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SUMMARY 

 
 

Soot is a combustion generated pollutant that is both a direct risk to human health 

and a contributing source to global environmental change. Soot can also be a controlling 

factor in heat transfer inside combustion systems. Thus there is a growing interest in 

being able to measure soot and understand its production in practical, turbulent 

combustion environments. Therefore, the specific objectives of this research work were: 

(1) developing a way to measure velocity of sooty regions that is compatible with 

existing methods for measuring temporally and spatially resolved soot concentration 

fields and (2) using these methods to make quantitative measurements of soot in an 

unsteady, turbulent-like combustor. The Particle Vaporization Velocimetry (PVV) 

technique was developed and is compatible with Laser Induced Incandescence (LII), a 

soot concentration measurement approach. PVV is a flow tagging approach, where a high 

intensity laser (~2-3 J/cm2) is used to vaporize a small region in the soot field. This 

approach was demonstrated to produce a long lasting and easily readable flow tag that 

allows for velocity measurements over a wide range of velocities. LII proved to be the 

best method for detection the motion of the tag after a fixed delay. PVV and LII were 

used to measure velocity and two-dimensional soot concentration fields in an acoustically 

excited burner. In addition, images of soot luminosity were obtained. Both laminar and 

transitional acetylene diffusion flames were studied. The results reveal that strong 

acoustic forcing can significantly reduce total flame soot, as well as maximum soot 

concentrations, while simultaneously increasing the average soot temperature. The 



 xiv

influence of acoustically generated vortices on soot formation was studied, and soot and 

products mixture mostly likely dominant high soot concentration regions. Eventually, 

these mixtures will be propagated downstream and oxidized as a diffusion flame. 
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CHAPTER 1                                                                              

INTRODUCTION 

 
 
1.1. MOTIVATION 

With the growing world economy, the use of fossil fuels, especially in rapidly 

developing countries such as China and India, is an important factor in economic 

development. With the growing consumption of fossil fuels, emissions from 

hydrocarbon-based, power generating processes are a topic of great concern, because 

they influence both human health and the environment. These emissions include SOx, 

NOx, complex hydrocarbons and particles generated by the combustion process, e.g., soot 

particles. All these emissions are controlled by the complex chemical and fluid mechanic 

processes of combustion. These pollutants are typically more dangerous in advanced 

industrial areas, where there is a relatively high population density. 

Among these pollutants, particulate soot is one of particular concern. Particles are 

able to penetrate into human (and animal) respiratory systems. Especially fine particles (< 

2.5 μm diameter) appear to be of primary importance for their ability to penetrate not 

only into indoor areas but to the depths of human respiratory systems,1 such as lung 

capillaries and air sacs. These particles, sometimes in combination with other pollutants, 

can cause a number of significant health effects; these include aggravation of existing 

respiratory and cardiovascular diseases, development of new ailments and increased 

mortality. 
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In addition, emission of soot into the atmosphere can lead to global environmental 

problems. For example, particulate matter can cause damage and soiling of materials, and 

it is has been a major cause of visibility impairment in many parts of the U.S. and is a 

growing source in developing countries. Soot deposited on leaves of crops, trees and 

shrubs inhibits photosynthesis and plant growth. Soot in the atmosphere can also directly 

alter the earth’s radiation balance. Soot particulates can directly trap infrared radiation (in 

solar radiation and from terrestrial emissions). Soot is also associated with enhanced 

cloud formation due to the increased number of cloud-condensing nuclei,2 and clouds 

also act to alter the earth/solar radiation balance. Some recent reports also suggest that 

small soot particles inside the atmosphere could lead to cooling of the earth by reflecting 

sunlight back into space.3 As scientists and decision makers have come to realize the 

seriousness of this problem, governments (both local and national) in many countries 

have issued increasingly restrictive laws limiting particulate exhausts from combustion 

sources. For example, the California Air Resource Board adopted the Diesel Risk Plan in 

September 2000, which established a goal of reducing 50% diesel PM (particulate matter) 

emissions by 2010.4 Recently, the soot emission from aircraft engines is becoming a 

noticeable source of pollutant at high latitude. In facts, soot emission from military 

aircraft engines is also a significant infrared signature, which makes the aircraft more 

vulnerable to be tracked.5 

The presence of soot particles within combustors is an issue of concern as well. 

They enhance the transmission of heat and radiation inside the burner. This is 

problematic in most propulsion and power producing engines. The presence of too many 

soot particles can also cause coating of surfaces, such as turbine blades and nozzles, 
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leading to enhanced erosion. Thus particles not only decrease system efficiency, but they 

can lead to shortened lifetimes of engine systems. However, increased heat transfer rates 

can be an advantage in devices like boilers and industrial heating systems. So there exists 

a challenge of controlling soot in combustors; for example, we might wish to enhance the 

heat transfer properties inside a combustor, while reducing soot emissions to the 

environment. 

Thus, there is a growing interest in being able to understand the production of 

soot within combustors, especially in practical, turbulent combustion environments. This 

has also brought an awareness that in situ techniques for soot measurements are needed 

that can provide reliable information in unsteady combustion flows. 

1.2. PREVIOUS RESEARCH  

Among all flame types, laminar premixed flames have the simplest structure and 

steady chemical reaction rates; a standard example is the simple Bunsen burner. 

Understanding laminar premixed flames is a necessary perquisite to the study of turbulent 

flames, and they have been widely used to understand soot formation processes. There is 

a large body of experimental data that has been developed in order to elucidate 

mechanisms of soot initiation, growth and destruction in laminar flames. As summarized 

by Richter and Howard6 and Mansurov7, soot formation inside a flame consists of three 

major processes: 

(1) The first step is nucleation of soot particles from gas phase species. Homann and 

Wagner8 in 1967 and Crittenden and Long9 in 1973, and Violi10  in 2005 all 

suggested that acetylene and PAH (polycyclic aromatic hydrocarbons) play key 

roles leading to the initial molecular parents that form soot.  
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(2) The second step of soot formation is soot surface growth, which increases total 

soot mass and soot size simultaneously. Homann and Wagner8, Benish,11 and 

Kazakov and Frenklach12 describe various possible chemical reactions in this step.  

(3) The third process is particle coagulation. According to Frenklach,13 colliding soot 

particles coalesce and form new (larger) spherical structures initially; then they 

agglomerate into fractal, chain-like structures.  

Besides soot formation study in basic premixed laminar flames, some research has 

explored laminar diffusion flames. In 1978, Magnussen et al.14 studied soot in acetylene 

jet flames. They examined the soot production response to changes in jet Reynolds 

number, dilution of the fuel with N2 or water vapor, and fuel preheating. They reported 

the variation of Reynolds number had a strong effect on soot production. Adding N2 or 

water vapor also could reduce soot production. Furthermore, they observed that soot 

destruction initialized at the boundary of eddies, with soot forming inside the eddies.14 A 

light scattering technique was utilized in their experiments. Faeth et al.15,16experimentally 

studied soot formation in laminar diffusion flames with several different hydrocarbon 

fuels. They concluded that soot formed in laminar diffusion flames has similar surface 

growth rates and structures as that inside laminar premixed flames. 

Despite the focus on laminar flame studies, the majority of practical combustion 

systems involve turbulent, nonpremixed combustion, principally because of the ease with 

which such flames can be controlled.17 For example, simple jet flames are used in the 

making of glass and in cement clinkers. Swirling flows and diverging walls combustion 

systems are used in many industrial boilers. Flames inside diesel engines are produced by 

liquid fuel sprays. Overall, these are only a few applications of turbulent nonpremixed 
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flames; the whole list is too long to complete here. Inside these flames, chemical 

reactions are highly influenced by turbulence-driven processes. Since turbulent flow itself 

is a complicated phenomenon that has been studied for nearly two centuries, e.g., at least 

since the time of Osborne Reynolds,18 the added complexity of turbulent flames, which 

combine complicated fluid mechanic, chemical and radiative processes, makes soot 

studies in turbulent combustion even more challenging. 

1.2.1. Unsteady Forced Flames 

As is well known, an important characteristic of turbulence is its ability to 

transport and mix fluid much more effectively than a comparable laminar flow. 19 

Therefore, turbulence tends to enhance the mixing of gaseous oxidizer and fuel in 

nonpremixed flames. In fact, an abundance of studies on turbulent mixing processes has 

been published. In the literature, it has been demonstrated that an effective approach to 

simulate (in a controllable manner) important aspects of turbulent flow is to apply an 

acoustic forcing field to a laminar jet.20-25 These studies showed acoustically generated 

vortices can play a critical role in the mixing process. 

Alternatively, applying acoustic forcing to flame fields can modulate the flame 

conditions, i.e., by changing local flow velocity and fuel/air ratio, local soot production 

can be adjusted. Even though an acoustically forced (laminar) flame is not truly a 

turbulent flame, it is a very useful approach for controllably reproducing a number of 

aspects of turbulence. Attempts have been made to study soot formation and evolution in 

unsteady laminar flames. In the 1980s, Necker, 26  McManus, 27  and Santoro et al. 28 

demonstrated that an acoustic system can fluctuate the velocity distribution inside a 

flowfield, similar to turbulent flow. It can generate vortices, thereby enhancing the mass 
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and energy transport processes and changing the flame surface, e.g., through improving 

fuel-air mixing. In the 1990s, Smyth29,30 reported soot concentration changes in open 

flames measured with laser-induced incandescence, with and without pulsing of a laminar 

fuel jet. Low frequency (~10 Hz) actuation was used to generate flickering flames with 

three different hydrocarbon fuels, and the results suggested net soot production rates are 

highly fuel dependent in the flickering flames, likely due to variations in fuel residence 

time.  

In 1992, Zinn31 suggested acoustically forcing not only increases the combustion 

rate, but also lower CO and soot emission. In 1993, Kim32 et al. investigated a pulsed 

C3H8 flame with schlieren photography and laser light scattering imaging techniques. 

Additionally, hot wire anemometry was used to measure the velocity profile close to the 

jet exit. They found that soot decreased after acoustic forcing. They noticed that a forcing 

frequency at the fundamental resonant frequency of the apparatus could vary the flow 

velocity most, generating the strongest vortices, which could cause ambient air flow to 

“collapse” inside the fuel tube. They called this “collapse mixing”, which thereby 

inhibited soot chemistry.  

It should be noted that most of the work on pulsed flames mentioned above was 

based on forcing the fuel jet instead of the whole burner. Near the jet exit, the acoustic 

forcing generates shear layer instabilities, forming vortex structures.33 In the far field, 

buoyancy generated by high flame temperature is the dominant unsteady effect. 34 

In 2004, Ezekoye et al.35  applied both high and low magnitude acoustic forcing to 

an entire chamber with an axisymmetric acetylene diffusion flame inside. Mainly based 

on laser extinction technology, the experimental results show that there exists a critical 
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acoustic velocity, i.e. below this velocity, local soot concentrations increase with 

increasing acoustic forcing; above the critical velocity, soot concentrations decrease with 

increasing of acoustic forcing. Furthermore, they compared soot inside the forced jet 

flame with partially premixed flames, and suggest a partial premixing mechanism is 

responsible for the soot variation inside the cyclically forced flame. Furthermore, direct 

acoustic forcing of an incinerator has been shown to effectively enhance flame radiation 

and reduce soot emissions.36 

1.3 SOOT DIAGNOSTICS 

1.3.1. Soot Concentration Measurement Techniques 

To examine soot production inside flames, local soot concentration measurements 

are necessary. There are a number of established techniques for measuring soot properties, 

including physical sampling methods, 37 , 38  and laser scattering and extinction. 28, 39 

Physical sampling methods provide useful information on soot properties such as 

chemical composition and structure, which are harder to ascertain from nonintrusive 

techniques. However, physical sampling is naturally intrusive; local flow parameters can 

be changed by the presence of the probe, thus generating measurement uncertainty. In 

addition, real-time information is hard to obtain with sampling probes, due to the time 

delay and effective averaging inherent in most approaches. Other techniques, like laser 

scattering and laser extinction are nonintrusive diagnostic techniques. 

Laser light scattering from soot particles is an imaging technique with good 

spatial and temporal resolution, thus making it especially useful for fluctuating or 

turbulent flows. However, it uses elastically scattered light, and in the many combustors, 

laser scattering is susceptible to large background interferences from ambient dust, 
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reflection from windows and other particles such as liquid droplets. Also, the scattering 

signal intensity is very sensitive to the effective optical diameter of the soot particles. 40  

The scattering signal is weighted more towards bigger particles. 

The extinction technique is different from scattering, in that it is primarily 

proportional to the soot mass, or effectively volume, of the soot that the light beam 

encounters along a line of sight.40 Because the soot particles in flame and exhausts are 

generally much smaller than the wavelength of the light source, the total amount of light 

absorbed by soot particles is almost independent of particle size.40 If the soot 

concentration in the measurement region is very low, it is very difficult, however, to 

detect the small loss in the laser intensity. Also, dust in normal air can be a source of 

background extinction. As a line-of-sight technique, extinction also has poor spatial 

resolution along the beam path. 

Laser-induced incandescence (LII) is a relatively new, nonintrusive, laser-based 

technique.41 42 It detects the radiation signal emitted from laser heated, high temperature 

particles. The LII technique combines the advantages of both scattering and extinction. 

Like elastic scattering, LII is an imaging technique with excellent spatial resolution, and 

it provides a strong signal. Since the signal primarily corresponds to the amount of laser 

energy absorbed, LII, like extinction, is mostly sensitive to the soot mass concentration 

(or volume fraction for a known soot density). Generally, LII signal data acquisition time 

is very short (less than 1 μs, and usually less than 100 ns). Thus LII images can be used 

to determine nearly instantaneous, in situ, soot field information; this is especially useful 

in turbulent flame measurements, where local velocities can be very high and time scales 



 9

small. In addition, extensions of LII have also been developed for particle size 

measurements.18, 19 

1.3.2. Velocity Measurement   

To control total soot emission from combustor, soot production rate need to be 

measured, that is to say, soot velocity needs to be measured besides soot concentration. In 

addition, local soot production rate can be calculated based on local soot concentration 

and soot flow velocity.  

For flow velocity measurement, there are a number of established techniques; all 

have their individual advantages and drawbacks in combustion and soot laden flows. 

Probe techniques, such as hotwires, are problematic; for example they are prone to soot 

coating and clogging. In addition, single-point measurements have limited utility in 

unsteady combustion, where field measurements provide added spatial information. 

A number of nonintrusive, optical techniques have been developed for velocity 

measurement. Most require, however, a single particle in the detection volume43 (or in a 

pixel for imaging methods).44,45 These include Laser Doppler Velocimetry (LDV) and 

Particle Image Velocimetry (PIV), with the latter providing at least two-dimensional 

maps (planes) of two velocity components. Unfortunately, these methods have limited 

applicability in flows with dense particle loadings. For particles no bigger than 100 nm 

and generously small measurement volumes, both LDV and PIV are normally limited to 

particle volume fractions below ~0.1 ppb. In addition, these techniques cannot generally 

be used to discriminate between particles of different elemental composition; all particles 

that elastically scatter contribute to the signal. Thus application in soot laden flows can be 

problematic. 
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For gas velocity measurements, a number of other optical techniques have been 

developed to remove the need for particle seeding. These can be categorized as flow 

tagging velocimetry, 43,45 and include Ozone Tagging Velocimetry (OTV) and Hydroxyl 

Tagging Velocimetry (HTV). These techniques rely on creation of tagged regions (marks) 

in the flow (a line, crossing lines, grids, etc.) at some initial time. The locations of the 

marked regions are then interrogated at some known time delay, usually by a planar 

imaging technique. The displacement of the regions is used to determine the velocity 

component(s) in the plane of the imaging sheet. But OTV and HTV are limited in their 

applicability. OTV can not be used in high temperature flows, such as combustors, 

turbine and exhaust flow. HTV, which relies on photodissociation of water to create OH, 

can not work in cold regions where there is no hot H2O, or in regions where OH is 

rapidly consumed by chemical reactions, for example in soot oxidation zones.  

Therefore, there is currently no optimum optical technique for achieving velocity 

measurements in sooty flows.  

1.4 OBJECTIVES OF RESEARCH 

1.4.1. Development of a New Laser Based Velocity Measurement Technique (PVV) 

The first objective of the current work is development of a laser-based technique 

for velocity measurements in sooty flames that is compatible with LII for nearly 

simultaneous soot concentration measurements. The approach developed here is based on 

soot particle vaporization induced by a high intensity laser pulse. A soot free region can 

be produced and used for flow tagging velocimetry. The thesis examines various 

experimental issues necessary to explore the utility of the approach and to determine the 

optimum experimental conditions. These include the optimum laser intensity for creating 
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the marking region, the marking region life time (longer lifetime permit more accurate 

velocity measurements at low speeds), and is the best method of detecting the marking 

region. 

1.4.2. Quantitative Soot Measurements in an Acoustically Forced Flame  

The second objective of this thesis is to apply quantitative soot diagnostics (for 

concentration and to some extent velocity) to understand the effects of acoustic excitation 

that lead to the reductions in soot emissions and changes in radiation observed in Ref. 36. 

The approach to this objective is to study a fuel jet flame under different Reynolds 

number conditions, with and without acoustic forcing of the combustor. By examining 

the soot distribution and soot structure inside the forced flames, the interactions between 

the flowfield and the soot production will be determined.  

1.5. THESIS OUTLINE  

The remainder of this thesis is composed of the following chapters. Chapter 2 

provides a brief and basic background for soot formation and destruction mechanisms. I 

also introduce the principles and theoretical background for the LII technique, laser 

vaporization of soot, and for soot detection techniques. Chapter 3 describes the 

experimental setup, including the combustors and flowfields employed, the measurement 

devices used, and some of the data reduction procedures. Chapter 4 presents the 

development of the Particle Vaporization Velocimetry (PVV) technique, including 

characterization experiments in various flows and velocity measurements in an 

acoustically forced burner. Chapter 5 presents quantitative soot concentration 

measurement inside the acoustically excited combustor. Chapter 6 concludes the thesis 
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with a presentation of the outcomes of this research and recommendations for future 

work. 
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CHAPTER 2         

BACKGROUND OF SOOT FORMATION AND SOOT 

DETECTION TECHNIQUE 

 
In this chapter, the basic concepts for soot formation and destruction, and LII 

Laser diagnosis technique are briefly introduced.  

 
2.1. SOOT FORMATION AND DESTRUCTION PROCESSES  

Soot is carbonaceous particles formed in gas-phase combustion by fuel rich 

reactions. The normal soot particles are mostly composed of graphitic carbon material. 

Under electron microscope examination, soot appears as aggregated, branched chain-like 

structures, and composed of groups of primary particles, which are approximately 

spherical and have diameters on the order of nanometers to tens of nanometers.46  

The soot formation and oxidation can be described by a “hydrocarbon 

polymerisation theory”, as stated by Gaydon,47 

In the presence of excess of fuel molecules, free radials initiate chain 

polymerisation processes which lead to the formation of higher 

hydrocarbons which decompose thermally to solid carbon and hydrogen. 

In the presence of sufficient oxygen the radicals are removed by reaction 

with this and do not cause so much polymerisation. 

Different fuels have different sooting tendency, and there are many different soot 

formation mechanisms proposed for different fuels. The mechanisms involve many 
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chemical and physical steps. Currently, the soot formation steps are generally considered 

to be the following: (1) formation of initial molecular soot precursors, (2) condensation 

and surface growth, (3) coalescent coagulation to form larger primary particles, (4) 

agglomeration of primary particle to form branched soot particles. Figure 2-1 shows a 

schematic of the general soot formation process 

 
Figure 2-1. Soot formation processes in premixed flames from Ref. 48. 

2.1.1 Soot Formation in Acetylene Flames 

Acetylene was chosen to be the fuel in the current study. Acetylene is usually 

considered an important soot precursor species in most hydrocarbon combustion 

systems.49 During pyrolysis, acetylene molecules can form highly active small radicals, 

such as C2H and C2H3. These radicals continue reaction with each other or other 

acetylene molecules and then form polyacetylene (including polyacetylene radical) 

molecules. The nonstop reaction between these radicals and acetylene molecules, with 
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removal of H, leads to the formation of aromatic rings and polycyclic aromatic 

hydrocarbons (PAH). Mass growing of high mass PAHs via physical or chemical 

condensation forms the incipient soot particles, which can evolve to (larger) primary soot 

particles through surface reactions with gas-phase molecules or coagulation between 

small incipient soot particles. Branching agglomeration of primary particles forms large 

soot particles. The soot formation processes in acetylene flame are illustrated in Figure 

2-2.  

+ Radical reaction with C2H and C2H3  
     Acetylene   

     +  a radical 
Polyacetylenes  
Polyacetylenes radicals  

 
             + C2H2 and Polyacetylenes, 
cyclization 

Branched radical  
 

PAH        
                   +  polyacetylenes  

Reactive, partly cyclic 
Hydrocarbons, hydrogen-rich  

 
+ small soot particles 

      and polyacetylenes, 
inactivation 

Small soot particles(active) 
 

  Polycyclic aromates 
  by surface reaction 
       ? 
Large soot particles (inactive, 25nm)  
 
Agglomeration of large soot 
particles to chain-like aggregates, 
slow growth of carbon amount by 
heterogeneous decomposition of 
C2H2 and polyacetylenes  

Figure 2-2. Soot formation processes in acetylene combustion (after Ref.50). 
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2.1.2 Thermodynamic Property Effects on Soot Formation 

Temperature:  

Soot formation is initialized at 800-1000ºC. During the soot formation processes, 

temperature plays a very important role. In premixed flames, oxidation rates 

increase faster than pyrolysis rates. Thus the higher the flame temperature is, the 

lower the sooting tendency. In pure diffusion flames, there is no oxidizer contacting 

the fuel region; thus the flame’s sooting tendency increases with an increase of 

temperature.  

Pressure 

In diffusion flames, variations in pressure only have minor effect on the soot 

formation process. However in premixed flames, soot formation is found to be 

proportional to p1.25 (Ref.51). 

2.1.3 Soot Formation Time Scales 

In premixed flames, the total soot formation process usually occurs in 10-30 ms.52 

Similarly, the soot formation time in diffusion flames is closer to 15ms.53 These times are 

about one order of magnitude larger than the characteristic time-scales for combustion 

reactions, but shorter than the time-scales of molecular transport.54 

The actual soot formation time scales for each step in acetylene flames are 

currently unknown. Error! Reference source not found. shows measured time scales 

from diesel engines; it provides fundamental time scales for most important soot 

formation processes, and can be used as a reference for soot formation study. 
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Table 2-1 Time scales of soot formation steps in diesel engines (from Ref. 55). 

Processes Time range/stage 
Formation of precursors/Nucleation ~few µs 
Coalescent coagulation (~10-fold) ~0.05ms after local nucleation 
Spherule identity fixed coalescence ceases 
Chain-forming coagulation ~few ms after coalescent 
Depletion of precursors ~0.2ms after nucleation 
Non-sticking collisions ~few ms after nucleation 
Oxidation of particles ~4ms 
Combustion cycle complete ~3-4ms 
Deposition of hydrocarbons During expansion and exhaust 

2.1.4. Soot Oxidation 

Soot is removed in flames through an oxidation process, in which soot mass (i.e., 

carbon) forms CO and CO2. In premixed flames, soot oxidation and formation can occur 

simultaneously; in diffusion flames, soot oxidation typically occurs after most of the soot 

is formed and enters the oxidizing region near the flame front. OH is normally considered 

the main oxidizer in fuel rich conditions, while O2 is the primary oxidizer for fuel lean 

gases.6 Thus in diffusion flames, soot is initially oxidized by OH as the soot approaches 

the heat release region. 

2.2. PULSED LASER INTERACTIONS WITH SOOT 

If a laser beam of wavelength λ intersects soot particles of diameter ap, the soot 

particles can absorb energy from the laser beam. According to the Rayleigh theory, if the 

particle size is much smaller than the incident wavelength (ap << λ), more energy will be 

absorbed and stored inside particle than scattered, and the particle absorbs light energy 

volumetrically instead of surface refraction.40 
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When the soot particle is exposed to the laser beam, especially a high intensity, 

pulsed laser, the small soot particle can volumetrically absorb great amounts of laser 

energy. For a high power laser, the heating rate greatly exceeds the heat loss rate, which 

includes heat conduction to the surrounding gas and radiation, the soot temperature is 

increased rapidly, and the soot particle can reach very high temperatures. At elevated 

temperatures, the soot particle begins glowing, emitting broadband radiation. This 

broadband emission, caused by laser heating, is called Laser Induced Incandescence (LII). 

If the laser intensity is high enough, the soot particle can approach (or even exceed) its 

vaporization temperature (nominally 3915 K for carbon black). When this happens, the 

soot vaporization grows rapidly and most of the additional laser energy absorbed by the 

soot particle is lost via vaporization. After the laser pulse ends, cooling mechanisms 

dominate, and the soot temperature decays over a relatively short period before reaching 

equilibrium with the ambient gas temperature. 

For high enough laser energy, the soot particles can be significantly vaporized 

before the laser pulse ends. The decrease in soot particle size or mass due to vaporization 

will lead to less radiative emissions. So, there are two offsetting influences on the LII 

signal: laser energy increase will increase the particle temperature, which increases the 

radiation, but soot particles vaporization reduces the amount of radiating material and 

thus decrease the LII signal. 

2.3. BASIC EQUATIONS OF LII MODELING 

The original modeling of the LII process was developed by Eckbreth56 while 

Melton, 57  Hofeldt, 58  and Mewes and Seitzman 59  modified it later for simulating the 
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detected LII signal. All the numerical simulation results in this chapter are modification 

from Mewes’ simulation code.  

The physical assumptions for the models are: 1) the primary particle is spherical; 

2) its chemical composition and physical properties are homogeneous, i.e. composition, 

mass density, temperature, refractive index are uniform during the process of simulation; 

and 3) the ambient air is homogeneous. During onset and after the laser pulse, the heat 

balance is dominated by heat gain and heat loss mechanisms of the soot particles. Heat 

gain is energy absorption from laser beam, and the heat loss includes heat conduction 

between soot and ambient air, soot vaporization with latent energy consumption and 

radiation. The mass balance includes soot mass loss due to vaporization. 

The energy balance equation is given by:  
 

(Eq.2-1)    
2

, 4
p p

p s p

dT a
m c q

dt λ
α π=   (Energy stored inside particle)

   

*

*

1
2 ( ( ))( )

2 *( ) 1 2
2

v v v

v

H T T T
T Tv v v

s p

v s v

H T Wa p e
W T

π ρ
ρ

Δ −
ℜ

⎡ ⎤⎛ ⎞Δ ⎢ ⎥− − ⎜ ⎟ℜ⎢ ⎥⎝ ⎠⎣ ⎦

  (vaporization) 

 
2 ( )

4 / 2
p p

p

a T T
h

a
π

∞
−

−          (heat conduction) 

 
2

, , , ,
0

( ) ( )
4

p

p b p e b e

a
e T e T d

λ λ λ λ

π
α ε λ

∞

− −⎡ ⎤∫ ⎣ ⎦               (radiation) 

 
The heat conduction term of (Eq.2-1) can be rewritten as: 
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where G is the geometry factor for spherical particles and was provided by McCoy,60 

where α is thermal accommodation factor and γ is the specific heat ratio. In (Eq.2-1), the 

black body spectral emissive power for radiation term can be calculated from Plank’s 

formula61 
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The mass balance, first developed by Eckbreth,56 has the particles mass decrease rate 

equal to the mass flow rate of vaporized material away from the surface of the soot 

particles. The mass balance equation is: 

(Eq.2-4)   
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Notice here, both the energy and mass equations are ordinary differential equations, and 

are functions of time. This means the radiation or LII signal can vary with time. 

As mentioned before, the soot particle will be vaporized and its size will decrease 

if the laser intensity is high enough. Figure.2-3 shows simulations for a 30 and 50 nm 

particles illuminated by a 1 J/cm2 laser beam. The applied laser corresponds to the 

infrared (IR) output of a Nd:YAG laser, with a 1064 nm wavelength. Its intensity is 

assumed uniform across the beam, and the pulse width (FWHM) is 7 ns. It shows that 

appreciable particle vaporization occurs at ~7 ns from the onset of the laser pulse, which 

is earlier than the peak intensity time (~14ns). The particle vaporization ends at 19 ns, 
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before the laser pulse ends (~28ns). These results show that only the high intensity 

portion of the laser pulse can heat soot particle hot enough to be vaporized. Moreover, at 

the same laser intensity of 1 J/cm2, the larger particle size (50nm) is decreased to 34nm (a 

factor of 32% in size, or ~70% in mass), which is more than for the smaller (30nm) 

particle. The latter one changes from 30 to 22 nm (27% in diameter and 60% in mass). 

The reason for the soot particle size dependence is that for these small particles (in the 

Rayleigh limit where at ap << λ), the particles absorb laser energy volumetrically but the 

mass loss depends in part on the soot area (see Eq. 2.4). 

 
Figure.2-3. Numerical simulation of particle sizes change with time, initialized at the 

onset of laser pulse (laser intensity of 1 J/cm2). 

 
Figure 2-4 displays the numerical simulation results of soot particle size change 

for various laser intensities. Two different initial soot particle sizes are considered. 

Obviously, the particle size (and mass) decreases more for increasing laser power. Also, 

the larger particles (50nm) decrease faster than smaller particle (30nm), as shown above. 

In both cases, however, the highest energy shown (3 J/cm2) is sufficient to reduce the 

soot mass by at least 90%. 
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Figure 2-4. Numerical simulation results of soot particles diameter variation after 

illumination by pulsed laser at various intensities. Black line represents 50 nm 
particles and red dot line is 30nm particles (1064 nm laser). 

Figure 2-5 displays particle temperature histories after onset of the laser pulse. 

The two curves show the same original particle size (50nm) heated by different laser 

intensities, 0.3 and 3 J/cm2. First, these curves clearly show that the higher laser intensity 

can “overheat” the particles, to temperatures above the equilibrium vaporization point. 

This leads to rapid vaporization and loss of more particle mass or size, then particle 

temperature variation with time will follow smaller particles’ trace and drop faster. 

Second, the higher power (3 J/cm2) laser pulse produces the maximum soot particle 

temperature at ~7ns. After that, vaporization dominates; consumption of vaporization 

latent energy and a reduction the laser’s heating slope decreases particle temperatures. 

For the lower power laser (0.3 J/cm2), however, only a small amount of mass is vaporized. 

Thus, soot particle temperatures can keep increasing, and the peak temperature is reached 

about where the laser intensity peaks (~14ns).  

 



 23

(a) 

(b) 

Figure 2-5. Numerical simulation results of particle temperature (for 50nm 
original particle) versus time at different laser intensities, initialized at the onset 
of the laser pulse; (b) shows 0-100 ns portion of (a). 

In actual experiments, the LII signal (Eq. 2.5) is normally gated over some 

specific time interval, such as 50ns. This short interval usually begins at or close to the 

laser pulse onset, where laser heating is the strongest, so the LII signal is close to its peak.  

(Eq.2-5)   
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CHAPTER 3                                  

EXPERIMENTAL METHODS 

 
To measure soot emission rate (soot flux) in sooty flow, both soot concentration 

and velocity need to be measured. Comparable to soot concentration measurement, sooty 

flow velocity measurement technique needs to be developed. In this chapter, the 

experimental facilities and the velocity measurement techniques are introduced. 

Descriptions are given for the three flows facilities employed: a non-reacting soot 

generator, a laminar flame burner and an acoustically forced combustor. The nonintrusive 

measurements are mainly based on Laser Induced Incandescence (LII), and a related 

technique, Particle Vaporization Velocimetry (PVV). The optical setups and 

experimental details are presented for both. 

3.1 FLOWFIELDS 

In order to develop and characterize the PVV technique, two flowfields were 

employed. The first is a nonreacting, carbonaceous aerosol containing flow, which has 

been applied for simulating combustion exhausted; the second is a commonly utilized, 

well-documented, steady laminar diffusion flame. Since the laminar flame burner has 

been studied in detail in the literature, it is also useful as a calibration standard for 

quantitative soot concentration measurements, and it is also used for this purpose in the 

current study. Finally to test the PVV technique for multidimensional measurements and 

to study soot in an unsteady combustor, an acoustically driven, nonpremixed burner was 

developed. The burner is capable of producing both laminar and turbulent jet flames. 
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Together with an acoustic forcing system, the combustor can simulate the unsteady 

combustion processes inside practical combustion systems. 

3.1.1 Soot Generator 

In order to develop and characterize the PVV process initially, it was 

advantageous to use a flowfield that was laminar and nonreacting, and where the soot 

concentration and particles size can be controlled. To this end, a soot aerosol generator 

was used to create a controllable soot field (Figure 3-1).68 The soot generator provides a 

nonreacting flow with an aerosol of carbon black particles, which are sufficiently diluted 

to avoid signal trapping. It is also designed to be nearly uniform in temperature, 

concentration, and particle size. The aerosol is obtained from the following process: 5.6 

grams of carbon black are mixed into one liter of distilled water, together with one mL 

gum arabic (Winson & Newton) added as an emulsifier. The carbon black (Cabot 800) is 

composed of approximately 17 nm particles.   

This solution is atomized with the use of an aspirator/impingement type nebulizer 

(Inspiron), providing a carbon/water fog, which is then diluted by a secondary airflow. 

The solution is aspirated with air at a constant flow rate of 9.2 L/min, yielding a solution 

flow rate of 0.34 mL/min. Each flow is separately directed into an aluminum drying 

cylinder (76 mm diameter, 600 mm long) held vertically, with a 2.6 cm wide and 2.4 

meter long heavy insulated heating tape (Omega Engineering model FGH101-080) 

wrapped around it. The cylinder and heating tape together are surrounded by thermal 

insulation materials. To evaporate the water droplets, the cylinder is heated by the heating 

tape to a nominal temperature of 110ºC. Finally, the dried carbon particles follow the 

airflow, exiting the top of the drying cylinder via a 300mm long aluminum tube, with a 
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17 mm inner diameter. Measurements are made above the end of the tube in the resulting 

sooty jet. 

heater

nebulizer

air
airdryer

 
Figure 3-1 Soot generator schematic: dryer tube is wrapped with heating tape; 

separate air flowrates are monitored with rotameters and pressure gauges. 

Dilutions in soot concentration can be achieved by either increasing a second 

airflow (see figure), or by diluting the carbon/water dispersion. The second method, 

however, also changes the size of the carbon particles produced. As a carbon laden water 

droplet evaporates, surface tension and electrostatic forces cause all the small carbon 

black particles to form a single, nominally spherical particle by the time the water is 

evaporated. Thus the particle size at the generator exit should vary with the cube root of 

the concentration of the carbon solution. Notice here, because of the limitation of the size 

of the nebulizer, it will be clogged by overly concentrated carbon black solutions.  This 

and the air flow required to properly nebulize the water limits the maximum soot 

concentration achieved by the soot generator to 4 ppb. 
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Even though the soot generator flow was designed to produce a laminar jet, the 

lack of a surrounding coflow makes the jet quite susceptible to disturbances generated in 

the ambient air, especially somewhat downstream of the jet exit. This limits the useful 

flowfield length of the soot generator, and most of the measurements with the soot 

generator were made close to the jet exit. 

3.1.2 Laminar Diffusion Flame 

A simple, axisymmetric diffusion flame was chosen to develop and test the PVV 

technique in a reacting environment. The specific burner design has been applied 

extensively in many soot studies, 62 - 65  and there are numerous experimental results 

available for calibration of this small combustion environment. The flame is produced 

above a concentric laminar burner. Ethylene (C2H4) was chosen as the fuel because of its 

high sooting tendency. At the center of the burner is an 11.1 mm i.d. stainless tube (fuel 

tube), surrounded by a 101.6 mm i.d. concentric honeycombed outer pipe (air tube). 

Matching the parameters from previous research, the flowrate for fuel and air, 

respectively, were 3.85 cm3/s and 713.3 cm3/s, as measured by calibrated rotameters. 

For this flame at the position just above the fuel tube (Figure 3-2), the soot 

particle formation is in an early stage: the inception rate is high, the primary soot particle 

size is small and the soot concentration is low. Above that position, the soot inception 

rate decreases, the primary soot particle size grows, and the soot concentration increases 

along the flame height. At 40 mm above the exit of the fuel tube (denoted height above 

burner, HAB) along the flamefront, both the primary soot particle size and soot 

concentration reach their peak values (34 nm and nearly 10 ppm). Above that height, the 

primary soot particle size and the soot concentration decay because the soot oxidation 
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rate exceeds the soot production rate. The heat release rate and flow velocity also vary 

with height. LDV results are available for a number of conditions.66 Thus, this flame 

supplies a valuable source for comparison of velocity data in PVV development, as well 

as a calibration standard for LII soot concentration measurement. 

 
Figure 3-2. Schematic of and soot field produced in laminar, ethylene diffusion flame; 

LII image68(right) and soot volume fraction profiles at various heights.68 
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Figure 3-3. Primary soot sizes at different height above burner (HAB) for the 

laminar diffusion ethylene flame in Figure 3-2.67 

3.1.3 Acoustically Excited Burner 

An unsteady, controllable flowfield can be produced by acoustic excitation of an 

enclosed burner. The burner employed here (Figure 3-4) consists of a vertical, square 

steel resonance tube, with a 14×14 cm2 cross-section and 140 cm length. Its top end is 

open and the bottom end is nearly a closed boundary. As an open/closed tube, the 

chamber’s first resonance occurs at a 5/4 wavelength, which is ~320 Hz for this system 

(at room temperature). The tube has 8 quartz windows, consisting of two groups of four, 

each group at a different height. Each window is 15 cm tall and 5 cm wide. The bottom 

edges of the lower group windows are 34 cm above the bottom plate of the burner; the 

upper group of windows has bottom edges 58 cm above the bottom plate. In each window 

group, two windows are used for the passage of laser beams. The other windows are for 
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imaging the flame. The complete system’s height can be adjusted by a large threaded rod 

assembly. In additional, an exhaust pipe is mounted at least 40 cm high above the 

combustor to capture the flame exhaust efficiently without disturbing the burner flow 

field. The fuel flow exits from a 1 mm i.d. stainless steel fuel tube, which is located in the 

center of the resonance chamber. The height of the fuel tube can be adjusted such that the 

flame can be viewed through the imaging windows.  

 

 

Figure 3-4. Acoustic burner schematic, with flow monitoring and acoustic forcing 
system. 

On the bottom plate, there are four evenly distributed holes with 15 mm i.d., and 

each of them is connected to a 15mm o.d. copper tube. These form the air supply. Small 

white stone beads (roughly 3 mm diameter and 4 mm long) are filled to a height of 

approximately 50 mm at the bottom of the resonance chamber to smooth the airflow field. 

A screen with a grid size much smaller than that of the beads is placed on the bottom 
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plate of the chamber to prevent the beads falling into the air tubes. All fuel and air 

flowrates are monitored by calibrated flowmeters and pressure gauges.  

The acoustic forcing signal is created with a function generator (BK Precision, 

4010), and its frequency is monitored by a digital counter (Fluke 1900A Multi-Count). 

Then, the forcing signal is fed to a 100 W amplifier (Radio Shack, MPA101), whose 

output is connected to two acoustic drivers (University Sound speaker, 10-75-8), which 

are mounted on opposite sides the top of the resonance tube. In additional, a TTL output 

from the signal generator is sent to a pulse generator (Stanford DG 535), which is applied 

to synchronize the laser pulse and ICCD camera to the acoustic driving. A quartz 

pressure transducer (Kistler Instrument Corp. Model 21185) is placed on one end of a 

small stainless steel tube, with another end inside the resonance chamber. By changing 

the location of the pressure tube inside the resonance chamber, the local acoustic pressure 

can be measured. In additional, the measurement of this pressure transducer was 

calibrated by placing another pressure sensor inside the chamber, next to exit of the 

pressure tube.  

While applying the acoustic driving force, the flowfield inside the chamber 

oscillates. The combustion chamber has a high length to diameter ratio, which should 

result in a nearly one-dimensional, standing-wave acoustic field. Figure 3-5 shows the 

measured and calculated pressure along the height inside the resonance chamber at room 

temperature, this plot demonstrates the variation of measured acoustic pressures is very 

close to the calculated results, i.e. sinusoid wave, except near pressure node. Due to the 

limited length of the pressure tube, only a partial pressure distribution was obtained. 

Notice that the measured pressure curve does not form a whole sinusoidal wave at the 
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bottom of the chamber, this is due to, there are beads on the bottom plate of the chamber 

instead of a simple closed plate.  
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Figure 3-5. Acoustic pressure variation within the burner versus height (a) 

acoustic pressure variation for laminar flame (b) acoustic pressure variation for 
transitional flame. During experiments, pressure measurement was fixed at 
40cm height. 

During the experiments, the flame bottom was located at ~42 cm high in the 

chamber, and it passed through the pressure minimum (nominally zero at 45 cm), where 

the acoustic velocity reached its maximum (anti-node). This configuration allowed the 

highest efficiency of the acoustic driving force, i.e., it consumed the least input driving 

power to achieve high acoustic pressure/velocity fluctuations. 

Based on acoustic theory, there is a 90° phase shift between acoustic pressure and 

acoustic velocity, and the maximum acoustic velocity (umax) and maximum acoustic 

pressure (pmax) are related by: 

 (Eq.3-1)    max max ( )u p cρ= ∗   
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where ρ and c are the gas density and speed of sound.  

Theoretically, a standing acoustic wave can be generated inside a tube with one 

end closed, as shown in Figure 3-6. Figure 3-7 shows the pressure variation for a certain 

location (+), which is close to the pressure node Pnode1 (the first pressure node and 

velocity anti-node).  

(a) 

(b) 

(c) 

(d) 

Figure 3-6. Flow pressure distribution and local velocity direction inside 5/4 
wavelength acoustic burner (a) from 0o to 90o, dotted line is pressure from 90o 
to 270o (b)from 90o to 180o (c) from 180o to 270o (d) from 270o to 360o. 
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Figure 3-7. Measured pressure variation with acoustic phase at position marked in 

Figure 3-6. 

At the marked (+) location in Figure 3-6, at a phase angle of 0o, the local acoustic 

pressure is zero and the local velocity is at its maximum value, moving from left to right, 

with increasing phase, the acoustic pressure and velocity decrease; until 90o, the local 

pressure decreases to its minimum. From 90° to 180°, the acoustic pressure increases 

with the same direction as main flow pressure, at meant time, local acoustic velocity 

decrease to its minimum (negative) and turns its direction at 180°, while acoustic 

pressure keeps increasing; Until 270o acoustic pressure reaches its maximum (so does 

local pressure). Local acoustic velocity is accelerated by the pressure gradient and 

increases at 180°-270° period, until reaches maximum at 360o, and turns its direction 

again. The acoustic pressure behaviors is different from velocity, it decreases from 

maximum to 0 at 270o to 360o period, then the cycle repeats 

3.2 LASER SYSTEM 

A dual head, high power Nd:YAG laser was used for the PVV and LII 

measurements. Both heads of this laser system (Continuum 45 Surelite I-10) have the 

same nominal properties: 10 Hz repetition rate, maximum pulse energies of 450 mJ and 

200 mJ for the infrared (IR, 1064 nm) and green (532 nm) wavelengths, respectively; an 

IR pulse width of 8 ns FWHM (Full Width Half Maximum); 8 mm beam diameter 
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(measured by a burn mark method and Rayleigh scattering). The pulse-to-pulse 

repeatability of the energy is better than ± 5% for both lasers. 

The spatial distribution of the laser energy is measured by the edge-cutting 

method.68 The beam is blocked partially by a sharp blade, and the transmitted energy is 

measured with a power meter. By translating the blade, the blocked area is varied and the 

energy profile is acquired. Based on this application, the FWHM for IR and green laser 

beams are 3.0 mm and 2.45 mm, respectively. The energy is measured in a time-averaged 

manner, by a pyroelectric joulemeter (energy/shot = average power/frequency). 

The laser energy can be varied three ways: by varying the Q-switch delay 

(relative to the flashlamp charging cycle), changing the laser flashlamp power (charging 

voltage) setup, or, employing a variable polarization beam splitter. A reduction in energy 

down to ~50mJ (IR) can be achieved by increasing the Q-switch delay or varying the 

flashlamp discharge voltage. For such variations, the beam size changes only slightly, 

however the laser beam profile can also change. So, a more reliable procedure is to use a 

polarizing beam splitter and a half-wave plate, with the beam splitter preceded by the 

half-wave plate. By rotating the half wave plate, with the prism remaining fixed, the 

fraction of transmitted and reflected energies is varied. The desired laser energy can be 

decreased to as low as 9 mJ, without changing laser beam size and profile. Furthermore, 

if fine spatial resolution is required, cylindrical lenses with short focal length can be 

applied to spread the laser beam horizontally or vertically (depends on experimental 

requirement), and this can decrease the laser intensity greatly. 

The higher power and improved coherence of the YAG laser were estimated to be 

more than sufficient to attain fluence values well above threshold, even for a significantly 
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expanded beam. The improved focus of the YAG laser also increases the spatial 

resolution of the measurements. The YAG laser also provides a more Gaussian spatial 

profile and a more temporally stable (shot-to-shot repeatable) output intensity. The fast 

decay of the nanosecond scale laser supplies the relative long life LII signal, upon to 1μs. 

The YAG laser output is in the infrared (IR) at 1064 nm, but can easily be frequency-

doubled into the visible region i.e. green (532 nm) laser. Employing the infrared pulse of 

the Nd:YAG may be preferable for the total rejection of elastic scattering; in additional, 

the longer waver length (compare to second harmonic, i.e. 532nm) of IR are less sensitive 

to particle size, thereby it supposes better accuracy of LII measurement; while the green 

laser (532nm) can be applied for both scattering and LII measurement.  

When a Gaussian profiled laser beam is incident on a soot field, there is a 

decrease in LII signal from the high intensity center of beam (due to vaporization) as the 

laser energy is increased. This is compensated, however, by the increase in LII signal 

from the lower power edge of the laser beam. This balance results in an overall LII signal 

that initially rises with increasing laser fluence, but then plateaus at some laser fluence. 

This phenomenon is called the LII “threshold” effect. Of course, the threshold intensities 

for infrared and green lasers wavelengths are different, because the absorption rate of 

soot particles is different at the two wavelengths. 

Figure 3-8 shows the plot of previous experimental results68 for the threshold 

effect in our laboratory with the 1064 nm beam. The LII signal is very small at very low 

laser energy, with the increasing of laser intensity, the LII signal increases very fast (0.1~ 

0.5 J/cm2); after that laser intensity region, LII signal is almost remain flat with the 
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increasing of laser energy. Therefore, it is can be seen the threshold laser fluence this IR 

laser is 0.5-0.6 J/cm. 

 
Figure 3-8.Variation of LII signal with laser fluence for measurements acquired in 

a laminar, ethylene-air laminar diffusion flame, laser excitation from a Nd:YAG 
pulse. 

Most soot concentration results reported here are for average energy fluence 

somewhat above the LII threshold, or greater than 0.1 J/cm2. The same is true for the 

imaging laser sheet in PVV measurements. The laser intensity is well above the threshold 

for the marking beam in the PVV measurements, in order to achieve good contrast of the 

marking area. The repeatability of pulse-to-pulse laser energy and temporal profile were 

generally good, with a worse case variation of ± 7%. 

3.3 ICCD CAMERA SYSTEMS 

Two Princeton Instruments intensified, CCD (ICCD) cameras were employed in 

this research work. One is a 12 bit, 576×384 pixel device (model 576-S/RR-E); the other 

is a 16 bit PI-MAX (512×512 pixels) system. In addition to the camera, the first system 

includes a detector controller and a PG-200 pulse generator. The second system includes 
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an integrated controller with pulse-timing-generator (PTG) and signal acquisition board. 

The function of the PTG board is similar to the PG-200; they control the gate time and 

gate width of the ICCD camera. A standard 35 mm Nikon camera lens is mounted for 

imaging purpose. 

For low-light-level imaging, the ICCD cameras depend on a Microchannel Plate 

(MCP) device to amplify the incident photons. The MCP has thousands of independent 

channels, and each channel works as independent electron multiplier. An MCP consists 

of a two-dimensional periodic array of very-small diameter glass channels fused together 

and sliced in a thin plate. A single incident photon strikes a photocathode located in front 

of the MCP and causes an electron to be emitted from the channel wall. These electrons 

can be accelerated by an electric field developed by a voltage applied between both ends 

of the MCP. They travel along their parabolic trajectories until they strike the channel 

surface, producing secondary electrons. This process can be repeated many times before 

the numerous electrons finally reach the back of the MCP and strike a phosphor plate 

located behind the MCP. The combined result is a photon output that can be hundreds of 

thousands of times larger than the number of original input photons. 

In an ICCD camera, the phosphor at the back end of the MCP is imaged onto a 

CCD camera. Typically, a number of MCP microchannels are imaged onto each CCD 

pixel. A CCD is made of p-type and n-type silicon semiconductor material; it coverts 

photons to an electronic signal based on the photoelectric principle. A small voltage is 

applied across the CCD to form a potential well. When a photon with certain energy 

strikes the CCD surface, a electron-hole pair is produced. The hole can be diffused and 

absorbed by the p-type substrate, while the electron moves towards the potential well and 
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accumulates there. Electrons are stored inside the well throughout the period of exposure 

time, in a (quite nearly) linear proportion to the total amount of photons received. Each 

CCD lattice is also called a pixel; a CCD chips generally consist of millions of CCD 

pixels that are grouped as an array structure, or “waffle” pattern in a silicon chip. 

In order to generate an image, the electron charge accumulated in each CCD 

needs to be measured and read out in certain sequence. A Charge Transfer Device (CTD) 

is coupled with a CCD; it shifts the charge stored in the corresponding CCD and passes it 

to a charge-to-voltage converter, where the output voltage generated is proportion to the 

charge. Each CTD works individually without interference between the other charged 

packets. A serial register circuit is built inside CCD chips to locate each pixel location in 

the CCD array. Finally, the charge packets are transferred from the detector in a pixel-by-

pixel, row-by-row sequence, the whole array represents the image falling on the CCD. 

It should be noted that excess input light levels can damage the intensifier of 

ICCD. Thus, the best data collection should be below the saturation point of the CCD 

chips. To prevent the incoming light from overloading the intensifier, one can either 

decrease the f-stop size of the camera lenses, decrease the gain of ICCD, or place filters 

(e.g., Neutral Density (ND) filters) proceeding the camera lens. 

3.4 OPTICAL AND SYNCHRONIZATION SYSTEMS 

Two main setups systems are documented below, one for PVV and the other for 

LII soot concentration and flame radiation measurements. Furthermore, two PVV setups 

are detailed: a 1-d velocity measurement system and a 2-d velocity setup.  

 
3.4.1 PVV: One-Dimensional 
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The optical scheme for the initial PVV experiments is shown in Figure 3-9. The 

marking (first) beam comes from the IR laser, and the readout or image (second) laser 

pulse is from green output of the second head. Both beams are converted into laser sheets, 

which are aligned normal to one another in the flow. The two laser beams propagate at a 

small relative angle, crossing near the center of the imaged region. The 8 mm IR beam is 

focused by a 250 mm focal length cylindrical lens (L1) to a horizontal laser sheet. The 

focus of the 8 mm wide sheet is typically located past the flow, such that the sheet 

thickness decreases slightly from the point where it first encounters the flow. The 

nominal thickness (FWHM) in the laminar diffusion flame measurements is 0.45 mm, 

and changes to 0.6 mm for the nonreacting (soot generator) flow. In addition, the sheet 

width can be reduced from 8 mm to 2 mm using a metallic aperture placed behind the 

focusing lens (see Figure 3-9). The thin dimension (thickness) of the sheet is parallel to 

the primary flow direction. The marking laser energy is varied with a half-wave plate and 

polarizing beam splitter. 

The image (readout) beam is focused by a 500 mm focal length, cylindrical lens 

in the vertical direction and spread in the horizontal direction by a 25 mm cylindrical lens. 

This yields an imaging sheet that is ~0.4 mm thick and 100 mm high. The fluence of the 

imaging beam is fixed for all measurements at ~0.4 J/cm2, which is sufficient to allow 

either LII or scattering measurements of the nonvaporized particles. The LII and elastic 

scattering images are recorded at roughly 45° to the propagation direction of the visible 

laser sheet (rather than the preferred 90° due to limited optical access) by the ICCD 

camera equipped with a standard 35mm camera lens.  
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Figure 3-9. Optical set up for PVV measurement. L1: cylindrical lens with focal 

length 500mm. L2: cylindrical lens with focal length 250mm, L3: cylindrical 
lens with focal length 50mm. 

For the soot generator, with its low particle concentrations, the lens f-number is 

set to its minimum value for the LII measurements (f/2.8), but degraded for the brighter 

scattering measurements. In the flame, with its higher levels of soot, the lens aperture is 

increased to f/32 for both interrogation methods. In some cases, neutral density filters or a 

532 nm holographic notch filter are placed in front of the lens to prevent intensifier 

saturation. The neutral density filters can reduce the input light intensity almost evenly 

throughout the entire visible wavelength. The 532nm notch filter can only totally reject 

the 532 nm light (5nm FWHM), without effecting light at other wavelengths. The 

intensifier gate duration is 50 ns.  

For the scattering data, the intensifier gate begins just after the onset of the 

interrogation laser pulse for the LII measurements; the bright elastic scattering signal can 

be rejected either by placing a 532 nm holographic notch filter in front of the lens or 

delaying the intensifier gate by 32 ns. Since the total duration of the laser pulse is about 
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25 ns, the delayed gating rejects the prompt scattering signal, but is sufficient to detect 

the long lived LII. 

The velocity measurement in PVV is based on the calculation of the measured 

displacement of the marking area for a "known" delay time. Determination of the delay is 

based on the system synchronization. That is to say, each individual apparatus in the 

detection system runs at some fixed time relative to the other instruments. Examples 

include the timing of each laser firing and the time when the camera's intensifier is gated 

on. Correct timing between each instrument is necessary to obtain accurate PVV 

measurements.  

Synchronization of the detection system requires both laser heads (marking laser 

and imaging laser) and the camera to be synchronized. To this end, two digital and delay 

pulse generators (both Stanford SRS DG535) were utilized. The TO output of the first 

pulse generator is input to the external trigger of the second pulse generator, this 

synchronizes the two signal generators. The first pulse generator triggers the IR(marking) 

laser head; channel A and B together supply the negative TTL signal with 10 

microsecond width for firing the flashlamp; while channel C and D together supply 

another 10 microsecond width negative TTL signal for the Q-switch control. A similar 

approach was employed for using the second pulse generator to control the imaging laser. 

Channel C of second pulse generator also supplied a TTL signal to synchronize the pulse 

generator (PG-200) of the ICCD system. Also, the PG-200 gate delay is adjusted to that 

the camera captures the image produced by the second laser.  So, once the system is 

properly timed, the delay between the marking laser pulse and the image laser/camera is 

easily set by adjusting the delay between the two pulse generators. The setting required to 
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produce no delay is determined by observing the output of both lasers on a photodiode 

connected to an oscilloscope. 

3.4.2 PVV: Two-Dimensional  

In flows with more complicated velocity fields, such as that expected in the 

acoustic burner, the one dimensional PVV technique is not appropriate for velocity 

measurements. A more involved, 2-dimensional velocity measurement technique can be 

achieved by applying a cross-beam method, i.e., the marking line is replaced by 

intersecting laser beams. Then the calculation of displacement is based on the movement 

of the intersection points of the beams instead of the displacement of the marking line.  

The details of this modified setup are now described. 

Similar to the one-dimensional PVV approach, the fundamental (1064 nm) output 

of one laser head is used as the marking beam. However, the 8 mm diameter beam is now 

separated into four beams. Figure 3-10 shows the combination of 50/50 beam splitters 

(CVI BS1-1064-50-1025-45UNP) and mirrors (CVI Y1-1025-0-1064nm). The final 

result is four similar beams, each ~110 mJ/pulse. The optics are arranged such that the 

four beams travel inside a single plane and form a “grid” after being focused by a 

50×60mm, 150 mm focal length cylindrical lens. Each marking beam thus forms a small 

sheet, each 8 mm wide and 0.5 mm (FWHM) thick. These sheets mark a thin region that 

extends across a wide path normal to the flow. The average energy fluences of the 

marking sheets are 2 J/cm2 each; more than 3 times the IR vaporization threshold (~0.6 

J/cm2). 
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Figure 3-10. PVV optical setup(marking beam): L1 f=150mm cylindrical lens; 

mirrors M1, M2, M3; e 50/50 beam splitters BS1, BS2 BS3. 

The visible readout (imaging) beam arrangement is similar to the one-dimensional 

PVV case. It is produced by frequency-doubled (532 nm) output of the second Nd:YAG 

laser head. The image beam is focused by a 90 mm diameter, 500 mm focal length fused-

silica cylindrical lens in the vertical direction and is spread in the horizontal direction by 

another cylindrical lens with 25 mm focal length. This yields an imaging sheet that is 0.8 

mm thick and 75 mm high. The fluence of the imaging beam is fixed (~0.1 J/cm2) and 

just below the vaporization threshold intensity. Thus, it can be used for LII measurements 

of the soot.  

The readout sheet is carefully position to coincide with the plane defined by the 

four intersection points of the marking beams. The readout sheet is also carefully aligned 

to be normal to each of the marking sheets. The image is recorded at a right angle to the 

laser beam by the ICCD camera. In most experiments, the ICCD camera gate starts with 

the onset of the green laser, and has a 50 ns width. 
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For the two-dimensional velocity measurements inside the acoustic burner, the 

acoustic driving signal (sinusoidal waveform) must also be synchronized to the laser as 

well as imaging system. For this purpose, the timing arrangement used in the 1-d PVV 

measurements was modified. The first pulse generator was triggered by the TTL output 

of the function generator (whose sine wave output drives the acoustic forcing). However, 

the lasers are limited to 10 Hz operation and can not "keep up" with the acoustic forcing 

frequencies. To lower the triggering frequency to the lasers' rate, the To delay of the first 

pulse generator was set to just over 99 milliseconds. During this time, the pulse generator 

is idle. The next TTL trigger from the function generator then fires the pulse generator. 

Since no more triggers come from the frequency generator in the next 1 ms, the lasers 

and camera system are driven at ~10Hz, but phase locked to the acoustic drivers. The 

exact phase of the measurement is adjusted by changing the delay of the first pulse 

generator. 

3.4.3 LII Soot Measurement and Soot Radiation 

Soot concentration measurements are also acquired in the acoustic burner with the 

LII technique. The IR YAG beam is focused by a 500 mm focal length, cylindrical lens in 

the horizontal direction and spread vertically by a 250 mm focal length cylindrical lens. 

This yields a laser sheet that is ~0.8 mm in thickness and 45 mm in height, with the 

thickness parallel to the flow direction. The fluence of the imaging beam is fixed for all 

measurements at ~0.75 J/cm2, which is sufficient to produce quantitative LII signals of 

soot generated by the flame. All images are recorded at roughly 90° to the propagation 

direction of the IR laser sheet by the ICCD camera (Figure 3-11). The LII signals are 

recorded with a 50 ns intensifier gate width, camera lens aperture of f/32, and a 0.5 ND 
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filter placed in front of the lens because of the strong LII signal of the flame. The LII 

laser and camera are synchronized to the acoustic driving as described in the 2-d PVV 

section. 

 
Figure 3-11. LII soot measurement system: acoustically burner, signal generator, 

laser system and ICCD camera. 

To image the natural radiation of the flame soot, broadband, as well as 430 nm 

and 650 nm narrow band, detection arrangements were employed. For broadband 

radiation measurements, the ICCD gate width is 500 ns, the lens aperture setting is f/32, 

and no filtering is applied. The 430 nm radiation measurement is achieved by putting a 

50×50 mm, 2 mm thick bandpass filter (CVI) in front of the ICCD camera. This filter is 

centered at 430 nm, with a 10 nm FWHM, and a peak transmissivity of ~50%. Similarly, 

the 650 nm wavelength radiation is acquired by using a 50×50 mm, 3 mm thick bandpass 

filter (CVI), which is centered at 650 nm, with a 10 nm FWHM and a peak transmissivity 

around 77%. In both 430 nm and 650 nm measurements, the lens aperture is f/32, and the 
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intensifier gate duration is increased to 5 μsec to compensate for the weaker narrow band 

signal. While no laser synchronization is required, the ICCD camera can be phase-locked 

to the acoustic driving as described previously. 

3.5 CALIBRATION OF SOOT CONCENTRATION MEASUREMENT 

For quantitatively measuring soot concentrations in the flame, a system 

calibration process is required. This calibration is based on the well-characterized 

ethylene laminar flame. The detailed process of calibration is described below. 

3.5.1. Calibration of LII Signal and Soot Concentration 

To calibrate the measured acetylene flame soot concentration, it is assumed that 

the soot particles for both ethylene and acetylene laminar flames have similar optical 

properties, such as refractive index. In addition, similar laser intensities and identical 

setups were applied in both flames for the LII measurement. The measured average peak 

LII signal at 40 mm HAB is 16000 counts from the 16 bit ICCD, while the camera dark 

background ~220 counts. From previous work,69 it is known that the soot concentration at 

40 mm HAB with ethylene is ~10ppm. Under the assumption that the acetylene flame 

soot particles are very similar to those of ethylene flame, the raw image LII data can be 

converted to soot concentration data. The LII-soot concentration conversion equation can 

be stated as: 

(Eq.3-2)  *( )soot m LII bakm C S S= −    

where Cm  is the calibration coefficient, and its value is 9.5×10-4 ppm/count for the 16 bit 

ICCD camera, and 1.6×10-2 ppm/counts for 12 bit camera. 
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3.5.2. Cross Calibration between the 12 Bit and 16 Bit ICCD Cameras 

Only the 16-bit camera was calibrated in the ethylene flame. The 12 bit ICCD was 

cross calibrated with the 16 bit device (since the former one was not available at the time 

of calibration) by acquiring LII images of the same laminar flame with the same optical 

setup. The cross calibration was computed by comparing the averaged peak (in space) 

intensity data for the two different cameras. This method was chosen because the peak 

soot value for the laminar flame was relative stable after time averaging, while the 

spatially averaged signal may vary very much due to signal in the large background area. 

In the above measurements after dark background correction, the 12 bit camera peak LII 

signal was 2622 counts, while the 16 bit camera signal was 45168 counts, and the 

standard deviations were 255 and 8718, respectively. Since these two different LII signal 

levels should represent the same soot concentration level, the cross calibration coefficient 

between these two cameras is 45168/2622=17.2. 

Overall, the cross calibrate coefficient is depended on the optical system setup, 

such as camera focus length, aperture size number, etc, it need to be re-calibrated 

whenever the optical system is modified.  

3.6 UNCERTAINTY  

The uncertainties and errors for PVV and soot concentration measurements are 

generated from detection and data reducing processes  

3.6.1 Laser System uncertain  

A double head Nd:YAG Laser system was applied in all experiments. This system 

shot to shot uncertain was tested as 5%.68  
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3.6.2 PVV measurement uncertainties 

Particle Vaporization Velocimetry (PVV) is based on tracking the pixels with 

lowest LII signals. To find the displacement of these pixels, their initial and final 

locations have to be read out from first and delayed images. Since the minimum unit on 

the experiment images is one pixel, thus the uncertainty of these and the error is 

generated when locating the sub-pixel evaluation, maximum half pixel. Besides, unsteady 

effect could cause the local lowest soot pixel move away from the original direction. This 

side effect is negligible in laminar flame measurement, where the radial velocity is very 

small, and second image was acquired after short delay (~ms). But, in forced flame 

velocity measurements, the marking region (cross of two marking laser).could be fast 

refilled by strong unsteady ambient flow, this decreases the accuracy of read out results 

from second images. 

3.6.1 Quantitative soot measurements 

In calibration process, it is assumed that the soot index of acetylene soot particle 

is the same as soot inside ethylene flame.  
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CHAPTER 4                                                              
PARTICLE VAPORIZATION VELOCIMETRY 

 
To measure soot emission rate (soot flux) in sooty flow, velocity measurement is 

necessary. This chapter presents the development of the Particle Vaporization 

Velocimetry (PVV) technique, a new laser based velocity measurement approach. First, 

details of the method are laid out. Then, the technique's characteristics are studied in 

simple axisymmetric jet flows, both non-reacting and reacting flow. Finally, it is 

demonstrated in the (more complex) acoustically excited combustor.  

4.1. PVV SCHEME 

The basis of this technique is relatively straightforward. A high intensity laser 

beam is applied to a soot laden flowfield. This laser vaporizes the particles within its 

beam path, thereby creating a relatively low soot concentration region, denoted the 

marked region. This (first) laser pulse is named the marking beam and its actual size and 

position can be adjusted according to the experiment setup. If a second (lower fluence) 

pulsed laser beam fires sometime after the marking beam, it will generate both Mie 

scattering and LII of the soot field. Thus, the convective movement of the marked region 

can be highlighted, as it stands out as a region of lower signal caused by the reduced 

(vaporized) soot concentrations. Consequently, the second laser beam is donated the 

image beam (or readout beam). Typically, the image beam would be formed into a sheet 

large than the marking beam. Of course, in order to get accurate experiment results, the 

two laser pulses and image detection system (gated to overlap the image beam pulse) 

need to be well synchronized during this process. The timing uncertainty can be as low as 
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a few nanoseconds (when one external pulse generator controls both Q-switch delay and 

flashlamp delay of the lasers). 

If the marking and image lasers are pulsed simultaneously, the initial location of 

the marked region can be easily located on the image data. As longer delay times are 

chosen for the image beam, the new location of the marked region can be ascertained. By 

comparing the two images (no delay and delayed), the displacement of the marked region 

can be determined. The ratio of the displacement to the delay time provides the velocity 

of the flow. Therefore, from a single (instantaneous) image, one can determine the local 

velocities in the flow field. Alternatively, by taking accumulated images (averaged over a 

number of laser shots), the average flow velocity can be measured. 

Before employing PVV for velocity measurements, it is important to determine 

which setup of experimental parameters will lead to an optimized PVV measurement, and 

whether there are any significant limitations for the application of the proposed technique. 

4.2. CHARACTERIZATION OF PVV 

Primarily, the PVV signal is based on the readout image. Thus, optimization of 

the image beam leads to the initial step of the PVV development, i.e., determination of 

the best detection method for the readout image. The two most likely candidates are 

elastic scattering from the (unvaporized) soot particles and LII. Elastic scattering 

detection is easily implemented, and generally produces strong, easily detected signals, 

from particles with the size of soot. It is likely to suffer, however, from background 

problems associated with scattering from other particles in the room, e.g. dust, and from 

any surfaces that the laser sheet contacts. Furthermore, multiple scattering also can 

supply unwanted signal. Detection of the marked region using LII (again from the 
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surrounding soot) has the advantage that only the appropriate absorbing/emitting particles 

(e.g. soot) within the line of the laser beam are able to achieve a high enough temperature 

to produce a signal, and the signal wavelength can be isolated from the laser wavelength. 

Thus LII detection is likely to have less background problems than elastic scattering. It 

may, however, have other disadvantages compared to elastic scattering detection. 

Therefore, the following studies include measurements utilizing both detection 

approaches, allowing the optimum method to be determined. As an example comparison, 

Figure 4-1 shows LII and scattering images acquired in the nonreacting, soot generator 

flow. The marking beam is a horizontal sheet, while the image beam is a vertical sheet 

aligned with the image plane. The LII image (a) shows little signal outside the soot flow, 

while the scattering images (b and c) have backgrounds due to scattering from ambient 

particles. 

 

 

  
                          (a)                                       (b)                                        (c) 

Figure 4-1. Instantaneous images of the vaporized stripe acquired in the soot 
generator for different delays after the 2 mm wide marking laser sheet pulse: (a) 
1µs delayed LII image; (b and c) 1 ms delayed scattering images . Image sizes 
are 28×24mm. 

In the following sections, results are reported on measurements of various 

parameters that determine the requirements and limitations of the PVV method. 

Specifically, these are the required (vaporization) laser energy and the lifetime of the 
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marked/tagged region. The first will impact the laser requirements to perform PVV, the 

latter effects the range of velocities that can be detected with PVV. In addition, velocity 

results in the three different flows are presented and compared to expected values.  

4.2.1. Marking Laser Energy 

In flow tagging techniques like PVV, the ability to determine the location of the 

marked region can often limit the accuracy of the measurement. Quantitative 

measurement of the detectability of the flow tagging is the contrast between the signals 

from the marked (Smark) and unmarked (Sunmark) regions. The contrast can be defined as 

follows: 

(Eq. 4-1)   unmark mark

unmark

S SContrast
S

−
=      

with the optimal contrast being unity. With high enough intensity, a laser ought to be able 

to vaporize the soot particles in its path thoroughly, which would potentially allow unit 

contrast to be obtained. Total vaporization of soot in the marked region could need a very 

powerful laser source, which might limit the practicality of PVV. Thus is important to 

find out the optimum laser intensity that can create a sufficiently high contrast for 

detection of the marked region.  

4.2.2. Delay Time for Initial Contrast Measurement  

A short or zero delay between the marking laser and imaging laser was preferred 

to investigating the optimum marking laser energy, for there are less ambient effects 

during that period, such as diffusion and convection. Initially, a 100ns delay was chosen 

to measure the original contrast of the marked region. However, during LII measurements, 

especially in the laminar flame, an interesting phenomenon was noticed. A high-level 

signal region close to the marked area appears, as shown in Figure 4-2. Figure 4-3 shows 
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corresponding LII signal varies along the flame sooty area in Figure 4-2 (with 5 pixels 

binning horizontally along flame soot formation area (see chapter 3)), after background 

correction (all flame images in this chapter are background corrected). 

            
              (a)     (b) 

Figure 4-2. Flame LII signal from green readout laser for 100ns delay (a) 10mm 
HAB (b) 40mm HAB in the laminar diffusion flame. 

Actually, for the high intensity (>2 J/cm2) Gaussian profile laser beam, such as 

the IR marking laser beam, due to sharply decreasing of intensity along two side of the 

laser beam, soot exposed in the very center of laser beam can be vaporized, while the 

edge of laser beam can only partially vaporize or even simply overheat soot particles. 

Even though, the soot particles in these areas can still gain strong enough laser energy to 

produce LII signal. From previous research, it is known that the lifetime of LII signal is 

around 1μs. If the imaging laser fires within 1μs, the "extra" LII signal from IR pulse will 

overlap the imaging beam LII signal, and creates a high level signal area thereafter. This 

suggests the contrast based on highlighted region data does not truly represent the portion 
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of vaporization of soot mass. Sometimes, it seems this region can highlight the edge of 

marking area, thus increases the detectability of the marking area (Figure 4-2(b)). But at 

other flow conditions, it may highlight unexpected signal region (Figure 4-2(a)), and 

leads to incorrect results. This negative affect might be potential drawback for the LII 

detection. For example, in unsteady flow, it could be hard to discriminate the real marked 

area in the region of detection. However, this problem can be solved by simply extending 

the delay time of imaging laser over the marking laser LII signal lifetime, 1μs. 

 

  
(a)      (b) 

Figure 4-3. LII signal at 50 pixels height around the marking region, with 5 pixels 
binning horizontally. (a) 10mm HAB, (b) 40mm HAB. 

In the soot generator measurement, above problem is minor, the reasons are listed 

below: First, the flame soot concentration is not uniform; the flame has higher soot 

concentration around its edges and less soot in the jet center. The marking laser has a 

sheet size of 8 mm, which is comparable to the flame diameter (10 mm). Thus, the edge 

of IR laser can heat the high soot concentration (~ppm) region at the flame edge and 

produce higher level LII signals. The larger soot generator jet size (18 mm diameter.) is 

bigger than the 8 mm marking laser sheet, and the jet has a nominally uniform soot 

concentration (~ppb) crosswise. Second, the soot generator particle size is much bigger 

(>400 nm on average) than that in the flame (~30 nm). As presented in Chapter 2, the 
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small flame soot particles have much higher laser energy absorption rate (volumetric 

absorption) than big particles of soot generator. If same mass of soot are exposed to the 

same laser beam, the smaller particles will have higher heating temperature and 

correspondingly greater detectable LII signal. Thus, even at short delay time, ~100ns, low 

soot concentration and big size particles from soot generator produce much less 

detectable LII signal from marking beam, which may interference with the imaging beam 

LII signal. 

In addition, all the flowfield tested in the current work have velocities below 50 

m/s; in 1μs, the displacement of a moving particle inside these flows would be less than 

50 μm, which is beyond the imaging resolution of our ICCD (at best magnification of our 

lens, the minimum measurement region is ~81 μm/pixel). Therefore, the 1μs delay of 

second laser beam (readout beam) is chosen to investigate the original marking region 

and to represent the original marking region in all the experimental results reported below. 

4.2.3.    Marking Laser Energy 

The marking “stripe” in the instantaneous images shown in Figure 4-1 was 

obtained with a laser fluence of ~6-8 J/cm2. This intensity is very high and more than 10 

times the LII threshold for the IR laser. Lower fluences are also sufficient to produce a 

soot “hole”. For example, Figure 4-4 and Figure 4-5 show averaged LII and 

instantaneous scattering images for the marked region in the soot generator flow 

produced by different laser fluences: 0.84, 1.0 and 4.7 J/cm2. The soot generator was 

operated at its highest concentration, 4 ppb. Error! Reference source not found. show 

the marked region in LII images  for   the  laminar   diffusion  flame  at  40 mm HAB for 

a  similar  range  of  laser   
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                a)                                          b)                                           c) 

Figure 4-4. 4 ppb soot generator data: 100 shot averaged LII images at 1 µs delay 
and for three laser fluences: a) 0.84 , b) 1.4 and c) 4.7 J/cm2.  The marking laser 
sheet is 2 mm wide, and image size 28×24mm. 

    
a)                                          b)                                           c) 

Figure 4-5. 4 ppb soot generator data: instantaneous scattering images for the 
same conditions listed in Figure 4-4: a) 0.84, b) 1.4 and c) 4.7 J/cm2. 

   
Figure 4-6. Flame data: 100 shot averaged LII images at 40 mm HAB with 1µs 

delay and three laser fluences: a) 0.84J/cm2 b) 1.4J/cm2 and c)4.7J/cm2. The 
marking laser sheet is 2 mm wide, and image size 28×24mm. 
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The 40mm HAB location was chosen since this is where the flame soot concentration 

reaches its maximum value (oxidation dominates above that height, see Chapter III) 

Qualitatively, the marked regions in the averaged soot generator image produced 

at 0.84 J/cm2 have the worst observability; it is barely visible in the average soot 

generator LII images. The marked region is more noticeable in the instantaneous soot 

generator scattering images. On the other hand, the 1.4 and 4.7 J/cm2 marking laser 

fluences produce much "clearer" marked regions in the soot generator and the laminar 

flame.  

Figure 4-7 shows the variation in contrast (Eq. 4-1) with marking laser fluence in 

the laminar flame and soot generator flow, for both LII and scattering detection. The 

measured contrast increases with laser fluence in all cases, and all have a similar trend: 1) 

essentially zero contrast for fluences below ~0.4 J/cm2, which is below the LII signal 

threshold of 0.6 J/cm2 (Figure 2-1); 2) contrast can be noticeable at >0.6 J/cm2, 3) 

contrast increasing sharply with fluence up to ~2-3 J/ cm2, and 4) little change in contrast 

at higher fluences. The noticeable contrast would therefore permit soot concentration 

measurements based on the LII signal from the imaging laser pulse. Notice that the soot 

generator contrast data have lower contrasts than the results obtained in the flame. It can 

be attributed to the much smaller soot particle sizes in the flame, which are less than 50 

nm70 for the primary soot particles, compared to the soot generator, which contains 

particle above 400nm68 on average. Generally, for the same laser pulse, the smaller soot 

particles in the flame will have a higher absorption rate (page 21) than the larger particles 

produced by the soot generator. Therefore, more mass of soot will be vaporized in the 

flame for the same laser intensity (providing the laser energy is above the vaporization 
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threshold), compared to the soot generator. Thus, both LII and scattering contrasts in 

flame measurement are higher than in the soot generator. 

  
Figure 4-7. Contrast of marked region (see Eq. 2) for various laser fluences at 1µs 

after the marking pulse, for soot generator (4 ppb soot concentration) and flame 
at 40 mm HAB; contrasts measured with both LII and scattering detection are 
shown. 

Next, it is useful to note that this near optimum fluence is only 3-4 times the value 

normally employed in LII measurements. Comparing the result to the LII “threshold” 

(Figure 3-8), this laser fluence value (for our Gaussian laser profile) is still in the “flat” 

region, i.e., from 0.6 to 3 J/cm2, the measured LII signal is almost constant with laser 

fluence. Furthermore, the fact that near unity contrasts for both LII and scattering 

detection can be achieved for fluences of 2-3 J/cm2 suggests that the energy in the center 

of the roughly Gaussian beam profile is sufficient to nearly completely vaporize the soot 

particles. While similar contrasts are achieved at high fluence values, there is a 
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significant difference between scattering and LII detection at lower fluences (<2 J/cm2), 

where scattering detection has a higher contrast, and therefore is more detectable. 

The difference in contrast between scattering and LII detection can be explained 

using some simple models. For example in the flame, the soot particles (< 50 nm 

diameter) are much smaller than the LII detection wavelengths (~400-600 nm). Thus as 

shown in Chapter 2, the LII signal ILII scales with volume of the radiator, i.e., 

(Eq.4-2)   VaILII ∝∝ 3  

where a is the radius of the soot particle and V is soot particle volume. From classical 

scattering theory,40 small spherical particles (a<<λ) have an average volumetric 

polarizability α that is given by: 
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where m is the refraction index, and the scattering intensity Iscatt from the particles is 

proportional to α2. Therefore we find, 

(Eq.4-4)   
22 VIscatt ∝∝ α . 

Thus, one can calculate the detection contrast as a function of laser fluence, as the 

laser changes the particle volume V. A simulation was performed for two uniform pulsed 

laser beams delayed in time: the initial marking beam followed by the readout beam. 

Both laser pulses are assumed to have Gaussian temporal shapes with a full-width-half-

maximum of 7 ns. A single initial particle size is used (30 nm diameter). The fluence of 

the 1064 nm marking beam is varied up to 10 J/cm2 (approximately the maximum fluence 

used in the experiments) and the model described in Chapter 2 is used to simulate the 

change in particle size induced by the first laser. In the simulation, the 532 nm readout 

laser begins 1 μs later and has a fluence of 0.5 J/cm2. The LII and scattering signals 
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induced from the readout laser pulse Smark are then calculated from the new particle size 

with Eq. 4-2 and Eq. 4-4. Sunmark is calculated in an identical fashion, but with the original 

particle size (e.g., zero fluence marking beam). The contrast is calculated from equation 

(Eq. 4-1). Figure 4-8 shows the results for the simulation. 

 
Figure 4-8. Comparison of experimental results and numerical results for both LII 

and scattering detection techniques. 

Note, the simulation results have not been normalized or matched in anyway 

to the data, as the expression for contrast is self-normalized. First, it can be seen that 

there is quite good agreement between the simulated and measured contrasts for both LII 

and scattering at low laser fluence (<1.5 J/cm2, which is three times the LII threshold 

fluence). In fact, the deviations between simulation and experimental results are less than 

7%.  At high laser fluences (>1.5 J/cm2), however, the simulation predicts higher 

contrasts than those observed in the flame. This is most likely caused by the 

simplifications used in the modeling of the laser heating process. At high laser intensities, 

one very important process not captured in the current modeling is thermal annealing.71 
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Extremely high laser heating rates can cause carbon morphological changes, which result 

in rearrangement of the carbon crystallites and alter soot density, instead of simply 

vaporizing soot. Thus the particle sizes predicted after high fluence heating are probably 

not accurate from the current model. Still, the fact that both the experiments and 

simulations show that LII and scattering detection have vary similar contrasts at high 

fluence levels indicates that the particle size is close to zero, i.e., the first laser pulse is 

truly vaporizing particles, and not simply shattering them. 

The results show that the scattering signal contrast is higher because scattering is 

more sensitive to changes in particle size. For the soot generator measurements (not 

simulated here), there is less difference between the contrasts of the two detection 

methods at low fluences because for the larger particles (~400 nm in the soot generator) 

the scattering signal scales more like V4/3 (compared to V2 for small particles). In addition, 

part of the increased observability for scattering detection could be its improved signal-

to-noise ratio, due to its higher photon yield in these shot-noise limited images. This is 

only a minor effect, since the scattering images are acquired with lower detection 

efficiencies. 

4.2.4. Lifetime of Marked Area 

The applicability of flow tagging approaches is often limited by the lifetime of the 

marked region. In other words, the time delay between the marking laser and the readout 

image has a maximum value. This is important since longer delay times allow low 

velocities (with their associated smaller displacements for a fixed delay time) to be 

detected more easily. Furthermore, by tracing the evolution of a marked area over a 

longer time, one can study vortex development and how flowfield interactions influence 
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the reaction zones in a flame. However, the lifetime of the marked area can be limited by 

mixing processes, such as the diffusion of particles from higher particle concentration 

areas into the soot free zone. This mixing is enhanced in unsteady flows due to 

convection. In addition, the tagged region in PVV can be “nullified” by the production of 

new soot particles inside the marked area. So the marking area lifetime is an important 

characteristic for particle vaporization velocity measurement.  

As indicated by Figure 4-9 (initial height 40 mm HAB) and Figure 4-10 (20 mm 

HAB), the lifetime of the marking region in the diffusion flame exceeds 10 ms. However 

for the lower initial position in the flame, the marking region becomes more difficult to 

see for long delays; the soot either refills or reforms in the marking region (see images c 

and d in Figure 4-10). The contrasts (determined at the edge of the flame) for three initial 

locations (10, 20 and 40 mm HAB) are shown in Figure 4-11. For the lower regions, 10 

and 20 mm HAB, it can be seen that the contrast decays more quickly than at 40 mm 

HAB. The 10 mm HAB is the lowest region where noticeable soot formation occurs, and 

where the soot concentration is lowest. Conditions are favorable for soot formation above 

this height. In Error! Reference source not found., it can be seen that soot formation 

typically occurs in about 1-2 ms at high temperatures. So, it is likely that the contrast 

decline with delays longer than ~1ms at low flame height is most likely due to formation 

of new soot particles or growth of the partially vaporized soot within the marked stripe. 

Also at low flame heights, there is much less soot in the central portion of the flame. 

Therefore the laser mostly vaporizes soot at the edge of the flame. As indicated in Figure 

4-10 (c), the gas that travels to the flame edge as the marked region moves upward comes 
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from a location that did not have much soot to begin with. Therefore the laser is less 

likely to have influenced the evolution of soot in that fluid element. 

    
      (a)       (b)      (c)   (d)   

Figure 4-9. Average (100 shot) LII images of the vaporized stripe acquired in the 
diffusion flame for four delays: a)10 µs, and b) 1ms c) 5ms d)10ms after the 3 
mm wide marking laser sheet pulse; which passes 40 mm above the fuel tube exit, 
image size 31×18mm. 

    
      (a)       (b)      (c)   (d)   

Figure 4-10. Average (100 shot) LII images of the vaporized stripe acquired in the 
diffusion flame for four delays: a)10 µs, and b) 1ms c) 5ms d)15ms after the 3 
mm wide marking laser sheet pulse; which passes 20 mm above the fuel tube 
exit, image size 31×18mm. 
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Figure 4-11. Lifetime of the vaporized soot “hole” in the laminar diffusion flame 

based on the contrast between the marking and readout lasers, for a marking 
laser fluence of 7.8 J/cm2. Results are shown for three flame heights and for LII 
detection. 

An interesting question is why the contrast remains so high for the data taken with 

an initial height of 40 mm. Returning to the LII images for this condition (Figure 4-9), 

one can see that there is almost no soot formation within the marked region for the 

different delays after the laser, except perhaps near the centerline. A major difference 

between the 40 mm HAB location and the lower heights examined is that there is a 

significant amount of soot initially present all the through the flame at 40 mm HAB. 

Therefore the marking laser changes the local conditions across the complete flame. 

Furthermore, above 40 mm HAB the soot volume fraction no longer increases with 

increasing height.28 Thus, the natural soot formation has stopped at this point. So, there is 

no source of soot to refill the marked region with soot. 
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This still leaves the question, what happens to the vaporized soot material? When 

the laser vaporizes soot, it is believed that the vapor products consist of C, C2, and C3 

radicals, 72  with C2 radicals predominant 73 - 76  Also, the translational and internal 

temperatures of the gaseous C2 are close to the surface temperature of the vaporizing soot 

(>3500K).77 From the current results, it is clear that the C2 radicals do not recondense to 

form soot particles. Rather, they are likely reacting with other species due to their high 

energy and high reactivity (C2 has two unpaired electrons). For example, C2 radicals are 

known to react with H2 to form C2H, through an abstraction reaction, i.e., C2 + H2 → C2H 

+ H,78 or through reactions with nitrogen. 

It is even possible that the laser acts to inhibit soot formation. This could be due 

to the reactivity of the vaporized material inhibiting either soot nucleation or soot surface 

growth. On the other hand, rapid laser heating can cause thermal annealing of the soot 

particles, forming “carbon onion” structures with a hollow core.77 Thus even if the soot 

particles are not completely vaporized, the surface of the annealed particle may have less 

active sites and thus be less conducive to surface growth than nascent soot particles.  

Finally, it is possible that the reactive C2 radicals act to increase the soot 

destruction rate, thereby inhibiting soot growth. For example, C2 can abstract an H atom 

from water, which would be present due to diffusion from the flame zone, thereby 

forming an OH radical (C2+ H2O = C2H + OH).79 Since OH is the major oxidizer of soot 

in fuel rich conditions, it would act to destroy small soot particles before they have a 

chance to grow.  

After all, similar lifetime measurements were carried out in the soot generator 

flow. Figure 4-12 shows instantaneous soot generator LII images at three delay times: 
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100 ns, 1 ms and 3 ms respectively. It is evident that the marked line distorts significantly 

for longer delay times.  

       
(a)      (b)    (c) 

Figure 4-12. Soot generator instantaneous LII images at three delay times 
(a)100ns, (b)1ms (c) 3ms. Image size is 28×24mm. 

From average soot generator images, the lifetime (Figure 4-13) of the marked 

region is shorter than in the upper portion of the flames; it is close to the 1 ms value 

observed lower in the flame. Even it is possible that the vaporized soot material is 

recondensing to form carbon particles, this is unlikely. The vaporized radicals are more 

likely to react with the oxygen present in the air. Rather the soot generator flow is more 

unsteady, because it does not have a low shear coflow like that employed in the diffusion 

flame burner. Thus convective mixing phenomena (i.e., related to the distortions 

displayed in Figure 4-12) probably limit the lifetime in the soot generator flow. Noticed 

at 100 ns delay, the marking region contrast is lower than of the 1 μs and even 1 ms delay. 

This low contrast is most likely due to the remainder of the LII signal from the marking 

laser pulse for this short delay.  
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Figure 4-13. Lifetime of the vaporized soot “hole” in the soot generator flow 

based on the contrast between the marking and readout lasers, for a marking 
laser fluence of 7.8 J/cm2. Results are shown for both LII and scattering 
detection. 

4.2.5. Detection Methods 

During the experiments, the scattering signal was acquired with a 30-50 ns 

intensifier gate, which began with the onset of the laser pulse. Because the green laser 

pulse width (FWHM) is about 8 ns, the prompt scattering signal includes both scattering 

and LII. Even scattering signal has much higher signal level, the LII signal alone can be 

acquired either by placing a 532 nm notch filter in front of the camera, or delaying the 

camera gate time a short time (e.g., 30 ns) after the readout laser pulse. The latter method 

would incur some loss of LII signal at the peak of the laser pulse, but the LII signal still 

should be high enough to be detected due to the long lifetime of LII. From the above 

results, the main advantage of scattering detection for PVV is its higher photon yield, and 

thus higher signal-to-noise ratio in these shot-noise limited measurements. In both the 
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soot generator and the flame cases, the scattering signal is much stronger than the LII 

signal. Correcting for the added ND filter in the case of the scattering images (ND = 2.6), 

the scattering to LII ratio in the flame is 100-200. In the soot generator, the ratio 

decreases to 30-60. A larger scattering to LII signal ratio is to be expected in the flame, 

since the soot generator produces larger, spherical agglomerates. For scattering from very 

small particles (compare to the laser wavelength), the cross-section, or signal per particle, 

increases rapidly with particle size (e.g., D6). If particle size is comparable to the laser 

wavelength (soot particle size>400 nm, IR laser wavelength is 1064 nm), the scattering 

signal is almost proportional to D4. On the other hand, the LII signal per particle scales 

like its volume (D3). Therefore, the larger particles in the soot generator would produce 

relatively less scattering per unit mass of soot. In addition, other differences between the 

two kinds of soot (flame soot and carbon black particles) may play a role. For example, 

changes in the chemical composition would likely change the index of refraction of the 

soot, and thus its scattering and absorption. 

An important fact to be noticed from Figure 4-1 is the scattering images (1[b] and 

1[c]) have measurable signals outside the soot jet while the LII image (1a) does not. This 

is due to elastic scattering by dust particles in room air, and it is the biggest potential 

drawback of scattering detection, ejection of other scattering particles or bodies. In a 

confined combustor, scattering from walls and windows can be sources of significant 

background for scattering detection. For the flame case, however, with its much high soot 

levels (×103) and its clean coflow, dust scattering signal is negligible. Overall, the signal-

to-background ratio for LII is better than that for scattering in both the soot generator and 
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flame. For example, in the soot generator, the signal-to-background ratio of the LII 

detection is 6.7, while that of scattering detection is only nearly half of that value. 

4.3. ONE-DIMENSIONAL VELOCITY MEASUREMENTS 

In previous sections the excitation, detection and marked-region, lifetime 

characteristics of soot PVV are described. Based on these results, it is now possible to 

optimize the experimental parameters for a given flow. In following sections 

demonstrations of PVV for flowfield velocity measurement are depicted. 

4.3.1. Basic Velocity Measurement and Uncertainty 

For the initial demonstration, a simple flowfield is preferred. The soot generator 

produces such a flow. It is a relatively steady, nearly one-dimensional flow associated 

with a laminar jet. For example, the axial velocity decays slowly along the jet axis in the 

downstream direction. The diffusion flame also starts out as a jet-like flow, with an even 

lower shear produced by the coflow. In the flame, the local heat release alters the 

downstream velocity development. Since the velocities are changing with position in both 

these flows, accurate local velocity measurements are achieved with small displacements 

of the marked region (i.e. short delay times). In addition, if the second laser beam has a 

very short delay from the marking beam (compared to the mean flow time scale), it can 

be assumed the flowfields are stable, and the change in the velocity during the 

measurements is negligible. All the local velocity data reported here are based on the 

displacement of the marked area using ~1ms delay times. 

We first consider comparisons of single point velocities measured in the flame 

and soot generator flow. At 40 mm above the burner in the flame, at the point of 

maximum soot concentration, the measured displacement is 1.8 mm, which results in a 



 71

PVV velocity of 1.8 m/s. This compares well to a previously measured LDV result of 

1.7 m/s at this location.80 

   
(a)     (b) 

Figure 4-14. Soot generator instantaneous LII images at 2 delay times (1) 1μs and 
(2)1ms Image size is 28×24mm. 

In the more unsteady soot generator (see Figure 4-14), we first compare the 

average displacement of the marked region, temporally averaged over 100 images (50 

sec.) and spatially averaged across the jet width. The result at the measurement height (2 

mm= 0.1 x/D above the jet exit) determined from the LII detection image is 2.7 m/s. This 

compares well with the averaged jet exit velocity of 2.8 m/s calculated from the 

volumetric flowrate of 713 cm3/s (with the cold flowrate measured by rotameters and this 

value calculated based on the measured jet exit temperature of 120oC). In addition, one 

would expect the velocity above the jet to be slightly less than the exit velocity.  

In PVV measurements, the velocity measurement error can be generated from 

both the time measurement and the displacement measurement. The delay timing for 

PVV here is controlled by a pulse generator with a jitter of <1ns. Since the delays used 

here are typically on the order of 1 ms, the error time measurement is less than 1 part per 

million. Therefore, delay time uncertainty is a negligible source of error. On the other 
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hand, the measured minimum displacement of the marking line is limited by the ICCD 

resolution, the uncertainty is around 1/2 pixel size. The effective resolution of the ICCD 

camera depends on the physical size of the ICCD pixels and the magnification of the lens. 

In the current measurements, the pixel resolution is ~0.1 mm, and delay time is ~1ms. 

Thus the velocity error due to system uncertainties is roughly 1/2×0.1mm/1.0ms = 0.05 

m/s. 

In PVV measurements, the vaporization process can also alter the local flowfield. 

The vaporized material represents an increase in local gas density and an increase in local 

enthalpy. For example in a flow at 1 atm and 1500 K with 1 ppm of soot, and if the laser 

completely vaporizes the soot to form gaseous C2 at 4000 K (~the vaporization 

temperature), the C2 mole fraction would be 0.7%. If the vaporization process was nearly 

instantaneous, the local gas pressure would increase by ~0.7%. Thus the vaporization can 

produce a fairly small expansion, and, this would not change the flow velocity 

significantly in most reasonable flow conditions. Similarly, the gas temperature would be 

increased by ~20 K if all the vaporized gas thermalized without reacting. Since soot is 

normally found only for temperatures above 1000 K, this relatively small change in 

temperature (<2%) could cause a similar change in velocity. 

4.3.2. Velocity Profile 

In addition to measuring the average velocity of the flow field, the one 

dimensional local velocity can be measured by tracing the movement of different 

“points” on the tagged line (see Figure 4-15). By comparing the images with and without 

delay of the same flow, the displacement of each point on the tagged stripes along the 
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tube diameter can be calculated, and then the axial velocity profile of the flow can be 

plotted. 

 
Figure 4-15. Scheme for 1-d velocity profile measurement by tracing marking line. 

Figure 4-16 shows the measured velocity profiles at 1.0ms delay (from image in 

Figure 4-1(b)) and at 3ms delay after the marking beam. Both fall between a calculated 

fully developed, laminar jet profile (parabolic) and a plug flow profile (flat). For plug 

flow, the velocity is calculated from the following (where m&  stands for mass flowrate, 

and A for jet area): 

(Eq. 4-5)   AmV /&=       

The fully developed profile has the same volumetric flowrate (after axisymmetric 

integration), but with a parabolic velocity distribution. 

The results suggest the flow in the pipe that produces the jet is not fully developed. 

The required minimum tube length for laminar, fully developed flow for a tube of 

diameter D, is Lmin = 0.06 Re×D.81 In the soot generator, Re~2000 and D = 18mm, so the 

required Lmin is roughly 2 m, which is much longer than the actual tube length (~0.3m). 

So near the center of the jet, the flow is closer to a plug flow, but near the boundaries, the 

developing boundary layers in the pipe produce a profile more like that of the fully 

developed flow.  
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Figure 4-16. The instantaneous velocity profile of soot generator at 1ms and 3ms 

delay time, 15 mm above the jet exit, and calculated the fully developed and 
plug flow profile at the exit of the heating tube. 

4.4. PVV IN AN UNSTEADY COMBUSTION FLOWFIELD 

The above results show the successful development of PVV in two simple, 

laminar jet flows. Practical flowfields, on the contrary, are typically unsteady and 

turbulent. This demands a more complicated optical arrangement to acquire more than 

one velocity component. In the following section, the PVV velocity measurement 

technique is extended to a 2-d approach and demonstrated in an acoustically forced 

combustor. The combustor was chosen for its ability to simulate a more practical, 

unsteady environment.  

Inside the acoustic burner, due to the unsteady forcing of the acoustic velocity 

field, the flame fronts are highly irregular. This makes the single marking stripe method 

inappropriate. The marked line, which travels steadily in laminar flows, is quickly 

distorted in a highly 3-Dimensional, unsteady flow. Therefore, tracking the movement of 
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the marked region requires a more sophisticated method to uniquely determine the 

mapping between the initial measurement location and the delayed location of the marked 

region. Thus, the PVV measurement has been modified to a two-dimensional approach 

using a crossed beam excitation method, as illustrated in Figure 4-17. At the crossing 

point of two laser beams, one can uniquely identify a fluid element in the flow, which can 

then be tracked over time.  

 
Time(1)  Time(2) 

Figure 4-17. Scheme for 2-D velocity measurement by tracing of marked grid 
produced by crossed laser beams. 

Due to the unsteady mixing, in the acoustically forced flame, the marked region 

will also have a much shorter lifetime (depending on the laser intensity and forcing 

intensity) than in the laminar flame and soot generator flowfields. Thus, a shorter delay 

time is preferred in the unsteady flow, so the displacement of the marking area can be 

determined clearly.  

Figure 4-18 consists of two LII images from the readout beam at different delay 

times relative to the marking beam. The first image (a) was taken at a 1μs time delay, 

while the second (b) is for a 200 μs delay. Both images are for a fuel flowrate of 

10.5cm3/s. In Figure 4-18(a), the four crossing marking lines are very clear. Based on the 

initial design, the four beams form a “diamond-shape” like grid (4 mm high × 12 mm 

wide). Due to the size of the flame, part of the “grid” is out of the soot field in this image. 

However, most of the "diamond" is still visible. For example the two vertical intersection 
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points (vertices) can be seen, but the left and right vertices are not. The downstream 

vertex is denoted the “top” point, and the upstream crossing is the “bottom” point 

   
(a)           (b) 

Figure 4-18. Crossbeam images for acoustic forced flame, image size: 20mm(W)× 
33mm(H); (a) LII image of crossbeam at 1μs delay after the IR (marking) laser; 
(b) the LII image at 200μs delay.  

In the delayed image (b), there is clearly a significant distortion of the marking 

lines due to the three dimensional character of the acoustically forced flame. The top and 

bottom points generally move towards the top right. If we trace the displacement of the 

physical center for the crossing lines, together with the known delay, the two-dimensional 

velocity of the “local” flow can be measured. 

4.4.1 Averaged Velocity Measurement 

For each flame condition, an accumulated image of at least 100 individual laser 

pulses is collected to calculate the average flow velocity, while 50 instantaneous images 

are acquired to measure the instantaneous velocities Because of the unsteadiness in the 

flow field, the soot field does not always overlap the marking laser’s grid region, some of 

the images miss marking lines. Therefore, the contrast of the marked lines in the average 

images decreases much faster compared to that of the laminar flame. There is also a 



 77

tradeoff on the time delay for instantaneous flow velocity measurements. The shorter the 

delay time, the better local accuracy of velocity (which is changing with time and space) 

can be acquired. However, short delay also produces a smaller displacement of the 

marking line, therefore, the relative displacement error could be big due to the limitation 

of the ICCD resolution. Thus, it is hard to accurately measure velocity data at too short a 

delay time. 

In this experiment, a 100 μs delay was chosen for the average velocity 

measurement, because it is not a long delay time relative to the fuel flow velocity (the 

fuel jet velocity is less than 20 m/s), and the displacement of the marked grid can be read 

(more than 6 pixels generally) in our experiment. The “original” location of the crossed 

beams is determined from an LII image with a 1 μs delay after the IR laser. This delay 

removes the interference from the residual LII produced by the IR marking laser pulse 

(see previous laminar flame results), without altering the location of the marked region. 

The physical center of the marked vertices is selected as the marked region. 

As an example of the capabilities of the technique, Figure 4-19 displays the 

average velocity measurements as a function of phase in the acoustic forcing cycle. 

Results are shown for the top and bottom grid crossing points, as well as the average of 

these two values. In addition, the acoustic velocity calculated from the measured acoustic 

pressure is also plotted. The measured flow velocities vary as expected with the acoustic 

phase. The peaks (maxima and minima) in the velocity occur at phase angles of 0°, 180° 

and 360°. Phase drift between the signal and trigger outputs of the signal generator result 

in a phase uncertainty of as much as 18°. 
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The measured velocity at the top intersection varies between 8 and 16 m/s (12±4 

m/s), while the bottom point velocity is between 4.3 and 14 m/s (9.1±4.8 m/s). For 

comparison, the average velocity of the flame is around 11 m/s without acoustic 

excitation. From these results, the acoustic velocity is roughly the same at both points (4-

5m/s), but the average velocity is 2-3 m/s higher for the top point at most phases. This is 

likely due to heat release. The top intersection is located further from the fuel jet exit. By 

this point, the flowfield has experienced more fuel-air mixing and heat release, which 

generates (through expansion) higher velocities. 

 

   
Figure 4-19. Measured average axial flow field velocities are phased-locked, at 

various phases in the cycle of acoustic driving pressure. Each data point is an 
average of 200 laser pulses. Numerical flowfield velocities are calculated at 
1700K. 
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The time accumulation process of images can average out a lot of local flow 

information. Thus, the study of instantaneous images is significant to understand local 

flow velocity field. 

4.4.2 Instantaneous Velocity Measurement 

From the individual images, instantaneous, two dimensional velocities at the 

beam crossings can be calculated. Furthermore by tracing multiple points along each 

marking stripe (providing each of their corresponding locations can be determined after 

certain delays), a more complete two dimensional velocity field can be resolved. This 

could be useful for tracing the evolution of a flowfield, and the structure of vortices in the 

unsteady flame. 

Apparently, in order to achieve accurate local 2 dimension velocity measurements, 

it is optimum to acquire images with all 4 beam crosses displayed at same time, thus local 

velocity at these 4 points can be measurement; furthermore, it is possible to calculate 

more velocity points by interpolating measurements between adjacent crossing points. 

But, in practical process, due to limitation of the optical setup, small flame size and 

unsteadiness of flow field, it is hard to acquire one image with 4 crossing points. Thus, 

images with 3 crossing point are selected to examine the testing flow field. 

Figure 4-20.shows forced flame images with crossing grid. Image(a) is taken at 

1µs delay time after marking laser, the entire grid is hold in original shape, i.e. each 

marking line is straight. Obviously, during acoustic forcing, these straight lines will be 

curved as they follow the movement of unsteady flowfield. Images (b), (c), (d) and (e) are 

acquired at 200µs delay after marking laser and 4 different forcing phases. These phases 

chosen is mainly based on the averaged velocity measurement results, and selected from 
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phases with different averaged velocities. 

       
(a)    (b)    (c) 

       
(a)    (d)    (e) 

Figure 4-20. acoustic forced flame images (a) at 1µs (2 images combination) 
(b)200µs delay at 48° (c) 200µs at 168°(d) 200µs at 264° (e) 200µs delay at 
336° (image size is 46.5×28.7mm).  

Despite the big original image size in Figure 4-20, only part of the regions with 

marking lines will be processed to calculate local velocity, as marked area in Figure 4-20 

(b),(c),(d) and (e). Noticed in Figure 4-20, all images displayed have at least 3 cross 
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points. Thus, linear interpolation point velocity between two adjacent cross points can be 

measured. Because the grid horizontal (X-axis) size is longer (12mm) than vertical (4mm) 

size, so, it is easy to linearly interpolate 2 X-axis locations between two adjacent cross 

points, and then find their corresponding Y-axis locations on the marking line. By 

measuring the X-axis and Y-axis changing of corresponding points between 1µs to 200µs 

images, the local velocities can be calculated. 

In Figure 4-21, it displayed the measured 2-dimensional velocity vectors from 

Figure 4-20 image (b), (c), (d) and (e). Velocity vectors on these 4 images clearly show 

the velocity variations at different locations, and the pattern of velocity vectors is 

different at each forcing phases. Especially, at some phases, a few (c) or some (b) of the 

velocity vector directions are opposite to the main flow velocities, these suggest larger 

shear stress and rotation exist in these flow regions, which can form vortices structures 

and entrain ambient area inside flame flowfield. In addition, from these vectors, the 

averaged mean velocity can be calculated. These mean velocity are (a)9.7m/s at 48° 

(b)1.2 m/s at 168° (c)12.1m/s 264° and (d) 15.8 m/s 336°, compare to the measured 

averaged velocity results, which are 11.0m/s, 6.3m/s, 8.6m/s and 14.2m/s at 

corresponding phases. Even the instantaneous velocity data are exactly same as the 

averaged data due to the unsteadiness of flowfield, but they have the similar trend. 

Since all velocity vectors in forced flame field are consist of mean velocity and 

local acoustic velocity, the local acoustic velocity can be calculated by subtracting mean 

velocity from total local velocity. Figure 4-22 (a), (b), (c) and (d) show mean velocity 

modified velocity vectors at Figure 4-21(a), (b), (c) and (d), respectively. The velocity 

vector pattern in each image clearly shows the rotation of the flow, with centerline 
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velocity vectors pointing upwards, and edged vectors pointing downwards, no matter the 

flow rotation is clockwise(b) or anticlockwise((a) (c) (d)). A important notice in Figure 

4-22 is: the maximum rotation velocity vectors are similar magnitude, despite the 

averaged mean velocity is. This suggests the rotational flow with lower mean velocity 

transports less distance. Thereby it has longer residence time for local mixing. 

 
(a)    (b) 

 
(c)       (d) 

Figure 4-21. Calculated velocity vectors from Figure 4-20.at marked regions (a) 
(b) (c) (d) correspond to Figure 4-20 (b) (c) (d) (e), the scale unit is millimeter. 
Size of velocity vectors in (b) are multiplied by factor of 2. 
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(a)    (b) 

 

(c)       (d) 

Figure 4-22. Calculated velocity vectors in Figure 4-21 after mean flow velocity 
subtraction. (a) (b) (c) (d) correspond to Figure 4-21 (a) (b) (c) (d), the scale 
unit is millimeter. Size of velocity vectors are multiplied by factor of 4 on the 
bases of Figure 4-21 (a), (c) and (d). 

4.5  SUMMARY 

Particle Vaporization Velocimetry (PVV) appears to be a viable method for 

velocity field measurements in sooting combustion flows. Results show that it can be 

used in both flames (reacting gases) and in exhaust flows. The optimum laser fluence for 

creating the tagged region is approximately 2-3 times the LII threshold fluence. LII 
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detection would typically be preferred over scattering detection as it has less background 

problems. Lifetime studies show that the tag lifetime is quite long. In flames, the major 

lifetime limitation are oxidation of the soot surrounding the tagged region and turbulent 

mixing. In exhaust flows, only mixing will likely limit the tag lifetime. The major sources 

of uncertainty for PVV result from minimum detectable displacement, which can be 

improved by increasing the detector resolution, and the presence of soot, since the 

measurement only works where soot is present. Laser perturbations to the flowfield (e.g., 

temperature, velocity, and pressure) are estimated to be small in typical conditions, 

though vaporization of the soot in flames clearly seems to inhibit production of new soot, 

possibly due to the C, C2 and C3 radicals produced. Thus some chemical perturbation of 

the soot vaporized region is likely. 
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CHAPTER 5                                               

UNSTEADY SOOT CONCENTRATION MEASUREMENTS 

 
In this chapter, an examination of the effect acoustic forcing has upon soot 

concentration and soot radiation is presented. The goal is to understand the specific 

observations of Ref. 36 and to study unsteady soot formation and destruction processes in 

an environment more controllable than a turbulent flame. Results are presented for a 

steady, acetylene laminar jet diffusion flame and a transitional flame. Both flames are 

over ventilated. The LII technique is applied to measure two-dimensional flame soot 

concentrations (the calibration process for determining absolute soot concentration from 

LII is described in Chapter 3). The data include average and instantaneous soot 

concentrations. In addition, soot luminosity results corresponding to each flame condition 

are presented. Various analysis techniques are used to explore unsteady soot 

formation/destruction inside the flames. 

5.1 ACOUSTIC FORCING CONDITIONS 

Generally, the effectiveness of acoustic forcing depends both on forcing 

frequency and forcing power (i.e., power supplied to the sound drivers). The flame size 

and shape can be greatly varied corresponding to the forcing power (see Figure 5-1). At a 

given forcing frequency, increasing the forcing power changes the flame surface from 

smooth (at low forcing power) to corrugated; the flame can even be broken up and torn 

such that multiple flame sheets exist. Qualitatively, this is similar to the structures seen in 

a turbulent flame. During acoustic forcing, the flame also shrinks (vertically). At high 
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forcing power, part of flame can even be “pulled” below the height of jet exit (rightmost 

image in Figure 5-1). 

     
Figure 5-1.High speed color camera images of acetylene diffusion flame at three 

(increasing) forcing powers for 320Hz forcing (28×13 mm). 

In contrast at fixed input power, the forcing effect varies with forcing frequency. 

A major issue is the frequency relative to the resonant frequencies. The local forcing 

amplitude (inside the burner) will reach its maximum at the burner’s harmonic modes. 

The second harmonic mode of the burner was found to be the most effective one; thus, it 

was chosen as the forcing frequency in all experiments. 

5.2 AVERAGED SOOT CONCENTRATION AND FLAME LUMINOSITY 
MEASUREMENTS 

Time-averaged LII data for both laminar and transitional flames have been 

acquired in these experiments, as well as time-averaged broadband luminosity data for 

both flames. For the forced cases, phase-locked time-averages were acquired. These 

images retain structural information about the soot distribution. The overall effects on the 

flame fields can be ascertained from spatially averaging or integrating the time-averaged 

image data.  



 87

The average images (averaged over 100-200 laser pulses) were taken with the 

camera accumulation mode (i.e., just the final accumulated image is saved) with an 

intensifier gate time of 50ns for each laser pulse. All averaged images for the forced 

flames were acquired phase-locked to the acoustic pressure, as measured by the piezo-

electric pressure transducer; the uncertainty in the phase was less than 5°, which was 

caused by electronic drift and system unsteadiness. In each forcing cycle, image data 

were obtained at 13 phases for laminar flame case: from 0° to 180°, phase change is 22.5°, 

and from 180° to 360°, phase change is 45°. In transitional flame measurement, images 

are acquired at 16 discrete phases which were distributed evenly within a full forcing 

cycle. 

5.2.1 Laminar Flame Images 

When the burner was operated under laminar conditions, the corresponding jet 

Reynold number (based on fuel jet diameter) is 133. The surrounding (air) freestream 

velocity is 0.7 m/s. In this experiment, the driving frequency was 320 Hz. The acoustic 

forcing amplitude was chosen to achieve the strongest forcing effect that does not blow 

off the flame. At this forcing, the soot inside the burner exhaust appeared to be decreased 

noticeably.  

Figure 5-2 shows three example LII images: the unforced flame, and the forced 

flame at two phases. It is not surprising to observe a significant difference of flame 

structures between forced and unforced flame. The forced flame images also show 

differences between different acoustic phases. In Figure 5-2, all of the images are 

displayed with the same color scale of soot concentration.  
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  Flame Jet     

 (a)   (b)   (c) 
 
2ppm      12ppm           25 ppm 

Figure 5-2. Averaged LII images (100 frames, 42×14.3mm) in a) unforced flame, 
and b) 225° and c) 270° relative to the acoustic pressure for the forced flame 
with 50ns gates, laser energy of 0.75 J/cm2 and 0.5 ND filter in front of camera 
(the color mapping for soot volume fraction is also shown). Jet exit is 1mm 
below the image, as shown in (a).  

As shown in Figure 5-2(a), the unforced flame has a gradual change in soot 

concentration along the flame height along the flame edges. The flame has the typical 

laminar flame structure: there is a visible sooty formation zone near the flame front, and 

less soot inside the flame surface from decreased pyrolysis. There is also low soot 

concentration zone close to the jet exit, where cold fuel has not had sufficient residence 

time or heating to produce much soot. With acoustic forcing, Figure 5-2 (b),(c), the 

overall height of the average sooty region decreases in length. In addition, the flame in 

the lower portion of the burner becomes broader (the sooty region diameter increases). 
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Furthermore, the peak (average) soot concentration is decreased with forcing. Finally, the 

region close to the jet exit is relatively “clean”. The jet exit region has low temperature 

because of the cooling of cold fuel flow, and thereby less pyrolysis. Now, considering the 

forced and unforced flame situation, the acoustic forcing can generate flow fluctuation, in 

both azimuthal and radial direction, this flow unsteadiness can “bend” the smooth 

laminar flame surface (cone-like shape) and produce many curvatures, folders, thus 

volumetric chemical reaction can be intensified. Finally, the faster fuel consumption 

shortens flame height after acoustic forcing. 

5.2.2 Transitional Flame Images 

Upon increasing the fuel flowrate of the jet, the flame height increases and the 

flame flowfield gradually changes to an unsteady or turbulent-like condition. In this 

research, due to limitations of the experimental apparatus, the maximum measured fuel 

flowrate was fixed at 10.5 cm3/s, with a corresponding jet Reynold number of 833. The 

surrounding air flowrate was the same as for the laminar flame case (0.7 m/s). In this 

condition, the flow field is not fully turbulent; though the unsteadiness of the flame is 

obvious. The flame length is much larger than the laminar flame, because of the much 

higher fuel flowrate (~6 times). Due to the large height of this flame and the smaller 

extent of the imaging laser sheet, the complete burner had to be shifted to three different 

heights in order to picture the complete soot flowfield. Each shift changed the burner 

height by 40mm and was achieved by adjusting the height of the acoustic burner, while 

the optical systems were untouched. 
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           Flame Jet 

Figure.5-3. Unforced, averaged (200 frames) LII image (146x31 mm). Same color 
scaling as Figure 5-4. 

Figure.5-3 shows a 200-shot averaged, unforced transitional flame soot image. 

The soot field is noticeably different from the unforced laminar flame. The highly 

concentrated soot region (on average) is no longer along the flame edges; instead, it is 

found in the central region of the flame. Similar to the laminar flame, the soot 

concentration is very low close to the jet exit and gradually increases to its peak 

downstream (at ~ 49 mm height above the burner, HAB), before decreasing for higher 

heights. This is similar to the soot growth and oxidation behavior of the laminar diffusion 

flame. The soot peak concentration varied with flame height and was very similar in both 
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laminar and unsteady flames Due to the limited optical access, this composite image does 

not include the region above the flame tip where the soot is further reduced by dilution 

and oxidation.  

         
Flame Jet   

(a)   (b)   (c)   (d) 
 
2ppm      12ppm           25 ppm 

Figure 5-4. Time-average soot concentration images (100 frames, 77×33.2mm) at 
four phases: a) 0°, b) 96°, c) 168° and d) 262°, with signal gated for 50ns and 
laser energy 0.75J/cm2 laser sheet 65mm height (no filter).  

Similar to the forced laminar flame, acoustic forcing decreased the size of the 

transitional flame; the soot height reduces to around one-third of its original size, while 

the diameter is increased simultaneously. In other words, the forced flame shortens and 

widens; these effects can be seen in Figure 5-4 (note, the same color scale for soot 

concentration is used in the unforced and forced flames).  

Close to the jet exit (located at the bottom of Figure 5-4), a diffusion flame-like 

region clearly shows up. There is some soot around what appears to be a flame edge close 

to the jet exit, while almost no soot is found in the “core”. Also, very little soot is 

14mm

63mm 
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apparent below 14 mm HAB. With increasing height, the soot concentration increases. 

However, compared to the unforced transitional flame, the size of soot region with 

relatively high concentration (red) decreases under acoustic forcing. The changes in the 

soot field between four driving phases are shown in Figure 5-4. At 0° (where acoustic 

pressure is 0, i.e. lowest absolute value), the peak soot region is a large oval shape and 

vertically centered in the image. At 96°, the peak averaged soot concentration has 

decreased from ~20 ppm (red) to ~15 ppm (green), and it moves vertically upward. At 

196°, the peak concentration is broken into two regions, centered above and below the 

previous location and with a value (~12 ppm) slightly lower than at 96°. At 262°, the two 

peak soot regions appear to move downstream, with the upper region dropping in 

concentration, while the lower region grows in concentration and forms into the oval 

shape seen at 0° (though smaller). Based on the images of Figure 5.3 and Figure 5-4 for 

the transitional flame, acoustic forcing apparently does not reduce the peak (average) soot 

concentration in each phase as much it does in the laminar flame. Overall, the high soot 

concentration range in the forced flame is also closer to the jet exit compared to the 

unforced flame.  

From the average soot concentration fields, it is clear that acoustic forcing can 

effectively reduce the total (two-dimensional) soot-containing area. In the following 

sections, quantitative global measures of soot in the flames are described. 

5.2.3 Integrated (Total) Flame Soot 

Because the time-averaging process also effectively produces some spatial 

averaging in an unsteady flame, it is most reasonable to use the average soot fields to find 
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spatially integrated information on the soot level. This global parameter can also be easily 

compared at different acoustic phases.  

In order to integrate to find the total soot mass inside a flame based on the 

acquired data, some assumptions have to be made. The LII-based soot fields are only 

two-dimensional; they represent information from the thin planar region demarked by the 

pulsed laser sheet. Due to experimental limits, it is impractical to acquire soot 

information from the complete burner volume. In the previous figures, all the time-

averaged, LII-based soot fields exhibit nearly symmetric structure, especially in the 

transitional flame images, with the laser passing through the axis. Therefore, it is 

reasonable to assume that, the averaged flame soot structure is axisymmetric. Thus, the 

total soot concentration can be calculated by cylindrical integration of the measured fields. 

In a data reduction process, background noises also need to be considered, which are 

based on background images. In experiments, the averaged background images were 

acquired in each corresponding phase, with exactly same setup as LII data acquisition but 

no laser beam.  

Based on this assumption, the total soot inside the flame, sootM , can be calculated 

from: 

(Eq. 5-1)   ∫ ∫=
R H

sootsoot drdzrM
0 0

2 ρπ      

where sootρ  is the mass density of soot at (r,z), r is the radial location and z is the axial 

location. sootρ  can be calculated from below 

(Eq. 5-2)   soot v carbonfρ ρ= ∗      

where carbonρ  is carbon mass density and vf  is local soot volume fraction (~ppm). 
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The total soot mass in the forced laminar flame, as calculated from equation 5.1, 

is displayed on Figure 5-5 over one full acoustic cycle (period=1/320Hz=3.125 ms). Also 

shown for comparison, is the corresponding acoustic pressure variation. The total soot 

mass clearly varies over the cycle; however there is almost no change from 210° - 360°, 

but for 90-180° the total soot mass is considerably lower (~25% less) compared to the 

other phases. This reduced soot mass corresponds to the portion of the acoustic cycle 

when the acoustic pressure goes from its minimum to zero, i.e., when the acoustic 

velocity is approximately zero and changing direction from downward to upward (at 90°), 

then accelerates towards its maximum upward value at 180°. Overall, the forced laminar 

flames have total mass of soot between 8 and 12 μg. This is considerably less than the 

unforced flame, which has a soot mass of 54.5μg. So, the total mass of soot inside this 

flame is reduced by roughly five times due to acoustic forcing 
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Figure 5-5. Total soot mass inside forced laminar flame over a forcing cycle (fuel 

flowrate 1.67 cm3/s, middle of flame located 75mm above pressure minimum). 
Unforced flame soot mass is 54.5μg. 

Inside the transitional flame, the total soot mass is calculated by the same method 

and is shown in Figure 5-6. Similar to the forced laminar flame, the forced transitional 

flame total soot also varies with acoustic phase. The total soot reaches its minimum 

slightly later, around 150-210°, where the acoustic velocity is approaching its maximum 

upwards value. This similarity with the laminar flame suggests some preference for the 

phases where the acoustic velocity is upwards (and large). Overall, the total soot mass 

inside the forced transitional flame is 15-21 μg, which is roughly twice the soot in the 

laminar forced case, even though the fuel flow rate is 6.5 times higher than in the laminar 

case. Also, the unforced transitional flame has 57 μg of soot; so forcing lowers the soot 

by a factor of ~2.9. Thus forcing is less effective for the transitional flame compared to 

the laminar flame.  This reduced effectiveness can be caused by two reasons. First, the 
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unsteady nature of the transitional flame may already provide some of the impact of 

forcing, For example, it could cause the fuel and air to be partially premixed, whereas 

almost no premixing occurs in the unforced laminar flame. Second, the peak acoustic 

forcing velocity (estimated to be 0.74 m/s at 300 K) used for the transitional flame is only 

two times higher than for the laminar flame forcing (0.36m/s), while the fuel flow rate 

was increased by a factor of 6. Thus the ratio of the acoustic velocity to jet velocity is 

lower for the transitional case. While higher acoustic velocities were attempted, they 

extinguished the flame. If the acoustic forcing power was too high, the high velocity 

fluctuations entrained large amounts of cold air, which could dilute and cool down the 

fuel/air mixture, extinguishing the flame. 

 

 
Figure 5-6. Total soot mass for transitional flame over an acoustic cycle (fuel 

flowrate 10.5 cm3/s, middle of flame located 75 mm above pressure minimum). 
Unforced flame soot mass is 55 μg. 
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5.2.4 Averaged Luminosity Images 

To better understand soot production and destruction in these flames, other 

information besides soot concentration would be helpful. Since soot radiation dominates 

the total flame luminosity in these highly sooting flames, the flame luminosity provides 

an added piece of information. Specifically, the amount of soot radiation depends on 

various properties, primarily varying with soot concentration (linearly) and soot 

temperature (to some high power, e.g., Tn with n>4). Therefore, the natural luminosity 

was also acquired with the same detection system used for LII but without the laser (as 

described in Chapter 3). Luminosity signals were recorded as broadband detection 

(primarily visible wavelengths). The blue and red signals were obtained using blue and 

red bandpass filters; the broadband measurements employed a neutral density. 

   
(a)   (b)           (c) 

Figure.5-7. Time-averaged (100 frames, 45×14.3mm) broadband laminar flame 
luminosity images: a) unforced flame, and forced flames at b) 225o and c) 270°. 
All signal gated at 500 ns with ND 0.5 filter and no laser. 
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Figure.5-7 displays averaged (over 100 laser shots) broadband luminosity images 

of the forced and unforced laminar flames. The radiation for the forced case shows the 

same flame shortening and broadening seen in the LII measurements, and the averaged 

flame structures are again vary with acoustic phase. This is also true for the transitional 

flame cases (Figure 5-8, (a) compiled from multiple images at different heights, (b) and 

(c) are standard images). From the images, the forced laminar flames achieve higher 

maximum soot radiation levels than the unforced flame. For the transitional flames, 

however, the behavior is different; the peak radiation values are similar (though slightly 

lower) with forcing, and the size of peak radiation region is decreased. 

To further study these cases, the luminosity images data sets can be spatially 

integrated. Unlike the two-dimensional LII measurements, the luminosity images include 

radiation from the whole depth of the flame. Thus they already are integrated over one 

spatial dimension. Thus the total luminosity can be calculated by directly integrating 

(summarizing) all the pixel intensities in a luminosity image (after background 

correction).  
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(a)                                    (b)                                      (c) 

Figure 5-8. Time-averaged broadband luminosity for (a) unforced transitional flame. 
Stitched image.200 frames (127×27mm) and forced transitional flame at (b) 0o (c) 
72o (0.5 ND filter). (200 frames, 77×32mm) 

Figure.5-9 shows the spatially and temporally averaged broadband signal for both 

the laminar and transitional forced flames. Clearly the luminosity varies with phase in 

both flames, but they have very different trends across the forcing cycle. In the laminar 

flame case, the variation of broadband luminosity over phase is within 15% of the phase-

averaged signal; thus it is not as sensitive as the total soot mass with respect to acoustic 

phase. Around 120-240º, the broadband signal is higher than at other phases. Since this 
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corresponds to the phases of lowest soot mass (Figure 5-5), it suggests the soot is getting 

hotter during these times (where the velocity is also reaching its maximum upwards 

speeds). 
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Figure.5-9 (Top) Volume-integrated luminosity for the forced laminar and 

transitional flames over a forcing cycle (these two data groups used two 
different cameras); (bottom) corresponding acoustic pressure. Unforced laminar 
and transitional luminosity signals are 0.55 and 9.23 respectively. 

In the transitional flame, the broadband luminosity also varies with forcing phase, 

and the variation is within 13% of the phase-averaged signal. Unlike the laminar case, the 

total luminosity is lowest at the intermediate phases (90-240º). From the transitional soot 

mass plots (Figure 5-6), it was found that the soot mass was lowest at the center of these 

phases (160-190º). So for the transitional flame, phases with low total soot correspond to 

low total luminosity. However the minimum soot is 29% less than the peak value; while 

at the same phase, the total soot luminosity is only 15% less than its peak value. This 
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suggests a unit mass of soot still produces a higher luminosity for 160-190º. In this sense, 

the results are similar to the laminar flame case. Results for both flames suggest an 

increase in soot temperature at these phases. 

Generally, the averaged LII measurements show acoustic forcing can decrease 

soot inside the flames, while the averaged luminosity data suggest averaged soot 

temperatures increase (in some phases) after acoustic forcing. However, all those 

averaged images can not show by what mechanism soot is decreased during acoustic 

forcing; i.e. how does the acoustically forced flow field help increase the oxidation rate or 

decrease the pyrolysis/formation rate. The soot structure variation, with time and space, is 

smoothed by the averaging process. So, it is necessary to examine instantaneous images, 

which contain information of what exactly happens inside the flame due to acoustic 

forcing.  

5.3 INSTANTANEOUS FLAME IMAGES 

In the following, instantaneous soot concentration (LII) and radiation (luminosity) 

results are presented for both laminar and transitional flames, and at unforced and forced 

conditions. The instantaneous flame images present the detailed topography of soot 

structure in the flames. 

5.3.1 Laminar Flame 

Figure 5-10 shows instantaneous laminar flame images. Similar to the time-

averaged image (Figure 5-2 (a)), Figure 5-10(a) displays the unforced laminar soot field; 

it is smooth, showing the laminar flame is steady, and concentrated near the edge of the 

jet. Inside there is mostly fuel and the temperature is relatively low. Therefore, the 
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pyrolysis rate, and consequently the soot production rate, is low inside the fuel jet. 

Figure.5-11 shows the instantaneous soot concentration along a radial slice through the 

laminar acetylene flame at 20 and 30mm HAB. The lower peak value at 20mm HAB 

compared to 30mm suggests the soot is still growing along the flame edge, as expected 

for a laminar diffusion flame. Since it is hard to find a acetylene jet flame with exactly 

same properties (e.g. same fuel, coflow velocity and jet diameter), a low velocity 

(~0.1m/s at jet exit) jet flame data was used as reference, as shown in Figure.5-12. It 

displays a laminar flame soot volume fraction contour, the lowest HAB has readable soot 

volume fraction data is close to 8mm, where soot fraction peak is ~40ppm. Considering 

the 0.1m/s jet velocity, it takes ~ 80ms to reach 8mm after fuel leaving jet exit. In our 

laminar flame case, fuel jet exit velocity is ~12m/s, nearly 120 times faster than that 

reported in Figure.5-12, it will take much less time for our jet flow to reach 20mm and 

30mm HAB. Thus, the peak soot fraction shown in Figure.5-11 (a) ~35ppm and (b) ~22 

ppm are reasonable. 

As shown in Figure 5-10(b) (c) for acoustic forcing, the original long laminar soot 

region disappears; instead, the sooty region is broken into multiple, smaller pieces. 

Similar to what was seen in the averaged soot images for the forced laminar flames, the 

instantaneous soot fields are located closer to the jet exit, with a broader area (larger 

diameter) than the unforced flame. These soot regions have more highly curved structure, 

which is hardly found in unforced laminar flame. 
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   (a)   (b)   (c) 

2ppm    25ppm             48ppm 
Figure 5-10. Instantaneous soot concentration fields (45×18.3mm) for the laminar 

a) unforced flame, and forced flame at phase angles of b) 225° and c) 270° 
(50ns gate, 0.75 J/cm2, ND 0.5 filter).  The unforced laminar flame is ~ 43mm 
tall. 

 

 
(a)      (b) 

Figure.5-11. Radial soot fraction profile for the unforced laminar flame (Figure 
5-10) at two heights: (a) 30mm and (b) 20mm HAB. 
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Figure.5-12. Soot volume fraction (ppm) contour plots for a steady acetylene 

diffusion flames.82 

5.3.2 Transitional Flame 

Since the unsteady transitional flame (unforced and forced) has a structure that is 

closer to that found in a number of basic industrial combustion systems, this section 

includes more detailed analysis of the instantaneous soot field than the previous section 

on the laminar flame. 

Transitional Flame LII Soot Concentration Measurement  

As shown in Figure 5-13, the soot field for the unforced transitional flame is 

much different than the laminar results. It has a much more complicated structure, even 

without acoustic forcing. The soot regions are more irregular; many roll up, vortex-like, 

structures are clearly evident. Unlike the laminar flame, where a soot-free fuel region can 

exist along the centerline of the flame for some distance, the transitional flame only 

exhibits this behavior very close to the jet exit. Throughout most of the height, it seems 
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that air or hot products can “penetrate” into the fuel jet, and soot can be produced almost 

anywhere along the jet. This irregular structure for the transitional flame is due to the 

larger shear force generated at the fuel jet boundary. At the higher Re of this flame, this 

induces vortices that can grow, entraining ambient air into the fuel. 

 
Figure 5-13. Unforced transitional flame instantaneous soot field. Stitched image from 

two raw images at different heights, the color scale is same as that in Figure 5-14 
(141×26 mm). 

With acoustic forcing, especially for the high amplitude forcing close to the flame 

extinction limit the vortex generation appears to get stronger and the sooty region is 

“squeezed” closer to the fuel jet. This can be seen by comparing Figure 5-14 (a) 

(unforced) and Figure 5-14 (c) (forced). Figure 5-14(b) and (d) repeat (a) and (c), but are 

clipped to show only soot concentrations higher than 18ppm. Obviously, the extent of the 

high concentration soot region is decreased sharply with acoustic forcing. 
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(a)   (b)   (c)   (d) 

2ppm    25ppm             48ppm 
Figure 5-14 Instantaneous soot distributions (77×34 mm) for the transitional 

flame: (a) unforced with soot shown for the full range (2-48ppm), (b) unforced 
and clipped to show soot only for 18-48ppm, (c) forced at 72º (2-48ppm), and 
(d) forced at 72° (18-48ppm).  

It is noticed, the peak soot concentrations in the instantaneous laminar flame 

images are about twice of the value found in the time-averaged images. The flame’s soot 

field moves around sufficiently, even for the nominally laminar flame, that some spatial 

smoothing occurs. 

Figure 5-15 and Figure.5-16 display the forced transitional flame images at 16 

data acquisition phases; these images show how the soot structures vary with phase 

relative to the acoustic forcing. While there are shot-to-shot variations even for a fixed 

phase, the images shown were chosen as representative of what occurs at each phase. 

Similar to the forced laminar flames, the forced transitional flame soot field becomes 

smaller and more compact than the unforced case. Based on the shape and structure of the 
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soot region, these 16 images are separated to five groups, 0o(or 360 o), 24–120o, 144–216o, 

240–288o and 312–360o. 

          
0o         24o  48o         72o 

          
96o        120o  144o        168o 

2ppm    25ppm             48ppm 
Figure 5-15. Instantaneous transitional flame soot concentration fields (77×34mm) 

at eight phases throughout the first-half of a forcing cycle. 
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192o       216o  240o        264o 

          
288o       312o  336o      360o 

2ppm    25ppm             48ppm 
Figure.5-16. Instantaneous transitional flame soot concentration fields (77×34mm) 

at eight phases throughout the second-half of a forcing cycle. 

At 0o, almost all the soot is contained in a single compact region, with a bulb-like 

shape, and concentration is high. From 24o to 120o, the soot is still primarily confined to 

one structure, which resembles by a roll-up and filament shape. The curved and 

branching structure exists in almost every image. In addition, the images for 24-120° 

show a soot region that is “stretched” in the axial direction compared to 0o. More 

importantly, images at 24°, 72° and 96° show a smaller soot structure than at 0o, and they 
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have a higher soot concentration that sits along the edge. Next at 144-216°, the soot 

region becomes “stretched out”; the soot also exists in more than one region, with each 

having a clear curvature or roll up structure. Around 168° and 192°, the stretching 

reaches its maximum; the average distance between the centers of the two separate soot 

regions is ~35mm. At 240-288°, the soot regions seem to distribute in a smaller area than 

previous phases, with some fine curvature and filaments. Now however, it seems that the 

two consecutive vortices are closer. This is similar to what is seen for 24-120°, where 

separated soot regions are not very further away. From 312° to 360°, the soot region 

seems “squeezed” to one region again, similar as 0º case. 

To further examine the variation of the soot structure during forcing, additional 

images were selected at 0o, 96o, 168o and 264o, as displayed in Figure 5-17 and Figure 

5-18. These phase angles were chosen based on the observations above, and the averaged 

findings (Figure 5-6), where the total soot is maximized at 0°/360°, has a medium value 

at 96o and 264°, and has a minimum at 168°.  

At 0o, the flame soot again can be seen to exist mostly in one region with high 

concentration (dark regions in the images). Images a-d all show only one rollup vortex 

structure with a central filament/tail. In these images, the rolling direction can be deduced 

(as shown by the arrow), these direction is most likely anti-clockwise (a, b and c), 

depends on local flow property. Image b and c have big thick high soot region, much 

thicker than that in laminar unforced flame soot Figure 5-10. All four images show the 

highest soot concentration at the “head”/top of the vortex structure. Besides, all of these 

vortices structures are composed of multiple thin filament structure, especially in image a, 

c. 
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At 96o, all images (e, f g, and h) show high soot concentration region becomes 

smaller and thinner, no big high soot concentration region appears as that in image b and 

c, the vortex structure become even finer, the vortex rolling direction can easily figure out, 

as depicted by arrows. Soot region with peak concentration (dark) are clearly show up at 

the “head” of vortex (image f, g and h). Most important, beside big main vortex soot 

region, there is second soot structure shown up upstream on each image (image f, g and h 

clearly shows two separated soot flow region, image e seems has two flow soot region, 

but they are very close), but all second soot regions have lower soot intensity than the big 

vortices. It may suggest the initial soot producing step inside the second flow structure. 

As to168º, it is corresponding to the lowest total soot parts in the average image 

data Figure 5-6, The separation of two soot regions is clearly displayed on each image, 

and both have similar soot intensity The measured averaged distance between centers of 

two structure is ~35mm. Based on PVV measurement in Chapter 4, the averaged flow 

velocity is ~13m/s, and each acoustic cycle is 3.125ms, therefore, this separated soot 

region most likely belong to the products of two consecutive cycle. In addition, it is 

noticed that the upstream structure soot intensity is higher than that in 96o, and it shows 

noticeable unsteady effects: the soot forms “handsaw teeth” (image I, J and L) structure, 

at meantime, some initial vortex structure also can be found (J, K and L). The 

downstream soot structures still very like a vortex or part of vortex structure, if take into 

account the 2-dimesional laser sheet can only catch one cross section of 3-dimensional 

vortex structure, so the LII image may only catch part of vortex where soot concentration 

is lower. 
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(0º)           a                         b                              c                          d 

          
(96º)        e                              f                             g                         h 
  

          
(168°)         i                         j                              k                             l 

Figure 5-17. transitional flame during acoustic forcing at forcing phases 0o, 96o, 
168o(image size 77×34mm). 
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         (264°)        m                          n                            o                           p 
 

          
(360°)            r                          s                            t                            u 

Figure 5-18. transitional flame during acoustic forcing at forcing phases 264o, 360o, 
(image size 77×34mm). 

At 264º, no doubt to figure out 2 soot structures, the down stream soot structure is 

much less intense than 168º, some image (image p) can show the most part of vortex, but 

others (image m, n and o) show only small part of the vortex, this suggest the previous 

vortex either move away from the image sheet, or those soot structures were oxidized and 

dilute by ambient extra air and downstream products. Considering the low axial velocity 

(~1m/s from chapter 4), it is most unlikely for big vortex (~10mm) moving outside image 

laser sheet at 0.8ms (from 168º to 264º is close to ¼ of a forcing cycle), thus, the 2nd 

option is most reasonable explanation. Contrary to soot decreasing in downstream vortex, 
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the upstream soot structures increase their soot concentration noticeably, the previous 

unsteady effect in 196ºis getting stronger (image m and n), and those “handsaw teeth” can 

evolve to vortex structure (image m, o and p). Overall, soot inside upstream flow 

structure is dominated. 

In the 360° images, the soot structure is almost same as 0° case, only one major 

soot vortex structure dominate the sooty region, with multiple filament structure. These 

multiple filament structure is most like formed from multiple layers of air and fuel flow. 

From above sections, it is easy to figure out, the acoustic generated rollup or vortices can 

wrap air and fuel, and form “sandwich structure”, high fuel and air gradient between 

these layers can drive fast mixing between them. This structure can generate multiple 

partial premixed flames. On the other hand, due to the turbulent flow property, the 

amount of air and fuel wrapped inside the multiple layer can be different at each layer 

and can be varied in different location of same layer, thus, the fuel/air ratio inside the 

“sandwich structure” can be varied correspondingly. Where fuel/air ratio is low can led to 

more complete oxidation of fuel and produces less soot. But at location where fuel is rich, 

the extra fuel can be pyrolyzed and produces more soot. Due to multiply-layer and thin 

flame effect, soot is closer to the flamefront and gain higher temperature.  

At meantime, the high swirling velocity of the some vortices, especially at vortex 

head, can form a semi-insulator structure; therefore, the soot inside these structures can 

have a relative longer life time. In addition, it is also noticed there are some small parts of 

soot appear occasionally (image r and s), which most like belong to the previous 

downstream vortex (image r) or upstream soot structure (image s), but they are intensity 

is too low to effect the main soot structure. 
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Besides LII soot measurement, flame luminosity images have also acquired. 

Transitional Flame Luminosity 

                
(a)       (b)           (c) 

Figure 5-19. Luminosity transitional flame during acoustic forcing at 2 forcing 
phases (77×34mm) (a) Unforced flame (b)0o (c)168o. the color scale is uniform 
for all 3 images. 

Flame luminosity is line-of-sight technique, which records the whole flame image 

at one direction. Strictly say, luminosity images can only provide 2 dimensional 

information of flow field. But, due to the transparence of air, these images also contain 

some information of overlapped flame structure at different depth of view, that is to say, 

these overlapped structures contain some 3-dimensional information of flowfield, at least, 

these luminosity images can be a reference for study 3-dimension flowfield, even they 

can not provide strictly 3-dimensional information. Figure 5-19.displays three luminosity 

images, unforced transitional flame (a), and forced transitional flame at two different 

phases in (b), (c). These luminosity images show general appearance of unsteady flame. 

The unforced flame (a) luminosity signal is almost continuously from some height above 

jet exit and extends outside the field of view, the signal intensity variation along the 
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flame is smooth. While the two forced flame luminosity images (b) (c) show the subtle 

rollup structure, which can be associated with turbulent flow structures, most likely, they 

are acoustically generated vortices. In Figure 5-19(b), it shows image at 0o, it seems only 

one vortex which has high signal level. Part of it looks like mushroom or jelly fish shape 

with a long tail. This is constant with LII image in Figure.5-16. In Figure 5-19(c), the 

image was acquired at 196o and clear shows that, there are two vortex structures which 

have been separated further apart, this is also constant with LII image in Figure.5-16. 

Generally, high luminosity signal is related to high radiate materials. Since soot particle 

sizes are much larger than that of ambient air molecule, they emit more visible light 

signals (luminosity) than ambient gas molecule, at same temperature, higher 

concentration soot can emit higher luminosity signal. In Figure 5-19 (b) (c) show most 

high signal region stays on the edge of vortices structure, and thinner than the unforced 

flame with similar signal level, which suggests high concentration soot is closer to the 

edge of vortices, where is closer to the high temperature flamefront.  

The similarity of flame luminosity and flame LII images suggests LII images have 

caught most important flame soot structure information. 

5.2.3 Interaction between vortex structure and soot formation  

Based on previous LII and Luminosity studies in this chapter, the mechanism of 

flame soot production and acoustic forcing generated vortex interaction can be described 

as following: Around 0o, fuel flow velocity reaches its maximum upwards during 

acoustic forcing, initial unsteady or vortex is generated from the jet lid due to the shear 

force on the fuel/air flow interface, so does the surrounding air flow. At this moment and 

this location, soot particle is not detectable because of low fuel/air flow temperature and 



 116

less pyrolysis. On the other hand, vortex produced two cycles before (6.25ms) can move 

~72mm, which is outside field of view (63mm). Thus, the vortex-soot structure detected 

by camera was produced from previous cycle. 

          
 

Figure 5-20. soot production and vortex interaction inside acoustic forced flame. 
black stands for high soot concentration, and dim gray stands for low soot 
concentration. 

From 0º ~ 90o the acoustic pressure decrease from 0 to minimum (negative), at 

meantime, acoustic velocity decreases from maximum upwards (at 0º) to 0 (at 90º). Due 

to the small diameter of fuel jet (0.86mm i.d.), and high jet velocity, thus, it is difficult 

for pressure propagate downwards inside fuel jet, thereby fuel flow velocity at jet exit 

almost constant at jet exit, that is to say, the velocity difference between fuel and air will 

be increased during this period, so does the shear force. This increasing of shear force on 

fuel/air interface will lasted to 180º, where acoustic velocity decreases to its minimum, 

the shear force reach its maximum. After that, shear force decreases, until 360º. From 0º 

     0°                90°       180°               270° 
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to 90º, the new rollup or vortex can be growing with the continues supplying of energy by 

acoustic forcing; one the other hand, the “handsaw teeth” structure produced by shear 

forcing can be growing and merge to vortex structure with the continues providing 

energy through acoustic forcing. When this rollup or vortex structure is convected to 

downstream, the cold flow can be preheated by the hot products from downstream flow, 

some local temperature can be high enough to pyrolysis fuel rich area gradually, thus, a 

new rollup or vortex structure emerges some time (<0.5ms) after it emits from jet exit, 

the soot region grows with vortex moving further downstream, and soot vortex becomes 

noticeable. Due to short time period (<1ms), new structure soot concentration is still low. 

Thus, on the LII image of 90º, there are two soot structures; downstream one has higher 

soot concentration than upstream one. From 90º to 180o, soot inside downstream vortex 

continues diluted or oxidized, while soot in new vortex is growing, at ~ 180º, the two 

vortex structures show similar peak soot concentration. These chemical reaction 

processes continue after 180º, while all soot structures can be convected further 

downstream. Around 270o, inside upstream rollup or vortex structure, soot concentration 

can reaches higher level at those locates where fuel is richer; while downstream vortex 

soot concentration continues decrease through dilution or oxidization. At 360o (0o for new 

cycle), the remaining soot inside downstream vortex dies out from images either through 

further dilution and oxidization, or simply convected out of the sight of view; On the 

contrast, soot inside new vortex structure dominates the flowfield under camera view, 

where soot concentration almost reaches its maximum after developing in one cycle 

period. 
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In Kim’s83 and Ezekoye’s1 researches, they explored the mixing mechanism in 

acoustically excited diffusion acetylene flame, proposed partially premixing process 

inside jet exit during acoustic forcing, which led to less soot production. In their works, 

the peak acoustic velocity is higher than the mean velocity, so the total velocity could be 

negative at some phases. In our experiments, the jet main velocity is always higher than 

acoustic velocity, total velocity is always positive. On the other hand, in Kim’s work, 

only velocities near jet exit were measured using hotwire methods; in Ezekoye’s work, 

the soot fraction measurement was based on laser extinction technique, which contained 

no instantaneous spatial data. But, in our experiments, LII measurements provide spatial 

soot structures, which is much useful in understanding soot growing inside unsteady flow 

structures.  

5.4 QUANTITATIVE ANALYSIS OF INSTANTANEOUS LII DATA 

There are 20-50 individual frames for each flame condition (e.g. flowrate, forcing 

phase), and, in each frame, there are at least 200×400 pixels. Thus, there are millions of 

data points in each image data file (i.e. fixed condition). To handle this huge data set, 

statistical analysis methods are useful.  

In these experiments, the Probability Distribution Function (PDF) is utilized to 

examine the overall soot field. At a certain soot mass fraction, the corresponding PDF 

value P(f)(1/ppm) represents the fraction of all the pixels that have soot mass fraction 

value between f and f+df, relative to the total number of pixels in a certain defined image 

region. That is to say, the PDF represents the distribution based on all the pixels in each 

image file (normally 50 frames in each file), and a spatial region of 200×400 pixels. Thus 
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there would typically be 4 million data points included in the PDF for each condition. To 

be properly normalized, the PDF function can be expressed as: 

(Eq.5-3)    ∫
∞

=
0

1)( dffP         

To calculate this continuous function from the large number of data points, it is 

useful to group the individual points into a fixed number of discrete f bins. First, the 

flame LII based soot concentrations were discretized to 251 levels; this chosen is to make 

the data set smaller and still have a high enough signal resolution. The bin width was 

0.19ppm, and all pixels with concentration >48ppm were placed into the same group, 

since hardly any pixels reached that concentration. Then, after calculating the total 

number of pixels in each bin range, and comparing this to the total number data points in 

an image file, the probability density function within each bin can be acquired according 

to: 

(Eq.5-4)    
WN
fNfP

tot

i )()( =        

Where N(fi) is total number of pixels in a certain bin i and Ntot is the total number of 

pixels in each image file (or defined region in the image), and W is the width of bin. 

5.4.1 Flame Probability Distribution Functions (PDFs) data 

Figure 5-21 shows the PDF’s of the laminar flames, both unforced and 

acoustically forced for three phase angles, 0º, 72º and 144º. The phases were chosen 

based on the averaged image results (Figure 5-5), to highlight the typical soot 

concentration variations in a forcing cycle. In addition, the plot depicts the region of high 

soot concentrations, where the differences among the data sets are most noticeable. 
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Figure 5-21. PDFs for un-acoustically excited laminar flame, and acoustic forced 

flame at acoustic phase 0º, 72º and144º. 

Both the unforced and forced laminar flame images have a large region (number 

of pixels) with low soot levels, the PDF is weighted heavily toward low soot 

concentrations, rapidly dropping from 0 to 10ppm. Above 10ppm, the distribution 

gradually decreases. This corresponds to the images in Figure 5-10, in which the sooty 

region occupies only a small portion of the whole images. With acoustic forcing, the 

sooty area shrinks, and is located almost completely in the lower portion of the images. In 

addition, the unforced PDF has a large, nearly flat range, from 15ppm to approximately 

70ppm. After acoustic forcing, the soot PDF decreases rapidly as the concentration 

exceeds 20ppm in the three phases. Also the region above 40ppm, which is noticeable in 

the unforced laminar PDF, almost totally disappears in the forced PDF. Among the 

forced laminar flame PDFs, 0º and 72º are also relatively flat at low soot concentration, 

from 10-20ppm, which has relatively more area than in the unforced flame. The 144º 

PDF has no flat section, it now declines rapidly for 10~20ppm. Actually, the 72º and 144º 

PDFs show very similar trends, especially in for soot concentrations below 4ppm. The 0º 

unforce

0º 

72º 
144º
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results also exhibit a smaller PDF value at soot concentrations above 10ppm; this should 

be compensated by an increasing probability at low soot levels (in order to keep the 

integrated value at unity). This increase at low soot concentration is most likely for < 

3ppm, which is close to the background value, i.e., the background represents a larger 

portion in this case. Essentially, the 10-20ppm region is most likely increased by forcing, 

dropping the high soot concentration region (>50ppm) of the flame to this low level. 

Because the background signal in the LII images influences the accuracy of the low 

concentration results, this suggests these PDFs are not fully comparable to all data set due 

to the size effect of soot region varying at different phases. Thus further study is need 

before drawing final conclusions. 

Figure 5-22 shows unforced and forced flame PDFs (at three of the 16 recorded 

phases: 0º, 72º and 168º). Figure 5-22 (b) shows the same results as (a), but with a 

different vertical scaling, such that it provides more detail about the soot concentration 

distribution above 4ppm. There is clearly some difference in the forced PDFs, especially 

from 10 to 35ppm. Similar to the laminar flame results, the forced transitional flames has 

a large decline in both peak and low soot concentrations compared to the unforced case. 

All the transitional flame cases have peak soot levels that are much less than that of the 

unforced laminar flame. Its soot range is from 10 to 40ppm. The difference is that the 

soot concentration distribution in the unforced transitional flame is much higher (at least 

on a relative basis) than that of the forced cases for soot volume fractions above 4ppm, 

but it is similar for low volume fractions (<4ppm). This suggests that acoustic forcing is 

effective in reducing the areas of high soot concentration in the flame. Unlike the laminar 

case, all the PDFs for the different forcing phases are quite similar. There is, however, a 
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small variation at 15-35ppm. The largest drop in high (>20 ppm) soot concentrations 

occurs at 168º, which agrees with the overall drop in soot mass shown in Figure 5-6 for 

90-180º. 

(a)

(b) 
Figure 5-22. Probability densities of the unforced and forced transitional flames: (b) 

is expanded view of PDF in (a).  

So, the probability distributions of soot concentration show that the forcing 

process is effective in reducing the regions of high soot concentration. For the laminar 

case, the high concentrations appear to shift to a medium range (10-25 ppm), while in the 
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higher flowrate case all concentrations above 10 ppm become less likely. The amount of 

reduction in soot does vary somewhat with phase relative to the forcing signal. There is 

some problem, however, regarding these PDFs. The unforced transitional flame covers a 

much longer region than the other cases (recall that three images at different heights are 

needed to capture it), while the forced transitional flames are ~1/3 the original height. 

Similarly the forced laminar flames are even smaller in extent. The statistics used to 

generate the PDFs above were based on all pixels in a region of interest (ROI), which is 

the full image in this chapter. This is important because the probability of finding a given 

soot concentration depends on the number of pixels in the ROI. A larger ROI with more 

dark pixels would lower the PDF at all levels (except zero). This is more problematic if 

regions without soot do not produce a zero signal level. This is addressed in the following 

section.  

5.4.2 Background Image 

The instantaneous data presented above were based on LII images that were 

corrected for the camera’s dark noise background (see Chapter III). However, the 

instantaneous images contain not only LII signal but also flame luminosity, which 

represents an additional background signal that must be removed. The problem is that 

separate images of the instantaneous flame luminosity were not acquired simultaneously 

with the LII measurements (e.g., this would have required a second camera). These 

images were acquired with the laser off, but all other experimental/data acquisition 

parameters remained unchanged. While the luminosity signals were generally much less 

than the peak LII signals, the luminosity images do exhibit significant shot-to-shot 

variations (similar to what was seen in the LII images). Thus averaging the luminosity 
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background images (the method used for the average LII measurements) is not a proper 

way to correct the instantaneous LII data. In addition, the luminosity can comes from the 

complete flame volume, not just the two-dimensional region of the laser sheet-based LII 

measurements. So the flame luminosity is not just some simple fraction of the LII signal. 

In order to separate the instantaneous LII and flame luminosity signals, the 

cumulative distribution function of the background images was examined. This function 

is given by:  

(Eq.5-5)  
0

1( ) 100
x

i
i

y x N
N =

= ×∑  

where x is a given intensity level (e.g., in camera counts), Ni is the number of pixels with 

x counts, N is the total number of pixels, and therefore y(x) is the percentage of the pixels 

with intensity below x. 

Figure 5-23 shows the cumulative distribution function of the luminosity 

background images (after correction for the dark camera background), for both laminar 

and transitional flames in forced and unforced situation. In this representation, the signal 

level has been converted to equivalent soot concentration using the same calibration 

applied to the LII data. It is can be seen that almost all background signals are less than 

6.2ppm (6700 counts). For the laminar flame, 93% of the pixels have soot concentration 

below 1.98ppm; while 94% of the measurements are below 1.98ppm in the transitional 

case. That is to say, if the signal below 1.98ppm is neglected for each instantaneous 

image, 93% of the pure luminosity signals will be discarded in laminar flame case, and 

94% in transitional cases. Therefore there is a reasonable probability that soot 

concentration of 1.98ppm or below in the LII measurements may result from background 

luminosity. So in the instantaneous LII measurements, concentrations below 1.98ppm are 
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discarded, with only higher values likely to be valid soot measurements. Of course, some 

of the soot information may be discard in the process, but it should be a minor effect, 

since most of highly sooty regions have much higher concentrations, as shown in the 

previous distributions (Figure 5-21 and Figure 5-22). In the following sections, the effect 

of background luminosity on the soot distributions is examined.  

 
Figure 5-23. Laminar and transitional flame background image cumulative 

distribution function (x-axis shows the calibrated soot concentration). 

5.4.3 Conditional PDFs 

As noted previously, the soot PDFs presented in Section 5.4.1 depend on the size 

of the ROI used to produce them. On the other hand, if only the regions (pixels) where 

soot is actually present are included in the calculation, a better representation of how 

forcing effects the relative amount of high soot concentration can result. Thus, 

conditional soot concentration PDFs are considered; these statistics include only 

measurements where the concentration is above 1.98ppm, the threshold found from the 

background luminosity statistics. 
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Figure 5-24 and Figure 5-25 show conditional PDFs for the laminar and 

transitional flame cases. All the conditional PDFs have the same shape as the standard 

PDFs presented previously, just the magnitudes are changed due to the total number of 

pixels being reduced by the conditioning. Compared to the unconditional PDFs, the 

conditioned laminar results (Figure 5-24) for forcing at the 0º phase now more closely 

resemble the other forcing cases (72º and 144º). It is now possible to conclude that 

acoustic forcing tends to reduce the relative occurrence of high levels of soot (above 

25ppm), while increasing the relative amount of soot at 10-25ppm. This is in contrast to 

the other possibility, that acoustic forcing simply reduces the physical extent of the soot 

region, but does not alter the distribution. The greatest shift (peak soot reduction) occurs 

for the 72° case, which corresponds to the point where the total soot mass in the flame 

drops dramatically (Figure 5-5), while the 0° phase produces the smallest shift. 

 
Figure 5-24. PDF of the soot concentration, conditioned on the concentration being 

> 1.98 ppm, for the laminar flame cases. 
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Figure 5-25. PDF of the soot concentration, conditioned on the concentration being 

> 1.98 ppm, for the transitional flame cases. 

For the transitional flame, the conditioned PDFs (Figure 5-25) are very similar to 

the standard PDFs (Figure 5-22); the largest difference is that the probabilities for the 

unforced and forced cases are closer for the conditioned statistics. There is still a 

significant reduction in the relative amount of high soot levels (>10 ppm) with forcing. 

Thus it can be concluded that acoustic forcing is highly effective in reducing the 

likelihood of finding “peak” soot concentrations. Forcing likely reduces the amount of 

time that soot spends in hot, oxidizer free regions that favor soot growth. The 72° and 

168° cases show similar effectiveness in redistributing the soot, while at 0° phase there is 

less redistribution, again in agreement with the variation of total soot mass (Figure 5-6). 

5.4.4 CDFs  

To examine how each soot concentration contributes to the total mass of soot, an 

alternate statistical function is useful; it is the concentration weighted cumulative 
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distribution function (CDF). The total fraction of soot mass below a given soot 

concentration c can be expressed as:   

(Eq..5-6)   0

( )
( )

c

soot

xf x dx
CDF c M

∫
=     

 

 
Figure 5-26.Mass weighted cumulate distribution function (CDF) for unforced 

and forced laminar flame cases. 

Figure 5-26 shows the unconditioned CDFs for the laminar flames. It can be seen 

that the low soot concentration area contributes a large portion of the total amount of soot 

for the laminar cases, as much as ~40%. After a sharp increase at ~4ppm, the slopes of all 

the curves decrease, with the unforced data having the lowest slope. Below 20ppm, the 

weighted CDFs of the forced flame are higher than for the unforced case, with the trend 

reversing above 20 ppm. Thus the total amount of soot in the unforced laminar flame is 

higher both in the high (>25ppm) and low (<5ppm) soot concentration regions. As seen 

in the conditioned PDFs, the unsteady forcing preferentially decreases the amount of soot 

in the high concentration range.  However, this does not mean the removal of high soot 

concentrations by simple dilution. The total measured soot mass decreased by a factor of 
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four with acoustic forcing; thus, most of the unforced flame soot was prevented by the 

unsteadiness induced by forcing. The different phases for forcing show the strongest 

effects for 4~30ppm instead of that variation around 10~25ppm in laminar conditional 

PDFs It is likelihood due to the background effect Among the three forcing phases, 72° 

shows the largest fraction of mass below 4ppm. This implies it has more area of pixels at 

the low soot concentration range, which causes it has the largest portion of soot , i.e 

>50%, in those low concentrate soot range, while 144° has soot mass portion <50% and 

0° has 40% soot there. Overall, this implies the background takes more effect than that in 

the PDFs processing, at least in laminar flame case. 

 
Figure 5-27. Cumulate Distribution Functions for transitional flame. 

The transitional flame CDFs are shown in Figure 5-27. The three phases for the 

forced case have CDFs that are very similar. Below 10 ppm, the incline is steep. While 

for 10-30ppm, the increase slows down, and CDF nearly reaches a maximum. So for the 

forced transitional flames, soot above 30ppm contributes little to the soot mass, which is 

consistence with the PDF results. The unforced flame CDF is much different; it only has 
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a very small portion of its total soot mass (<10%) at low soot concentration levels (< 

2ppm). For 2-40ppm, there is a nearly linear increase, and after that the CDF quickly 

plateaus. The unforced CDF is also above the forced CDFs. In addition, the forced CDFs 

show a variation with acoustic phase similar to the PDFs; the 168º CDF is most weighted 

towards the low soot concentration.  

Notice for the process data set of transitional , the forced flame images only have 

around 1/3 of the original flame size, while the lost 2/3 flame size only have background 

information. It is kind of "background correction". That is to say, the transitional data sets 

have much less background problem than the laminar flame, thus, the transitional CDFs 

show much consistence with its conditional PDFs plot. 

5.5 SUMMARY 

In this chapter, quantitative soot concentrations have been measured, in forced 

and unforced flames, at laminar and transitional conditions. It is found acoustic forcing 

can reduce soot mass while increase soot temperature simultaneously. During acoustic 

forcing, periodically generated vortex can wrap fuel/air and produce multilayer thin and 

small diffusion flames, thereby improve globe mixing and reaction rate, reduce total mass 

of soot. At mean time, soot produced in thinner flame front can reach higher temperature.  
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CHAPTER 6                                                        

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

 

6.1. CONCLUSIONS 

There were two primary objectives of this research work: (1) to develop an 

approach for soot velocity measurements that is compatible with LII, the leading method 

for making two-dimensional soot concentration measurements, and (2) to study how 

excitation is able to reduce soot in an acoustically forced burner by applying these 

quantitative soot measurement techniques. 

6.1.1 Particle Vaporization Velocimetry (PVV) Development 

A novel velocimetry technique, PVV, has been developed. It is a flow tagging 

approach based on vaporization of soot. PVV has been characterized and tested in a 

nonreacting laminar soot generator and a calibrated laminar diffusion flame. Additionally, 

PVV was extended for two-dimensional (and two-component) velocity measurements 

inside an acoustically excited burner.  

To characterize the PVV technique, the laser intensity necessary to tag a soot 

region and the lifetime of the tagged region were studied. In addition, different detection 

methods for imaging the tagged area were studied. The results from both the soot 

generator and laminar flame suggest that at a fluence of 2-3 J/cm2, the energy in the 

center of a roughly Gaussian beam profile is sufficient to nearly completely vaporize the 
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soot particles. The similarity in contrast at the higher laser fluences for both LII and 

scattering detection indicates that the particles are truly vaporized. While higher laser 

fluences can be used, they provide little added capability. The long life time of the tagged 

region provides the ability to make measurements over a wide range of velocities. In the 

absence of turbulent mixing, the measured lifetime of the tagged region was as long as  

10 ms; though a shorter delay of ~1 ms was found to be optimum for local velocity 

measurements in the flows with O(1m/s) conditions, because longer delays ends up 

spatially averaging the velocity field.. For detection of the PVV tagged region, LII was 

found superior to simple particle scattering. LII generally has less background than 

scattering detection, therefore it is easier to identify the tagged region. This in turn 

produces a more reliable, less uncertain velocity.  

The major sources of uncertainty for PVV result from minimum detectable 

displacement, which can be improved by increasing the detector resolution, and the 

presence of soot, since the measurement only works where soot is present. Laser 

perturbations to the flowfield (e.g., temperature, velocity, and pressure) are estimated to 

be small in typical conditions, though vaporization of the soot in flames clearly seems to 

inhibit production of new soot, possibly due to the C2 radicals produced. Thus some 

chemical perturbation of the soot vaporized region is likely. 

PVV also has some advantages over the most common method for velocity 

imaging in combustion flows, particle image velocimetry (PIV). PIV requires no more 

than one particle per pixel, and thus external seeding is necessary to determine velocity in 

sooty flows. A standard particle size for tracking velocity in most combustors is 0.2-1 μm. 

However, the scattering from such a particle would be 100× less than the scattering from 
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typical flame soot particles at 1 ppm with a PIV detector resolution of 10 μm/pixel. So 

PIV would have trouble discriminating the seed particle signal from the background soot 

scattering. 

Thus PVV appears to be a viable method for velocity field measurements in the 

flame and product zones of combustors and in combustor and engine exhaust flows 

without the requirement for particle addition. Of course, there must be soot particles 

present in the flow. This is not a severe limitation, however, for many practical 

combustors. All that is required is a soot volume fraction above ~10 ppb, a concentration 

obtained in most combustors burning liquid hydrocarbon fuels, non-premixed gaseous 

hydrocarbon fuels (except perhaps for methane and ethane) and for turbine-engine 

combustor, which operate at high  pressure. In fact, a small company (Metrolaser, Inc.) in 

cooperation with Georgia Tech developed a combined soot concentration and velocity 

measurement system for application in AEDC (Arnold Engineering Development Center) 

aircraft jet engine test cells using the LII and PVV approach. 5,84   

6.1.2 Unsteady Soot Measurements 

Quantitative soot concentration measurements of a diffusion flame in an 

acoustically excited burner were obtained. These soot measurements were obtained in 

both natural (unforced) and acoustically forced, nonpremixed acetylene jet flames. Two 

(jet) Reynolds number cases were studied: one laminar and the other in a transitional 

range between laminar and fully turbulent. Broadband luminosity was also measured 

under each of these conditions. PVV measurements at slightly different conditions were 

also obtained. 
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The two-dimensional velocities in the flowfield of the forced flame showed the 

soot was primarily contained in rotating (vortical) structures. The total soot mass inside 

the flame was decreased by forcing; the drop was 4× for the laminar flame and 3× for the 

transitional flame. The total soot mass was also found to vary with acoustic forcing cycle. 

The total (time averaged) luminosity data indicated that the soot in the forced flames was 

generally hotter than in the unforced flames. Inside the unforced laminar flame, the 

(instantaneous) peak soot concentration is much higher than in the unforced transitional 

flame; while after acoustic forcing, peak soot levels in both laminar and transitional 

flames are decreased to about the same value (~40 ppm). The general decrease in the 

amount of high soot concentration region suggest that acoustic forcing can reduce the 

soot residence time in regions that favor soot growth. Inside the higher Re transitional 

flame, acoustic forcing reduce the peak soot level from ~45 ppm to 38 ppm.  In addition, 

multiple-layer soot structures were observed in the soot concentration images. 

The combined results suggests that with strong acoustic forcing the total velocity 

gradient near the jet exit is enhanced via periodical variation of acoustic velocity, and 

vortices are created periodically. These vortices can wrap up the fuel jet and the 

surrounding air flow, forming rollup structures that stretch the original fuel jet to thinner 

layers. It is reasonable to suggest that the high, instantaneous soot concentration regions 

in the forced flames are produced from a diffusion flame, but that the thinned flame 

provides less time for soot pyrolysis as the reduced distance between the fuel and 

oxidizer increases diffusion rates. Thus these periodically generated vortex structure can 

enhance overall reaction rates and decrease flame length and unburned fuel residence 
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times. In addition, most of the soot exists quite close to the high temperature flame zone, 

resulting in the increased luminosity to soot mass ratio.  

There may be some partial premixing near the fuel jet exit, where only soot and 

hot products and fuel can exist after the heat release reactions (<1ms). The time it takes 

these soot regions to appear after the fuel leaves the jet exit (2-4 ms) is sufficient for soot 

nucleation and initial growth. The slow decrease in soot concentration as the vortex 

structures convect downstream may result from insufficient initial air entrainment. Once 

the thinned fuel air layers have reacted, the now thicker regions of excess fuel, soot and 

hot products oxidize as ambient air is entrained into the vortex. 

Clearly acoustic forcing can reduce soot emissions from a combustor, while 

simultaneously increasing the radiative heat transfer per unit mass of soot. For laminar 

flames, this leads to an increase in total soot radiation, but for sufficiently unsteady 

flames, the total radiative load is decreased. For nonpremixed, turbulent (unforced) 

flames, similar flow field processes could be expected to play roles in soot formation, 

oxidation and radiation. Thus acoustic forcing is likely to be less effective in reducing 

soot for highly turbulent combustors. 

6.2. RECOMMENDATION FOR FUTURE WORK 

By improving the resolution of the multipoint (two-dimensional, 2-d) PVV 

technique, more local velocities can be measured instantaneously. This would be 

especially useful in studying unsteady soot flowfields, where more extensive velocity 

profiles are needed. This improvement can be achieved by utilizing more powerful 

marking laser sources, which could produce more marking beams with the required 

vaporization energy. Since a relatively small Nd:YAG laser was used here, this is not 
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difficult. Also, more efficient means are needed for producing multiple beams, e.g., 

through the use of single optical elements that contain a matrix of lenses. In addition to 

further examine the 2-d PVV technique, it may be useful to compare PVV measurements 

to PIV results in the same unsteady flowfield.  

One drawback of the current LII soot concentration measurements was the 

calibration. To achieve the best results, it would be useful in the future to calibrate the 

system with a well studied flame of the same fuel species as that used in the experiment.  

To better study the vortex structures inside the acoustically forced flame, 

instantaneous flame velocity profiles (e.g., profiles at different forcing phases) would be 

helpful. Combined PIV and PVV velocity measurements may be useful, with PIV 

providing velocity data in regions of low soot concentration. These velocity measurement 

would be helpful in obtaining a better understanding of the vortex structure interaction 

with the soot formation process. Besides velocity measurements, additional 

measurements such as OH PLIF would also be helpful. The OH radical location can help 

determine the local flame surface and identify where soot is being oxidized.  
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