
ONLINE SUFFICIENT DIMENSIONALITY REDUCTION
FOR SEQUENTIAL HIGH-DIMENSIONAL TIME-SERIES

A Thesis
Presented to

The Academic Faculty

by

Qingbin Li

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computational Science and Engineering in the
H. Milton Stewart School of Industrial & Systems Engineering (ISyE)

Georgia Institute of Technology
May 2015

Copyright c⃝ 2015 by Qingbin Li



ONLINE SUFFICIENT DIMENSIONALITY REDUCTION
FOR SEQUENTIAL HIGH-DIMENSIONAL TIME-SERIES

Approved by:

Dr. Yao Xie, Committee Chair
H. Milton Stewart School of Industrial &
Systems Engineering (ISyE)
Georgia Institute of Technology

Dr. Le Song
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Enlu Zhou
H. Milton Stewart School of Industrial &
Systems Engineering (ISyE)
Georgia Institute of Technology

Date Approved: Jan 7th 2015



To my parents and all my friends



ACKNOWLEDGEMENTS

I would like to thank the people who have provided support and encouragement

throughout my time in the Master program at Georgia Tech.

First and foremost, I would like to thank my advisor, Professor Yao Xie, for her

guideline, encouragement and support in the past two years. Thanks for her patient-

ly teaching me when I was lack of background. She directs me toward interesting

research topics and helps me a lot not only in research but also in my life and my

career. I hope I could live up to her expectation in my future life. I would also like

to thank the members of my advisory committee, Dr. Le Song and Dr. Enlu Zhou,

for taking the time to review my work and expressing interest in this topic.

Last but not least, I would like to thank my parents, Jiwen and Shuhua, who have

given me all the love and support. Thanks for everything they did for me.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Big Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II PRELIMINARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Unsupervised Dimensionality Reduction . . . . . . . . . . . . 6

2.1.2 Supervised Dimensionality Reduction . . . . . . . . . . . . . 7

2.2 Sufficient Dimensionality Reduction . . . . . . . . . . . . . . . . . . 7

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Online Subspace Tracking . . . . . . . . . . . . . . . . . . . . . . . . 9

v



2.3.1 GROUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 MOUSSE-LOGIT . . . . . . . . . . . . . . . . . . . . . . . . 11

III ONLINE SUFFICIENT DIMENSIONALITY REDUCTION . . 13

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Online Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Parameters Initialization . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Parameters Update . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Online Sufficient Dimensionality Reduction . . . . . . . . . . . . . . 19

3.5.1 Main Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Online Manifold Tracking . . . . . . . . . . . . . . . . . . . . 20

3.5.3 Parameters Update . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IV NUMERICAL AND EXPERIMENTAL EXAMPLES . . . . . . . 24

4.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Static Subspace I . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Static Subspace II . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



4.1.3 Rotating Subspace . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.4 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Real-data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 30

V CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . 40

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

VI EXTRA NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



LIST OF FIGURES

1 (a) Distribution of data without label. (b) Distribution of data when

θ = [5, 0]. (c) Distribution of data when θ = [0, 5] . . . . . . . . . . . 31

2 Static subspace I: (a) Misclassification error when a/c = 1. (b) Misclas-

sification error when a/c = 3. (c) Misclassification error when a/c = 6.

(d) Misclassification error when a/c = 10. . . . . . . . . . . . . . . . . 32

3 Static subspace II: (a) d v.s. misclassification error when a/c = 1. (b)

d v.s. misclassification error when a/c = 3. (c) d v.s. misclassification

error when a/c = 5. (d) d v.s. misclassification error when a/c = 7.

(e) d v.s. misclassification error when a/c = 10. . . . . . . . . . . . . 33

4 Rotating subspace: a/c = 10 (a) rotation ratio τ v.s. misclassification

rate when d = 30 (b) rotation ratio τ v.s. misclassification rate when

d = 10 (c) rotation ratio τ v.s. misclassification rate when d = 5 (d)

rotation ratio τ v.s. misclassification rate when d = 2 . . . . . . . . . 34

5 Rotating subspace: a/c = 6 (a) rotation ratio τ v.s. misclassification

rate when d = 30 (b) rotation ratio τ v.s. misclassification rate when

d = 10 (c) rotation ratio τ v.s. misclassification rate when d = 5 (d)

rotation ratio τ v.s. misclassification rate when d = 2 . . . . . . . . . 35

6 Rotating subspace: a/c = 3 (a) rotation ratio τ v.s. misclassification

rate when d = 30 (b) rotation ratio τ v.s. misclassification rate when

d = 10 (c) rotation ratio τ v.s. misclassification rate when d = 5 (d)

rotation ratio τ v.s. misclassification rate when d = 2 . . . . . . . . . 36

viii



7 Rotating subspace: (a) d v.s. misclassification rate when a/c = 10 (b)

d v.s. misclassification rate when a/c = 6 (c) d v.s. misclassification

rate when a/c = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Linear regression: (a) log(θ1/θ2) v.s. log(RMSE) when a/c = 1 (b)

log(θ1/θ2) v.s. log(RMSE) when a/c = 2 . . . . . . . . . . . . . . . . 38

9 Real-data: USPS digits recognition. d v.s. misclassification rate . . . 39

ix



LIST OF TABLES

1 Misclassification Rate of ODR v.s OSDR when a/c = 1. . . . . . . . . 42

2 Misclassification Rate of ODR v.s OSDR when a/c = 3. . . . . . . . . 43

3 Misclassification Rate of ODR v.s OSDR when a/c = 6. . . . . . . . . 44

4 Misclassification Rate of ODR v.s OSDR when a/c = 10. . . . . . . . 45

5 Misclassification Rate of ODR v.s. OSDR in Static subpsace II . . . . 46

6 Misclassification Rate of ODR v.s. OSDR when a/c = 10 in rotating

subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Misclassification Rate of ODR v.s. OSDR when a/c = 6 in rotating

subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Misclassification Rate of ODR v.s. OSDR when a/c = 3 in rotating

subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Distribution of digits in USPS dataset. . . . . . . . . . . . . . . . . . 50

10 d v.s. misclassification rate in USPS digits recognition. . . . . . . . . 50

x



SUMMARY

In this thesis, we present Online Sufficient Dimensionality Reduction (OS-

DR) algorithm for real-time high-dimensional sequential data analysis. Real-time

high-dimensional sequential data presents several challenges for data analysis. (a)

Traditional data analysis may not be applied to high-dimensional data directly, for

the consideration of time complexity or model accuracy. (b) It’s almost infeasible to

use a batch method to process and analyze real-time high-dimensional data. (c) Due

to the constrain of memory and data storage, data compression is usually needed for

storing and processing real-time high-dimensional data. To deal with challenge (a),

dimensionality reduction techniques can be used as a pre-processing step to learn a

low-dimensional representation of the high-dimensional data and then apply models

or algorithms on the low-dimensional representation of the original high-dimensional

data. For solving challenge (b), researchers focus on developing new online learning

algorithms or adapting the existing algorithms to the online setting. Moreover, di-

mensionality reduction is a popular choice for dealing with problem (c).

OSDR solves the challenges by the following characteristics. (a) As an online

learning algorithm, OSDR doesn’t need to process all the data in order to train the

model. (b) As a dimensionality reduction algorithm, by finding the low-dimensional

intrinsic subspace of the original space, OSDR projects the high-dimensional data on-

to the estimated low-dimensional subspace and then regresses on the low-dimensional

representations. (c) When the intrinsic subspace dynamically evolves over time, OS-

DR is able to detect and track the evolution of the subspace. (d) Current online

subspace tracking algorithm ignores the label information. However, inspired by the

xi



idea of sufficient statistic, OSDR is along the same line with sufficient dimensionality

reduction, which enables OSDR to preserve the information provided by the label of

the data. In this way, the accuracy of OSDR is improved. (e) OSDR is able to handle

missing and noise elements in the feature vectors.

By simulation and real-data experiments, we demonstrate the correctness and

effectiveness of OSDR.

xii



CHAPTER I

INTRODUCTION

1.1 Big Data Analysis

In the past decades [24], with the tremendous revolution in technology, big data

becomes increasingly common in many fields, including finance, social network, ge-

nomics, complex physics simulations, etc. As reported [15][16][17], as of 2012, 2.5

exabytes (2.5 × 1018) of data were created every day; as of 2014, 2.3 zettabytes

(2.3 × 1021) of data were created every day. Big data is difficult to work with using

most traditional data analysis methods and tools. It can be described as the following

characteristics [14]:

• Volume - The quantity of data that is generated everyday is explosive. For

instance, Facebook generates 130 terabytes in data each day, just in user logs.

Google processes 25 petabytes each day.

• Variety - The data isn’t limited to number. People need to process, store and

analyze a wide variety of data format, like text, video, audio.

• Velocity - The term ’velocity’ refer to the speed of generating data and how

fast the data is processed and analyzed to meet user’s demand.

• Veracity - The quality of the data being captured can vary greatly. Accuracy

of analysis depends on the veracity of the source data.

Challenges come with big data. On one hand, new data storage and data management

tools are needed for processing, storing and managing big data. The most widely used

relational database management systems cannot work well with big data. Massive

parallel data software running on hundreds, or thousands servers becomes the trend
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in big data era. On the other hand, traditional data analysis methods might not

be applied to big data analysis directly. Efficient and accurate big data analysis

algorithms are in urgent need nowadays.

One of the main concern in big data analysis is the dimensionality of the data. The

dimension of the data is the number of variables on each observation. Variables is the

term mostly used in statistics, while ”attribute” and ”feature” are commonly used

in machine learning and data mining. There are three main challenges presented by

high-dimensional data. Firstly, the absolute number of dimensions is high. Instead

of dealing with observation with a few tens variables, observations with hundreds, or

even thousands of features become a common situation. Secondly, more and more

datasets have much more features than observations. For instance, DNA microarray

datasets are composed by thousands of variables and a few tens to hundreds of samples

[28]. Thirdly, missing data and sparse data often come with high-dimensional data.

High-dimensional data analysis present challenges as well as opportunities. To deal

with such high-dimensional data, there are two main options. One is to adapt the

existing methods to solve high-dimensional data problem directly. Another is to

reduce the dimension of the observations and then applied statistical or machine

learning methods. The core topic in the second option is dimensionality reduction.

1.2 Dimensionality Reduction

Due to the well known curse of dimensionality [26], which refers to the decrease

of a learning algorithms with the increase of the number of features, most machine

learning and data mining techniques may not be effective for high-dimensional data.

Accuracy and efficiency degrade rapidly as the dimension increase. Thus, many re-

searchers improve the efficiency and accuracy by seeking efficient way to reduce the

dimension of the data. Dimensionality reduction can be divided into feature selection

and feature extraction [8]. Feature selection is to select a subset of the most relevant
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features from the original data set. Feature selection is based on the assumption

that the data contains many redundant or irrelevant features. Filter method [27]

and wrapper method [20] are the most popular feature selection methods. Feature

extraction is to transform the high-dimensional data into a meaningful representation

of reduced dimensionality without losing information. Ideally, the reduced represen-

tation should catch the intrinsic characteristic of the original data. When we talk

about dimensionality reduction in the following part, it refers to feature extraction.

Generally, dimensionality reduction is used as a data pre-processing step to simplify

the data model. By identifying a proper low-dimensional representation of the high-

dimensional original data, classification and clustering tasks can be applied to the

low-dimensional representation, which can not only often yield more accuracy results

but also reduce the computational cost significantly. The motivation of dimensionality

reduction can be summarized as follows [8]:

• Identifying a feature set which is most relevant to predictive variables is mean-

ingful from a knowledge discovery perspective.

• Storage cost and computational cost will increase directly with the increase of

the number of features.

• Noisy or irrelevant features has the same impact on the predictive variables as

relevant features, which will have negative impact on model accuracy.

• Missing values also has negative impact on model.

• High dimensional data is almost impossible to visualize.

1.3 Contributions

In this thesis, we present a dimensionality reduction algorithm, called Online Suffi-

cient Dimensionality Reduction (OSDR), for real-time high-dimensional data. OSDR
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combines the idea of online learning and sufficient dimensionality reduction. Specif-

ically, in the first step of OSDR, it catches the intrinsic low-dimensional structure

of the high-dimensional original data. In the second step of OSDR, it regresses on

the low-dimensional linear subsets and learn the regression model. OSDR is able to

handle nose and missing elements in the feature vectors. Besides, in many cases, the

low dimensional structure dynamically evolves overtime. OSDR will be able to detect

and track that evolvement.

We will demonstrate the performance of OSDR by testing it on simulation data and

real-world data. The numerical experiments are designed to compare the performance

of ODR and OSDR and show the improvement and benefit in efficiency and accura-

cy of OSDR for high-dimensional sequential data analysis. USPS digits recognition

example example shows the performance of OSDR in solving real-world problem.

1.4 Outline

In Chapter 1, we first talk about the challenges and opportunities in big data analysis.

Then we introduce the dimensionality reduction technique and discuss its motivation

and potential application in big data analysis. After that, the contribution and out-

line of this thesis are described.

In Chapter 2, we give a preliminary review of techniques related to this thesis, includ-

ing dimensionality reduction, sufficient dimensionality reduction and online subspace

tracking. By comparing the difference between unsupervised dimensionality reduction

and supervised dimensionality reduction, prove the advantage of supervised dimen-

sionality reduction over unsupervised dimensionality reduction. Then, give a review

of sufficient dimensionality reduction technique, which combines the idea of dimen-

sionality reduction and the concept of sufficient statistic. Finally, we investigate two

online algorithms, GROUSE and MOUSSE-LOGIT, which provide theoritical foun-

dation and motivation for our novel algorithm.
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In Chapter 3, we analyze the limitation of MOUSSE-LOGIT. Inspired by the idea

of sufficient dimensionality reduction, we propose a novel dimensionality reduction

algorithm. First, formulate the problem of real-time high-dimensional data analysis.

Second, propose an online dimensionality reduction which is derived from GROUSE

directly. Third, incorporate the idea of sufficient dimensionality reduction, propose

the novel dimensionality reduction algorithm.

In Chapter 4, we present example to study the performance of OSDR. Both sim-

ulation data and real-world data are examined and tested. Compared with online

dimension reduction algorithm, OSDR shows lower misclassification rate and higher

accuracy rate compared with online dimensionality reduction algorithm.

The conclusions and future work are given in Chapter 5.
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CHAPTER II

PRELIMINARY

2.1 Dimensionality Reduction

In Chapter 1, we bring the concept of dimensionality reduction. The motivation of

dimensionality reduction is also studied. In this part, detailed content of dimension-

ality reduction will be went over. The problem of dimensionality reduction can be

formulated as follows.

Given aD-dimensional variable x = (x1, ..., xD)
T , assume it has intrinsic low-dimensional

structure with dimensionality d (where d ≪ D). The intrinsic low-dimensional struc-

ture implies that the data in or near a manifold with dimensionality d is embedded

into the high-dimensional space with dimensionality D. The target of dimensionality

reduction is to transform the data x with dimensionalityD into a new low-dimensional

representation β with dimensionality d (d ≪ D), while retaining the geometry of the

data as much as possible. Generally speaking, dimensionality reduction problem can

only be solved with assumption of the property of the data, since neither the intrinsic

low-dimensional d nor the geometry of the data manifold are known. [29]

2.1.1 Unsupervised Dimensionality Reduction

Based on whether the learning process is supervised or unsupervised, dimensionality

reduction can be divided into unsupervised dimensionality reduction and supervised

dimensionality reduction. Traditional, unsupervised dimensionality reduction meth-

ods are well studied by researchers in statistics, machine learning. Principal compo-

nent analysis (PCA) [18] is the most popular (unsupervised) dimensionality reduction

technique. PCA is a second-order method. It performs dimensionality reduction by
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embedding the data into a linear subspace of lower dimensionality. In different field-

s, PCA is called the Kosambi Karhunen Love theorem [12] and the singular value

decomposition (SVD) [34].

2.1.2 Supervised Dimensionality Reduction

While unsupervised dimensionality reduction is a well studied problem, dimension-

ality reduction technique has not been well explored for the supervised case. When

labels of data are available, e.g., in the classification task, unsupervised dimensionali-

ty reduction techniques are not able to incorporate this information. It will be helpful

and meaningful to incorporate the label information into the dimensionality reduction

process and derive a supervised dimensionality reduction for input data. In the past

ten years, a lot of supervised dimensionality reduction techniques are proposed.

Instead of finding global discriminants in the data, a framework for supervised sub-

space sampling was proposed in order to create a reduced representation of the data

for classification application [1]. SPPCA extended the probabilistic PCA model to

incorporate labels of data into projection and propose a supervised PCA model [33].

In QUADRO model, it analyzed the problem of Rayleigh quotient optimization un-

der nonlinear setting and proposed a novel Rayleigh quotient based sparse quadratic

dimension reduction method [10]. Without making assumptions on the distribution

of the data classes, which can lead to ad-hoc and sub-optimal implementation, an

approach was proposed to take an information-geometric approach by maximizing

the between class information distances [4].

2.2 Sufficient Dimensionality Reduction

2.2.1 Introduction

Sufficient dimensionality reduction (SDR) [22] techniques have drawn considerable

attention in the analysis of high-dimensional data. It combines the idea of dimen-

sionality reduction with the concept of sufficient statistic [19]. SDR can effectively
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reduce the dimensional the feature vectors, while retaining full regression information

and imposing no parametric models.

Earlier research on SDR, like sliced inverse regression [22], principal Hessian direction

[23], and sliced average variance estimation [5] replies on the distribution assumption

of the data, which might not be achieved in real-world problem. Among these algo-

rithm, sliced inverse regression(SIR) is the most commonly used SDR method, and

there are many studies that elaborate on SIR [6].

Recently, kernel-based dimensionality reduction has been a hot topic. Kernel dimen-

sion reduction (KDR) is one of the most influenced work. It employs a kernel-based

dependence measure, which is distribution-free. However, the performance of KDR

depends heavily on the choice of kernel functions and the regularization parameters,

which is the key limitation of KDR. Besides, the gradient based optimization is com-

putationally demanding which makes KDR scale poorly onto massive datasets.

Most previous work of SDR has only been applied to static data. However, in prac-

tice, sequential time-series data is common in many areas, like signal processing [21],

computer vision [3], etc. Limited work has been done in this part. Sequence kernel

dimension reduction approach (S-KDR) [25] combines spatial, temporal and periodic

information in a principled manner, and learns an optimal embedding without assum-

ing any distribution of the data. The new designed kernels can capture dynamics,

periodic motions and multi-class classification. The advantages of sufficient dimen-

sionality reduction and the lack of research on sufficient dimensionality reduction for

modeling time-series data is one of the motivation of this thesis.

2.2.2 Problem Formulation

In the following, we will give a brief problem formulation of sufficient dimensionality

reduction [25].
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Let x be the feature vector, with x ∈ RD and let y be the label of x. In super-

vised learning, the goal of sufficient dimensionality reduction is to estimate a low-

dimensional representation β, with β ∈ Rd, that is sufficient for the prediction task,

where

β = Ux. (2.2.1)

U is the projection matrix to a d -dimensional subspace, with d ≪ D. The criterion

of SDR is formulated as given β, the remaining features of x are conditionally inde-

pendent of the label y. In this sense, we say x is sufficient for estimating y.

Compared with other supervised dimensionality reduction algorithm or unsupervised

dimensionality reduction algorithm, sufficient dimensionality reduction makes no as-

sumption on the distribution of x.

2.3 Online Subspace Tracking

Subspace tracking is a terminology mostly used in computer vision for dimensionality

reduction. It has been extensively studied in computer vision with application in

background subtraction [30], object tracking [7], etc. Online subspace tracking is a

recently proposed topic in this domain. In online subspace tracking, observations are

presented sequentially in the form of an unknown mixture of primary subspaces plus

a residual component. The target of online subspace tracking is to keep the estimated

subspace updating as the observations continually present themselves.

2.3.1 GROUSE

Grassmannian Rank-One Update Subspace Estimation (GROUSE) [2], is an efficient

online algorithm for identifying and tracking subspaces from highly incomplete ob-

servations. It’s derived by analyzing incremental gradient descent and can be easily

used for online matrix completion.

Suppose we want to track a D-dimensional space with intrinsic d-dimension subspace

evolve over time. At each time t, we only observe feature vector xt on a subset of
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indices Ωt. Let PΩt denotes a |Ωt| ×D matrix which select the coordinate axes of RD

indexed by Ωt. At time t, we only observe

xΩt , PΩtxt (2.3.1)

The error of the our subspace is defined as

F (U ; t) = minw∥UΩtw − xΩt∥22, (2.3.2)

where UΩt denotes the submatrix of U , the basis of space, consisting the rows indexed

by Ωt.

Grassmannian [11], a compact Riemannian manifold, is a space which parameterizes

all linear subspaces of a vector space D of given dimension d. Derived from an

application of incremental gradient descent on the Grassmannian manifold, GROUSE

computes a gradient of the cost function F and then follow the gradient along a short

geodesic curve in Grassmannian [2]. The derivative of F is given by

∂F

∂U
= −2γωT , (2.3.3)

where γ is residual vector and is equal to (xt−Uω) on Ωt. ω is the corresponding least

square solution of equation (2.3.3). The gradient with respect to the Grassmannian

is

∇F = −2(I − UUT )γωT . (2.3.4)

To ensure that U remains within the Grassmannian manifold, we need to follow the

geodesics along the direction of the gradient. The geodesics on Grassmann manifolds

is given by Equation (2.65) in [9]. For a step size of length η > 0, the update is given

by

Unew = U + ((cos(2∥γ∥∥ω∥η)− 1)
p

∥p∥
+ sin(2∥γ∥∥ω∥η) γ

∥γ∥
)
ωT

∥ω∥
, (2.3.5)

where p = Uω is the predicted vector of the project of vector x on the current esti-

mated subspace. The update rule consists of a rank-one modification of the current
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subspace basis U .

In sum, GROUSE provides an online algorithm for tracking subspaces from incom-

plete observations based on incremental gradient descent iterations on the Grassman-

nian manifold of subspace.

2.3.2 MOUSSE-LOGIT

MOUSSE-LOGIT, proposed by Xie [32], is a technique for online logisitc regression

when the feature vectors lie close to a dynamic low-dimensional manifold and when

observations of the feature vectors may be noisy or have missing elements. The

problem is formulated as follows.

Given training data xΩt , yt,Ωt, t = 1, 2, .., the feature vector xt ∈ RD is a noisy

realization of true intrinsic vector βt, which lies on submanifold with dimension d.

The noise is a Gaussian noise with zero mean and variance σ2. At each time t, only xΩt

on a subset of indices Ωt is observed. The label yt ∈ 0, 1 is Bernoulli with probability

p of being 1 that depends on β

P(yt = 1) = h(β; θ, b), (2.3.6)

where h(β; θ, b) denotes the logistic model.

h(β; θ, b) =
1

1 + e−θT β−b
, (2.3.7)

where β is feature vector, θ is weight vector and b is offset or intercept. The goal is to

design a classifier for online logistic regression based on streaming data {xΩt , yt,Ωt}

and exploit the dynamic evolving submanifold of feature vector xT .

To solve the above problem, MOUSSE-LOGIT combines Multiscale Online Union

of Subspace Estimation (MOUSSE) algorithm [31] and stochastic gradient descent

method. It approximates the manifold by union of linear subsets, which is organized

in a tree structure. The model training process can be summarized as three main

steps. (a) Project feature vector xt onto the current estimated submanifold. (b)
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Using MOUSSE to update the submanifold estimation and tree structure. (c) Using

stochastic gradient descent to update the logistic model.

Numerical and real-data experiments show that when feature vector has an intrinsic

manifold structure, MOUSE-LOGIT have the following benefits. (a) Reduce compu-

tational cost by regressing on low-dimensional space. (b) Achieve better performance

compared with regressing on the ambient space. (c) Achieve better performance com-

pared with regressing on one single subspace.

From the view of learning process, MOUSSE-Logit can be regarded as unsupervised

dimensionality reduction. As discussed before, unsupervised dimensionality reduc-

tion can not incorporate data label into learning process, which might result in the

loss of information and degrade in model accuracy. To overcome the drawback of

MOUSSE-LOGIT and gain a better model performance, a novel supervised dimen-

sionality reduction is needed for this problem. This is one of the motivation of this

thesis.
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CHAPTER III

ONLINE SUFFICIENT DIMENSIONALITY REDUCTION

3.1 Motivation

In Chapter 2, we review a method, called MOUSSE-LOGIT, for online logistic re-

gression when the high-dimensional feature vectors are sparse and with intrinsic low-

dimensional structure. MOUSSE-LOGIT takes the unsupervised learning paradigm,

which means the label of the feature vectors isn’t considered as a factor when doing

dimensionality reduction. Thus, in some cases, the information of the label might

be lost and the low-dimensional subspace isn’t well represented. The accuracy of

dimensionality reduction is not convincing.

To overcome this limitation and improve the accuracy of online dimensionality re-

duction, we take the label of the feature vectors into consideration. Inspired by the

idea of sufficient dimensionality reduction, we proposed a new algorithms called on-

line sufficient dimensionality reduction, which is a paradigm for analyzing real-time

high-dimensional sparse data with low-dimensional intrinsic structure that combining

the ideas of online dimensionality reduction and the concept of sufficient statistic .

3.2 Logistic Regression

At every time t, the data has feature vector xt ∈ RD, with D denotes the ambient

dimension, and a label yt ∈ {0, 1}. Assume the intrinsic characteristic of the feature

vector xt lies on a manifold ⊂ RD. The dimension of the manifold is d, where d ≪ D.

That is, feature vector xt is high-dimensional vector with dimensionality D and has

low-dimensional intrinsic structure with dimensionality d. We use U ∈ RD×d denotes

the orthogonal basis of the manifold where UTU = I ∈ Rd×d. The notation T denotes
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the transpose of a matrix or vector. Thus, the feature vector x can be denoted as

x = Uβ, where β is the coefficient ∈ Rd and β = UTx. In the online setting, assume

the manifold may evolve over time, we use Ut to denote the basis of the manifold at

time t. Thus

xt = Utβt, (3.2.1)

where xt ∈ RD, Ut ∈ RD×d and βt ∈ Rd.

At each time t, we only observe feature vector xt on a subset of indices Ωt. Let PΩt

denotes a |Ωt| ×D matrix which select the coordinate axes of RD indexed by Ωt. At

time t, we observe

xΩt , PΩtxt (3.2.2)

Define the logistic function as

h(x; θ, b) =
1

1 + e−θTx−b
. (3.2.3)

Assume the label yt is related to feature vector xt via logistic model

yt ∼ Bernoulli(h(xt; θt, bt)), (3.2.4)

where θ ∈ RD denotes the weight vector, b ∈ R denotes the intercept or offset.

In sum, the logistic regression problem is that at every time t, given feature vector

xt and its label yt, assume the feature vectors has intrinsic low-dimensional manifold

and the manifold evolves overtime. Besides, the label is related to feature vectors by

logistic model. The primary goal is to find an efficient and accurate algorithm for

finding and tracking the basis of the manifold U overtime and at the same time learn

the corresponding logistic model.

3.3 Linear Regression

The set up of linear regression is similar to the previous logistic regression problem.

At every time t, the data has feature vector xt ∈ RD, with D denote the ambient
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dimension, and a label yt ∈ (−∞,+∞). Assume the intrinsic characteristic of the

feature vector xt lies on a manifold ∈ RD. The dimension of the manifold is d, where

d ≪ D. U ∈ RD×d denotes the orthogonal basis of the manifold where UTU = I ∈

Rd×d. The notation T denotes the transpose of a matrix or vector. Thus, the feature

vector x can be denoted as x = Uβ, where β is the coefficient ∈ Rd and β = UTx.

In the online setting, assume the manifold may evolve over time, we use Ut to denote

the basis of the manifold at time t. Thus

xt = Utβt, (3.3.1)

where xt ∈ RD, Ut ∈ RD×d and βt ∈ Rd.

At each time t, we only observe feature vector xt on a subset of indices Ωt. Let PΩt

denotes a |Ωt| ×D matrix which select the coordinate axes of RD indexed by Ωt. At

time t, we observe

xΩt , PΩtxt (3.3.2)

Define the linear regression function as

h(x; θ, b) = θTx+ b. (3.3.3)

Assume the label yt is related to feature vector xt via linear regression function

yt = h(xt; θt, bt), (3.3.4)

where θ ∈ RD denotes the weight vector, b ∈ R denotes the intercept or offset.

In sum, the linear regression problem is that at every time t, given feature vector

xt and its label yt, assume the feature vectors has intrinsic low-dimensional manifold

and the manifold evolves overtime. Besides, the label is related to feature vectors

by linear regression function. The primary goal is to find an efficient and accurate

algorithm for finding and tracking the basis of the manifold U overtime and at the

same time learn the corresponding linear regression model.
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3.4 Online Dimensionality Reduction

In Chapter 2, we review an online algorithm for subspace tracking, called GROUSE.

It can be easily adjusted for solving the problem we present above. In the following

part, we derive a new online algorithm, called online dimensionality reduction (ODR),

based on GROUSE and stochastic gradient descent.

ODR uses GROUSE for online subspace tracking and uses stochastic gradient descent

for learning the parameters of regression model. The parameters used in ODR at time

t are

{Ut, ηt, θt, bt, µ}. (3.4.1)

Ut is the basis of the manifold at time t. ηt is the step-sizes in updating manifold. θt

and bt, the slope and intercept of the regression model at time t. µ is the step-sizes

of updating regression model by using stochastic gradient descent.

3.4.1 Parameters Initialization

The parameters in (3.4.1) are initialized as follows. Randomly generate an orthogonal

matrix ∈ RD×d and assigned it to U0. Choose a constant C as η0 and ηt is computed

as ηt = C/t. Randomly generate a vector with dimensionality D as the initialization

of θ. b0 and µ is a randomly generated number.

3.4.2 Parameters Update

When a new data sample (xt, yt) is available, ODR updates the parameters using

three main steps. (a) Given feature vector xt, compute the projection coefficient βt

in the current manifold estimation with basis Ut. (b) Update the manifold by using

GROUSE. (c) Update (θt, bt) by using stochastic gradient descent.

At each time t, we observe a feature vector xt at locations Ωt ⊂ {1, ..., n}. Given the

manifold with parameters Ut, let ∆Ωt be a D×D diagonal matrix which has 1 in the

jth diagonal entry if j ∈ Ωt and has 0 otherwise. The projection coefficient βt of xt is
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computed as

βt = argmin
υ

∥∆Ωt(xt − Utυ)∥2. (3.4.2)

In this way, the algorithm handles the missing elements problem in feature vectors.

Then use GROUSE [2] to update the manifold.

3.4.2.1 Logistic Regression

In the following, we focus on updating the parameters of logistic model by maximizing

the log-likelihood function. In the online setting, assume the parameters of the logistic

model at time t−1 is (θt−1, bt−1). At time t, when we get the feature vector xt without

its label, compute the label using

ŷt =


1 if h(βt; θt−1, bt−1) ≥ 1/2

0 otherwise

(3.4.3)

When both feature vector xt and its label yt are available, update parameters of logis-

tic model using stochastic gradient descent by maximizing the log-likelihood function.

l(θ, b) = ytlogh(βt; θt−1, bt−1) + (1− yt)log[1− h(βt; θt−1, bt−1)]. (3.4.4)

Use [w]k denotes the k-th element of vector w and use ŷt denotes h(βt; θt−1, bt−1). The

gradient of (3.4.4) is given by

∂l(θ, b)

∂[θ]k
= (yt

1

ŷt
− (1− yt)

1

1− ŷt
)

∂

∂[θ]k
ŷt

= (yt
1

ŷt
− (1− yt)

1

1− ŷt
)ŷt(1− ŷt)[βt]k

= (yt(1− ŷt)− (1− yt)ŷt)[βt]k

= (yt − ŷt)[βt]k

(3.4.5)

∂l(θ, b)

∂b
= (yt

1

ŷt
− (1− yt)

1

1− ŷt
)
∂

∂b
ŷt

= (yt
1

ŷt
− (1− yt)

1

1− ŷt
)ŷt(1− ŷt)

= (yt(1− ŷt)− (1− yt)ŷt)

= (yt − ŷt)

(3.4.6)
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We can update the parameters (θt−1, bt−1) by

θt = θt−1 + µ[yt − ŷt]βt

bt = bt−1 + µ[yt − ŷt]

(3.4.7)

3.4.2.2 Linear Regression

In this section, we focus on updating the parameters of linear regression model by

minimizing the cost function. In the online setting, assume the parameters of the

linear regression model at time t − 1 is (θt−1, bt−1). At time t, when we get the

feature vector xt without its label, compute the label using

ŷt = θTt−1βt + bt−1 (3.4.8)

When both feature vector xt and its label yt are available, update parameters of linear

regression model using stochastic gradient descent by minimizing the cost function.

l(θ, b) =
1

2
(h(βt; θt−1, bt−1)− yt)

2 (3.4.9)

Use [w]k denotes the k-th element of vector w and use ŷt denotes h(βt; θt−1, bt−1). The

gradient of (3.4.9) is given by

∂

∂[θ]k
l(θ, b) = (ŷt − yt)

∂

∂[θ]k
ŷt

= (ŷt − yt)[βt]k

(3.4.10)

∂

∂b
l(θ, b) = (ŷt − yt)

∂

∂b
ŷt

= (ŷt − yt)

(3.4.11)

We can update the parameters (θt−1, bt−1) by

θt = θt−1 + µ[yt − ŷt]βt

bt = bt−1 + µ[yt − ŷt]

(3.4.12)
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3.4.3 Conclusion

In sum, the online dimensionality reduction algorithm can be described as follows.

Algorithm 1 Online Dimensionality Reduction

Input: An D × d orthogonal matrix U0. A sequence of vectors xt, each observed in
entries Ωt, with its label yt. A set of step-sizes ηt for manifold updating. Slope
vector and offset of logistic model θ0 and b0. Step-size µ for stochastic gradient
descent.

1: for t = 1, ..., T do
2: Estimate projection coefficients: βt = arg minυ ∥∆Ωt(xt − Utυ)∥2
3: Compute residual: γ = ∆Ωt(xt − Utβt)
4: Compute parameter: σ = ∥γ∥∥Utβt∥
5: Update subspace: Ut+1 = Ut + ((cos(σηt)− 1) Utβt

∥Utβt∥ + sin(σηt)
γ

∥γ∥)
βT
t

∥βt∥
6: Predict vector label: ŷt = h(βt; θt−1, bt−1)
7: Update slope vector: θt = θt−1 + µ[yt − ŷt]βt.
8: Update residual: bt = bt−1 + µ[yt − ŷt]
9: end for

The difference of ODR in solving the linear regression problem and the logistic re-

gression problem lies in the regression function h(βt; θt−1, bt−1). In linear regression

problem,

h(βt; θt−1, bt−1) = θTt−1βt + bt−1.

However, in logistic regression problem,

h(βt; θt−1, bt−1) =
1

1 + e−θTt−1βt−bt−1
.

3.5 Online Sufficient Dimensionality Reduction

In many cases, the label y is closely correlated to the input feature x. However, in the

existing dimensionality reduction methods, including ODR, they don’t take the label

y into consideration and use the unsupervised learning paradigm to do the dimen-

sionality reduction. To overcome this limitation, as we have reviewed in Chapter 2,

people proposed the sufficient dimensionality reduction algorithm. However, limited

research has been done in the online setting about this topic. Thus, to make our

approximation of the feature vector to have the best predictive power to the label,
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instead of using the unsupervised dimensionality reduction method, we use the label

y as a factor when doing dimensionality reduction and form a new algorithm, called

online sufficient dimensionality reduction (OSDR).

3.5.1 Main Steps

The parameters used in OSDR and the parameters initialization are the same with

ODR. When a new data sample (xt, yt) is available, it takes three main steps: (a)

Given feature vector xt, compute the projection coefficient βt in the current manifold

estimation with basis Ut. (b) Update the manifold by the following update method.

(c) Update (θt, bt) by using stochastic gradient descent.

3.5.2 Online Manifold Tracking

Given the manifold with parameters Ut, the projection coefficient βt of feature vector

xt can be computed by (3.4.2). Then, we focus on developing a new online manifold

tracking and updating method, which is the core part of OSDR. To focus on method

development, we simply the derivative process by excluding the time stamp t in the

following.

3.5.2.1 Logistic Regression

Instead of tracking U by minimizing the distance between the real input feature vector

and the approximate vector, we find the basis U by maximizing the log-likelihood

ratio, which is along the same line as sufficient dimensionality reduction. The log-

likelihood function is defined as

f(U, θ) = y log h(Uβ; θ, b) + (1− y) log[1− h(Uβ; θ, b)]. (3.5.1)

where

h(Uβ; θ, b) =
1

1 + e−θTUβ−b
.
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The derivative of f(U, θ) with respect to U is given by

df

dU
= [y − h(Uβ; θ, b)]θβT. (3.5.2)

The gradient on the Grassmannian is given by

∇f = [y − h(Uβ; θ, b)](I − UUT)θβT. (3.5.3)

Let r = [y − h(Uβ; θ, b)](I − UUT)θ. Thus,

∇f = rβT. (3.5.4)

For the gradient is rank-one, we can write

∇f =

[
r/∥r∥ v2 . . . vd

]
diag(σ)

[
β/∥β∥ z2 . . . zd

]T
, (3.5.5)

where

σ = −[y − h(Uβ; θ, b)]∥r∥∥β∥. (3.5.6)

v2, . . . , vd are an orthonormal set orthogonal to r and z2, . . . , zd are an orthonormal

set orthogonal to β.

Update of U can be efficiently calculated as

Unew = U +
(cos(ση)− 1)

∥β∥2
UββT + sin(ση)

r

∥r∥
βT

∥β∥

= U + ((cos(ση)− 1)
Uβ

∥Uβ∥
+ sin(ση)

γ

∥γ∥
)
βT

∥β∥

(3.5.7)

where η > 0 is a step-size.

3.5.2.2 Linear Regression

In the linear regression problem, we find the basis U by minimizing the cost function.

The cost function is defined as

f(U, θ) = ∥y − h(Uβ; θ, b)∥2. (3.5.8)

The derivative of f(U, θ) with respect to U is given by

df

dU
= −2[y − h(Uβ; θ, b)]θβT. (3.5.9)
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where

h(Uβ; θ, b) = θTUβ + b

The gradient on the Grassmannian is given by

∇f = −2[y − h(Uβ; θ, b)](I − UUT)θβT. (3.5.10)

Let r = [y − h(Uβ; θ, b)](I − UUT)θ. Thus,

∇f = −2rβT. (3.5.11)

For the gradient is rank-one, we can write

∇f =

[
−r/∥r∥ v2 . . . vd

]
diag(σ)

[
β/∥β∥ z2 . . . zd

]T
, (3.5.12)

where

σ = −[y − h(Uβ; θ, b)]∥r∥∥β∥. (3.5.13)

v2, . . . , vd are an orthonormal set orthogonal to r and z2, . . . , zd are an orthonormal

set orthogonal to β.

Update of U can be efficiently calculated as

Unew = U +
(cos(ση)− 1)

∥β∥2
UββT + sin(ση)

r

∥r∥
βT

∥β∥

= U + ((cos(ση)− 1)
Uβ

∥Uβ∥
+ sin(ση)

γ

∥γ∥
)
βT

∥β∥

(3.5.14)

where η > 0 is a step-size.

3.5.3 Parameters Update

Similar to what we do in ODR, at time t, when we get the feature vector xt without

its label, compute the predict label using (3.4.3). When both feature vector xt and its

label yt are available, update the parameters of logistic model using (3.4.7) or update

the parameters of linear regression model using (3.4.12).
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3.5.4 Conclusion

In sum, the online sufficient dimensionality reduction algorithm can be described as

follows.

Algorithm 2 Online Sufficient Dimensionality Reduction

Input: An D × d orthogonal matrix U0. A sequence of vectors xt with its label yt.
A set of step-sizes ηt for manifold updating. Slope vector and offset of logistic
model θ0 and b0. Step-size µ for stochastic gradient descent.

1: for t = 1, ..., T do
2: Estimate weights: βt = arg minυ ∥∆Ωt(xt − Utυ)∥2
3: Predict vector label: ŷt = h(βt; θt−1, bt−1)
4: Compute parameters r: r = [yt − ŷt](I − UtU

T
t )θt−1

5: Compute parameters σ: σ = −[yt − ŷt]∥r∥∥βt∥
6: Update subspace: Ut+1 = Ut + ((cos(σηt)− 1) Utβt

∥Utβt∥ + sin(σηt)
γ

∥γ∥)
βT
t

∥βt∥
7: Update weight vector: θt = θt−1 + µ[yt − ŷt]βt.
8: Update residual: bt = bt−1 + µ[yt − ŷt]
9: end for

The difference of OSDR in solving the linear regression problem and the logistic

regression problem lies in the regression function h(βt; θt−1, bt−1). In linear regression

problem,

h(βt; θt−1, bt−1) = θTt−1βt + bt−1.

However, in logistic regression problem,

h(βt; θt−1, bt−1) =
1

1 + e−θTt−1βt−bt−1
.
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CHAPTER IV

NUMERICAL AND EXPERIMENTAL EXAMPLES

4.1 Numerical Examples

We will first use the following example to discuss the motivation and main advantages

of OSDR over ODR. Let’s consider two extreme cases, (a) θ = [5, 0]. (b) θ = [0, 5].

Set the parameters a = 10, b = 0.1, c = 5. Visualize the data in Figure 1.

In the unsupervised learning paradigm, assume the data is distributed as in Figure

1(a). Based on the knowledge of principle components analysis [18], in Figure 1(a),

it’s easy to see that the first principal component lies in the major axis of the ellipse.

In this case, the first principal component is x1 axis. Data vary a lot in the first

principal component compared with the second principal component. Thus, when we

reduce the dimension from D = 2 to d = 1, the unsupervised dimensionality reduction

techniques will project the data onto the direction of the first principal component.

Figure 1(b) and in Figure 1(c) show the data distribution in the supervised learning

paradigm. In case Figure 1(b), the unsupervised dimensionality reduction techniques

are expected to work well since the variance of the data lies in the first principal

component and it will be captured. Data is well represented and separated in the

reduced dimension and we can learn the logistic model on the new reduced data.

However, when it comes to case in Figure 1(c), if the dimensionality reduction algo-

rithms takes the unsupervised learning paradigm, it will still reduce the dimension

and project the data onto the direction of the first principal component. But, since

in in Figure 1(c), data vary a lot in the second principal component rather than the

first principal component. The information of the label will be lost and data with

different label would be mixed together in the reduced dimension. We can’t learn
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the logistic model since the data in the reduced dimension isn’t well separated. To

solve this problem, the idea of sufficient dimensionality reduction should be included.

Thus, based on the theory of sufficient dimensionality reduction, we know that the

information of label won’t be lost.

Let’s go back to the comparison of ODR and OSDR. Since ODR takes the unsuper-

vised learning paradigm, it will work well on in Figure 1(b) but encounter the problem

when working on in Figure 1(c). In contrast to ODR, OSDR is along the same line

as sufficient dimensionality reduction. It’s expected to find the right direction, where

data vary a lot and is well separated.

4.1.1 Static Subspace I

We first consider the problem of tracking a static manifold in R2, with D = 2 and

d = 1. Points on the manifold xt , [xt,1, xt,2]
T obey the following rules:

xt = x∗ + wt, (4.1.1)

wt is a D × 1 vector whose entries are i.i.d N(0, σ2). Entries of x∗
t are i.i.d N(0, 1)

and obey
(x∗

t,1)
2

a2
+

(x∗
t,2)

2

c2
≤ 1. (4.1.2)

In this way, the entries of x∗ lie in the ellipse-shape space. The label yt is related to

xt via logistic model

yt ∼ Bernoulli(h(x∗; θ, b)), (4.1.3)

where θ = [θ1, θ2] is a D × 1 vector.

Generate N = 6000 data points using the method above. Divide the data set into two

parts, the first 3000 data as the training set and the remaining as the testing set. For

the training and testing procedure, we first use ODR and OSDR to predict label ŷt,

then reveal the true label and use (xt, yt) to update the classifier. The performance
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metric is given by the average misclassification error on the test sample:

Pe =
1

3000

6000∑
t=3000

I{ŷt ̸= yt}. (4.1.4)

In the following, we average Pe over 100 independent trials. We run the test with

different value of θ. Figure 2 demonstrate the ordered misclassification error, as well

as the ordered number of measurements calculated from the formulas, for different

a/c rates, respectively. Note that the misclassification error of ODR is higher than

OSDR. Although in some cases, ODR has almost the same performance with OSDR.

In most situation, OSDR is better than ODR.

4.1.2 Static Subspace II

In the above simulation experiment, we demonstrate the advantage of sufficient di-

mensionality reduction and demonstrate the effectiveness of OSDR. In the following

experiment, we will test the performance of OSDR on real-time high-dimensional

data. Two-stage experiments will be done in this section. In the first stage, we

embed a static low-dimensional space with dimension d into the high-dimensional

space with dimension D. In the second stage, we formulate a dynamically evolving

low-dimensional space with dimension d as the intrinsic space and embed it into the

high-dimensional space with dimension D.

Suppose βt ∈ Rd is the true feature vector which lies in the intrinsic low-dimensional

subspace, assume d = 2 and βt , [βt,1, βt,2]
T. Entries of β are i.i.d N(0, 1) and obey

β2
t,1

a2
+

β2
t,2

c2
≤ 1. (4.1.5)

The observed feature vector xt ∈ RD, where d ≪ D, is the high-dimensional noisy

realization of βt.

xt = Uβt + wt, (4.1.6)

wt is a Gaussian noise with zero mean and variance σ2. Here d denotes the intrinsic

dimension and D denotes the ambient dimension. U ∈ RD×d is the basis of the
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manifold.

The label yt is related to xt via logistic model

yt ∼ Bernoulli(h(βt; θ, b)). (4.1.7)

Generate N = 6000 data using the method above and divide the data set into two

parts, the first 3000 data as the training set and the remaining 3000 data as the testing

set. We will first use ODR and OSDR to predict label ŷt and then reveal the true

label and use (xt, yt) to update the classifier. The performance is also given by (4.1.4).

Figure 3 demonstrates the performance of OSDR on real-time high-dimensional data

with static intrinsic low dimensional subspace. The value of d has effect on the

misclassification rate. Smaller d results in higher misclassification rate. Let D/d

denote the data compression ratio, when the value of D is fixed, smaller d means

higher data compression ratio, which always comes with loosing more information. It

consists with our experimental results. By comparing the results among Figure 3(a)

to Figure 3(e), we find that the shape of the intrinsic low-dimensional subspace has

little effect on the performance of OSDR.

4.1.3 Rotating Subspace

Suppose β∗
t ∈ Rd is the true feature vector which lies in a dynamically evolving

intrinsic low-dimensional subspace, assume d = 2 and β∗ = Rtβt. Rt is the rotation

matrix, where

R =

cos(αt) − sin(αt)

sin(αt) cos(αt)

 (4.1.8)

αt is the rotation rate. βt , [βt,1, βt,2]
T. Entries of β are i.i.d N(0, 1) and obey

β2
t,1

a2
+

β2
t,2

c2
≤ 1. (4.1.9)

The observed feature vector xt ∈ RD, where d ≪ D, is the high-dimensional noisy

realization of β∗
t .

xt = Uβ∗
t + wt (4.1.10)
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wt is a Gaussian noise with zero mean and variance σ2. Here d denotes the intrinsic

dimension and D denotes the ambient dimension. U ∈ RD×d is the basis of the

manifold.

The label yt is related to xt via logistic model

yt ∼ Bernoulli(h(β∗
t ; θ, b)). (4.1.11)

Generate N = 6000 data using the method above and divide the data set into two

parts, the first 3000 data as the training set and the remaining 3000 data as the

testing set. The value of rotation rate αt follows the rule:

αt =


0 if t ≤ 500

2π
τ
· t−500
6000−500

if 500 < t ≤ 6000

(4.1.12)

τ is called rotation ratio. We will first use ODR and OSDR to predict label ŷt and

then reveal the true label and use (xt, yt) to update the classifier. The performance

is also given by (4.1.4).

Figure 4, Figure 5 and Figure 6 shows the performance of OSDR in real-time high-

dimensional data with rotating low-dimensional intrinsic subspace. Different shapes

of intrinsic subspaces are examined. Different rotation ratios under same data com-

pression ratio are also tested. OSDR demonstrates its effectiveness and robustness

in tracking real-time high-dimensional data with rotating low-dimensional intrinsic

subspace. Even though the intrinsic subspace rotates with a high rate, OSDR can

still capture this evolution without loosing too much accuracy. The effect of rotation

ratio τ on misclassification rate is demonstrated in Figure 7. When the value of rota-

tion ratio is more than a threshold, it doesn’t affect the performance of OSDR. When

the value of rotation ratio is small, to improve the accuracy of OSDR, smaller data

compression ratio may be considered.
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4.1.4 Linear Regression

In the above experiments, we test the performance of OSDR in solving the problem

with the assumption that the label is related to feature vectors via logistic model. In

this section, we will demonstrate its performance on the problem whose assumption

is that the label is related to feature vectors via linear regression model.

Let’s consider the problem of tracking a static manifold in R2, with D = 2 and d = 1.

Points on the manifold xt , [xt,1, xt,2]
T obey the following rules:

xt = x∗ + wt, (4.1.13)

wt is a D × 1 vector whose entries are i.i.d N(0, σ2). Entries of x∗
t are i.i.d N(0, 1)

and obey
(x∗

t,1)
2

a2
+

(x∗
t,2)

2

c2
≤ 1. (4.1.14)

In this way, the entries of x∗ lie in the ellipse-shape space. The label yt is related to

xt via linear regression model

yt = θTx∗ + b, (4.1.15)

where θ = [θ1, θ2] is a D × 1 vector.

Generate N = 6000 data points using the method above. Divide the data set into two

parts, the first 3000 data as the training set and the remaining as the testing set. For

the training and testing procedure, we first use ODR and OSDR to predict label ŷt,

then reveal the true label and use (xt, yt) to update the classifier. The performance

metric is given by root mean squared error on the test sample:

Pe =
√
E((ŷ − y)2) =

√∑6000
t=3000(ŷt − yt)2

3000
. (4.1.16)

In the following, we average Pe over 100 independent trials. We run the test with

different value of θ. Figure 8 demonstrates the performance of OSDR in solving the

problem that label is related to feature vector via linear regression model. OSDR has

better performance than ODR. Figure 8(b) tells the case when the feature vectors are
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in ellipse-shape space and the weight of major axis is smaller than that of the minor

axis. The larger the difference between the weight is, the worse the performance of

ODR is. However, the performance is OSDR isn’t affected by the difference, since it’s

a sufficient method. This is consist with the analysis in the previous experiment.

4.2 Real-data Experiments

4.2.1 Data Description

We use a well-known handwritten data sets, USPS digits recognition data sets, to

test the performance of OSDR on online handwritten digits recognition.

The USPS handwritten digits dataset [13] is used from a project for recognizing

handwritten digits on envelopes. The training set has 7291 observations, and the test

set has 2007 observations, distributed as in Table 9. The digits were downscaled to

16× 16 pixels and scaled without distortion.

To enable the online setting, we read one digit each time. We first process feature

vector xT of the digit and use ODR and OSDR to predict label ŷt. Then we reveal

the true label and use (xt, yt) to update the classifier. In this experiment, we only

consider a binary classification problem. For instance, whether a digit is 0 or not.

The performance of OSDR and ODR is given by averaging their performance among

all the digits.

4.2.2 Experimental Results

The performance of OSDR in USPS digits recognition data sets is shown in Table 10.

Again, Figure 9 demonstrates that OSDR has good performance compared to ODR.
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Figure 1: (a) Distribution of data without label. (b) Distribution of data when
θ = [5, 0]. (c) Distribution of data when θ = [0, 5]
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Figure 2: Static subspace I: (a) Misclassification error when a/c = 1. (b) Mis-
classification error when a/c = 3. (c) Misclassification error when a/c = 6. (d)
Misclassification error when a/c = 10.
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Figure 3: Static subspace II: (a) d v.s. misclassification error when a/c = 1. (b)
d v.s. misclassification error when a/c = 3. (c) d v.s. misclassification error when
a/c = 5. (d) d v.s. misclassification error when a/c = 7. (e) d v.s. misclassification
error when a/c = 10.
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Figure 4: Rotating subspace: a/c = 10 (a) rotation ratio τ v.s. misclassification rate
when d = 30 (b) rotation ratio τ v.s. misclassification rate when d = 10 (c) rotation
ratio τ v.s. misclassification rate when d = 5 (d) rotation ratio τ v.s. misclassification
rate when d = 2
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Figure 5: Rotating subspace: a/c = 6 (a) rotation ratio τ v.s. misclassification rate
when d = 30 (b) rotation ratio τ v.s. misclassification rate when d = 10 (c) rotation
ratio τ v.s. misclassification rate when d = 5 (d) rotation ratio τ v.s. misclassification
rate when d = 2
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Figure 6: Rotating subspace: a/c = 3 (a) rotation ratio τ v.s. misclassification rate
when d = 30 (b) rotation ratio τ v.s. misclassification rate when d = 10 (c) rotation
ratio τ v.s. misclassification rate when d = 5 (d) rotation ratio τ v.s. misclassification
rate when d = 2
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Figure 7: Rotating subspace: (a) d v.s. misclassification rate when a/c = 10 (b) d
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Figure 8: Linear regression: (a) log(θ1/θ2) v.s. log(RMSE) when a/c = 1 (b)
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Figure 9: Real-data: USPS digits recognition. d v.s. misclassification rate
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we propose a novel dimensionality reduction algorithm, online sufficient

dimensionality reduction algorithm(OSDR) for real-time high-dimensional sequential

data. OSDR consists of three steps: In the first step, given feature vector xt, com-

pute its projection onto the current estimated manifold. In the second step, update

the estimated manifold using the new proposed tracking method. In the final step,

update the regression model using stochastic gradient descent. It has the following

characteristics. (a) As an online algorithm, OSDR doesn’t need to process all the ob-

servations in order to do dimensionality reduction, which enable its qualification for

real-time high-dimensional data processing and analyzing. (b) Inspired by the idea

of sufficient dimensionality reduction, OSDR avoids losing information and improves

performance by incorporating the label of observation into consideration. (c) OSDR

can be applied to tracking the evolution of subspace (d) OSDR has low complexity

and computational efficiency. (e) OSDR is able to handle noise and missing elements

in feature vectors.

Numerical experiments demonstrate the accuracy and effectiveness of OSDR. Also

the real-data experiments prove that OSDR is not only feasible in simulation but also

can be applied in solving real-world problem.

5.2 Future Work

In the future, we would like to investigate how to adapt step-size in OSDR auto-

matically to varying data. In the above experiments, we have seen that there are
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substantial performance gains when the step-size is optimized. It might be possible

to automatically tune the step size based on the current error residuals by incorpo-

rating Least Squares Estimation [2].

Another concern of future work lies in the way of setting up an initial basis U . Right

now, a lot of random restarts might be needed for finding a good local optimum,

which will increase the running time and reduce the reliability of OSDR.

In OSDR, the label is assumed to related to feature vector via logistic model and

linear regression model. In the future work, more general assumption could be made.

We may consider solving the problem with the assumption of generalized linear model.
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CHAPTER VI

EXTRA NOTES

Table 1: Misclassification Rate of ODR v.s OSDR when a/c = 1.

θ1
θ2

Methods
ODS OSDR

20 0.25175(0.00005) 0.11890(0.02072)
15 0.24927(0.00003) 0.11192(0.02220)
10 0.25072(0.00004) 0.07879(0.01400)
5 0.25041(0.00004) 0.09370(0.01822)
1 0.25041(0.00004) 0.09370(0.01822)
1
5

0.25224(0.00004) 0.07923(0.01241)
1
10

0.25165(0.00004) 0.10774(0.02708)
1
15

0.25148(0.00006) 0.06992(0.01008)
1
20

0.25140(0.00004) 0.11893(0.02849)
− 1

20
0.24998(0.00004) 0.13385(0.02644)

− 1
15

0.25002(0.00005) 0.09207(0.01794)
− 1

10
0.25060(0.00004) 0.12937(0.02452)

−1
5

0.25214(0.00003) 0.10545(0.02243)
-1 0.25111(0.00005) 0.13884(0.02493)
-5 0.25060(0.00006) 0.13842(0.03027)
-10 0.25135(0.00003) 0.11944(0.02763)
-15 0.25304(0.00003) 0.12571(0.02643)
-20 0.25123(0.00003) 0.13213(0.02695)
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Table 2: Misclassification Rate of ODR v.s OSDR when a/c = 3.

θ1
θ2

Methods
ODS OSDR

20 0.14719(0.00002) 0.12351(0.2105)
15 0.15109(0.00005) 0.08513(0.01171)
10 0.15158(0.00003) 0.09046(0.01150)
5 0.16459(0.00003) 0.06929(0.00728)
1 0.28269(0.00012) 0.08023(0.01307)
1
5

0.34209(0.00006) 0.13919(0.02792)
1
10

0.28269(0.00012) 0.08023(0.01307)
1
15

0.35048(0.00006) 0.15434(0.03664)
1
20

0.35149(0.00004) 0.12281(0.02349)
− 1

20
0.25153(0.00004) 0.17291(0.03693)

− 1
15

0.35070(0.00007) 0.17314(0.03624)
− 1

10
0.34392(0.00004) 0.21737(0.03811)

−1
5

0.2807(0.00008) 0.12503(0.02234)
-1 0.35367(0.00004) 0.10328(0.02491)
-5 0.16247(0.00003) 0.08466(0.00853)
-10 0.15055(0.00003) 0.16401(0.02382)
-15 0.14891(0.00003) 0.07301(0.00454)
-20 0.14784(0.00003) 0.09883(0.01479)
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Table 3: Misclassification Rate of ODR v.s OSDR when a/c = 6.

θ1
θ2

Methods
ODS OSDR

20 0.08237(0.00002) 0.05075(0.00479)
15 0.08224(0.00002) 0.06646(0.00563)
10 0.08407(0.00003) 0.04076(0.00200)
5 0.08495(0.00002) 0.04675(0.00305)
1 0.16997(0.00015) 0.07016(0.0932)
1
5

0.41659(0.00007) 0.13641(0.01737)
1
10

0.41675(0.00003) 0.13269(0.02316)
1
15

0.41714(0.00004) 0.08747(0.01390)
1
20

0.41734(0.00004) 0.14947(0.03030)
− 1

20
0.41575(0.00004) 0.17381(0.03298)

− 1
15

0.41818(0.00005) 0.17145(0.03363)
− 1

10
0.41500(0.00009) 0.19120(0.03361)

−1
5

0.41990(0.00068) 0.12483(0.01689)
-1 0.17095(0.00009) 0.10419(0.00936)
-5 0.08527(0.00001) 0.05271(0.00525)
-10 0.08319(0.00002) 0.9792(0.02008)
-15 0.08293(0.00003) 0.04881(0.00178)
-20 0.08135(0.00002) 0.08199(0.00772)
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Table 4: Misclassification Rate of ODR v.s OSDR when a/c = 10.

θ1
θ2

Methods
ODS OSDR

20 0.05466(0.00001) 0.04376(0.00206)
15 0.05463(0.00002) 0.04048(0.00113)
10 0.05536(0.00001) 0.03917(0.00185)
5 0.05670(0.00001) 0.04284(0.00246)
1 0.09930(0.00014) 0.03425(0.0150)
1
5

0.41693(0.00007) 0.06918(0.00412)
1
10

0.43857(0.00007) 0.10541(0.01273)
1
15

0.44206(0.00005) 0.15076(0.02254)
1
20

0.44264(0.00005) 0.15539(0.02690)
− 1

20
0.44390(0.00005) 0.14807(0.02543)

− 1
15

0.44144(0.00007) 0.18340(0.03024)
− 1

10
0.44478(0.00043) 0.17131(0.01922)

−1
5

0.41482(0.00007) 0.17405(0.01752)
-1 0.10357(0.00001) 0.08252(0.00780)
-5 0.05647(0.00001) 0.07746(0.01183)
-10 0.05462(0.00001) 0.06532(0.01047)
-15 0.05457(0.00001) 0.05015(0.00714)
-20 0.05496(0.00002) 0.06278(0.01127)
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Table 5: Misclassification Rate of ODR v.s. OSDR in Static subpsace II
d ODR OSDR

a
b
= 1

70 0.24541(0.00031) 0.02927(0.01)
50 0.25497(0.0002) 0.05635(0.01784)
30 0.25469(0.00457) 0.3249(0.0101)
10 0.25385(0.00333) 0.04339(0.01213)
5 0.25445(0.00522) 0.04399(0.00904)
2 0.24131(0.00026) 0.06183(0.00618)

a
b
= 3

70 0.25752(0.00025) 0.01718(0.00182)
50 0.2623(0.00015) 0.02624(0.00509)
30 0.26575(0.00013) 0.02793(0.00332)
10 0.25984(0.00019) 0.03165(0.00288)
5 0.26203(0.00015) 0.05055(0.00822)
2 0.26476(0.00024) 0.05925(0.00545)

a
b
= 5

70 0.25486(0.00035) 0.01445(0.00073)
50 0.24858(0.00016) 0.01499(0.00071)
30 0.25647(0.0003) 0.02439(0.003)
10 0.25533(0.00025) 0.01173(0.00011)
5 0.25875(0.00026) 0.04437(0.00786)
2 0.25144(0.00023) 0.05251(0.00448)

a
b
= 7

70 0.22765(0.0004) 0.00737(0.00003)
50 0.2303(0.00027) 0.01825(0.00062)
30 0.2327(0.00033) 0.01941(0.00104)
10 0.22761(0.00046) 0.03069(0.00173)
5 0.22921(0.00033) 0.03331(0.0018)
2 0.23275(0.00043) 0.06095(0.00414)

a
b
= 10

70 0.17115(0.00112) 0.01734(0.00051)
50 0.17276(0.00111) 0.01957(0.00273)
30 0.1682(0.00061) 0.01361(0.00021)
10 0.17704(0.000144) 0.03829(0.00188)
5 0.17119(0.00105) 0.04751(0.00314)
2 0.17651(0.0007) 0.06663(0.0026)
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Table 6: Misclassification Rate of ODR v.s. OSDR when a/c = 10 in rotating
subspace

Low Dimension Rate ODR OSDR

d = 30

1 0.72295(0.00064) 0.14161(0.00338)
3 0.45043(0.00593) 0.08272(0.00369)
5 0.31948(0.00425) 0.08185(0.00709)
7 0.27835(0.0043) 0.08287(0.00465)
9 0.24609(0.00158) 0.03412(0.00057)

d = 10

1 0.7158(0.00087) 0.15532(0.00445)
3 0.45891(0.0069) 0.08191(0.00449)
5 0.325(0.00325) 0.07676(0.00582)
7 0.29716(0.00193) 0.07264(0.00468)
9 0.22717(0.0028) 0.05821(0.00401)

d = 5

1 0.72765(0.00046) 0.17196(0.00237)
3 0.45604(0.00384) 0.09004(0.00597)
5 0.31909(0.0042) 0.0654(0.00301)
7 0.27175(0.00217) 0.06575(0.00529)
9 0.24768(0.00226) 0.0774(0.0057)

d = 2

1 0.72845(0.00063) 0.21832(0.00529)
3 0.43291(0.00877) 0.1002(0.0082)
5 0.33468(0.00685) 0.14884(0.01861)
7 0.28727(0.00348) 0.09889(0.01129)
9 0.25168(0.00223) 0.06127(0.00276)
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Table 7: Misclassification Rate of ODR v.s. OSDR when a/c = 6 in rotating subspace
Low Dimension Rate ODR OSDR

d = 30

1 0.64932(0.00256) 0.09619(0.00253)
3 0.56964(0.00113) 0.08652(0.00692)
5 0.43693(0.00131) 0.08528(0.007)
7 0.37511(0.00153) 0.05081(0.00443)
9 0.34928(0.00062) 0.05036(0.00471)

d = 10

1 0.62667(0.00149) 0.12393(0.00356)
3 0.56253(0.00172) 0.1062(0.00492)
5 0.44853(0.00091) 0.06941(0.00781)
7 0.39529(0.00106) 0.05147(0.00552)
9 0.35529(0.00059) 0.072(0.00539)

d = 5

1 0.63783(0.00259) 0.15737(0.00264)
3 0.55328(0.00236) 0.16356(0.01231)
5 0.44769(0.00073) 0.09588(0.00958)
7 0.39021(0.00032) 0.05473(0.00188)
9 0.35207(0.00072) 0.06887(0.01006)

d = 2

1 0.63207(0.0027) 0.19708(0.00354)
3 0.52392(0.00463) 0.13927(0.01334)
5 0.45896(0.00072) 0.8324(0.00354)
7 0.38201(0.00071) 0.09072(0.09072)
9 0.3544(0.00039) 0.0706(0.00512)
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Table 8: Misclassification Rate of ODR v.s. OSDR when a/c = 3 in rotating subspace
Low Dimension Rate ODR OSDR

d = 30

1 0.57187(0.00111) 0.12452(0.00944)
3 0.5674(0.00051) 0.07531(0.01172)
5 0.44044(0.00032) 0.08279(0.01087)
7 0.39751(0.00032) 0.06512(0.00562)
9 0.36469(0.00015) 0.07125(0.0127)

d = 10

1 0.57228(0.0013) 0.1576(0.00904)
3 0.55076(0.00118) 0.13188(0.01316)
5 0.44408(0.00029) 0.08784(0.0125)
7 0.38857(0.00032) 0.05069(0.00351)
9 0.36357(0.00037) 0.07572(0.01228)

d = 5

1 0.57951(0.00093) 0.17467(0.00631)
3 0.56457(0.00061) 0.11052(0.00989)
5 0.45368(0.00017) 0.09173(0.00757)
7 0.39179(0.00015) 0.08529(0.01082)
9 0.35573(0.00049) 0.05375(0.00751)

d = 2

1 0.56763(0.00094) 0.25587(0.00689)
3 0.55684(0.00068) 0.16439(0.01494)
5 0.45016(0.00035) 0.1144(0.01074)
7 0.39577(0.00042) 0.12876(0.01598)
9 0.35548(0.00021) 0.12548(0.01055)
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Table 9: Distribution of digits in USPS dataset.

0 1 2 3 4 5 6 7 8 9 Total
Train 1194 1005 731 658 652 556 664 645 542 644 7291
Test 359 264 198 166 200 160 170 147 166 177 2007

Table 10: d v.s. misclassification rate in USPS digits recognition.

2 3 4 5 7 10 15 20
ODR 0.2834 0.2000 0.1704 0.1443 0.1080 0.0990 0.0751 0.0702
OSDR 0.2411 0.1563 0.1323 0.1103 0.0943 0.0783 0.0646 0.0594
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