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Abstract

e show how to automatically verify that a complex
XScale-like pipelined machine model is a WEB-refine-
ment of an instruction set architecture model, which
implies that the machines satisfy the same safety and
liveness properties. Automation is achieved by reducing
the WEB-refinement proof obligation to a formulain the
logic of Counter arithmetic with Lambda expressions
and Uninterpreted functions (CLU). We use UCLID to
transform the resulting CLU formula into a CNF for-
mula, which is then checked with a SAT solver. We
define several XScale-like models with out of order
completion, including models with precise exceptions,
branch prediction, and interrupts. We use two types of
refinement maps. In one, flushing is used to map pipe-
lined machine states to instruction set architecture
states; in the other, we use the commitment approach,
which is the dual of flushing, since partially completed
instructions are invalidated. We present experimental
results for all the machines modeled, including verifica-
tion times. For our application, we found that the SAT
solver Sege provides superior performance over Chaff
and that the amount of time spent proving liveness when
using the commitment approach is less than 1% of the
overall verification time, whereas when flushing is
employed, the liveness proof accounts for about 10% of
the verification time.

1. Introduction

We show how to automatically and efficiently verify
safety and liveness properties of complex XScale-like
pipelined machine models. Verification entails con-
structing a WEB-refinement proof, which implies that,
relative to a refinement map, a pipelined machine has
exactly the same infinite executions as the machine
defined by the instruction set architecture, up to stutter-
ing. A consequence is that the pipelined machine satis-
fies exactly the same CTL*\X properties satisfied by the
instruction set architecture. For the types of machines
we study, we can reduce the WEB-refinement proof to a
statement expressible in the logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions
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(CLU), which is a decidable logic. We use the tool
UCLID to transform the CLU formula into a CNF for-
mula, which we then check with a SAT solver. We pro-
vide experimental results for eight XScale-like
pipelined machine models of varying complexity and
including features such as precise exceptions, branch
prediction, and interrupts. Our results show that our
approach is computationally efficient, as verification
times for WEB-refinement proofs are only 4.3% longer
than the verification times for the standard Burch and
Dill type proofs.

The use of WEB-refinement for proving the correct-
ness of pipelined machines was introduced in [12],
where some simple three stage pipelined machines
were verified using the ACL2 theorem proving system
[9,10]. The paper aso showed that the variant of the
Burch and Dill notion of correctness [3] used by
Sawada [19,20] can be satisfied by machines that dead-
lock and an argument was given that such anomalies are
not possible if WEB-refinement is used. Our main con-
tribution is to show how one can prove WEB-refine-
ment theorems automatically and efficiently, which we
accomplish by defining rank functions and refinement
maps automatically. The WEB-refinement theorem
contains quantifiers and involves exhibiting the exist-
ence of certain “‘rank” functions and we achieve auto-
mation in two steps. First, we strengthen the theorem in
away that leadsto asimplified statement, expressiblein
the CLU logic, that holds for the examples we consider.
Second, we show how to define the rank function in a
general way that does not require any deep understand-
ing of the pipelined machine and in fact is simpler to
define than flushing.

The paper is organized as follows. In section 2, we
provide an overview of refinement based on WEBS, the
theory upon which our correctness proofs depend. In
section 3, we explain how we model XScale-like pro-
cessors and in section 4, we outline how we verify such
models. In section 5, we report verification times and
statistics for 8 processor models, some based on the
flushing approach and some on the commitment
approach. We compare the time taken to prove safety
alone with the time taken to prove both safety and live-
ness and we compare the running times of the SAT



solvers Siege [18] and Chaff [16] on our problems.
Everything required to reproduce our results, e.g.,
machine models, correctness statements, CNF formu-
las, etc., will be available on our Web pages. Related
work is described in section 6, while conclusions and an
outline of future work appear in section 7.

2. Refinement

In this section, we give a brief overview of refine-
ment based on WEBs (Well-Founded Equivalence
Bismulations), the theory underlying our pipelined
machine proofs. See[12,13] for a complete description.

The point of a correctness proof is to establish a
meaningful relationship between 1SA, a machine mod-
eled at the instruction set architecture level and MA, a
machine modeled at the microarchitecture level, a low
level description which includes the pipeline. We
accomplish this by first defining a refinement map, r, a
function from MA states to |1SA states; think of r as
showing us how to view an MA state as an |SA state.
We then prove that MAis a WEB-refinement of
ISA which implies that for every pair of statesw, s such
that w is an MA state and s = r(w), for every infinite
path ¢ starting at s, thereisa“matching” infinite path &
starting at w, and conversely. That o and & “match”
implies that applying r to the states in & results in a
seguence that can be obtained from c by repeating, but
only finitely often, some of ¢'s states, as MA may
require several steps before matching a single step of
ISA. We note that if MA is a refinement of ISA, then
the two machines satisfy the same formulas expressible
in the temporal logic CTL*\ X, over the state compo-
nents visible at the instruction set architecture level.
CTL*\ X isavery expressive temporal logic, allowing
one to express both safety and liveness properties. For
example, after we prove a WEB-refinement, we can
deduce that the MA machine cannot deadlock, whereas
this does not necessarily follow from the usual Burch
and Dill correctness proof, even when certain “live-
ness’ theorems are proved [12].

The main component of the refinement proof for our
examples consists of showing that there exists a func-
tion rank mapping states of MA into the natural num-
bers, such that for every MA statew, if welet sber(w),
u be the successor of s, and v be the successor of w, then
either r(v) = u or we have both r(v) = s and rank(v) <
rank(w). The second disjunct corresponds to the case
where stepping from w to v does not affect the ISA visi-
ble components; that such “stuttering” cannot continue
forever is assured by showing rank(v) < rank(w), as the
range of rank iswell founded.

The theoretical work on WEB-refinements [13] is
quite general and the main component of the theorem
we prove is a stronger statement than what is required
to prove WEB-refinement in a general setting; nonethe-
less, it is a statement that holds for the examples we
consider. There is a good reason that we strengthened
the WEB-refinement proof obligation: this allows us to
obtain a statement expressible in CLU, after we define
rank. The definition of rank depends on the definition
of the refinement map r.

We use two types of refinement maps. One is based
on flushing. The other, based on the commitment
approach, can be thought of as the dual of flushing,
since partially completed instructions are invalidated
instead of completed. For the flushing approach, the
rank of a state is essentially the number of clock cycles
required to fetch a new instruction which will make it
through the pipeline (to match a step of the
ISA machine). For the commitment approach, the rank
of astateisthe number of clock cyclesrequired to retire
an instruction (to match a step of the ISA machine). We
provide a general method for defining rank for both
types of refinement maps. A more detailed description
appears in the following sections.

3. Modeling of XScale-Like Processors

Figure 1 shows the high-level organization of the
XScale-like processor model. The model is a seven
stage pipeline whose stages are | F1, IF2 (2-cycle fetch),
ID (instruction decode), EX (execute), MEM1, MEM2
(2-cycle memory access), and WB (write back). Five
abstract instruction types are modeled including regis-
ter-register, register-immediate, load, store, and branch.
The branch and store instructions complete out of order
with respect to the ALU instructions. This base model
is extended with branch prediction, ALU exceptions
and interrupts.

The branch predictor is abstracted with a state vari-
able, BPState that holds the current state of the branch
predictor, and 2 UFs and a UP including NextBPState,
PredictTarget and PredictDirection that only take the
BPSate as input. NextBPState, PredictDirection, and
PredictTarget produce as output the next state of the
branch predictor, an arbitrary prediction on the direc-
tion, and an arbitrary prediction on the target of the
branch, respectively. The actual direction and target of
the branch are determined in EX. Mispredictions are
corrected in MEM 1. What is verified isthe logic to cor-
rect mispredictions.

ALU exceptions are modeled with a UP that takes
the same inputs as the ALU, and outputs a predicate



indicating if an exception israised. ALU exceptions are
dealt with in MEM1. In case of an ALU exception, all
previous instructions are squashed, the program counter
is updated with the address corresponding to the ALU
exception handler routine, and the PC of the excepting
instruction is stored in the Exception Program Counter
(EPC). A return-from-exception instruction is also
implemented that restores the PC with the EPC.

Interrupts are modeled with an arbitrary interrupt
state INPState, a UF NextINPState that takes INPState
as input and produces the next interrupt state, and UP
Isinterrupt that also takes INPSate as input and pro-
duces a predicate which indicates if an interrupt is
raised. Interrupts are detected in the MEM1 stage and
sgquash al previous instructions including the instruc-
tion that caused the interrupt. We use temporal abstrac-
tion to model the behavior of interrupts. The only trace
left by aninterrupt isthat it has modified the data mem-
ory. The PC is set to the program counter corresponding
to the first instruction that was squashed by the inter-
rupt, the data memory is modified using a UF that takes
the previous data memory state as input, and the regis-
ter file is not modified.

4. Verification of XScale-L ike Processor
Models

We prove the core theorem on the various X Scale-
like processor models with out of order completion,
branch prediction, ALU exceptions, and interrupts. We
use two different approaches, including the commit-
ment approach and flushing, to define the refinement
map. The core theorem is defined below.

IF1 IF2

s =r(w) A
u = ISA-step(s) A
v = MA-step(w) A
u # r(v) A
=
s = r(v) A rank(v) < rank(w)

In the theorem shown above s and u are |SA states,
and w and v are MA states; | SA-step isafunction corre-
sponding to stepping the ISA machine once and MA-
step is a function corresponding to stepping the MA
machine once; r is the refinement map that maps MA
states to 1SA states; and rank is the rank function. The
theorem says that if s is the refinement of w, u is
obtained by stepping s, v is obtained by stepping w, and
u is not the refinement of v, then sis the refinement of v
and the rank of v is less than the rank of w. The proof
obligation relating s and v is the safety component, and
the proof obligation that rank(v) < rank(w) is the live-
ness component.

4.1 Commitment Approach

The commitment approach relates ISA and MA
states by retaining the programmer visible components
of the committed part of the MA states. A committed
MA dtate is obtained by invalidating al the partially
executed instructions in the pipeline, and rolling back
the MA state to correspond with the last committed
instruction. The MA states are rolled back using history
variables that store the MA states corresponding to the
last n MA steps, where n is the number of steps an
instruction takes to be committed after it updates the
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Figure 1. Pipeline organization of processor model.
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MA state. The histories of the PC, data memory, and
interrupt state are stored for the last 6, 2, and 2 steps,
respectively. Only the current state of the register fileis
required as, when the instruction writes back to the reg-
ister file, it is considered committed. In order to use the
commitment approach, it is required that we compare
ISA states only with “good” MA states, where an MA
state is “good” iff it is reachable from a committed
state. To check that an MA state, w, is“good”, the com-
mitted state, ¢, corresponding to w is determined. State
wis“good” if it can bereached fromcin0to 6 steps. In
this approach, the rank of an MA state is the number of
MA-steps required to commit a new instruction. The
rank is determined by checking the first valid latch that
is closest to the register file. An MA state with a valid
latch closer to theregister fileis assigned ahigher rank.

4.2 Flushing Approach

The flushing approach relates MA and ISA states by
flushing an MA state and comparing the resultant pro-
grammer visible components of the MA state with the
ISA state, where by flushing we mean feeding the pipe-
line with bubbles to complete partially executed
instructions without fetching any new instructions. It
turns out that for a single-issue pipelined machine, the
safety proof of the core WEB theorem is similar to the
Burch and Dill approach [3]. In the flushing approach,
the rank of an MA dtate, w, is the number of steps
required to fetch a new instruction that eventually com-
pletes. The rank can be determined by stepping w, to
obtain v, flushing v, and comparing the result with the
flushed state of w, to check if it has made any progress.
The number of steps required to make progress is the
rank. The straightforward implementation of this idea
requires 174 symbolic simulations, which UCLID was
not able to handle. We implemented an optimized ver-
sion based on the observation that stepping and flushing
the MA states can be folded together so as to reduce the
number of symbolic simulations. In more detail, we
determine the number of steps required to flush the
pipeline (by flushing it) and we set a counter to this
vaue. The MA sate is simulated for this number of
steps and the rank of the MA state is the number of
steps required for the latch closest to the register file to
become valid.

43 CLU Logic

The CLU logic consists of Uninterpreted Functions
(UFs) and Predicates (UPs), restricted lambda expres-
sions, ordering, and successor and predecessor func-
tions. Combinational logic is abstracted with UFs/UPs.

The output of aUF isaterm variable and aUP isatruth
variable. The only property satisfied by UFs and UPsis
functional consistency—when the inputs of two differ-
ent instances of a UF are equal, it implies that the out-
puts are equal. The successor function is used to define
the rank functions for the MA states. We could easily
do without the successor function since the rank of a
state is always less than the number of latches in the
pipeline. This means that our approach is applicable
even with tools that only support the logic of equality
with uninterpreted functions and memories, but we find
that defining rank explicitly is clearer and performance
is essentially the same.

5. Reaults

In this section, we review our experimental results.
We start with two base processor models, CXS and
FXS: the prefix C indicates the use of the commitment
approach for defining the refinement map and prefix F
indicates the use of flushing for defining the refinement
map. Both models can execute 6 basic abstract instruc-
tion types including register-register, register-immedi-
ate, branch, load, store, and return-from-exception with
out of order completion. The base models are extended
to implement:

1) branch prediction, designated by “-BP”;

2) ALU exceptions, designated by “-EX”; and

3) interrupts, designated by “-INP".

Table 1 presents the results. We report the number of
CNF variables and clauses and the verification time for
both the safety proofs and the safety and liveness
proofs. For the safety and liveness proofs, we also
report the size of the CNF files and the verification
times taken by both Siege and Chaff. The total verifica-
tion time reported includes the time taken by Siege and
UCLID, thus the time taken by UCLID can be obtained
by subtracting the Siege column from the Total column.
Siege uses a random number generator, which leads to
large variations in the execution times obtained from
multiple runs of the same input, thus, in order to make
reasonable comparisons, every Siege entry is redly the
average over 10 runs and we report the standard devia
tions for the runs. The experiments were conducted on
an Intel XEON 2.20GHz processor with an L1 cache
size of 512KB.

As is clear from Table 1, Siege provides superior
performance when compared to Chaff. If we divide the
total running time of Chaff with Siege, we see that
Siege provides a speedup of about 17 and in the case of
CXS the speedup is 226. The overall cost of liveness,
computed by subtracting the sum of the Safety Siege



Safety Safety and Liveness
Processor CNF CNF \_{_?rr;fécz[ast.j;n CNE C!\IF Verification Time [sec]
Vars | Clauses _ Clauses if;j _

Siege | Total Siege | Chaff Stdev Total
CXS 12,930 38,215 35 38 | 12,495 36,925 664 29 6,552 34 32
CXSBP 24,640 72,859 284 289 | 23,913 70,693 | 1,336 300 7,861 48.7 305
CXS-BP-EX 24,651 72,841 244 249 | 24,149 71,350 | 1,344 233 4,099 50.2 238
CXS-BP-EX-INP | 24,669 72,880 255 261 | 24,478 72,322 | 1,368 263 3,483 341 269
FXS 28,505 | 36,925 140 154 | 53,441 | 159,010 | 3,096 160 796 244 175
FXS-BP 33,964 | 100,624 170 185 | 71,184 | 211,723 | 4,136 187 586 50.4 203
FXS-BP-EX 35,827 | 106,114 179 195 | 74,591 | 221,812 | 4,344 163 759 17.6 180
FXSBP-EX-INP | 38,711 | 11,4742 128 147 | 81,121 | 241,345 | 4,736 170 1,427 323 189

Table 1. Statistics for boolean correctness formula and formal verification time.

column from the sum of the Safety and Liveness Siege
column and dividing by the latter is 4.6%; notice that
for the commitment approach it is 0.75%, whereas it is
9.3% for the flushing approach. Finally, we note that
there are cases in which the verification time for safety
and livenessislessthan that of liveness; in fact, the ver-
ification time for liveness alone seems to be about the
same as the verification time for safety, e.g., when prov-
ing livenessfor CXS, Siege takes 37 seconds (thisisthe
average of ten runs).

All machine models, correctness statements, CNF
formulas, and in general everything required to repro-
duce our results will be available on our Web pages.

6. Related Work

We now review previous work on pipelined machine
verification. A very early approach by Srivas and Bick
was based on the use of skewed abstraction functions
[23]. Burch and Dill showed how to automatically com-
pute the abstraction function using flushing [3]. There
are approaches based on model-checking, e.g., in [14],
McMillan uses compositional model-checking in con-
junction with symmetry reductions. Theorem proving
approaches are also popular, e.g., in [19,20], Sawada
uses an intermediate abstraction called MAETT to ver-
ify some safety and liveness properties of complex
pipelined machines. Another approach by Hosabettu et

al. uses the PV S theorem prover and the notion of com-
pletion functions [5]. Symbolic Trajectory Evaluation
(STE) is used by Patankar et al. to verify a processor
that is a hybrid between ARM7 and StrongARM [17].
SVC is used check the correct flow of instructionsin a
pipelined DLX model [15]. Abstract State Machines are
used to prove the correctness of refinement steps that
transform a non-pipelined ARM processor into a pipe-
lined implementation [6]. An XScale processor model
is verified using a variation of the Burch and Dill
approach in [22].

This paper directly depends on previous work on
decision procedures for boolean logic with equality and
uninterpreted function symbols [1]. The results in [1]
were further extended in [2], where a decision proce-
dure for the logic of Counter arithmetic with Lambda
expressions and Uninterpreted functions (CLU) is
given. The decision procedure is implemented in
UCLID, which has been used to verify out-of-order
microprocessors [21].

7. Conclusions and Future Wor k

We show how to automatically verify safety and
liveness properties of complex XScale-like pipelined
machine models with a dlight performance penalty over
verifying safety properties alone. This is accomplished
by proving a WEB-refinement theorem, which implies




that the pipelined machine satisfies exactly the same
CTL*\X properties satisfied by the instruction set archi-
tecture. We show how to automate the verification of
the WEB-refinement theorem, which contains quantifi-
ers and involves exhibiting the existence of certain
“rank” functions. The automation is achieved in two
steps. First, we strengthen the theorem in a way that
leads to a simplified statement that holds for the exam-
ples we consider. Second, we show how to define the
rank function in ageneral way that does not require any
deep understanding of the pipelined machine; in fact, it
much simpler to define the rank function than it is to
define how the machine is flushed. As a result, we are
left with a formula in the logic of Counter arithmetic
with Lambda expressions and Uninterpreted functions
and can use UCLID to obtain a CNF formula, which we
then check with a SAT solver. To summarize, our main
contribution is to show how WEB-refinements can be
used as the basis for automatic verification of pipelined
machines, resulting in both safety and liveness verifica-
tion, with only a slight increase in verification times.

For future work, we are planning to explore how one
can connect UCLID (any decision procedure for CLU
will do) with the theorem proving system ACL 2 [9,10].
Thiswill allow us to use ACL2 for efficient simulation
and advanced debugging. In addition, we plan to
explore methods for verifying larger instructions sets
more efficiently than is currently possible with either
approach alone.
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