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A NEW SOLUTION FOR THE PROBABILITY OF COMPLETING SETS IN

RANDOM SAMPLING: DEFINITION OF THE "TWO-DIMENSIONAL

FACTORIAL"

Jeffrey D. Lindsay

Institute of Paper Science and Technology

Atlanta, GA 30318

ABSTRACT

A new solution to a classical sampling problem is found. The problem con-

cerns the probability of completing a subset of items when randomly sampling

with replacement from a finite population (or equivalently of completing a subset

of classes when sampling from an infinite population whose members are

uniformly distributed among a finite collection of classes). In deriving the

solution, an interesting recursive function is obtained which can be described as a

"two-dimensional factorial." This function is partially tabulated, and several of its

properties are investigated, including limits for large numbers. Use of this

function offers significant computational advantages over the previous classical

solution to the probability problem considered here. The function is not known to

have been noted in previous work.
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1. INTRODUCTION

In probability theory, a classical sampling problem concerns the likelihood

of collecting a set of items by randomly sampling a population 1. A simple exam-

ple can be found in the collection of sets of promotional items offered inside cereal

boxes. The items are presumably randomly and uniformly distributed and

remain unidentified until the package has been opened. For instance, one cereal

manufacturer offered miniature license plates from all 50 states with one plate

per box. If somebody desires to collect all 50, how many boxes should one plan to

purchase to be 95% confident that the set will be completed? A less ambitious con-

sumer may simply want to know the probability that at least 10 different plates

will be obtained by purchasing 12 boxes. Related problems may be found in

sampling problems in scientific studies.

We will begin by considering the simple problem when the different classes

in the population each compose an equal fraction of the population. In general

terms, our problem statement becomes:

If U distinct classes of items are randomly and uniformly distributed

among an infinite population, what is the probability that a specified

number, U-M, of the classes will be acquired in N trials? (M is the number

of missing classes in the sample.)

We will introduce the notation P(N,U,M) to denote this probability. Feller 2

shows that this probability is

U-M

P(N,U,M) ) k)[1 - U (1)
k=O
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By taking an independent approach in the solution, we will show a new

form for the solution to be

P(N,U,M)= U F(D, U-M), (2)
M! U

where D is the number of duplicate items among the N samples, or D = N-(U-M),

and F is a recursive function defined by

U-M
F(D,U-M)- A j F(D-1,j), (3)

j=1

F(0,j) = 1 for all j = 1,2,3,....

After derivation of the probability formulas, we will discuss properties and

limiting values of the recursive function F, which can be described as a two-

dimensional factorial function.

2. DERIVATION

The two-dimensional factorial function was found by noting obvious pat-

terns while determining the permutations for obtaining U-M distinct items in N

trials. That number, divided by the total number of possible permutations, UN,

gives the desired probability. For example, consider the problem of collecting all

three items of a set in six tries. Here U = 3, M = 0, and N = 6, and the number of

duplicates, D, is 3. The permutations are treated in the following table. There are

10 cases to consider, one for each feasible combination of positions occupied by the

duplicates. Duplicates are shown in bold, italic text. For example, in case 6, dup-

licates occur at trials 2, 5, and 6. For trial 1, any of the three distinct items can be

chosen. If a duplicate occurs in trial 2, there is only one possibility, the same item

that was selected in the first trial. The remaining two items appear in trials 3 and

I
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4, so the number of possibilities becomes 2 and 1, respectively. For trials 5 and 6,

any selection will be a duplicate, so the number of possibilities becomes 3 and 3.

Case Trials Permutations

1. 3 1 2 1 =3!* (1*1*1)

2. 3 1 1 2 2 1 =3! (1*1*2)

3. 3 1 1 2 1 3 =3!* (1*1*3)

4. 3 1 2 2 2 1 =3!* (1*2*2)

5. 3 1 2 2 1 3 =3!* (1*2*3)

6. 3 1 2 1 3 3 =3!* (1*3*3)

7. 3 2 2 2 2 1 =3!* (2*2*2)

8. 3 2 2 2 1 3 =3!* (2*2*3)

9. 3 2 2 1 3 3 =3! (2*3*3)

10. 3 2 1 3 3 3 =3! (3*3*3)
. . . . w49 .... _ ; - .

Total:

Table 1. Permutations for the 10 possible cases when U=3, N = 6, and M = 0.

The total number of permutations is the product of 3! and the total permu-

tations for duplicates, which is the sum of the products in parentheses in the

rightmost column of Table 1. The sum of numbers in parentheses can be written

as either

3
F(3,3)= E I al a 2 a 3 , with a3 > a2 > a1a E {1,2,3}

a3=1

3*(1*1 + 1*2 + 2*2 + 1*3 + 2*3 + 3*3) + 2*(1*1+1*2+2*2) + 1*(1*1)

3
=F(3,3)= j F(2,j),

= 1

=3!* 90
=3!*F(3,3)

or as

(4)

(5)

=:

i
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where F(2,j) = r[al a2 , with a2 > a, a1, {1,2 ... j}. (6)
a2=1

The number of cases is given by the number of feasible combinations of

positions for the D duplicates among N=U-M+D sample positions, with duplicates

able to occur only after at least one element of U has been selected. The number of

cases is thus (N-1)!/(D! [N-D-1]!). The number of choices available for a duplicate

equals the number of unique items previously selected in that case.

In general, when all U distinct items are selected in an arbitrary N>U

trials, there are U! permutations for the first selections of these items. For the D =

N-U duplicates, the kth duplicate can be any one of ak items, where ak denotes the

number of distinct items already selected, 1 < al < a 2 < .... < aD < U. The number of

permutations of duplicates is then II a1 a 2 .... aD. Summing over all possible

values of aD, the number of permutations for obtaining all U distinct items in N

trials, resulting in D = N-U duplicates, is therefore

U
U! E 1-aja2 ...aDo, with aD > aD-1 > aD-2 > .... , aE {1,2 ... U} (7)

aD=l

which can also be written as U! F(D,U), where

U
F(D,U) - ~ j F(D-1 ,j), with F(O,j) = 1 for all j = 1,2,3,.... (8)

j=1

When M of the U unique items are missing in the sampled subset, the

number of duplicates becomes D = N-(U-M). By considering the permutations of

duplicates and first occurrences, as was done in deriving Equation (7), it is easily

shown that the total number of permutations becomes

M! F(D,U-M) (9)

I
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with the function F defined in Equation (8). In general, then, the probability of

obtaining U-M unique items from a possible U items, distributed uniformly

throughout an infinite population, in N trials is

P(N,U,M) = M N F(D, U-M), (10)
M! U

where D is the number of duplicate items among the N samples, D = N-(U-M), and

F is a recursive function defined by

U-M
F(D,U-M)- j F(D-1,j), with F(0,j) = 1 for all j = 1,2,3,.... (11)

j=1

Equating the r.h.s. of Equations (1) and (10) and simplifying yields

U-M U-M(-1)j (UM-j)N
F(D,U-M) = j F(D-l1i)= A j! (U-M-j)!

j=1 j=0

The identity in Equation (12) is by no means obvious and is an interesting result of

itself.

The probability P(N,U,M) can be computed using either Equation (10) or

Equation (1) from Feller. Likewise, F(D,U-M) can be determined using the recur-

sive approach of Equation (11) or the alternating-sign series in Equation (12). Use

of the recursive function offers a significant computational advantage for it is a

summation of positive terms only, whereas the alternating-sign series involves

small differences of large numbers. Limited numerical resolution on a computer

thus greatly restricts the usefulness of Equation (1). For example, to compute

F(D= 4, U = 43, M = 0) = 8.04E+11 with the alternating-sign series, differences

between numbers 16 orders or magnitude greater are required. From j=6 to 11, the

terms of the series are 1.45E+27, -2.04E+27, 2.35E+27, -2.25E+27, 1.80E+27, and

-1.22E+27. Summing the series on a computer with 15 digits of resolution (the
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WingzTM spreadsheet by Informix was used on a Macintosh II) yielded a negative

result, whereas accuracy was maintained with the recursive approach until

sums exceeded the largest allowed number, 1.7E+308.

3. FURTHER PROPERTIES OF THE TWO-DIMENSIONAL FACTORIAL

The two-dimensional factorial appears to be an interesting function

meriting further study. Table 2 shows values of F(D,U-M) for 1 <D<25 and

1 •U-M<7. Several interesting features are apparent in the columns of numbers

shown here. Note that F(D,1) = 1 and F(D,2) = 2D+1 - 1 for all D. A logarithmic

contour plot in Figure 1 for the range 1 <D<30 and 1 <U-M<29 shows how the

numbers increase with U and D.

1 2 I 3 I 4 I 5 1 6 I 7
1 1 3| 6| 10| 151 21| 28

................................ ............... ............................. . ............................. .......................... '= .................... . ............. :......... ......... ...............2 1 7, 25 65 140 266 462
3 1 15 90i 350- 1050. - 2646' 5880
4 1- 31. 301 1701. 6951 22827 639874 ............... ............................ ..................... ..... ... .................... .... ........................ .. ........:................................ ..
5 1. 63. 966 7770. 42525. 179487. 627396
6 I 1. 127 30251 34105. 246730- 1323652I 5715424
7 1: ........................ o .5o3 ....................... .,,4,oo,,5,,7,,ooo ...............oo...., ............. ,,0o, ,:,,,,,3 231 ............. ,3............ . 8Q
8 1 511i 28501I 611501, 7508501| 63436373' 408741333
9 1 1023 86526 2532530- 40075035- 420693273 3281882604.... ............... ................... ........................ ....... ....... . ..................... .............. ..........., ., 5 ......... 4 ... 23..... ..-..... :....................'.....

1 0 1 *2047. 261625 10391745! 210766920- 2734926558 25708104786
.................................. . .... . ,ooo, oo........ . .o o .o..o......

11 1I 4095 788970 42355950. 1096190550 17505749898. 1.97E+11.................... ............. ii;......... 4 --- - .................-
12 1 8191 2375101 171798901 5652751651.110687251039 1.49E+12
~3 ^........................................ .......................................... 4... ............. 6...9 3 , E ,. ...............,1...]..I...+1.31 3 1. 16383. 7141686 694337290.28958095545' 6.93E+1f 1.11E+13
1 4 1 32767 21457825 2798806985'147589284710 431E+12- 8.23E+13^ ^ ............................... I.......... ................ ............................... .. ................... I.........
15 . 65535 64439010 11259666950 7.49E+11 266E+13 6.03E+14
1 6 1 131071 193448101 45232115901 3.79E+12- 1.63E+14 4.38E+15
1 7 1 262143' 580606446 1.82E+11i 1.91E+13 9.99E+14 3.17E+16

------ ........... . .... 8.............. -1 8 1 524287i 1742343625i 7.28E+11i 9.64E+13, 6.09E+1 7
-1 9 , , .,,1 1048575- 5228079450, ? .9..E..2 . 4 .85Et,114 3 70E.+16 .1.63E. 18
20 1. 2097151V 15686335501 1.17E+ 13 2.44E+1 5' 2.25E+17 1.16E+19
21 1 4194303. 47063200806i 4.68E+13i 1.22E+16: 1.36E+18- 8.29E+19

.......... �, ....... **o..oo..,oooo,..o ........o.. ........... *~ ........... , .......... ,,o ...... : ................. ..... .......

22 1 83886077 1.41E+11 1.87E+14 ' 6.13E+16 8.22E+18i 5.88E+20
23 1 16777215 4.24E+11 7.49E+14- 3.07E+17' 496E+19 4.17E+21
24 1 33554431 1.27E+12 3.00E+15. 1.54E+18 2.99E+20. 2.95E+22

................................................. ................................ , ........................ ... ... .......................... . .......... ................... ..................................

67108863. 3.81E+12i 1.20E+16: 7.71 E+1 8. 1.80E+21: 2.08E+23

Table 2. F(D,U-M) for 1<D<25 and 1<U-M<7.

25 1



Figure 1. Logarithmic contour plot of F(D,U-M) for 1<D<30 and 1 <U-M<29.

3.1 Limits for Large Numbers

As D, and hence N, become very large for a given U, P(N,U,0) approaches

unity (it becomes nearly certain that all U items will be collected if enough

samples are obtained). Thus,
UN

lim F(D,U)= U!. (13)
D--oo

Therefore, the ratio F(D,U)/F(D-1,U) approaches U for large D. Likewise, for large

D, the ratio of adjacent values in any row is

I

I

......

....:



9

lim F(D,U-1) =(U-1 (14)
D-.oo

A more exact expression than Equation (13) is possible using a theorem for the

limit of Equation (1) proved by Feller 3 and attributed (with a different proof) to von

Mises 4:

If U and N increase so that A = Ue-N /U remains bounded, then for fixed M:

A
P(N,U,M) -4 e-X (15)

which is the Poisson distribution. The two-dimensional factorial for large N = U+D

is then

F(D,U-M)=F(N-U+M,U-M)- U! exp- -- + U exp( -) . (16)

For M = 0, this can be rewritten as

F(N-U,U)- ( U U) N/ U(e-u)eN / (17)
U!

or for finite M, we can re-express Equation (16) as

(M n(m)(e-M)N/U (UU) (e-U)

F(D,U-M) = F(N-U+M,U-M) - (MM)In(M!(eM) (u)(e-u (18)

where the terms in the numerator bear some resemblance to Stirling's formula

for large factorials,

n!-~ 2in nn e 'n . (19)

While the resemblance to the regular factorial function is somewhat superficial,

the two-dimensional factorial is still suggested as an appropriate name for the

I
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recursive F function introduced here. The main similarity to the factorial is

through the recursive expression given in Equation (11).

Comparisons of the approximate form in Equation (15) with the exact

probability form in Equation (10) suggest that the approximate form must be used

with caution for M>0. For example, for a given U and M, the approximation may

be close for a certain range of N, but will become increasingly incorrect as N

increases.

3.2 Number Analysis

One feature of the numbers produced by the two-dimensional factorial is

that a large proportion of them seem to have seven and eleven as factors. In Table

3 (a subset of Table 2), numbers divisible by seven are in italics, and numbers

divisible by eleven are in boldface. About 20% of the numbers examined are

divisible by both seven and eleven. I have no explanation for this feature.

__ ! 1 | 2 3 I 4 I 5 I 6 I 7
1 1 3 6 10 . 15i 212 281........ . ............................. . .. 1...................... ... ... 1.5 . 228
2 1 7 25. 65' 140 26.6 462
3 1. 15 90 350. 1050 2646 5880
4 1 31 301 1701- 6951 2282 7 63987........................................................................................................................................................................... ,....................................

5 .............. 96 7770. 42525.. 1479487 .62 7396
6 1 127= 3025- 341051 246730' 1323652i 5715424............._ ............................. ..................... .................... .................................. .......................... .. _.... ...........................

7 1 255. 9330i 145750. 1379400E 9321312Z 49329280
8 ........................... 511501.......... 508501.......... 408741333..........................................................................................................11501508501 408741333.......... 1 ....................... [ .... ... l] 750 50 6343637 40 741333........... 1. ......................................................... ----------------------------------------.................
9 I 1I 1023 s 86526i 2532530{ 40075035' 4206932733281882604

Table 3. Subset of Table 2 showing F(D,U-M) values divisible by seven in italic and

values divisible by eleven in boldface.

Examination of the last digits of the numbers in columns 2 through 5 shows

interesting repeating patterns if we consider that the initial, undisplayed row for

D = 0 consists of ones. The repeating final digits are:
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Column 2: 1-3-7-5

Column 3: 1-6-5-0

Column 4: 1-0-5-0

Column 5: 1-5-0-0

Column 6 shows an interesting pattern in the final digits. The sequence is 1-1 -

6-6 - 7-7 - 2-2 - 3-3 - 8-8 - 9-9 - 4-4 - 5-5 - 0-0, which apparently repeats (I am not

sure because of limited numerical resolution). These pairs of digits change

according to a specific pattern: add 5, add 1, subtract 5, add 1, and repeat.

4. APPLICATIONS AND EXAMPLES

4.1 Probability of Collecting at Least U-M Sets

P(N,U,M) in Equation (10) gives the probability of obtaining exactly U-M

distinct items in a random sample of size N from a uniform, infinite population.

The collector, however, is usually more interested in the probability of collecting at

least a specified number of distinct items. For varying M with constant N and U,

each P(N,U,M) is independent. Therefore, the probability that no more than Mmax

items are missing in a random sample of size N is given by

Mmax

P(N,U,M<Mmax ) = F(N-U+M M (20)
M=O

Since the probability of having at least one distinct item is unity,

N-U
UNF F(N-U+M,U-M) = (21)

M=O
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4.2 Expected Number of Trials to Complete a Set

For a series of U distinct items sampled with replacement, Feller 5 shows

that the expected number of samples to obtain U-M distinct items is

E(Nu-M)=U{ + U- 1 + UL2 + M+1}' (22)

which, for large U, can be approximated by

E(NU-M) = U In( (23)

In the limit of large U, E(N) = U In(U) when M = 0. Applying the Poisson

approximation to P(N,U-0) for large N, we see that the probability of collecting all U

sets in E(N) trials approaches e-1 = 0.3679 as U becomes large.

4.3 Sample Probability Results

Table 4 shows the smallest number of samples required to complete a set of

U distinct items (M=0) with minimum p-values from 0.5 to 0.99. Equation (10) was

used for all values of U; for comparison, several results from the Poisson approxi-

mation in Equation (15) for U = 50 are also shown in the last four rows. Based on

Table 4, the would-be collector of items hidden in packages should plan on buying

three to five times as many packages as there are items to be collected to be fairly

sure (ca. 90% confident) of collecting a complete set with less than 20 items. For

larger sets (say > 25 items), it may be necessary to buy six or more times as many

packages as there are items to be collected.
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Smallest N required for a p-value of at least

U 0.5 0.75 0.9 0.95 0.99

2 2 3 5 6 8
3 5 7 9 11 15
4 7 10 13 16 21
5 10 14 18 21 28
6 13 18 23 27 36
7 17 22 28 33 43
8 20 26 33 38 51
9 23 30 38 44 58

10 28 35 44 51 66
11 31 39 50 57 74
12 35 44 55 63 82

25 90 111 135 152 192

50 214 257 306 341 422

Estimates using Equation (15):
5 10 15 20 23 32

12 35 45 57 66 86
25 90 112 137 155 196
50 214 258 308 345 426

Table 4. Samples required to complete sets of distinct items at several p-values.

For the case of M = 0, the Poisson approximation corresponds well to the

exact results of Equation (10). We noted above that the accuracy decreases

substantially when M > 0. For example, the probability of getting exactly 48 out of

50 distinct items (M = 2) from 159 samples is 0.297 from Equation (10), but the

Poisson approximation gives 0.270. However, cases with M > 0 are often of less

interest than completed sets.
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In computing results for U = 25 and 50 in Table 4, rescaling of F values was

necessary to avoid numeric overflow. To rescale on a spreadsheet with columns of

U and rows of D, divide a row of F values at constant D by a large number such as

10250 (the choice depends on the numerical limits of the computer and software

and the value of U being considered). F values in subsequent rows (higher D) are

then computed recursively with Equation (8). To obtain P(N,U,M) from Equation

(10) using the reduced F values, replace UN in the denominator with the

appropriately scaled number, e.g., 10(N log10(U) - 250), which may prevent the

numeric overflow that can occur in evaluating UN. In rescaling, numeric

underflow could occur in columns of small U, but these have a negligible effect on

F at the larger U values where rescaling is needed.

For the originally considered case of U = 50 license plates, Table 5 shows the

probabilities of obtaining partially completed sets with various M values if one

buys N = 100 boxes. The likelihood of collecting plates from all 50 states is 0.00017

and the chance that no more than three states will be missing is only 5.18%. The

most likely outcome is that six states will be missing, although there is a 52%

probability that even more than six will be missing. With N = 180, the probability of

completing the set is still only 24.5% (25.5% according to the approximation of

Equation [15]). To be 90% confident of getting all 50 states, 306 boxes must be

purchased, as shown in Table 4. (Consumers may do well to simply contact the

manufacturer of the collectable items and buy a complete set directly.)

I



M P(100,50,M)
0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.00017

0.00202

0.01129

0.03835

0.08910

0.15071

0.19294

0.19183

0.15082

0.09501
0.04841

0.02009

0.00682

0.00190

0.00044

0.00008

Cumulative
0.00017

0.00219

0.01348

0.05183

0.14093

0.29164

0.48458

0.67641

0.82723

0.92224

0.97065

0.99074

0.99756

0.99947

0.99990

0.99999

Table 5. Probabilities for the case of U = 50 and N =100.

5. CLOSURE

A new form of the solution to a classical probability problem has yielded an

interesting function which may be termed a two-dimensional factorial. The func-

tion allows computation of set collection probabilities with improved accuracy

compared to the classical alternating-sign series solution in Equation (1) for uni-

formly distributed populations.

ACKNOWLEDGMENT

The author is grateful for the valuable comments and suggestions offered

by Dr. Bruce Collings of the Brigham Young University Statistics Department and

by Kendra L. Lindsay.

15



16

REFERENCES

1. Feller, W. (1950), An Introduction to Probability Theory and Its

Applications, Vol. 1, New York: John Wiley and Sons, pp. 51-66.

2. Feller, p. 69, see also p. 64.

3. Feller, pp. 72-75.

4. von Mises, R. (1939), "Uber Aufteilungs- und Besetzungswarhschein-

lichkeiten," Revue de la Faculte des Sciences de l'Universite d'Istanbul,

N.S., Vol. 4, pp. 1-19, as cited by Feller, p. 72.

5. Feller, pp. 174-175.

I


