PORTS: Experiences with a Scheduler for Dynamic Real-Time
Systems
(Extended Abstract)

Kaushik Ghosh, Richard M. Fujimoto, and Karsten Schwan
College of Computing
Georgia Institute of Technology
Atlanta, GA, 30332.

June 24, 1994

Abstract

This paper describes several of our experiences with a real-time scheduler. Using a robot control appli-
cation program, we motivate the importance of supporting multiple schedulers within the same application
program. We demonstrate the utility of speculative task execution in dynamic real-time systems, and de-
scribe the implementation of a scheduler for performing speculative execution and recovery. We show that
existing real-time scheduler interfaces have scope for improvement, especially when scheduling latency must
be low and when multiple schedulers used by a single application must co-exist on a single processor. A new
scheduler interface is specified and its basic costs are evaluated experimentally. Preliminary measurements on
a KSR-1 machine are quoted. The measurements demonstrate how the execution times of temporal queries
may be reduced by use of access structures to scheduler data structures. Finally, there are several overheads
associated with speculative execution, and multiple schedulers in a single application. We consider the prob-
lem of on-line reconfiguration of the several overheads associated with the speculative-execution paradigm
for optimal performance in the face of these overheads. Initial performance measurements of the PORTS
scheduler indicate that it is possible to perform real-time scheduling with latencies approximating those of

proposed specialized scheduling co-processors.

1 Introduction

The diversity and complexity of modern real-time applications is moving ‘real-time systems’ research from past
work primarily addressing self-contained embedded systems such as flight control[Car84] toward addressing highly
dynamic, distributed and parallel real-time applications. In essence, their characteristics (1) cannot be predicted
a priori with any ‘tolerable’ degree of certainty and (2) are subject to on-line change. Further, (3) the appropriate
formulation of timing requirements is likely to change across different applications, ranging from hard deadlines
that cannot be missed to various formulations of soft deadlines with lateness constraints, frequency of miss

constraints, etc.

This paper contributes to research in operating systems in two ways:

e Since tasks’ timing requirements and characteristics cannot be assumed to be known prior to task execution,
task schedules cannot be determined and task dependency relationships cannot be guaranteed statically.

The PORTS (Parallel Optimistic Real-Time Simulator) scheduler presented in this paper supports low-
latency dynamic scheduling and the speculative execution of time constrained tasks, coupled with a ‘detect-
and-recover’ strategy for adhering to task dependency relationships.

o Since task scheduling differs for speculatively executed tasks vs. other real-time tasks, the PORTS scheduler
is constructed such that (1) multiple schedulers may be incorporated into the same application and (2) the
scheduling and rescheduling of application tasks can be performed with low latency. The attainment of low
scheduling latency implies changes to scheduler structure and interfaces not present in current operating
systems.

Benefits of the speculative task execution strategy used in our work include the ability (1) to effectively utilize
idle time by optimistic pre-execution of tasks risking violating dependency constraints that may require recovery
and (2) to free up future execution time for critical sporadic arrivals due to bursty system loads. Thus, task
synchronization is attained with a ‘detect-and-recover’ rather than a blocking strategy. Both (1) and (2) sharply
differentiate our work from past research in real-time systems, where intervals of high utilization (and possibly,
missed timing constraints) may be followed by intervals of relatively low activity (and therefore, excessive idle
time) due to the use of explicit task ‘start-times’ and deadlines for encoding dependency relationships between
different tasks.

The undo/redo strategy supported by the PORTS scheduler may also be applied to fault tolerant applications.
Specifically, in [GS93] the authors discuss mechanisms for undoing the effects of atomic real-time computations,
and redoing other ‘versions’ of these computations to perform ‘forward-recovery’ in a timely manner. In con-
trast, the PORTS system uses a general-purpose speculative execution mechanism to tolerate unpredictable
data-dependence and high-load situations. Moreover, while the recovery mechanisms presented in [GS93] re-
quire application programmers to explicitly define recovery strategies, PORTS application software is written
no differently than in ‘classical’ execution mechanisms. Since the underlying system manages the speculative

execution paradigm, speculative execution can remain totally transparent to the application writer, if desired.

The PORTS system consists of its scheduler, a novel real-time variant of the Time Warp protocol [Jef85] for
optimistic execution of time-constrained tasks (see [GFS93b, GPFS93]), and a kernel supporting task rollback
and re-execution, all of which are implemented at the user level on a multiprocessor execution platform (a KSR-1
multiprocessor!). The real-time applications targeted by the PORTS system are simulation programs executing
jointly with actual electro-mechanical systems or with time-stepped simulations. The purpose of such ‘mixed’
executions are to permit the testing and evaluation of partially constructed real-time systems, or to support the
‘man in the loop’ execution of complex systems, where human users can play ‘what if’ games or evaluate system

alternatives such that the actual timing constraints of completed systems are modeled accurately.

One application currently realized in PORTS is the operating software of an autonomous robot operating
in an unknown terrain. Here, real-time requirements are defined by time-stepped simulations (or the actual
hardware) of the robot’s sensors and actuators. Unpredictable events are due to changes in the robot’s operating
environment, such as the dynamic detection of obstacles. These events cause re-planning and subsequent on-line

changes to the robot tasks’ scheduling.

The remainder of this paper is structured as follows. First, using a robot control application program,

1'We have acquired a KSR-2 multiprocessor recently. The KSR-2 clock scalar speed is twice that of the KSR-1. Final measurements
will be reported on the KSR-2.

we motivate the importance of supporting multiple schedulers (on one or more processors) within the same
application program. Next, we demonstrate the utility of speculative task execution. Third, and most relevant
to general research in operating systems, we show that existing real-time scheduler interfaces, including POSIX
real-time Unix and our own earlier work on real-time threads described in [SZG91] have scope for improvement,
especially when scheduling latency must be low and when multiple schedulers used by a single application must
co-exist on a single processor. A new scheduler interface is specified as one that supports specific types of temporal
queries, and its basic costs are evaluated experimentally. Results attained on the KSR1 machine also demonstrate
how the execution times of temporal queries may be reduced by use of access structures to scheduler data
structures. Finally, there are several overheads associated with speculative execution, and multiple schedulers in
a single application. We consider the problem of on-line reconfiguration of the underlying speculative-execution
paradigm for optimal performance in the face of these overheads. While we only mention early work in garbage-
collection in this extended abstract, we will extend that work and investigate other overheads of speculative-
execution in the final paper. Initial performance measurements of the PORTS scheduler indicate that it is
possible to perform real-time scheduling with latencies approximating those of proposed specialized scheduling
co-processors[NRS193].

2 Problem Statement and Solution Approach

2.1 Application

The PORTS application discussed here consists of two interacting sets of software for robot control and nav-
igation: (1) actual application code subject to timing constraints in execution and (2) speculatively executed
simulation code which must ‘keep up’ with (1). (1) and (2) jointly navigate robots across an obstacle-filled
terrain from specific starting positions toward predefined goals. (1) consists of code for sensors that detect the
position of a robot and obstacles on a terrain, ‘motor activities’ of the robot (avoiding obstacles and moving
toward a goal), and output to actuators in order to move the robot. In addition, a user-interface allows dynamic
addition/deletion of obstacles. (1) is run without any speculative execution, and is henceforth called the reactive
part of this PORTS application. (2) is henceforth called the deliberative part of this PORTS application. It
is simulated using speculative execution strategies and consists of a map of the terrain, and of a planner for
navigating the robot. Clearly, such simulated planning and navigation have to ‘keep up’ with the computations
in (1), where the planner must produce motion strategies quickly enough to satisfy motion-constraints stemming
from robot speed and actuator rates. In addition, the map of the world has to be updated in conformity with

the robot’s motion and the dynamic addition/deletion of obstacles.

The PORTS application described above has several attributes essential to our research. First, the execution
times, start times, and deadlines of planning tasks cannot be determined statically due to the robot’s initial
lack of terrain knowledge (i.e., an incomplete or inaccurate ‘map’). As new obstacles are detected during robot
movement, replanning becomes necessary, leading to the dynamic arrival and scheduling of planning tasks.
Second, since planning is not essential to robot safety, it is both possible and useful to pre-execute planning
tasks assuming that new obstacles may not exist along the current path, therefore permitting (1) replanning to

take advantage of continuously updated, partial plans and (2) optimistically using available idle time for advance

planning activities. The robot’s lack of complete terrain knowledge may also produce data-dependence violations
among the planning and motor tasks. Specifically, the planning tasks compute speculatively — assuming that the
‘current view,” as obtained from the map, is not going to be updated, while the motor tasks change positions of
robots, and thereby update the map as the robot ‘sees’ fresher information. Third, this application requires the
concurrent use of multiple scheduling policies, one addressing the reactive part and implemented using standard
ED (Earliest Deadline First [CC89]) or priority based scheduling methods, the other addressing the speculatively
executed deliberative part using the PORTS scheduler and its real-time speculative execution protocol. Fourth,
scheduling latency should be low, since excessive overheads in rescheduling can lead to increased mission costs

in terms of path lengths and energy expenditure.

The PORTS scheduler supporting the speculative execution of the deliberative part is described next. Its
real-time execution protocol is based on earlier, theoretical work described in [GFS93b, GPFS93]. We are not
aware of any other implementation efforts concerning real-time schedulers for speculative task execution on

multiprocessor systems.

2.2 The PORTS Scheduler

The PORTS scheduler is replicated across all nodes of the parallel machine. For scheduling, each node (processor)
is treated as a uniprocessor engine. Multiprocessor scheduling as described in [SZG91, ZSA91] is not currently
supported by PORTS in part due to its expense[BS91b] and due to the cost of task migration in NUMA and
CC-COMA machines such as the KSR1, and in part due to the logical process and event model offered by the

Time Warp kernel[Fuj89]. Multiprocessor support is discussed in greater detail in Section 4.

The uniprocessor PORTS scheduler uses a variation of the ED algorithm for scheduling a speculatively
executed task[GFS93b, GPFS93]. Briefly, the PORTS variant of the ED algorithm performs schedulability
analysis by “mapping” the execution time of an incoming task onto the processor’s time-line (i.e., by executing
a temporal query), and thereby determining whether the task can be run to completion prior to actually starting
to run the task. Once accepted, a task is run by the low-level task dispatcher, which simply executes the next

available task with lowest deadline among all accepted tasks?.

Many applications demand that temporal queries for determining task schedulability be executed with low
latency, especially when newly arriving tasks have small laxities. This demand for low latency of temporal queries
motivates this paper’s first contribution concerning scheduler structure and interface, as mentioned in the next

paragraph.

While low-level task dispatchers support rapid task switching and therefore, simple internal task queueing
structures, task schedulers should offer interfaces for the low-latency execution of the different types of tem-
poral queries required by task schedulability analysis. Thus, task dispatching should be distinguished from
task schedulability analysis, resulting in different interfaces and possibly, different internal data structures
used by each. Current standards being offered in real-time operating systems (e.g., POSIX real-time threads)
do not differentiate task dispatching from schedulability analysis, and current interfaces offered for real-time
threads[SZG91, TNR90b] do not differentiate thread creation and task scheduling by offering separate interfaces

and possibly, distinct implementations for each.

2The dispatcher’s ‘ready list’ of tasks is sorted according to deadline.

We base our statement concerning the necessity of distinguishing schedulability analysis and dispatching in
real-time applications on experimental evaluations of scheduling latency on the KSR1 multiprocessor, where
this latency accrues from the following sources: (1) finding the proper place for insertion of a new task, which
involves searching the ED scheduler’s sorted list, (2) calculating the amount of idle time available to run a
newly-arriving task, and (3) inserting the task entry in the sorted list and updating the entries corresponding to
tasks with higher deadlines to show that the idle time on the processor has decreased. A related cost is due to
garbage-collection of ‘old’ parts of the ED list, a form of temporal paging. Scheduling analysis will not involve
any task with deadline earlier than the current time. Garbage collecting the list is an overhead, but it reduces
list length, which in turn speeds up the search in (1), the idle time determination in (2), and the updates in
(3) above. In Section 3 we derive a relationship between the optimal length of the ED list, taking into account

garbage collection and scheduling overhead.

The scheduler answers temporal queries. Therefore, its internal organization can differ depending upon the
type of queries that will be asked. In this extended abstract, we describe a procedure for performing exact
schedulability analysis. In the final paper, we will also describe inexact schedulability analysis, and the improved
latency derived from inexact analysis, where inexact scheduling returns ‘yes’ or ‘maybe’ rather than ‘yes’ or ‘no’

answers.

2.3 The PORTS Scheduler: Where Are the Bottlenecks?

Many real-time operating systems use a single task list for both schedulability analysis and task dispatching.
We posit that this approach is not suitable for low-latency dynamic scheduling, simply because this single task
list contains more information than is needed for low-cost schedulability analysis. Specifically, such a task list
keeps track of (a) the time when each particular task should start execution, (b) the task’s execution time, and
(c) its deadline. The measurements in Figure 1 are the basis for validating this hypothesis; for a single task list
— called a slot list — the detailed scheduling costs are shown to arise from (1) finding a place in the list for task

insertion, (2) determining available idle time, and (3) actually inserting an accepted task®.

The measurements in Figure 1 assume that the slot list is garbage-collected after its length becomes equal
to the value on the x-axis. The topmost line denotes the actual (measured) time for schedulability analysis, the
three lowermost lines denote the times required for (1) - (3) above, while the second line from the top represents
the sum of the three lowermost lines. From the graph, it should be apparent that the costs in (1) through (3)
form the major part of aggregate cost for schedulability analysis. Our hypothesis concerning the separation of
data structures for maintaining scheduling information from task lists used for task scheduling is motivated by

the discussions concerning a reduction of costs (1) - (3) appearing next:

e The cost of updating ‘later slots’ is a large part of the overall cost of scheduling. Later slots have to be
inspected /updated in operations (2) and (3). This cost is reducible: the dispatcher and the scheduling anal-
ysis need not use the same, single slot list data structure. In Section 2.4, we present results demonstrating
different data structures supporting more efficient temporal queries that also allow efficient integration of
different kinds of schedulers within a single application.

3 All measurements are taken on a KSR-1 with a 20 MHz clock. The local (cache) memory is 32 Mbytes, a subcache of 256 Kbyte
data and 256Kbyte instruction. Subcache access time is 2 cycles, while access from local cache requires 23 cycles, and a cache miss
requires 150 cycles. However, 128 contiguous bytes are fetched when any miss is serviced. The data shown here are the average costs
of scheduling 25,000 tasks.

Various overheads of scheduling
6000 T T T

T
Total time for scheduling —
Sum of scheduling, insertion, update -
. Search time for slot insertion
5000 | Time to determine schedulability
Time for updating laxities

4000 |- g
3000 |- e

2000 | e J

Time (microseconds)

w000 | E

B L L
500 1000 1500 2000 2500 3000
Maximum nurber of slots before garbage-collection

Figure 1: Basic costs of optimistic real-time scheduling.

e Scheduling cost also arises from computing the total idle time available for a new task. This involves finding
the minimum laxity of all accepted tasks with higher deadline. A simple search of all the later slots in the
ED list is costly, as is evident from the graph above. An approach to reducing this cost is described in
Section 2.5.

o The third major cost of scheduling arises from the time taken to search the slot list for inserting the slot
for a new task. We have used two schemes — a hashing scheme, which is expected to reduce search costs
in general, and another approach whereby the last point of insertion is used as the starting point of the
search. Results are presented in Section 2.6.

2.4 Scheduler Interfaces

We consider two interfaces: the interface between scheduler and low level dispatcher, and the interface that

existing real-time thread packages offer]MEG94].

As far as the interface between scheduler and dispatcher is concerned: the costs in (3) (as mentioned in
Section 2.2) arise when the available idle time on a processor is reduced due to the acceptance of a new task,

necessitating updates of start times and end times of the slots of tasks with later deadline®.

The start and end times of the slot are required only if the slot is used for dispatching, as well as scheduling.
The dispatcher starts running the thread for a particular task at a real-time equal to the start-time of the slot,
and preempts that thread when real-time becomes equal to the end time of the slot. However, for purposes of
schedulability analysis, the minimum information required is the deadline and worst-case execution time of the
task. Of course, some other information is also typically kept in the slot list for efficient schedulability analysis
(e.g., laxity: see Section 2.5). We generate the information required by the dispatcher (specifically, the start and
end times of a slot) from the slot list. Since the real-time scheduler effectively ‘chooses’ the next task to run (the
one with the closest deadline), and the execution time of that task is known, we need to schedule an interrupt at
an interval equal to the worst-case execution time of the task (when the task, if still running, will be preempted).

Note that this is a direct consequence of speculative execution: had we not been allowed to run a task as soon

4The start time and the end time of the slots corresponding to these tasks have to be increased by an amount equal to the
execution time of the new task.

as it becomes available (i.e., if there were specific start-times on tasks, as often happens in real-time systems),

we would not be able to use this simple dispatcher.

This separation of the scheduler and dispatcher also permits multiple schedulers and scheduling policies within
the same application. As stated in section 2.1, the application needs support for best-first, real-time, prioritized,
and other types of policies. Having a distinct scheduler for each policy — while using the same dispatcher for all
the schedulers — affords a clean abstraction. The interface proposed here allows us to efficiently use the same
dispatcher for the different schedulers. In Section 2.5, we mention how this interface, and the ‘minimum-laxity-
pointers’ mentioned in that section, can be used to efficiently divide the processor’s time among the various

schedulers dynamically.

The scheduling support is thus multi-level. At the highest level, we have several application-specific schedulers,
one per scheduling policy. At the next lower level, we have one scheduler that ‘collates’ jobs to be run from the
various schedulers of the immediately higher level. This allows us to efficiently partition time on the processor

to the various virtual-processes mapped on it. At the lowest level, we have the dispatcher, one per processor.

Further, extant real-time thread packages typically do not differentiate between forking a thread on a processor
and performing schedulability analysis for that thread. This has been the case with some of the past work of our
group [SZGI1], and elsewhere [GLI1]. While this might have been justified in predictable environments — where
the periods of periodic tasks do not change dynamically, and they execute for intervals close to their worst-case
execution estimates. However, our thesis is that for more dynamic and uncertain environments, forking and
schedulability analysis should be clearly separated. Forking a thread should be seen as associating an execution
with a code fragment; schedulability analysis of that fragment may be based on ambient conditions: processor
load etc., which an application might consider before explicitly requesting schedulability analysis. Primaries and
secondaries, a well-known method of structuring real-time applications, stand to gain directly from this kind of
thread support, as would dynamically variable periods and wide deviation of execution time of periodic tasks.
If the application is itself reconfigurable — in the manner of primary/secondary approaches — an interface that
allows direct estimation of idle time (instead of trying to schedule a task and being told whether the task is

schedulable or not) would be useful. Existing thread packages do not support this.

2.5 Efficiently Finding and Updating the Minimum Laxity

The ED scheduling algorithm tries to find the idle time available before the deadline of a new task, when it has
to schedule the task. As mentioned earlier, this is a property of the set of accepted tasks on the processor with
higher deadline than the new task: the idle time is equal to the minimum laxity in our case. However, as shown

in section 2.3, a direct search through the ED slot list proves expensive.

To do this efficiently, from every slot S in the ED list, it should be possible to find the identity of the slot which
has the minimum laxity of all slots with deadline greater than S. This would reduce the idle-time determination
time, which would then involve reading a single structure. Further, the time for updating later slots (to show
that their laxities have reduced) would also be reduced, since that, in principle, involves updating the ‘minimum
laxity’ values, the number of which which are expected to be much smaller than the total number of slots with

higher timestamp in the ED list.

To this effect, we associate a pointer with every slot. This pointer from a slot S points to a structure (say
SI) which is itself a pointer to the slot with minimum laxity of all slots with deadline greater than or equal to
that of the task corresponding to S. We call S" the minimum-lazity pointer for S. Finding the minimum laxity
of all tasks with deadline greater than or equal to a the task corresponding to a slot S involves accessing the slot

pointed to by the minimum-laxity pointer of S.

It should be noted that there may be several minimum-laxity pointers associated with the complete slot list
— as many as the number of slots in the worst case. When a new slot is inserted into the ED list, the laxities
associated with all the minimum-laxity pointers associated with ‘later’ slots are reduced by an amount equal to
the execution time of the new task. In addition, minimum-laxity pointers of slots of tasks with lower deadline
are updated, since they might now have to point to a lower minimum: one corresponding to the minimum-laxity

pointers of the new task’s slot.

Finding ‘tight’ worst-case-execution-times for the tasks is difficult, since execution time might depend on
input values. Separating the dispatcher and the scheduler, and having the minimum-laxity pointers helps to
quickly ‘absorb’ unused execution time (when a task executes for an interval less than its worst-case execution
time) in schedulability analysis. Had the dispatcher and the scheduler used the same slot list, we would have
to update the start and end times of the individual slots of all tasks with higher deadline to accommodate the
unused time. In our case, we need to update only the laxity values associated minimum-laxity pointers of slots
of later tasks. Such minimum-laxity pointers are expected to be far fewer than the slots of later tasks; thus,
this operation too is sped up. Similarly, if there is an ‘exception condition’ in any of the other schedulers on the
same processor (as stated in Sections 2.1 and 2.4, the application needs multiple scheduling policies, and multiple
schedulers on each node), laxity from one scheduler can be transferred to another. This policy is supported by
the mechanism of reducing the laxity values associated with the minimum-laxity pointers, analogously to the

mechanism of increasing the values when unused time is to be utilized.

2.6 Reducing the Search Time

A scheduler in a speculative scenario has to keep track of several ‘processed’ tasks, which cannot be garbage-
collected till real time becomes more than their deadline. The slots of these tasks should not be removed from
the slot list, since speculatively-executed tasks might have to be undone and re-done. Removing the processed
slots from the slot list would necessitate explicit schedulability analysis — and re-introduction into the slot list —
for each of those tasks when they are undone and re-executed. Retaining the slots in the list essentially ‘reserves’
time for a processed task to be undone and re-done, until we are sure that it will not be undone any more®.
Therefore, the slot-list can be much larger than the corresponding list in the case of a non-speculative real-time

ED scheduler. While we mention some aspects of the memory requirements in Section 3, here we discuss the

time taken to search the slot list when a new slot has to be inserted in it.

A simple linear search is too expensive, as shown in figure 1. To alleviate costs, we used a hashing strategy,
whereby, given the deadline of a task, we obtain a pointer to a slot of a task with deadline less than or equal to

the new task. Thus, bypassing a a part of the slot list, we search forward until we reach the point of insertion.

A second search method relies on the basic speculative-execution paradigm: that most of the time ‘guesses’

5This happens when real-time reaches the deadline of that task.

will be correct, and insertions will tend to be close to the point where the last insertion was made. Thus, the
scheduler ‘remembers’ the position of the current insertion, and starts searching backward/forward from there
for the next insertion. While the variance of this method might be high, it produces the best performance (see
Section 2.7.)

|| Number of slots | original-cost hash-cost guess-cost hash-time ||

3000 3350 780 595 32
1000 1130 284 342 29.8
500 683 220 167 24.65
100 130 53 69 55

Table 1: Comparison of the costs (useconds) of insertion into slot list.

Hashing reduces the cost of searches (we use an adaptive hashing scheme: the number of buckets is reconfig-
ured based on the observed average difference between deadlines of tasks). However, this reduction itself comes
at a cost. With very small slot lists, the number of times one has to rehash (we rehash the slot list every time
garbage-collection is performed, since the pointers change) becomes large — thereby increasing the net cost of

search through hashing.

2.7 Performance of the Scheduler

The table below shows the reduced cost of scheduling as a result of using the “best-guess” strategy for search,

minimum-laxity access structures for updating laxities, and separating the dispatcher from the scheduler.

|| Number of slots | original-cost new-cost ||

3000 5300 1337
1000 2722 913
500 1750 534
100 500 830

Table 2: Comparison of the total cost (useconds) of scheduling in original and improved scheme.

Once again, the costs increase with very small slot lists because of the overheads associated with maintaining
the access structures, and updating them while garbage-collecting, become overwhelming due to the frequency of
garbage collection and the relatively small amount of time required to directly search a short slot list. It should
be noted that even for fairly large slot lists — a maximum of 3000 slots in the list before garbage collection — we
perform within an order of magnitude of what researchers elsewhere have achieved (130 microseconds [NRS*93])

using special-purpose scheduling co-processors running at the same clock speed as the KSR-1 (20 MHz).

3 Reconfiguration of Overheads: Garbage-Collection of Slots

As mentioned before, frequent garbage-collection (GC) of ‘old’ slots in the slot list makes scheduling faster.

However, the overhead of GC itself should be kept under control. Here, we discuss a method of reconfiguring

the GC process, and derive a simple relationship between the characteristics of the application and the number

of slots that the free pool of slots should have.

As is customary in real-time systems, we assume that the specifications are as follows: each invocation of
GC should take no more than 7, seconds, and we can perform GC no more frequently than g invocations per

second.

Further, assume that the average execution time of each task is e seconds, the average time for the overheads
of speculative execution (undoing computation, saving state etc.) is r for each task, and the average time to

schedule a task is s per task. These can be determined by monitoring the system on-line.

Thus, if there are x slots in the free pool, the time to use up these slots is: z(e + r + s). After this, we need
a GC. Since the slot list is ordered according to deadline, GC involves a simple traversal to find out upto which
slot we can garbage-collect (if the task corresponding to a slot has a deadline greater than the current real-time,
that slot cannot be garbage-collected). Thus, we have to (1) load a double (the deadline of the task of the slot
under investigation), (2) compare its value with the current real-time, (3) load the pointer to the next slot, and
(4) load the value corresponding to dereferencing that pointer. Operations (1), (3) and (4) each take 2 cycles if
we have a subcache hit, and 23 cycles if we have a subcache hit (we can safely assume that the slots will be found
in the local cache, since the slot lists are on a per-processor basis, and each processor updates only its own slot
list). Operation (2) requires 2 cycles. Thus, in principle, the “search” in GC involves no more than 71 cycles
for each slot collected. Returning the GC-ed slots to the free pool requires updating a few processor-private
pointers, and is neglected here. The clock cycle on the KSR-1 being 50 nanoseconds, the figure above comes to

3.5 psecs per slot. Let’s call this number® k.

How many slots can we collect? If we assume that deadline distribution on tasks is such that n deadlines
“pass” each second”, in z(e + r + s) seconds the deadlines of nz(e + r + s) tasks have passed, and the slots of
these tasks can be GC-ed. Thus, T, = knz(e + r + s), which implies that the total time between GCs, g which

is also the time taken to ‘use up’ the available slots and then perform a GC, is e +r+ s+ knz(e +r +s). Hence,
zle+r+s)(kn+1)=1/g

or, z = [g(e + r + s)(kn + 1)]71. This provides the basis of a reconfigurable garbage collection scheme that we

are working on now.

4 Multiprocessor Support

One might ask why we did not use a multiprocessor scheduling algorithm though this work was performed on
a multiprocessor. It has been proven that there can be no general optimal, multiprocessor, real-time scheduling
algorithm [MD78]. Extant multiprocessor algorithms are but extensions of uniprocessor scheduling, with the
different processors communicating among themselves (through a drafting or bidding approach) to ascertain
which set of processors is the best candidate for running a new task. We find such approaches unacceptable for

the following reasons.

6Note that an average value of this number could also be ascertained on-line.
"The value of n can be statically determined from the application, or dynamically monitored. If we had 2 periodic tasks, e.g.,
with constant periods 0.1 sec, and 0.2 sec, the value of n would be 1/0.1 4+ 1/0.2 = 15 per second.

10

Typically, the application accesses large amounts of state, and migrating such state between processors is
infeasible. It has been demonstrated that a NUMA memory machine performs better in terms of scalability
than a UMA machine. On a ‘cacheless’ NUMA machine such as the BBN Butterfly, remote memory accesses
tend to increase the running time of applications, unless state migration is performed. On the other hand, for
cache-coherent (CC) NUMA (e.g., the MIT Alewife) and UMA machines (e.g., the Sequent Symmetry), and for
cache-coherent cache-only-memory-access (CC-COMA) machines (e.g., the KSR1), the time for ‘warming up’
the cache (or the ‘local attraction memory’ in the case of CC-COMA machines) when a task writes ‘remote state’
can become significant® [MEG94].

Consider a CC-NUMA machine, and a CC-COMA machine, each with two processors A and B, and a task T,
most of the data accessed by which resides on one of the processors in each machine (say processor A). On the
CC-NUMA machine, T should be accepted for running on processor B only if process A does not have enough
idle time, while processor B has. On CC-COMA machine, T" should be accepted by processor B not only if the
previous criterion is satisfied, but also if no task on processor A is going to access the state accessed by 7" during
and shortly after T" executes (since pages are going to be migrated to the writing processor, accessing (writing)
them ‘shortly’ after each other will result in a ‘ping-pong’ effect, whereby the cache line migrates from the local
cache of A to that of B).

These added overheads, and the overheads of a drafting/bidding scheme should be kept in mind while using
‘global multiprocessor scheduling.” If the application has been partitioned for parallelization efficiently, the
amount of work on the different processors will tend to balance out. Moreover, the application programmer
knows best about the processor-affinity of the tasks in the application. In our case, the affinity to state is tight,
and state sizes are large. Therefore, we employ uniprocessor scheduling on each processor, with primitives for

scheduling tasks from one processor to another.

As typical of real-time systems, when a task ‘sent’ by processor A to run on processor B cannot be scheduled
by B, B sends a ‘negative acknowledgement’ to A. In out case, B writes a structure in shared memory, which A
reads. Thus, in our case on the KSR1, A is informed about the particular task that could not be scheduled, and
the amount of idle time left on B. A can then resubmit a different task, with a lower execution time. Processor
B needs to write this data, while processor A only needs to read it. After B writes the subpages, they are
post-stored back. This makes the poststoring-processor (B in this case) stall for a KSR1 ring cycle; however,

processor A gets read-only copies of these subpages, and does not have to stall later to load them.

Further, when processor A submits a new task to processor B, the arriving task is kept in an ‘incoming task
list” until schedulability analysis for the task is performed (at which point, B either rejects it, or inserts it into
the ED list). A has to obtain the lock on the incoming task list and update the header of this list. The relevant
subcache lines are prefetched by A, thus reducing latency.

8 A remote memory access is 6 times as costly as a local memory reference on a 32-node GP1000 BBN Butterfly; on the KSR1
(cycle time of 50 nanosecs.), a memory reference serviced by the local subcache requires 2 cycles, one missing the local subcache
but found in the local attraction memory requires 20 cycles, missing the local attraction memory but serviced by another attraction
memory on the same ring: 150 cycles, serviced by a different ring (one level of searching): 600 cycles. These figures tend to show
that remote memory accesses can quickly become prohibitively expensive.

11

5 Future Work

The current performance figures are in response to a synthetic workload. We will report response to the actual

application.

Space limitations did not permit several discussions here. Those of the multi-level scheduler in detail, state
saving and restoration (transparently to the application programmer), etc. We will report these in the final

version of the paper.

As stated, we are investigating the tradeoffs between the frequency of GC, and the scheduler invocations. We

will report the performance of the reconfigurable GC scheme in the final paper.

We will report some multiprocessor aspects of the scheduler: notably, communication patterns, and measure-

ments of the system with and without poststore/prefetch.

At the moment we are upgrading to a KSR-2. The processors on this machine are twice as fast as a KSR-1,
but the interconnect has the same speed as a KSR-1. It will be interesting to compare the performance of our

system on the two versions of the machine.

References

[BS91b] Ben Blake and Karsten Schwan. Experimental evaluation of a real-time scheduler for a multiprocessor system.
IEEE Transactions on Software Engineering, 17(1):34-44, Jan. 1991.

[CC8&9] Houssine Chetto and Maryline Chetto. Some results of the earliest deadline scheduling algorithm. [EEE
Transactions on Software Engineering, 15(10):1261-1269, October 1989.

[Carg4] Gene D. Carlow. Architecture of the space shuttle primary avionics software system. Communications of the
ACM, 27(9):926-936, Sept. 1984.

[Fuj89] Richard M. Fujimoto. Time Warp on a Shared Memory Multiprocessor. Transactions of the Society for
Computer Simulation, 6(3):211-239, July 1989.

[GFS93b] Kaushik Ghosh, Richard M. Fujimoto, and Karsten Schwan. Time warp simulation in time constrained sys-
tems. Proceedings of the 7th Workshop on Parallel and Distributed Simulation (PADS), May 1993. Expanded
version available as technical report GIT-CC-92/46.

[GLI1] Bill O. Gallmeister and Chris Lanier. Early experience with posix 1003.4 and posix 1003.4a. In Proceedings
of the Real-Time Systems Symposium, pages 190-198. IEEE Computer Society Press, December 1991.

[GPFS93] Kaushik Ghosh, Kiran Panesar, Richard M. Fujimoto, and Karsten Schwan. PORTS: A parallel, optimistic,
real-time simulator. Proceedings of the 8th Workshop on Parallel and Distributed Simulation (PADS), July

1994.
[GS93] Ahmed Gheith and Karsten Schwan. Chaos-arc — kernel support for multi-weight objects, invocations, and
atomicity in real-time applications. ACM Transactions on Computer Systems, 11(1):33-72, April 1993.
[Jef85] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404-425,
July 1985.

[MD78] A. K. Mok and M. L. Dertouzos. Multiprocessor scheduling in a hard real-time environment. In Proceeding
of The Seventh Texas Conference on Computer Systems, November 1978.

[MEG94] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent interface for
lightweight threads. In Operating Systems Review of the ACM Special Interest Group on Operating Systems,
pages 33 — 47, January 1994.

12

[NRS*93] Douglas Nichaus, Krithi Ramamritham, John A. Stankovic, Gary Wallace, and Charles Weems. The spring
scheduling co-processor: Design, use and performance. In Proceedings of the Real-Time Systems Symposium,
pages 106-111. IEEE Computer Society Press, December 1993.

[SZGI1] Karsten Schwan, Hongyi Zhou, and Ahmed Gheith. Multiprocessor real-time threads. Operating Systems
Review, 25(4):35-46, Oct. 1991. Also appears in the Jan. 1992 issue of Operating Systems Review.

[TNRO0b] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao. Real-time mach: Towards predictable real-time systems.
Proceedings of the USENIX 1990 Mach Workshop, October 1990.

[ZSA91] Hongyi Zhou, Karsten Schwan, and lan Akyildiz. Performance effects of information sharing in a distributed
multiprocessor real-time scheduler. Technical report, College of Computing, Georgia Tech, GIT-CC-91/40,
Sept. 1991. Abbreviated version in 1992 [EEE Real-Time Systems Symposium, Phoenix.

13

