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BACKGROUND: - - - -

* Designing new materials requires linkages E m bed d I n g p h yS I CS I n tO m a Ch I n e
between process, structure, and property

* Estimating and understanding these
linkages mvolves testing and simulation I . t b tt d I

* Simulating physics over high-dimensional e a rn I n g C re a eS e e r m O e S .
structures 1s expensive

* Machine learning models are faster than
traditional simulations, but less accurate T h ese m Od e I S Ca n a Cce I e rate th e

and interpretable

* Physics-informed learning is a rapidly-

development of new materials.

METHODS

1. Convert governing equation to equivalent

Lippman-Schwinger (I-S) form def Fy(yo: m):
_ R i
2. Approximate [-S operator with an ML o C€, [ > )=y +X/ Gx.5)Bly(s))ds [ :> for i=1, s N :
model and solve iteratively V- -0=0 ' = ' retu{;:y}ll\, + fo,(yi-1, m)

3. Tram end-to-end on synthetic data

o Lippmann-Schwinger
4. Result:learned [-Siteration! Orlglnal PhySICS PP 9

" Learned L-S iteration
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RESULTS
* =1000Xspeedup over FEA baseline
e More accurate and efficient than standard

(o))

deep learning models

* Iterative modelwas more powerfulthan a

T
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single feed-forward network with identical

Normalized Strain

T
N

structure and number of parameters

CONCLUSIONS & FUTURE WORK

* Baking physics into a learning method

creates more efficient and accurate models Fast, approximate physics solver
* Recurrent, fully-convolutionalnetworks are

A2 A3 A4

excellent for modeling physical systems
 (Gradient-based formulation allows for

property optimization through ML model
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Proximal Network Architecture
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Learning curves for each configuratiol

Model MASE (mean + std. dev.)
Contrast-10
Comparison DL model [11] 3.07%+1.22%
FLN 4.98%+1.49%
RLN-t 1.81%+0.58%
RLN 1.21%40.37%

Contrast-50

Comparison DL model

5.71%+2.46%

FLN 9.23%+3.29%
RLN-t 4.26%+1.65%
RLN 2.92%+1.17%

Results for each configuration
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	Embedding physics into machine learning creates better models. �These models can accelerate the development of new materials.

