imaging, which does not rely on a fixed cluster of

permanently running virtual machines. Instead, computational resources are automatically

started and terminated by the cloud environment during runtime and the workflow takes

advantage of cloud-native technologies such as event-driven computations and container-

ized batch processing. The performance and cost analysis shows that this approach is able

to address current shortcomings of the cloud such as inferior resilience, while at the same

time reducing operating cost up to an order of magnitude. As such, the workflow provides

a strategy for cost effectively running large-scale seismic imaging problems in the cloud

and is a viable alternative to conventional HPC clusters.
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CHAPTER 1

INTRODUCTION

This thesis addresses current computational challenges arising in the context of seismic

imaging and parameter estimation. These problems are concerned with imaging geologi-

cal structures and estimating physical rock properties such as seismic velocities, density,

impedance or porosity from seismic measurements that are recorded at the earth’s surface

[1, 2]. Seismic imaging and parameter estimation play an important role in today’s oil and

gas exploration for increasing success rates of drilling into reservoirs and thus decreasing

the environmental impact of resource exploration. Furthermore they are used in monitor-

ing systems for geohazards, as well as in carbon control and CO2 sequestration [3, 4]. As

such, seismic exploration has the potential to play an important twofold role in addressing

today’s global challenges of an ever increasing demand for energy, as well as the need to

remove CO2 from the atmosphere to limit the global rise in temperatures and help mitigate

the effects of climate change.

Seismic images and parameters can be estimated from surface seismic measurements

by mathematically formulating an inverse problem and by using numerical optimization

techniques to minimize the mismatch between numerically predicted data and observed

data from a seismic survey [5]. Objective functions and optimization algorithms for seis-

mic imaging thus involve solutions of partial differential equations (PDEs), namely of wave

equations in the time or frequency domain. In the general case, the relationship between

the seismic measurements and the unknown parameters is nonlinear and objective func-

tions are non-convex. Additionally, this class of inverse problems is typically ill-posed, as

the information from the seismic data measured at the surface is not enough to uniquely

determine the desired physical properties in the subsurface. Development of optimization

algorithms for seismic inverse problems using (physics-inspired) constraints, regularization
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or alternative misfit functions thus forms a large ongoing area of research [5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16].

The second major challenge of seismic inverse problems is the high computational cost,

as optimization algorithms involve repeatedly solving large-scale wave equations in two

and three-dimensional domains using finite-difference modeling [17, 18, 19]. Equivalent

to the training of neural networks, numerical optimization for seismic inverse problems is

based on backpropagation and in principle requires storing the state variables of the forward

problem in memory [5, 20, 21]. However, realistically sized seismic inverse problems are

very high dimensional and waves have to be propagated for many wavelengths over thou-

sands of time steps, making it impossible to store the state variables in memory. Methods

such as domain decomposition or optimal checkpointing [22, 21] have to be used in prac-

tice to address the large size of the state variables (i.e. wavefields as a function of space and

time), which lie in the order of up to 1012 floating point values. Furthermore, computations

have to be carried out for a large number of individual seismic source experiments that

form a seismic survey. This makes seismic inverse problems computationally expensive in

a twofold way, as not only a large number of separate PDEs have to be solved during each

iteration of an optimization algorithm, but every PDE solve itself is expensive in terms of

memory and the required number of floating point operations (FLOPs) [23, 24].

The computational challenges of seismic inverse problems, combined with their math-

ematical properties of non-convexity and non-uniqueness, therefore require software that

scales to peta- and eventually exascale problem sizes, while at the same time facilitating

the implementation and development of complex inversion algorithms. The latter point is

a prerequisite for enabling algorithmic innovation by geophysical domain experts, without

requiring extensive knowledge in high-performance computing and optimizing compilers

[25]. Second of all, the field of seismic inversion calls for the development and adaption of

techniques from dimensionality reduction, compressive sensing and stochastic optimiza-

tion to address computational challenges from an algorithmic point of view. As seismic
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data in itself is highly redundant and subsurface images and parameters exhibit certain

mathematical properties such as transform-domain sparsity [26, 27], many opportunities

arise to exploit data and problem structures by means of recent algorithmic progress in

convex optimization and signal processing [28, 29]. Finally, the high computational cost

of seismic inverse problems makes access to high-performance computing (HPC) clusters

inevitable for working on relevant problem sizes. However, these computational resources

are only available to a very limited number of academic and research institutions, as well

as to very few commercial companies. Many researchers are thus eliminated from making

meaningful contributions to seismic inverse problems, solely due to the lack of access to

compute. The recent rise of cloud computing offers an opportunity to democratize access

to computational resources, but many open questions remain how these resources can be

used efficiently for HPC applications with regard to cost, resilience, time-to-solution and

software deployment [30, 31, 32, 33].

This thesis makes three distinct contributions regarding current challenges in seismic

inverse problems, as discussed here:

• Chapter 2 (published in [34]) introduces a framework in the Julia programming lan-

guage [35] for implementing seismic inversion algorithms using abstract high-level

linear algebra expressions intended to increase the productivity of domain experts.

The framework uses Devito, a Python package for automatic generation of opti-

mized C code from symbolic Python expressions, to solve the underlying wave equa-

tions [19, 36, 37]. The framework thus represents a vertical integration of modern

code generation and compiler tools into a domain-specific framework for seismic

inverse problems that facilitates algorithmic innovation and reproducability, while

at the same time delivering the necessary performance to work on relevant problem

sizes.

• Chapter 3 (published in [38]) presents an algorithm for seismic imaging using on-the-

fly discrete Fourier transforms (DFTs) and ideas from compressed sensing to address
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the high memory- and computational cost of wave-equation based imaging. By com-

bining time-to-frequency conversion methods with random sampling and sparsity-

promoting minimization, I arrive at an algorithm whose memory requirements do

not depend on the number of modeled time steps and whose computational cost is

considerably reduced in comparison to full gradient methods. I compare the approach

to alternative techniques such as optimal wavefield checkpointing and demonstrate

that the proposed method arrives at acceptable solutions after a small limited number

of data passes (epochs).

• Chapter 4 introduces a workflow for large-scale seismic imaging in the cloud using

an event-driven and serverless approach, which does not rely on a densely connected

cluster of permanently running compute instances. Instead, computational resources

of the workflow are started and terminated automatically in response to events, thus

eliminating idle instances and significantly reducing operating cost. The workflow is

tested on several large-scale seismic data sets and I analyze conventional and cloud-

specific performance metrics, such as scaling, turn-around time, cost and resilience.

The remainder of this introductory chapter is structured as follows; section 1.1 provides

a brief introduction to seismic inverse problems and establishes the necessary terminology

and mathematical notation. Section 1.2 develops the motives and objectives that will be

addressed in this thesis by refining the challenges discussed in the previous paragraphs and

by sketching out the proposed solutions. Section 1.3 provides the outline and structure of

the thesis and section 1.4 lists the scientific contributions of the individual chapters.

1.1 Seismic inverse problems

1.1.1 The forward problem

Contrary to global seismology, exploration seismology is based on the manual excitation

of seismic sources, which trigger sound and/or elastic waves that travel through the subsur-
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face [1, 2]. At geological interfaces, waves are scattered and reflected, causing parts of the

wavefield to travel back to the surface, where it is recorded by an array of receivers (Fig-

ure 1.1). After a source has been fired, each receiver records relative pressure changes in

the water as a function of time. Seismic data is traditionally plotted by arranging the seis-

mogramms of each receiver next to each other, with the receiver number on the horizontal

axis and time on the vertical axis (Figure 1.2a). More commonly though, seismic data is

plotted as an image of a two-dimensional array, in which each column corresponds to a

receiver (as a function of time) and the color intensity denotes the pressure changes (Fig-

ure 1.2b). In a seismic survey, the source is fired repeatedly as it moves across the survey

area and the observed data that is collected at each source location is called a shot record.

Mathematically, each shot record is denoted by vectors dobs
i ∈ Rnd , where i = 1, ..., ns is

the source index ranging from 1 to the total number of source locations ns (or alternatively

as a single concatenated vector dobs). The dimension nd of the data is given by the number

of receivers nr times the number of time samples nt. Note that seismic data is mathemat-

ically represented by vectors, but the actual data volume is a five-dimensional array with

the dimensions time, receiver x- and y-coordinate and source x- and y-coordinate.

The objective of seismic inversion is to recover a physical parametrization of the sub-

surface from the recorded seismic data. In the setting of inverse problems, this is achieved

by minimizing the misfit between recorded data and data that is predicted using numerical

modeling. The forward problem is defined as the computation of a predicted seismic shot

record dpred
i ∈ Rnd through a forward modeling operator F :

dpred
i = F(m,qi). (1.1)

The vector m ∈ Rn denotes the (vectorized) parameterization of the subsurface model,

namely the acoustic wave-speed or p-wave velocity. The scalar n is the total number of

grid points in two or three spatial dimensions. The vector qi ∈ Rnt represents the time
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Figure 1.1: A seismic vessel excites acoustic waves that travel through the subsurface by
firing a seismic source (red star). Reflected and scattered waves that travel back to the
surface are recorded by an array of receivers (yellow pentagons) as a function of time and
the experiment is repeated for a large number of different source locations.

(a) (b)

Figure 1.2: In a wiggle plot, a seismic shot record is plotted by horizontally arranging
the seismogramms of individual receivers in ascending order (a). More commonly, a shot
record is plotted as an image of a two-dimensional array, in which columns correspond to
individual receivers (b).
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signature of the seismic source, which is assumed to be a delta function in space with a

constant radiation pattern, making it only a function of time, with nt being the number of

time samples. The forward modeling operator F is defined as the solution of a discretized

wave equation for a given model and source:

F(m,qi) = PrA(m)−1P>s qi. (1.2)

The matrix Ps ∈ Rns×N is the source projection operator, whose transpose (denoted by

>) injects the time dependent source signature at the current source location. Effectively,

the source projection operator maps the (short) time-dependent vector qi ∈ Rnt to a vector

with the dimensions of the full time and spatially dependent wavefield u ∈ RN , where

N = n · nt is the number of grid points times the number of time samples. Accordingly,

Pr ∈ Rnd×N is the receiver projection operator, which samples the time-dependent wave-

field at the location of the receivers. Generally, this involves linear interpolation, as the

receiver (and source) locations do not necessarily coincide with the computational grid.

The operator A(m) ∈ RN×N represents the discretized, time-dependent wave equation:

(
m
∂2

∂t2
−∇2

)
︸ ︷︷ ︸

A(m)

u = P>s qi. (1.3)

The operators ∂2

∂t2
∈ RN×N and ∇2 ∈ RN×N denote the second temporal derivative and

the Laplacian, both discretized using finite differences (FD) [see e.g. 39, in the context of

seismic modeling]. Here, A(m) is written as a linear operator acting on the wavefield u,

which is correspondingly obtained by applying the inverse of the operator to the equation’s

right-hand side, i.e. ui = A(m)−1P>s qi. The seismic data is then obtained by applying

the receiver restriction operator to the wavefield, namely dpred
i = Prui. For solving the

forward problem, the operator A(m)−1 is not inverted explicitly, but instead its matrix-

vector product with the right-hand side is computed using finite-difference time-stepping
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[detailed explanations presented in 40, 41].

1.1.2 The inverse problem

The goal of seismic inverse problems is the recovery of model parameters m from the set

of observed seismic data dobs
i . The problem is most commonly formulated as a nonlinear

(unconstrained) optimization problem in which the objective is to minimize the data misfit

between the observed and predicted data [5, 9]:

minimize
m

ns∑
i=1

φ
[
F(m,qi)− dobs

i

]
. (1.4)

Here, φ : Rnd → R is a (smooth) misfit function and typically chosen to be the least-squares

misfit φ = 1
2
‖ · ‖2. This version of the inverse problem is referred to as the reduced-state

or adjoint-state formulation, but other formulations that are derived from the more generic

constrained formulation exist as well [42, 10, 43]. In its reduced form (equation 1.4), the

(nonlinear) seismic inverse problem is called Full Waveform Inversion (FWI), as the goal is

the prediction of all waveforms in the seismic data (i.e. reflection, diffractions, refractions,

turning waves) by inverting for the model parameters m.

FWI is commonly solved using gradient-based optimization algorithms such as gradient

descent, Gauss-Newton methods or Quasi-Newton methods [7, 9, 12, 16]. As mentioned,

the gradient of equation 1.4 with respect to the model parameters m is calculated using the

adjoint state method, also known as a reduced space method in the optimization literature

[44]. For the case where φ is the least-squares misfit, the (adjoint-state) gradient is given

by [45, 5]:

g =
ns∑
i=1

(
∂F(m,qi)

∂m

)>(
F(m,qi)− dobs

i

)
, (1.5)

where g ∈ Rn is the gradient of the FWI objective function and ∂F
∂m
∈ Rnd×n is the partial

derivative of the forward modeling operator with respect to m, which is commonly known

as the Jacobian and physically corresponds to linearized Born scattering [46]. Computing
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the gradient of the FWI objective function thus involves solving a forward and adjoint (lin-

earized) wave equation for every index i of the sum over the source locations, with ns being

in the order of 102 to 105. Furthermore, the relationship between m and the predicted data

is nonlinear and the objective function is non-convex, so additional steps (regularization,

constraints, etc.) need to be taken into account. A closely related variation of FWI with

high practical importance is the linearized inverse problem, in which the Jacobian itself is

used as the forward modeling operator.

1.1.3 Linearized inversion

In the linearized seismic inverse problem, the underlying assumption is that a piecewise

constant/smooth model m, such as the one plotted in Figure 1.3a, can be separated into

a smooth component m0 ∈ Rn containing the low wavenumbers (Figure 1.3b) and a high

wavenumber component δm ∈ Rn, containing the strong parameter contrasts (Figure 1.3c).

Accordingly, the nonlinear forward modeling operator F(m,qi) is approximated by the

sum of F evaluated at m0 plus the action of the Jacobian on δm:

F(m,qi) ≈ F(m0,qi) +
∂F(m0,qi)

∂m
δm +O(δm>δm). (1.6)

The physical intuition behind this separation of scales, is that seismic data can be (in ap-

proximation) divided into contributions from transmitted waves that propagate through m0

(i.e. direct and turning waves), while reflections and scattered waves are caused by the

model perturbations in δm [6]. The higher-order terms of equation 1.6 describe data that

results from multiple scattering.

The Jacobian ∂F(m,qi)
∂m

(the same linear operator as in equation 1.5), is obtained by

taking the derivative of equation 1.3 with respect to m, which yields:

∂F(m,qi)

∂m
= −PrA(m)−1diag

(
∂A(m)

∂m
A(m)−1P>s qi

)
. (1.7)
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The Jacobian thus maps perturbations in the model to perturbations in the seismic data.

Throughout the thesis, I denote the Jacobian by J to highlight the fact that in contrast to F ,

it is a linear operator.

The model perturbation δm with respect to a smooth (background) model m0 is called

the seismic image. Its practical value is that it provides structural information of the subsur-

face, i.e. the location of geological interfaces, which are associated with rapid changes in

wave speed and/or density. Therefore, if a good approximation of m0 is available (e.g. from

FWI), the seismic image can by obtained through linearized waveform inversion by solving

the following linear least squares problem:

minimize
δm

ns∑
i=1

1

2
‖J
(
m0,qi

)
δm− δdobs

i ‖2. (1.8)

The vector δdobs
i = dobs

i − F(m0,qi) is the linearized observed data, i.e., seismic data in

which ideally all effects of transmission waves and multiple scattering have been removed

prior to the inversion. Linearized seismic inversion in the above form is referred to as least

squares reverse-time migration (LS-RTM), as the data residual has to be back-propagated

through time to compute the gradient of the objective function, which is the same technique

used in deep learning [47, 48, 49, 50]. The term migration refers to the process mapping

events (i.e. reflections) in the observed seismic data (Figure 1.4) to subsurface perturbations

in the image space that caused them.

Having formalized the underlying mathematical problem and notation, the next sec-

tion will point out current challenges encountered in seismic inversion and provide a brief

overview of the literature. Furthermore, I formulate the research objectives of this thesis

and their novelty in comparison to current approaches.
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(a)

(b)

(c)

Figure 1.3: The Sigsbee 2A model is a synthetic p-wave velocity model (here in squared
slowness). Blue denotes the water column and the dark red object represents a salt body.
The background consists of sedimentary layers. Convolving the true model (a) with a
Gaussian kernel yields a smooth background velocity (b), which is assumed to be known
for seismic imaging. The objective of seismic imaging is the recovery of the high-contrast
velocity perturbation (c) with respect to the background model (b). The perturbation (c) is
called the seismic image and is conventionally plotted in grayscale. Oftentimes the colorbar
is omitted, as images are normalized and rescaled for plotting purposes, causing magnitudes
to lose their physical meaning.
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Figure 1.4: Observed seismic data that was computed for the Sigsbee 2A model (Fig-
ure 1.3a) using finite-difference modeling. The full data set consists of 500 shot records
dobs
i (i = 1, ..., 500), of which three are plotted here side by side. Each shot record is a 2D

array of dimensions 3001 × 348 (times samples × number of receivers). The objective of
seismic imaging is to estimate the model perturbation δm (Figure 1.3c) from this seismic
data.
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1.2 Motives and objectives

1.2.1 Software for seismic inversion

As outlined in the introductory paragraph, challenges of nonlinear seismic inverse prob-

lems (i.e. FWI) arise from its non-convexity, as well as from physical limitations, such

as the absence of low temporal frequencies in the data and incomplete illumination of the

subsurface [8, 9]. In practice, it is therefore not easily possible to arrive at a satisfactory

estimation of the unknown parameters m, without going through multiple iterations of data

processing, experimentation with different optimization algorithms and refinement of the

initial starting value. Ideally, this processes is facilitated by software with high levels of

user abstractions, which allows domain experts to experiment with problem formulations

and algorithms. In the closely related field of deep learning, it is precisely the wide avail-

ability and popularity of domain-specific frameworks like PyTorch [51] and Tensorflow

[52], which have stimulated algorithmic innovation and reproducibility by exposing func-

tionalities through abstract user interfaces.

In the field of seismic inversion however, software for modeling and inversion is tra-

ditionally implemented in low-level languages such as Fortran or C, with a large amount

of manual performance optimization [23, 53]. Codes are typically monolithic applications,

making it challenging to modify existing software, as components of PDE solvers, par-

allelization and optimization are oftentimes not clearly separated. Furthermore, commer-

cially developed software is almost exclusively proprietary and not available to the public.

Open-source academic software packages on the other hand [e.g. 54, 55, 56] often trade

performance for abstractions and flexibility, making it easier to modify code, but at the

price of impaired performance. This dichotomy of proprietary low-level codes on the one

side and non-optimized high-level research frameworks on the other side motivates the first

objective of this thesis:
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• The development of a framework for seismic modeling and inversion, which ex-

poses functionalities required for seismic inversion in a high-level symbolic lan-

guage, while at the same time providing the performance to work on realistic problem

sizes. This objective will be achieved through a code design based on the separation

of concerns and automatic performance optimizations. Furthermore, the objective

is to make this software publicly available and to provide a series or reproducible

examples and tutorials to facilitate algorithmic innovation, without sacrificing per-

formance.

1.2.2 Scalable algorithms for seismic imaging

While the LS-RTM objective function for linearized inversion is quadratic and has in prin-

ciple an analytic solution, the problem is generally inconsistent, as the observed data lies

outside the range of the Jacobian (due to linearization errors) and contains noise. As the

linear operators used to represent Jacobians and wave equations are too large to be formed

explicitly, seismic imaging requires iterative matrix-free optimization algorithms like the

nonlinear conjugate gradient (CG). However, full gradient methods like CG compute the

gradient over the full sum in the objective function (equation 1.8), making these methods

too expensive in practice, when only a small number of overall data passes (epochs) are

affordable. This has motivated the development of dimensionality reduction techniques

such as seismic source encoding [57, 58, 59, 60, 61, 62, 63] and the adaption of stochastic

sampling and optimization algorithms [64, 65, 66, 67].

Another major challenge of seismic imaging is related to the large memory demand that

is associated with computing the gradient using the adjoint state method. As backpropaga-

tion requires access to the forward state variables, forward modeled wavefields have to be

stored in memory or on disk, but this approach is not feasible for problem sizes encountered

in practice. Current approaches to circumvent this problem include writing wavefields to

disk, wavefield checkpointing [22, 21] or the reconstruction of wavefields from the model
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boundary [68]. These approaches decrease the required memory in exchange for additional

computations, but overall the memory demand still grows with the number of time steps,

i.e. with the recording length of seismic data. Alternatively, seismic imaging can be for-

mulated in the frequency domain, where computations are separable over frequencies and

backpropagation over all time steps is not required. However, solving Helmholtz equations

for high-frequencies and large domains requires the usage of iterative Krylov solvers and

the poor conditioning of the problem typically leads to slow convergence [e.g. 69, 70].

These challenges motivate the second objective of this thesis:

• The development of time-domain seismic imaging algorithms that overcome the

curse of dimensionality by exploiting redundancy and sparsity of seismic data and

images. Specifically, I am interested in decreasing the overall number of wave equa-

tions solves to a small number of passes through the data. Furthermore, the objective

is the development of techniques whose memory requirements are (ideally) indepen-

dent of the number of time steps and do not require solutions of Helmholtz equa-

tions. These objectives are achieved by combining existing approaches for sparsity-

promoting seismic imaging in the frequency domain [26, 64], with time-to-frequency

conversions based on on-the-fly Fourier transforms [71].

1.2.3 Adapting the cloud for seismic inversion

The high computational cost of seismic inverse problems makes high-performance com-

puting clusters necessary to work on relevant problem sizes that are currently encountered

in industrial applications. Major companies such as ExxonMobil, Petroleum Geo-Services

(PGS) or BP operate their own HPC clusters, with maximum achievable performance in

the order or petaflops [72, 73, 74]. While HPC systems are dominantly used in production,

they also play an import role in research, as newly developed algorithms require validation

and testing on realistic large-scale data sets. Gaining access to HPC resources is challeng-

ing for small and medium-sized companies, as well as for academic research groups due to
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the large upfront and maintenance cost of these systems. Furthermore, research cycles typ-

ically consists of a development stage, followed by the validation/testing period and access

to HPC resources are mostly required during the later stage only. In an academic setting,

it is therefore challenging to run HPC clusters at full capacity or deploy large-scale clus-

ter workloads, as long-running jobs are often treated with lower priority by job schedulers

than smaller workloads. Additionally, purchasing HPC systems often involves compro-

mises regarding the architecture and hardware choices, as users from different scientific

backgrounds with varying demands typically access the same machine.

The recent rise of cloud computing offers the opportunity to address these challenges

and to make HPC resources available to a broader community. Cloud providers such as

Amazon Web Services (AWS), Azure or the Google Cloud Project (GCP) offer access to

computational resources on a pay-as-you-go pricing model with no upfront cost. Users can

choose from a large variety of hardware (i.e. various architectures, accelerators, etc.) and

configure computational resources exactly as needed, while only paying for the time that

resources were utilized. An open question that remains in this context, is how the cloud

can be used most efficiently and cost effectively for HPC applications. Many performance

evaluations and benchmarks of typical HPC workloads find that the cloud can generally not

offer the same performance, resilience, bandwidth and latency as comparable on-premise

HPC systems [31, 32, 75, 33]. This is especially problematic for many applications in

computational science and engineering (CSE) and HPC, which are developed for densely

connected clusters and are based on message passing (MPI) [76]. Codes of this type rely

on close communications between computational resources and predictable behavior of the

hardware, due to low fault tolerances. Using the cloud to replicate on-premise HPC systems

to run software that was developed for classical clusters (lift and shift) is therefore not an

ideal approach to adapt the cloud for HPC applications. Thus, the third objective of this

thesis is:
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• The development of a framework for seismic imaging in the cloud that is not based

on the conventional lift and shift approach and does not rely on a densely connected

cluster of virtual instances. This involves analyzing the structure of the underlying

mathematical problem to identify possibilities in which it is possible to take advan-

tage of novel cloud technologies such as object storage, containerized batch comput-

ing and event-driven computations. The objective is the development and application

of such a serverless cloud framework for seismic imaging, as well as its analysis in

terms of performance, resilience, turn-around time and cost.

1.3 Thesis outline

This thesis is divided into three main chapters 2–4, each of which is devoted to one of

the objectives that were derived in the previous section. Each chapter follows the general

structure of a technical journal article and begins with an introduction into the respective

topic and a review of the current literature and state of the art.

Chapter 2 [34] presents a framework for seismic modeling and inversion in the Julia lan-

guage based on the paradigms of separation of concerns and abstract user interfaces. The

chapter contains a presentation of the software structure and justifies the design choices that

were made for the user interfaces. These consists of matrix-free linear operators and ab-

stract data containers, that enable the implementation of objective functions and algorithms

following the mathematical notation presented in section 1.1. Matrix-vector products in-

volving the solution of wave equations interface Devito to generate optimized stencil code

for solving the underlying PDEs. The parallelization of the sum over the source locations

is implemented in Julia and takes advantage of its built-in resilience, which allows that

workloads of failed instances are re-processed by remaining workers. The majority of the

chapter features a series of numerical case studies and demonstrates how the framework

can be utilized to implement a variety of algorithms for linear and nonlinear seismic in-

verse problems in a symbolic fashion that closely resembles the mathematical notation.
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Chapter 3 [38] introduces an algorithm for least squares seismic imaging using on-

the-fly Fourier transforms and sparsity-promoting minimization. The theoretical section

presents the derivation of forward-adjoint pairs of the linearized Born scattering operator

with on-the-fly Fourier transforms and numerical modeling based on time-stepping. This

enables the computation of monochromatic wavefields and images in the frequency domain

using time-domain modeling codes. Subsequently, this chapter demonstrates that by adapt-

ing randomized sampling techniques inspired by compressive sensing and randomized lin-

ear algebra, it is possible to work with a small number of random temporal frequencies and

seismic source locations in each iteration of the optimization algorithm. Overall, this leads

to an algorithm whose memory is independent of the number of time steps, as gradients

are computed for a small number of randomly selected frequencies, rather than as a sum

of all frequencies or time steps. Furthermore, I demonstrate that the approach arrives at

acceptable solutions with as few as two passes through the data and that results are qualita-

tively comparable to time-domain results without frequency subsampling. In the numerical

examples section, I apply the algorithm to two large-scale 2D data sets and analyze the

trade-off between varying the frequency versus the source batch size, as well as the role of

the regularization parameter.

Chapter 4 proposes a novel approach for adapting the cloud for high-performance com-

puting tasks. Specifically, I consider the application of seismic imaging on Amazon Web

Services and introduce an alternative strategy to the common lift-and-shift approach, which

leverages cloud technologies such as event-driven computations. These techniques are

adapted to address cloud-related challenges such as the high operating cost that incurs if

computational resources are idle and not used at full capacity, as well as inferior resilience

compared to on-premise clusters. The chapter describes the different components of the

workflow, which implement a serverless map-reduce model based on batch processing and

event-driven computations. In contrast to the lift and shift approach, my workflow does

not rely on a cluster of permanently running virtual machines, as compute instances are
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launched and terminated automatically in response to events, such as the increase of an

iteration count. In the performance analysis, I examine conventional performance metrics

such as weak and strong scaling, as well as cloud-specific metrics such as cost, resilience

and the influence of overhead from restarting instances to the time-to-solution. In the dis-

cussion, I illustrate advantages and shortcomings of the proposed approach and review

software requirements that are necessary to run applications in the cloud in a serverless

fashion.

1.4 Contributions

The following list summarizes the scientific contributions that are presented in this thesis:

• My first contribution is an open-source software framework in the Julia language for

seismic modeling and inversion. The novelty is a combination of domain-specific ab-

stractions that enable symbolic implementations of seismic inversion algorithm with

techniques for automatic code generation and performance optimization to solve the

underlying PDEs. My contribution consists of the design and the implementation of

the Julia framework, including the API, parallelization, matrix-free linear operators

and out-of-core data containers that allow working with large-scale data sets. My

contribution further includes the Julia interface to Devito (whose API and compiler

were developed by [41] and [37]), and the implementation of forward/adjoint wave

equations in the context of the Julia framework. This work was published in the

Software and Algorithms section of Geophysics [34], and as such includes code and

instructions to reproduce the numerical examples. Furthermore, the software frame-

work is featured in a tutorial series on full-waveform inversion in The Leading Edge

[77].
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• My second contribution is an algorithm for least squares imaging using on-the-fly

Fourier transforms, which enables seismic imaging at a fraction of the computational

cost of comparable approaches in the time domain. The novelty of this approach is

the combination of time-to-frequency conversion methods with stochastic sampling

and sparsity-promoting minimization, which yields an algorithm whose memory im-

print is independent of the number of modeled time steps. My contribution includes

the derivation of forward and adjoint operators for linearized Born scattering in the

time and frequency domain for different physical parametrizations (velocity and

impedance). Furthermore, I contribute insights into sparsity-promoting minimiza-

tion techniques in the context of seismic imaging, including the trade-off between

frequency versus source subsampling and the role of the thresholding parameter for

problems in which only a limited number of data passes are computationally feasible.

This work was published as a technical article in Geophysics [38] and includes open-

source code to reproduce the numerical examples from the paper [78]. All examples

of this chapter are implemented using my Julia inversion framework from chapter 2.

• My third contribution is the development and implementation of a serverless seismic

imaging framework in the cloud. The novelty of this work is a strategy for deploy-

ing HPC applications to the cloud, which goes beyond the conventional lift and shift

approach and does not rely on a cluster of permanently running virtual machines.

My contribution includes the adaption of cloud services to implement generic itera-

tive optimization algorithms as a collection of serverless tasks that are executed by

the cloud environment. Each iteration of the optimization algorithm is essentially a

map-reduce problem and I develop a serverless implementation of this model for the

specific case where the (embarrassingly parallel) map part is expensive to compute

and has a considerably longer time-to-solution than the reduce part. My contribu-

tion includes an implementation of this approach for seismic imaging on AWS and

Azure, a performance analysis, as well as a case study on Azure using a large-scale
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three-dimensional seismic data set. Remark: This work has been submitted to IEEE

Transactions on Parallel and Distributed Systems and is currently under review. A

preprint is available on arXiv [79] and an early version of this work was presented in

[80].
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Part I

Software for seismic inverse problems
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CHAPTER 2

A LARGE-SCALE FRAMEWORK FOR SYMBOLIC IMPLEMENTATIONS OF

SEISMIC INVERSION ALGORITHMS IN JULIA

2.1 Introduction

Seismic imaging and parameter estimation are a challenging class of inverse problems, due

to their large computational cost, algorithmic complexity and elaborate implementation

requirements. Full-waveform inversion (FWI) [1, 2] or least-squares reverse-time migra-

tion (LS-RTM) [3, 4] involve numerical modeling of the wave equation in large two- and

three-dimensional domains over many wavelengths and source locations as part of iterative

algorithms and require codes that scale on large high-performance computing (HPC) clus-

ters or on the cloud. Furthermore, seismic inverse problems are difficult to solve from a

mathematical point of view as well, because they are often ill-conditioned and plagued by

parasitic local minima [5].

Software packages for seismic modeling and inversion, therefore, need to meet the dif-

ficult requirement of providing both performance and abstractions for implementing com-

plex inversion algorithms. Traditionally, production-level software frameworks in the oil

and gas industry are written entirely in low-level languages such as C or Fortran, with a

large amount of manual performance optimizations, while academic research frameworks

such as Madagascar [6] often emphasize abstractions and reproducibility, rather than per-

formance. As a result, the uptake of newly developed imaging and inversion algorithms

by the oil and gas industry is generally slow, as it oftentimes takes programmers several

months or years to incorporate new techniques into existing inversion codes. This prob-

lem is often caused by a disadvantageous structuring of the code, in which input/output

(I/O) routines, wave equation solvers, parallelization and optimization algorithms are all
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intermixed and difficult to modify independently. Therefore, inherently simple tasks such

as swapping a line search or modifying the objective function, become complex and time-

consuming operations. Furthermore, manual performance optimizations of wave equation

solvers highly complicate the task of implementing correct adjoint codes at a later point

in time, as would, for example, be required for least-squares migration. Finally, codes are

often optimized for a specific hardware and are not portable to new platforms, making it

difficult to deploy existing software to new computer architectures or the cloud.

Some of these issues are addressed in existing software packages for seismic model-

ing and inversion. One of the earliest seismic frameworks that introduces abstractions for

prototyping wave equations for seismic modeling and inversion; thus enabling the reuse of

code, is iWave++ [7, 8]. It combines a stand-alone package for solving time-domain wave

equations called iWave [9], with the Rice Vector Library (RVL) [10], an object-oriented

C++ library that provides abstractions for casting (seismic) inverse problems into an ab-

stract linear algebra and optimization framework. More recent frameworks such as jInv

[11] and Waveform [12], follow similar abstractions and try to overcome the trade-off be-

tween expressiveness and performance by providing an application programming interface

(API) in higher-level dynamic programming languages such as MATLAB or Julia, while

relying on manually optimized low-level code or libraries for solving the underlying par-

tial differential equations (PDEs). Another trend that can be observed in both academic

and industry codes, is an increase in adopting more specialized low-level languages for

accelerators (graphical processing units), such as CUDA [13] and OpenCL [14]. Some of

the existing seismic frameworks that fall in the broader category of (hand-tuned) modeling

codes in low-level languages include the JavaSeis processing library [15], the RTM/FWI

framework SAVA [16], a modeling and migration package by [17] and a finite-element

inversion framework for global seismology by [18].

The seismic community is not alone with the task of writing software that is both fast

and highly optimized, but at the same time provides the means for fast development of
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mathematically complex algorithms. The scientific community has recently seen the rise

of deep learning, a field that faces many of the same computational challenges as seismic

inverse problems. Similar to FWI or LS-RTM, machine learning problems involve large

data sets, complex algorithms and computationally expensive operations. In fact, we can

think of a time stepping code as a feed-forward convolutional neural network and both

fields use backpropagation for numerical optimization. However, in contrast to seismic

inversion, uptake of new algorithms into commercial applications is extremely fast, with

many of the algorithms used by major companies developed within the last months. In

parts, this development is due to the wide availability of domain-specific languages (DSLs)

for deep learning, such as Tensorflow [19] or PyTorch [20], used in both academia and

industry. Compared to classic programming languages, DSLs offer a limited amount of

functionality in exchange for domain-specific abstractions that increase productivity, while

the low-level implementation details and performance optimizations are handled by com-

puter engineers and HPC specialists. Apart from machine learning, DSLs have become

popular in the field of PDEs as well, as they decouple the theoretical aspects of PDEs from

the underlying, often tedious implementation of finite-difference (FD) or finite-element

stencils. Two recent very popular packages for finite element modeling (FEM) that utilize

DSLs are Firedrake [21] and FEniCS [22].

Based on these paradigms of domain-specific abstractions and automatic performance

optimizations, we introduce a framework for seismic modeling and inversion in Julia. Bor-

rowing ideas from machine learning frameworks and recent trends in software engineering,

we develop a framework for expressing seismic PDE-constrained optimization problems

like FWI and LS-RTM in terms of abstract linear algebra expressions within a high-level

language, while utilizing a DSL called Devito [23, 24, 25, 26] to symbolically express the

underlying PDEs and to generate fast and parallel code for solving them. Devito is a DSL

embedded in Python and specifically designed for finite differences in the context of seis-

mic modeling and inversion and offers a portable framework for automated finite-difference
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code generation from PDEs. It allows the description of arbitrary time-dependent PDEs

as symbolic Python expressions [27], from which optimized C code implementing a full

time-stepping modeling loop is automatically generated, compiled and executed from the

application environment. Here, we build upon Devito and introduce a higher-level Julia

package, JUDI (JUlia Devito Inversion), to provide the means for easy development and

prototyping of algorithms for seismic inverse problems on an industry scale, leading to

higher productivity amongst geoscientists. As such, JUDI is the first academic seismic

software framework resulting from a joint effort between geophysicists, mathematicians

and HPC/compiler specialists [28], which combines advances in DSLs and compiler tech-

nologies with domain-specific requirements of geophysicists.

In the following section, we present the overall structure of JUDI and discuss its design

principles and how they facilitate managing the complexity of seismic inversion frame-

works. Using a series of numerical examples, we demonstrate that our approach leads to

software that is highly flexible and allows implementing algorithms for FWI and LS-RTM

in relatively few lines of Julia code, while providing better performance than many manu-

ally tuned codes in low-level languages.

2.2 Software structure and implementation

The Julia Devito Inversion framework is primarily designed as a research and development

framework for seismic inversion, that allows us to quickly translate mathematical concepts

to Julia scripts that scale to large-scale 2D and 3D problems, making it suitable for technol-

ogy validation and deployment at a production level. The software is open source and avail-

able as a Julia package on Github [29]. The framework is implemented in Julia [30, 31],

a high-level programming language designed for numerical computing, which offers op-

tional typing and function overloading based on input argument types (multiple dispatch);

thus providing a natural framework for abstractions. Julia also offers direct calls of Python

functions without any glue code, making it convenient to interface Devito. JUDI is built
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around two main applications: nonlinear inverse problems, namely full-waveform inver-

sion, and linear least-squares problems, such as LS-RTM. The complexity of geophysical

inversion frameworks arises from both the computational performance optimizations of the

underlying PDE solver, required for running industry-scale problems, as well as from the

need of managing extremely large amounts of data and sophisticated inversion algorithms.

To break this complexity up into manageable parts, JUDI is built on the idea of multiple

layers of abstractions and on keeping a clear separation between problem-dependent ab-

stractions, parallelization and the wave equation solver (Figure 2.1). Each abstraction layer

is designed to deal with one aspect of complexity:

1. Matrix-free linear operators and out-of-core data containers to address algorithmic

complexity of inversion algorithms that allow users to write code that closely resem-

bles the underlying mathematics and without having to worry about meta data, such

as seismic header information.

2. A flexible high-level parallelization with built-in resilience to hardware failures that

allows users to modify and adapt the parallelization to both algorithms (static or

dynamic resource allocation) and the computational environment (cluster or cloud).

3. Symbolic definitions of forward and adjoint wave equations with Devito and auto-

matic code generation to address the complexity of implementing correct forward-

adjoint pairs of PDE solvers and to avoid manual performance optimizations.

Thus, the novelty of this framework is a full vertical integration of modern compiler

technologies and automatic code generation into a geophysical inversion framework with

problem-specific abstractions for FWI and LS-RTM in a high-level programming language,

that allows researchers to use these tools both interactively during development and in batch

mode for large-scale 3D problems.
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Figure 2.1: Software hierarchy of JUDI and its interface to the wave equation solver Devito.
The uppermost software layer contains matrix-free operators that allow expressing PDE
solvers and sampling operators as linear algebra operations. For solving multiple PDEs,
data is first distributed to the available computational resources, where each worker sets up
its individual PDE using Devito and generates the C code for solving it. The optimized
code is compiled dynamically and called from Python.
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2.2.1 Abstractions for seismic modeling and inversion

Matrix-free linear operators and vector-like seismic data containers form the first layer of

JUDI, as they enable the user to express seismic modeling operations or gradients and ob-

jective functions as matrix-vector products. This provides a natural connection to linear

algebra and optimization, thus making it easier for geoscientists to bridge the gap between

theory and implementation. Many seismic operations like modeling/time-reverse model-

ing, demigration/migration or convolution/correlation can be interpreted as forward/adjoint

pairs of linear operators [32]. However, rather than explicitly forming these matrices, which

quickly becomes infeasible for any realistically sized problems, the actions of these matri-

ces can be implemented as functions. Matrix-free linear operators look and behave like

regular matrices, i.e., they can be multiplied with vectors or transposed, but the dense or

sparse matrices are never explicitly formed and, instead, the operators contain functions

that represent their actions on vectors. The concept is popular in computer science and

can be found, amongst others, in PETSc [33], Trilinos [34], or Matlab libraries such as

Sparco [35] and SPOT [36]. Seismic modeling and inversion frameworks that use matrix-

free linear operators and data containers are RVL/iWave++ [10, 7] or the frequency-domain

framework Waveform [12].

In the mathematical notation in which we express seismic inverse problems like FWI

or LS-RTM, seismic data is typically denoted as a vector, while in practice, seismic data

is a multi-dimensional data volume with associated meta data that contains coordinates of

sources and receivers, as well as sampling rates and recording times. As pointed out in [10],

mixing optimization and linear algebra algorithms with management of the dimensions and

meta data of the physical observations makes codes overly complex and hard to maintain

and develop. In RVL, physical data is therefore encapsulated in an abstract vector class that

represents a Hilbert space on which norms and dot products are defined for a certain data

type, such as seismic data. Optimization algorithms can then be implemented for these

coordinate-free data types. In JUDI, we build upon this approach of RVL and iWave++
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with an implementation of an abstract seismic data type called judiVector that looks

and behaves like a regular Julia vector, but contains the seismic data in its original dimen-

sions, together with its header information. To be able to use the data container like regular

(coordinate-free) vectors, we overload common base functions and arithmetic operations

for the judiVector type, such as size functions, norms, dot products, addition, subtrac-

tion, multiplication with scalars, transposition or concatenation. As an extension to this

concept from RVL, we combine our data class with a powerful SEG-Y reader for operating

on industry size out-of-core data sets. For reading and writing SEG-Y data, JUDI uses the

SegyIO.jl package [37], which includes the possibility to scan large data sets of multiple

terabytes and create lookup tables with a summary of SEG-Y headers and byte locations of

data blocks (a data block being for example a single shot record). Blocks or shot records

can then be accessed directly through their byte location within the underlying SEG-Y file,

making it possible to quickly access data independently of the file size. The judiVector

class is built around these functionalities and can be used as an out-of-core data container,

in which only the lookup tables are stored in memory, rather than the full data volume, thus

making it possible to work with industry-scale data sets.

Apart from the judiVector class for seismic data, JUDI includes matrix-free linear

operators for solving (acoustic) wave equations, linearized wave equations and source/re-

ceiver projection operators. Solving a wave equation, where a seismic source q is injected

into the subsurface and the wavefields are restricted to the receiver locations, can be ex-

pressed as the multiplication of matrices and vectors: d=Pr*A inv*adjoint(Ps)*q.

The operator A inv denotes the inverse of the discretized wave equation for a given model

(i.e.; its solution for a given right-hand side), Ps and Pr represent source/receiver projec-

tion operators and d is a judiVector containing the modeled shot record. The function

adjoint() denotes the matrix transpose. The source/receiver projection operators are

purely symbolic and do not require access to full wavefields. This means, rather than com-

puting a full wavefield and sampling it at the receiver locations, our modeling expression
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generates code with a time-stepping loop, in which the shot record d is generated on-the-

fly, without the need to store the wavefield of the whole domain prior to restricting it to

the receivers. Accessing full wavefields is generally possible by omitting the receiver pro-

jection operator, but this functionality is only viable if the necessary amount of memory to

store full wavefields is available. Solutions of adjoint (time-reversed) wave equations can

be obtained by transposing the modeling operator A inv and by optionally restricting the

solution to the source or receiver locations (Listing 2.1). Furthermore, JUDI enables users

to create a linearized Born modeling operator J (Jacobian) from a wave equation operator,

which can be used for demigration and reverse-time migration. It is important to note, that

data containers and matrix-free linear operators provide only the user API for accessing

data and solutions of PDEs, but are completely separated from the actual definitions of

forward and adjoint wave equations themselves.

1 # Forward and adjoint (time-reversal) modeling
2 d_pred = Pr*A_inv*adjoint(Ps)*q
3 q_ad = Ps*adjoint(A_inv)*adjoint(Pr)*(d_pred - d_obs)
4
5 # Migration/demigration
6 J = judiJacobian(Pr*A_inv*adjoint(Ps),q) # linearize modeling ←↩

operator
7 d_lin = J*dm
8 rtm = adjoint(J)*d_lin

Listing 2.1: Matrix-free linear operators for nonlinear forward modeling, linearized
modeling and source/receiver projections. The vector d pred is a modeled seismic
shot record, while q ad is the solution of the corresponding adjoint wave equation,
restricted to the source location. The data residual between the predicted and observed
data d obs acts as the adjoint source and is injected at the receiver locations, as denoted
by adjoint(Pr). Multiplication of the Born modeling operator J with a model
perturbation dm generates a linearized shot record d lin, while its adjoint migrates the
data and returns an RTM image.
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2.2.2 Parallelization

The matrix-free linear operators of JUDI act as wrappers around functions that contain

implementations of the corresponding forward and adjoint matrix-vector products. In

case of our previously introduced operators for solving wave equations (multiplications

with A inv) and for linearized Born modeling (multiplications with J), this is a function

called time modeling, which forms the second abstract layer of our software frame-

work (Figure 2.1). When the modeling operators and right-hand-sides represent multiple

experiments, an individual wave equation has to be solved for each source location. The

time modeling function therefore has a serial and a parallel function instance, mean-

ing that there exist two functions named time modeling, which only differ in how they

are called (multiple dispatch) [31]. When called for more than one source/shot record, the

parallel function instance of time modeling is executed, which distributes the source

locations and data amongst the available computational resources and then calls the serial

function instance with the interface to the wave equation solver (Figure 2.1). The com-

plete separation of the code into parallel and serial parts makes the complexity manageable

and allows for easy adjustment of the parallelization to the available hardware and without

having to rewrite major parts of the framework.

Julia has it own built-in parallel framework for shared and distributed memory, which

is implemented in Julia itself. Parallelization is based on message-passing and features

many high-level expressions that make incorporation of parallel techniques fairly simple.

Generally, Julia only requires management of the master process, allowing for a clearer

separation of serial and parallel code parts, since no communication statements are neces-

sary in the serial modeling functions. For seismic modeling and inversion frameworks, the

outermost parallelization is typically the distribution of sources or shots, since the objective

functions often exhibit a sum structure over source locations. Solving PDEs for different

source locations on multiple workers is embarrassingly parallel, since no communication

is required to model wave propagation for an individual seismic experiment, as long as
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the model fits on a single node, which is a reasonable assumption given current hardware

configurations.

To avoid unbalanced workloads, dynamic scheduling is used to distribute the sources

to the resources in the parallel pool of workers – i.e., parallel instances distributed over

different computational nodes. This means source locations are assigned to workers dy-

namically, as they become available during execution time, which prevents resources from

sitting idle. Another important feature of the Julia parallel framework is that it is relatively

easy to guarantee resilience in case of hardware failures. Since large-scale seismic inverse

problems involve solving a large number of PDEs (up to 10, 000 or more shot positions) as

part of iterative algorithms, where programs run for several days or weeks, it is not unlikely

that certain workers fail during execution time. As an alternative to saving checkpoints and

restarting jobs after a crash, Julia provides functionalities for making user functions re-

silient to (a limited number) of hardware failures. In case of a worker exception, the PDE

that was solved on that worker is resent to a different worker, while the results from the

other workers remain unaffected and the program is not interrupted.

2.2.3 Interface to the wave-equation solver: Devito

The final abstraction layer of our software framework (Figure 2.1) is the serial instance

of the time modeling function, which contains the Julia interface to Devito [23, 25,

26]. As described in the introduction, Devito is a Python DSL for symbolic representations

of PDEs, from which optimized finite-difference stencil code is automatically generated

during run time and called directly from Julia. The main benefits of using Devito for solving

the wave equations, rather than implementing the wave equation solvers directly in Julia

itself, are significant performance improvements in speed and memory usage, as well as

faster code development. The symbolic objects in Devito allow discretizing PDEs in a way

that closely resembles the underlying mathematics and are completely independent of the

space order of the finite-difference stencils, making it possible to experiment with different
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discretizations without having to reimplement long stencil code by hand – a process that

is known to be error prone. The Devito compiler transforms the symbolic specification

to optimize the number of floating point operations (FLOP) as well as the memory usage,

leading to fast multi-threaded C code, which performs in the range of peak performance of

processors [38, 39].

This section only serves as a short summary of Devito’s main features, as Devito’s

API and compiler are presented in separate journal articles [25, 26]. With Devito, finite-

difference formulations of wave equations only need a few lines of symbolic Python. For

example, the acoustic wave equation can be expressed as pde = model.m * u.dt2

- u.laplace, where model and u are symbolic Devito objects for velocities and

wavefields. This expression can then be automatically rearranged to obtain a stencil for up-

dating a wavefield within a time-stepping loop (see Appendix A.1 for details). Initial and

boundary conditions can be specified symbolically in a similar fashion, while infinite mod-

eling domains are simulated through absorbing boundary conditions (ABCs). A detailed

walk-through of setting up forward and adjoint wave equation with Devito in the context

of FWI is presented in a three-part tutorial series in the Leading Edge (TLE) [40, 41, 42].

When we want to solve a forward or adjoint wave equation, e.g., by running d = J*dm in

Julia, C code with a time-stepping loop is automatically created from the symbolic Devito

expression. The translation of the symbolic PDE representation into optimized stencil code

is performed by the Devito compiler as a series of passes. Such passes include symbolic

optimization to reduce the operation count (via the so called Devito Symbolic Engine, or

DSE), loop scheduling (i.e., construction of loop nests enclosing the symbolic expressions),

and loop optimization (via the Devito Loop Engine, or DLE). Thus, while the DSE captures

common sub-expressions and redundant factors, i.e., it only sees expressions, the DLE tar-

gets the lower-level loop optimization and applies standard techniques such as blocking, as

well as OpenMP parallelization [43] and vectorization.

While in principle Devito allows discretizations of a large number of arbitrary PDEs,
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the current release of JUDI comes with implementations of the acoustic wave equation as

described in the aforementioned TLE tutorial series [40, 41]. The symbolic expressions

for forward and adjoint wave equations as well as Jacobians, are defined in a separate

Python module in the JUDI source code and are interfaced from Julia with the PyCall

package [44]. The JUDI interface gathers all necessary data and modeling information

from the matrix-free linear operators and interpolates source functions and shot records to

the computational time axis. Arguments are passed to Python as references, avoiding data

copies of wavefields; thus creating little or no memory overhead. Devito then generates

optimized C code from the symbolic expressions and compiles and runs it.

2.2.4 Unit tests

Unit testing is an essential part of any software framework, but is especially crucial for

physical modeling and inversion codes that rely on a correct discretization of PDEs and ac-

curate implementations of objective functions and gradients. Using wrongly implemented

operators for linear solvers or optimization routines provides in the general case no guaran-

tee for convergence and can potentially lead to false results [45]. For large-scale inversion

codes like seismic software frameworks, code maintenance and unit testing is exceedingly

challenging task, since codes initially written by geophysicists are often optimized by sep-

arate HPC experts, without careful considerations of correctly implemented physics, ad-

joints and gradients. With JUDI, we aim at improving code maintainability and testing

through a modular code design with independent layers of abstractions, making it possible

to individually test parts of JUDI, Devito and the relative interfaces.

Our first unit test validates that solving the acoustic wave equation with JUDI/Devito

produces verifiably correct shot records. Since it is not possible to compute analytic solu-

tions of the acoustic wave equation for an arbitrary velocity model, we compare modeling

results of our code with an independent reference code [9, 7]. Figure 2.2 shows trace com-

parisons of JUDI and iWave for two different velocity models and validates that both codes
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(a)

(b)

Figure 2.2: Comparison of a single traces from seismic shot records that were modeled
with JUDI and iWave. Figure (a) was generated using the 2D Marmousi model and Figure
(b) was modeled with the 2D Overthrust model.

create the same output. The measured error between the traces was 4 and 1 percent respec-

tively and can be explained by differences of the spatial/temporal interpolation functions

and different treatments of absorbing boundaries.

One of the fundamental unit tests for symbolic operators and functions that mimic

matrix-vector and adjoint matrix-vector products, is to verify that the implementations of

the operators do in fact represent correct adjoint pairs [32]. Devito itself has a unit testing

framework for verifying that the implementations of forward and adjoint (linearized) wave

equations are in fact representing a true adjoint pair. With the certainty that the underly-

ing PDE solvers have correct matrix-vector and adjoint matrix-vector product implemen-

tations, the unit testing can be extended to JUDI’s linear operators, namely the forward
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modeling operator M=Pr*A inv*adjoint(Ps) and the linearized modeling operator

J (Listing 2.2).

1 # Adjoint test for M
2 err_M = dot(M*q, d) - dot(adjoint(M)*d, q)
3 err_M > eps && throw("Adjoint test for M failed")
4
5 # Adjoint test for J
6 eps1 = dot(J*dm, d_lin) - dot(adjoint(J)*d_lin, dm)
7 err_J > eps && throw("Adjoint test for J failed")

Listing 2.2: Adjoint test for JUDI’s linear operators, that ensure that the modeling operators
and their transposes are in fact correct forward-adjoint pairs within the computer’s machine
precision eps.

Another important test is to verify the correct implementation of our FWI gradient,

which is tested by analyzing the 0th and 1st order Taylor errors of the discretization. As-

suming that the FWI objective function Φ(m) is differentiable and smooth within the vicin-

ity of a velocity model m, we ensure that for a smooth reference model m0 and model

perturbation h · δm, the Taylor errors (Figure 2.3) behave as predicted by Taylor’s theorem

for h→ 0:

Φ(m0 + h · δm)− Φ(m0) = O(h)

Φ(m0 + h · δm)− Φ(m0)− h · ∇Φ(m0)
>δm = O(h2).

(2.1)

2.3 Numerical case studies

We will now demonstrate how our framework can be used to address various formulations

of linear and nonlinear wave-equation based time-domain inverse problems. With the help

of a variety of concrete examples, we underline what sets our framework apart from other

seismic software frameworks:
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Figure 2.3: Taylor error test for the implementation of the FWI objective function and
gradient. Using the gradient information causes the error to decay with 1st order as h→ 0,
which verifies that the gradient is implemented correctly.
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• the possibility to implement FWI and LS-RTM algorithms in a few lines of Julia code

and to scale algorithms to large 3D problems with over 100 million unknown model

parameters;

• matrix-free linear operators and out-of-core data containers that allow working with

industry-sized data sets;

• full control over underlying PDEs and discretization orders through simple symbolic

definitions of wave equations;

• automatic generation of highly optimized C code for solving wave equations close to

processor peak performance.

We will start by showing how our software allows us to quickly implement differ-

ent misfit functions for waveform inversion and how those misfit functions can be inte-

grated into simple optimization routines or passed to sophisticated third party optimiza-

tion libraries for gradient-based optimization such as minConf [46]. In the second part of

this section, we address least-squares migration and demonstrate how data containers and

matrix-free operators from our software framework allow us to formulate linear solvers

and optimization algorithms that closely follow the underlying mathematics. To showcase

the flexibility of JUDI, our examples include an implementation of a parallel optimization

algorithm (elastic average stochastic gradient descent) and an implementation of LS-RTM

with on-the-fly discrete Fourier transforms. We presume that the reader is familiar with the

basic concepts of wave-equation based inversion and refer to [2] for a theoretical overview

of FWI. Furthermore, a detailled tutorial on implementing FWI with Devito and JUDI is

presented in [40] and [42].

2.3.1 Full waveform inversion

Our first numerical case study demonstrates how to implement a basic FWI example with

(stochastic) gradient descent [47] and simple bound constraints on the velocity model. In
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principle, JUDI allows implementing a wide range of FWI formulations, such as extended

search space methods like waveform reconstruction inversion [48] or FWI via the matched

source extension [49], by modifying the underlying PDEs in Python. For the sake of sim-

plicity, we limit our examples to FWI with the adjoint state method, i.e., to objective func-

tions of the following form:

minimize
m

φ
[
PrA(m)−1P>s q− dobs

]
, (2.2)

where φ(·) is a (smooth) misfit function and typically chosen to be the least-squares misfit

φ = 1
2
‖ · ‖2. The operators Ps and Pr denote source and receiver projections as introduced

earlier and A(m) represents the discretized, time-dependent wave equation, which is a

function of unknown medium parameters collected in the vector m, such as the velocity or

squared slowness. The vector dobs represents the (vectorized) observed shot records and q

denotes the seismic sources. The gradient of equation 2.2 with respect to the model param-

eters m is computed using the adjoint state method [1, 50], also known as a reduced space

method in the optimization literature [e.g., 51] and corresponds to applying the adjoint

Jacobian (migration operator) to the residual between predicted and observed data.

With JUDI, we can implement this FWI objective function as a separate Julia function

called fwi misfit, which takes the current model, the source and the observed data as

input arguments. The function generates the predicted data for the current model and then

calculates its misfit with the observed data, as well as the gradient. All necessary infor-

mation for setting up the forward modeling operator and the Jacobian are entirely inferred

from the input arguments. While this function is serial in itself, i.e., it can be called from

the main loop of a minimization routine, the data residual and gradient are calculated in par-

allel, since all modeling operators are implicitly parallel. Since fwi misfit is a stand-

alone function, it can be called both within a self-implemented optimization scheme or

from third-party optimization libraries, which typically require input functions of this type.
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Listing 2.3 shows an example of such an objective function, in which we calculate either the

standard `2-misfit φ(x) = 1
2
‖x‖22 or the pseudo-Huber misfit φ(x) = ε2

(√
1 + x2/ε2 − 1

)
[52, 53]. The vector x denotes the data misfit, which is in our case the difference between

predicted and observed shot records and ε is a control parameter that determines the slope

of the misfit function.

1 function fwi_misfit(model::Model, q::judiVector, d::judiVector; ←↩
obj="L2")

2
3 # Set up operators
4 nt = get_computational_nt(q.geometry, d.geometry, model)
5 info = Info(prod(model.n), d.nsrc, nt)
6 M = judiModeling(info, model, q.geometry, d.geometry)
7 J = judiJacobian(M, q)
8
9 # Data residual, function value and gradient

10 if misfit=="L2"
11 r = M*q - d
12 f = .5f0*norm(r)ˆ2
13 g = adjoint(J)*r
14 elseif misfit=="huber"
15 r = M*q - d
16 f = epsˆ2*sqrt(1 + dot(r,r)/epsˆ2) - epsˆ2 # e.g. eps=1
17 g = adjoint(J)*r/sqrt(1 + dot(r,r)/epsˆ2)
18 end
19 return f,g
20 end

Listing 2.3: Julia function for calculating the FWI `2- and pseudo-Huber misfit for a current
estimate of the model, a given source q and observed data d. The matrix M is a combined
operator, implicitly containing source/receiver projections. Remark: The function shown
here is simplified for demonstration purposes. A more efficient version without recomputing
the gradient for line searches and without recomputing wavefields for the gradient is
supplied in the current JUDI release.

Setting up the FWI objective function in the specified way and using JUDI’s matrix-free

linear operators, has the advantage that calculating the misfit and gradient is completely de-

coupled from the rest of the software and can be set up independently of the optimization

algorithm or the PDE solver. This means, changing the underlying wave equation to in-
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clude more realistic physics or modifying the parallelization requires none (or very minor)

adjustments of the functions for misfits and gradients, thus separating the set up of PDEs

and optimization routines.

With our objective function in place, we can now implement a simple stochastic gra-

dient descent algorithm in Julia (Listing 2.4). The first step in the minimization loop is to

select a random subset of sources and shots, for which the gradient and objective function

value will be calculated. This stochastic approach is commonly used in other fields that

involve massive amounts of data and expensive evaluations of objective functions and gra-

dients, such as training neural networks [47]. We then pass the subset of sources and data

to the misfit function to calculate the gradient and objective function value for the current

subset of shots. This is followed by a line search to determine the step size for updating the

model. While the effectiveness of line searches for stochastic algorithms is debated by op-

timizers [54], empirical evidence suggests that an approximate line search can be employed

successfully in applications in which only a very small number of iterations is affordable.

The final step is applying the bound constraints to the velocity model to prevent velocities

from becoming too small or large.

To verify that this very simple algorithm with our symbolic operators can in fact be used

to successfully run FWI, we test our optimization algorithm on the 2D Overthrust model

and a small data set with 97 shot records, 6 kilometers maximum offset and 3 seconds

recording time. The source wavelet has a central frequency of 8 Hertz. We generate an

initial model by smoothing the true model and then perform 20 iterations of the stochastic

gradient descent algorithm as shown in Listing 2.4, with 20 randomly selected shots per

iteration. We use bound constraints to restrict the velocity to an interval between 1, 500

and 6, 500 m/s, while keeping the water velocity fixed at 1, 500 m/s. The result after 20

iterations is shown in Figure 2.4. To make this first example easily reproducible, we use a

2D model, but our out-of-core data containers and Devito’s code generation, which includes

optimal checkpointing [55, 56, 57], enables us to run the same script on large-scale 3D
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1 # Main loop
2 for j=1:maxiter
3
4 # FWI objective function value and gradient
5 i = randperm(dobs.nsrc)[1:batchsize]
6 f, g = fwi_misfit(model, q[i], dobs[i])
7
8 # line search
9 step = backtracking_linesearch(vec(model0.m), g; varargs...)

10
11 # update model and bound projection
12 model.m = proj(model.m + step)
13
14 # termination criteria
15 if f <= fTerm || norm(g) <= gTerm
16 break
17 end
18 end

Listing 2.4: FWI with stochastic gradient descent using the previously defined
fwi misfit function to calculate the function value and gradient for the current subset
of shots and sources. The gradient calculation is followed by a line search and a projection
of the updated model onto the feasible set of velocities.

models, as we will demonstrate in the subsequent example.

As an alternative to implementing our own optimization routine, we can use the

fwi misfit function and interface a broad variety of Julia libraries for local gradient-

based optimization, giving users access to more advanced optimization algorithms such as

Quasi-Newton methods or spectral projected gradient (SPG) algorithms. For this purpose,

it is typically necessary to write a small wrapper around the fwi misfit function, which

is customized to the individual optimization library. For our numerical example, we inter-

face our Julia implementation of the minConf optimization library [46], which is included

in our software. The library works with objective functions that take the current model

estimate as the only input argument and requires that the function value and gradient are

returned as a tuple. Listing 2.5 demonstrates how to wrap the misfit function into

an outer objective function that can be passed to minConf. Even though we hand the FWI

objective function to a library over which we hold no control, the outer objective function

50



(a)

(b)

(c)

Figure 2.4: Overthrust velocity model for our 2D FWI case study (a), initial model (b) and
recovered model after 20 iterations of stochastic gradient descent with bound constraints
and a backtracking line search (c).

still allows us to work with randomized subsets of shots or to access and modify the gradi-

ent. In this case, we simply set the gradient in the water column to zero, but applying any

type of scaling or filtering would be possible as well. We can also define additional projec-

tion operators, e.g., for enforcing sparsity, low-rank structure or monotonically increasing

velocity with depth and hand them to the optimization library.
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1 # optimization parameters
2 fevals = 15
3 batchsize = 1080
4
5 # objective function for minConf library
6 function objective_function(x)
7
8 # set model to current estimate
9 model.m = reshape(x, model.n);

10
11 # fwi function value and gradient_test
12 i = randperm(dobs.nsrc)[1:batchsize]
13 f, g = fwi_misfit(model, q[i], dobs[i])
14
15 # reset gradient in water column to 0.
16 g = reshape(g, model.n); g[:, :, 1:21] .= 0f0
17 return f, vec(g)
18 end
19
20 # FWI with spectral projected gradient
21 proj(x) = median([mmin x mmax], dims=2)
22 x, f_final = minConf_SPG(objective_function, vec(model.m), proj)

Listing 2.5: Wrapper around the fwi misfit function for interfacing the minConf
optimization library. MinConf requires objective functions with the current model vector
as the only input argument and the function value and gradient as output arguments. Inside
our wrapper function, we once again select a randomized subset of shots and reset the
gradient in the water column to zero.
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Even though the minConf library that we use in our numerical example is not primar-

ily designed for large-scale applications, we can use it to run large-scale 3D FWI. The

most computationally intensive part is evaluating the fwi misfit function, which is

parallelized and uses Devito to generate highly optimized C code at run time, while the

optimization library in principle does not care how the objective function is evaluated. To

demonstrate that our framework scales, we perform FWI on the 3D Overthrust model using

the spectral projected gradient algorithm from the minConf library. Our test data set (1.2

TB) consists of over 9, 400 shot records with 8 km maximum offset and 3 seconds record-

ing time and was generated with an 8 Hertz Ricker wavelet. We use the full 3D Overthrust

model with a 25 m grid spacing, which corresponds to 801 × 801 × 207 grid points and

a total of over 130 million unknown parameters. Once again, we use a randomly selected

subset of shots and sources in each iteration (in this case 1, 080) and we allow for a max-

imum number of 15 objective function evaluations. Since the forward wavefields are too

large to store in memory, we enable optimal checkpointing for recomputing the wavefields

during the gradient calculation [55, 56, 57]. A depth slice of the final result is shown in

Figure 2.5. Apart from the minConf library, we tested interfacing the NLopt library [44],

which features, amongst others, limited-memory Quasi-Newton methods.

2.3.2 Least-squares reverse time migration

The second class of seismic inverse problems that JUDI is designed for are linear least-

squares problems such as LS-RTM. Like full-waveform inversion, LS-RTM is a computa-

tionally challenging problem for large-scale data sets, especially for high frequencies, and

forms a broad research topic in the seismic community [e.g., 4, 58]. JUDI, with its matrix-

free modeling operators and data containers, is designed to easily translate algorithms into

runnable Julia code that scales to realistic models through its automatic code generation.

Once more, we will start by showing how to implement a very basic version of LS-RTM

with gradient descent and then demonstrate how the code can be modified to more advanced
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Figure 2.5: Depth slice through the original 3D Overthrust model (a), the initial model (b)
and the recovered model after 15 function evaluations with minConf’s spectral projected
gradient algorithm (c). Some parts of the recovered model are cycle skipped, but overall
minConf’s SPG algorithm was able to make decent progress towards the solution. The
result could be improved through a larger batch size of shots, or by adjusting the starting
model.

algorithms like elastic average SGD or LS-RTM with on-the-fly Fourier transforms. For

our numerical case study, we consider the standard LS-RTM objective function with left-

and right-hand preconditioners M−1
l and M−1

r , which correspond to model- and data-space

preconditioners such as mutes or amplitude corrections [59]:

minimize
δ̂m

1

2
‖M−1

l JM−1
r δ̂m−M−1

l δd‖2, (2.3)
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where δm = M−1
r δ̂m is the image we want to recover. As before, the matrix J denotes

the linearized Born modeling operator and δd is the observed linearized data, i.e., shot

records in which ideally all events except the reflections have been removed (such as direct

and turning waves as well as surface-related multiples). The preconditioned linear least-

squares problem can generally be solved with any matrix-free optimization method, while

direct solvers or solvers that need access to arbitrary entries of J cannot be used due to the

large number of dimensions and the fact that J is not available as an explicit matrix. The

algorithm for preconditioned LS-RTM with stochastic gradient descent is given in Algo-

rithm 2.1 and the corresponding code that implements this method using JUDI is shown in

Listing 2.6. Each iteration involves selecting a random subset of shot records and extracting

the corresponding blocks of rows from the demigration operator J. The data residual and

gradient are then calculated for the current subset of source locations. With precondition-

ers that are set up as matrix-free linear operators (using templates from the Julia operator

library by [60]), the algorithm translates directly to runnable Julia code.

Algorithm 2.1 Stochastic gradient descent algorithm for least-squares RTM. The matrix
Js(j) is the subset of the demigration/migration operator that corresponds to the current
subset of shots δds(j) and computes the residual and gradients in parallel. The matrices
M−1

l,r are left- and right-hand preconditioners in the data and model space, such as mutes,
scalings or approximate inverse Hessians.

for j = 1 to n
Select random subset of shot indices s(j) ∈ [1...ns]
rj = M−1

l Js(j)M
−1
r xj −M−1

l δds(j)
gj = M−>

r J>s(j)M
−>
l rj

tj =
‖rj‖2
‖gj‖2

xj+1 = xj − tjgj
end

The SGD algorithm in Listing 2.6 itself is serial, while the parallelization happens im-

plicitly inside J in the form of distributing the source positions and data to the parallel

workers. However, the flexibility of our framework allows to easily exchange the model-

ing parallelism for a parallel algorithm (or a combination of both). A parallel version of

stochastic gradient descent is the elastic average SGD algorithm [61], as shown in Algo-
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1 # Stochastic gradient descent
2 batchsize = 10
3 niter = 20
4
5 for j=1:niter
6
7 # Compute residual and gradient
8 i = randperm(d_refl.nsrc)[1:batchsize]
9 r = Ml*J[i]*Mr*x - Ml*d_refl[i]

10 g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml)*r
11
12 # Step size and update variable
13 t = norm(r)ˆ2/norm(g)ˆ2
14 global x -= t*g
15 end

Listing 2.6: Julia implementation of the stochastic gradient descent algorithm for LS-RTM.
Our matrix-free operators for preconditioners and Jacobians allow for a direct translation
of Algorithm 2.1 to runnable Julia code.

rithm 2.2. In contrast to classic SGD, the algorithm contains an additional loop over the

number of parallel workers, who calculate individual gradient updates that are tied together

by a center variable x̃, which is stored and updated by the master process. Once again, this

algorithm can be translated into Julia code with a moderate amount of effort (Listing 2.7).

The biggest change in comparison to the SGD implementation, is a separate function that

calculates the gradient and which is called in the inner loop and executed in parallel on the

remote workers.

The Julia codes for serial and parallel SGD (Listings 2.6 and 2.7) are agnostic to the

dimensions of the model and work for both 2D and 3D problems. Here, we show the

result of running 20 iterations of EASGD on the 2D Marmousi model using 10 workers

(p=10) and a batch size of 1. The observed data consists of 320 reflection data shot records,

generated as d refl = J*dm, with receivers spread out over the full model, 4 seconds

recording time and 30 Hertz peak frequency. For illustration purposes and keeping the

examples simple, we only demonstrate the serial and parallel implementations of stochastic

gradient descent with sequential shots, but the extensions of these examples to advanced
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Algorithm 2.2 Parallel version of stochastic gradient descent (elastic average SGD) for
LS-RTM. Compared to the serial version, the EASGD algorithm has an additional inner
loop k = 1 to p over the number of workers and each worker computes its individual data
residual, gradient and model update xkj . The master then computes the elastic average x̃j
from the individual model updates.

for j = 1 to n
for k = 1 to p

Select random subset of shot indices s(j, k) ∈ [1...ns]
rkj = M−1

l Js(j,k)M
−1
r xkj −M−1

l δds(j,k)
gkj = M−>

r J>s(j,k)M
−>
l rkj

xkj+1 = xkj − ηgkj − α
(
xkj − x̃j

)
end

x̃j+1 = (1− β)x̃j + β
(
1
p

∑p
i=1 xij

)
end

1 # Gradient function
2 @everywhere function update_x(Ml, J, Mr, x, d, eta, alpha, xav)
3 r = Ml*J*Mr*x - Ml*d
4 g = adjoint(Mr)*adjoint(J)*adjoint(Ml)*r
5 return x - eta*g - alpha*(x - xav)
6 end
7 update_x_par = remote(update_x) # Parallel function wrapper
8
9 for j=1:niter

10 @sync begin
11 for k=1:p
12 # Calculate x update in parallel
13 i = randperm(d_refl.nsrc)[1:batchsize]
14 xnew[:, k] = update_x_par(Ml, J[i], Mr, x[:,k],
15 d_refl[i], eta, alpha, xav)
16 end
17 end
18 # Update average variable
19 global xav = (1 - beta)*xav + beta*(1/p*sum(x, dims=2))
20 global x = copy(xnew)
21 end

Listing 2.7: Implementation of the elastic average SGD algorithm for LS-RTM. Just like
the algorithm, the code has an additional loop over the number of workers p, in which the
new image is calculated by calling the remote parallel function update x par for the
current subset of shots. The @sync statement forces the master to wait at the end of the
inner loop for all workers to return their updates xnew. The elastic average variable xav is
then updated by the master. The @everywhere statement makes the subsequent function
known to all workers, not just the master process.
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Figure 2.6: LS-RTM image of the Marmousi model after 20 iterations of the elastic average
SGD algorithm. In each iteration, the 10 workers calculate their new image from single
randomly selected shot and the master updates the central variable (shown here after the
final iteration).

algorithms like conjugate gradient or inversion with simultaneous shots are straightforward.

A demonstration of how to set up simultaneous sources with JUDI can be found in the

accompanying software.

2.3.3 Compressive imaging with on-the-fly Fourier transforms

So far, all the numerical case studies shown here work with acoustic wave equations and

linearized modeling operators. As discussed earlier, wave equations in our framework

are set up in Python using Devito and the functions for code generation are interfaced

from Julia. By modifying the Python functions that generate the underlying C code, we

can implement different wave equations with density variations or anisotropy, or change

imaging conditions of the migration operator. In this final example, we demonstrate how

we can modify the underlying Python code for LS-RTM with on-the-fly discrete Fourier

transforms (DFTs). Rather than saving the full time-domain forward wavefield for applying

the zero-lag cross correlation imaging condition, we perform a real-valued DFT within the

time loop and save a subset of frequency-domain wavefields (Algorithm 2.3); thus requiring

substantially less memory (see [62] within the context of FWI). In the adjoint time loop for
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migration (Algorithm 2.4), we perform the on-the-fly DFT on the adjoint wavefields and

calculate the image by correlating the frequency-domain wavefields via simple elementwise

multiplications.

Algorithm 2.3 Pseudo-code for calculating frequency-domain wavefields ūreal and ūimag
for a frequency f within the time loop of a forward modeling code. The parameter ∆t is
the computational time-stepping interval and nt is the total number of time steps.

for j = 1 to nt
Calculate current forward wavefield: uj = ...
ūreal = ūreal + uj cos

(
2πfj∆t

)
ūimag = ūimag − uj sin

(
2πfj∆t

)
end

Algorithm 2.4 The frequency-domain gradient ḡ of the FWI or LS-RTM objective func-
tion is calculated by performing the on-the-fly DFT on the adjoint wavefields vj and by
calculating the dotwise multiplication of the real and imaginary forward and adjoint wave-
fields.
for j = nt to 1

Calculate current adjoint wavefield: vj = ...

ḡ = ḡ + 4π2f 2vj

(
ūreal cos

(
2πfj∆t

)
− ūimag sin

(
2πfj∆t

))
end

In Python, we can use the powerful symbolic abstractions of Devito to directly trans-

late the concept of on-the-fly Fourier transforms to Python code, from which optimized

C code is generated and compiled automatically during run time. Frequency and time-

domain wavefields are represented through special types (e.g., TimeData for wavefields)

from which the time-stepping loops are constructed automatically during code generation.

To implement the on-the-fly DFTs, we add the expressions shown in Listing 2.8 to our

symbolic PDE expressions for forward and adjoint modeling, that are defined in the source

code of JUDI.

We now repeat our numerical experiment from the previous section and perform LS-

RTM on the 2D Marmousi model, using the same test data set as before. However, instead

of saving the full forward wavefields in memory and calculating the gradient in the time-

domain, we perform the on-the-fly DFT and only keep 10 (frequency-domain) wavefields
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1 # On-the-fly real-valued DFT of forward wavefield
2 eqn_ufr = Eq(ufr, ufr + u*cos(2*np.pi*f*time*dt))
3 eqn_ufi = Eq(ufi, ufi - u*sin(2*np.pi*f*time*dt))
4
5 # On-the-fly real-valued DFT of adjoint wavefield
6 eqn_g = Eq(g, g+(2*np.pi*f)**2*v*(ufr*cos(2*np.pi*f*time*dt)-
7 ufi*sin(2*np.pi*f*time*dt)))

Listing 2.8: On-the-fly Fourier transform for calculating frequency-domain wavefields in
the forward time loop and gradients (images) in the adjoint time loop. Eq is a SymPy
function that generates a symbolic stencil from Devito expressions and is used by Devito
to automatically generate optimized C code during execution time.

Figure 2.7: Imaging result after 32 iterations of sparsity-promoting LS-RTM with on-the-
fly Fourier transforms. By only saving a few frequency-domain wavefields, this method
only requires a fraction of the memory of conventional time-domain LS-RTM and therefore
scales to large-scale models.

in memory from which the LS-RTM gradient is calculated. The frequencies in each iter-

ation are selected randomly for each shot, which creates images with random noise, sim-

ilar to LS-RTM with simultaneous sources or stochastic frequency-domain LS-RTM. By

solving a modified version of the standard LS-RTM problem (equation 2.3) with sparsity-

promotion, these artifacts can be mostly removed and we obtain an image that looks close

to our previous result, but at a fraction of the memory cost (Figure 2.7). For solving the

sparsity-promoting LS-RTM problem with frequency subsampling, we use the linearized

Bregman method as described in [63]. The Julia code follows largely the algorithm in

Listing 2.7, with an additional variable and sparsity promotion through soft thresholding.
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2.4 Discussion

The numerical examples presented here are intended to demonstrate the flexibility that

comes with symbolic user interfaces, making it possible to implement algorithms for wave-

equation based inversion in a few lines of code and in a high-level interactive language. Our

examples show that abstractions used in JUDI and Devito do not come at the cost of per-

formance; in fact, symbolic APIs and automatic code generation are not only the key for

productivity, but also the best and quickest way of obtaining efficient, functional code –

code that would have taken weeks of work to optimize by hand, with no guarantees on

portability and long-term maintainability. In terms of performance results for our numeri-

cal examples, we refrain from providing absolute timings, as they strongly depend on the

hardware, amount of available computational resources and parameters, such as the stencil

order. A more meaningful metric for performance measurements is the roofline model [38,

64, 39], which measures usage of the hardware compared to the best performance that can

theoretically be achieved for a given discretization and implementation. A roofline analysis

of Devito is provided in [25] and [26], with Devito reaching up to 60 percent of maximum

achievable performance, depending on the stencil order, which is significantly higher than

the average performance of finite-difference stencil codes.

With JUDI, we introduce a seismic modeling and inversion framework based on

domain-specific abstractions and automatic code generation, which combines components

in different languages (Julia, Python, C) into a single package. This stands in contrast

to a more traditional approach to high-performance computing in low-level programming

languages and with manual performance optimizations. JUDI provides abstractions for

definitions of objective functions and optimization algorithms in Julia, an interface to

Python for symbolic definitions of forward and adjoint wave equations, while optimized

time-stepping code for solving PDEs is automatically generated by the Devito compiler.

Exposing Devito’s capabilites through JUDI’s abstract linear algebra operators, provides
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researchers with the means to implement modern optimization algorithms on a high ab-

straction level and without having to implement low-level stencil codes. This structure

makes it possbile to independently modify each aspect of seismic inverse problems, such

as changing the definition of wave equations, without having to modify the optimization

algorithm or implementing a new misfit function without having to worry about the par-

allelization. Exposing the symbolic interfaces in high-level languages such as Julia and

Python makes the software usable by a wide range of users, not just experienced C or

Fortran programmers.

This approach to scientific computing is strongly inspired by recent machine learning

frameworks such as Tensorflow or PyTorch, which make building blocks of deep learning

tools available to a wide audience and therefore promote the fast progress of this field.

With packages like Tensorflow, any interested researcher can implement and train a neu-

ral network in a few hours, e.g. by following simple online tutorials, without having to

know how to implement convolutions on graphical processing units. With JUDI, we ap-

ply this paradigm to seismic inverse problems and introduce a software framework that

makes it possible to build workflows and algorithms for FWI and LS-RTM on a high ab-

straction level and without requiring the knowledge of how to implement finite-difference

time-stepping codes in C. This approach also simplifies the implementation of adjoint wave

equations and verifiably correct gradients – tasks that are often impossible to accomplish in

reasonable amounts of time when working with hand-tuned codes in low-level languages.

Some disadvantages that come with JUDI and this approach to software design, are the ad-

ditional amount of work that comes with the interaction of different packages or program-

ming languages. Furthermore, this type of code development requires a stronger interaction

between geophysicists and software engineers/compiler specialists, since inversion codes

typically require very problem-specific functionalities, such as source/receiver interpola-

tions. However, we believe that the advantages greatly outweigh these downsides and pay

off in the long run.
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2.5 Conclusion

As seismic inversion problems become increasingly mathematically and computationally

complex, geophysicists need to rethink the paradigms for developing software packages.

Adapting manually optimized codes in low-level languages to new hardware environments

such as the cloud or implementing sophisticated algorithms for inversion is often impos-

sible to accomplish in reasonable amounts of time. One of the core problems amounts to

the fact that algorithms, parallelization and performance optimizations are oftentimes in-

terwoven and become impossible to modify independently. With the Julia Devito Inversion

framework, we introduce an open-source software package that aims at overcoming these

issues through independent layers of abstractions that break the complexity into manage-

able parts. We neither argue that JUDI is the only possible way of implementing these

principles, nor that Julia is the only viable programming language for this, or that one spe-

cific language is superior to another. Rather, we hope to stimulate a discussion on how to

engineer seismic and geophysical software in a way that helps progressing the field and

making it more accessible and user-friendly to our community. With the framework in-

troduced in this work, we aim to promote software based on symbolic user interfaces and

automatic code generation, rather than manually optimized inversion codes in low-level

languages. We demonstrate that abstractions and performance are not mutually exclusive,

but that symbolic interfaces can greatly facilitate the implementation of seismic inversion

algorithms. Based on experiences from the related machine learning community, we be-

lieve that moving to a new paradigm for geophysical software can only happen with close

interactions and collaborations between academia and industry, but that a shift towards

mutually developed open-source software will eventually benefit both sides, as it is a pre-

requisite for driving innovations.
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Part II

Compressive seismic imaging
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CHAPTER 3

COMPRESSIVE LEAST-SQUARES MIGRATION WITH ON-THE-FLY

FOURIER TRANSFORMS

3.1 Introduction

Reverse-time migration (RTM) is an increasingly popular wave-equation based seismic

imaging algorithm that corresponds to applying the adjoint of the Born scattering operator

to observed reflection data [1, 2]. Without extensive preconditioning, applying the adjoint

operator leads to an image with incorrect amplitudes, imprints of the source wavelet, fi-

nite apertures and therefore blurred reflectors. To overcome these issues and invert the

Born scattering operator, imaging can be formulated as a linear least-squares optimization

problem, in which the mismatch between observed and modeled data is minimized in a

least-squares sense. Least-squares migration was introduced for ray-based imaging meth-

ods first [3, 4, 5] and later extended to wave-equation based imaging (LS-RTM) [6, 7, 8,

9].

The successful deployment of LS-RTM in practice is currently hampered by two dis-

tinct computational challenges. First of all, conventional LS-RTM requires the migra-

tion/demigration of all shot records in each iteration of gradient-based optimization al-

gorithms, making this approach prohibitively expensive for large-scale data sets with thou-

sands of individual shot records. To save computational resources, shots can therefore be

subsampled or combined into supergathers/simultaneous shots, which avoids having to treat

every shot separately in each iteration [7, 10, 11, 12, 13, 14, 15]. The resulting LS-RTM

formulations can then be solved using stochastic optimization methods, such as stochas-

tic gradient descent or variants of the stochastic conjugate gradient method [e.g. 16, 17].

Since the migration of simultaneous shot records leads to cross-talk in the seismic image,
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the resulting artifacts need be addressed by additional constraints such as smoothing con-

straints [18] or transform-domain sparsity [19, 11, 20, 21]. Common transforms that lead

to sparsity of seismic images include the wavelet, seislet or curvelet transforms [22, 23,

24].

The second challenge of LS-RTM are the large requirements of data movement and fast

memory access for computing the gradient of the objective function with the adjoint-state

method [25, 26]. The gradient for one shot record is computed by solving an adjoint wave

equation, with the data residual between the predicted and observed data as the adjoint

source, and requires access to the forward wavefields in reverse order. The forward wave-

fields are obtained by forward propagating the seismic source for the respective shot record,

but they are typically too large to store in memory. To overcome this issue, a common strat-

egy is to either write compressed wavefields to disk, or to store only a small subset of un-

compressed wavefields, while the in-between wavefields are recomputed from checkpoints

[27, 28] or the model boundary [29]. These approaches therefore offer a possible trade-off

between memory usage and computational cost, as more wavefields need to be recomputed

for a smaller number of checkpoints. Further alternatives for circumventing the storage of

time-domain wavefields are discussed in [30]. Storing or recomputing wavefields is espe-

cially expensive for seismic imaging, since it is typically carried out at higher frequencies

than full-waveform inversion (FWI) and thus involves substantially larger wavefields and

models due to small grid spacings.

An alternative to recomputing time-domain wavefields from checkpoints, is to use time-

to-frequency conversions to extract monochromatic frequency-domain wavefields from a

time-stepping loop and to compute gradients for a small subset of frequencies. This ap-

proach circumvents the problem of having to store or recompute wavefields for a large

number of time steps, as frequency-domain gradients are computed individually for one

frequency at a time. Modeling frequency-domain wavefields with a time-domain mod-

eling code is a well established approach in scientific computing and several algorithms
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exist to perform time-to-frequency conversions, including discrete on-the-fly Fourier trans-

forms (DFTs) or linear equation methods [refer to 31, for an overview]. A conversion

method in the context of seismic modeling using phase-sensitive detections (PSDs) is pre-

sented in [32]. Extracting single frequency-domain wavefields from a time-stepping loop

is even possible without any conversion at all and can be obtained by simply propagating a

monochromatic source function to a steady state [33].

Time-to-frequency conversion methods enjoy great popularity in the context of full-

waveform inversion [34, 35, 36, 37, 38], as it is generally desirable to carry out the in-

version for single or few frequencies at a time [39, 40]. For seismic imaging on the other

hand, the goal is to obtain a high-definition image with a broad frequency band, making it

typically necessary to compute gradients for a large-number of evenly-spaced frequencies.

Hence, we present a workflow for least-squares RTM using small subsets of randomly se-

lected frequencies and shot records, with sparsity promotion to address the subsampling

related imaging artifacts. In contrast to earlier works by [19] and [41], we use on-the-fly

Fourier tranforms to compute gradients in the frequency domain with a highly optimized

time-domain modeling code [42, 43]. On-the-fly DFTs not only allow us to compute an

arbitrary number of frequencies in a single time-stepping loop, but also to scale the inver-

sion to high frequencies, without solving large-scale 2D, and in particular 3D, Helmholtz

equations. In our numerical examples, we demonstrate that compressive imaging with

sparsity promotion (SPLS-RTM) and on-the-fly DFTs yields images of similar quality as

time-domain LS-RTM, but without having to store or recompute time-domain wavefields

and with a significantly reduced number of wave equation solves, using as few as two

passes through the data. In the discussion, we analyze the asymptotic behaviour of mem-

ory requirements and computational cost for imaging with on-the-fly DFTs and compare

it to optimal checkpointing. Thus, the contribution of this work is the formulation of fre-

quency domain LS-RTM with a time-domain modeling operator and on-the-fly Fourier

transforms using shot and frequency subsampling to overcome the prohibitively high cost
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of least squares RTM. The shot and frequency-subsampling effectively turn LS-RTM into

an underdetermined compressed sensing problem, with computational flexibility regarding

batch sizes and number of iterations, which can be customized according to the available

computational resources. Furthermore, this paper introduces a forward-adjoint pair for

imaging the impedance in both the time and frequency domain (with or without on-the-fly

DFTs) and presents a quantitative and qualitative comparison of time-domain LS-RTM and

frequency-domain LS-RTM with on-the-fly DFTs.

3.2 Theory and methodology

3.2.1 Frequency-domain least-squares migration with time-domain modeling

To circumvent the problem of having to store time-domain wavefields for computing the

adjoint-state gradient, we formulate the least-squares reverse-time migration objective

function in the frequency domain, using the frequency-domain linearized Born scattering

operator J:

minimize
δm

ns∑
j=1

nf∑
k=1

1

2

∥∥∥J(m0, q̄jk) δm− d̄obs
jk

∥∥∥2
2
. (3.1)

The vector m0 denotes the vectorized migration velocity model in squared slowness and

δm is the unknown model perturbation (i.e. the seismic image). The vector d̄obs
jk is the ob-

served reflection data in the frequency-domain (denoted by bars) of the j th source location

and the kth frequency and q̄jk is the complex-valued monochromatic source. The objective

function is computed as the sum over all ns source positions and nf temporal frequencies.

To model the predicted linearized data in the Fourier domain, we have to compute the ac-

tion of the linearized Born modeling operator on the current image, d̄pred
jk = J(m0, q̄jk) δm,

which corresponds to solving:

d̄pred
jk = −PrH(m0)

−1diag

[
∂H(m0)

∂m
H(m0)

−1p∗s q̄jk

]
δm, (3.2)
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where H(m0) is the frequency-domain modeling operator and Pr is a projection operator

that restricts the wavefield to the receiver locations. Accordingly, the vector p∗s is the

source injection operator, which is a column vector of zeros with value one at the source

location. The asterisk denotes the adjoint of complex vectors and matrices, also known as

the Hermitian adjoint.

While formulating the LS-RTM objective in the frequency domain avoids storing the

history of the time-domain wavefields, it in principle requires inverting the Helmholtz ma-

trix for modeling observed data and computing gradients. To avoid inverting large-scale

Helmholtz systems, which are known to be ill-conditioned for large-scale systems with high

frequencies, we instead compute the frequency-domain data with a time-domain modeling

code [31, 32, 34]. This combines the best of both worlds, as we can use a highly opti-

mized time-domain modeling code for the PDE solves, while computing gradients mem-

ory efficiently in the frequency domain, where gradients are separable over frequencies.

This means it is possible to compute the gradient for single frequencies at a time, as an

element-wise product of the corresponding forward and adjoint monochromatic wavefields.

In principal, modeling the frequency response of the linearized modeling operator involves

computing the inverse DFT of the source wavelet q̄jk, solving the linearized wave equation

in the time domain and then performing a time-to-frequency conversion of the single scat-

tered wavefields for all frequencies (i.e. using a DFT). This is followed by extracting the

kth frequency through a frequency restriction operator Rk and restricting the wavefield to

the receiver locations (through a receiver projection operator Pr). Overall, we have:

d̄pred
jk = −PrRkFA(m0)

−1diag

[
∂A(m0)

∂m
A(m0)

−1F∗R∗kp
∗
s q̄jk

]
δm, (3.3)

where A(m) is the discretized time-domain wave equation and F is the discrete Fourier

matrix. As mentioned, Rk is a restriction operator that extracts the kth frequency of the

wavefield, while its adjoint zero-padds a frequency wavefield along the frequency axis, so

75



that we can compute its inverse temporal Fourier transform. However, in the actual imple-

mentation of equation 3.3, we combine the time-to-frequency conversion and the extraction

of one or multiple frequencies into a single step, by performing on-the-fly DFTs for the re-

spective frequencies, instead of an explicit DFT of all frequencies. Accordingly, we never

explicitly zero-padd the source wavelet to perform an inverse DFT, but simply inject the

time-domain wavelet.

To obtain the gradient of the frequency-domain LS-RTM objective function, we have

to compute the action of the complex conjugate linearized modelig operator on the data

residual, i.e.; ḡjk = J(m0, q̄jk)
∗(d̄pred

jk − d̄obs
jk ). The expression for the gradient can be

derived by taking the conjugate transpose of equation 3.2 and boils down to calculating the

pointwise product of the (complex) forward and adjoint wavefields ūjk and v̄jk [44]:

ḡjk = −Re
[
diag

(
ω2
kūjk

)∗
v̄jk

]
. (3.4)

The scalar ω2
k is the squared angular frequency ωk = 2πfk and Re denotes the real part of

the gradient. Once again, we do not compute the forward and adjoint frequency-domain

wavefields by inverting the Helmholtz equation, but by solving time-domain wave equa-

tions, followed by time-to-frequency conversions for the respective frequencies. In an

analogous manner to equation 3.3, we obtain the forward wavefield ūjk for the j th source

location and kth frequency by solving:

ūjk = RkFA(m0)
−1F∗R∗kp

∗
s q̄jk. (3.5)

The adjoint wavefield is obtained accordingly, by solving an adjoint time-domain wave

equation with the data residual as the adjoint source. In general, this is different from time

reversing the data residual and using the forward modeling operator, as it involves inverting
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the correct adjoint of the forward modeling operator:

v̄jk = RkFA(m0)
−∗F∗R∗kP

∗
r(d̄

pred
jk − d̄obs

jk ), (3.6)

with A(m0)
−∗ being the solution of the adjoint time-domain wave equation. In summary,

we have derived an expression for computing the predicted linearized data in the frequency-

domain using a time-domain modeling code, as well as corresponding expressions for the

gradient of the LS-RTM objective function. Thus, these quantities can be computed with

highly-optimized time-domain modeling codes instead of Helmholtz solvers, whose suc-

cess heavily rely on the underlying preconditioners and linear solvers. However, the an-

alytical expressions in this section contain explicit Fourier transforms of the time-domain

wavefields that require access to their full time history in memory, which is what we wanted

to avoid in the first place. Luckily, we can avoid having to explicitly compute discrete

Fourier transforms of the time-domain wavefields, by computing the DFTs on the fly.

3.2.2 Computing on-the-fly Fourier transforms

To avoid saving the full time-dependent wavefield in memory and taking its Fourier trans-

form after modeling, we compute Fourier domain wavefields for a given frequency fk dur-

ing the forward or reverse time loops on the fly. In the context of full-waveform inversion,

this approach has been introduced by [34] and has since then appeared in a number of

publications related to FWI [e.g. 35, 36, 37, 38]. The on-the-fly Fourier transforms cor-

respond to computing the frequency-domain wavefields as a running sum over the current

time-domain wavefield ui of the ith time step within a time modeling loop, multiplied with

a complex exponential [31]. To simplify the implementation and avoid complex arrays, we

individually compute the real and imaginary part of the frequency domain wavefields. The
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on-the-fly Fourier transform of the forward wavefields is then given by:

ūreal
jk =

nt∑
i=1

cos(2πfki∆t)ui,

ūimag
jk = −

nt∑
i=1

sin(2πfki∆t)ui.

(3.7)

This expression can be fairly easily incorporated into an existing time-domain modeling

code and only involves initializing the two frequency-domain wavefields with zeros and

adding the current time-domain wavefield multiplied with the sine and cosine terms during

each time step. To obtain the linearized data in the frequency-domain (equation 3.3), we

technically have to perform the on-the-fly DFT on the linearized (single-scattered) wave-

fields, rather than on the source wavefields. Alternatively, it is possible to model time-

domain shot records and perform the frequency conversion after modeling, since time-

domain shot records themselves are not as big as time-domain wavefields and can gener-

ally be stored in memory. In the numerical examples section, we demonstrate, that this

step is actually not necessary for LS-RTM, as we can simply use full time-domain sources

and shot records (data residuals) as forward and adjoint sources. This means, we only use

on-the-fly DFTs to compute wavefields for the gradient in the frequency-domain, but we

work with time-domain data and sources.

The adjoint frequency-domain wavefields (equation 3.6) that are necessary for comput-

ing the LS-RTM gradient, are computed in the same manner as the forward wavefields,

namely by performing an on-the-fly DFT on the adjoint time-domain wavefields vi. These

wavefields are computed by solving an adjoint (i.e. time-reversed) wave equation A−?, just

as in conventional RTM. The LS-RTM gradient itself can be computed in the same time

loop as the adjoint frequency-domain wavefields. We replace the complex Fourier domain

wavefield ūjk in equation 3.4 with the real and imaginary parts as given by equation 3.7 and

compute the real part of the gradient through an on-the-fly DFT of the adjoint time-domain
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wavefield vi:

ḡjk = −
nt∑
i=1

(2πfk)
2diag

[
ūreal
jk cos(2πfki∆t)− ūimag

jk sin(2πfki∆t)
]
vi. (3.8)

This equation gives us an expression for calculating the LS-RTM gradient in the frequency

domain with a time-modeling code for any given frequency fk, not just evenly spaced fre-

quencies as obtained with an FFT. Unlike in the time domain or in equations 3.4 – 3.6,

we never need to store the full time-domain wavefield ui with i = 1, . . . , nt in history.

Instead, forward wavefields and gradients are computed as a running sum within forward

or adjoint time loops and only require the storage of two wavefields per frequency at a time

(real and imaginary parts). During a single time-stepping loop, it is of course possible to

compute multiple monochromatic wavefields for different frequencies by creating an inner

loop within the on-the-fly DFT over the number of frequency-domain wavefields. While

this does not increase the number of time-stepping loops (PDE solves), every additional fre-

quency increases both memory requirements and computational cost within the respective

time loop.

3.2.3 A forward-adjoint pair for imaging the impedance

The gradient of the LS-RTM objective function that we derived in the previous sections

uses the zero-lag cross-correlation imaging condition and maps seismic reflections in the

observed data to a perturbation in the medium parameters, which are in this case the veloc-

ity in squared slowness (s−2 km2). One of the well known shortcomings of imaging veloc-

ity perturbations with the zero-lag cross-correlation imaging condition, are low frequency

imaging artifacts that result from backscattering of the source wavefield [e.g. 45, 46]. This

issue is especially problematic for imaging salt bodies, as high velocity contrasts in the

migration velocity model lead to reflections/backscattering of the down-going wavefield,

thus creating strong low-frequency artifacts in the image (Figure 3.1). This phenomenon
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has been well studied using radiation pattern analysis [47, 48] and can be addressed by di-

rectional filtering of the wavefields, reparametrizations of the image or alternative imaging

conditions. Here, we follow the approach from [49] and address this issue by deriving the

gradient of the LS-RTM objective function using the linearized inverse scattering imaging

condition (ISIC). The image/gradient with ISIC is given by the sum of two terms, in which

the low frequency artifacts have opposite signs and cancel each other, while the reflectors

have equal signs and stack coherently [50]. In the frequency domain, the imaging condition

is defined as [49]:

ḡjk = −Re

[
diag

(
ω2
kūjk

)∗diag
(
m0

)
v̄jk −

ndim∑
l=1

diag

(
∂ūjk
∂xl

)∗
∂v̄jk
∂xl

]
, (3.9)

where ndim is the number of spatial dimensions and ∂
∂xi

is the first spatial derivative of the

respective dimension. The first term of this equation corresponds to the cross-correlation

imaging condition as defined by equation 3.4 with an additional pointwise multiplication

with the background squared slowness vector m0, while the second term is the sum of

pointwise products of the first spatial derivatives of forward and adjoint wavefields. In Ap-

pendix A.2, we show that the linearized inverse scattering imaging condition corresponds

in fact to imaging the acoustic impedance, making the gradient ḡjk an impedance update,

rather than a velocity perturbation (squared slowness) update. Since we want to use ISIC

in the context of imaging with on-the-fly Fourier transforms, we follow the approach from

the previous section and compute the gradient in a (reverse) time-stepping loop, in which

the adjoint frequency-domain wavefields v̄jk are obtained through an on-the-fly Fourier

transform of the adjoint time-domain wavefield vi:

ḡjk = −
nt∑
i=1

{
(2πfk)

2diag
[
ūreal
jk cos(2πfki∆t)− ūimag

jk sin(2πfki∆t)
]
diag

(
m0

)
vi−

ndim∑
l=1

diag

[
∂ūreal

jk

∂xl
cos(2πfki∆t)−

∂ūimag
jk

∂xl
sin(2πfki∆t)

]
∂vi
∂xl

}
.

(3.10)
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As before, the frequency domain source wavefields ūjk are computed in a separate forward

time-stepping loop with an on-the-fly DFT of the forward time-domain wavefield (equa-

tion 3.7). As discussed earlier, we can think of the gradient expression as the action of an

adjoint linear operator J∗ on the LS-RTM data residual, which maps a perturbation in the

data to a perturbation in the model (the seismic image). To use ISIC/impedance imaging

in the context of LS-RTM, we need to derive the corresponding forward operator, i.e.; the

linear map from the image domain to the data domain [51]. Once again, we model the lin-

earized data with a time-stepping modeling code, followed either by an on-the-fly DFT of

the linearized wavefield or a time-to-frequency conversion of the time-domain shot record.

First, we compute the perturbed (single scattered) wavefield δui of the ith time step, such

that the expression is the (time-domain) adjoint operation of equation 3.9:

δui = −A(m0)
−1

{
diag

(
∂2ui
∂t2

)
diag

(
m0

)
δz−

ndim∑
l=1

∂

∂xl

[
diag

(
∂ui
∂xl

)
δz

]}
, (3.11)

where the vector δz denotes the impedance. The real and imaginary parts of the linearized

data are then obtained by performing the on-the-fly DFT on the scattered time-domain

wavefields δui and by restricting the wavefield to the receiver locations:

d̄
predr
jk = Pr

nt∑
i=1

cos(2πfki∆t)δui,

d̄
predi
jk = −Pr

nt∑
i=1

sin(2πfki∆t)δui.

(3.12)

To obtain linearized data for an impedance image δz in the time domain, we can simply

omit the on-the-fly DFT and directly apply the receiver restriction operator Pr to the time-

domain wavefield δui. This allows us to use the modeling operator in equation 3.11 also for

conventional time-domain LS-RTM with impedance imaging. The optimization algorithm

for LS-RTM with on-the-fly DFTs and sparsity-promotion that is described in the in the fol-

lowing section, is independent of which imaging condition is used and works for imaging
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(a) (b)

(c) (d)

Figure 3.1: Comparison of RTM with the zero-lag cross-correlation imaging condition
(c) versus the linearized inverse scattering imaging condition (d). The top row shows the
smooth migration velocity model (a) and the true image (b). Both results were computed
for a single shot record using 20 randomly chosen frequencies, which expectedly leads
to crosstalk (spectral leakage) in the image and one-sided illumination of the salt body.
However, the migration result with the cross-correlation imaging condition also suffers
from strong low-frequency backscattering artifacts, whereas the inverse-scattering imaging
condition is able to successfully suppress this energy.

the impedance using equation 3.10, as well as imaging velocity contrasts (equation 3.8).

In theory, the equations provided here for acoustic/impedance modeling and computing

the gradients using on-the-fly DFTs are exact adjoints and are able to pass adjoint tests if

implemented as described.
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3.2.4 Sparsity-promoting least-squares migration

The expressions we derived in the last sections allow us in principle to perform frequency-

domain LS-RTM using a time-modeling code and without having to store time histories

of wavefields. However, for conventional LS-RTM, the gradient is given by the full sum

of all frequencies and source locations. The number of frequencies is determined by the

recording length of the shot records and their sampling ratio (i.e. by the corresponding

Nyquist frequency) and is generally quite large. Performing on-the-fly DFTs for a large

number of frequencies in a single time loop is not only computationally expensive, but

also requires the storage of all those wavefields and therefore defeats the purpose of this

approach. Our method is therefore most useful, when we compute the gradients of the LS-

RTM objective function for a small subset of frequencies, rather than for all frequencies.

I.e.; for a single source index j, we compute n̂f � nf frequencies within one time loop,

which requires the storage of 2n̂f wavefields for the gradient.

In the context of FWI, computing the gradient for a subset of frequencies makes sense,

as it is generally desirable to invert the velocity model from low to high frequencies, us-

ing single or few temporal frequencies at a time [39, 40]. For seismic imaging on the

other hand, the goal is to obtain a high resolution image from data with a broad frequency

spectrum. As pointed out in [52], using all temporal frequencies for seismic imaging is

generally not necessary, as frequencies are typically oversampled and the sampling ratio

depends on the scattering angles. This allows us to image seismic data using subsets of

evenly spaced frequencies, where the frequency interval is determined by the recording

length, which in turn depends on the target depth and the overburden velocity [53]. Alter-

natively, the field of compressed sensing (CS) has recently provided a theoretical frame-

work for sampling signals far below the Nyquist criterion using randomized sampling [54,

55]. The core idea of CS is to break the coherency of subsampling artifacts (aliases) into

incoherent noise, by sampling on a non-uniform grid and to recover the signal using de-

noising techniques. Applied to LS-RTM, compressed sensing translates to working with
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random subsets of shots and frequencies, rather than evenly spaced samples. As is well

known from compressive seismic imaging in the frequency domain [19, 56, 21], migrating

data that consists of subsets of randomly selected frequencies leads to noise/crosstalk in the

images, similar to artifacts from simultaneous shots with source encoding [e.g. 57, 7]. This

is demonstrated in Figure 3.2, which compares migration results in the time and frequency

domain for single and multiple shots and using frequency subsampling. While migrating a

single shot record using 20 randomly selected frequencies leads to an image with seemingly

strong coherent artifacts, these artifacts convert to random noise after stacking 10 migrated

shots, where each shot is migrated with a different set of randomly selected frequencies.

Selecting the frequencies randomly is crucial for being able to recover the true image with

sparsity-promoting minimization, as it breaks the coherency of the subsampling artifacts

(namely aliases). Subsampling frequencies periodically, as well as truncating the ends of

the frequency spectrum, leads to coherent artifacts (aliases), which are more difficult to

separate from the signal.

Due to the fact that the frequency subsampling artifacts appear as incoherent noise in

the image, it is possible to apply post-migration denoising techniques [refer to 58, for an

overview] or to address the artifacts as part of the inversion process itself and by modifying

the least-squares RTM objective function. We follow the approaches in [23] and [41] and

formulate LS-RTM as a sparsity-promoting minimization problem of the following form:

minimize
δz

λ||C δz||1 +
1

2
||C δz||22

subject to:
ns∑
j=1

nf∑
k=1

∥∥∥M−1
l J(m0, q̄jk)M

−1
r δz−M−1

l d̄obs
jk

∥∥∥
2
≤ σ.

(3.13)

The goal of this problem is to minimize the combined `1-`2-norm of the unknown parame-

ters, which are in our case the curvelet coefficients of the acoustic impedance δz, obtained

through multiplication with the forward curvelet transform C. This is subject to the con-

straint that the predicted linearized data, given by the action of the linearized modeling
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Comparisons of reverse-time migration in the time and frequency domain with
on-the-fly Fourier transforms and frequency subsampling. Figure (a) is the migration ve-
locity model and (b) is the true image. Figures (c) and (d) are the results of migrating a
single shot and 10 shots in the time domain. Figures (e) and (f) are the corresponding re-
sults in the frequency domain with a subset of 20 randomly selected frequencies per shot.
The migrated shot record in the frequency domain for 20 randomly selected frequencies
(e) shows a very weak signal-to-noise ratio in comparison to its time-domain equivalent
(c). However, when stacking the migration results of 10 shots, where each migrated shot
consists of a different set of randomly selected frequencies, the reflectors stack coherently,
while the subsampling artifacts appear as incoherent noise (f).

operator J on δz, fits the observed reflections d̄obs
jk within some noise level σ. The matrices

M−1
l and M−1

r are left- and right-hand preconditioners intended to improve the condition

number of the system, such as mutes, depth scalings or half integrations [23]. In the nu-
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merical examples, we use image mutes to set the water column to zero, as well as depth

scalings to compensate for spherical divergence of the amplitudes.

In terms of image transforms, it is generally possible to choose any transform that

leads to sparsity of the image in the transform domain, meaning the image can be well

approximated by a small subset of coefficients (Figure 3.3). For seismic images, we are in-

terested in local details, such as edges and singularities, which can be captured by wavelets

or first differences. However, curvelets are not only multi-scale (like wavelets), but also

multi-directional and thus are able to capture both point and line singularities, as well as

smoothness along curved reflectors [22, 59]. As such, the curvelet transform is able to

preserve structures in seismic images, even for a small number of coefficients, while sparse

approximations of the original image coefficients lead to gaps in the subsurface structures

(Figure 3.3). Another structure preserving transform that has been successfully used in the

context of sparse seismic imaging, is the seislet transform [24, 60]. The seislet transform

requires an estimation of the local slopes of events using plane wave deconstruction, while

the curvelet transform detects dips automatically [22].

The objective function in equation 3.13 is a modified formulation of the basis pursuit

denoise (BPDN) problem [54] and consists of a combined `1- and `2-norm, where λ is a

trade-off (penalty) parameter that balances the two terms. The combined `1- and `2-norm

is referred to as an elastic net in machine learning and has the effect of making the ob-

jective function strongly convex [61]. This allows us to optimize equation 3.13 with the

linearized Bregman method, a simple to implement solver with few hyper parameters [62,

63], in which the penalty parameter λ plays a fundamentally different role than in com-

parable algorithms such as iterative soft thresholding (ISTA). A comparison of these two

algorithms in the context of seismic imaging and the role of the thresholding parameter can

be found in [41]. Practically, the `2-norm of the curvelet coefficients has no direct influence

on the final image and in fact, for a large enough value of λ, the solution of equation 3.13

is equivalent to the solution of the BPDN problem, which is the same problem without the
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(c) (d)

Figure 3.3: Sparse approximations of the true image in the image domain itself (left-hand
column) and the curvlet domain (right-hand column). Figures (a) and (b) are sparse ap-
proximations using the largest 5 percent coefficients of the images in their respective do-
main and figures (c) and (d) are approximations using the largest 1 percent coefficients.
The seismic image can be almost perfectly approximated by only 1 percent of the curvelet
coefficients, as the sorted coefficients decay faster by magnitude than the original image
coefficients. This makes the curvelet transform well suited for seismic imaging based on
sparsity promotion.

`2 regularization term in the objective function. However, we have to include this term to

make the objevtive function strongly convex and the `2-term has to act on the same coeffi-

cients as the `1-term. Strong convexity enables us to solve the problem with the linearized

Bregman method, which has nicer numerical properties than the related ISTA algorithm.

Furthermore, there exists theoretical justification for using the linearized Bregman method

to solve overdetermined problems, such as LS-RTM, by working with random subsets of

rows/measurements in each iteration [63]. In the extreme case of working with single rows

(shots) of the linear operator and data, the method is then equivalent to the sparse Kaczmarz

solver [64]. The linearized Bregman method is a fairly recent optimization algorithm, but
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is closely related to older, well-established algorithms, such as the augmented Lagrangian

method and the alternating direction method of multipliers [e.g. 62].

Sparsity-promoting LS-RTM in the frequency domain as a BPDN problem has been

described, amongst others, in [19] and the adaption of the linearized Bregman method to

this problem has been discussed in [41]. In contrast to the approach presented here, these

publications solve Helmholtz equations rather than performing time-to-frequency conver-

sion and are thus limited in their scalability to large-scale high frequency data sets. How-

ever, as the algorithm for solving equation 3.13 only differs in the way how the linearized

data and gradients are computed, we refer to these publications for details on sparsity-

promoting LS-RTM and the linearized Bregman method. For the sake of completeness and

reproducibility, we include the algorithm for minimizing equation 3.13 with the linearized

Bregman method in Algorithm 3.1. The method works for imaging velocity contrasts as

well as acoustic impedance and basically consists of three simple steps: modeling the pre-

dicted linearized data (equation 3.3 or 3.12), computing the gradient by migrating the data

residual (equation 3.7 or 3.10) and soft thresholding the curvelet coefficients of the updated

image. Each iteration involves choosing a random subset of n̂s � ns sources and n̂f � nf

frequencies for which the gradient is computed. The step length t can be chosen to be

either constant or based on a dynamic update rule [61] (a constant step size was used in all

numerical examples). The penalty parameter λ is set according to the maximum amplitude

of the gradient in the first iteration, i.e.; λ = c‖t1ḡ‖∞ with ‖x‖∞ = max (|x1|, ..., |xn|)

being the infinity norm. The constant c determines how many coefficients pass the thresh-

old in the first iteration. For c = 1, λ is set to the magnitude of the largest coefficient,

causing no coefficient to pass the threshold in the first iteration. A smaller value of c, such

as c = 0.1, results in a threshold that keeps all coefficients with magnitudes larger than

1
10

of the maximum magnitude. In practice, this results in more coefficients entering into

the solution early on. A detailed geophysical interpretation of each step of the algorithm is

provided in Appendix A.3.

88



Algorithm 3.1 The linearized Bregman method for sparsity-promoting LS-RTM with ran-
domized subsets of shots and frequencies. For each selected shot, a different subset of
frequencies is selected; thus leading to a larger number of different frequencies in each
image update. The algorithms consists of modeling the predicted linearized data d̄pred

S and
migrating the data residual for obtaining the gradient. The image xi is updated by applying
the soft-thresholding function to the dual variable zi.

1. Initialize x1 = 0, z1 = 0, q, λ, batch sizes n̂s � ns and n̂f � nf
2. for i = 1, ..., n
3. Select subset of shots and frequencies S = (∫shot, ∫freq), |∫shot| = n̂s, |∫freq| = n̂f
4. d̄pred

S = M−1
l JSM

−1
r x

5. ḡS = M−>
r J>SM−>

l Pσ
(
d̄pred
S − d̄obs

S
)

6. zi+1 = zi − tiḡS
7. xi+1 = C>Sλ(Czi+1)
8. end
note: Sλ(Cz) = sign(Cz) ·max(0, |Cz| − λ)

Pσ
(
d̄pred
S − d̄obs

S
)

= max
(

0, 1− σ

‖d̄pred
S −d̄obs

S ‖

)
·
(
d̄pred
S − d̄obs

S
)

3.3 Numerical examples

In the following numerical examples, we will demonstrate that the method presented here,

allows to perform least-squares migration at a fraction of the cost of conventional LS-

RTM and without having to store or recompute time-domain wavefields. By using time-to-

frequency conversion methods, the proposed algorithm does not rely on solving Helmholtz

equations and scales to almost arbitrary model sizes and high frequencies. As part of

our numerical examples, we will analyze the trade-off between memory usage and com-

putational cost through varying the number of frequencies per iteration (frequency batch

size) and compare it to time-domain imaging with optimal checkpointing. All of our nu-

merical examples are computed with the Julia Devito Inversion (JUDI) framework [65],

an open-source software package for seismic modeling and inversion based on Devito, a

domain-specific language compiler for automated finite-difference computations [42, 43].

All wave equations were implemented using second order finite differences in time and

8th order finite differences in space, unless specificed otherwise. To simulate wave propa-

gation in an infinite domain, we use simple absorbing boundary conditions (ABCs) using
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a damping mask, as described in [66]. Optimal checkpointing in Devito is implemented

through a Python wrapper [67] around the original Revolve library [27]. The results shown

in this section are reproducible with JUDI and scripts are provided on Github [65]. The

framework is implemented in the Julia programming language and uses a combination of

distributed memory parallelism to parallelize over the shot locations and shared memory

parallelism with OpenMP for the wave equation solves.

3.3.1 Sigsbee 2A

For our first numerical example, we use the Sigsbee 2A velocity model [68], a challenging

salt model of 9.2 by 24.6 km. Due to the size of the model and the number of time steps that

are required to propagate the wavefield to all parts of the domain, storing the forward wave-

fields in random access memory (RAM) can already be problematic. For our experiments,

we model wave propagation for 10 seconds, which corresponds to 14, 095 time steps, using

the time interval provided by the Courant-Friedrichs-Lewy (CFL) condition [69]. Storing

14, 095 wavefields in RAM as single precision arrays with a grid spacing of 7.62 m re-

quires 237 GB of memory, while saving the wavefields in memory at a sampling interval

of 4 ms (2, 500 wavefields) requires 42 GB. These numbers can be prohibitively expensive,

especially if we want to compute multiple gradients in parallel on the same computational

node. For this reason, wavefields, or a compressed version of them, are typically written

to secondary storage devices. Alternatively, optimal checkpointing and on-the-fly Fourier

transforms allow us to compute the gradients using substantially less or memory or to write

only a small subset of wavefields to disk. For a fair comparison, we fix the allowed amount

of memory for both methods to 700 MB, which corresponds to saving 40 real-valued or 20

complex wavefields in RAM.

For practical purposes, we compute gradients with the full time-domain source wavelet

and data residuals as forward and adjoint sources, rather than modeling with monochro-

matic sources/residuals as indicated by equations 3.3 and 3.6. In other words, instead of
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performing Fourier transforms of the time-domain data, extracting the required frequencies

and an inverse Fourier transform back to the time-domain, we use the unmodified time-

domain wavelets and data residuals for modeling. This avoids having to extract monochro-

matic frequencies of the source wavelet and shot records, which is cumbersome if the

frequencies do not lie on the corresponding time axis and therefore need to be interpo-

lated. Overall we only need to perform two on-the-fly DFTs per frequency to compute the

gradient for one shot record: one for the forward wavefield and one for the adjoint wave-

field. Using the broadband wavelets and shot records as sources is possible, as extracting

a monochromatic Fourier-domain wavefield for a given frequency from its corresponding

monochromatic source, yields the same result (up to a constant) as modeling with the full

time-domain source (Figure 3.4). Strictly speaking, this modification destroys the exact

adjoint property of our demigration-migration operator pair, since we inject additional en-

ergy, but the introduced error is purely a scaling error and does not affect the position of

reflectors.

In our first numerical experiment, we compare time-domain SPLS-RTM with optimal

checkpointing and frequency-domain SPLS-RTM with on-the-fly Fourier transforms. The

data set consists of 935 observed shot records with 10 seconds recording time and a peak

frequency of 15 Hz and maximum frequency of 40 Hz. We simulate a marine streamer

acquisition with 100 m minimum offset, 12 km maximum offset and 1, 200 evenly spaced

hydrophones. We perform 20 iterations of the linearized Bregman method with 100 ran-

domly selected shots per iteration (with replacement), which corresponds to approximately

two passes trough the data. This means, in expectation, every shot record is migrated only

twice. We found that the effect of the trade-off between batch size and number of iterations

is negligible, as long as we avoid either extremes, i.e. using a very small batch size or very

few iterations. For frequency-domain SPLS-RTM with on-the-fly Fourier transforms, we

randomly select 20 different frequencies for each shot and each iteration. The frequencies

are selected from a continuous frequency band between 3 and 40 Hz, according to the spec-
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(a)

(b)

Figure 3.4: Comparison of monochromatic wavefields computed with on-the-fly DFTs us-
ing the full broadband source wavelet or the corresponding monochromatic source. The
plots show vertical (a) and horizontal (b) slices of a monochromatic 10 Hz wavefield from
the Sigsbee 2A model.

trum of the source wavelet. For this, we convert the frequency spectrum of the source to a

cumulative probability function, generate uniform random values between 0 and 1, and se-

lect the corresponding frequencies on the x−axis of the probability function. This strategy

ensures that a large number of random frequencies approximates, in expectation, the full

spectrum of the source wavelet. Alternatively, the spectrum of the data can be used for this

process, if the source wavelet has not been estimated prior to migration. The noise level σ

in the algorithm was set to zero, since the observed data is noise free and a constant step

size t was used for all SPLS-RTM examples. For every run, we used the largest possible

step size that preserves numerical stability of the modeling scheme during all iterations.

As a reference for our results, we also compute the time- and frequency-domain RTM im-

ages, which correspond to one full data pass, since every shot record is migrated once.

The RTM and SPLS-RTM results for the frequency domain are shown in Figure 3.5 and a
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(a)

(b)

Figure 3.5: Reverse-time migration with 20 randomly selected frequencies per shot (a),
in comparison to sparsity-promoting LS-RTM after 20 iterations, using 100 shots with 20
frequencies per iteration (b). With only two passes through the full dataset, SPLS-RTM is
able to remove the noise from frequency randomization, as well as the imprint of the source
wavelet. The only post-processing that was applied to the results, is a linear depth scaling.

close-up comparison of all images is provided in Figure 3.6. While the frequency-domain

RTM image is noisy due to frequency-subsampling artifacts, SPLS-RTM is able to map

the incoherent noise to a coherent image and provides the same high-quality image as the

time-domain method. The only post-processing that was applied to the results, is a linear

depth scaling, to emphasize deeper reflectors.

As mentioned, the amount of memory for both optimal checkpointing and on-the-fly
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(a) (b)

(c) (d)

Figure 3.6: A close-up comparison of the images from time-domain RTM (a), time-domain
SPLS-RTM (b), frequency-domain RTM (c) and frequency-domain SPLS-RTM (d). While
RTM with on-the-fly Fourier transforms and randomized subset of frequencies leads to a
noisy image, sparsity-promoting LS-RTM is able to convert noise to coherent reflectors and
provide the same high-fidelity image as time-domain SPLS-RTM with optimal checkpoint-
ing. However, due to the limited number of iterations, not all energy is converted back into
coherent energy, as apparent by the slightly weaker diffractors in (d). A comparison be-
tween the additional computational cost of checkpointing and on-the-fly DFTs is provided
in the discussion.

Fourier transforms is fixed to 700 MB in the previos experiments (40 real-valued or 20

complex wavefields). For optimal checkpointing, the amount of memory defines the trade-

off between the number of checkpoints and the computational cost for recomputing wave-

fields. Decreasing the memory increases the computational cost, as fewer checkpoints can

be saved and more wavefields need to be recomputed. For imaging with on-the-fly Fourier

transforms however, this relationship does not apply. Decreasing the available memory

decreases the number of wavefields that can be stored, but it also decreases the amount of

computations, since less on-the-fly DFTs have to be computed. However, in this case, the
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trade-off is related to the amount of frequency subsampling artifacts in the images and to

how many iterations of SPLS-RTM have to be performed to achieve the same quality of the

final image. To demonstrate this relationship, we carry out a second numerical experiment

in which we perform frequency-domain SPLS-RTM with on-the-fly DFTs using only 10

randomly selected frequencies per shot instead of 20. As expected, the convergence of the

SPLS-RTM data misfit for 10 frequencies is considerably slower than for 20 frequencies

and more iterations are necessary to bring the misfit of the current subset of shots and the

image error down to a comparable level (Figure 3.7). On the other hand, each iteration

requires only half the amount of memory and half the number of DFTs, which decreases

the runtime for computing gradients. This is illustrated in Figure 3.8, in which we plot the

time-to-solution for computing the gradient for a single shot record with on-the-fly DFTs

as a function of the number of frequencies. For comparison, we also provide the runtime

for computing a gradient using optimal checkpointing. All timings were obtained using

a single CPU with 10 threads. A detailled description of the configuration and utilized

hardware is given in Appendix A.4.1.

Furthermore, we demonstrate the effect of varying the batch size of shots versus the

batch size of frequencies. For this, we repeat the previous experiment, but using twice as

many shots, while keeping the numbers of frequencies fixed to 10. As evident from the

convergence plots of the data residual and model error (Figure 3.7), increasing the batch

size to 200 with a frequency batch size of 10 yields almost identical results as the exam-

ple with 100 shots and 20 frequencies. This once again emphasizes, that the quality of

the final results is similar if the product of number of iterations, shots and frequencies is

kept constant. This observation is important, as it provides the possibility to adapt the op-

timization parameters (batch size, number of data passes) to the available computational

resources. For example, if many computational nodes are available, we can increase the

batch size of shots and decrease the number of frequencies, whereas we can decrease the

batch size and increase the number of frequencies if only few nodes are available. Over-
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(a) (b)

Figure 3.7: Normalized `2-norm data misfit (a) and `2-norm reconstruction error (b) for
compressive LS-RTM in the time domain and with on-the-fly DFTs, using the linearized
Bregman method. For a smaller number of frequencies nf , more iterations have to be
performed to reduce the data misfit to a comparable level, but each iteration requires less
memory and computations. Keeping the product of the batch size of shots ns and frequen-
cies nf constant, yields results of comparable quality.

all the time-domain result has the smallest data residual and model error, but also comes

at higher computational cost, since all all wavefields have to be saved or reconstructed

for computing the gradient. The convergence rate of the linearized Bregman method has

not been analyzed in the literature, but is linear at best. Standard stochastic optimization

methods, such as stochastic gradient descent, have a sub-linear convergence rate O(1/n),

with n being the iteration number. However, in practice, the sublinear convergence rate is

mostly problematic at very high iteration numbers when 1
n

is very small and we want to

solve the problem to convergence. During early iterations, the behavior of the algorithm is

mostly dominated by a constant (algorithm-dependent) factorO(1), rather than the asymp-

totic behaviour, making the algorithm effective when only a small number of data passes is

affordable.

In our final experiment using the Sigsbee 2A model, we investigate the sensitivity of the
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Figure 3.8: Timings for computing the gradient of the full Sigsbee model for a single shot
record as a function of the number of frequencies and in comparison to optimal checkpoint-
ing (leftmost bar).

results to the choice of the regularization parameter λ (i.e. the soft thresholding value) and

the effect of sparsity-promoting techniques to weak events in the seismic image. For this,

we repeat the previous SPLS-RTM experiments with on-the-fly DFTs and a fixed number

of shots and frequencies, but with varying values of λ. Namely, we use 100 randomly se-

lected shots and 20 randomly selected frequencies per iteration with a total number of 20

iterations. In the previous examples, we chose the thresholding parameter through param-

eter testing, such that after the maximum number of iterations, most reflection events were

recovered, but no incoherent noise was present in the final image. We now conduct two

additional experiments in which we set λ = 0 (no sparsity promotion) and λ = 4e − 4

(stronger sparsity promotion than before), while previously, we used a value of λ = 1e−4.

The effect of sparsity promotion and the choice of the thresholding parameter on two ar-

eas of the Sigsbee model is shown in Figures 3.9 to 3.11. Figure 3.9 shows a close-up view

of the top-of-salt region, in which we have the best illumination in the model. Figure 3.9b

shows the result using no sparsity promotion, which means that no thresholding is applied

to the coefficients. Even though no sparsity-promotion was used, the result shows a very

high signal-to-noise ratio, since most of the incoherent noise stacked out over the course
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of the inversion. Furthermore, we can observe that in the cases where sparsity promotion

was used, the final results are expectedly not very sensitive to the choice of λ (Figures 3.9c

and 3.9d). However, the situation is different for areas with poor illumination, such as in

the sub-salt region shown in Figure 3.10. Here, we can observe that no sparsity promotion

leads to a worse signal-to-noise ratio (Figure 3.10b), but that the result is also more sen-

sitive to λ. Namely, a larger value of λ (i.e. stronger thresholding) removes weak events

such as the diffractors (Figure 3.10c and 3.10d). This observation is further emphasized

in one-dimensional well-log comparisons (Figure 3.11), which were extracted at 12.1 km

horizontal position.

It is important to consider, that we use a fixed number of data passes and therefore it-

erations for our examples, and that running a sufficiently large number of iterations will

eventually recover the missing coefficients. However, for a larger value of λ, more itera-

tions are necessary to recover the small coefficients, while choosing λ too small, causes

incoherent noise to enter the solution after a few iterations. The right choice of λ is there-

fore a trade-off between noise, missing coefficients and the number of iterations. Using

a smaller batch size of shots, does not inherently increase the incoherent noise, but leads

to a poorer illumination and therefore increases the sensitivity to the choice of λ and the

likelihood that coherent signal is accidentally removed or that noise in introduced into the

solution.

3.3.2 BP Synthetic 2004

The results for the Sigsbee 2A model were obtained under ideal conditions, in which the

noise-free observed data was generated with the same linearized modeling operator that

was used for the inversion (inverse crime). To demonstrate that our proposed approach also

works in a more realistic setting and scales to large-scale models, we test our algorithm

on the BP synthetic 2004 model [70]. The model has a size of 11.9 by 67.4 km and is

interpolated to a grid spacing of 6.25 m (1, 911 × 10, 789 grid points). We generate the
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(a) (b)

(c) (d)

Figure 3.9: Close-up views of the top-of-salt region for different values of the regularization
parameter λ. Figure (a) is the true image, (b) is the result for λ = 0 (no sparsity-promotion),
(c) is the result for λ = 1e − 4 and (d) for λ = 4e − 4. Since the top-of-salt region is
well illuminated, the resulting image is not very sensitive to the choice of the thresholding
parameter and the effect of sparsity promotion is less apparent than in the sub-salt area.

observed data with the same acquisition geometry as the original data released by BP,

using a 15 km streamer, 12 seconds recording time and 1, 340 shot locations. However,

unlike the original data, we model the data without surface-related multiples and with a

peak frequency of 20 Hz instead of 27 Hz. To provide a non-inversion crime setting, we

model the data with the acoustic forward modeling operator and not with the demigration

operator. We generate the data using the true velocity and density models, whereas for
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(a) (b)

(c) (d)

Figure 3.10: Close-up views of the sub-salt region of the true image (a) and results after 20
iterations of SPLS-RTM with the linearized Bregman method using λ = 0 (b), λ = 1e− 4
(c) and λ = 4e− 4 (d). Compared to the top-of-salt area, the benefit of sparisty-promotion
is greater, but the result is also more sensitive to the choice of λ.

inversion, we only use a smooth migration velocity model, but no density. Furthermore,

we model the observed data with a 16th order finite-difference (FD) stencil, while using an

8th order FD stencil for the inversion. Changing the discretization order is easily possible

in JUDI, as the software uses Devito to automatically optimize and generate completely

new source code for solving a specified wave equation in every individual run [71, 72].

Since we use a different acoustic wave equation without density for inversion and change

the finite-difference stencil order, this leads to different sets of source code for modeling
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(a)

(b)

Figure 3.11: Trace comparisons of the results after 20 iterations of SPLS-RTM using time-
domain modeling and on-the-fly DFTs (a) and for different values of λ (b).

the observed data and running SPLS-RTM. Furthermore, we add Gaussian noise to all

observed shot gathers with a signal-to-noise ratio of 17 dB (8.13 dB after muting the direct

wave).

As before, we compare frequency-domain RTM with on-the-fly DFTs and 20 randomly

selected frequencies per shot to frequency-domain SPLS-RTM with randomized shots (Fig-

ures 3.12 and 3.13). For this example, we run the inversion for 20 iterations, using 200

randomly selected shots per iteration with 20 frequencies per shot. As for the Sigsbee ex-

ample, the frequencies are selected from a continuous frequency band between 3 and 45

Hz, using the spectrum of the source wavelet as the probability distribution. As a reference

solution, we also compute the time-domain SPLS-RTM image using optimal checkpoint-

ing (Figure 3.13 a). As indicated by a close-up comparison of the results, SPLS-RTM is
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(a)

(b)

Figure 3.12: Comparisons of frequency-domain RTM (a) and SPLS-RTM (b) using on-
the-fly Fourier transforms with 20 randomly selected frequencies per shot record. The
SPLS-RTM image is shown after 20 iterations of the linearized Bregman method, using
200 random shots per iteration, which corresponds to three passes through the data.

once gain able to map the frequency subsampling artifacts in the RTM image into coherent

energy and provide an image of similar quality as the time-domain method (Figures 3.12

– 3.15). Since the observed data is not generated with the demigration operator that is

used for inversion and is generated using a density model, the amplitudes of the predicted

data can never exactly match the amplitudes of the observed data, which is why the data

misfit for the current subset of shots only decays by 32 percent (Figure 3.16a). This ampli-

tude mismatch in combination with a smooth migration velocity model without sharp salt

boundaries is also responsible for the the slight blur of the salt dome’s top reflector.

As in our Sigsbee example, we measure the time-to-solution for computing the gra-

dient for a single shot record as a function of the number of frequencies (Figure 3.16b).
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(a) (b) (c)

Figure 3.13: Close-up comparison of time-domain SPLS-RTM with optimal checkpoint-
ing (a), frequency-domain RTM (b) and frequency-domain SPLS-RTM (c). The results for
frequency-domain RTM and SPLS-RTM were computed with 20 randomly selected fre-
quencies per shot record. A depth scaling was applied to the RTM image, to make up for
the lack of the depth-scaling pre-conditioner that was used for SPLS-RTM.

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Close-up views of the time-domain SPLS-RTM result (a, d), frequency-
domain RTM (b, e) and frequency-domain SPLS-RTM (c, f). The top row shows a shallow
part of the image with good illumination in comparison to the sub-salt area, which is af-
fected stronger by frequency subsampling (bottom row).

103



(a)

(b)

(c)

Figure 3.15: Trace comparisons of the imaging results at various locations of the model.
Plots (a) and (b) are well-log plots of different depths at 10 km lateral position. The traces
in (c) were extracted at 40 km lateral position.

The timings are obtained with the same computational set up as before, using a single Intel

Xeon CPU with 10 cores (Appendix A.4.1). In this particular case, computing one gradi-

ent with optimal checkpointing takes longer than computing a gradient for 64 frequencies

with on-the-fly DFTs, but less time than 128 frequencies. In the RTM and SPLS-RTM

example, we only use 20 randomly selected frequencies per shot record, making the com-

putation of a single gradient approximately three times faster than the computation of a

time-domain gradient with optimal checkpointing and the same amount of computational
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(a) (b)

Figure 3.16: Relative data misfit for the current subset of shots during SPLS-RTM with
on-the-fly DFTs (a) and timings for computing the gradient of the BP model for one shot
record as a function of the number of frequencies (b). The bar on the left-hand side denotes
the corresponding time-to-solution using optimal checkpointing.

resources. While the frequency-domain SPLS-RTM result using only 20 randomly selected

frequencies per shot is considerably faster than the its time-domain equivalent, it also still

exhibits a slight amount of low-amplitude noise, which underlines the trade-off between

number of frequencies and quality of the result that is inherent to this approach. While in-

creasing the number of frequencies yields a result that is closer to the time-domain image,

it also diminishes the computational speed up in comparison to optimal checkpointing.

3.4 Discussion

The main challenges of least-squares reverse-time migration are the large number of shots

that have to be migrated in each iteration of gradient-based optimization algorithms, as well

as the necessary access to the forward wavefields in reverse order for computing the gradi-

ent. A straight-forward implementation of time-domain LS-RTM is to forward propagate

the source wavefield for all time steps, store the wavefields in memory and access them in

reverse order during the adjoint time loop. The obvious drawback of this approach is that

the required memory grows linearly with the number of time steps and the approach quickly
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Strategy Memory Additional cost

TD: save all wavefields O(nt) -
TD: optimal checkpointing O(log nt) O(log nt)
TD: boundary reconstruction O(nt) O(nt)
FD: on-the-fly DFT O(nf ) O(nf )

Table 3.1: Asymptotic behaviour of memory requirements and additional computational
cost for different strategies to compute adjoint-state gradients in the time domain (TD) and
frequency domain (FD). The total number of model grid points in this analysis is assumed
to be constant and is therefore excluded from the analysis. However, while reconstructing
wavefields from the boundary scales linearly with the number of time steps, it requires
substantially less memory than saving the full wavefield (i.e. the asymptotic behavior has a
smaller constant). The analysis in this table holds for both 2D and 3D domains.

becomes infeasible for any realistically sized models and recording times. Similarly, sav-

ing and reconstructing the wavefields from the boundary scales linearly with the number

of time steps as well, but the asymptotic behavior has a smaller constant than saving the

full wavefields, as the wavefield is only saved in a subset of the domain. Alternatively,

the problem can be addressed by storing only a small subset of forward wavefields and by

recomputing the in-between wavefields from the last checkpoint during the reverse time

loop. Checkpointing therefore provides the user with a possible trade-off between memory

usage and the number of time steps that have to be recomputed, which is captured in the

recomputation ratio. This parameter is given by the total number of time steps (including

recomputations) divided by the original number of forward time steps. In an important

series of publications, [27] describe an algorithm for computing the optimal trade-off be-

tween these quantities and show that the amount of required memory and the recomputation

ratio for optimal checkpointing grow logarithmically with the number of time steps nt (Ta-

ble 3.1).

For compressive imaging with on-the-fly Fourier transforms, the asymptotic behavior

of the required memory and additional computations is fundamentally different, as these

quantities grow as a function of the number of frequencies and not with the number of time

steps (Table 3.1). Both memory and computational cost grow linearly with the number of
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frequencies and therefore have worse asymptotic behavior than optimal checkpointing, but

they are independent of the number of time steps. This leads us to the critical question

of how many frequencies nf are required for computing the gradient. One could argue

that for a fair comparison, the number of frequencies should be equal to the number of

computational time steps—i.e. the LS-RTM gradient should be computed as the sum over

all nf = nt frequencies, as this yields the same gradient as in the time-domain, where

the gradient is computed as a sum over all computational time steps. However, our nu-

merical experiments have shown that, in practice, we can get away with a much smaller

number of frequencies than time steps and still achieve satisfactory imaging results, if we

cast LS-RTM as an `1-norm minimization problem. Furthermore, our examples show that

the number of frequencies influence the convergence of the algorithm and determine how

many iterations we need to run to obtain results of comparable quality. In general, comput-

ing the gradient with a smaller subset of frequencies leads to stronger subsampling artifacts

and requires a more aggressive thresholding of the image’s curvelet coefficients to remove

the noise, which in turn increases the necessary number of iterations. However, a quantita-

tive relationship between the number of frequencies, the amount of noise and the required

number of iterations is at this point not available and will require further investigations. A

possible reference point is the compressive sensing literature itself, which provides theoret-

ical relationships between the sparsity of a signal, the amount of necessary measurements

and the reconstruction error. In particular, [54] shows that the the number of required mea-

surements grows with O(ns log nl), where ns is the number of most important coefficients

of the signal in some transform domain and nl is the signal length. For compressive imag-

ing with on-the-fly DFTs, this means that the number of necessary frequencies and shots

will depend on the sparsity of the unknown image and the number of gridpoints, but not on

the number of time steps.

In our analysis (Table 3.1), we assume that the number of grid points is fixed, but it

is worth mentioning that the methods have different asymptotic behaviors as a function of
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the model size. Namely, assuming we have n grid points in each dimension, the boundary

reconstruction method scales with O(n) in 2D and O(n2) in 3D, while all other methods

scale withO(n2) in 2D andO(n3) in 3D. In practice, the asymptotic behavior of the mem-

ory requirements can only serve as a guideline, as it describes its limiting behavior and the

question of which approach requires the least amount of memory, needs to be evaluated

on a case by case basis and depends on the specific number of dimensions, time steps and

grid points. However, for a large enough number of time steps, optimal checkpointing will

eventually always require less memory than the saving the wavefields at the boundary.

The second important question is how much additional computations have to be car-

ried out for a given amount of memory, which will determine how fast the two approaches

perform in practice. In our first numerical example, we fix the available memory for both

on-the-fly DFTs and optimal checkpointing to 700 MB, which corresponds to 20 frequency-

domain wavefields or 40 time-domain checkpoints. The recomputation ratio with 40 check-

points for 14, 095 time steps is estimated by the Revolve library as 3.06, which means that

approximately 2nt additional forward time steps have to be modeled for computing a gra-

dient [27]. For time-to-frequency conversion with on-the-fly DFTs, the main additional

computational cost results from multiplying the time-domain wavefield of the current time

step with the sine and cosine terms of equation 3.7. Multiple frequencies can be com-

puted in a single time loop, but result in an inner loop over the number of frequencies at

each time step. The additional computational cost for on-the-fly DFTs therefore depends

on the number of frequencies and how the DFT is implemented. Evaluating trigonometric

functions is generally expensive, but since the sine and cosine terms in the equation 3.7

are not spatially varying, they can be precomputed and used for all grid points. Further-

more, it is possible to compute the DFT on a coarser time grid than the computational time

axis (e.g. at the Nyquist rate), which reduces the number of floating point operations. For

optimal checkpointing, the computational cost of remodeling a given number time steps

depends on the type of wave equation and the order of the finite-difference (FD) stencil.

108



Modeling anisotropic or elastic wave equations is more expensive than solving acoustic

wave equations and the amount of floating point operations increases further for higher or-

der FD stencils. On the other hand, on-the-fly DFTs are independent of the discretization

order (at least for a fixed grid spacing), but they also become more expensive for wave

equations with coupled wavefields, as the cost increases linearly with the number of DFTs

that have to be computed for each wavefield. In our numerical examples with the Sigsbee

2A and BP Synthetic 2004 model, we found that computing the gradient for one source

using optimal checkpointing with log nt checkpoints, was timewise equivalent to comput-

ing a frequency-domain gradient with approximately 70 to 100 frequencies. Since we only

used 10 or 20 frequencies per shot record for our imaging examples with on-the-fly DFTs,

we were able to reduce the time-to-solution per gradient by a factor of 3 to 4 in comparison

to optimal checkpointing, with the same amount of computational resources.

Regarding the effects of sparsity-promoting minimization in the context of seismic

imaging, our numerical examples demonstrate that seismic images are generally well ap-

proximated by a small percentage of curvelet coefficients, but that not running the opti-

mization algorithm to convergence can harm the reconstruction quality. Similar to large-

scale machine learning problems, seismic imaging is computationally too expensive to run

optimization algorithms to convergence and typically only a fixed number of data passes

(i.e. PDE solves) are possible. In this scenario, the reconstruction is sensitive to the choice

of hyper-parameters. Specifically, for the linearized Bregman method, a value of λ that is

too large removes too many coefficients from the image, while a value that is too small, al-

lows noise to re-enter the solution. Running the algorithm for a fixed number of data passes

therefore does not guarantee that all coefficients such as weak reflectors or diffractors are

able to re-enter the solution. Our examples show that these effects are typically less severe

in parts of the image with good illumination, but that areas with poor illumination are more

sensitive to hyper-parameters. On the other hand, the areas of poor illumination are also

the parts of the images that exhibit the strongest subsampling artifacts and where the ben-
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efit of sparsity-promotion is the most apparent. Generally, making exact predictions about

the behavior of the approximation error is challenging, as nonlinear image approximations

(i.e. keeping a fixed percentage of sorted coefficients), are not as well understood as linear

image approximations.

3.5 Conclusion

Least-squares reverse-time migration in the frequency domain avoids the problem of hav-

ing to store or recompute a large number of time-domain wavefields for computing gra-

dients with the adjoint-state method. Conventionally, the gradient has to be computed

for each frequency separately by solving the corresponding Helmholtz equation. On-the-

fly Fourier transforms offer the possibility to compute monochromatic wavefields with a

time-domain modeling code and to obtain an arbitrary number of frequencies within a sin-

gle time-stepping loop. Formulating least-squares migration as a sparsity-promoting min-

imization problem allows us to work with small random subsets of shots and frequencies,

thus making it possible to perform least-squares imaging at a fraction of the cost of con-

ventional LS-RTM, using as few as two passes through the data set and without having to

save or recompute time-domain wavefields.

On-the-fly discrete Fourier transforms offer a fast and easy-to-implement alternative to

optimal checkpointing, in which the amount of memory and computational overhead does

not depend on the number of time steps, but on the number of frequencies for which the

gradient is computed. By varying the batch size of shots or frequencies, the method allows

to choose a trade-off between the amount of computations and memory versus the number

of iterations and the quality of the final result. Optimal checkpointing on the other hand,

provides a trade off between memory usage versus the amount of additional computations,

as fewer checkpoints require more time steps that need to be recomputed. This makes

imaging with on-the-fly Fourier transforms interesting for applications where both storage

and CPU time are expensive, such as cloud computing, as we can trade image quality
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for computational resources. Another advantageous scenario for our approach is the case

where only a small amount of computational resources are available for a long time, in

which case we can trade computational resources for a large number of iterations, where

each iteration only uses a small number of frequencies and is cheap in terms of both storage

and compute.
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CHAPTER 4

AN EVENT-DRIVEN APPROACH TO SEISMIC IMAGING IN THE CLOUD

4.1 Introduction

Seismic imaging of the earth’s subsurface is one of the most computationally expensive

applications in scientific computing, as state-of-the-art imaging methods such as least-

squares reverse time migration (LS-RTM), require repeatedly solving a large number of

forward and adjoint wave equations during numerical optimization [e.g. 1, 2, 3, 4]. Simi-

lar to training neural networks, the gradient computations in seismic imaging are based on

backpropagation and require storage or re-computations of the state variables (i.e. of the

forward modeled wavefields). Due to the large computational cost of repeatedly modeling

wave propagation over many time steps using finite difference modeling, seismic imaging

requires access to high-performance computing (HPC) clusters, but the high cost of ac-

quiring and maintaining HPC cluster makes this option only viable for a small number of

major energy companies [5, 6]. For this reason, cloud computing has lately emerged as

a possible alternative to on-premise HPC clusters, offering many advantages such as no

upfront costs, a pay-as-you-go pricing model and theoretically unlimited scalability. Out-

side of the HPC community, cloud computing is today widely used by many companies for

general purpose computing, data storage and analysis or machine learning. Customers of

cloud providers include major companies such as General Electric (GE), Comcast, Shell

or Netflix, with the latter hosting their video streaming content on Amazon Web Services

(AWS) [7]. Netflix’ utilization of the cloud for large-scale video streaming has acted as a

driver for improving the scalability of cloud tools such as object storage and event-driven

computations [8], which are not available on conventional HPC environments and which

we will subsequently adapt for our purposes.
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However, adapting the cloud for high-performance computing applications such as seis-

mic imaging, is not straight-forward, as numerous investigations and case studies have

shown that the cloud generally cannot provide the same performance, low latency, high

bandwidth and mean time between failures (MTBF) as conventional HPC clusters. An

early performance analysis by Jackson [9] of a range of typical NERSC HPC applications

on Amazon’s Elastic Compute Cloud (EC2) found that, at the time of the comparison, appli-

cations on EC2 ran between 2.7 to 50 times slower than on a comparable HPC system due to

poor network performance and that the latency was up to 400 times worse. A performance

analysis by [10] using standard benchmark suites such as the HPC challenge (HPCC) sup-

ports these observations, finding that the performance on various cloud providers is in the

order of one magnitude worse than to comparable HPC clusters. Other performance stud-

ies using standardized benchmarks suites, as well as domain-specific applications, similarly

conclude that poor network performance severely limits the HPC capabilities of the cloud

[11, 12, 13, 14, 15, 16, 17].

While communication and reliability are the strongest limiting factors in the perfor-

mance of HPC applications in the cloud, several investigations [18, 19, 20] point out that

embarrassingly parallel applications show in fact very good performance that is comparable

to (non-virtualized) HPC environments. Similarly, performance tests on single cloud nodes

and bare-metal instances using HPCC and high-performance LINPACK benchmarks [21],

demonstrate good performance and scalability as well [22, 23]. These findings underline

that the lift and shift approach for porting HPC applications to the cloud is unfavorable,

as most HPC codes are based on highly synchronized message passing (i.e. MPI) [24] and

rely on stable and fast network connections, which are not (yet) available. On the other

hand, compute nodes and architectures offered by cloud computing are indeed comparable

to current supercomputing systems [23] and the cloud offers a range of novel technologies

such as cloud object storage or event-driven computations [25]. These technologies are not

available on traditional HPC systems and make it possible to address computational bottle-
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necks of HPC in fundamentally new ways. Cloud object storage, such as Amazon’s Simple

Storage Service (S3) [26] or Google Cloud Storage [27], are based on the distribution of

files to physically separated data centers and thus provide virtual unlimited scalability, as

the storage system is not constrained by the size and network capacity of a fixed number

of servers [28]. Successfully porting HPC applications to the cloud therefore requires a

careful re-architecture of the corresponding codes and software stacks to take advantage of

these technologies, while minimizing communication and idle times. This process is heav-

ily application dependent and requires the identification of how a specific application can

take advantage of specialized cloud services such as serverless compute or high throughput

batch processing to mitigate resilience issues, avoid idle instances and thus minimize cost.

Based on these premises, we present a workflow for large-scale seismic imaging on

AWS, which does not rely on a conventional cluster of virtual machines, but is instead

based on a serverless visual workflow that takes advantage of the mathematical proper-

ties of the seismic imaging optimization problem [29]. Similar to deep learning, objective

functions in seismic imaging consist of a sum of (convex) misfit functions and iterations

of the associated optimization algorithms exhibit the structure of a MapReduce program

[30]. The map part corresponds to computing the gradient of each element in the sum and

is embarrassingly parallel to compute, but individual gradient computations are expensive

as they involve solving partial differential equations (PDEs). The reduce part corresponds

to the summation of the gradients and update of the model parameters and is comparatively

cheap to compute, but I/O intensive. Instead of performing these steps on a cluster of per-

manently running compute instances, our workflow is based on specialized AWS services

such as AWS Batch and Lambda functions, which are responsible for automatically launch-

ing and terminating the required computational resources [31, 25]. EC2 instances are only

running as long as they are utilized and are shut down automatically as soon as compu-

tations are finished, thus preventing instances from sitting idle. This stands in contrast

to alternative MapReduce cloud services, such as Amazon’s Elastic Map Reduce (EMR),
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which is based on Apache Hadoop and relies on a cluster of permanently running EC2 in-

stances [32, 33]. In our approach, expensive gradient computations are carried out by AWS

Batch, a service for processing embarrassingly parallel workloads, but with the possibility

of using (MPI-based) domain decomposition for individual solutions of partial differential

equations (PDEs). The cheaper gradient summations are performed by Lambda functions,

a service for serverless computations, in which code is run in response to events, without

the need to manually provision computational resources [25].

The following section provides an overview of the mathematical problem that underlies

seismic imaging and we identify possible characteristics that can be taken advantage of to

avoid the aforementioned shortcomings of the cloud. In the subsequent section, we describe

our seismic imaging workflow, whose initial version has been developed for AWS, but the

underlying services are available on other cloud platforms as well (i.e. Google Compute

Cloud, Azure). We then present a performance analysis of our workflow on a real-world

seismic imaging application, using a popular subsurface benchmark model [34]. Apart

from conventional scaling tests, we also consider specific cloud metrics such as resilience

and cost, which, aside from the pure performance aspects like scaling and time-to-solution,

are important practical considerations for HPC in the cloud. The final section reports on our

experience of porting our workflow to Azure and we present a large-scale seismic imaging

case study in 3D, thus highlighting the cross-platform portability of our approach.

4.2 Problem Overview

Seismic imaging and parameter estimation are a set of computationally challenging inverse

problems with high practical importance, as they are today widely used in the oil and

gas (O&G) industry for geophysical exploration, as well as for monitoring geohazards.

In the context of exploration, seismic imaging can significantly increase the success rate

of drilling into reservoirs, thus reducing both cost and environmental impact of resource

exploration [35].
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Mathematically, seismic imaging and parameter estimation are PDE-constrained opti-

mization problems, that are typically expressed in the following (unconstrained) form [36,

37]:

minimize
m

Φ(m) =
ns∑
i=1

1

2
||F(m,qi)− di||22, (4.1)

where F(m,qi) represents the solution of the acoustic wave equation for a given set of

model parameters m. The evaluation of this operator corresponds to modeling seismic data

for a given subsurface model (or image) m and a known source function qi by solving a

wave equation using time-domain finite-difference modeling. The vector di denotes the

observed seismic measurements at the ith location of the seismic source, which is moved

along the surface within the survey area (Figure 4.1). In essence, the goal of seismic in-

version is to find a set of model parameters m, such that the numerically modeled data

matches the observed data from the seismic survey. The total number of individual source

experiments ns for realistic surveys, i.e. the number of PDEs that have to solved for each

evaluation of Φ(m), is quite large and lies in the range of 103 for 2D surveys and 105 for

3D surveys.

Seismic inverse problems of this form are typically solved with gradient-based op-

timization algorithms such as (stochastic) gradient descent, (Gauss-) Newton methods,

sparsity-promoting minimization or constrained optimization [e.g. 38, 39] and therefore

involve computing the gradient of equation 4.1 for all or a subset of indices i. The gradient

of the objective function is given by:

g =
ns∑
i=1

J>
(
F(m,qi)− di

)
, (4.2)

where the linear operator J = ∂F(m,qi)
∂m

is the partial derivative of the forward modeling

operator with respect to the model parameters m and> denotes the matrix transpose. Both

the objective function, as well as the gradient exhibit a sum structure over the source indices
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Figure 4.1: A two-dimensional depiction of marine seismic data acquisition. A vessel fires
a seismic source and excites acoustic waves that travel through the subsurface. Waves
are reflected and refracted at geological interfaces and travel back to the surface, where
they are recorded by an array of seismic receivers that are towed behind the vessel. The
receivers measure pressure changes in the water as a function of time and receiver number
for approximately 10 seconds, after which the process is repeated. A typical seismic survey
consists of several thousand of these individual source experiments, during which the vessel
moves across the survey area.

and are embarrassingly parallel to compute. Evaluating the objective function and comput-

ing the gradient are therefore instances of a MapReduce program [30], as they involve the

parallel computation and subsequent summation of elements of the sum. However, com-

puting the gradient for a single index i involves solving two PDEs, namely a forward wave

equation and an adjoint (linearized) wave equation (denoted as a multiplication with J>).

For realistically sized 3D problems, the discretized model in which wave propagation is

modeled has up to 109 variables and modeling has to be performed for several thousand

time steps. The number of time steps is determined by the time stepping interval and de-

pends on the wave speed and the temporal frequency of the data and increases significantly

as these properties change [40]. The observed seismic data di (i = 1, ..., ns) is typically

in the range of several terabytes and a single element of the data (a seismic shot record)

ranges from several mega- to gigabytes.

The problem structure of equation 4.1 is very similar to deep learning and the parallels

between convolutional neural networks and PDEs have lately attracted strong attention
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[41]. As in deep learning, computing the gradient of the objective function (equation 4.2) is

based on backpropagation and in principle requires storing the state variables of the forward

problem. However, in any realistic setting the wavefields are too big to be stored in memory

and therefore need to be written to secondary storage devices or recomputed from a subset

of checkpoints [42]. Alternatively, domain decomposition can be used to reduce the domain

size per compute node such that the forward wavefields fit in memory, or time-to frequency

conversion methods can be employed to compute gradients in the frequency domain [43,

4]. In either case, computing the gradient for a given index i is expensive both in terms of

necessary floating point operations, memory and IO and requires highly optimized finite-

difference modeling codes for solving the underlying wave equations. Typical computation

times of a single (3D-domain) gradient gi (i.e. one element of the sum) are in the range of

minutes to hours, depending on the domain size and the complexity of the wave simulator,

and the computations have to be carried out for a large number of source locations and

iterations.

The high computational cost of seismic modeling, in combination with the complexity

of implementing optimization algorithms to solve equation 4.1, leads to enormously com-

plex inversion codes, which have to run efficiently on large-scale HPC clusters. A large

amount of effort goes into implementing fast and scalable wave equation solvers [44, 45,

46], as well as into frameworks for solving the associated inverse problem [47, 48, 49,

50]. Codes for seismic inversion are typically based on message passing and use MPI to

parallelize the loop of the source indices (equation 4.1). Furthermore, a nested paralleliza-

tion is oftentimes used to apply domain-decomposition or multi-threading to individual

PDE solves. The reliance of seismic inversion codes on MPI to implement an embarrass-

ingly parallel loop is disadvantageous in the cloud, where the mean-time-between failures

(MTBF) is much shorter than on HPC systems [9] and instances using spot pricing can be

arbitrarily shut down at any given time [51]. Another important aspect is that the computa-

tion time of individual gradients can vary significantly and cause load imbalances and large
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idle times, which is problematic in the cloud, where users are billed for running instances

by the second, regardless of whether the instances are in use or idle. For these reasons, we

present an alternative approach for seismic imaging in the cloud based on batch processing

and event-driven computations.

4.3 Event-driven seismic imaging on AWS

4.3.1 Workflow

Optimization algorithms for minimizing equation 4.1 essentially consists of three steps.

First, the elements of the gradient gi are computed in parallel for all or a subset of indices

i ∈ ns, which corresponds to the map part of a MapReduce program. The number of

indices for which the objective is evaluated defines the batch size of the gradient. The sub-

sequent reduce part consists of summing these elements into a single array and using them

to update the unknown model/image according to the rule of the respective optimization

algorithm (Algorithm 4.1). Optimization algorithms that fit into this general framework

include variations of stochastic/full gradient descent (GD), such as Nesterov’s accelerated

GD [52] or Adam [53], as well as the nonlinear conjugate gradient method [54], projected

GD or iterative soft thresholding [55]. Conventionally, these algorithms are implemented

as a single program and the gradient computations for seismic imaging are parallelized us-

ing message passing. Running MPI-based programs of this structure in the cloud requires

that users request a set of EC2 instances and establish a network connection between all

workers [56]. Tools like StarCluster [57] or AWS HPC [58] facilitate the process of setting

up a cluster and even allow adding or removing instances to a running cluster. However,

adding or dropping instances during the execution of an MPI program is not easily possi-

ble, so the number of instances has to stay constant during the entire length of the program

execution, which, in the case of seismic inversion, can range from several days to weeks.

This makes this approach not only prone to resilience issues, but it can result in significant

cost overhead, if workloads are unevenly distributed and instances are temporarily idle.
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Algorithm 4.1 Generic algorithm structure for gradient-based minimization of equa-
tion 4.1, using a fixed number of iterations n. Many gradient-based algorithms exhibit
this overall MapReduce structure, including stochastic/mini-batch gradient descent (GD)
with various update rules (e.g. Nesterov, Adam), projected GD, iterative soft thresholding
or the nonlinear conjugate gradient method.

1: Input: batch size nb, max. number of iterations n, step size α, initial guess m1

2: for i = 1 to n do

3: Compute gradients gi, i = 1, ..., nb in parallel

4: Sum gradients: g =
∑nb

i=1 gi

5: Update optimization variable, e.g. using SGD:

mk+1 = mk − αg

6: end for

Instead of implementing and running optimization algorithms for seismic inverse prob-

lems as a single program that runs on a cluster of EC2 instances, we express the steps

of a generic optimization algorithm through AWS Step Functions (Figure 4.2) and deploy

its individual components through a range of specialized AWS services [59]. Step func-

tions allow the description of an algorithm as a collection of states and their relationship

to each other using the JavaScript Object Notation (JSON). From the JSON definition of

a workflow, AWS renders an interactive visual workflow in the web browser, as shown

in Figure 4.2. For our purpose, we use Step Functions to implement our iterative loop

[60], during which we compute and sum the gradients, and use them to update the seis-

mic image. We choose Step Functions to express our algorithm, as they allow composing

different AWS Services such as AWS Batch and Lambda functions into a single workflow,

thus making it possible to leverage preexisiting AWS services and to combine them into

a single application. Another important aspect of Step Functions is that the execution of

the workflow itself is managed by AWS and does not require running any EC2 instances,

which is why we refer to this approach as serverless. During execution time, AWS auto-

matically progresses the workflow from one state to the next and users are only billed for
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Figure 4.2: A generic seismic imaging algorithm, expressed as a serverless visual workflow
using AWS Step Functions. The workflow consists as a collection of states, which are used
to implement an iterative optimization loop. Each iteration involves computing the gradient
of equation 4.1 using AWS Batch, as well an updating the optimization variable (i.e. the
seismic image).

transitions between states, but the cost is negligible compared to the cost of running EC2

instances (0.025$ per 1, 000 state transitions) [59].

States can be simple if-statements such as the IsCountReached state, which keeps

track of the iteration number and terminates the workflow after a specified number of it-

erations, but states can also be used invoke other AWS services. Specifically, states can

be used to invoke AWS Lambda functions to carry out serverless computations. Lambda

functions allow users to run code in response to events, such as invocations through AWS

Step Functions, and automatically assign the required amount of computational resources
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to run the code. Billing is based on the execution time of the code and the amount of used

memory. Compared to EC2 instances, Lambda functions have a much shorter startup time

in the range of milliseconds rather than minutes, but they are limited to 3 GB of memory

and an execution time of 15 minutes. As such, Lambda functions themselves are not suit-

able for carrying out the gradient computations, but they can be used to manage other AWS

services. In our workflow, we use Lambda functions invoked by the ComputeGradient

state (Figure 4.2) to launch AWS Batch jobs for computing the gradients. During the gra-

dient computation, which can take up to several hours, the Step Functions check in a user-

defined interval if the full gradient has been computed, before advancing the workflow to

the next state. The WaitForGradient state pauses the workflow for a specified amount

of time, during which no additional computational resources are running other than the

AWS Batch job itself.

4.3.2 Computing the gradient

The gradient computations (equation 4.2) are the major workload of seismic inversion, as

they involve solving forward and adjoint wave equations, but the embarrassingly parallel

structure of the problem lends itself to high-throughput batch computing. On AWS, embar-

rassingly parallel workloads can be processed with AWS Batch, a service for scheduling

and running parallel containerized workloads on EC2 instances [31]. Parallel workloads,

such as computing a gradient of a given batch size, are submitted to a batch queue and AWS

Batch automatically launches the required EC2 instances to process the workload from the

queue. Each job from the queue runs on an individual instance or set of instances, with no

communication being possible between individual jobs.

In our workflow, we use the Lambda function invoked by the ComputeGradient

state (Figure 4.2) to submit the gradient computations to an AWS Batch queue. Each ele-

ment of the gradient gi corresponds to an individual job in the queue and is run by AWS

Batch as a separate Docker container [61]. Every container computes the gradient for its
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respective source index i and writes its resulting gradient to an S3 bucket (Figure 4.3),

Amazon’s cloud object storage system [26]. The gradients computed by our workflow are

one-dimensional numpy arrays of the size of the vectorized seismic image and are stored

in S3 as so-called objects [62]. Once an individual gradient gi has been computed, the

underlying EC2 instance is shut down automatically by AWS Batch, thus preventing EC2

instances from idling. Since no communication between jobs is possible, the summation of

the individual gradients is implemented separately using AWS Lambda functions. For this

purpose, each jobs also sends its S3 object identifier to a message queue (SQS) [63], which

automatically invokes the reduction stage (Figure 4.4). For the gradient computations, each

worker has to download the observed seismic data of its respective source index from S3

and the resulting gradient has to be uploaded to S3 as well. The bandwidth with which

objects are up- and downloaded is only limited by the network bandwidth of the EC2 in-

stances and ranges from 10 to 100 Gbps [64]. Notably, cloud object storage such as S3 has

no limit regarding the number of workers that can simultaneously read and write objects,

as data is (redundantly) distributed among physically separated data centers, thus providing

essentially unlimited IO scalability [26].

AWS Batch runs jobs from its queue as separate containers on a set of EC2 instances, so

the source code of the application has to be prepared as a Docker container. Containeriza-

tion facilitates portability and has the advantage that users have full control over managing

dependencies and packages. Our Docker image contains the code for solving acoustic

wave equations to compute gradients of a respective seismic source location. Since this

is the most computational intensive part of our workflow, it is important that the wave

equation solver is optimized for performance, but is also implemented in a programming

language that allows interfacing other AWS services such as S3 or SQS. In our workflow,

we use the domain-specific language compiler called Devito for implementing and solving

the underlying wave equations using time-domain finite-difference modeling [46, 65]. De-

vito is implemented in Python and provides an application programming interface (API)
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Figure 4.3: The gradients of the LS-RTM objective function are computed as an embar-
rassingly parallel workload using AWS Batch. This process is automatically invoked by
the AWS Step Functions (Figure 4.2) during each iteration of the workflow. The gradients
of individual source locations are computed as separate jobs on either a single or multiple
EC2 instances. Communication is only possible between instances of a single job, but not
between separate jobs. The resulting gradients are saved in S3 and the respective object
names are sent to an SQS queue to invoke the gradient summation.

for implementing forward and adjoint wave equations as high-level symbolic expressions

based on the SymPy package [66]. During runtime, the Devito compiler applies a series of

performance optimizations to the symbolic operators, such as reductions of the operation

count, loop transformations, and introduction of parallelism [65]. Devito then generates

optimized finite-difference stencil code in C from the symbolic Python expressions and

dynamically compiles and runs it. Devito supports both multi-threading using OpenMP, as

well as generating code for MPI-based domain decomposition. Its high-level API allows

expressing wave equations of arbitrary stencil orders or various physical representations

131



without having to implement and optimize low-level stencil codes by hand. Furthermore,

Devito includes various possibilities for backpropagation, such as optimal checkpointing or

on-the-fly Fourier transforms [67, 68]. The complexity of implementing highly optimized

and parallel wave equation solvers is therefore abstracted and vertically integrated into the

AWS workflow.

By default, AWS Batch runs the container of each job on a single EC2 instance, but re-

cently AWS introduced the possibility to run multi-node batch computing jobs [69]. Thus,

individual jobs from the queue can be computed on a cluster of EC2 instances and the corre-

sponding Docker containers can communicate via the AWS network. As for single-instance

jobs, AWS Batch automatically requests and terminates the EC2 instances on which the

Docker containers are deployed. In the context of seismic imaging and inversion, multi-

node batch jobs enable nested levels of parallelization, as we can use AWS Batch to paral-

lelize the sum of the source indices, while using MPI-based domain decomposition and/or

multi-threading for solving the underlying wave equations. This provides a large amount

of flexibility in regard of the computational strategy for performing backpropagation and

how to address the storage of the state variables. AWS Batch allows to scale horizontally,

by increasing the number of EC2 instances of multi-node jobs, but also enables vertical

scaling by adding additional cores and/or memory to single instances. In our performance

analysis, we compare and evaluate different strategies for computing gradients with Devito

regarding scaling, costs and turnaround time.

4.3.3 Gradient reduction

Every computed gradient is written by its respective container to an S3 bucket, as no com-

munication between individual jobs is possible. Even if all gradients in the job queue are

computed by AWS Batch in parallel at the same time, we found that the computation time

of individual gradients typically varies considerably (up to 10 percent), due to varying net-

work performance or instance capacity. Furthermore, we found that the startup time of the
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underlying EC2 instances itself is highly variable as well, so jobs in the queue are usually

not all started at the same time. Gradients therefore arrive in the bucket over a large time

interval during the batch job. For the gradient reduction step, i.e. the summation of all

gradients into a single array, we take advantage of the varying time-to-solutions by imple-

menting an event-driven gradient summation using Lambda functions. In this approach,

the gradient summation is not performed by as single worker or the master process who

has to wait until all gradients have been computed, but instead summations are carried

out by Lambda functions in response to gradients being written to S3. The event-driven

summation is therefore started as soon as the first two gradients have been computed.

The event-driven gradient summation is automatically invoked through SQS messages,

which are sent by the AWS Batch workers that have completed their computations and have

saved their respective gradient to S3. Before being shut down, every batch worker sends

a message with the corresponding S3 object name to an AWS SQS queue, in which all

object names are collected (Figure 4.4). Sending messages to SQS invokes AWS Lambda

functions that read up to 10 messages at a time from the queue. Every invoked Lambda

function that contains at least two messages, i.e. two object names, reads the corresponding

arrays from S3, sums them into a single array, and writes the array as a new object back to

S3. The new object name is sent to the SQS queue, while the previous objects and objects

names are removed from the queue and S3. The process is repeated recursively until all

nb gradients have been summed into a single array, with nb being the batch size for which

the gradient is computed. The gradient summation is implemented in Python, which is one

of the languages supported by AWS Lambda [25]. SQS guarantees that all messages are

delivered at least once to the subscribing Lambda functions, thus ensuring that no gradients

are lost in the summation process [63].

Since Lambda functions are limited to 3 GB of memory, it is not always possible to read

the full gradient objects from S3. Gradients that exceed Lambda’s available memory are

therefore streamed from S3 using appropriate buffer sizes and are re-uploaded to S3 using
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Figure 4.4: Event-driven gradient summation using AWS Lambda functions. An SQS
message queue collects the object names of all gradients that are currently stored in S3 and
automatically invokes Lambda functions that stream up to 10 files from S3. Each Lambda
function sums the respective gradients, writes the result back to S3 and sends the new object
name to the SQS queue. The process is repeated until all gradients have been summed into
a single S3 object. SQS has a guaranteed at-least-once delivery of messages to ensure that
no objects are lost in the summation.

the multipart upload functions of the S3 Python interface [70]. As the execution

time of Lambda functions is furthermore limited to 15 minutes, the bandwidth of S3 is

not sufficient to stream and re-upload objects that exceed a certain size within a single

Lambda invocation. For this case, we include the possibility that the workers of the AWS

Batch job split the computed gradients into smaller chunks that are saved separately in

S3, with the respective objects names being sent to multiple SQS queues. The gradient

summation is then performed in chunks by separate queues and Lambda functions. The

CreateQueues task of our Step Functions workflow (Figure 4.2) automatically creates

the required number of queues before starting the optimization loop and the CleanUp

state removes them after the final iteration.

134



The advantage of the event-based gradient reduction is that that the summation is exe-

cuted asynchronously, as soon as at least two S3 objects containing gradients are available,

while other batch jobs are still running. Therefore, by the time the last batch worker fin-

ishes the computation of its respective gradient, all remaining gradients have already been

summed into a single object, or at least a small number of objects. Furthermore, sum-

ming files of a single queue happens in parallel (if enough messages are in the queue), as

multiple Lambda functions can be invoked at the same time. Furthermore, splitting the gra-

dients itself into chunks that are processed by separate queues leads to an additional layer

of parallelism. In comparison to a fixed cluster of EC2 instances, the event-driven gradient

summation using Lambda function also takes advantage of the fact that the summation of

arrays is computationally considerably cheaper than solving wave equations and therefore

does not require to be carried out on the expensive EC2 instances used for the PDE solves.

4.3.4 Variable update

Once the gradients have been computed and summed into a single array that is stored as

an S3 object, the gradient is used to update the optimization variables of equation 4.1,

i.e. the seismic image or subsurface parameters such as velocity. Depending on the specific

objective function and optimization algorithm, this can range from simple operations like

multiplications with a scalars (gradient descent) to more computational expensive opera-

tions such as sparsity promotion or applying constraints [71]. Updates that use entry-wise

operations only and are cheap to compute such as multiplications with scalars or soft-

thresholding, can be applied directly by the Lambda functions in the final step of the gra-

dient summation. I.e. the Lambda function that sums the final two gradients, also streams

the optimization variable of the current iteration from S3, uses the gradient to update it and

directly writes the updated variable back to S3.

Many algorithms require access to the full optimization variable and gradient, such

as Quasi-Newton methods and other algorithms that need to compute gradient norms. In
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this case, the variable update is too expensive and memory intensive to be carried out by

Lambda functions and has to be submitted to AWS Batch as a single job, which is then

executed on a larger EC2 instance. This can be accomplished by adding an extra state such

as UpdateVariable to our Step Functions workflow. However, to keep matters simple,

we only consider a simple stochastic gradient descent example with a fixed step size in

our performance analysis, which is computed by the Lambda functions after summing the

final two gradients [72]. The CheckGradientStatus state of our AWS Step Functions

advances the workflow to the next iteration, once the updated image (or summed gradient)

has been written to S3. The workflow shown in Figure 4.2 terminates the optimization loop

after a predefined number of iterations (i.e. epochs), but other termination criteria based

on gradient norms or function values are possible too and can be realized by modifying

the IsCountReached state. The update of the optimization variable concludes a sin-

gle iteration of our workflow, whose performance we will now analyze in the subsequent

sections.

4.4 Performance analysis

In our performance analysis, we are interested in the performance of our workflow on a

real-world seismic imaging application regarding scalability, cost and turn-around time, as

well as the computational benefits and overhead introduced by our event-driven approach.

We conduct our analysis on a popular 2D subsurface velocity model (Figure 4.5), called the

2004 BP velocity estimation benchmark model [34]. This model was originally created for

analyzing seismic processing or inversion algorithms, but as the model represents a typical

large-scale 2D workload, we consider this model for our following performance analysis.

The seismic data set of this model contains 1, 348 seismic source locations and correspond-

ing observations di (i = 1, ..., 1, 348). The (unknown) seismic image has dimensions of

1, 911× 10, 789 grid points, i.e. a total of almost 21 million parameters. An overview of all

grid parameters and data dimensions are presented in Table A.2.
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Figure 4.5: The BP 2004 benchmark model, a 2D subsurface velocity model for develop-
ment and testing of algorithms for seismic imaging and parameter estimation [34]. This
model and the corresponding seismic data set are used in our performance analysis. The
velocity model and the unknown image have dimensions of 1, 911× 10, 789 grid points, a
total of 20.1 million unknown parameters.

4.4.1 Weak scaling

In our first performance test, we analyze the weak scaling behavior of our workflow by

varying the batch size (i.e. the number of source locations) for which the gradient of the

LS-RTM objective function (equation 4.1) is computed. For this test, we perform a single

iteration of stochastic gradient descent (SGD) using our workflow and measure the time-

to-solution as a function of the batch size. The workload per instance, i.e. per parallel

worker, is fixed to one gradient. The total workload for a specified batch size is submitted

to AWS Batch as a so-called array job, where each array entry corresponds to a single

gradient gi. AWS Batch launches one EC2 instance per array entry (i.e. per gradient),

runs the respective container on the instance and then terminates the instance afterwards.

If a sufficient amount of instances are available, AWS Batch will theoretically launch all

containers of the array job instantaneously and run the full workload in parallel, but as we

will see in the experiment, this is in practice not necessarily the case.

In the experiment, we measure the time-to-solution for performing a single iteration of

our workflow, i.e. one SGD update. We exclude the setup time of the SQS queues, which

is the first step of our workflow (Figure 4.2), as this process only has to be performed once,

prior to the first iteration. Therefore, each run involves the following steps:
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1. A Lambda function submits the AWS Batch job for specified batch size nb (Fig-

ure 4.3)

2. Compute gradients gi (i = 1, ..., nb) in parallel (Figure 4.3)

3. Lambda functions sum the gradients (Figure 4.4):

g =
∑nb

i=1 gi

4. A Lambda function performs the SGD update of the image: x = x− αg

We define the time-to-solution as the the time interval between the submission of the

AWS Batch job by a Lambda function (step 1) and the time stamp of the S3 object con-

taining the updated image (step 4). This time interval represents a complete iteration of our

workflow.

The computations of the gradients are performed on m4.4xlarge instances and the

number of threads per instance is fixed to 8, which is the number of physical cores that is

available on the instance. The m4 instance is a general purpose EC2 instance and we chose

the instance size (4xlarge) such that we are able to store the wavefields for backpropa-

gation in memory. The workload for each batch worker consists of solving a forward wave

equation to model the predicted seismic data and an adjoint wave equation to backpropa-

gate the data residual and to compute the gradient. For this and all remaining experiments,

we use the acoustic isotropic wave equation with a second order finite difference (FD) dis-

cretization in time and 8th order in space. We model wave propagation for 12 seconds,

which is the recording length of the seismic data. The time stepping interval is given by

the Courant-Friedrichs-Lewy condition with 0.55 ms, resulting in 21, 889 time steps. Since

it is not possible for the waves to propagate through the whole domain within this time

interval, we restrict the modeling grid to a size of 1, 911 × 4, 001 grid points around the

current source location. After modeling, each gradient is extended back to the full model

size (1, 911 × 10, 789 grid points). A detailed description of the setup parameters and uti-

lized software and hardware is provided in the appendix (Table A.1). The dimensions of
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Figure 4.6: Weak scaling results for performing a single iteration of stochastic gradient
as a function of the batch size for which the gradient is computed (a). The gradient is
computed as an AWS Batch job with an increasing number of parallel EC2 instances, while
the gradient summation and the variable update are performed by Lambda functions. The
total time-to-solution (a) consists of the average time it takes AWS Batch to request and
start the EC2 instances (b), the average runtime of the containers (c) and the additional
reduction time (d), i.e. the time difference between the final gradient of the respective batch
and the updated image. All timings are the arithmetic mean over three runs, with the error
bars representing the standard deviation.

this example represent a large-scale 2D example, but all components of our workflow are

agnostic to the number of physical dimensions and are implemented for three-dimensional

domains as well. The decision to limit the examples to a 2D model was purely made from

a financial viewpoint and to make the results reproducible in a reasonable amount of time.
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The timings ranging from a batch size of 1 to 128 are displayed in Figure 4.6a. The

batch size corresponds to the number of parallel EC2 instances on which the jobs are exe-

cuted. The time-to-solution consists of three components that make up the full runtime of

each job:

1. The average time for AWS Batch to request and launch the EC2 instances and to start

the Docker containers on those instances.

2. The runtime of the containers

3. The additional gradient reduction and image update time, which is given by the time

interval between the termination of the AWS Batch job and the time stamp of the

updated variable.

The sum of these components makes up the time-to-solution as shown in Figure 4.6a

and each component is furthermore plotted separately in Figures 4.6b to 4.6d. All timings

are the arithmetic mean over three individual runs and the standard deviation is indicated

by the error bars. The container runtimes of Figure 4.6c are the arithmetic mean of the

individual container runtimes on each instance (varying from 1 to 128). The average con-

tainer runtime is proportional to the cost of computing one individual gradient and is given

by the container runtime times the price of the m4.4xlarge instance, which was $0.2748

per hour at the time of testing. AWS Batch automatically launches and terminates the EC2

instance on which each gradient is computed and the user only pays for utilized EC2 time.

No extra charges occurs for AWS Batch itself, i.e. for scheduling and launching the batch

job.

The timings indicate that the time-to-solution generally grows as the batch size, and

therefore the number of containers per job, increases (Figure 4.6a). A close up inspection

of the individual components that make up the total time-to-solution shows that this is

mostly due to the increase of the startup time, i.e. the average time it takes AWS Batch to

schedule and launch the EC2 instances of each job (Figure 4.6b). We monitored the status
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of the EC2 instances during the job execution and found that AWS Batch does generally not

start all instances of the array job at the same time, but instead in several stages, over the

course of 1 to 3 minutes. The exact startup time depends on the batch size and therefore on

the number of instances that need to be launched, but also on the availability of the instance

within the AWS region. The combination of these factors lead to an increase of the average

startup time for an increasing batch size, but also to a large variance of the startup time

between individual runs. Unfortunately, the user has no control over the startup time, but it

is important to consider that no cost is incurred during this time period, as no EC2 instances

are running while the individual containers remain in the queue.

The average container runtime, i.e. the average computation time of a single gradient

within the batch, is fairly stable as the batch size increases (Figure 4.6c). This observation is

consistent with the fact that each container of an AWS Batch array job runs as an individual

Docker container and is therefore independent of the batch size. The container runtime

increases only slightly for larger batch sizes and we observe a large variance in some of

the container runtimes (specifically for a batch size of 8). This variance stems from the

fact that users do not have exclusive access to the EC2 instances on which the containers

are deployed. Specifically, our containers run on m4.4xlarge instances, which have 8

cores (16 virtual CPUs) and 64 GB of memory. In practice, AWS deploys these instances

on larger physical nodes and multiple EC2 instances (of various users) can run on the same

node. We hypothesize that a larger batch size increases the chance of containers being

deployed to a compute node that runs at full capacity, thus slightly increasing the average

container runtime, as user do not have exclusive access to the full network capacity or

memory bandwidth.

Finally, we also observe an increase in the additional gradient reduction time, i.e. the

interval between the S3 timestamps of the final computed gradient gi and the updated im-

age x. The batch size corresponds to the number of gradients that have to be summed

before the gradient can be used to update the image.The event-driven gradient reduction
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Figure 4.7: Final seismic image after 30 iterations of stochastic gradient descent and a batch
size of 80, which corresponds to approximately two passes through the data set (i.e. two
epochs).

invokes the summation process as soon as the first gradients are written to S3, so most

gradients are already summed by the time the final worker finishes its gradient computa-

tion. For the event-driven gradient summation, the variance of the startup and container

runtime is therefore advantageous, as it allows the summation to happen asynchronously.

However, in our example, the time interval between the first two gradients being written

to S3 (thus invoking the gradient reduction) and the final gradient being computed, does

not appear to be large enough to complete the summation of all gradients. Specifically,

we see an increase in the reduction time from a batch size of 4 to 8, after which the addi-

tional reduction is mostly constant, but again with a large variance. This variance is due

to a non-deterministic component of our event-based gradient summation, resulting from

a limitation of AWS Lambda. While users can specify a maximum number of messages

that Lambda functions read from an SQS queue, it is not possible to force Lambda to read

a minimum amount of two messages, resulting in most Lambda functions reading only a

single message (i.e. one object name) from the queue. Since we need at least two messages

to sum the corresponding gradients, we return the message to the queue and wait for a

Lambda invocation with more than one message. The user has no control over this process

and sometimes it takes several attempts until a Lambda function with multiple messages

is invoked. The likelihood of this happening increases with a growing batch size, since a

larger number of gradients need to be summed, which explains the increase of the reduction
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time and variance in Figure 4.6d.

Overall, the gradient summation and variable update finishes within a few seconds after

the last gradient is computed and the additional reduction time is small compared to the

full time-to-solution and to the pure computation time of the gradients. In our example, the

startup time (Figure 4.6b) takes up the majority of the time-to-solution (Figure 4.6a), as it

lies in the range of a few minutes and is in fact longer than the average container runtime

of each worker (Figure 4.6c). However, the startup time is independent of the runtime of

the containers, so the ratio of the startup time to the container runtime improves as the

workload per container increases. Furthermore, the cost of the batch job only depends on

the container runtime and the batch size, but not on the startup time or reduction time. The

cost for summing the gradients is given by the cumulative runtime of the Lambda functions,

but is negligible compared to the EC2 cost for computing the gradients. At the time of the

example, the cost for Lambda functions was $2 · 10−7 per request and $1.6 · 10−5 per used

GB-second. Figure 4.7 shows the final seismic image that is obtained after running our

workflow for 30 iterations and a batch size of 80, which corresponds to 1.8 epochs. The

source locations in each iteration are chosen from a uniform random distribution and and

after the final iteration, each data sample (i.e. seismic shot record) has been, in expectation,

used 1.8 times. In this example, every gradient was computed by AWS Batch on a single

instance and a fixed number of threads, but in the subsequent section we analyze the scaling

of runtime and cost as a function of the number of cores and EC2 instances. Furthermore,

we will analyze in a subsequent example how the cost of running the gradient computations

with AWS Batch compares to performing those computations on a fixed cluster of EC2

instances.

4.4.2 Strong scaling

In the following set of experiments, we analyze the strong scaling behavior of our work-

flow for an individual gradient calculation, i.e. a gradient for a batch size of 1. For this,
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we consider a single gradient computation using AWS Batch and measure the runtime as

a function of either the number of threads or the number of instances in the context of

MPI-based domain decomposition. In the first experiment, we evaluate the vertical scaling

behavior, i.e. we run the gradient computation on a single instance and vary the number of

OpenMP threads. In contrast to the weak scaling experiment, we model wave propagation

in the full domain (1, 911 × 10, 789 grid points), to ensure that the sub-domain of each

worker is not too small when we use maximum number of threads. The measured runtime

is the sum of the kernel times spent for solving the forward and the adjoint wave equation

and therefore excludes memory allocation time and code generation time.

Since AWS Batch runs all jobs as Docker containers, we compare the runtimes with

AWS Batch to running our application on a bare metal instance, in which case we have

direct access to the compute node and run our code without any virtualization. All timings

on AWS are performed on a r5.24xlarge EC2 instance, which is a memory optimized

instance type that uses the Intel Xeon Platinum 8175M architecture. The 24xlarge in-

stance has 96 virtual CPU cores (48 physical cores on 2 sockets) and 768 GB of memory.

Using the largest possible instance of the r5 class, ensures that our AWS Batch job has

exclusive access to the physical compute node. Bare metal instances automatically give

users exclusive access to the full node. We also include the Optimum HPC cluster in our

comparison, a small research cluster at the University of British Columbia based on the

Intel’s Ivy Bridge 2.8 GHz E5-2680v2 processor. Optimum has 2 CPUs per node and 10

cores per CPU.

Figure 4.8a shows the comparison of the kernel runtimes on AWS and Optimum and

Figure 4.8b displays the corresponding speedups. As expected, the r5 bare metal instance

shows the best scaling, as it uses a newer architecture than Optimum and does not suffer

from the virtualization overhead of Docker. We noticed that AWS Batch in its default mode

uses hyperthreading (HT), even if we perform thread pinning and instruct AWS Batch to use

separate physical cores. As of now, the only way to prevent AWS Batch from performing
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Figure 4.8: Strong scaling results for computing a single image gradient of the BP model as
a function of the number of threads. Figure (a) shows the runtimes for AWS Batch with and
without hyperthreading, as well as the runtimes on the r5 bare metal instance, in which case
no containerization or virtualization is used. For reference, we also provide the runtime on
a compute node of an on-premise HPC cluster. Figure (b) shows the corresponding speeds
ups.

HT, is to modify the Amazon Machine Image (AMI) of the corresponding AWS compute

environment and set the nr cpus parameter of the /etc/default/grub file to the

number of physical cores per socket (i.e. 24). With HT disabled, the runtimes and speedups

of AWS Batch are very close to the timings on the bare-metal instances, indicating that the

overhead of Docker affects the runtimes and scaling of our memory-intensive application

only marginally, which matches the findings of [73].

Next, we analyze the horizontal strong scaling behavior of running our application with

AWS Batch. Once again, we consider the computation of one single gradient, but this

time we vary the number of EC2 instances on which the underlying wave equations are

solved. We would like to emphasize that AWS Batch is used differently than in the weak

scaling experiment, where AWS Batch was used to parallelize the sum over source loca-

tions. Multiple workloads (i.e. gradients) were submitted to AWS Batch as an array job

and communication between workers of an array job is not possible. Here, we submit a

single workload (i.e. one gradient) as a multi-node AWS Batch job, in which case IP-based
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communication between instances is enabled. Since this involves distributed memory par-

allelism, we use domain decomposition based on message passing (MPI) to solve the wave

equations on multiple EC2 instances [74, 75]. The code with the corresponding MPI com-

munication statements is automatically generated by the Devito compiler. Furthermore,

we use multi-threading on each individual instance and utilize the maximum number of

available cores per socket, which is 24 for the r5 instance and 18 for the c5n instance.

We compare the r5.24xlarge instance type from the last section with Amazon’s re-

cently introduced c5nHPC instance. Communication between AWS instances is generally

based on ethernet and the r5 instances have up to 25 GBps networking performance. The

c5n instance type uses Intel Xeon Platinum 8142M processors with up to 3.4 Ghz architec-

ture and according to AWS provides up to 100 GBps of network bandwidth. The network

is based on AWS’ Nitro card and the elastic network adapter, but AWS has not disclosed

whether this technology is based on InfiniBand or Ethernet [76]. Figures 4.9a and 4.9b

show the kernel runtimes and the corresponding speedups ranging from 1 instance to 16

instances. The r5 instance has overall shorter runtimes than the c5n instance, since the

former has 24 physical cores per CPU socket, while the c5n instance has 18. However,

as expected, the c5n instance type exhibits a better speedup than the r5 instance, due to

the better network performance. Overall, the observed speed up on both instances types is

excellent, with the c5n instance archiving a maximum speedup of 11.3 and the r5 instance

of 7.2.

The timings given in Figure 4.9a are once again the pure kernel times for solving the

PDEs, but a breakdown of the components that make up the total time-to-solution on the

c5n instance is provided in Figure 4.9c. The job runtime is defined as the interval between

the time stamp at which the batch job was created and the S3 time stamp of the computed

gradient. As in our weak scaling test, this includes the time for AWS Batch to request

and launch the EC2 instances and to start the Docker containers, but excludes the gradient

summation time, since we are only considering the computation of a single gradient. The
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container runtime is the runtime of the Docker container on the master node and includes

the time it takes AWS Batch to launch the remaining workers and to establish an ssh con-

nection between all instances/containers. Currently, AWS Batch requires this process to be

managed by the user using a shell script that is run inside each container. After a connection

to all workers has been established, the containers run the application as a Python program

on each worker. The Python runtime in Figure 4.9c is defined as the runtime of Python on

the main node and includes reading the seismic data from S3, allocating memory and De-

vito’s code generation. Our timings in Figure 4.9c show that the overhead from requesting

instances and establishing a cluster, i.e. the difference between the Python and container

runtime, is reasonable for a small number of instances (less than 2 minutes), but grows sig-

nificantly as the number instances is increased to 8 and 16. Depending on the runtime of the

application, the overhead thus takes up a significant amount of the time-to-solution. In our

example, this was the case for 8 and 16 instances, but for more compute-heavy applications

that run for one or multiple hours, this amount of overhead may still be acceptable.

Figure 4.9d shows the cost for running our scaling test as a function of the cluster size.

The cost is calculated as the instance price (per second) times the runtime of the container

on the main node times the number of instances. The cost per gradient grows significantly

with the number of instances, as the overhead from establishing an ssh connection to

all workers increases with the cluster size. The communication overhead during domain

decomposition adds an additional layer of overhead that further increases the cost for an

increasing number of instances. This is an important consideration for HPC in the cloud,

as the shortest time-to-solution does not necessarily correspond to the cheapest approach.

Another important aspect is that AWS Batch multi-node jobs do not support spot instances

[75]. Spot instances allow users to access unused EC2 capacities at significantly lower

price than at the on-demand price, but AWS can terminate spot instances at any time with a

two minute warning, e.g. if the demand for that instance type increases [51]. Spot instances

are typically in the range of 2 to 3 times cheaper than the corresponding on-demand price,
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Figure 4.9: Strong scaling results for computing a single gradient as an AWS Batch multi-
node job for an increasing number of instances. Figures (a) and (b) show the Devito kernel
times and speedups on two different instance types. The observed speedups are 11.3 for the
c5n and 7.2 for the r5 instance. Figure (c) shows a breakdown of the time-to-solution of
each batch job into its individual components. Figure (d) shows the EC2 cost for computing
the gradients. The spot price is only provided for the single-instance batch jobs, as spot
instances are not supported for multi-node batch jobs.

but AWS Batch multi-node jobs are, for the time being, only supported with on-demand

instances.

The scaling and cost analysis in Figures 4.9a – 4.9d was carried out on the largest in-

stances of the respective instance types (r5.24xlarge and c5n.18xlarge) to guaran-
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Figure 4.10: Devito kernel runtimes for computing a single gradient as an AWS Batch job
for an increasing number of instances. In comparison to the previous example, we use the
smallest possible instance type for each job, as specified in each bar. We use the maximum
number of available cores on every instance type and the total number of cores across all
instances is given in each bar. Figure (b) shows the corresponding cost for computing the
gradients. Choosing the instance size such the total memory is approximately constant,
avoids that the cost increases as a larger number of instances are used per gradient. How-
ever, single instances using spot prices ultimately remain the cheapest option.

tee exclusive access to the compute nodes and network bandwidth. Increasing the number

of instances per run therefore not only increases the total number of available cores, but also

the amount of memory. However, for computing a single gradient, the required amount of

memory is fixed, so increasing the number of instances reduces the required amount of

memory per instance, as wavefields are distributed among more workers. In practice, it

therefore makes sense to chose the instance type based on the required amount of mem-

ory per worker, as memory is generally more expensive than compute. In our specific

case, computing the gradient requires 170 GB of memory, which requires either a single

r5.12xlarge instance, two r5.4xlarge, four r5.2xlarge, eight r5.xlarge or

sixteen r5.large instances. However, these instances not only differ in the amount of

memory, but also in the number of CPU cores. We repeat our previous scaling test, but

rather than using the same instance type in all runs, we choose the instance type based on
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Table 4.1: Comparison of parallelization strategies on a single EC2 instance in the context
of AWS Batch. The timings are the Devito kernel times for computing a single gradient
of the BP model using AWS Batch. The program runs as a single docker container on an
individual EC2 instance, using either multi-threading (OpenMP) or a hybrid approach of
multithreading and domain-decomposition (OpenMP + MPI).

Grid CPU (cores) Parallelization Runtime [s]

1, 911× 5, 394 1 (24) OMP 190.17± 7.12

1, 911× 10, 789 1 (24) OMP 378.94± 13.57

1, 911× 10, 789 2 (48) OMP 315.92± 16.50

1, 911× 10, 789 2 (48) OMP + MPI 249.13± 5.22

the required amount of memory. Furthermore, for every instance type, we utilize the max-

imum amount of available cores using multi-threading with OpenMP. The kernel runtimes

for an increasing number of instances is shown in Figure 4.10a. In each bar, we indicate

which instance type was used, as well as the total number of cores across all instances. The

corresponding costs for computing each gradient is shown in Figure 4.10a. Compared to

the previous example, we observe that using 16 small on-demand instances leads to a lower

cost than using a single more expensive large instance, but that using a single instance ulti-

mately remains the most cost-effective way of computing a gradient, due to the possibility

to utilize spot instances.

In terms of cost, our scaling examples underline the importance of choosing the EC2

instances for the AWS Batch jobs based on the total amount of required memory, rather

than based on the amount of CPU cores. Scaling horizontally by using an increasingly large

number of instances expectedly leads to a faster time-to-solution, but results in a significant

increase of cost as well (Figure 4.9d). As shown in Figure 4.10b, this increase in cost can be

avoided to some extent by choosing the instance size such that the total amount of memory

stays approximately constant, but ultimately the restriction of not supporting spot instances,

makes multi-node batch jobs not attractive in scenarios where single instances provide

sufficient memory to run a given application. In practice, it makes therefore sense to use

single node/instance batch jobs and to utilize the full number of available cores on each
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instance. The largest EC2 instances of each type (e.g. r5.24xlarge, c5n.18xlarge)

have two CPU sockets with shared memory, making it possible to run parallel programs

using either pure multi-threading or a hybrid MPI-OpenMP approach. In the latter case,

programs still run as a single Docker container, but within each container use MPI for

communication between CPU sockets, while OpenMP is used for multithreading on each

CPU. For our example, we found that computing a single gradient of the BP model with the

hybrid MPI-OpenMP approach leads to a 20 % speedup over the pure OpenMP program

(Table 4.1), which correspondingly leads to 20 % cost savings as well.

4.4.3 Cost comparison

One of the most important considerations of high performance computing in the cloud is the

aspect of cost. As users are billed for running EC2 instances by the second, it is important

to use instances efficiently and to avoid idle resources. This is oftentimes challenging when

running jobs on a conventional cluster. In our specific application, gradients for different

seismic source locations are computed by a pool of parallel workers, but as discussed ear-

lier, computations do not necessarily complete at the same time. On a conventional cluster,

programs with a MapReduce structure, such as parallel gradient computations, are imple-

mented based on a client-server model, in which the workers (i.e. the clients) compute

the gradients in parallel, while the master (the server) collects and sums the results. This

means that the process has to wait until all gradients gi have been computed, before the

gradient can be summed and used to update the image. This inevitably causes workers

that finish their computations earlier than others to the sit idle. This is problematic when

using a cluster of EC2 instances, where the number of instances are fixed, as users have to

pay for idle resources. In contrast, the event-driven approach based on Lambda functions

and AWS Batch automatically terminates EC2 instances of workers that have completed

their gradient calculation, thus preventing resources from sitting idle. This fundamentally

shifts the responsibility of requesting and managing the underlying EC2 instances from the
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user to the cloud environment and leads to significant cost savings as demonstrated in the

following example.

We illustrate the difference between the event-driven approach and using a fixed cluster

of EC2 instances by means of a specific example. We consider our previous example of

the BP synthetic model and assume that we want to compute the gradient for a batch size

of 100. As in our weak scaling experiment, we restrict the modeling domain to the subset

of the model that includes the respective seismic source location, as well as the seismic

receivers that record the data. Towards the edge of the model, the modeling domain is

smaller, as some receivers lie outside the modeling domain and are therefore omitted. We

compute the gradient gi for 100 random source locations and record the runtimes (Fig-

ure 4.11a). We note that most gradients take around 250 seconds to compute, but that

the runtimes vary due to different domain sizes and varying EC2 capacity (similar to the

timings in Figure 4.6c). We now model the idle times for computing these gradients on a

cluster of EC2 instances as a function of the the number of parallel instances, ranging from

1 instance (fully serial) to 100 instances (fully parallel). For a cluster consisting of a single

instance, the cumulative idle time is naturally zero, as the full workload is executed in serial

by a single instance. For more than one instance, we model the amount of time that each

instance is utilized, assuming that the workloads are assigned dynamically to the available

instances. The cumulative idle time tidle is then given as the sum of the differences between

the runtime of each individual instance ti and the instance with the longest runtime:

tidle =

nEC2∑
i=1

(max{ti} − ti), (4.3)

The cumulative idle time as a function of the cluster size nEC2 is plotted in Figure 4.11b. We

note that the cumulative idle time generally increases with the cluster size, as a larger num-

ber of instances sit idle while waiting for the final gradient to be computed. On a cluster

with 100 instances each gradient is computed by a separate instance, but all workers have
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to wait until the last worker finishes its computation (after approximately 387 seconds). In

this case, the varying time-to-solutions of the individual gradients leads to a cumulative

idle time of 248 minutes. Compared to the cumulative computation time of all gradients,

which is 397 minutes, this introduces an overhead of more than 60 percent, if the gradients

are computed on a cluster with 100 instances. The cumulative idle time is directly pro-

portional to the cost for computing the 100 gradients, which is plotted on the right axis of

Figure 4.11b. With AWS Batch, the cumulative idle time for computing the 100 gradients

is zero, regardless of the number of parallel instances that AWS Batch has access to. Any

EC2 instance that is not utilized anymore is automatically shut down by AWS Batch, so no

additional cost other than the pure computation time of the gradients is invoked [77].

In practice, it is to be expected that the cost savings of AWS Batch are even greater, as

we are not taking the time into account that it takes to start an EC2 cluster of a specified

number of instances. In our weak scaling experiments (Figure 4.6a), we found that spinning

up a large number of EC2 instances does not happen instantaneously but over a period of

several minutes, so starting a cluster of EC2 instances inevitably causes some instances to

sit idle while the remaining instances are started. This was also observed for our multi-

node AWS Batch job experiment (Figure 4.9c), but in this case the cluster size per gradient

is considerably smaller than the size of a single large cluster for computing all gradients.

Single-node AWS Batch jobs do not suffer from the variable startup time, as workers that

are launched earlier than others instantaneously start their computations, without having to

wait for the other instances.

While computing the 100 gradients on an EC2 cluster with a small number of instances

results in little cumulative idle time, it increases the overall time-to-solution, as a larger

number of gradients have to be sequentially computed on each instance (4.11c). With

AWS Batch this trade-off does not exist, as the cumulative idle time, and therefore the cost

for computing a fixed workload, does not depend on the number of instances. However, it

is to be expected that in practice the time-to-solution is somewhat larger for AWS Batch
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Figure 4.11: (a) Sorted container runtimes of an AWS Batch job in which we compute
the gradient of the BP model for a batch size of 100. Figure (b) shows the cumulative
idle time for computing this workload as a function of the number of parallel workers on
either a fixed cluster of EC2 instances or using AWS Batch. The right-hand y-axis shows
the corresponding cost, which is proportional to the idle time. In the optimal case, i.e. no
instances every sit idle, the cost for computing a gradient of batch size 100 is 1.8$. Figure
(c) shows the time-to-solution as a function of the number of parallel instances, which is
the same on an EC2 cluster and for AWS Batch, if we ignore the startup time of the AWS
Batch workers or of the corresponding EC2 cluster.

than for a fixed cluster of EC2 instances, as AWS Batch needs to request and launch EC2

instances for every new gradient computation. In our weak scaling experiments in which
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Table 4.2: AWS on-demand and spot prices of a selection of EC2 instance types that were
used in the previous experiments. Prices are provided for the US East (North Virginia)
region, in which all experiments were carried out (07/11/2019).

Instance On-demand ($/hour) Spot ($/hour) Ratio

m4.4xlarge 0.800 0.2821 2.84

r5.24xlarge 6.048 1.7103 3.54

c5n.18xlarge 3.888 1.1659 3.33

we requested up to 128 instances, we found that the corresponding overhead lies in the

range of 3 to 10 minutes (per iteration), but it is to be expected that the overhead further

grows for an even larger number of instances. However, no additional cost is introduced

while AWS Batch waits for the EC2 instances to start.

4.4.4 Cost saving strategies for AWS Batch

Using AWS Batch for computing the gradients of a seismic imaging workflow limits the

runtime that each EC2 instance is active to the amount of time it takes to compute a single

gradient (of one source location). Running a seismic imaging workflow on a conventional

cluster of EC2 instances, requires instances to stay up during the entire execution time

of the program, i.e. for all iterations of the seismic imaging optimization algorithm. The

limitation of instance runtimes to the duration of a single gradient computations with AWS

Batch is beneficial for the usage of spot instances, as it reduces the chance that a specific

instance is shut down within the duration it is used. As demonstrated in our earlier examples

(Figures 4.9d and 4.10b), spot instances can significantly reduce the cost of running EC2

instances, oftentimes by a factor of 2−4 in comparison to on-demand instances (Table 4.2).

In contrast to on-demand instances, the price of spot instances is not fixed and depends

on the current demand and availability of the instance type that is being requested. As such,

prices for spot instances can vary significantly between the different zones of a specific

region (Figure 4.12a). If spot instances are used for a cluster and are fixed for the entire

duration of the program execution, users are exposed to variations of the spot price during
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Figure 4.12: (a) Historical spot price of the c5n.18xlarge instance in different zones of
the US East region over a 10 ten day period in April 2019. Figure (b) shows the relative cost
for running an iterative seismic imaging algorithm over this time period in the respective
zones. The right-most bar indicates the price for running the application with our event-
driven workflow, in which the cheapest zone is automatically chosen at the start of each
iteration (indicated as dots in Figure a). Figures (c) and (d) are the same plots for the
c1.xlarge instance during a different time window.

that time period. This effects is usually negligible for programs that run in a matter of

hours, as spot prices typically do not vary substantially over short periods of time. However,

large-scale 3D seismic imaging problems potentially run over the course of multiple days,

in which case varying spot prices can have significant influence on the cost.

We consider a hypothetical example in which we assume that we run a large-scale
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imaging example for 20 iterations of an optimization algorithm, where each iteration takes

12 hours to compute, which leads to a total runtime of 10 days. Figures 4.12a shows the

historical spot price of the c5n.18xlarge instance over a 10 day time period in April

2019 and Figure 4.12b shows the normalized cost of running the example in each specific

zone. We note that the spot price of this instance type is the same across all zones at the

start of the program, but that the spot price in the us-east-1b zone starts increasing

significantly after a few hours. In this case, running the example on a fixed cluster of

instances results in cost differences of 40 percent, depending on which zone was chosen

at the start of the program. Our event-driven workflow with AWS Batch, allows that the

cheapest available zone is automatically chosen at the start of every iteration, which ensures

that zones that exhibit a sudden increase of the spot price, such as zone us-east-1b, are

avoided in the subsequent iteration.

Another example for a different time interval and the c1.xlarge instance type is

shown in Figure 4.12c and the relative cost of running the example in the respective zone

is plotted in Figure 4.12d. The right-most bar shows the cost if the example was run with

AWS Batch and the event-driven workflow had chosen the cheapest available zone at each

iteration. In this case, switching zones between iterations leads to cost savings of 15 percent

in comparison to running the example in the us-east-1a zone, which is the cheapest

zone at the start of the program. For our cost estimates (Figure 4.12b and 4.12d), we

assume that the spot price is not affected by our own application, i.e. by our own request

of a potentially large number of spot instances, but in practice this issue needs to be taken

into account as well. Overall, the two examples shown here are obviously extreme cases

of price variations across zones and in practice the spot price is oftentimes reasonably

stable. However, spot price fluctuations are nevertheless unpredictable and the event-driven

approach with AWS Batch allows to minimize exposure to price variations.

Apart from choosing spot instances in different zones, it is also possible to vary the

instance type in that is used for the computations. For example, in Figure 4.13a, we plot
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Figure 4.13: (a) Historical spot prices for a variety of 4xlarge instances over a 10 day
period in April 2019. All shown instances have 128 GB of memory, but vary in their
number of CPU cores and architectures. Figure (b) shows the relative cost of running an
iterative seismic imaging application over this time period in the respective zone and for the
case, in which the cheapest available instance is chosen at the beginning of each iteration.

the historical spot price of the xlarge instance for various instance types (m5, c5, c5n

and r5). All instances have 4 virtual CPUs, but vary in the amount of memory and their

respective CPU architecture. Spot instances are not priced proportionally to their hardware

(memory, cores, architecture), but based on the current demand. Therefore, it is oftentimes

beneficial to compare different instance types and choose the currently cheapest type from

a pool of possible instances. As before, we compare the relative cost for running the 10

day example on a cluster of EC2 instances, in which case the instance type is fixed for

the duration of the program, against the dynamic approach with AWS Batch. Again, the

event-driven approach allows to minimize exposure to price changes over the duration of

the example, by choosing the cheapest available instance type at the beginning of each

iteration.
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4.4.5 Resilience

In the final experiment of our performance analysis, we analyze the resilience of our work-

flow and draw a comparison to running an MPI program on a conventional cluster of EC2

instances. Resilience is an important factor in high performance computing, especially for

applications like seismic imaging, whose runtime can range from several hours to multiple

days. In the cloud, the mean-time-between failures is typically much shorter than on com-

parable HPC systems [9], making resilience potentially a prohibiting factor. Furthermore,

using spot instances further increases the exposure to instance shut downs, as spot instances

can be terminated at any point in time with a two minute warning.

Seismic imaging codes that run on conventional HPC clusters typically use MPI to

parallelize the sum of the source indices. MPI based applications exhibit a well known

shortcoming of having a relatively low fault tolerance, as hardware failures lead to the

termination of a running program. Currently, the only noteworthy approach of fault toler-

ance for MPI programs is the User Level Fault Mitigation (ULFM) Standard [78]. ULFM

enables an MPI program to continue running after a node/instance failure, using the re-

maining available resources to finish the program execution. Using AWS Batch to compute

the gradients gi for a given batch size, provides a natural fault tolerance, as each gradient is

computed by a separate container, so the crash of one instance does not affect the execution

of the code on the remaining workers. Furthermore, AWS Batch provides the possibility

to automatically restart EC2 instances that have crashed. In contrast to ULFM, this allows

the completion of programs with the initial number of nodes or EC2 instances, rather than

with a reduced number.

We illustrate the effect of instance restarts by means of our previous example with the

BP model (Figure 4.5). Once again, we compute the gradient of the LS-RTM objective

function for a batch size of 100 and record the runtimes without any instance/node failures.

We compute the gradients using two different computational strategies for backpropaga-

tion. In the first approach, we compute the gradient on instances with a sufficient amount
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Figure 4.14: Comparison of the resilience factor (RF) for an increasing percentage of in-
stance failures with and without instance restarts. The RF provides the ratio between the
original runtime for computing the gradient of the BP model for a batch size of 100 and
the runtime in the presence of instance failures. Figure (a) is the RF for an application that
runs for 5 minutes without failures, while figure (b) is based on an example whose original
time-to-solution is 45 minutes.

of memory to store the state variables in memory, which leads to an average runtime per

gradient of 5 minutes (using 62 GB of memory). In the second approach, we compute the

gradients on instances with less memory and use optimal checkpointing [42], in which case

we store only a small subset of state variables and recompute the remaining states during

backpropagation. This increases the average runtime per gradient to 45 minutes, but also

reduces the required amount of memory for this example from 62 GB to 5 GB.

We then model the time that it takes to compute the 100 gradients for an increasing

number of instance failures with and without restarts. We assume that the gradients are

computed fully in parallel, i.e. on 100 parallel instances and invoke an increasing number

of instance failures at randomly chosen times during the execution of program. Without in-

stance restarts, we assign the workload of the failed instances to the workers of the remain-

ing instances and model how long it takes complete the computation of the 100 gradients.

With restarts, we add a two minute penalty to the failed workers and then restart the com-

putation on the same instance. The two minute penalty represents the average amount of
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time it takes AWS to restart a terminated EC2 instance and was determined experimentally

by manually shutting down EC2 instances of an AWS Batch job and recording the time it

takes to restart the container on a new instance.

Figure 4.14 shows the ratio of the time-to-solution for computing the 100 gradients

without events (i.e. without failures) to the modeled time-to-solution with events. This

ratio is known as the resilience factor [79] and provides a metric of how instance failures

affect the time-to-solution and therefore the cost of running a given application in the cloud:

r =
time-to-solution event-free

time-to-solution event
(4.4)

Ideally, we aim for this factor being as close to 1 as possible, meaning that instance fail-

ures do not significantly increase the time-to-solution. Figures 4.14a and 4.14b show the

resilience factors with and without restarts for the two different backpropagation strategies,

which represent programs of different runtimes. The resilience factor is plotted as a func-

tion of the percentage of instance failures and is the average of 10 realizations, with the

standard deviation being depicted by the shaded colors. The plots show that the largest

benefit from being able to restart instances with AWS Batch is achieved for long running

applications (Figure 4.14b). The resilience factor with instance restarts approaches a value

of 0.5, since in the worst case, the time-to-solution is doubled if an instance fails shortly be-

fore completing its gradient computation. Without being able to restart instances, as would

be the case for MPI programs with ULFM, the gradient computations need to be completed

by the remaining workers, so the resilience factor continuously decreases as the failure per-

centage increases. For short running applications (Figure 4.14a), the overhead of restarting

instances diminishes the advantage of instance restarts, unless a significant percentage of

instances fail, which, however, is unlikely for programs that run in a matter of minutes. On

the other hand, long running programs or applications with a large number of workers are

much more likely to encounter instance shut downs and our experiment shows that these

programs benefit from the automatic instance restarts of AWS Batch.
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4.5 A large-scale case study on Microsoft Azure

To complement the quantitative performance analysis of the previous section, we conclude

our numerical examples with a large-scale seismic imaging case study in 3D. In contrast

to our previous imaging examples based on the 2D BP model, 3D imaging involves data

that is collected along a two-dimensional source and receiver grid and wave propagation is

modeled in a three-dimensional domain. Accordingly, the computational cost and memory

imprint of 3D imaging is multiple orders of magnitude larger than of 2D imaging, making

large-scale instances of this problem oftentimes prohibitively expensive in practice. Unlike

our previous examples which were conducted on AWS, we perform the following 3D imag-

ing case study on Microsoft Azure. As such, the example not only serves the purpose to

demonstrate the scalability of our framework to realistic problem sizes, but also to illustrate

that the proposed event-driven approach translates to other cloud platforms as well. The

following section presents a brief overview how components of our AWS workflow map

to Azure and we highlight some of the (overall minor) differences. The subsequent section

presents the experimental set up and imaging results.

4.5.1 Serverless imaging on Azure

For the 3D imaging case study on Azure, we re-implement the core components of the

AWS workflow with the corresponding Azure services. On AWS, (image) gradients for

separate source locations are computed with AWS Batch, a service for executing embar-

rassingly parallel containerized workloads, with the possibility of inter-node communica-

tion between virtual machines of the same job. The corresponding Azure counterpart of

this service is Azure Batch [80], whose functionalities are mostly equivalent to AWS Batch

and with additional support of Singularity containers [81]. This allows us to perform gra-

dient computations on Azure in the same fashion as on AWS (Figure 4.15) and to reuse the

majority of the code. Instead of Lambda functions, Azure Batch jobs are submitted using
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Azure Functions, while S3 is replaced by Blob Storage [82], Azure’s object storage system.

Similarly, the equivalent service of AWS SQS is Azure Queue Storage [83], which is used

to collect object IDs of computed gradients and to invoke their summation. The docker

containers for Azure Batch are overall based on the same software stack as the containers

for AWS. The only necessary changes involve swapping the AWS Python software devel-

opment kit (SDK) for the Azure SDK and modifying the corresponding Python functions

accordingly (e.g. for writing data to buckets/blobs).

The only notable difference between AWS and Azure Batch is the management of the

computing environment. On AWS, users define the type and maximum number of EC2

instances that are available to AWS Batch, but no running instances are required prior to

submitting jobs to the batch queue. In contrast, users on Azure need to launch a pool of

instances prior to submitting jobs to the batch queue and the batch pool has to stay active

for (at least) the duration of the job. However, as Azure Batch supports automatic resiz-

ing of pools based on certain criteria such as the number of pending jobs, the differences

between AWS and Azure Batch can be circumvented in practice through the right set up

of the computing environment. The second notable difference on Azure to our approach

on AWS is the way in which jobs are defined and submitted to the batch queue. In our

AWS workflow, job templates and submissions are managed with the AWS Python SDK,

while on Azure we utilize Batch Shipyard to specify pool and job descriptions [84]. Batch

Shipyard is a toolbox that provides a range of templates of docker containers, including

MPI support, and enables job and pool descriptions with yaml configuration files.

The second major component of our AWS workflow is the event-driven gradient sum-

mation based on SQS and Lambda functions. On Azure we replicate this functionality

using Azure Queue Storage and Azure Functions, which are direct equivalents of the AWS

services. As before, workers of the Azure Batch jobs write their resulting gradients to the

object storage system (blob) and send the corresponding object ID to a queue, which in turn

automatically involkes the gradient summation. As the Python SDKs for Azure and AWS
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Figure 4.15: Azure setup for computing gradients of the LS-RTM objective function as a
containerized embarrassingly parallel workload. As on AWS, it is possible to distribute
workloads between multiple virtual machines and containers of the same job are able to
communicate via message passing. Azure Blobs and Queue Storage are the equivalent
services to SQS and S3 for message queuing and object storage. In contrast to AWS, Azure
Batch accesses computational resources from a batch pool, which has to be launched prior
to the initial submission of jobs.
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are overall very similar, we can reuse our implementation of the gradient summation from

AWS, which only requires swapping the S3 interface (AWS) for the blob interface (Azure).

Similar to AWS, Azure Blob storage allows reading and writing objects in separate blocks,

thus making it possible to process gradients that exceed the available memory of Azure

Functions (1.5 to 14 GB, depending on the hosting plan) [82].

For this case study we omit the implementation of an iterative loop, as due to a budget

constraint we only perform a single iteration of the imaging workflow, but using the full

data set. I.e.; instead of imaging a randomly selected subset of data within an iterative

stochastic gradient descent loop, we image the full data set at once, which corresponds

to a single matrix-vector multiplication with the transpose of the Born scattering operator.

However, in principle there are multiple possibilities to implement a serverless iterative

loop on Azure. While there is no direct equivalent of AWS Step Functions, both Logic Apps

[85] and Durable Functions [86] provide similar functionalities that allow orchestration of

different Azure services or stateful executions of Azure Functions.

4.5.2 Reverse-time migration

In our Azure case study, we perform a single iteration of the full imaging workflow, which

involves computing the gradient for every source location using Azure Batch and summing

the results into a single image. This corresponds to the computation of a single full gradi-

ent, i.e. a gradient whose batchsize is equal to the total number of observed shot records.

This imaging procedure is called reverse-time migration (RTM) and mathematically corre-

sponds to applying the adjoint of the Born scattering operator to the seismic data [87]. This

approach is computationally cheaper than LS-RTM as it involves a smaller number of PDE

solves (namely one pass through the data), but the resulting image is blurry and typically

shows an imprint of the seismic acquisition.

For our experiment, we generate a synthetic data set by modeling the observed data

with the true subsurface model for a specified survey geometry. Our model and the un-
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known image have dimensions of 3.325 × 10 × 10 km and are discretized with a grid

spacing of 12.5 m, which results in a domain of 267× 801× 801 grid points. We generate

data for a randomized seismic acquisition geometry, with data being recorded by 1, 500

receivers that are randomly distributed along the ocean floor (Figure 4.16a). The source

vessel fires the seismic source on a dense regular grid as shown in Figure 4.16b, consisting

of 799× 799 source locations (638, 401 in total). For seismic imaging, we assume source-

receiver reciprocity, which means that sources and receivers are interchangeable and data

can be sorted into 1, 500 shot records with 638, 401 receivers each. This is possible as ray

paths from sources to receivers are symmetric for scalar waves and re-ordering the data has

the advantage of requiring a considerably number of PDEs solves, as RTM involves two

wave equations per source location. In contrast to our previous examples, which are based

on the acoustic isotropic wave equation, we model wave propagation for generating and

imaging the seismic data with an anisotropic acoustic wave equation [88]. The so-called

tilted transverse-isotropic (TTI) wave equation is a more realistic representation of wave

propagation in media with direction-dependent velocities, but also involves a larger mem-

ory imprint and higher computational cost due to an increased FLOP count per grid point

[89, 90]. For our case study, we implement discretized versions of the forward and adjoint

(linearized) TTI equation as presented in [91] using Devito.

In summary, our example involves computing seismic images for 1, 500 distinct seismic

shot records using a TTI wave equation on a computational domain of 269×801×801 grid

points. For imaging, we use smoothed versions of the true velocity, density and anisotropy

parameters, which are obtained by convolving the original models with a Gaussian kernel.

The computation of every image involves solving a forward and adjoint (linearized) wave

equation, and wave propagation is modeled for 3, 125 time steps. As before, computing

images/gradients requires access to the forward state variables, which are thus saved in

memory. To lower the memory imprint, we only save the modeled wavefield of every 10th

time step in memory, which results in 313 wavefields per source location and 630 GB of
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Figure 4.16: Acquisition geometry of the seismic data set that is used for the imaging case
study. Figure (a) shows the receiver grid, consisting of 1, 500 randomly distributed ocean
bottom sensors. Figure (b) shows the acquisition mask of the source vessel, which consists
of 799× 799 shot locations.

Figure 4.17: Sorted container runtimes of the Azure Batch job for each individual source
location. As in the previous (2D) imaging examples, we limit the modeling domain to
a 9 × 9 km square around the current source location, which accounts for the varying
container runtimes, as sources close to the model edge are modeled on a small subset of
the full model only. The right-hand axis indicates the cost for computing the individual
images, each of which are computed on two E64/E64s instances.
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Figure 4.18: Horizontal depth slice through the final 3D image cube at 225 m depth.
The shallow section of the image shows the typical source imporint, a common artifact
of reverse-time migration.

required memory. For the computations, we use Azure’s memory optimized E64 and E64s

virtual machines, which have 432 GB of memory, 64 vCPUs and a 2.3 GHz Intel Xeon

E5-2673 processor [92]. To fit the state variables in memory, we utilize two E64/E64s per

source location and use MPI-based domain decomposition for solving the wave equations.

As our Azure account has a quota limit of 64, 000 vCPUs, we deploy the Azure Batch job

to a pool of 100 E64/E64s instances. The time-to-solution of each individual image as a

function of the source location is plotted in Figure 4.17, with the average container runtime

being 119.28 minutes per image. The on-demand price of the E64/E64s instances is 3.629$

per hour, which results in a cumulative cost of 10, 750$ for the full experiment and a total

runtime of approximately 30 hours. Figures 4.18 to 4.20 show a selection of horizontal and

vertical slices through the final 3D image cube, after summing the contributions from all

1, 500 source locations.
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Figure 4.19: Additional horizontal slices through the final 3D image cube. Figure (a) shows
a slice in the shallow part of the image at 725 m depth, at which point the source/receiver
imprint is considerably weaker than at 225 m, albeit still visible. Figure (b) shows an image
slice at 1, 500 m depth, at which point all acquisition artifacts are fully suppressed.
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Figure 4.20: Vertical slices through the final RTM image at two distinct horizontal loca-
tions. Once again, we can observe the acquisition imprint in the shallow part of the image.
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4.6 Discussion

The main advantage of an event-driven approach based on AWS Batch and Lambda func-

tions for seismic imaging in the cloud is the automated management of computational

resources by AWS. EC2 instances that are used for carrying out heavy computations,

namely for solving large-scale wave equations, are started automatically in response to

events, which in our case are Step Functions advancing the serverless workflow to the

ComputeGradients state. Expensive EC2 instances are thus only active for the dura-

tion it takes to compute one element gi of the full or mini-batch gradient and they are auto-

matically terminated afterwards. Summing the gradients and updating the variables (i.e. the

seismic image) is performed on cheaper Lambda functions, with billing being again solely

based on the execution time of the respective code and the utilized memory. The cost over-

head introduced by Step Functions, SQS messages and AWS Batch is negligible compared

to the cost of the EC2 instances that are required for the gradient computations, while cost

savings from spot instances and eliminating idle EC2 instances lead to significant cost sav-

ings, as shown in our examples. With the benefits of spot instances (factor 2−3), avoidance

of idle instances and the overhead of spinning clusters (factor 1.5− 2), as well as improved

resilience, we estimate that our event-driven workflow provides cost savings of up to an

order of magnitude in comparison to using fixed clusters of (on-demand) EC2 instances.

The second major advantage of the proposed approach is the handling of resilience.

Instead of running as a single program, our workflow is broken up into its individual com-

ponents and expressed through Step Function states. Parallel programs based on MPI rely

on not being interrupted by hardware failures during the entire runtimetime of the code,

making this approach susceptible to resilience issues. Breaking a seismic imaging work-

flow into its individual components, with each component running as an individual (sub-)

program and AWS managing their interactions, makes the event-driven approach inherently

more resilient. On the one hand, the runtime of individual components, such as computing
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a gradient or summing two arrrays, is much shorter than the runtime of the full program,

which minimizes the exposure to instance failures. On the other hand, AWS provides built-

in resilience for all services used in the workflow. Exceptions in AWS Batch or Lambda

lead to computations being restarted, while Step Functions allow users to explicitly define

their behavior in case of exceptions, including the re-execution of states. Similarly, mes-

sages in an SQS queue have guaranteed at-least-once delivery, thus preventing messages

from being lost. Finally, computing an embarrassingly parallel workload with AWS Batch,

rather than as a MPI-program, provides an additional layer of resilience, as AWS Batch

processes each item from its queue separately on an individual EC2 instance and Docker

container. Instance failures therefore only affect the respective gradient and computations

are automatically restarted by AWS Batch.

The most prominent disadvantage of the event-driven workflow is that EC2 instances

have to be restarted by AWS Batch in every iteration of the workflow. In our performance

analysis, we found that the overhead of requesting EC2 instances and starting the Docker

container lies in the range of several minutes and depends on the overall batch size and on

how many instances are requested per gradient. The more items are submitted to a batch

queue, the longer it typically takes AWS Batch to launch the final number of instances

and to process all items from the queue in parallel. On the other hand, items that remain

momentarily in the batch queue, do not incur any cost until the respective EC2 instance

is launched. The overhead introduced by AWS Batch therefore only increases the time-

to-solution, but does not affect the cost negatively. Due to the overhead of starting EC2

instances for individual computations, our proposed workflow is therefore applicable if the

respective computations (e.g. computing gradients) are both embarrassingly parallel and

take a long time to compute; ideally in the range of hours rather than minutes. We therefore

expect that the advantages of our workflow will be even more prominent when applied to

3D seismic data sets, where computations are orders of magnitude more expensive than in

2D. Devito provides a large amount of flexibility regarding data and model parallelism and
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allows us to address the large memory imprint of backpropagation through techniques like

optimal checkpointing or on-the-fly Fourier transforms, thereby presenting all necessary

ingredients to apply our workflow to large-scale 3D models.

Our application, as expressed through AWS Step Functions, represents the structure of

a generic gradient-based optimization algorithm and is therefore applicable to problems

other than seismic imaging and full-waveform inversion. The design of our workflow lends

itself to problems that exhibit a certain MapReduce structure, namely they consists of a

computationally expensive, but embarrassingly parallel Map part, as well as a computa-

tionally cheaper to compute Reduce part. On the other hand, applications that rely on

dense communications between workers or where the quantities of interest such as gradi-

ents or functions values are cheap to compute, are less suitable for this specific design. For

example, deep convolutional neural networks (CNNs) exhibit mathematically a very sim-

ilar problem structure to seismic inverse problems, but forward and backward evaluations

of CNNs are typically much faster than solving forward and adjoint wave equations, even

if we consider very deep networks like ResNet [93]. Implementing training algorithms for

CNNs as an event-driven workflow as presented here, is therefore excessive for the problem

sizes that are currently encountered in deep learning, but might be justified in the future if

the dimensionality of neural networks continues to grow.

The event-driven workflow presented in this work was specifically designed for AWS

and takes advantage of specialized services for batch computing or event-driven computa-

tions that are available on this platform. However, as demonstrated in the Azure case study,

porting our workflow to other cloud platforms is possible as well, as almost all of the uti-

lized services have equivalent versions on Microsoft Azure or the Google Cloud Platform

(Table 4.3) [94, 95]. Services for running parallel containerized workloads in the cloud, as

well as event-driven cloud functions, which are the two main components of our workflow,

are available on all platforms considered in our comparison. Furthermore, both Microsoft

Azure as well as the GCP offer similar Python APIs as AWS for interfacing cloud services.
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Table 4.3: An overview how the AWS services used in our workflow map to other cloud
providers.

Amazon Web Services Microsoft Azure Google Cloud

Elastic Compute Cloud Virtual Machines Compute Engine

Simple Storage System Blob storage Cloud Storage

AWS Batch Azure Batch Pipelines

Lambda Functions Azure Functions Cloud Functions

Step Functions Logic Apps N/A

Simple Message Queue Queue Storage Cloud Pub/Sub

Elastic File System Azure Files Cloud Filestore

We also speculate that, as cloud technology matures, services between different providers

will likely grow more similar to each other. This is based on the presumption that less

advanced cloud platforms will imitate services offered by major cloud providers in order

to be competitive in the growing cloud market.

Overall, our workflow and performance evaluation demonstrate that cost-competitive

HPC in the cloud is possible, but requires a fundamental software re-design of the corre-

sponding application. In our case, the implementation of an event-driven seismic imaging

workflow was possible, as we leverage Devito for expressing and solving the underlying

wave equations, which accounts for the major workload of seismic imaging. With Devito,

we are able to abstract the otherwise complex implementation and performance optimiza-

tion of wave equation solvers and take advantage of recent advances in automatic code

generation. As Devito generates code for solving single PDEs, with the possibility of us-

ing MPI-based domain decomposition, we are not only able to leverage AWS Batch for

the parallelization over source experiments, but can also take advantage of AWS Batch’s

multi-node functionality to shift from data to model parallelism. In contrast, many seismic

imaging codes are software monoliths, in which PDE solvers are enmeshed with IO rou-

tines, parallelization and manual performance optimization. Adapting codes of this form to

the cloud is fundamentally more challenging, as it is not easily possible to isolate individual
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components such as a PDE solver for a single source location, while replacing the paral-

lelization with cloud services. This illustrates that separation of concerns and abstract user

interfaces are a prerequisite for porting HPC codes to the cloud such that the codes are able

to take advantage of new technologies like object storage and event-driven computations.

With a domain-specific language compiler, automatic code generation, high-throughput

batch computing and serverless visual algorithm definitions, our workflow represents a

true vertical integration of modern programming paradimgs into a framework for HPC in

the cloud.

4.7 Conclusion

Porting HPC applications to the cloud using a lift and shift approach based on virtual clus-

ters that emulate on-premise HPC clusters, is problematic as the cloud cannot offer the

same performance and reliability as conventional clusters. Applications such as seismic

imaging that are computationally expensive and run for a long time, are faced with prac-

tical challenges such as cost and resilience issues, which prohibit the cloud from being

widely adapted for HPC tasks. However, the cloud offers a range of new technologies

such as object storage or event-driven computations, that allow to address computational

challenges in HPC in novel ways. In this work, we demonstrate how to adapt these tech-

nologies to implement a workflow for seismic imaging in the cloud that does not rely on

a conventional cluster, but is instead based on serverless and event-driven computations.

These tools are not only necessary to make HPC in the cloud financially viable, but also to

improve the resilience of workflows. The code of our application is fully redesigned and

uses a variety of AWS services as building blocks for the new workflow, thus taking advan-

tage of AWS being responsible for resilience, job scheduling, and resource allocations. Our

performance analysis shows that the resulting workflow exhibits competitive performance

and scalability, but most importantly minimizes idle time on EC2 instances and cost and is

inherently resilient. Our example therefore demonstrates that successfully porting HPC ap-
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plications to the cloud is possible, but requires to carefully adapt the corresponding codes to

to the new environment. This process is heavily dependent on the specific application and

involves identifying properties of the underlying scientific problem that can be exploited

by new technologies available in the cloud. Most importantly, it requires that codes are

modular and designed based on the principle of separation of concerns, thus making this

transition possible.
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CHAPTER 5

CONCLUSIONS

In this thesis, I have made three contributions that address computational and software-

related challenges in the field of seismic inverse problems. Two important applications

that arise in this field are nonlinear seismic parameter estimation (full-waveform inver-

sion) and the closely related linearized inverse problem of seismic imaging (least squares

reverse-time migration). These problems draw their complexity from a combination of

computational challenges, namely the high cost of repeatedly solving wave equations, and

algorithmic challenges resulting from their mathematical properties, such as non-convexity

or ill-conditioning. This thesis addresses the question how software for seismic inverse

problems needs to be designed in order to stimulate algorithmic innovation, while at the

same time providing performance to work on realistically sized problems. Furthermore, I

address the question how redundancy and (transform-domain) sparsity of seismic data and

images can be exploited to address the high computational cost of wave-equation-based

seismic imaging, using recent breakthroughs in signal processing and convex optimiza-

tion. Finally, I address the question of how the cloud can be adapted for high-performance

applications like seismic imaging. Even though hardware and data centers used in cloud

computing closely resemble on-premise HPC clusters, there is a fundamental difference

in how these features are exposed to users and accordingly, how they can be used most

effectively in terms of cost, resilience and turn-around time. In the final chapter of this

thesis, I summarize the findings and conclusions that were presented throughout this thesis

in regard to these research questions.

185



5.1 Software for seismic inverse problems

Writing software for applications like seismic imaging and parameter estimation is an enor-

mously complex task, as it requires knowledge in an intersection of multiple scientific fields

ranging from physics and numerical analysis to optimization, high-performance comput-

ing and compiler technologies. In principle, this requires a close multi-disciplinary col-

laboration between domain experts of various fields, but in practice we find that codes for

inversion or differential equations are oftentimes solely developed by researchers from a

single domain. This leads to software that either does not satisfy special requirements of

domains scientists or to codes with poor design and performance. Being able to manage the

complexity of software for high-performance applications in CSE is therefore an ongoing

challenge and active field of research.

Chapter 2 introduces a framework in the Julia programming language for seismic mod-

eling and inversion, which manages the complexity of seismic inversion codes through ab-

stract user interfaces and a vertical integration of compiler technologies and automatic code

generation. The Julia framework exposes solvers for forward and adjoint wave equations

through matrix-free linear operators, thereby enabling the implementation of algorithms

that closely resemble the mathematical notation. This is combined with out-of-core ab-

stract data containers, for which common mathematical operations (inner products, norms,

etc.) are overloaded. This allows treating seismic data as Julia vectors without having to

keep the full (multi-dimensional) data volume in memory. The underlying wave equations

are implemented with Devito, a domain-specific language compiler in Python with an API

for symbolic definitions of PDEs based on SymPy [1] expressions. For solving forward

and adjoint wave equations, the Devito compiler performs a series of performance opti-

mizations on the symbolic expressions and generates optimized C code on the fly. My Julia

framework therefore represents a collaborative effort of geophysicists, mathematicians and

compiler experts and a true vertical integration of modern code generation and compiler
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technologies into a geophysical inversion framework. Managing the complexity of a seis-

mic inversion code is thus managed through abstract user interfaces and a separation of

concerns, which not only enables unit testing, but also facilitates modifying and extending

individual components of the software. Through a series of numerical examples, I demon-

strate that this allows high-level symbolic implementations of various seismic inversion

algorithms for large-scale problem sizes.

5.2 Algorithms for seismic imaging

While seismic imaging is, in contrast to full waveform inversion, a linear least squares

problem, its complexity results from poor conditioning, inconsistency and the even larger

computational cost, as data is processed at higher frequencies and requires smaller grid

intervals. Classic matrix-free solvers like the nonlinear conjugate gradient method in prin-

ciple require the computation of the gradient as a sum over all seismic source positions,

which is infeasible for problem sizes encountered in practice. Similar to deep learning,

optimization algorithms can generally only be run for a fixed number of passes through the

data (epochs) and therefore rely on stochastic sampling and randomization techniques [e.g.

2, 3]. In the scenario where optimization algorithms cannot be run to convergence, results

are especially sensitive to the behavior of optimization algorithms during the early itera-

tions and the choice of hyperparameters, such as regularization parameters. Additionally,

seismic imaging requires computationally effective strategies for accessing forward state

variables during backpropagation to reduce the memory imprint and avoid having to write

wavefields to disk [4, 5].

Chapter 3 introduces an algorithm for seismic imaging that addresses these challenges

by combining on-the-fly Fourier transforms with ideas from compressive sensing and

sparsity-promoting minimization. Instead of computing gradients in the time domain using

backpropagation, the approach is based on on-the-fly discrete Fourier transforms (DFTs)

to compute gradients in the frequency domain, where the memory imprint only depends on
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the number of frequencies for which the gradient is computed, as gradients are separable

over frequencies. To limit the computational cost and required memory, the gradient is

computed only for a small number of randomly selected frequencies and source locations

during each iteration, which effectively leads to an underdetermined problem and noisy

image updates. By formulating the problem as a sparsity-promoting minimization problem

in which we exploit the fact that seismic images can be well approximated by a small

number of curvelet coefficients, it is possible to remove interference noise from source

and frequency subsampling as part of the inversion. Unlike conventional algorithms in the

time-domain based on optimal checkpointing or boundary wavefield reconstruction, the

computational cost and memory imprint of this approach only depend on the batchsize of

sources and frequencies, which in turn depend on the sparsity and size of the image, but

not on the number of modeled time steps.

Sparsity-promoting minimization in combination with on-the-fly DFTs and random

subsampling are therefore very powerful tools for seismic imaging, as they allow us to con-

siderably reduce computational cost and memory demand, while results are qualitatively

comparable to images that are computed with conventional time-domain methods. Specif-

ically, we find that speedups of up to a factor of four can be achieved through on-the-fly

DFTs in comparison to optimal checkpointing, which involves recomputing the forward

state variables from a number of checkpoints. Future research directions could involve

comparisons to other alternatives, such as writing wavefields to disk using various com-

pression libraries. Additional speedups in comparison to full-gradient methods such as the

nonlinear conjugate gradient method [6] are achieved by limiting the number of data passes

(epochs) to a small number, which is possible as seismic data is generally oversampled and

sparsity-promoting algorithms remove inference and subsampling artifacts as part of the in-

version. A major difference between optimal checkpointing and sparsity-promoting imag-

ing with on-the-fly DFTs are the computational trade-offs that the respective approaches

provide. Namely, optimal checkpointing provides a trade-off between memory and com-
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pute, as more time steps have to be modeled if a smaller number of wavefield checkpoints

are saved in memory (or on disk). In contrast, compressive imaging with on-the-fly DFTs

trades both compute and memory for noisier image updates and therefore a larger number

of iterations to arrive at an acceptable solution.

5.3 Seismic imaging in the cloud

The final chapter of this thesis proposes a new model for running large-scale HPC applica-

tions like seismic imaging in the cloud. Due to the high computational cost that is associ-

ated with repeatedly solving wave equations for seismic inverse problems, access to HPC

resources is necessary to work on relevant problem sizes, but this infrastructure is often

not available to research groups or small companies. The cloud generally offers appropri-

ate hardware and infrastructure to address HPC applications such as seismic imaging, but

some fundamental differences need to be taken into consideration in order to use resources

cost effectively and circumvent certain shortcomings. In particular, the cloud can generally

not offer the same amount of bandwidth and latency as comparable HPC clusters, or only

at a considerable amount of cost, as standard cloud VMs are based on Ethernet technology

as opposed to high-speed connections fabrics such as InfiniBand. Other important factors

include oftentimes inferior resilience (i.e. a smaller mean time between failures) and a va-

riety of pricing models, such as usage-based or auction-based pricing (spot instances). Due

to these factors, porting legacy software designed for on-premise HPC clusters to the cloud

and running it on clusters of virtual machines is not an effective approach and potentially

results in deteriorating performance and high cost. Thus, the fundamental research ques-

tion of chapter 4, is how the cloud can be adapted effectively for HPC applications and how

we can take advantage of technological advances presented by it.

My approach presented in chapter 4 is based on a serverless architecture, in which com-

putational resources are managed by the cloud environment and virtual machines only run

exactly as long as they are utilized. By interpreting iterative algorithms for seismic imag-
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ing as a series of map-reduce problems, I can take advantage of existing cloud technologies

such as batch computing services and event-driven computations. Specifically, I use AWS

Batch to compute the gradient of the LS-RTM objective function, which takes advantage

of the fact that the computations for different source positions are embarrassingly parallel.

AWS Batch processes jobs from the batch queue as individual docker containers and au-

tomatically starts and terminates the required number of EC2 instances, thereby avoiding

idle resources. The summation of the gradients, i.e. the reduce part, is implemented with

AWS Lambda functions and takes advantage of the fact that the duration of computing

individual components of the gradient varies and that results arrive in the object storage

system over a period of multiple minutes (or even hours). The seismic imaging case study

on Azure shows that my event-driven map-reduce architecture also translates to other cloud

platforms, making this approach not only valid on AWS.

From my performance analysis, which shows that a reasonable trade-off between cost

and performance is achievable in this fashion, I conclude that adapting the cloud for HPC

applications like seismic imaging is possible, but requires to re-architecture the correspond-

ing software. This task is strongly application dependent and requires an analysis how un-

derlying problem structures can be exploited by cloud tools or services. If this is taken

into account, the cloud offers a large amount of flexibility regarding hardware, services

and pricing models, which allow addressing computational challenges of HPC applications

in novel ways. Once again, the prerequisite from the software side to make this kind of

transition possible, is code with a hierarchically structure based on abstract user interfaces.

In our case, this makes it for examples possible to exchange the Julia implementation of

the parallelization over sources from chapter 2 with AWS Batch and therefore benefit from

containerization and automatic resource allocations. My experiences with AWS and Azure

therefore underline my earlier conclusions, namely that software based on separation of

concerns is a prerequisite for managing the high complexity of HPC and CSE applications

and for facilitating algorithmic innovation.
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CHAPTER 6

OUTLOOK AND FUTURE DIRECTIONS

6.1 Integration of JUDI into deep learning frameworks

An interesting direction of future research is the integration of seismic modeling codes into

packages for deep learning to enable combined data-model-driven approaches for seismic

inverse problems. Efforts in this direction have been undertaken in the context of medical

imaging [1, 2] and ordinary differential equations (ODEs) [3, 4], but it remains an open

question how this can be achieved in the context of seismic inversion. Some authors have

pointed out that time stepping for acoustic modeling can be cast as a feed-forward convolu-

tional neural network (CNN) and implemented in frameworks like PyTorch or Tensorflow

[5, 6]. This in turn allows leveraging these framework’s automatic differentiation tools

to compute gradients of FWI objective functions automatically. However, deep learning

frameworks are fundamentally designed and optimized for dense linear algebra operations

and convolutions are conventionally computed as explicit matrix-matrix multiplications

using for example the general matrix multiply (GeMM) [7] or Winograd algorithm [8].

Efficient time stepping codes for acoustic modeling on the other hand, such as the code

generated by Devito, are stencil based, which is favorable in settings with large domains/

images and a small number of channels (namely single channels).

This leads to the interesting question how stencil-based codes for time stepping can

be integrated into deep learning frameworks and used for both forward and backward net-

work evaluations (i.e. backpropagation). I argue that once again, this can be achieved by

exploiting representations of seismic modeling operators through high-level abstractions

like matrix-free linear operators, which can be relatively easily integrated into deep learn-

ing frameworks. In the following section, I present initial steps towards integrating my
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Julia framework from chapter 2 into the Flux deep learning library [9] and discuss possible

extensions and applications.

6.1.1 Linear and nonlinear JUDI operators with Flux

My basic goal is to enable compositions of neural network layers (e.g. convolutional or

fully-connected layers) with operators for seismic modeling. Instead of re-implementing

seismic modeling operators with convolutions from machine learning libraries, I want to

use my own custom modeling operators, namely JUDI operators for Born- and nonlinear

modeling. Even more importantly, I want to evaluate my own expressions during back-

propagation, but fully integrate them into Flux’s automatic differentiation (AD) module

(Flux.Tracker).

For linear operators such as the Born scattering operator (Jacobian), this can be

achieved fairly easily as the forward pass simply corresponds to the matrix-vector product

of the Jacobian J with the respective input vector. Accordingly, backpropagation involves

computing the matrix-vector product of the adjoint Jacobian with the incoming residual

vector ∆. As multiplications with J are already overloaded in JUDI, all that is left to do is

overload the gradient macro of Flux and specify the respective operations for the forward

and backward pass (Listing 6.1).

1 @grad J::judiJacobian * x::AbstractVecOrMat =
2 Tracker.data(J)*Tracker.data(x), ∆ -> (nothing, adjoint←↩

(J) * ∆)

Listing 6.1: To enable backpropagation with Flux through layers with linearized Born
scattering operators, the gradient macro is overloaded for the respective judiJacobian
data type. Line 2 defines the operations for the forward and backward pass, which
correspond to matrix-vector products of the forward and adjoint Jacobian with the
respective input vectors.

The code in Listing 6.1 instructs Flux to compute the gradient with respect to the input

vector x using the adjoint Born operator, which is precisely a JUDI time-stepping operator.
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The derivative with respect to the Jacobian itself is intentionally left empty (nothing),

as this avoids forming a dense matrix of the size of J. Having overloaded the gradient

macro for the judiJacobian operator, it is now possible to use the Jacobian as part of

a network and combine it with Flux utilities for computing misfits and gradients (Listing

6.2).

1 # Test demigration operator w/ Flux Dense Layer
2 y = randn(Float32, 200)
3 W = randn(Float32, 100, length(y))
4 b = randn(Float32, length(y))
5
6 # Linearized Born operator
7 J = judiJacobian(F, q)
8
9 # Example image

10 x = vec(image)
11
12 predict(x) = W*(J*x) .+ b
13 loss(x,y) = Flux.mse(predict(x), y)
14
15 # Compute gradient w/ Flux
16 gs = Tracker.gradient(() -> loss(x, y), params(W, b, x))
17 gs[x] # evalute gradient of x

Listing 6.2: A shallow neural network consisting of the Born scattering operator J and
a fully connected layer. By overloading the gradient for J, it is possible to integrate the
operator into Flux and use its Tracker module to perform backpropagation through all
layers.

The example in Listing 6.2 uses a small two-layer network consisting of linearized Born

modeling, followed by a fully connected layer. The loss function is defined as the mean

squared error between the network output and a reference vector y. Since I overloaded the

gradient macro for the Jacobian, derivatives of this network with respect to the weights and

input vector can now be computed with the Flux tracker module. During backpropagation,

Flux’s AD computes the matrix-vector product of the adjoint Jacobian with the incoming

data residual (by interfacing Devito under the hood) and propagates the result through the

remaining Flux layer(s).
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Integrating nonlinear modeling operators and parameteric layers into Flux, i.e. layers

for which derivatives are computed with respect to the input as well as additional parame-

ters, requires some extra steps but generally follows the same strategy as for linear opera-

tors. Namely, I define customized Julia types for nonlinear modeling layers and overload

Flux’s functions for evaluating forward and backward passes using my custom JUDI oper-

ators. An example for integrating a nonlinear forward modeling JUDI operator into a shal-

low CNN is shown in Listing 6.3. The network consists of two convolutional layers, with

a nonlinear forward modeling layer F in-between them. As before, I define a loss function

using Flux utilities and compute derivatives with respect to various parameters, such as the

squared slowness vector m. Once again, gradients of layers containing JUDI operators are

computed using the corresponding adjoints or JUDI gradients, instead of Flux’s automatic

differentiation.

1 # Nonlinear JUDI modeling operator
2 model = Model(n, d, o, m)
3 F = judiModeling(info, model, rec_geometry, src_geometry)
4
5 # Network layers
6 F = ForwardModel(F, q)
7 conv1 = Conv((3, 3), 1=>1, pad=1, stride=1)
8 conv2 = Conv((3, 3), 1=>1, pad=1, stride=1)
9

10 # Network and loss
11 predict(x) = conv2(F(conv1(x)))
12 loss(x, y) = Flux.mse(predict(x), y)
13
14 # Compute gradient w/ Flux
15 gs = Tracker.gradient(() -> loss(x, y), params(m))
16 gs[m] # evalute gradient w.r.t. m

Listing 6.3: An example network combining Flux convolutional layers with a nonlinear
JUDI modeling operator. Once again, derivatives of the modeling layer are implemented
through JUDI operators only, but functions for evaluating the network are overloaded such
that the modeling layer can be treated as a conventional Flux layer.
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6.1.2 Example applications

A possible application of the ideas presented here are loop unrolling techniques for seismic

imaging. Loop unrolled gradient descent and learned optimization algorithms, such as

the learned primal dual reconstruction [2], are a class of (convolutional) neurals networks

whose architectures are inspired by unrolled iterative optimization algorithms [10, 1, 11].

These networks follow the general structure of gradient-based optimization algorithms,

in which gradients are augmented by additional neural network layers. As such, these

networks are closely related to residual networks [12].

To demonstrate a possible application of my JUDI extension for Flux, I apply the loop

unrolled network architecture proposed in [1] to seismic imaging. Every iteration of the

unrolled algorithm consists of computing the (conventional) gradient of the LS-RTM ob-

jective function g, using the forward and adjoint linearized Born scattering operator. After-

wards, the gradient is concatenated along the channel dimension with the current estimate

of the image x and a memory term s, both of which are initialized with Gaussian noise. The

4D tensor containing g, x and s (as separate channels), is then propagated through three

convolutional layers with ReLU activations functions and batch normalization. Afterwards,

the first channel of this output is used to update the seismic image x of the current itera-

tion. The update dx accordingly represents the neural network augmented gradient. The

output of the full network is the predicted seismic image and during training the weights of

the convolutional layers are updated by minimizing its mismatch with true seismic images.

The Julia code of the network in shown in Listing 6.4.

I train the network from Listing 6.4 on a small test data set consisting of 2, 000 2D

seismic images and the corresponding observed data. To reduce the number of PDE solves

for computing the gradient of the LS-RTM objective function, the individual shot records of

each image are summed with random weights, which yields a so-called simultaneous shot

record [e.g 13, 14, 15, 16]. Instead of computing the LS-RTM gradient for each source
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1 function network(d_obs, n; maxiter=10)
2 x = randn(Float32, n[1], n[2], 1, 1)
3 nx, ny, nc, nb = size(x)
4 s = randn(Float32, nx, ny, 5, nb) # memory term
5 for j=1:maxiter
6 g = adjoint(J)*(J*vec(x) - d_obs)
7 g = reshape(Flux.normalise(g), nx, ny, 1, 1)
8 u = cat(x, g, s, dims=3)
9 u = batch1(conv1(u))

10 u = batch2(conv2(u))
11 u = batch3(conv3(u))
12 s = relu.(u[:, :, 2:6, :])
13 dx = u[:, :, 1:1, :]
14 x += dx
15 end
16 return vec(x)
17 end

Listing 6.4: Example of a physics-augmented neural network for seismic imaging. The
network consists of 10 iterations of an unrolled gradient descent algorithm, in which the
conventional LS-RTM gradient g is augmented through additional convolutions layers. The
input into the network is the observed seismic data and the ouput is the predicted image.

location separately and summing all gradients, we backpropagate the superposition of all

shot records at the same time. This requires only 2 instead of 2nsPDE solves per gradient

computation, but leads to noisy images (ns being the number of shot records per image).

Figure 6.1a shows an example of a noisy RTM image, which is obtained by migrating

the corresponding simultaneous shot record (i.e. through multiplication with the adjoint

Born operator). Figure 6.1b shows the imaging result that is obtained by performing 10

iterations of conventional gradient descent using the simultaneous data, which leads to

a visually improved image in comparison to RTM, but the resulting image is still noisy.

Figure 6.1c shows the output of the loop unrolled gradient descent algorithm (Listing 6.4),

after training the network for 2, 000 iterations on the training data set (in which the seismic

image from Figure 6.1 is not contained). The result is visually the closest to the true image

(Figure 6.1d), but some residual artifacts remain.

The example presented here is not necessarily a realistic application of deep learning

to seismic imaging, as the training process requires pairs of observed data and true im-
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(a) (b)

(c) (d)

Figure 6.1: Results of various seismic imaging approaches using simultaneous shot records.
Figure (a) and (b) are the RTM and LS-RTM image after 10 iterations of (conventional)
gradient descent. Figure (c) is the image that is computed with the physics-augmented
neural network, consisting of 10 iterations of the loop unrolled gradient descent algorithm
from Listing 6.4. Figure (d) is the true image.

ages, of which the latter are not available in practice as the true subsurface is obviously

unknown. However, the intention behind this example is to showcase the possibility to

augment model-driven approaches based on PDEs with neural networks. Notably, the net-

work in Listing 6.4 is not just a simple image denoiser based on a black-box CNN that

learns a map from a noisy to the true image, but it represents a physics-driven network with

combinations of Born modeling and convolutions. Future research directions therefore in-

clude possible applications of physics-augmented deep neural networks to seismic inverse

problems, where true earth models and images are not available. Further research directions

include the extension of my JUDI-Flux interface (e.g. nested derivatives) or the implemen-

tation of similar Python interfaces directly between Devito and Tensorflow/PyTorch. To

my knowledge, the approach presented here is the first successful attempt to integrate time-

stepping codes for wave equation based modeling into deep learning libraries.
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Figure 6.2: Current software structure of JUDI and the serverless seismic imaging work-
flow on AWS. Whereas JUDI provides a single interface for implementing parallel algo-
rithms for seismic inverse problem based on abstract linear operators, the AWS workflow
consists of a number of separate components in various programming languages.

6.2 Unified cloud interfaces and integration with JUDI

In my Julia framework, seismic modeling operators are exposed as matrix-free linear opera-

tors and inherently include the parallelization over multiple source locations. If a modeling

operator represents an experiment with multiple source locations and involves solving a

multiple PDEs, the implementation of the matrix-vector product first calls the parallel in-

stance of the corresponding modeling function and distributes the workload to the available

workers (see chapter 2.2.2). As discussed in chapter 2, the distribution of an embarrass-

ingly parallel workload in Julia is based on tasks and remote references. The master process

creates one task per PDE to be solved, distributes the tasks on a first-come first-served basis

to the available workers and receives remote references to the results.

In the serverless seismic imaging workflow for the cloud that was presented in chap-

ter 4, parallelization through linear operators is currently not supported, as the distribu-
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tion of embarrassingly parallel worksloads is based on AWS/Azure Batch. Parallel batch

jobs are created and submitted by Lambda/Azure functions, both of which currently only

support Python, but not Julia. Individual batch jobs are executed as Docker containers,

inside of which it is possible to use serial JUDI operators only. Similarly, the collection of

gradients is implemented in Python as well, as the reduction operations are also based on

Lambda/Azure functions. Finally, iterative optimization algorithms in my workflow are ex-

pressed as a collection of AWS Step Function states and are implemented in the JavaScript

Object Notation (JSON).

Overall, this leads to two distinct user interfaces for conventional cluster environments

and the cloud (Figure 6.2). On AWS and Azure, algorithms based on the serverless architec-

ture cannot be implemented as single programs and require managing multiple individual

components in different programming languages. This makes maintaining and extending

the current framework challenging, as it requires that users are familiar with various cloud

services (AWS Batch, Lambda, Step Functions) and understand how these components

exactly interact with each other. Future research therefore may address the question if

components of my serverless seismic imaging workflow can be abstracted and integrated

into a unified framework, such as JUDI. Specifically, this would involve exposing function-

alities like the event-driven gradient summation as Julia functions and their integration into

JUDI’s linear operators. Additionally, the development of various backends for the differ-

ent cloud providers (AWS, Azure, GCP) is required in order to provide portability and the

flexibility to switch platforms.

6.3 References
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APPENDIX A

A.1 Setting up wave equations with Devito

Devito is a Python domain-specific language for discretizing partial-differential equations

and automatically generating optimized C code for solving them. Devito is built around

symbolic functions for velocity models and (time-dependent) wavefields from which for-

ward and adjoint wave equations can be symbolically defined. For example, we can set

up a model structure for a two- or three-dimensional velocity model v, with a specified

origin, grid spacing and number of absorbing boundary points nbpml as follows:

model = Model(vp=v, origin=(0,0), shape=(101,101),

spacing=(10,10), nbpml=40)↪→

Wavefields are defined as TimeFunction objects and are created for a specified time-

and space order of their associated finite-difference derivatives:

u = TimeFunction(name="u", grid=model.grid, time_order=2,

space_order=2,save=False, time_dim=nt)↪→

Spatial and temporal derivatives of the wavefield u can be accessed via the shorthand

expressions u.dt (first temporal derivative), u.dt2 (second temporal derivative), u.dx

(first spatial derivative in x direction) or u.laplace (sum of second spatial derivatives).

These expressions allow us to symbolically define the acoustic wave equation with a damp-

ing term:

pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

stencil = Eq(u.forward, solve(pde, u.forward)[0])
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The second line rearranges the pde expression so that we obtain an update rule for

the wavefield at the next time step u.forward within the forward time loop. By default,

Dirichlet boundary conditions are used for this expression, but other boundary conditions

can be implemented symbolically as well (e.g. Neumann). Furthermore, Devito provides

the possibility to add a source function to our PDE and to sample the wavefield at receiver

positions. For example, we can define a one-dimensional Ricker wavelet for a given peak

frequency f0, which is injected into the model at some specified source coordinate. We

first set up the wavelet and then inject it into the updated wavefield:

src = RickerSource(name="src", grid=model.grid, f0=f0,

time=time,coordinate=src_coords)↪→

src_term = src.inject(field=u.forward, expr=src * dt**2

/model.m,offset=model.nbpml)↪→

Receivers for given coordinates are set up in a similar fashion, but instead of injecting,

we sample the wavefield and interpolate it to the receiver locations:

rec = Receiver(name="rec", npoint=101, nt=nt,

grid=model.grid,coordinates=rec_coords)↪→

rec_term = rec.interpolate(u, offset=model.nbpml)

To generate the forward modeling operator, we add the source and receiver terms to

our stencil expression and pass it to Devito’s Operator function, which generates

optimized stencil code with a time-stepping loop for solving the wave equation. We can

then run the generated C code for a specified length and time step with:

op_fwd = Operator([stencil] + src_term + rec_term) #

generate code↪→

op_fwd(time=nt, dt=model.critical_dt) # run it
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The instructions presented here are a short summary of a detailled tutorial series on set-

ting up forward and adjoint acoustic wave equations that has been published in the Leading

Edge [1, 2]. The tutorials also provide details on implementing absorbing boundary con-

ditions for simulating infinite domains. In JUDI, the wave equations are set up following

these tutorials, and the code can be found and modified in

˜/.julia/dev/JUDI/src/Python/JAcoustic codegen.py.

A.2 Relationship between impedance imaging and inverse scattering

A comparison of reverse time-migration with the linearized inverse scattering imaging con-

dition (ISIC) [3, 4] and seismic imaging with the acoustic impedance [5], reveals that the

respective sensitivity kernels at equivalent. The sensitivity kernel (i.e. the image) for the

acoustic impedance KZ(x) is defined in [5] as the sum of the sensitivity kernels of the

spatially varying bulk modulus κ and density ρ:

KZ(x) = Kκ(x) +Kρ(x), (A.1)

where the sensitivity kernel is defined as:

Kκ(x) = − 1

κ

nt∑
i=1

diag
(
u̇i
)
v̇i, (A.2)

and u̇i, v̇i are first time-derivatives of forward and adjoint wavefields. The sensitivity kernel

for the density is given by:

Kρ(x) =
1

ρ

nt∑
i=1

diag
(
∇ui

)
∇vi, (A.3)

where the second term denotes the pointwise products of the spatial derivatives of forward

and adjoint wavefields. Combining the two equations and substituting the bulk modules by

206



the velocity and density yields:

KZ(x) = −
nt∑
i=1

[
1

ρv2
diag

(
u̇i
)
v̇i −

1

ρ
diag

(
∇ui

)
∇vi

]
. (A.4)

A comparison of this expression with equation 3.9 reveals that the impedance kernel is

equivalent to the linearized inverse scattering imaging condition for ρ(x) = 1. This is

independent of whether we consider the frequency-domain formulation of ISIC [3] or its

time-domain equivalent [4]. Multiplication of the frequency-domain source wavefield with

ω2 corresponds to a second time derivative of the forward time-domain wavefield, or to first

time derivatives of both forward and adjoint wavefields.

A.3 Physical interpretation of the linearized Bregman method for seismic imaging

The linearized Bregman method used in chapter 3 to solve the `1-minimization problem in

equation 3.13 is a specialized case of a broader class of optimization problems for solving

convex, but potentially non-differentiable objective functions with (in-)equality constraints.

Namely, the linearized Bregman method is a simplification of the more general Bregman

iterative regularization method, and can be derived by linearizing the quadratic data fidelity

term in classic Bregman iterations [6].

The advantage of the linearized Bregman algorithm in comparison to the more general

Bregman iterative regularization or the augmented Lagrangian method, is that every iter-

ation involves only two matrix-vector products; Jx and J>
(
dpred − dobs

)
. In the case of

seismic imaging, where J is the linearized Born scattering operator, these matrix-vector

products correspond precisely to linearized Born modeling (Step 4) and reverse-time mi-

gration (Step 5). The Born scattering operator for a full seismic survey is overdetermined,

i.e. there are (significantly) more observed data points than coefficients in the seismic im-

age. However, because working with the full Born scattering operator in each iteration is

prohibitively expensive, as it involves the demigration/migration of all shots, we can work
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with random subsets of frequencies and shots (or simultaneous shots) [7]. This has the

effect of turning the overdetermined problem, into an underdetermined problem, but, as

demonstrated in Figure A.1, also leads to a noisy image (variable z in the algorithm). By

using sparsity-promoting minimization, it is possible to remove the noise and recover the

true image in the subsequent iterations. However, in order for sparsity promotion to be

successful, it is crucial that the noise is in fact incoherent and does not contain any aliases.

By choosing the subsets of frequencies (and shots) randomly in each iteration, we guaran-

tee that the image contains only incoherent noise and no aliases or wrap-around effects, as

would be the case for periodic subsampling.

Algorithm A.1 A simplified version of the linearized Bregman method from Algorithm 3.1
without preconditioners.

1. Initialize x1 = 0, z1 = 0, q, λ, batch sizes n̂s � ns and n̂f � nf
2. for i = 1, ..., n
3. Select subset of shots and frequencies S = (∫shot, ∫freq), |∫shot| = n̂s, |∫freq| = n̂f
4. d̄pred

S = JSx

5. ḡS = J>S
(
d̄pred
S − d̄obs

S
)

6. zi+1 = zi − tiḡS
7. xi+1 = C>Sλ(Czi+1)
8. end
with Sλ(Cz) = sign(Cz) ·max(0, |Cz| − λ)

In step 7 of the algorithm, we compute the curvelet transform of the noisy image zi,

since we want to promote sparsity of the image in the curvelet domain. This is followed by

applying the soft-thresholding function to the noisy coefficients, which effectively sets all

coefficients smaller than λ to zero and shrinks the magnitude of the remaining values by λ.

In the early iterations, this sets not only the noise, but also coefficients of reflectors to zero.

During the subsequent iterations, the amplitude of the reflector coefficients is continuously

increased, such that toward the final iterations, the soft thresholding function removes (ide-

ally) only the noise. This is illustrated in Figure A.1, which shows the variables z1 and x1

in comparison to z20 and x20, i.e. both variables during the first and final iteration.
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(a) (b)

(c) (d)

Figure A.1: After the first iteration of the linearized Bregman method, the dual variable z
(a) is a noisy version of the seismic image. The sparse primal variable x (b) is obtained
by soft-thresholding of the curvelet coefficients of (a). In the early iterations, x contains
only reflectors with the largest (curvelet) coefficients, but the smaller coefficients re-enter
the solution in the subsequent iterations. After the final iteration, all reflectors have been
restored in the primal variable (d), while the dual variable (c) is still noisy (but less than
after the initial iteration).

A.4 Utilized hardware and software

A.4.1 Chapter 3

The timings shown in Figure 3.8 were computed for the Sigsbee 2A velocity model with a

grid spacing of 7.62 m, which corresponds to 1, 201×3, 201 grid points. The time stepping

interval according to the CFL condition is 0.71 ms, resulting in 14, 095 time steps for 10

seconds modeling time. The timings for the BP model (Figure 3.16b) were computing

using a grid spacing of 6.25 m (1, 911× 10, 789 grid points) and 12 seconds modeling time

with a time stepping interval of 0.548 ms (21, 898 time steps).

All timings were computed with an Intel Xeon E5 v2 processors (2.8 GHz) with 10
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cores and 128 GB RAM. Each shown time measurement is the smallest runtime of three

individual runs. The examples were computed using 10 threads, in which each thread is

pinned to a specific core (thread pinning).

The following software was used for the timings and numerical case studies: Julia

(v0.6.3), JUDI (v0.2.1:dft-paper), Python (v3.6.5), Devito (v3.2.0:dft-paper), Intel com-

piler (v16.0.3).

A.4.2 Chapter 4

Table A.1 provides an overview of the AWS EC2 instances used in our performance

analysis, including their respective CPU architectures. EC2 instances of a fixed instance

type (such as r5 or c5n) have the same architecture for different sizes (e.g. 2xlarge,

4xlarge), as those instances run on the same hardware.

Table A.1: Architectures of compute instances used in our performance analysis on AWS
and Optimum.

Instance Intel Xeon Architecture vCPUs RAM (GB)

m4.4xlarge E5-2686 v4 @ 2.30GHz 16 64

r5.12xlarge Platinum 8175M @ 2.50 GHz 48 384

r5.24xlarge Platinum 8175M @ 2.50 GHz 96 768

c5n.9xlarge Platinum 8124M @ 3.00 GHz 36 384

c5n.12xlarge Platinum 8142M @ 3.00 GHz 72 768

r5.metal Platinum 8175M @ 2.50 GHz 96 768

Optimum E5-2680 v2 @ 2.80GHz 20 256

A.5 Model and data dimensions

Table A.2 lists the dimensions of the BP 2004 model and the corresponding seismic data

set that was used in our performance analysis. Both the model and data set are publicly

available from the society of exploration geophysicists [8].
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Table A.2: Parameters of the BP 2004 velocity benchmark model and the corresponding
seismic data set.

Grid dimensions 1, 911× 10, 789

Grid spacing [m] 6.25× 6.25

Domain size [km] 11.94× 67.43

Number of seismic source ns 1, 348

Propagation time [s] 12

Number of time steps 21, 889

Dimensions of each di (reshaped to 2D array) 2, 001× 1, 201

Dominant frequency of source [Hz] 20
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[7] D. A. Lorenz, S. Wenger, F. Schöpfer, and M. Magnor, “A sparse Kaczmarz solver
and a Linearized Bregman method for online compressed sensing,” Institute of Elec-
trical and Electronics Engineers (IEEE): International Conference on Image Pro-
cessing, pp. 1347–1351, 2014.

211



[8] 2004 BP velocity estimation benchmark model, https://wiki.seg.org/
wiki/2004_BP_velocity_estimation_benchmark_model, 2019.
(visited on 08/01/2019).

212

https://wiki.seg.org/wiki/2004_BP_velocity_estimation_benchmark_model
https://wiki.seg.org/wiki/2004_BP_velocity_estimation_benchmark_model


APPENDIX B

B.1 Permissions to use copyrighted material

B.1.1 Chapter 2

The content of chapter 2 was published as a technical article in Geophysics, under the title

”A large-scale framework for symbolic implementations of seismic inversion algorithms in

Julia”:

• P. A. Witte, M. Louboutin, N. Kukreja, F. Luporini, M. Lange, G. J. Gorman and

F. J. Herrmann, ”A large-scale framework for symbolic implementations of seismic

inversion algorithms in Julia”, Geophysics, vol. 84, no. 3 , pp. F57-F71, 2019.

• DOI: https://doi.org/10.1190/geo2018-0174.1

• Copyright © 2019 Geophysics

• The author retains the right to reuse all or part of the work in a thesis or dissertation,

as stated in the Copyright Agreement.

213



214



B.1.2 Chapter 3

The content of chapter 3 was published as a technical article in Geophysics, under the title

”Compressive least-squares migration with on-the-fly Fourier transforms”:

• P. A. Witte, M. Louboutin, F. Luporini, G. J. Gorman and F. J. Herrmann, ”Compres-

sive least-squares migration with on-the-fly Fourier transforms”, Geophysics, vol.

84, no. 5 , pp. R655-R672, 2019.

• DOI: https://doi.org/10.1190/geo2018-0490.1

• Copyright © 2019 Geophysics

• The author retains the right to reuse all or part of the work in a thesis or dissertation,

as stated in the Copyright Agreement.

215



216



B.1.3 Chapter 4

The content of chapter 4 was submitted in modified form as a technical article to IEEE

Transactions on Parallel and Distributed Systems in August 2019.

• P. A. Witte, M. Louboutin, H. Modzelewski, C. Jones, J. Selvage and F. J. Herrmann,

”An event-driven approach to serverless seismic imaging in the cloud”, submitted to

IEEE Transactions on Parallel and Distributed Systems, August 2019.

• The paper is currently under review and has not been published by IEEE.

• No transfer of copyright has been signed and the copyright remains with the author.

217


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Summary
	Introduction
	Seismic inverse problems
	The forward problem
	The inverse problem
	Linearized inversion

	Motives and objectives
	Software for seismic inversion
	Scalable algorithms for seismic imaging
	Adapting the cloud for seismic inversion

	Thesis outline
	Contributions
	References

	I Software for seismic inverse problems
	A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia
	Introduction
	Software structure and implementation
	Abstractions for seismic modeling and inversion
	Parallelization
	Interface to the wave-equation solver: Devito
	Unit tests

	Numerical case studies
	Full waveform inversion
	Least-squares reverse time migration
	Compressive imaging with on-the-fly Fourier transforms

	Discussion
	Conclusion
	References


	II Compressive seismic imaging
	Compressive least-squares migration with on-the-fly Fourier transforms
	Introduction
	Theory and methodology
	Frequency-domain least-squares migration with time-domain modeling
	Computing on-the-fly Fourier transforms
	A forward-adjoint pair for imaging the impedance
	Sparsity-promoting least-squares migration

	Numerical examples
	Sigsbee 2A
	BP Synthetic 2004

	Discussion
	Conclusion
	References


	III Seismic imaging in the cloud
	An event-driven approach to seismic imaging in the cloud
	Introduction
	Problem Overview
	Event-driven seismic imaging on AWS
	Workflow
	Computing the gradient
	Gradient reduction
	Variable update

	Performance analysis
	Weak scaling
	Strong scaling
	Cost comparison
	Cost saving strategies for AWS Batch
	Resilience

	A large-scale case study on Microsoft Azure
	Serverless imaging on Azure
	Reverse-time migration

	Discussion
	Conclusion
	References

	Conclusions
	Software for seismic inverse problems
	Algorithms for seismic imaging
	Seismic imaging in the cloud
	References

	Outlook and future directions
	Integration of JUDI into deep learning frameworks
	Linear and nonlinear JUDI operators with Flux
	Example applications

	Unified cloud interfaces and integration with JUDI
	References

	
	Setting up wave equations with Devito
	Relationship between impedance imaging and inverse scattering
	Physical interpretation of the linearized Bregman method for seismic imaging
	Utilized hardware and software
	Chapter 3
	Chapter 4

	Model and data dimensions
	References

	
	Permissions to use copyrighted material
	Chapter 2
	Chapter 3
	Chapter 4




