STRUCTURAL DEAIGR OF AN ORFICE BUIIDING

4 Theans

Ocmprising the struetreal pleas, dotaila, and specifications for the construction of a reinforced conerete office buildiag

Presented to the faculto of the Graduate seheol 02 Georgia School of Teahnolog

```
    by
ROBRRT 4. JEWETM
```

In paitial fulfillmont of the requirements for the DEGRUS OF MASMER OF SCIEMOE

II
GIVIL EAGIMBERIMG

May 15. 1984

Atlanta, Georgia
May 15, 1934

Approved:

ACKHOMIAEDGMETYS

It is with gratitude that I acknowledge the asaistance of the follewing mon:

Mr. Lamfy DeGive through whom I met Mr. Fiake.
Mr. Robert S. Fiske, Consulting Fngineer, of Atlanta, from whom I obtained the arohitectaral and struotural plans for the Bank and Office Building, the desigen for which compose this thesis.

Mr. A. C. Gage, General Sales Manager of the Otis Blevator Company, of Atlenta, who franished apecifleations and installation plans for olevators.

Mr. H. R. Roberts, Pield Ingineer of the Portland Cement Association, who gave me information and literature pertaining te cement and conorete.

Mr. C. B. McGeohee, Truscon Steel Company, from whom I obtained Deaign Chart $* 19$.

Mr. J. M. Smith, Chief Chemist of the F. J. Cooledge and Sone Company, who outlined the speciflcations for paint.

Mr. F. W. Stone, Bethlehem Steel Compeny, who farnished his company's Catalog S-30.

Mr. R. W. Johnson, Secretary of the Code Authority of Reinforcing Materials Fabrioating

Industry, of Chioago, through whose correspondence I obtained information pertaining to reinforaing bars.

Professor F. C. Snow, who made it poseible for me to work for my degree, for his instructions and advice, and at all times friendy encouragements.

BIBLIOGRAPHY

Aseistance was obtained from the following referemces:

Fiske, R. S., structural designa and details drawn in the office of Mr . Fiske, 1926.

Hool, G. A., Reinforced Conerete Conatruotion, McGraw-Hill Boot Company, New York, 1927, Vol. I.

Hool. G.A., and Johnson, N. C., Handbook of Building Construotion, MoGraw-Hill Book Company, New York, 1929, Vol. I \& II.

Hunt, R. H., Specifications for the Chattanooge Savings Bank and Trust Company Bank and Office Building, B. H. Hunt Company, Chattanooga, Tenn., 1926.

Snow, F. C., mimeographed notes written for use in ecarses C. B. 155-6.

Standard Structural Shapes, Bethlehem Steel Company, Bethlehem, Pa., 1989, Catalog S-30.

Specifications and installation drawings, Otia Rlevator Company, 1934.

Specifications, Concrete Reinforoing Steel Institute, Chicage, 1932.

Urquhart, I. C., and O^{\prime} Rourke, C. B., Design of Steel Struetures, MoGraw-Hill Book Company, New York, 1930.

Design and Control of Concrete Mixtures,
Portland Coment Association, 1933, Pifth Bdition.
The Building Code of the City of Atlanta, Goorgia, Byrd Printing Company, Atlanta, 1924.

NOTATIONS AND ABBREVIATIONS

The notations used are standard as defined in the Joint Committee Specifications, and also include:
$V_{c}=$ shear to be carried by the concrete.
$\nabla_{s}=\mathbf{V}-\nabla_{c}=$ shear to be carried by web reinforcement.

* = pounds

1 = feet
" = inches
口 = sq. = square
\#/ " = pounds per square inch
coo. = center to center
J. C. S. $=$ Joint Committee Specifications

Sec. = Section
Par. = paragraph.

INDRX

Page
Acknow ledgments 111
Bibliography ∇
Notations and abbreviations Vii
Discussion 1
Sample Calculations 6
Figure 1 following 7
Figure 2 following 8
Specifications 12
Disoussion of Charts and Tables 20
Charts and Tables Tables
Coefficients of $\mathrm{m}^{\text {n }}$ 1
Moments and Shears in Rectangula r 2 Beams
Same 3
Area of Tension Steel 4
Same 5
Bond 6
Same 7
Moments and Shears in Flat Slabs 8
Area of Tension Steel for Flat Slabs 9
Vertical Stirrup Spacing 10
Rectangular Eccentric Columns 11
Compression over entire section
Redtangular Eccentric Columns 12
Tension over part of the section
Charts and Tables (oontinued) Tables
Circular Eccentric Columns 18
Compression over entire section and Tension over part of section
Sectional area of bars 14Area of steel per foot of slab
Bar spacing 15
Perimeters of groups of bars Length for bond Weight of bar per foot
Volumes 16
Decimals of foot 17
Square of span
Moments of Inertia 18
Bar Bending 19
Wall Chart of Λ_{s}, Σ_{0} and Wt. 20.
SchedulesSchedule
First and second floor slabs 1
Third and fourth floor slabs 2
Roof and pent house roof slabs 3
First floor beams 4
Second floor beams 5
Third floor beams 6
Fourth floor beams 7
Roof beams 8
Pent house roof beams 9
Structural Plans Plan
Foundation plan 1
First floor plan 2
Structaral Plans (continued) Sheet
Second floor 3
Third floor 4
Fourth floor 5
Roof and Pent house roof 6
Column schedule 7
Details - Grades 8
Details - Stairs 9
Details - Girders 10
Architectural plans and elevations 11

DISCOSSION

In this design of a reinforced conerete office building, with the structural plans and accompanying specifications, no attempt will be made to supply the necessary information and specifications to bring the building to completion ready for occupancy, but rather to concentrate on the stractural phase of the construction, thereby gaining a more detailed and -omplete study and solution of strectarel design.

At the outset, conditions were created so that I might imagine myself a practicing ongineer to whom an architect has come for the structural design for his building. To this end a complete set of arahitect's plans were obtained through the courtesy of Mr. Fiske. The plang were dram by R. H. Hunt Company, Arohitects, Chattanooga, Tenn., and Dallas, Texas.

From this point, then, design began, and as problems and questions arose, they were met and answered by Professor Snow, with whom frequent consultations were made.

The following discussion is not intended as a treatise on the reinforeed concrete structural design, but as a resumé of those problems which seem worthy of note.

Although the Joint Comittee Speoifications give moments coefficionts for $\quad L^{2}$ for u e in caloulating moments in continuous beams, in general practice these coefficients are not frequently applicable, inasmuch as their use is limited to spans of equal length saperimposed with a uniform load throughout. I have used the Hardy Cross mothod of moment distribution in a rigid frame structure in my design caloulations. This method admits of easy solution, and I profor it to the same solution by the three moment theorem with which I had besome acquainted during my connection with a practioing engineoring office in Washington, D. C.

In the caleulation of moments in the rigid frame, there frequently arises a doubt as to the actual distribution of stresses into the respestive members. Hewever, any method that will give momonts larger than those thetwill actusily occur is a perfectly satisfactory one to wet. The orloulations will be on the side of safety, but, of course, without respect to economic considerations.

In the almbee of a beam sise, it may be noted

1. Suggested by Prof. Snow.
that by using a relatively deep beam as compared to the width, the Σ_{0} can be reduced so that the steel used will approximate both A_{s} and Σ_{0} simultaneously, and thas eliminate, to a great extent, the use of a large excess of ateel above that required to meet the A_{s} needs alone. The latter unbalanced condition is more frequently enceuntered in practice due to architectural limitations on the depth of the beam. Another consideration is the using of uniform sized beams as much as possible, although upon close calculations smaller aizes could be safely used. This uniformity admite of greater ease of form building on the job, and reduces not only the cost but also the time of constructien.

When stirrups were needed, I generally used specialy anchorage to carry $V=0.03 f_{c}^{\prime}$, and then permit the stirrups to carry the remainder of the shear. This reduces the number and size of stirrups with only a small increase in the size of the longitudinal steel. In no case did I omit vertical stirrups by assuming or oaleulating that the bent-up longitudinal reinforeing carried diagonal tension. In the pent house roof framing, beams have been used of sufficient aize to give the unit shear a value less
than $0.03 f_{c}^{\prime}$, and thas eliminate ontirely the use of stirrups.

Professor Snow has suggested that maximan of unit shear be limited to $\nabla=0.06 \mathrm{f}_{\mathrm{c}}^{\prime}$. In the Joint Committee specificatiens a maximum of $0.18 \mathrm{f}_{\mathrm{c}}^{\prime}$ is permitted with the combination of special anchorage and web reinforeement. The change has been adranced on the belief that $0.12 f_{c}^{\prime}$ is an excessive allowable working stress for the conorete. Another reason is that the J.C.S. require a 85% reduction in stirrup spacing for this higher stress, resulting in too great a number of stirrups.

Professor Snow has also indicated that in using piles in fomdations, all the formulae ever devised will be unsatisfactory unless these formulac have been made or calibrated for the particular locality under consideration. The only satisfactory method of determining the capacity of a pile is to drive one until a penetration not exceeding $1 / 4^{\prime \prime}$ is obtained under a stroke of the pile-driver. This test pile is then loaded until slight settlement occurs. The load causing this settlement is the ultimate pile bearing, and is divided by a factor of safety of g or 4 for the actaal working load.

The original design of the building called for
caissons 5'-0" in diameter to be sank to roak beneath oach column. However, for the aake of design, I have assumed firm olay soil beneath the building, and have used 3.5 tens/aq.ft. as the bearing value of the soil. I have also used the concrete, cast-in-place, type of piling with a safe working value of 13.5 tons/pile. Standard apecifications have not been quoted Verbatum, but reference to them has been made.

As a general rule, mast that is not in the form of loose scale increases the bond strength of a bar. Any surface coating on a bar that is loose or that would seem likely to slip off, such as mud, grease or loose rust scale, decreases the bond strongth. Except for a film of rust, or mill acale, which is not objectionable, it is best to have the bars clean. ${ }^{2}$
2. Johnson, R. W., Correspondence in answer to inquiries coneerning factors affecting bond strength.

SAIPTE CALOULATIONS

SAMPLE CALCUTATIONS

The following sample oazeulations are included to illustrate my method of design.

In the tile floor design, the architect required the slab to be a $6^{\prime \prime}$ tile with a 8^{n} top covering (A). Pigure 1 shows all the figures used in the design of 4S-1. The dead loads were asswmed, and a live load of 76 \#/a was wad ${ }^{4}(B)$. Hrgt a shear test caloulation was made after aseming a'tile apacing of 16"c.e. (C), because this requirement usually governs the design. Over the support the shear is carried by the stem between the tile of $b^{\prime}=5^{n}(D)^{5}$ Using a $1^{\prime \prime}$ fireproofing at the top, the effective depth was found to be $d=7 \%$. The formulae used for shear were $V=\boldsymbol{T} \cdot \mathrm{W} \cdot \mathrm{I}$, and $\nabla=\frac{V}{\mathrm{~V}} \quad$ (I). Special
anchorage and no wob reinforcing mast be uged.
The monent was tound by the formula $X=(1 / 18) \cdot W \cdot I^{2}$.
3. The marking of the rarious structural members on a floor furnishes a means of ready identification in the field. In the floor slab marking, the firet figures represent the floor to whioh the slab belongs, the "g" denotes "mlab", and the last figures represent the slab's own number on that floor. Thus, $48-1$ signifies the firgt alab on the fourth fleor.
4. Atlanta Building Code, Sec. 89, p.52.
5. J. O. 8., 8ec. 184.
6. See toetnote 28, p.23.

The figures are shom at (F)'. The arrangement at (G) of all the values needed for the design was suggested by Professor Snow. It has proved to be a time saver in routine design. The Λ_{s} was found by $0.76 \cdot \frac{1}{d}={ }^{8}$ $\frac{0.76 \cdot 4.86}{7}=0.530^{\circ}$, and the Σ_{0} was determined by Table $\# 6$.

The total shear per tile row is distributed at the support over a $16^{\prime \prime}$ width, and therefore the load per foot of girder will be 1.75. $\frac{12}{16}=1.3 \mathrm{kips} / \mathrm{ft}$. , the figurea being shown at (H). Diaking the design of the girder reference to (H) gives at once the uniform load per foot.

The amount of steel to be carried through the bottom into the supperts is $7 / 12$ the area of the positive reinforcement. Referring to Table \# 80 , which is dieplayed before me, I select a B-bar ${ }^{10}$ of $7 / 8^{n} \phi$ and an $A-b a r^{\prime \circ}{ }^{\circ} f^{5} / 8^{n \phi}$. The arrangement at (J) gives in an easily accossible form the
7. See Specifioation, Sec. 107, p. 15.
8. see derivation p.2l.
9. J. C. S., Sec. 140 (a).
10. The standard bar notation as given here is: A-bar, a straight bar through the bottom of
the beam.
B-bar, a bar bent-up to become negative reinforcement over the support.
c-ber, a straight bar placed in the top.

45-1 Assume 6.Z Ti/e $16^{\prime \prime}$ c.
(A)
(c)

$$
\begin{align*}
& L L .=75 \% \text {. } \\
& \text { Finished Flo }=15{ }^{\#} / G^{\prime} \\
& \text { Whot slab : } \frac{654 / 0^{\prime}}{155 \% / n^{\prime}} \\
& 155 \cdot \frac{16}{12}=206 \\
& b^{\prime 2} 4+\frac{1}{2}(2)=5 \tag{D}\\
& V=\frac{1}{2} \cdot 155 \cdot 17+\frac{16}{12}=1750 \\
& v=\frac{1750 \cdot \theta}{5 \cdot 9 \cdot 7}=57 \% \tag{E}\\
& \frac{1}{\sqrt{2}} 206 \cdot 17.0^{2}=4,860 \text { (F) }
\end{align*}
$$

(G)

Design computations for T.C. T. slab
Figure 1.
required steel to be used when drawing the structural plans.

As an example of continous beam design I am using my computations of B405-6-7, shown in Figure 2.

The line drawing at (A) gives a concise form in which to balance moments by the Hardy Cross method. I write the beam number and clear span length above each span, and use lower case letters to designate those points at which caloulations of moments and shears must be made. I did not use three-way distribution of moments into columns as well as into beams. Assuming the stiffnes factor of the center span to be $k=1$, the stiffness factor for each other member is then found from the relation $\underset{\text { (member under }}{\text { consideration })}=\frac{\frac{E I}{L} \quad \text { (member under consideration) }}{\frac{E I}{L} \quad \text { (member for which } k=1 \text {) }}$. Assuming that the beams will be made the aame size throughout the three spans, the EI term cancels out of the equation, and the computations appear at (B).
11. In continuation of Footnote $\#$ 3, p. 6, the beams are identified by the notation B405. The "B" signifies "beam". The first digit gives the floor number and the other two digits the respective number of the beam. A modification of this appears in the marking of the roof and pent house roof beams. These beams are designated by RB5 and PRB5, respectively.

3405-6.7

$$
B 5=1: 3^{\prime \prime}
$$

Assume in $^{*} \times 24^{\circ}$
$B 6=21^{\prime} 0^{\prime}$
$B \gamma^{2}=17^{\circ} 0^{*}$

(B)

$$
\begin{equation*}
k_{5}=\frac{1 / 14.25}{1 / 21.0}=1.5 ; k_{y} \quad \frac{V_{11.0}}{1 / 21.0}=1.2 \quad \quad c d=\frac{1}{2.5} \cdot 0.4 ; \quad f_{7}=\frac{1}{2.2}=0.45 \tag{c}
\end{equation*}
$$

$\frac{1}{2} \cdot 2.8 \cdot \overline{4.25}^{2}=47.1$

$$
t \cdot 2.8 .1^{2}=1030
$$

$$
\frac{1}{2} \cdot 1.8 \cdot 17^{2}=4.4
$$

(F)

$$
\begin{aligned}
& M_{b}=-26.5+15.61 \sqrt{33}-\frac{28}{2} \sqrt{113}-+137 \\
& M_{e}=-697+290 \cdot 10.5-\frac{1.9}{2}: 10.5=+58.3 \\
& M=-81.4+18.7 \cdot 8.5-\frac{11}{2} \cdot 8.5^{2}=+12.2
\end{aligned}
$$

(H)

$$
\begin{aligned}
& T=244-15.0=24 \\
& V^{\prime \prime}=6 \cdot 4.25 . \frac{24}{24.4}=33^{\prime \prime} \\
& V_{5}=29.8-15.0=14.8 \\
& x=6 \cdot 21.0 \cdot \frac{14.6}{24.3}=60^{\prime \prime}
\end{aligned}
$$

Desion compuations for tipial continous buare system.
Figure \#z

$$
\begin{align*}
& \text { (E) } \tag{D}\\
& \nabla_{G}=2,0 \cdot 14.25-\frac{683}{14.25}=15.6 \quad V_{c}=244 \\
& \nabla_{a}=\frac{2.8}{2} \cdot 21.0+\frac{7.9}{21.0}=2440 \quad \nabla_{f}=29.8 \\
& \nabla_{g}=\frac{18}{2} \cdot 7+\frac{519}{170}=18.1 \quad \nabla_{m}=12.9
\end{align*}
$$

The fixed end moments for the three spans heve been determined at (D) by ${ }^{12} M=(1 / 12) \cdot w \cdot I^{2}$. The uniform load includes the weight of the beam as well as the floor reactions and other superimposed loads. These moments are written in (A) with a positive sign at the left end of the span and a negative sign at the right end. ${ }^{3}$

Since the momente to be balanced will be prorated to the members in proportion to their respective stiffness factors, the member for which $k=1$ will get the reciprocal of the sum of the factors times the balancing moment. Thus at ed, B406 will receive $1 / 2.5=0.4$ of the balancing moment (C). A moment of $+103.0-47.1=+55.9$ is to be balanced. The constant factor from (C) of 0.4 is now used to give the moment going to $\underset{\sim}{d}$, so that B 406 receives $0.4 \cdot 55.9=22.4$ kip-ft. The remainder, 55.9-22.4= 33.5 kip-ft., goes to $C_{\text {_, and }}$ is most satisfactorily found by subtraction. In order to make all
12. This equation should not be confused with that given in Section 107 of the Specifications, p.15. The above equation gives the fixed end moments for a beam carryingáviformly distributed load for use as the initial moment to be balanced by the Hardy Cross method. See p. vil for the fixed end moment equation for a concentrated load.
13. Hardy Cross notation.
the moments around od in this bracket balance, the moments just determined must each carry a negative sign.

After completing balances and carry-overs in three brackets, ${ }^{14}$ the shears are found by

$$
\nabla=\frac{1}{2} \cdot w \cdot \mathbf{I}+\frac{M_{R}-M_{L}}{I},
$$

in which the second term on the right corrects for unequal moments at the two ends of the span. It must be carefully noted that the sign of the moment at the left end of the span is positive as determined by Hardy Cross, but is in reality negative as will be seen if the moment diagram is drawn. The correction factor in the above equation has the proper for signs only ${ }_{A}$ direct use of the moments from (A).

Next, the moments are found at the center line of each span by means of the general moment equation

$$
M_{x}=-M_{A}+V_{A} \cdot x-\frac{w \cdot x^{2}}{2}-P \cdot y \cdot
$$

In this general equation the sign of the first term on the right is for use with the moments as taken directly from the Hardy Crosa solution at (A).

The values from (\mathbb{E}) and (F) are tabizated at (G). Referring to Table \# 3 we find that for our beam the
14. Three balances and successive carry-overs gives resulting moments sufficiently accurate for our design purposes.
shears are in region Y^{15}, requiring web reinforcement, caloulations for which are given at (H). At $\nabla=60$ \#/an the beam carries $15.0 \mathrm{kips} \mathrm{a}^{16}$ and at f the web reinforcement must carry $\nabla_{s}=V-\nabla_{c}{ }^{17}=$ 29.8-15.0 $=14.8 \mathrm{kips}$. The distance beyond which no web reinforcement is necessary in a uniformly loaded beam is expressed by $x^{n}=6 \cdot L \cdot\left(V_{5} / V\right)^{18}$ Therefore stirrups are needed for $x^{\prime \prime}=\frac{6 \cdot 21.0 \cdot 14.8^{\prime}}{29.8^{\prime}}=$ 63". From Table \# 10 it is found that a $\frac{1}{2} n \phi$ stirrup spaced $10^{\prime \prime}$ c.c. will be satisfactory, so that by placing the first stirrup in the plane of the face of the support 7 are needed. In choosing longitudinal reinforcing the B-bars will be lapped between beams, but C-bars ${ }^{19}$ must nevertheless be used to meet the Σ_{0} requirements.
15. See Footnote $28, \mathrm{p} .23$.
16. Refer to Table \# 3.
17. See p. Vii.
18. See p. vii.
19. See Footnote 10, p. 7.

SPECIFICATIONS

The design and construction of the Office Building shall be carried out in accordance with the Standard Specifications for Concrete and Reinforced Concrete as approved by the Joint Committee, August 1924, except for changes as noted. Section 10. Fine aggregate shall be of such quality that mortar briquettes, cylinders, or prisms, consisting of one part by weight of Portland cement and three parts by weight of fine aggregate, mixed and tested in accordance with the methods described in the "Standard Specifications and Tests for Portland Cement" (Serial Designation: C9-21) of the American Society for Testing Materials, will show a tensile or compressive strength at ages of 7 and 28 days not less than 100 per cent of that of $1: 3$ standard Ottawa sand mortar of the same plasticity made with the same cement.

Section 14. Coarse aggregate shall range in size from fine to coarse within the following limits, the percentages to be by weight:

Passing 3/4" sieve	not less than 95\%	
n	No. 4	"

Section 21. The metal reinforcements shall
meet the following requirements: ${ }^{20}$
Reinforcing steel shall be domestic deformed bars of intermediate grade complying with the American Society for Testing Materials specification Al5-30 rolled from identified heats of new billets manufactured by the open-hearth process. No rerolled material will be accepted. Bars shall bear mill identification symbols whereby they can be traced to the mill of origin. The reinforcing bar sub-contractor shall execute an affidavit in proper form certifying to the above facts, stating specifically the mill which manufactured the billets and their numbers and shall accompany such certificate with authenticated copies of the regular mill test reports.

Section 24. Structural steel shapes shall conform to the requirements of the "Standard Specifications for Structural Steel for Buildings" (Serial Designation: A9-24) of the American Society for Testing Materials.

Section 28. The aggregates shall be measured separately by volume. Proper allowances in the measurement of the fine aggregate shall be made to
20. Recommended specification, Concrete Reinforcing Steel Institute, Chicago, 1933.
correct for bulking. It shall be the duty of the Engineer to daily cheok measurements of the fine aggregate, and to require the necessary ohanges to secure the specified proportions in each batch.

Section 29. Concrete shall be mixed in the following proportions by volume:

Part of Structure

124
2000 Columns above 5th floor Footings

Columns below 5th floor Sidewalk slabs

The surface moisture in the aggregate must be included as part of the mixing water.

Section 30. The quantity of water used shall be the minimum necessary to produce concrete of a workability required by the $\mathrm{fngineer}$, case exceed a water-cement ratio of 7 U.S. gallons per sack of cement for 1:2:4 concrete, and 6 U. S. gallons per sack of cement of $1: 1 \frac{1}{8}: 3$ concrete. The maximum slump shall be 6".

Section 60. ${ }^{21}$ Metal reinforcement, before being
21. See Par. 3, p. 5.
placed, shall be thoroughly oleaned of mud, grease or loose scale that will destroy or reduce the bond.

Section 63. The minimum spacing for parallel bars shall be 3 diameters center to center. The maximum number of bars that may be placed in a given width shall be determined by the formula

$$
\text { Minimum } b=3(\mathbb{y}-1) D+D+3 .
$$

The diameter shall be considered as the nominal size of the bar for both round and square bars.

Section 78. Integral compounds shall not be used for water-proofing, except that slacked lime may be used in a proportion not to exceed 10% by weight of cement.

Section 107 . 22 Beams and slabs built to act integrally with beams, girders, or other restraining supports, and beams and slabs continuous for two or more equal spans, carrying uniformly distributed loads, shall be designed for a maximum positive moment at the center of the span and a negative moment over the support, as determined by the equation

$$
M=\frac{W \cdot I^{2}}{12}
$$

Section 127 . 23 Special anchorage of longitudinal reinforcement shall be provided by hooks of
22. The Designers' Method.
23. Practice of the Trusion Steel Company.
$4^{\prime \prime}$ for all bars up to and including $7 / 8^{\boldsymbol{\prime} \phi}$, and $6^{\prime \prime}$ for bars $1^{\prime \prime} \phi$ and over. 111 bends to be right angle bends.

Section 128. ${ }^{24}$ The unit shearing stress as computed by the formula

$$
v=\frac{\nabla}{b \cdot j \cdot d}
$$

shall not exceed $0.06 f_{c}^{\prime}$, but the concrete may be assumed to carry $0.03 f_{c}^{\prime}$ when the longitudinal reinforcement is anchored in accordance with section 127, and web reinforcement may carry the remaining $0.03 f_{c}^{\prime}$.

The following general specifications shall also be complied with:

Dimensions shall be taken from figured dimensions and shall in no case be scaled. Where there is any discrepancy, the Rngineer shall call the attention of the Arohitect to the same. He shall make the necessary corrections with the approval of the Architect.

The structural steel shall, in general, comprise the two large girders over the banking floor, steel for framing around skylights, all continuous lintels at each floor, I-beams to support the two water tanks in the pent house, channel- and I-beams supporting the elevator machinery, angles for supports at each

[^0]floor for the chimney carried up on the exterior of the building, and all miscellaneous steel as shown on the plans. All structural steel shall be given one coat of sublimed blue lead paint, as manufactured by the F. J. Cooledge and Sons Company, before erection.

Complete teats shall be made on the sand, aggregates, and cement in quantities of not more than carload lots. Reports of all tests shall be filed with the Engineer.

The floor syatem shall consist of 3-cell 12" x 12" terra cotta tile of thickness and spacing as shown on the structural drawings. Tile mast be all hard burned and free from fimperfections that will impair its strength. All soft or broken tile must be rejected. Tile shall be laid true to line and all ends must butt. The ends of all tile rows are to be plugged to prevent conorete from flowing into them. The tile shall be thoroughly wet down before placing of the conorete.

No load or weight shall be placed on any pertion of the construction until the concrete has fully set and centers have been removed.
25. Hunt, R. H., Specifications, p. 21.

The first stirrup shall be placed in the plane of the face of the support.

Forms for concrete members shall be substantial and unyielding, plumb and true, and shall be made as nearly watertight as possible. The minimum time for removing forms shall be: 4 days for columns and sides of beams; 10 days for floor slabs; and 21 days under beams and girders. The Engineer shall have the authority to increase the above specified times.

The building shall be equipped with four gearless traction self-leveling passenger elevators having unit multi-volt signal control, as manufactured by the Otis Elevator Company. ${ }^{27}$ The elevators shall travel from the basement to the tenth floor, a distance of $115^{\prime-}-8^{\prime \prime}$, each elevator serving ll-stops and ll-openings.

Each elevator shall travel at a speed of 700 feet per minute, with a maximum load of 2500 pounds in addition to the weight of the car. The size of each car shall be approximately $6^{\prime \prime}-0^{\prime \prime} \times 5^{\prime-} 6^{\text {º }}$.

Steel tee-guides for car and counterweights shall be securely fastened to I-beams at each floor level.
26. Hunt, R. H., Specifications, p. 18-9.
27. Specifications, Otis Elevator Company, This and the 3 following paragraphs are from the same reference.

The concrete slabs shown to be placed over the hatchway shall not be poured except on the approval of the representative of the Otis Elevator Company after the machinery has been hoisted to the pent house.

Exposed steel work to be installed by the Otis Elevator Company shall be coated with one coat of sublimed blue lead paint before erection, and one finish coat of the same base paint.

CHARTS AND TABLES

The graphical solution of many of the design formulae furnishes a quick and easy means of design with a minimum use of a slide rule. In certain cases, for example in column design, the use of Tables \# 11 and \# 12 together admits of rapid determination whether compression exists over the entire section or tension over part of the section.

Several tables reproduced here from handbooks furnish their data in quickly available form and avoids too many oumbersome books on one's desk during design. In this regard Table \# 17 is an example. The advantage in its use lies solely in having it easily accessible, otherwise by slide rule computation a double set of the rule could be made more easily than hunting for the table. Also, Table \# 20 should be posted in a conspiouous place where it is readily visible.

Table \# l gives a convenient means of approximating the moment value that can be used to arbitrarily choose a size of beam from Tables \# 2 and \# 3. Unfortunately, the architectural limitations usually prevent the proportioning of the size of a beam to those given in the latter two tables.

Modifications of Tables \# 4 and \# 5 are found
in various text books on design. I have found that there is almost as much slide rule computation and time involved in their use as in the cirect solution of the $A_{s}=\frac{M}{f_{s} \cdot j \cdot d}$ formula. However, a simple means for this solution is the use of a constant determined as follows:

$$
A_{s}=\frac{M}{I_{3} \cdot j \cdot d}=\frac{M \cdot 12 \cdot 8}{18 \cdot 7 \cdot d}=0.76\left(\frac{M}{d}\right)
$$

in which M is expressed in kip-feet, and d in inches. It will be noted that this constant is applicable only for designing on the basis of $f_{s}=18,000$ \#/a ${ }^{\text {N }}$, although other constants may be determined for any desired value of f_{S}. The use of this constant also permits ready location of the decimal point.

During design, it is more convenient to have the tables used in sheet form, and spread them about on the deak rather than try to thumb through a large bound volume of tables, many of which would be of no service for the particular type of design being carried through.

The following discussions of the tables are designed to be of sufficient scope to render the tables usable and not to derive or prove them.

The tables were drawn on the basis of:

$$
\begin{aligned}
& \mathbf{f}_{c}^{\prime}=8,000 \# / \mathbf{a}^{n} \\
& \mathbf{f}_{s}=18,000 \# / \mathbf{n}^{n} \\
& \mathbf{u}=100 \# \mathbf{n}^{n}
\end{aligned}
$$

table 1
The determination of moments in inch-pounds is facilitated by this table, when the beam carries uniformly distributed loads.

Assume a 50 \#/' uniform load on a 20^{\prime} span, and the moment coefficient to use in design as (1/12)•W• I^{2}.

Enter the diagram with the argument of 20 ' apan at the right, go horizontally to the curve marked 12 , and descend vertically to the scale at the bottom, finding the value 400. Using this as a multiplier of our uniform load, we get $400 \cdot 450=180,000$ m-\#.
table $2 \& 3$
Continuing the same problem as in the foregoing, and using the value of 180,000 䉼 as an argumentito enter on the right hand scale, go horizontally to the curve $K=138.7$, and vertically below find the beam size $7^{\prime \prime} \times 14^{\prime \prime}$. The weight of the beam has not yet been taken into account, so use the next larger sised beam, whose weight is 131 \#/'. This load will give a moment of $M=400 \cdot 130=52,000 \mathrm{~m}$ (, which added to the moment of the superimposed load
gives a total $M=232,000 \mathrm{n}$. The moment scale at the right shows that a beam $7 \frac{1}{2}{ }^{n} \times 15^{\prime \prime}$ will carry a moment of $238,000 \mathrm{n} \mathrm{\#}$, so this beam meets the moment requirement.

Hext a check for shear is made. Thus, $V=\frac{1}{2} \cdot w \cdot I$. $\mathrm{V}=\frac{1}{2} \cdot 580 \cdot 20=5,800$ \#. Using the scale at the left, enter the diagram with 5.8 kips as an argument, and find that a horizontal from here will intersect the vertical from our beam size in Region X^{28}

The value of a is the effective depth, to
which $2^{\prime \prime}$ must be added for fireproofing when listing the beam sise on the structural plan.

TABLES $4 \& 5^{29}$
To find the steel area by means of these diagrams, divide the total external moment by the width of the
28. In order to distinguish the shear conditions during design, I have used N, X, and Y to designate the three conditions of unit shear respectively:

In Region $\mathbb{N}, V<0.02 f_{c}^{\prime}$, and neither web reinforcement nor special anchorage is necessary.

In Region $\mathrm{X}, \mathrm{V}>0.02 \mathrm{f}_{c}^{\prime}<0.03 \mathrm{f}_{c}^{\prime}$, requiring special anchorage wi thout web reinforcement.

In Region $Y, V>0.03 f_{c}^{\prime}<0.06 f_{c}^{\prime}$, requiring web reinforcement but no special anchorage.

These numerical values are recorded on curves on Tables \# 2 and \#3.

Refer to Par. 3, p. 3, and also to Par. 1, p. 4.
29. Hool, G. A., Vol. I, Diagram 7, p. 346. My tables are modifications of those given in the reference.
beam. Thus, $\frac{232,000}{7.5}=30,900 \mathrm{~m} / 1^{17}$ width.
Entering the diagram on the right-hand scale, intersect horizontally with the curve $d=15^{\prime \prime}$, and vertically below find $A_{s}($ for $b=1 ")=0.131 " . "$ Therefore the total A_{s} for the beam is $7.5 \cdot 0.181=$ 0.98 ㅁ.

TABLES $6 \% 7$

The bond requirements is determined from these two tables. ${ }^{30}$ Using table $\#$, a horizontal through $\nabla=5.8 \mathrm{kips}$ intersects a vertical from $d=15^{n}$ at $\Sigma_{0}=4.4^{\prime \prime}$ (approzimately).

Because of the straight-line variation of the shear in the formula $\quad \Sigma_{0}=\frac{\nabla}{u \cdot j \cdot d}$, any value for the shear may be easily found by dividing the total shear by a suitable integer, determining the corresponding \sum_{0} therefrom, and then multiplying the tabular value by the integer to obtain the total Σ_{0}. table 8

This diagram corresponds to Tables \# 2 and \# 3,
30. Care must be exercised in the use of these tables to put all values into thousands of pounds or thousands of inch-pounds before entering the diagram. I found it most convenient to work with the figures with the decimal point three places to the left of its exact position, the figures being much smaller and easier to handle.
and is used for flat slabs with a widh $b=12 "$.

TABIE 9

This diagram corresponds to \# 4 and \#5, except that in its use the moments are in terms of $b=12 \mathrm{n}$, so that in order to enter the diagram no preliminary division is necessary. ${ }^{31}$

TABLIA 10^{32}
The spacing for vertical stirrups is found by these diagrams. For example, assume a concentrated load of 10,000 \# at the center line of our foregoing illustrative example. The shear is then $V=5.8+$ ($\frac{1}{2} \cdot 10.0$) $=10.8 \mathrm{kips}$. From Table \# 2 it is found that when $v=60 \# / 0^{33}$, the beam will carry $V_{c}=6.0 \mathrm{kips}$. The amount of shear to be carried by the stirrups is $\nabla_{s}{ }^{34}=\nabla-\nabla_{c}=10.8-6.0=4.8 \mathrm{kips}$. Using the diagram
 effective depth of $\mathrm{d}=15^{n}$ as an argument, and drop down to an intersection with a horizontal from $V=4.8$, obtaining a spacing of $s=5^{\boldsymbol{n}}$. We might, however,
31. With reasonable access to this table, it
admits of solution as easy if not easier than by the method described in Par. 1, p. 21. 32. Snow, Prof. F. C., This table is a reproduction of Diagram * 3 from the notes for C. E. 155-6, with the addition of the apacing diagram for the $\frac{1}{4}$ ht 33. See Footnote 28, p. 23.
34. See p. vil.
enter the diagram for the $3 / 8^{n} \phi_{\mathrm{U}} \mathrm{d}$ atirrup, and there find that at maximum spacing $\nabla_{s}=7.7 \mathrm{kips}$. It probably would be preferable to use this size stirrup and thereby reduce the number of stirrups to be placed on the job.

Tablid $11{ }^{35}$

This chart gives design data for eccentric columns in which there is compression over the entire section, and is used in conjunction with Table \# 12.

For illustration, ${ }^{36}$ assume a moment of 600,000 ' $\#$, and a load of $1,800,000$ \#. The eccentricity is

$$
x_{0}=\frac{M}{N}=\frac{600,000 \cdot 12}{1,800,000}=4^{\prime \prime} .
$$

Assume $\mathrm{b}=42^{\prime \prime} ; \quad \mathrm{t}=54^{\prime \prime} ; \mathrm{f}_{\mathrm{c}}^{\prime}=2500$ \#/a ${ }^{7}$.
The necessary arguments with which to enter the diagram are next calculated.
$f_{c}=0.3 f_{c}^{\prime}=0.3 \cdot 2500=750 \# /{ }^{7}$
$\frac{f_{c} \cdot \mathrm{~b} \cdot \mathrm{t}}{\mathrm{I}}=\frac{7504254}{1,800,000}=0.94$
$\frac{x_{0}}{t}=\frac{4}{54}=0.074 ; \quad$ and $\frac{d^{\prime}}{t}=\frac{2}{54}=0.04$.
On the diagram marked $d^{\prime} / t=0.05$, which has a value nearest to ours, use the two arguments, of 0.94
35. Snow, Prof. F. C., Reproduction of Diagram \# 4. 36. Kxample from class lecture notes.
at the side scale, and of 0.04 on the bottom scale, and the intersection of lines from these two values gives a value of $(n-1) p=0.38$, from which $p=0.035$.

If the intersection of a horizontal from a value of $\frac{f_{c} \cdot b \cdot t}{N}$ and a vertical from a value of $\frac{x_{0}}{t}$
is below the diagonal limits, the column is too small, and if above the limits, too large. In the latter case the minimum steel of $p=0.005$ must be used. Ifit the intersection is to the right of the limits, then there is tension over part of the section and Table \# 12 is the one to use. ${ }^{37}$

Both Tables \# 11 and \# 12 can be used for all values of n.

TABLI 122^{38}
The use of this table is the same as that of the preceeding one as explained in the paragraph immediately above.

$$
\text { TABIS } 13^{39}
$$

The discussion of the two diagrams of this table follows closely that given for the use of Table $\# 11$. The two diagrams may be used for all values of n.
37. Snow, Prof. F. C., Class notes on the use of this diagram.
38. Ditto, A reproduction of Diagram \# 5 .
39. Ditto, Reproductions of Diagrams \# 6 and \#7, respectively.

TABIE 14

This table gives the sectional areas of reinforcing bars in groups of varying numbers, and the area per foot of slab at various spacings of bars.

TABLE 15

The first tabulation on this Table was compiled by the use of the formula min. $b=3(N-I) D+D+3$. The values tabilated are the maximum number of bars that can be put into a beam of width given at the left. The overlined numbers indicate that that number of bars will fit into a beam $\frac{1}{2}{ }^{n}$ narrower than indicated at the left.

The second tabulation is of perimeters of bars in groups of varying numbers.

The next to the lowest line represents the length in inches that a bar must extend beyond the point of maximum tension in order to develop sufficient bond action to make the bar effective. Computations were made from the formula $L=\left(\frac{f_{s}}{4-u}\right)$. D .

The lowest line gives the weight of bars in pounds per foot.
40. The compilation of this table was facilitated by reference to a similar table in Prof. Snow's notes.

TABLE 16^{41}
The values given are the volumes per linear foot of a beam whose width and depth are given in the scales at the top and left respectively.

For concrete weighing 150 \#/cu.ft., to convert a tabular value into \#/lin.ft. of beam, add one-half of a value to itself, and move the decimal point two places to the right. For example, for a beam $12^{\prime \prime} \times 18^{\prime \prime}$, the table gives the value of 1.50. Thus the weight is $1.50+\left(\frac{3}{8} \cdot 1.50\right)=225$ \#/lin.ft.

The small table at the foot of Table \# 16 gives similar values for one square foot of slab for a given thickness.

TABLE 17

The upper chart gives the decimals of a foot for inches and fractions of inches.

The remainder of the table gives values for the square of the span, expressed in feet and inches.

TABLE 18

Moments of inertia expressed in inches to the fourth power for rectangles of given widhs and depths are given in this table.
41. Hool and Johnson, Vol. I, p.166.
42. See Par. 2, p. 20.

TABIE 19^{43}
The lengths given here are for the bending of reinforoing bars. If the angle of bending is 30° then B (the horizontal projection of the diagonal bend) is given in the designated column for values of H (the vertical projection). The diagonal dimension S is then $2 H$.

And if the angle of bending is 45°, then $B=H$, and the proper diagonal values are given in the "S" column for corresponding H values.

Lengths are also listed for the 30 diameters of bar for the various sizes of bars.
table 20
This chart should be posted on the wall where it may be readily visible.
43. Used by the Truscon Steel Company.

Coefficients of $w(t / t)$ giving moments in inch -pounds.

$$
M=\frac{1}{c} w l^{2}
$$

Pectangular. Bems Moments \& Shears

Rectangular Beams Moments \& Shears
$b A^{2}=\frac{M}{K}$
$b d=\frac{V}{v j}$

$$
f_{s}^{\prime}=2,000^{\pi / 21 / 4}
$$

Area of Tension Steel

$$
f_{s}=\frac{M}{\rho_{j} b d^{2}} \quad p b d=A_{s}
$$

$p=.008 s$ for balanced design

$$
\begin{aligned}
& f_{s}=18,00 \text { \#/a" }^{\prime \prime} \\
& f_{s}^{\prime}=2,000 \text { \#/a" } \\
& m=15
\end{aligned}
$$

Area of Tension Steel
$f_{s}=\frac{M}{p j b d^{2}} \quad \operatorname{pbd}=A s$

$$
\begin{aligned}
& f_{s}=18,00 \text { \#/a" } \\
& f_{c}^{\prime}=2,000 \text { \#/a" } \\
& n=15
\end{aligned}
$$

$p=.0089$ for balanced design

Bond
$\Sigma_{0}=\frac{V}{u j d}$
$u=100 \% / a u^{\prime}$ Deformed Bars

Effective Depth in inches

$$
\Sigma_{0}=\frac{\nabla}{u j d} \quad u=100 \text { \#/r" Deformed Bars }
$$

40

Flat Slab Moments \& Shears

Area of Steel for Slab

Rectangular Eccentric Columns
Compression Over the Entire Section.

Rectangular Eccentric Columns
(3) Tension Auer Part of the section.

Values of $\frac{\pi r^{2} f}{N}$

Sationa: Areas of Bars

Areas
Size Number of Bars
$1 / 1 \% 0.048$
$\begin{array}{llllllllllllll}3 / 8 & p & 0.110 & 0.22 & 0.33 & 0.44 & 0.55 & 0.66 & 0.77 & 0.88 & 0.781 .10 & 1.21\end{array}$

$\begin{array}{llllllllllllllll}1 / 20 & 0.250 & 0.50 & 0.75 & 1.00 & 1.25 & 150 & 1.75 & 2.60 & 2.25 & 20 & 2.75\end{array}$
$\begin{array}{llllllllllllllllll}5^{4} & 0.307 & 0.61 & 0.91 & 1.23 & 1.53 & 1.84 & 2.15 & 2.45 & 2.76 & 3.07 & 3.37\end{array}$
$3 / 4^{\prime \prime} \quad 0.442 .0 .88 \quad 1.32 \quad 1.77 \quad 2.21 \quad 2.65 \quad 3.09 \quad 3.53: 3.98 \quad 4.42 \quad 4.56$

| 1 | ϕ | 0.785 | 1.57 | 2.35 | 3.14 | 3.93 | 4.71 | 5.57 | 6.28 | 7.07 | 7.85 | 8.64 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllll}18^{11} & 1.266 & \therefore .55 & 3.79 & 5.06 & 6.33 & 7.57 & 8.56\end{array}$
$\begin{array}{lllllllll}1414 & 1.563 & 3.12 & 4.68 & 6.25 & 7.81 & 9.37\end{array}$

Area per foot of slab
spar Size of bar in inchas

Bur Spacing
Minimum $b=3(N-1) D+D+3$
Maximum Number of Bars for Given Width

Length for Bond: $4=[$ fs/4u] D	[Inches]								
11.3	16.3	22.5	28.2	33.7	39.4	$45.0 \mid$	22.5	39.4	50.6

> | Weight of Bar in Pounds pow Foot |
| :---: |
| $1017\|0.3810 .67\| 1.04\|1.50\| 2.04\|2.67\| 0.85\|3.40430\| 5.31$ |

Volumes

$1 \frac{1}{2} \times$ (Tabular value) $\times 100=$ Weight of 150 \#/ au,fi concrete
Cubic feet in one linear foot of bean when width is:

d	6	7	8	9	10	11	12	13	14	15	16
8	0.33	0.39	0.44	0.50	0.56	0.61	0.64	0.72	0.78	0.83	0.89
9	0.38	0.44	0.50	0.56	0.62	0.69	0.75	0.81	0.88	0.74	1.00
10	0.42	049	0.56	0.62	0.69	0.76	0.83	0.90	0.97	1.04	1.11
11	0.46	0.53	0.61	0.69	0.76	0.84	0.92	0.99	1.07	1.15	1.22
12	0.50	0.59	0.67	0.75	0.83	0.92	1.00	1.08	1.17	1.25	1.34
13	0.54	0.63	0.72	0.31	0.90	0.99	1.08	1.17	1.26	1.36	1.45
14	0.58	0.66	0.78	0.88	0.97	1.07	1.17	1.26	1.36	1.46	1.56
15	0.63	0.73	0.83	0.94	1.04	1.15	1.25	1.36	1.46	156	1.67
16	0.67	0.78	0.89	1.00	1.11	1.22	1.33	1.45	1.56	1.67	1.78
17	0.71	0.83	0.94	1.06	1.18	1.30	1.42	1.54	1.65	1.77	1.89
18	0.75	0.88	1.00	1.12	1.25	1.38	1.50	1.62	1.75	1.88	2.00
10	0.79	0.92	1.06	1.19	1.32	1.45	1.58	1.72	1.85	1.98	2.11
20	0.83	0.97	1.11	1.25	1.39	1.53	1.67	1.81	1.94	2.08	2.22
21		1.03	1.17	1.31	1.46	1.60	1.75	1.90	2.04	2.19	2.34
22		1.07	1.22	1.37	1.53	1.68	1.83	1.97	2.14	2.29	2.14
23		1.12	1.28	1.44	1.60	1.76	1.92	2.08	2.24	2.40	2.56
24	1.16	1.33	1.50	1.67	1.83	2.00	2.17	2.33	2.50	2.67	
25		1.22	1.39	1.56	1.74	1.91	2.08	2.26	2.43	2.60	2.78
26		1.26	1.44	1.62	1.80	1.99	2.16	2.35	2.53	2.71	2.89
27	1.31	1.50	1.69	1.87	2.06	2.25	2.44	2.62	2.81	3.00	
28			1.55	1.75	1.94	2.14	2.33	2.53	2.72	2.92	3.11
29			1.61	1.81	2.01	2.22	2.42	2.62	2.82	3.02	3.22
30			1.67	1.87	2.08	2.29	2.50	2.71	2.92	3.12	3.34
31			1.72	1.94	2.15	2.37	2.58	2.80	3.01	3.23	3.44
32			1.78	2.00	2.22	2.44	2.67	2.89	9.11	9.33	9.56
33			1.84	2.06	2.29	2.52	2.76	2.98	3.21	3.43	3.67

Cubic feet in one square foot of slab when thickness is:

$t=$	3	3.5	4	4.5	5	5.5	6	6.5	7	75
cuff $=$.25	.24	.33	.38	.42	.46	.50	.54	.58	.63

Decimals of a Foot

Inches

0833 .1667 . 2500 . 3533 . 4167 . 5002 .0104 .0938 . 1771.2604 .3438 .4271 .5104
 .5513 .1146 .1979.289 . 5646.4479 .553 .646 .6979 .7613 .8646 .7477 $.0417 \cdot 1220.2085 .297 \quad 3750.4583,5417.6250 .7083 .7917 .8750 .9585$ $.0521 .1354,2188 \cdot 3021.3854 \cdot 4683.5521 .654 \cdot 7188 \cdot 8021.8854 \cdot 7658$
 $.0729 .1563 \quad 2376.3229 .4063 .4896 \quad .57 / 29.6563 .7396 \cdot 8229 \cdot 9063 \cdot 9876$ एut Table of L^{2} (fect)

| 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $25.0036 .0049 .0064 .00 \quad 81.00100 .0 \quad 121.0 \quad 1440|169.0| 760 \quad 225.0256 .0$ $26.62 \quad 38.07 \quad 51.41 \quad 66.74 \quad 8401103.4124 .8148 .173 .4 \quad 201812301 \quad 2614$

 $6.30 .2542 .2556 .2572 .25 \quad 90.25 \quad 110.3152 .3156 .3182 .3210 .3240 .3 \quad 272.3$
 $35.9946 .65 \quad 61.31 \quad 7 \% 9796.63 \quad 11 \% 3139.91646 \quad 1963 \quad 219.9 \quad 2506 \quad 285.3$

17	18	19	20	21	22	23	24	25	26	27	28
2890	324.0	361.0	400.0	441.0	4840	5270	5\%.0.	6250	$6 \% .0$	789.0	7840
294.6	330.0	367.4	406.8	1460	491.4	536	584.0	633	847	738.0	793.4
300.5	336.	373.8	4/3.3	4551	998	574.4	57\%.1	64.5	3	47.1	gea 8
306.3	342. 3	380.3	4803	42.5	506.3	5543	600.3	6503	\% ${ }^{\text {\% }}$	756	2.3
322.2	348.4	3×48	4273	46\%	573.7	560.	608.4	8.7	71.1	7654	
\$18.0	354\%	393.3	4540	4\%.7	5217	$56 \% 7$	$6 / 6.5$	66% \%	$7 / 89$	7746	83

29	30	31	32	33	34	35	36	37	38	39	
841.0	90.0	9610	1024	1089	1156	1225	1296	1969	1444	1521	1600
850.7	910.0	97.4	1034	1100	$11 / 4$	1237	1309	1381	1457	159	1615
8605	9201	98.8	1095	1111	1182	1248	1320	1393	1469	154	162
8703	930,5	972.3	1006	1122	1190	1260	1332	1406	1482	1560	640
883.1	9405	1002	7266	1183	1198	1271	1344	1418	1494	1573	1653
8894	950.7	1005	10%	1144	1206	1283	7556	1431	1507	1586	1667

Bar Bending Table

If $\phi=30^{\circ}, s=2 H$
If $\phi=45^{\circ}, B=H$
$S\left(45^{\circ}\right)=H \cdot 1.414$
$B\left(30^{\circ}\right)=H \cdot 1.752$

SLAB SCHEDULF: FOR $2^{\text {nd }}$ FLGOR

4	25-1	$6+2 \pi \cdot T$.
		\%o1.
4	$25 * 2$	6+2 T C. $\%$.
		W) 501
3	25-3	6+2 TC.T.
		0008
	25-4	6+Z T.CT.
		C602
	25.5	6+2 T.C.T.
		astoq
	25-6	6+2T.c.T.
		. 804
	$25-7$	6+2 T.C.T.
		6́a
	25-8	6+2T.C.7.
		a810
	25.9	6+2 T.C.T.
		709
2	$25-10$	3"selid
1	$25-11$	6+2 T.ET
		0811
2	25-12	$6+2 \pi C . T$.
		606
1	$25-13$	3 "solid
1	25-14	6+2 T.C.t.
		$1 / 10$

BANK \& OTFICE BLDG

SlAB SCMEDUNI FOR 3 ve FITCosR
Bars Dimensioh E out-to-out

SLAB SCHEDUAE FOR $4^{\text {th }}$ FICNR

Bank a Of-Ficz Bldg.
R.A. JEWETT

SLAB SCHEDULE FOR ROOF

Slab Schedule for Pent house roof

Bank \& Office Bl. dg.

$$
\text { SCMEDULEF No. } 3
$$

RA. JEWFOTT

BEAAM SCAEDULE FIOR FIRST FLOOR

Banke $\mathfrak{O f F i c k}$ Bl.pg.

BEAM SCMEDULE FOR SECOND TLOOR

BEAM SCMEDULE FOR THIRD FEOOR

Bemk \& Offick: Bi.da

BEAM SCMEDULE FOR TOURTH FIOOR

BEAM SCHEDULE FOR ROOF

BEAM SCHEDULE FOR PENT HOUSE ROOF

Detall Argund Trap Dcor SCALEE: 3" $=1^{\prime} 0^{\prime \prime}$

Stection D-D
Scalse: $1 / 1_{2}^{\prime \prime}=10^{\circ}$

DETALLS OF DENT HOUSE FLCORNG

Column Schedule

Hoop Berding Schedule

	209e8	
$\stackrel{ }{*}$	Weryx	a
		minsing jo 8innonvin年00
		St ${ }^{2}$ \%exp

\qquad

Special Hoop Bending
ROBERT A. JEWETT
CANDIDATE FOR MS INCE.

MEZZANINE STAIRS AT COL. 24

STARS AT COL. 24

Stairs at Cols. 30-31-\$50~

ROBERT A. IE WEST
CANDIDATE FOR MSS INC.

$$
\text { BRACKET AT COLS } 39 \& 44
$$

ILS Of-GIRDERS AT COLS $28 \notin 29$

[^1]

Detall I- Dzam at Ifsevator Match ScAl.za: $\mathrm{K}_{2}^{\prime \prime} \cdot$ l'O" $^{\prime}$

Trpical Corner Col.
ChAMfer Deitail

Trpical Onfice floor Plan Traczo from the Architect's Sithet No. 2

[^0]: 24. See Par. 1, p. 4.
[^1]: Assembly D Etall.

