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Abstract

Cluster computing has evolved into a popular and effective mode of high performance
computing. Cluster environments are intrinsically different from hardware multiprocessors,
and hence require a different approach to measuring and characterizing performance, mon-
itoring an application’s progress, and understanding program behavior. In this article, we
present the design and implementation of PVaniM, an experimental visualization environ-
ment we have developed for the PVM network computing system. PVaniM supports a
two-phase approach whereby on-line visualization focuses on large-grained events that are
influenced by and relate to the dynamic cluster environment, and postmortem visualization
provides for detailed program analysis and tuning. PVaniM’s capabilities are illustrated
via its use on several applications and it is compared with other visualization environments
developed for cluster computing. Our experiences indicate that for several classes of ap-
plications, the two-phase visualization scheme can provide more insight into the behavior,

efficiency, and operation of distributed and parallel programs in cluster environments.
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1 Introduction

Cluster computing, or distributed and parallel processing on networked collections of com-
puter systems, has evolved into a popular and effective mode of high-performance comput-
ing. Numerous advantages, including ready availability, low cost, incremental scalability,
and robust programming models and environments have brought clusters into the main-
stream, for both scientific and general purpose applications. Moreover, the same program-
ming models and methodologies can be used across a wide variety of platforms, ranging
from true clusters (e.g. stacks of headless workstations with high speed interconnects)
to collections of desktop systems to geographically distributed hierarchies of machines of
multiple architecture types. Each type of platform has unique advantages, in addition to
the common benefits of utilizing a collection of networked computer systems as a coherent
concurrent computing resource.

Network and cluster computing®, however, is not without its share of obstacles. Typi-
cally, applications execute on workstations that have varying capabilities and configurations
in terms of CPU speed, memory, local vs. networked disks, etc. Furthermore, in open cluster
environments, each computer as well as the network itself, is potentially subject to uncon-
trollable external loads. These factors often result in load imbalances and dynamic fluctu-
ations in delivered resources, which can be a major cause of performance degradation[8].
Cluster environments are therefore intrinsically different from most hardware multiproces-
sors where typical operational methodology is for applications to have dedicated use of the
machines or parts thereof. Therefore, in clusters, measuring and characterizing performance,
as well as monitoring application progress and understanding program behavior, requires a
different approach from traditional methods suitable for monolithic parallel processors.

Graphical visualization can provide insight into application operation, behavior, and
performance. Particularly in cluster and network environments, visualization can help un-

derstand the many complex and variable factors that exist. As in other environments,

'In this paper, we focus on collections of general purpose workstations on standard networks, e.g. Eth-
ernet, and hence use the terms “network computing” and “cluster computing” interchangeably



visualization can be enabled by observing execution events and displaying them in graphi-
cal form. However, given the nature of clusters, these events can and should be divided into
two categories and analyzed from different perspectives — large grained events influenced by
and relating to the (dynamic) environment, and detailed collections of events describing the
execution path of the parallel program in question. While subsets of these two categories
are certainly related and possibly even the same, their use is for fundamentally different
purposes. In this paper, we adopt the position that monitoring and visualization in clus-
ter environments should follow a two-phase approach, with run time or on-line monitoring
focusing on visualization and interaction during execution, and postmortem monitoring or
profiling being used for detailed program analysis and tuning.

In order to investigate this two-phase approach to visualization in networked environ-
ments, we have developed an experimental toolkit and methodology called the PVaniM vi-
sualization environment. PVaniM is a visualization environment for the PVM[10] network
computing system which relies on its own monitoring techniques to support its graphical

views. The following are the primary novel features of the PVaniM system:

e Graphical views tailored to cluster environments—Developing visualization support for
clusters is more involved than simply porting traditional multicomputer tools such as
ParaGraph[4] to the environment. Typically, these tools do not provide views that
illustrate external loads on the processing elements. Furthermore, they were originally
meant for multicomputers which did not support multitasking[1]. In contrast, cluster
environments are composed of multitasking workstations and multiple tasks may be
assigned to each host. The PVaniM system provides monitoring and visualization
support that encompasses both of these crucial aspects of cluster environments.

e Separation of on-line and postmortem visualization functionality-Many visualization
environments use the same graphical views (and hence the same monitoring tech-
niques) to support both their on-line and postmortem visualizations. For example,
Hence[l], Xab[1], and XPVM][5] all utilize event tracing which permits very detailed
graphical views. While these types of views are very appropriate for off-line analysis,
they require a large amount of network bandwidth when used on-line. In contrast,
PVaniM distinguishes between the types of monitoring and graphical views used for
on-line analysis and those used for detailed postmortem analysis. For off-line analysis,
PVaniM uses buffered postmortem tracing[11], using a buffering hierarchy for collecting
trace events. For on-line graphical views, PVaniM utilizes periodic sampling of tasks
with adjustable granularity; this requires substantially less bandwidth than event trac-



ing but the views are not as detailed. The result is a system which provides graphical
views with a wide range of level of detail while minimizing the network bandwidth
required for monitoring. The on-line graphical views of PVaniM are resilient enough
to support long running and communication-intensive PVM applications.

e Support for interactive steering-Recent work on shared memory parallel processors has
shown interactive steering to be extremely useful for large-scale molecular dynamics
applications[3]. Steering essentially involves allowing a user to inspect and modify a
program’s attributes while it is executing. In order to integrate steering functionality
into a cluster environment, an enhancement layer is necessary that allows external
messages to be sent from an external task to application tasks. The messages contain
encoded steering information. PVaniM transparently integrates this support. That
is, steering is integrated such that no external library calls need to be embedded
in the code nor are extra sockets necessary for the reception of steering messages.
Transparently integrating this support is complex as the steering layer must guarantee
that steering messages are not mistaken by the application as normal communication.

e User controllable monitoring overhead-One example use for PVaniM interactive steer-
ing support is allowing the user to interactively control the periodic sampling rate of
the on-line monitoring. A slider is provided that allows the user to increase or decrease
the rate at which on-line monitoring data is sent to the graphical views. With lower
sampling rates, the application will experience less perturbation, but the graphical
views will not be updated as frequently. This allows users to try different sampling
rates and find one that is most suitable to their personal tastes and the needs of their
application.

e Transparent 1/0O support—PVaniM provides routines similar to scanf () and printf ()
that allow for rudimentary input/output with the executing application. When the
graphical monitor is used, the output routines are directed to the monitor. When the
monitor is not in use, these routines default to standard printf() and scanf() if
the PVM task is connected to a terminal. This allows for many network computing
applications to transparently prompt correctly for application parameters whether or
not PVaniM’s graphical monitor is being utilized.

This paper provides an extensive overview of the PVaniM system and its contributions
to cluster computing visualization and interactive steering. In Section 2 a detailed de-
scription of PVaniM is provided. Section 3 illustrates the system’s usefulness with several
applications including those using load balancing strategies recommended for cluster envi-

ronments. Section 4 provides system implementation details of PVaniM’s functionalities.

Section 5 discusses related work. The final section presents conclusions and future work.



2 PVaniM

The PVaniM system provides both on-line and postmortem visualizations of applications
written with the PVM[10] heterogeneous network computing system. After making minor
modifications to the application and recompiling to link to PVaniM’s monitoring library,
PVaniM is ready for use. Essentially, the user must add an extra header file which provides
macros that replace standard PVM routines with calls to PVaniM’s monitoring library.
In many cases the PVaniM macros eventually call the intended PVM routine. However,
some of PVM’s more advanced primitives could not be supported in this manner because
of PVaniM’s goal to support a transparent steering framework. These routines are reim-
plemented by PVaniM to allow transparent steering. The complexities and implementation
issues associated with this are discussed in a following section.

Although minor modifications are necessary for an application to be “PVaniM aware”,
these modifications do not have to be repeatedly added or removed. They perform correctly
whether or not the PVaniM’s monitoring and graphical views are being used. The use of
PVaniM to spawn the application determines whether or not monitoring and visualization
are utilized.

The following subsections describe PVaniM’s on-line and postmortem monitoring and

visualization capabilities.

2.1 PVaniM On-Line Visualization Support

Figure 1 presents a typical PVaniM program view. At the upper left is a Host List view,
identifying the host machines used by the application and the placement of tasks (integer
IDs) on each of these hosts.

To the right of the Host List view is the Load Information view. This view provides
insight into the aggregate load on the host machines by providing a graphical view of the
average number of jobs in the run queue of the host. A novel feature of this view is its
ability to account for external loads as well as PVM task loads.

Next to the Load Information view is the Host Utilizalion view, where each host is



Figure 1: Snapshot of PVaniM runtime graphical views.



characterized by a green-yellow-red rectangle. Green is used to represent the percentage of
time the host spends computing, yellow represents the percentage of time performing PVM
message sends, and red represents the percentage of time the host is idle waiting to receive
PVM messages. For each host, utilization is a composition of the statistics of all the PVM
tasks running on that host. This information is also presented on a per-task basis in the
Task Summary view.

Adjacent to the Host Utilization view is the Memory Use view, illustrating the aggregate
amount of memory utilized by the PVM tasks on each host. By clicking the pointer on
rectangles in the Memory Use view, more detailed textual usage statistics are displayed in
PVaniM’s output box in the lower left.

Below the Task Summary view is the MESSAGES SENT /bytes sent view. Clicking the
pointer on the view label toggles whether a message count or a bytes total is shown. This
view presents interval rather than aggregate statistics. That is, the view illustrates how
much message traffic has occurred by a task since the last time it reported statistics to the
monitor.

The TOTAL MATRIX COMM /interval matriz comm view provides both aggregate and
interval statistics regarding message communication between tasks (sender in row, receiver
in column). In its default form, the view provides aggregate statistics and the message key
scales automatically as the number of messages increases. By selecting the view label, one
can change the view to provide this information on an interval basis as discussed with the
prior view. In the interval mode, the user is allowed to interactively change the range values

of the message legend to find a range most appropriate for the phase of the application.

2.1.1 Achieving Views Tailored to Cluster Environments

PVaniM’s graphical views are tailored to executing in a cluster environment. PVaniM
provides a load information view which presents external load information in addition to
load incurred by PVM tasks. Providing this information is of great value because varied

external loads are extremely prevalent in cluster environments.
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Another common aspect of cluster environments is that workstations have various amounts
of memory. With PVaniM’s Memory Use view, the user is well aware of the amount of mem-
ory utilized by PVM tasks. Should a task begin to consume a large amount of memory on
a workstation with minimal memory, this situation is identifiable and hence rectifiable.

Also prevalent in cluster computing is the use of multitasking workstations. Typically,
this results in several PVM task executing on each host. PVaniM’s graphical views aggregate
statistical data to provide graphical views on a per workstation basis in addition to per task
graphical views. For example, Figure 1 illustrates several PVM tasks executing on each
host. In the Host List view all tasks are listed with the host on which they are executing.
Furthermore, the Host Ulilization and Memory Use views illustrate how the multiple PVM
tasks utilize each workstation as well consume the memory resources of that workstation.
In contrast, an equivalent ParaGraph view of this scenario would assume each PVM task
was provided its own dedicated processor. Because of this lack of multitasking information,

the ParaGraph view would be somewhat misleading.

2.2 Input/Output Views

The PVaniM system provides routines similar to scanf() and printf() that allow for
rudimentary input/output with the executing application. When the graphical monitor is
used, the output routines are directed to the PVaniM output box shown in the lower left
of Figure 1 and input is mapped to the PVaniM input box which is shown adjacent to the
output box. When the monitor is not in use, these routines default to standard printf ()
and scanf () if the PVM task is connected to a terminal. This allows for many programs to
prompt correctly for application parameters whether or not the graphical monitor is being

utilized.

2.2.1 Achieving Transparent I/O

These views allow PVaniM to provide transparent /O support for PVM tasks no matter

where their location. In addition to supporting primitive debugging, this support is partic-



ularly apropos for PVM process migration systems such as CoCheck[9]. Under CoCheck,
a migrated PVM task that is initially connected to a tty loses this connection after the
task has migrated. This limits CoCheck’s support for interactive applications. However, an
application using PVaniM’s transparent 1/O support simply uses PVM messages to provide

I/0O. In this situation, interaction support would still be available.

2.3 Steering the Sampling Rate

Towards the bottom of Figure 1 is a slider widget with a numerical field above it. This
slider allows the user to interactively “steer” the sampling rate of PVaniM. PVaniM uti-
lizes periodic sampling instead of tracing to “drive” its on-line graphical views in order to
minimize monitoring bandwidth requirements. With a higher sampling rate the graphical
views are updated much more frequently with the result that more network bandwidth is

utilized for monitoring and the application will experience more perturbation.

2.3.1 Achieving User Controllable Monitoring

By allowing the user to interactively control the rate at which the views are updated,
PVaniM allows the user to control the monitoring overheads incurred by the application.
The user has the flexibility of choosing a sampling rate and find a value that is most
suitable for the application. Applications which have a tendency to deadlock may utilize
higher sampling rates to allow for frequent examination by the user. In contrast, more
stable applications can utilize lower sampling rates and further minimize the monitoring

overhead.

2.3.2 Achieving Interactive Steering

PVaniM’s support for steering the sampling rate is general enough to provide support for
the steering of objects as well. Essentially, an interaction handler is provided which can
pass steering data to more abstract steerable object primitives while guaranteeing this data

is not mistakenly delivered as an application message. As discussed later in this paper,



efforts are underway to support advanced steerable objects originally developed for shared

memory parallel processors[12].

2.4 PVaniM Postmortem Visualization Support

For postmortem visualization, PVaniM supports event tracing with a technique we refer
to as buffered postmortem tracing[11]. With this technique, each workstation writes its
trace events to its local disk (if available). After the application has finished executing,
the individual trace files are collected automatically by PVaniM. This allows PVaniM to
perform event tracing without severely impacting the network bandwidth available to the
application.

The consolidated tracefile undergoes rigorous postprocessing to synchronize clocks and
add a logical timestamp. The tracefile is then used to “drive” PVaniM’s detailed, fine-grain
profiling views. Figure 2 is a message passing view from PVaniM’s postmortem graphical
view library. In this view, all are tasks positioned around the outside circle. Messages are
represented as circles that smoothly move into the center of the circle in neighborhood of
the task who the message is intended to be received by. Circle size and color are used
to represent message size and type, respectively. The messages also may be interactively
queried by users to determine the exact size of the message, its type, etc. Furthermore,
contrail lines are provided that allow the identity of the sender of the message to be easily
determined. Lamport timestamps are utilized to provide a feasible concurrent ordering of
events and this ordering is utilized to produce a concurrent animation of message traffic.

As discussed in [11], PVaniM’s buffered tracing supports its own default library of
visualizations and concurrent animations as well as allowing the user to develop application-
specific visualizations. Furthermore, PVaniM provides a converter which translates PVaniM
trace files to the PICL[2] trace format utilized by ParaGraph[4]. This allows PVaniM to
also support ParaGraph views in addition to the visualization capabilities mentioned above.
In the remainder of this paper we focus on PVaniM’s support for ParaGraph postmortem

views to justify PVaniM’s separation of on-line and postmortem visualization functionality.
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Figure 2: Sample view from PVaniM’s postmortem view library.

PVaniM’s own default postmortem graphical views and support for application-specific

postmortem visualizations are thoroughly described in [11].

2.4.1 Achieving Separated On-Line and Postmortem Functionality

PVaniM’s use of on-line sampling and buffered postmortem tracing allows it to achieve
functionality at runtime and also used as a postmortem profiling tool. The avoidance of
on-line tracing and on-line graphical views which store substantial state allow PVaniM
to support long running, communication-intensive PVM applications. Furthermore, the
postmortem tracefiles support graphical views that allow for detailed (perhaps even tedious)

examination of an application’s behavior.
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3 Experiences with PVaniM

In this section we present the use of PVaniM on three PVM applications. The first of these
is NAS Parallel Benchmark Kernel MG[13], the second application is a branch and bound
application which solves the N-puzzle as described in [7]. The third application is another
branch and bound application which solves the traveling salesperson (TSP) problem. Each
application utilizes partitioning and load balancing strategies discussed in [8] tailored to
network computing environments to varying degrees. In this section we present how PVaniM
is utilized as an aid to understanding the complexities of implementing a high performance
heterogeneous network computing application. Specifically, for each application, we provide
snapshots of PVaniM’s on-line graphical views as well as ParaGraph postmortem views
that PVaniM provides via tracefile conversion. We then compare PVaniM’s view support
to XPVM]I5]. XPVM also provides on-line and postmortem visualization support but uses
the same views in on-line mode as it does it postmortem mode. The version of XPVM used

is 1.1, the most recent version of the software available.

3.1 Kernel MG

Figure 3 shows NAS Parallel Benchmark Kernel MG executing under PVaniM. In this
version, Kernel MG executes four iterations of the V-cycle multigrid algorithm to obtain
an approximate solution to the discrete Poisson problem A2?u = v on a 64 x 64 x 64 grid.
The implementation assumes a ring topology of communication and both near neighbor
and far neighbor communication is present in the application. The algorithm is essentially
a direct port of a version developed for the Intel hypercube. As shown in Figure 3, Kernel
MG executes on buster and elmyra both SGI R4400 workstations, oakmont, a Sun Sparc
10, and decalur, a Sun Sparc 2 workstation. The Hosl Utilization view indicates a large
amount of red indicating a substantial amount of idle time on the faster workstations buster
and elmyra. Essentially, the tasks executing on the faster workstations are not performing
enough computation to be fully utilized. This naive implementation, in addition to other

factors (e.g. external loads) contribute to the poor performance of this algorithm in the
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Figure 3: Snapshot of Kernel MG provided by PVaniM’s on-line graphical views.
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cluster environment.

Figure 4 shows a snapshot of ParaGraph postmortem views of Kernel MG generated
by PVaniM. At the top is the Critical Palh view where lines are drawn to indicate mes-
sage communication between processors and the critical path through the application is
shown in red. In the middle is the Utilizalion Gantt Chart which illustrates processor uti-
lization. Similar to the PVaniM Host Utilizalion view, green represents computation time,
red represents idle time, and yellow represents overhead from performing message sends.
At the lower left of Figure 3 is a Communicalion Malriz view where each square in the
two-dimensional array represents message communication between processors. At the bot-
tom right is a Concurrency Profile view which shows the percentage of time that a certain
number of processors are “busy” performing computation.

The ParaGraph views provide much greater detail than the on-line views provided by
the system, but the ParaGraph views lack external load information and memory utilization
views provided by PVaniM’s on-line component. Furthermore, because there is a one to
one mapping of task to workstation, ParaGraph’s utilization information is applicable for
this application.

Figure 5 shows an XPVM snapshot of the same application. At the top is a Ulilization
view. This view is an adaptation of ParaGraph’s Ulilization Gantl Chart but zooming and
scrolling capabilities have been added. At the bottom of Figure 5 is a Space-Time view.
Again, this is an extension of ParaGraph’s Space-Time view that has been augmented with
scrolling and zooming support.

Although, XPVM also lacks PVaniM’s ability to visualize external loads and memory
utilization, it is extremely useful for this application for several reasons. First, since there is
a one to one mapping of task to workstation, XPVM’s utilization information is applicable
just as ParaGraph’s utilization views were. Second, this is a relatively small application
that executes for a short amount of time. Since each task sends no more than 100 messages,
and the application executes for about 45 seconds or so, the amount of state information

that must be stored by XPVM to perform scrolling and zooming is minimal. XPVM is able

14



Figure 4: ParaGraph postmortem views of Kernel MG provided by PVaniM.

to comfortably zoom and scroll with little interaction delay.

3.2 N-Puzzle

Figure 6 illustrates an N-puzzle application executing in the PVaniM environment. The
N-puzzle problem|[7] is a branch and bound application which is solved by searching a state
space tree that corresponds to puzzle derivations. A “bag of tasks” approach is utilized
in which a master node is responsible for the distribution of puzzle states to the worker
tasks. The worker tasks generate the two to four possible configurations that are directly
derived from the received puzzle configuration. They then send these puzzle states back to
master node, who reorders them to be resent out to the worker nodes depending upon their
feasibility of leading to a solution.

The “bag of tasks” approach provides for dynamic load balancing as worker processes

acquire more tasks to perform when they complete their current task. The algorithm has
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Figure 5: XPVM views of Kernel MG.
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potential to perform well in a cluster environment[8].

The application executes on a combination of SGI R4400 workstations, Sun Sparc 10’s,
and Sun Sparc 2’s. The master node executes on buster, an SGI R4400, and worker nodes
execute on the remainder of the workstations.

Examination of PVaniM’s on-line graphical views yields several interesting observations.
First, all of the worker nodes have roughly the same percentage of utilization despite the
various capabilities of the workstations and the wide range of external loads. The load-
balancing nature of the application is clearly having an effect. Unfortunately, however, the
workstations are all being poorly utilized. The large amounts of red in the Host Utilization
view indicate this to be so.

Second, a large amount of memory is being utilized by the workstation buster. Although
this workstation has two tasks executing on it, it is using ten times as much memory as
any other workstation. Since node one performs identical operations as nodes two through
six and node zero maintains the “bag of tasks”, we conclude that the “bag” maintained by
node zero is growing quite large. Since this bag is constantly reorganized, it appears likely
that this may be a bottleneck in the application. At the very least, it is safe to assume that
node zero should always execute on a workstation with a large amount of memory.

Figure 7 illustrates ParaGraph postmortem views of N-Puzzle as generated by PVaniM.
Here ParaGraph’s utilization views are somewhat misleading because there is not a one to
one mapping of task to workstation. Two tasks execute on buster, but ParaGraph assumes
that each task executes on a dedicated processor. Hence, ParaGraph provides two different
processor utilization rectangles for buster in its Utilization Gantt Chart. According to task
zero, the utilization rectangle is mostly green and therefore buster is extremely well utilized.
According to task one, however, the utilization rectangle is mostly red and buster is appears
to be extremely poorly utilized. Clearly, these two rectangle must somehow be compounded
together to provide a more accurate representation of buster’s utilization.

In this application, the user is advised to rely on PVaniM’s on-line utilization view

because it correctly aggregates the statistics for task zero and task one since they execute
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on the same workstation as well as doing this for tasks three and four. ParaGraph’s other
detailed views are still useful, however. For example, after examination with ParaGraph’s
detailed views, one is able to discern that a large number of small byte messages are prevalent
in this application. Essentially, the tasks being distributed to workers are too fine grain
and have a very poor communication to computation ratio.

Figure 8 shows an XPVM snapshot of the same application. The usefulness of XPVM
for this application suffers for several reasons. First, since XPVM assumes one to one
mapping of task to workstation, its utilization view is misleading for the same reason as
ParaGraph’s utilization views. Specifically, XPVM also provides two different processor
utilization rectangles for buster. Furthermore, although the N-puzzle application only exe-
cutes for a few minutes, it is communication-intensive. The large amount of communication
requires XPVM to store and process a large amount of state to support its zooming and
scrolling capabilities. In fact, as seen in Figure 8, the zooming feature became inoperative
as we were unable to zoom in and acquire a more detailed view that filled the entire draw-
ing area. Essentially, usability problems occurred due to large interaction delays with the
XPVM interface which are a result of XPVM attempting to provide such detailed graphical
views on-line. Finally, XPVM does not illustrate task zero’s large need for memory nor the

external loads present on the workstations.

3.3 TSP

An application that solves the traveling salesperson problem effectively uses advanced strate-
gies for executing in a network computing environment. In this branch and bound appli-
cation, a set of partial tours are generated and are searched concurrently. A work queue
stores partial tours, and a master node is responsible for distributing partial tours to worker
nodes. This algorithm shares the dynamic load balancing properties of the N-puzzle above
as worker nodes obtain more tasks (i.e., a new partial tour) upon completing their current
task.

Figure 9 illustrates the execution of the TSP application in the PVaniM environment.
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Figure 6: Snapshot of N-Puzzle provided by PVaniM’s on-line graphical views.
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Figure 7: ParaGraph postmortem views of N-Puzzle provided by PVaniM.
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Figure 8: XPVM views of N-Puzzle.
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Figure 9: Snapshot of TSP provided by PVaniM’s on-line graphical views.

In this example, the master task executes on buster, and tasks one through six are worker
nodes executing on workstations of various capabilities and loads. As shown in the Hosl
Ultilization view, all worker nodes are again approximately equally utilized. However, in this
case, the large amount of green in the view indicates that the workstations are extremely well
utilized. Essentially, the tasksin this application are much more coarse-grained. This results
in a much better computation to communication ratio. Not surprisingly, this application
exhibits extremely good speedup.

Figure 10 and 11 are snapshots of TSP executing under ParaGraph and XPVM, re-
spectively. Again, because the mapping of tasks to workstations is not one to one, the
utilization views from these systems provide multiple utilization rectangles for some of the
workstations. Hence, these views provided by ParaGraph and XPVM are of limited value.
Furthermore, PVaniM’s illustration of both external loads and aggregated utilization allows

us to conclude that this algorithm’s use of dynamic load balancing is particularly effective.
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Figure 10: ParaGraph postmortem views of TSP provided by PVaniM.
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Figure 11: XPVM views of TSP.
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4 System Implementation

Figure 12 is an architectural overview of PVaniM. PVaniM consists of a graphical user inter-
face, monitoring routines which are transparently embedded into the application tasks using
macros, and an environment probe which is instantiated for each PVM task. The following

subsections provide implementation details for these primary components of PVaniM.

4.1 Graphical User Interface

The visualizations associated with PVaniM’s GUI were presented in a previous section.
PVaniM’s graphical user interface is a PVM task and uses standard PVM communication
routines such as pvm_recv() to receive monitoring data from the application tasks. The
GUI also uses standard pvm_send() to send steering messages to application tasks. The
GUI is responsible for aggregating monitoring statistics from each host as well as parsing
environment data produced by environment probes.

Because the GUI utilizes PVM message passing capabilities to interact with application
tasks, by default it inherits several advantages, namely heterogeneity and portability. How-
ever, this also implies that communication routines in the application must be modified to
allow monitoring messages to safely coexist with standard application messages. The most
difficult aspect of this approach is enabling the GUI to send messages into the application
while assuring all such messages are intercepted by the interaction layer and not mistakenly
delivered as an application message. The interaction layer is integrated into the monitoring

routines and therefore discussed in the following section.

4.2 Monitoring Routines

As previously mentioned, PVaniM utilizes macros to embed monitoring support into the
application. These routines record statistics regarding communication overheads, byte traf-
fic, communication patterns, etc. The statistics are stored as trace events to local disk using

buffered 1/0.

Aggregate statistics are stored in memory and require only a finite amount of space.
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AP: Application Process
EP: Environment Probe
PD: PVM Daemon

PVaniM
GUI

Figure 12: Architectural overview of PVaniM.

An example aggregate statistic is Total Idle Time where a running total of the amount
of idle time is stored in a scalar data structure. If the amount of time since the previous
communication with the GUI is greater than the sampling interval time specified by the
user, the routine determines it is necessary to send the updated monitored statistics to the
GUI. If it is necessary to send statistics to the GUI, the routine performs a getrusage()
system call to acquire other interesting resource information such as memory utilization
and sends this data to the GUI.

PVaniM uses techniques similar to Xab[1] to send satistics to the graphical user interface.
Specifically, PVaniM utilizes PVM’s multiple message buffer support so it may use PVM’s
message passing facilities without corrupting application message buffers. However, in order
to allow PVaniM to send messages into the application, more support is required than that
provided by PVM’s multiple message buffers. This is a result of PVM allowing wildcard
receives. That is, an application may specify that a pvm_recv() simply deliver a message
of any type from any PVM task. Many applications with simple communication patterns
are written this way and they do not anticipate that a graphical monitor such as PVaniM
may also be sending PVM messages into the application. Support is necessary to allow this

interaction and wildcard receives to safely mutually coexist. We refer to this support as
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call regular pvm_recv routine;

while (message received is from GUI monitor) {
call interaction_handler to perform steering;
call regular pvm_recv routine;

/* message received is an application message */

perform appropriate tracing and sampling
return bufferid of message to application

Figure 13: Pseuocode for a two-phase PVM receive.

PVaniM’s interaction layer and its details are discussed below.

4.2.1 Interaction Layer

PVM provides several library routines that allow the application to receive a message.
These routines fall into two categories, two-phase receives and single phase receives. Two-
phase receives require a separate PVM routine to place message data into a user-space
buffer after the explicit receive has been performed. Single phase routines are those that
automatically place message data directly into user-space when the message is received.
Examples of the former are pvm_recv(), pvm_trecv(), pvm nrecv() and examples of the

latter are pvm_precv().

Two Phase Receives Two-phase receives are relatively straightforward to modify to
allow interaction. Since data is not unmarshaled during the receive, it is acceptable to first
perform the standard PVM receive routine. If this message is determined to be from the
graphical user interface, an interaction handler is called to perform the necessary steering
as determined by the type of message received from the GUI. The handler returns and the
standard PVM receive routine is performed again. When the receive yields a message that
is determined to not be from the GUI, this message is clearly a normal application message
and is delivered to the application. Figure 13 provides pseudocode for PVaniM’s macro

wrapper for a two-phase receive.
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use function parameters to determine expected message length
call pvm_recv (which is a two phase receive)
while (message received is from GUI monitor) {

call interaction_handler to perform steering;

call regular pvm_recv routine;

}
/* message received is an application message */
unmarshal data and place in user-space buffer

perform appropriate tracing and sampling
return

Figure 14: Pseuocode for a single phase PVM receive.

Single Phase Receives Providing interaction with single phase receive routines is more
complicated than two-phase receives because should they use a wildcard in the routine,
they risk the chance of atomically delivering steering data to the application. Not only will
the steering data be lost, but the potential exists for steering data to overwrite memory in
user-space. This will happen if the length of the steering message is greater than the length
of the message the application is expecting to receive.

The atomic nature of pvanim precv() requires PVaniM to provide its own custom
version of this routine. This version guarantees that steering messages are not delivered to
the application but instead to the interaction handler. Figure 14 provides pseudocode for
PVaniM’s macro wrapper for a single phase receive. Essentially, PVaniM utilizes PVM’s
pvm_recv() (a two-phase receive) to implement the desired single phase receive. This allows
it to intercept messages from the GUI and call the interaction handler if necessary. Upon
receiving an application message, PVaniM unmarshals the data and places it in user-space

at the specified location.

4.3 Environment Probe

While PVaniM’s monitoring routines utilize system calls such as getrusage() to obtain
monitoring data, some integral workstation “environment data” is not available from a sys-

tem call on standard Unix systems. For example, load average (i.e. average number of jobs
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in the run queue), is stored in kernel memory and is only available from the Unix command
uptime. Other useful information such as process statistics are also only available from
a Unix command and not a system call. This presents a dilemma because cluster envi-
ronments typically utilize standard commercial operating systems (and thus only standard
system calls are available) yet the environment data discussed above is particularly useful
to understanding complex factors of a cluster environment.

PVaniM uses an environment probe to provide load average information only available
from the Unix command uptime. The environment probe is a Unix process which forks
and ezecs uptime and redirects the output of this command through a pipe connecting the
environment probe to a PVM application task. PVaniM reduces the latency of this by
prefetching the execution of uptime. This is performed by first informing the environment
probe to instantiate an uptime call. Only during the next entrance to PVaniM’s monitoring
macros (i.e., the next PVM routine used by the application) is an attempt made to read
from the pipe uptime’s output. Furthermore, a nonblocking read is also used and if the
data is not available, PVaniM attempts the read at a later point in time.

Once the data is successfully read from the pipe, the monitoring routines send it to the
graphical user interface which parses the data and generates PVaniM’s Load Information

view.

5 Related Work

Several previous visualization systems have been developed for use in cluster computing
environments. Xab[l] utilizes on-line event tracing to provide textual informational views
available at run-time. Xab utilizes no buffering in its gathering of trace events and therefore
not only requires a large amount of network bandwidth but also does not use it effectively.

XPVM[5] provides graphical views of PVM applications, some similar to PVaniM.
XPVM provides the same graphical views on-line as in postmortem mode. All of XPVM’s
graphical views are trace event based (and therefore utilize substantial network bandwidth).

However, XPVM incorporates buffering which increases the efficiency of network bandwidth
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utilization over other on-line tracing systems such as Xab. Nonetheless, XPVM’s on-line
graphical views store large amounts of state because it views are very detailed and allow
the user to zoom and scroll back in the view to see a detailed history of the execution.
For long running or communication-intensive applications, the graphical views may fail due
to memory constraints and their zooming and scrolling capabilities exhibit large delays
when updating the graphical views. While these delays may be perfectly acceptable and
understandable in a postmortem profiling session, they are not acceptable during on-line
analysis.

The Hence environment[1] provides graphical development tools for composing parallel
programs as well as providing on-line trace event based graphical views. Hence allows a user
to draw a graph to describe the dependencies between user-defined function from which it
automatically generates the parallel program.

PVaniM distinguishes itself from the systems above because its on-line graphical views
are based on periodic sampling and not event tracing. As a result, less network bandwidth is
required for on-line visualization. PVaniM reserves event tracing for postmortem graphical
views and therefore defers the collection of trace files until after application execution.
PVaniM also differs because it incorporates external load information, a relatively complex
procedure in typical cluster environments. PVaniM also provides support for transparently
and safely sending steering messages into an application.

Several systems also provide steering support in addition to monitoring. The Falcon
environment[3] provides sampling, tracing, and interactive steering for high performance
applications executing on shared memory parallel processors.

The PVMAVS system[6] provides a library using PVM and AVS for the (scientific)
visualization and steering of distributed simulations. In this system, steering is performed

through the visualization stub portion of the library.
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6 Discussion

The PVaniM visualization environment provides extensive monitoring and visualization
support to help aid in understanding network computing applications and the complex en-
vironments they execute in. PVaniM minimizes its monitoring impact on available network
bandwidth as well as provide enlightening graphical views and useful facilities. Our ini-
tial experiences with PVaniM are encouraging and have shown the system to be extremely
useful for debugging, performance tuning, and program understanding.

Several avenues for future work exist with PVaniM. PVaniM’s transparent steering sup-
port has great potential and we are currently investigating supporting steerable objects
such as those provided by the Progress toolkit[12]. Also being investigated is the addition
of interactive load migration facilities. These are particularly apropos due to PVaniM’s
ability to gather external load information from the cluster environment.

Furthermore, PVaniM’s environment probes should be enhanced to provide more exten-
sive environment data such as what types of applications are being executed by other users
logged in. Finally, PVaniM would benefit greatly from extensions that allow it to monitor
and visualize threads, objects, and distributed shared memory systems, all of which are

becoming more prevalent in network computing environments.
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