Recurrent Localization Networks applied to the Lippman_fSchwinger Equation

Conlain Kelly, Surya Kalidindi *Mined Group, Georgia Institute of Technology*

BACKGROUND:

- Designing new materials requires linkages between process, structure, and property
- Estimating and understanding these linkages involves testing and simulation
- Simulating physics over high-dimensional structures is expensive
- Machine learning models are faster than traditional simulations, but less accurate and interpretable
- Physics-informed learning is a rapidlygrowing field

METHODS

- Convert governing equation to equivalent
 Lippman-Schwinger (L-S) form
- 2. Approximate L-S operator with an ML model and solve iteratively
- 3. Train end-to-end on synthetic data
- 4. Result: learned L-S iteration!

RESULTS

- $\approx 1000 \text{X}$ speedup over FEA baseline
- More accurate and efficient than standard deep learning models
- Iterative model was more powerful than a single feed-forward network with identical structure and number of parameters

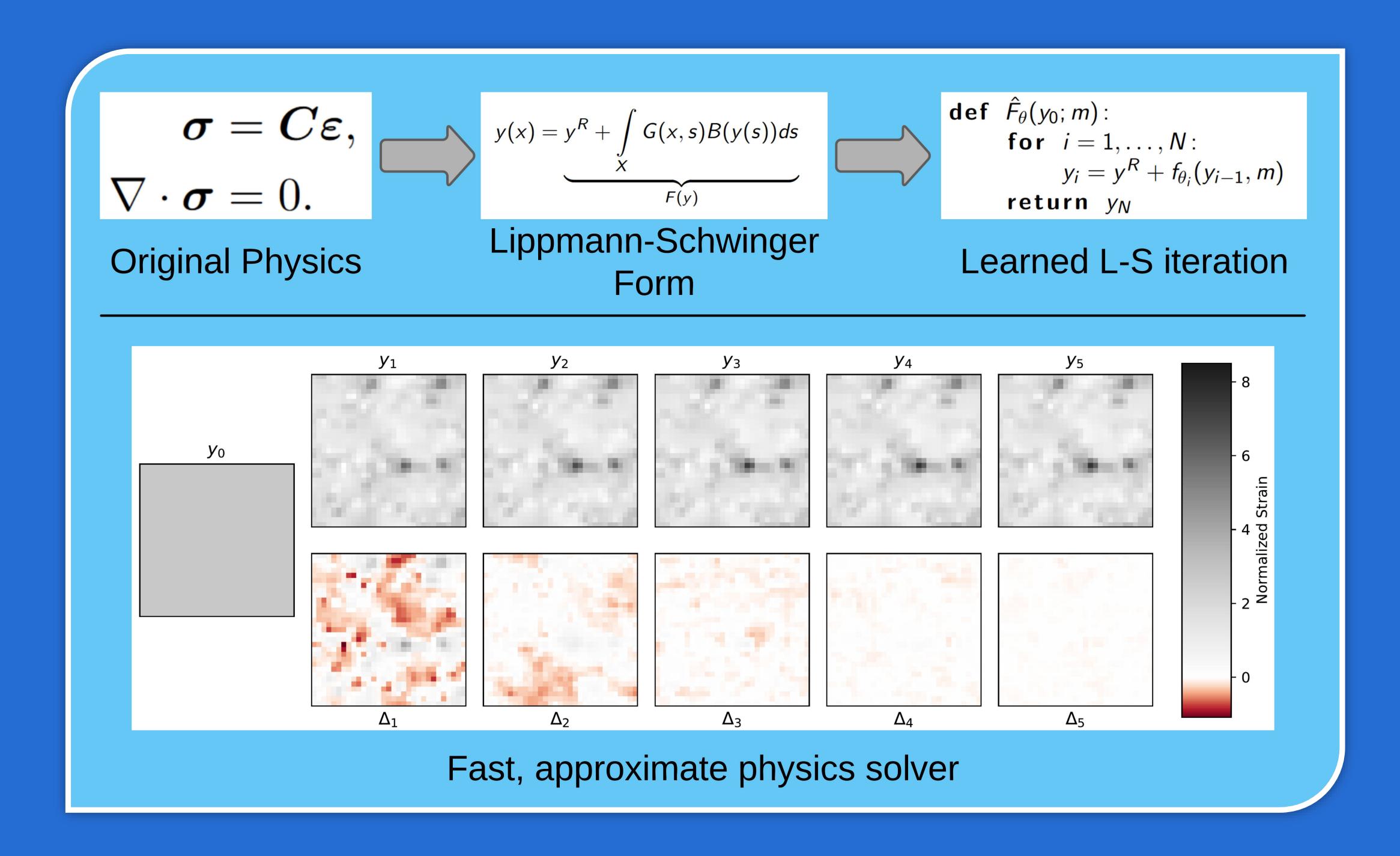
CONCLUSIONS & FUTURE WORK

- Baking physics into a learning method creates more efficient and accurate models
- Recurrent, fully-convolutional networks are excellent for modeling physical systems
- Gradient-based formulation allows for property optimization through MLmodel

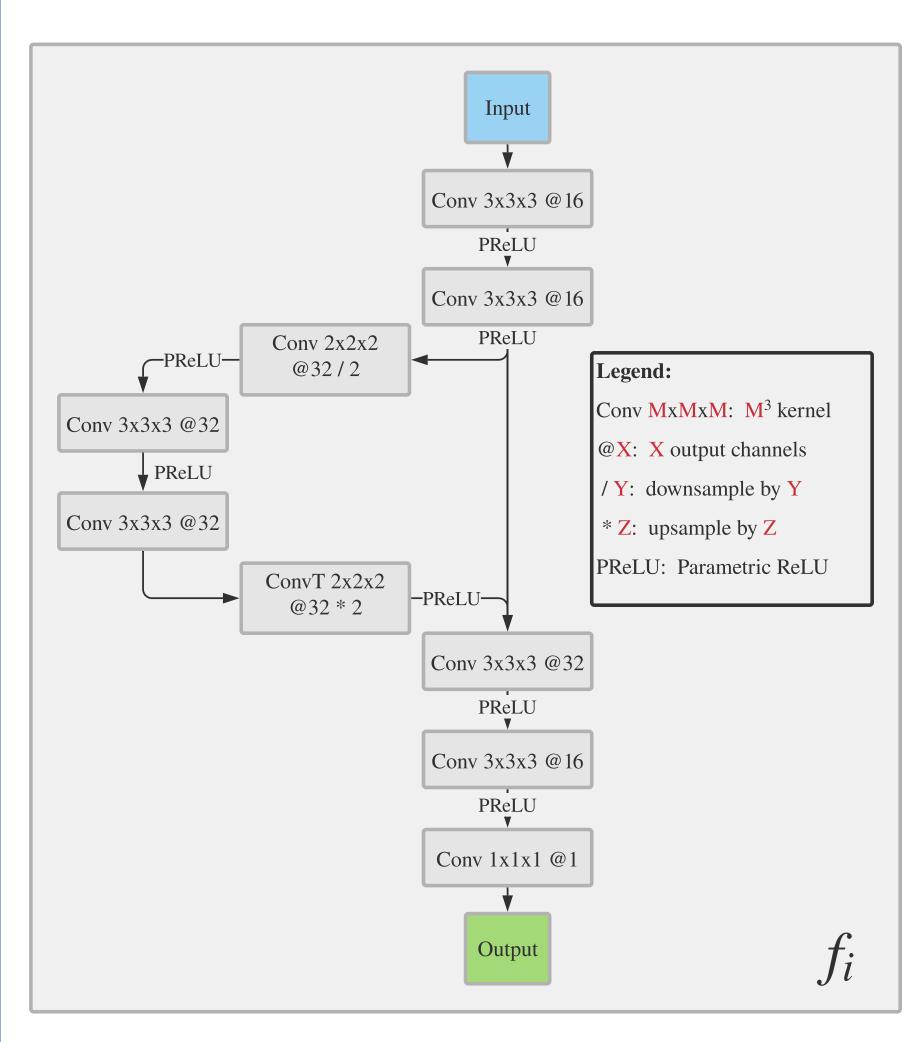
Acknowledgements:

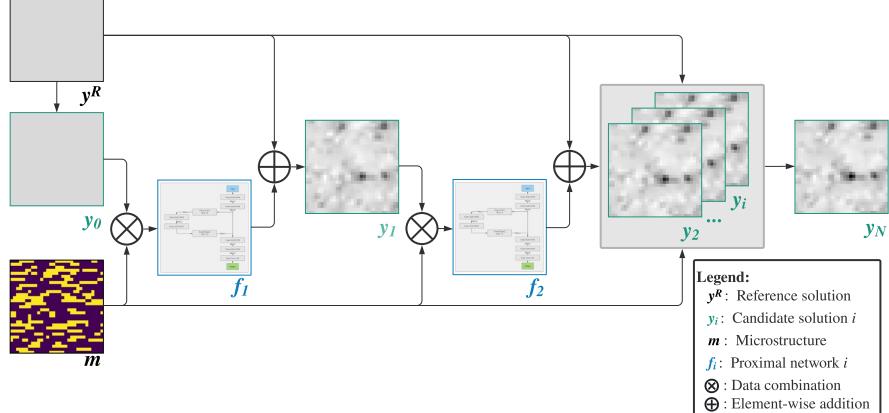
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039655. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.

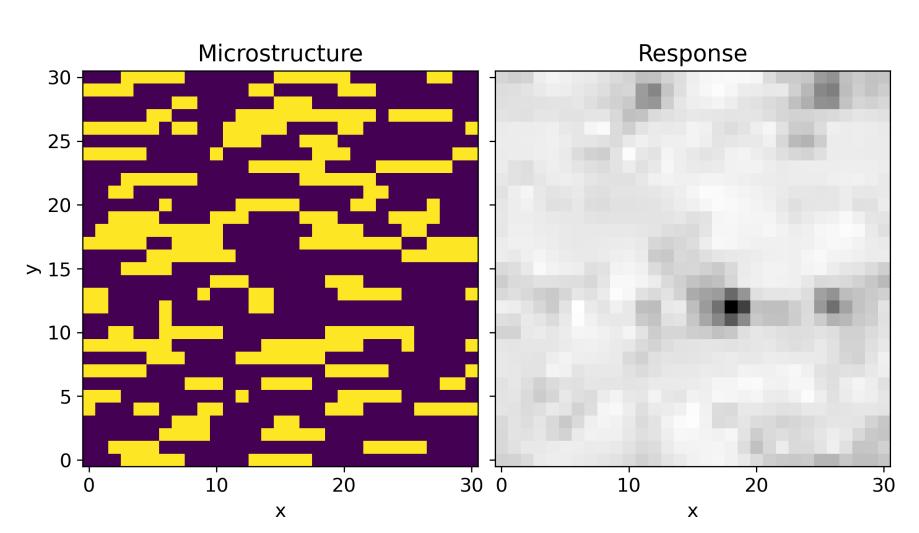
Embedding physics into machine learning creates better models. These models can accelerate the development of new materials.



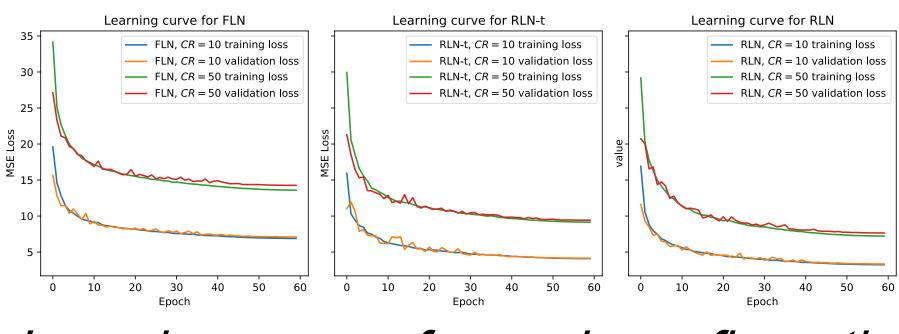
Scan me to download the full paper!







Example input/output pair



Learning curves for each configuration

Model	MASE (mean \pm std. dev.)
Contrast-10	
Comparison DL model [11]	3.07%±1.22%
FLN	4.98%±1.49%
RLN-t	$1.81\% \pm 0.58\%$
RLN	1.21%±0.37%
Contrast-50	
Comparison DL model	5.71%±2.46%
FLN	9.23%±3.29%
RLN-t	4.26%±1.65%
RLN	2.92%±1.17%

Results for each configuration