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The native structure of fast-folding proteins, albeit a deep local free-energy minimum, may involve
a relatively small energetic penalty due to nonoptimal, though favorable, contacts between amino
acid residues. The weak energetic frustration that such contacts represent varies among different
proteins and may account for folding behavior not seen in unfrustrated models. Minimalist model
proteins with heterogeneous contacts—as represented by lattice heteropolymers consisting of three
types of monomers—also give rise to weak energetic frustration in their corresponding native
structures, and the present study of their equilibrium and nonequilibrium properties reveals some of
the breadth in their behavior. In order to capture this range within a detailed study of only a few
proteins, four candidate protein structures~with their cognate sequences! have been selected
according to a figure of merit called the winding index—a characteristic of the number of turns the
protein winds about an axis. The temperature-dependent heat capacities reveal a high-temperature
collapse transition, and an infrequently observed low-temperature rearrangement transition that
arises because of the presence of weak energetic frustration. Simulation results motivate the
definition of a new measure offolding affinityas a sequence-dependent free energy—a function of
both a reduced stability gap and high accessibility to non-native structures—that correlates strongly
with folding rates. ©2004 American Institute of Physics.@DOI: 10.1063/1.1751394#

I. INTRODUCTION

Minimalist model proteins have been studied extensively
in order to understand the thermodynamics and kinetics
manifest in protein folding dynamics. Both analytical theory1

and computer simulation2–4 of minimalist model proteins
have helped define relationships between the primary se-
quence of a model protein and its corresponding native struc-
ture. These studies have been useful in discovering which
inherent features of the primary sequence can determine or
predict whether a sequence will fold. The native structures of
fast-folding proteins are most likely the global free-energy
minimum structures for the system, i.e., all of the native
contacts are more favorable than contacts with the solvent
environment. However, not all of the intramolecular contacts
in protein native structures necessarily involve a given amino
acid with its most preferred contact partner. Such nonopti-
mal, though favorable, contacts can give rise to a weak local
energetic frustration that varies among different proteins and
may in turn lead to the wider range of folding behavior ob-
served in real proteins than the range expected from entirely
unfrustrated models.

In order to determine if a sequence will fold to a native
structure, one must first define when the sequence is folded.
In lattice models of protein folding, one first determines the
native structure of a particular sequence, and subsequently
identifies nonfolding sequences as those that do not fold to
their native structure within a predetermined simulation
time.5 Since it would be unrealistic to simulate the folding of

all possible sequences with a particular polymer length, a
smaller subset of representative sequences are sampled. In
many studies, the representative sequences are chosen either
from a pool of random sequences, or from sequences that are
designed to fold to randomly selected target structures.2–4

Although not all of the random sequences fold, the foldable
sequences have generally exhibited similar behavior because
they have been constructed with monomers whose contact
energies are highly degenerate, e.g., the HP model.6 In the
present work, a larger number of monomer types with only
moderately degenerate contacts define the minimalist model
so as to allow for the possibility of weakly frustrated target
structures and domains.1

From both theoretical studies and minimalist model dy-
namic simulations, some general measures have been identi-
fied that can assess the ability of a given sequence to fold to
a native structure. These figures of merit can be divided into
two major groups: The first group involves those measures
that emphasize the native state energy or structure, and the
second group involves thermodynamic measures of phase
transitions. Intuitively, the energy of the native state must be
much lower than the energy of other accessible structures if
the sequence is to fold. This has been observed in measure-
ments of the stability gap in several simulations, as defined
by dEs5E(Qmin)2EN ,1 where E(Qmin) is the average en-
ergy of the unfolded ensemble, andEN is the energy of the
sequence in the native state. The simulation results are con-
sistent with the random energy model of heteropolymer col-
lapse when the native structure is minimally frustrated.1 Ad-
ditional lattice simulations of minimalist model proteins have
used other measures of the energetic stability, e.g., energy
gap4 or Z-score,7 to show that the energies of non-native
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structures are much higher than that of native structures for
sequences that fold. When comparing sequences with differ-
ent native state energies, the sequences with lower native
state energies were observed to fold faster in general, but
Socci and Onuchic5 also noted that there is nodirect corre-
lation between the native state energy and the rate.

Other thermodynamic measures have been developed to
identify which sequences are likely to fold as a function of
their observed transition temperatures. For instance, se-
quences with a large temperature range between their folding
and glass transitions, i.e., when the ratioTf /Tg is much
greater than one, are good folders as seen in the random
energy model calculation,1 and in computer simulations.5 In-
spired by minimalist lattice protein simulations, Thirumalai
and co-workers3 have suggested that a large temperature
range between a collapse transition and a folding transition,

s5
Tu2Tf

Tu
, ~1!

is a signature of model sequences with a high ‘‘kinetic fold-
ability’’ vis-a-vis the ‘‘folding rate’’ in Ref. 3. All of these
criteria are useful in selecting sequences that are likely to
fold from a pool of random sequences, and they also identify
some physical parameters that are important for protein fold-
ing in general. However, most protein sequences have been
optimized by nature not only to fold, but to fold quickly and
uniquely. In this work, we define the term,folding affinity, to
characterize the latter concept—namely, the thermodynamics
of the system—so as to create a connection to the former
concept—namely, the kinetics. It includes a reduced stability
gap that is related, but different than the standard stability
gap that measures the energy difference between the native
structure and the average energy of all structures. It also
includes a measure of the number of accessible states which
is related to the entropy of a putative bottleneck. The defini-
tion of this new metric is motivated by the need to better
characterize proteins—whether they be designed or
found8–10 in nature—that misfold to non-native long-lived
structures either because they fold slowly, or because their
native state is not bound by high free energy barriers. One
objective of this work can thus be surmised as the develop-
ment of a thermodynamic measure, viz. the folding affinity,
that can be correlated with the kinetics of protein folding.

In order to study diverse folding behavior, a weakly frus-
trated minimalist protein model is developed in which some
of the native state contacts are not optimal as described in
Sec. II. Cognate sequences corresponding to target folded
structures are obtained through an inverse design procedure
similar to that in Ref. 11. The target structures have been
selected according to the value of their winding index,12 as
justified in Sec. II B. The design procedure, the constructed
sequences, and verification of their native structures are pre-
sented in Sec. II C. A Monte Carlo pseudodynamical algo-
rithm is used to propagate the model proteins, as discussed in
Sec. III A. Phase transitions~in Sec. III B! and folding rates
~in Sec. III C! are computed from the pseudodynamics in
order to compare the folding behavior of the representative
sequences. In addition to the heteropolymer collapse transi-
tion, the weak frustration inherent within the target native

structures leads to a second lower-temperature phase transi-
tion that is clearly distinct. In Sec. IV, a measure of the
folding affinity of a given sequence is defined in terms of the
thermodynamics of the system and is related to its ability to
fold quickly and uniquely. Microscopic measures of the fold-
ing pathway, such as the stability gap and the accessibility of
non-native structures, are used in Sec. IV A to determine the
folding affinity. The kinetics of representative sequences is
assessed using this metric in Sec. IV B

II. THE MINIMALIST MODEL

A. Protein model

The minimalist protein model is represented as a het-
eropolymer on a cubic lattice, as used widely in the litera-
ture, and the specific notation used in this work may be
found in Ref. 12. All sequences are composed of 27 mono-
mers with three monomer types. Each monomer generically
represents a set of about three amino acid residues,13 and
they are restricted to a three-dimensional cubic lattice. The
energy for a given conformation of the minimalist protein is

H~$a i ,zi%!5
1

2 ( 8
i , j

Ea i ,a j
, ~2!

where$a i% is the ordered sequence of monomer types,Ea,b

is the contact energy between thea-type monomer and
b-type monomer,$zi% is the sequence of the positions ofi th
monomers in a given structure, and the prime restrictsj to
include only those values that correspond to nonbonded near-
est neighbors toi . For simplicity, the monomer typesa are
restricted to a set of three values,H, P andN, corresponding
to the hydrophobic, polar, and neutral subregions of the pro-
tein, respectively. All of the contact energies between mono-
mers are favorable, i.e., they are lower in energy than the
contact to the uniform solvent. Thus, the native state is maxi-
mally compact,5,14 as long as the range of contact energies is
small enough so that the native~ground state! structure is not
exclusively determined by the interactions between the
monomers with the lowest contact energies. In this paper, the
range of contact energies are chosen to be small enough
compared to the average conformational energy so that the
minimum energy structure is maximally compact. Specifi-
cally, these energies areEH,H524, EH,P521, EH,N

5EP,N522, andEP,P5EN,N523. ~Note that all energies
and inverse temperatures reported throughout this paper are
reported in dimensionless units relative to a standard tem-
peratureT0 .) The specified values for the contact energies
also ensure that an increase in the number of hydrophobic
contacts is the dominant driving force for folding.

B. Representing the folded space

It is not necessarily clear—in fact, unlikely—that struc-
tural metrics can be used to subdivide the space of all se-
quences into subspaces which can be characterized by a
common value of the folding affinity. Several previous stud-
ies of the thermodynamics and kinetics of foldable and non-
foldable sequences have randomly selected sequences from
the full sequence space of various representations of a 27-
mer model protein. In the particular case of the model in this
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work, in which equal concentrations of hydrophobic, polar,
and neutral monomers are included, there are a total of
1.1431011 @51/2(9

27)(9
18)# possible 27-mer sequences. Gen-

erating a random pool of sequences from this total space has
the advantage that no previous knowledge of how the se-
quence will behave dynamically~i.e., its accessibility to low
energy conformations! is required before studying the ther-
modynamic properties of the sequence. However, the disad-
vantage is that one does not necessarily know which type of
native fold a particular sequence will assume, or if the se-
quence will fold at all. In order to assess the trends in the
folding affinity and the folding behavior of the model se-
quences it is consequently useful to determine a figure of
merit restricted to the space of foldable sequences that can
further divide this space into smaller subspaces that might
exhibit a stronger correlation between their folding affinity
and their folding behavior.

1. Projected variables

Projected variables have been used routinely to identify
the folding pathways, and hence are a natural choice for the
identification of representative native structures among dif-
ferent classes of foldable model proteins. Since sequences
may be designed to fold to target structures as outlined in
Sec. II C, target native structures can be identified in confor-
mation space, and the sequence that folds to the selected
~nondegenerate up to mirror symmetries! native structure can
be obtained. The advantages of this approach are that:~i!
fewer sequences need to be studied because the dimension-
ality of the space of compact structures is much smaller than
that of sequences, and~ii ! if there exists a projected variable
that effectively divides the space of foldable proteins into
classes of foldable model proteins with similar characteristic
behavior, then only a few representatives from each such
class need to be studied in order to characterize the range of
behavior. The latter assumption is unfortunately difficult to
prove for any given candidate projected variable, although it
is likely that a projected variable that would satisfy this con-
dition would also serve as a reasonable folding coordinate in
the spirit of the energy landscape perspective. That is, many
order parameters that have been used to map the folded to
unfolded pathway of lattice model proteins are structural pa-
rameters that give information about the geometry of the

protein as it unfolds.4,12,15 These structural parameters can
also be used to identify candidate native structures if the
parameters divide the conformation space into classes of na-
tive structures with similar behavior. For example, Fig. 1
shows the distribution of three possible order parameters for
all of the maximally compact conformations, also referred to
as the cube spectrum, for sequence DS1.~The DS1 sequence
is given in Table I.! Each of these are discussed in the re-
mainder of the section and we conclude by suggesting the
usefulness of the winding index in the selection of character-
istic structures.

The number of native contacts,Q, is defined here as in
other studies~e.g., Ref. 16! as

Q~$zi%!5
1

2 ( 8
i , j

d~ i 2n~ i , j !!, ~3!

where the prime restricts the sum to the nonbonded nearest
neighbors in$zi%, and

n~ i , j !5H i if j non-bonded nearest neighbor ofi in the native structure,

0 otherwise.
~4!

SinceQ is a function of the native structure, it is necessarily
sequence dependent. Thus,Q may not be used to designate
different native structures. However, as a structural param-
eter, non-native structures from the same sequence with dif-
ferent values ofQ could, in principle, be used to design other
sequences. The Poisson-like distribution ofQ in Fig. 1
shows that there are many compact structures with low—and
similar—values ofQ, but very few with high values ofQ. In

fact, there are some high values ofQ, as shown in the insert
of Fig. 1, that do not represent any compact structure. This is
not surprising.Q is primarily a measure of whether a struc-
ture is or is not the native structure, and evidently does not
distinguish other possibly significant metrics well even
among the class of compact structures. Thus,Q is not used in
this work to choose structures that represent different pos-
sible classes of foldable proteins.

FIG. 1. The number of compact structures normalized by the total number
of compact structures for each value of the winding index,Wz ~defined in
Sec. II B!, the number of native contacts,Q, and the contact order, CO, are
displayed for DS1. The points on each curve represent the only possible
values ofQ andWz , but since CO can be noninteger, its distribution curve
is actually continuous. The number of native contacts and the contact order
are renormalized so that the values of all three measures are equal when
evaluated for the native structure and the completely unfolded state, i.e.,
Qw5(wns/Qns) Q, and COw5(11/4)CO277/4.
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The contact order, CO, is defined similarly to that in Ref.
15 as

CO5
1

N ( 8
i , j

N

DSi , j , ~5!

whereN is the total number of contacts, the prime restricts
the sum to nonbonded nearest neighbors, andDSi , j is the
distance between monomeri and monomerj along the
chain. The contact order is sequence independent. Thus, the
distribution shown in Fig. 1 is the same for all sequences.
The CO distribution is much more Gaussian-like thanQ,
which implies that the CO more evenly projects onto the full
maximally compact conformation space thanQ does. For
proteins and long peptides, there is potential for a wide range
of tertiary interactions, with a small value of CO represent-
ing a less folded structure than structures with a large value
of CO. However, for smaller peptides, and lattice model het-
eropolymers with only 27 monomer units, the value of CO
will always be relatively small. Since a small change in CO
could correspond to a large change in topology of a lattice
model protein, the contact order does not contain enough
information to definitively select structures that are far apart
in conformation space. In other words, conformations with
different COs could be in the same folding class. In addition,
CO is a real number, which is more computationally expen-
sive than alternative structural parameters that take on only
integer values. For these reasons, CO is not used to to select
lattice model structures for this study.

2. The winding index

The winding index,W, about an axis generically repre-
sents the number of times the structure makes ap/2 turn
about the axis. The definition ofW used in Ref. 12 provided
values which were not strictly invariant to rotation, and
could lead to errors in very large structures. Such erroneous
cases are infrequent in 27-mers and the prior results would
not be affected by a corrected definition. Nonetheless, in the
present work the winding index is defined as

Wq[(
i

@~P(q)Dzsq( i )!3~P(q)Dzsq( i 11)!#q"@Dzr q( i )#q ,

~6!

whereDzi[(zi 112zi), P(q) projects onto the plane orthogo-
nal to theq axis, $sq( i )% is an ordered sequence of the indi-
ces for whichP(q)DZsq( i ) is nonzero, theq subscript in the
bracketed summand denotes theq component of the cross
product, $r q( i )% is an ordered sequence of the indices for

which P(q)DZsq( i ) is zero, andi runs across the members of
the $sq( i )% sequence. The scalar winding index is chosen as
W5Wz such that the maximal degree of winding~either
positive or negative! occurs around thez axis. In cases where
uWau5uWbu, the axis with positive winding is arbitrarily
chosen asWz . The winding index shown in Eq.~6! includes
the dot product withDzr q( i ) in order to set the directionality
of the winding to be concomitant with the traversal of the
chain along the axis projection. For example, if the het-
eropolymer makes ap/2 counterclockwise turn as it moves
up the axis, then it gives apositivecontribution to the wind-
ing index. This new convention continues to ensure that mir-
ror images will have opposite values of the winding index.
However, in the present paper, the structural mirror symme-
tries which were central to Ref. 12 are ignored, and conse-
quently all winding indices are reported as an absolute~posi-
tive! value.

The winding index shown in Fig. 1 smoothly maps the
conformation space with a Gaussian-like distribution of val-
ues for all maximally compact structures. The winding index
varies from 0 to 14 for all maximally compact conforma-
tions, so more structural information is available fromW
than from CO for the maximally compact conformations. In
addition, the determination ofW involves integer calcula-
tions that require less computational time that the real calcu-
lations required for CO. SinceW evenly projects onto the
space of maximally compact structures while maintaining a
range wide enough to differentiate between many different
structures, it is assumed that choosing structures with vary-
ing values of the winding index will give rise to foldable
proteins from different folding classes.

C. Protein structures and design

The four target native structures studied in this work are
shown in Fig. 2. These structures were chosen as represen-
tatives of the full conformation space of maximally compact
native structures because they vary in winding indices and
selectivity for winding, as shown in Table I. The selectivity
for winding about the axis of maximal winding,Sz , is de-
fined as

Sz[uWzu2uWyu, ~7!

whereuWzu>uWyu>uWxu. In this sense, each native structure
is far apart from the others in conformation space: the first
native structure, NS1, has a moderate degree of winding and
selectivity, NS2 has a high degree of winding and selectivity,

TABLE I. The structural quantities,Wz , Sz , and CO used to select four maximally compact structures to
represent the full conformation space of native structures. The designed sequences, DS1–DS4, are chosen
arbitrarily from the group of sequences that fold to the corresponding target native structure in Fig. 2 with the
minimal energy ofEns.

Native structure Wz Sz CO Designed sequence Ens

NS1 11 8 10.93 PHPNPNNNHPHPHPNNNHPHPHPNHHN 289
NS2 12 12 8.50 NHPNPPNHPHPNHNHPNPNPHHNHPNH 290
NS3 5 5 8.64 PHNPHNNNHPHHPNPHPHNNHPNPNHP 289
NS4 12 2 10.14 PHPHNHPNHHNPHPHPNPHNNHNNPNP 289
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NS3 has a low degree of winding and a high selectivity, and
NS4 has a high degree of winding and a low selectivity.

Several algorithms have been developed to design fast-
folding model proteins with Hamiltonians similar to Eq.
~2!.5,11,17–21 The energy landscape perspective of protein
folding suggests that if a sequence gives rise to a fast-folding
protein, then the energy for the corresponding native struc-
ture will be a minimum.1 Given a compact target structure
and fixed sequence composition, a monomer sequence that
folds to the target structure may be designed by minimizing
the energy of the contacts in the target structure.5,11 In this
work, the energy minimization of the sequence identity is
obtained using simulated annealing by the Metropolis Monte
Carlo algorithm. Trial moves correspond to the exchange of
monomers in the sequence and the trial energy is obtained as
a function of the contacts in the target structure for the given
sequence.

All four of the designed sequences contain some ener-
getic frustration ~unlike contacts! in their corresponding
compact target structure. The possibility therefore exists that
any or all of these sequences would lead to a structure of
lower free energy. Such an alternative structure is not com-
pact because an exhaustive enumeration of the energies for
all possible compact structures with a given sequence leads
to the target structure as the energy minimum with no degen-
eracies in all cases. Noncompact alternative energy minimum
structures are unlikely because all the contact energies in the
model are favorable and differ by only small amounts. None-
theless, noncompact alternative free energy minimum struc-
tures have also been ruled out computationally through the
use of simulated annealing within a Metropolis Monte Carlo

dynamics algorithm with respect to structural trial moves—
vide infra—of all possible structures. Once it became clear
that the present algorithm provided sequences with nonde-
generate ground states for this class of contacts, then it was
unnecessary to implement more rigorous design algorithms
such as the one of Deutsch and Kurosky.21

The primary sequences of all four structures in Fig. 2 are
designed for 27-monomer compact structures with equal
concentrations ofH, P, and N type monomers. The DS1
sequence was chosen arbitrarily from three sequences that
folded to NS1 with an energy ofE5289. DS1 is the same
sequence studied in Ref. 12 in order to illustrate the possible
dynamics that would be seen if the energy landscape were
dominated by not one, but two distinct energy funnels. This
is seen in DS1 because there is a large enthalpic barrier be-
tween the funnel corresponding to NS1 and that of its mirror
image. In the present work, however, the emphasis is on the
properties of a given minimalist protein within the energy
funnel, and as in much of the literature, structures that are
equivalent up to mirror symmetry are not distinguished. The
DS2 sequence was found to be the only sequence that folded
to NS2 with an energy ofE5290. The DS3 sequence was
chosen arbitrarily from three sequences that folded to NS3
with an energy ofE5289. The DS4 sequence was chosen
arbitrarily from 72 sequences that folded to NS4 with an
energy ofE5289. All four of these structures follow a gen-
eral trend in which the higher the selectivity of the native
structure, the lower the number of admissible sequences. Al-
though not shown, this observation is consistent with the
distribution of selectivity for all maximally compact confor-
mations.

III. RESULTS

A. Numerical methods

The ensemble space and energetics of the possible struc-
tures on a cubic lattice corresponding to all four designed
sequences have been explored using the Metropolis Monte
Carlo algorithm.11,5Trial moves for each structure are chosen
from a set of three possible types—a one-monomer corner
flip, a one-monomer end pivot, and a two-monomer crank-
shaft move.5 As alluded to earlier, the global free energy
minimum for each of these sequences leads to the cognate
compact target structure in all four cases using a slowly
quenched simulated annealing procedure—not shown. All
thermodynamic averages are obtained at constant tempera-
ture once the simulation has equilibrated. In Sec. III C, the
pseudodynamic rates from an initial to final subspace of pro-
tein structures are obtained by averaging the results of 100
Monte Carlo trajectories originating from a random sampling
of the initial space.~When the initial space contains only one
structure, e.g., a straight chain, each trajectory is nevertheless
distinct because different random numbers are used to propa-
gate the Monte Carlo simulation.! The expected error of 0.1
in the natural logarithm of the rates is visible in the noise
seen in the data but is small enough to support the claims to
be made.

FIG. 2. The four target structures, NS1~top left!, NS2 ~top right!, NS3
~bottom left!, and NS4 ~bottom right! are displayed with their cognate
sequences—DS1, DS2, DS3, DS4, respectively—distinguished by the col-
oring of the monomers. The three monomer types,H, P, and N appear
respectively as red, blue, and green spheres in color prints, and as light grey,
dark grey, and off white spheres in greyscale prints.
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B. Phase transitions in the model proteins

The heat capacity for a canonical ensemble can be cal-
culated from the energy fluctuations in a trajectory propa-
gated through the Metropolis Monte Carlo algorithm by the
use of22

Cv5
^~dE!2&

kBT2 . ~8!

The heat capacity for all four sequences as a function ofb
[ 1/kBT is shown in Fig. 3, in arbitrary units~i.e., kBT0

51). Sigmoids and peaks in the heat capacity of this discrete
model are signatures of first and second-order phase transi-
tions, respectively. In particular, the presence of two features
in Fig. 3 suggests that the model is undergoing two distinct
phase transitions. The variance—viz. widths—of these peaks
is related to the cooperativity of the phase transition. A first-
order transition is a highly cooperative process that occurs
over a small temperature range, whereas a second-order tran-
sition is a continuous, non-cooperative process that occurs
over a large temperature range. Thus, one would expect a
broad peak~large variance! in a plot of heat capacity versus

b to correspond to a second-order transition and a narrow
feature to correspond to a first-order phase transition.

The high-temperature~low b! transition has been ob-
served in analytical protein models1 and minimalist model
simulations2 and therein described as a second-order phase
transition. The similarity in lowb transition in Fig. 3 for all
four sequences can likewise be attributed to a broad, second-
order phase transition which appears to be sequence-
independent. It should be noted that the high-temperature
transition has been seen to depend on sequence among a set
of fast-folding sequences with only two monomer types.2

This seemingly contradictory case, however, did not exhibit
a low-temperature phase transition. It must therefore contain
features of both the heteropolymer collapse—which is se-
quence independent6—and the partial organization of the
monomer contacts, whereas the high-temperature transition
in the present work need only correspond to the sequence-
independent collapse.

The low-temperature~high b! transition is a narrow
sequence-dependent transition, though its order is not readily
discernible from the heat capacity data. The low-temperature
transition is most likely seen in the present model because
there are four—not two or three—different values of interac-
tions between the three distinct monomers types. The in-
creased heterogeneity in the contact energies increases the
likelihood that the structure is at least weakly frustrated en-
ergetically. This, in turn, implicates the low-temperature
transition as arising from a cooperativity associated with the
rearrangement of an ensemble of compact~collapsed! con-
formations to the native structure. If this heuristic argument
is true, then the transition is first-order.

Why does this system exhibit two phase transitions? To
answer this question, one might consider the dynamics in
and out of the ‘‘molten globule’’ ensemble, but unfortunately
it does not lend itself to a simple geometric definition. The
ensemble of all structures that lie inside a 43434 cube
does offer an alternative to study the possibility of the
sequence-independent collapse. The time-averaged probabil-
ity for which a sequence collapses into a 43434 cube,
P(43434), is shown in the top panel of Fig. 3. There is a
clear structural transition from high energy, extended struc-
tures at high temperatures to the compact 43434 struc-
tures. This transition is seen in the figure to be essentially
independent of sequence with only small changes in the
slope of the sigmoidal function ofP(43434). As shown in
Sec. IV, the small changes in the slopes of the curves can be
attributed to the fact that sequences with a lower stability gap
~DS1 and DS2! between their native structure and the other
accessible structures spend more time in the collapsed en-
semble than do the other sequences~DS3 and DS4!. This
structural transition is independent of the sequence as is the
low b ~high-temperature! phase transition, but the transition
to a 43434 cube occurs at a slightly higherb because the
confinement to a 43434 cube is less severe than the col-
lapse that is presumably occurring in the lowb phase tran-
sition. In summary, the data suggest that the high-
temperature phase transition seen in the heat capacity is a
geometric, i.e., topological, transition from an unfolded en-

FIG. 3. The normalized probability of the sequence collapsing to a 434
34 cube ~on the left! and the probability of the sequence assuming the
native state structure~on the right! is shown at various inverse temperatures
in the top panel. The lower panel displays the heat capacity of DS1~tri-
angles!, DS2 ~circles!, DS3 ~diamonds!, and DS4~stars! at various inverse
temperatures as well as the best fits of Eq.~A1! using smooth, short-dashed,
long-dashed, and dot-dashed curves, respectively.
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semble to a collapsed ensemble that is independent of both
sequence and cognate native structure.

The time-averaged probability for which the sequence
assumes the native structure,P(ns), is also shown in Fig. 3
as a function ofb for all four sequences. At high tempera-
tures, all of the sequences have a low value ofP(ns), indi-
cating that the proteins are mostly unfolded. As the tempera-
ture of the system drops, the behavior becomes sequence-
specific and some sequences spend more time in the native
state than others at the same temperature. In the limit of very
low temperature, it is clear that DS3 spends the greatest per-
centage of time in the native structure in comparison with the
other three structures. Perhaps interestingly, all four studied
sequences have different low-temperature limits ofP(ns).
Although the low-temperature phase transition between un-
folded proteins and those folded to their native structures
seen in the heat capacity does not occur at precisely the same
temperature, this transition is sequence-dependent like the
P(ns). This suggests that the low-temperature phase transi-
tion found in the heat capacity is a sequence dependent tran-
sition that is caused by the energetic rearrangements in fold-
ing to a specific native structure from a generic collapsed
ensemble as was claimed earlier.

It is worth noting the absence of a third peak in the heat
capacity curves at still lower temperatures. Such a peak
would presumably arise because of a glass transition, as has
previously been observed via the random energy model.23

This transition is partially due to increased structural corre-
lation times between the protein and its solvent. Therefore a
glass transition will not be seen in the heat capacity of these
minimalist model proteins because no solvent correlations—
vis-à-vis a nonstationary frictional response—are introduced
in its dynamics. Of course, one may define the glass transi-
tion to occur at some chosen point when the dynamics has
slowed sufficiently so that the protein will not fold within the
simulation time,5 as was done for DS1 in Ref. 12, but this
will not cause a discontinuous change in the time-averaged
fluctuations of the energy of the system. Thus, the heat ca-
pacity does not reveal an invariant glass transition.

C. Transition rates from folding dynamics

The mean first passage time~MFPT! approach, as dis-
cussed in Ref. 12, is used to calculate rates of various pro-
cesses for the four designed sequences, DS1–DS4. Any pair-
ing of the region of interest along the folding pathway will
give rise to a rate process, such as the folding ratekf←u or
the collapse ratek43434←u between the unfolded and com-
pact state. In the present work, there exist roughly three re-
gions of interest along the folding pathway of each sequence.
These are associated with the completely unfolded state (u),
the folded—native—state (f ), and the ‘‘molten globule’’
states that may perhaps be differentiated somewhere in be-
tween the two extremes. Although it is not obvious how one
should represent the latter, it has been common to describe
the ‘‘molten globule’’ states with respect to a geometric col-
lapse akin to the coil–globule polymer transition. In this
spirit, the collapse to a 43434 cube is used herein to pro-
vide a qualitative bound of the molten globule region.

The MFPT rates for folding to a 43434 cube from a
straight-chain configuration are shown in the bottom panel of
Fig. 4. In all four sequences, theseb-dependent rates are
independent of sequence. Similar sequence independent col-
lapse rates have been found in other minimalist models,2 and
are consistent with the sequence-independent collapse tran-
sition seen in Fig. 3. That is, the maximal rates to the 434
34 compact cubes occur at a temperature just below the
collapse transition temperature suggested by the heat-
capacity curves. The MFPT rates for folding to the native
structure from a straight-chain configuration are shown in the
top panel of Fig. 4. At lowb, the rate curves are weakly
dependent on sequence, as expected in a high temperature
region where the chain can easily explore many conforma-
tions, albeit short-lived for any one conformation. The maxi-
mum rate in the turnover region of the curves is different for
each sequence, which is consistent with a sequence-

FIG. 4. The logarithms of the folding rates for a Monte Carlo dynamics
simulation of DS1–DS4 are displayed at various inverse temperatures,b.
The labels of the symbols are defined as in Fig. 3. The folding rates in the
top panel are calculated as the inverse of the mean first passage time
~MFPT! for 100 initially unfolded configurationsu to reach the folded pro-
tein f . These points are overlaid with the corresponding optimal fit of the
rate expression, Eq.~9!, and the parameters of the fit are listed in Table II.
The lower panel displays the logarithm of the collapse rates from the un-
folded configurations to a 43434 cube. Throughout this temperature re-
gime, the equilibration time within either the ‘‘reactant’’ or ‘‘product’’ basins
is faster than the reported MFPTs, and consequently this choice of initial and
final product state does not adversely affect the results. Although the error
bars are about 10% of the actual rate, the error in the logarithm is signifi-
cantly smaller, and hence 100 trajectories are sufficient to provide accuracy
within the visible resolution.
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dependent rate at the highest rate of folding. Moreover, these
observationsin toto suggest that whatever the ‘‘molten glob-
ule’’ region actually is, it is a subspace of the 43434 space,
and it is distinct from the native states.

The folding rates in the top panel of Fig. 4 can be de-
scribed using transition state theory~TST!.24–28 In the usual
TST rate formula, the prefactor is proportional to the tem-
perature. This result follows from the general rate
expression—a ratio of the flux through the activated complex
Q‡ over the reactant populationQ0—which can be inte-
grated to yield26

k5
Q‡

Q0
}

S h

kBTD N2M

e2bE‡

S h

kBTD N

e2bE0

}~hb!2Me2b(E‡2E0), ~9!

whereh is Plank’s constant,N is the total number of quasi-
bound degrees of freedom available to the reactants,N2M
is the number of quasibound degrees of freedom available to
the activated complex,E‡ is the energy of the activated com-
plex, andE0 is the ground state energy. In the usual TST
case,M51, but in the present context of the minimalist
model, a larger value ofM is conceivable and could repre-
sent a decrease in the dimensionality of the activated com-
plex because its compact structure constrains several
otherwise-free modes. The optimal fits of Eq.~9! to the fold-
ing rates are overlaid over the points in Fig. 4, and their
corresponding parameters are listed in Table II. The unfolded
structures for all four designed sequences contain approxi-
mately 49 degrees of freedom, but the rate fits suggest that
approximately 30 of these are constrained in the activated
complex.~The 49 arises from counting 3N26 internal coor-
dinates and subsequent subtraction of theN21 fixed bonds.!
Thus the transition state bottleneck for the proteins to fold is
very narrow for all four sequences. Although further study is
required, it may also be notable that DS2 corresponds to the
largest values ofWz andSz and leads to the largest value of
M , while DS3 corresponds to the smallest values ofWz and
Sz and leads to the smallest value ofM . This naively sug-
gests that greater geometric constraints~i.e., larger values of
Wz andSz) in the target structure are correlated with a more
constrained activated complex, viz. a bottleneck of lower
dimensionality. Note that this statement is not exactly
equivalent to the statements that will be described in Sec.
IV A concerning the reduced number of accessible states,
Nr , though obviously they are not unrelated.

IV. FOLDING AFFINITY OF THE MODEL PROTEINS

An optimally designed sequence is one that both folds
quickly to the native structure~fast dynamics! and remains
there once it does~stability!. The latter property will be sat-
isfied if there is a high barrier between the native state en-
semble and all other accessible conformations on the energy
landscape. In principle, one could calculate a projected free
energy landscape~potential of mean force! for each sequence
in order to quantify the barrier height between the native
state ensemble and the other accessible conformations. This
procedure would only ensure an accurate assessment of the
stability of the native structure if the projected variable~s!
were to smoothly map the entire conformation space of the
model protein, and it would be computationally expensive.
The stability of the native structure measured through the
low-temperature probability of being in the native structure
—shown in the top panel of Fig. 3—follows the ordering,
DS3.DS2.DS1>DS4. On the other hand, the folding
rates given in Fig. 4 show the maximum rates and the broad-
ness of the rate curves follow a different ordering, DS3
.DS4>DS2.DS1. Since both the rate and the stability of
the native structure are important in determining whether the
sequence is optimally designed, there appears to be an incon-
sistency in these trends. This suggests that model proteins
with a high folding affinity be defined as those sequences
with a high stability gap and with a large number of on-
pathway conformations. These two components of the fold-
ing affinity may be obtained by an analysis of the low-
temperature behavior of the folding probability as described
in Sec. IV A. A further discussion describing how the folding
affinity and the folding rates play a role in assessing the
optimal sequence measured from thermodynamic observ-
ables is described in Sec. IV B.

A. Microscopic properties that define folding affinity

The folding affinity will be defined in the following in
terms of the stability gap and the accessibility of non-native
structures. These latter quantities, in turn, may be found from
an analysis of the probability that the protein can be found in
the native structure. This statistical probability depends on
temperature through the Boltzmann distribution,

P0~b!5
e2bE0

( i 50
N e2bEi

, ~10!

where N is the total number of states, and 0 denotes the
nondegenerate native state. The probability of being in the
native state can be rearranged to

P0~b!5
1

11ebE0Q*
, ~11!

where Q* 5( i 51
N e2bEi. A microcanonical reference en-

semble,E* (ns), consisting of all structures accessible to the
native state is now introduced such that

ebE0Q* ' (
i eE* (ns)

e2bDEi5Nr^e
2bDEi&* , ~12!

where Nr([( i eE* (ns)1) is the number of accessible states,
DEi[(Ei2E0), and ^•&* is the microcanonical average

TABLE II. The rates as a function of inverse temperature displayed in the
top panel of Fig. 4 were also overlaid with optimal fits of the rate expres-
sion, Eq. ~9!. The latter can be characterized by three parameters,M , a
5 ln(prefactor), andb5E‡2E0 , which are listed here with respect to each
of the designed sequences.

Sequence M a b

DS1 31.0 34.6 55.2
DS2 37.2 43.9 64.4
DS3 27.1 27.2 44.3
DS4 30.0 32.1 51.2
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over theE* (ns) ensemble. In this microcanonical ensemble,
kB ln Nr is also the entropy of the accessible states and hence
a measure of the entropic bottleneck to folding. Expanding
the average in Eq.~12! using a generalized cumulant expan-
sion to second order leads to the following useful result:

Pns~b!5S 11Nr expS 2b^DEi&* 1
b2

2
^~DEi !

2&* D D 21

.

~13!

Note that Eq.~12! is accurate at low to intermediate tempera-
tures when only the states inE* (ns) dominate the partition
function, whereas the cumulant expansion is accurate only at
high to intermediate temperatures when the higher-order
terms may be safely ignored. Equation~13! should therefore
be accurate at intermediate temperatures. At high tempera-
tures,Pns(b) is expected to be near zero, and agrees with Eq.
~13! well within the error that is expected in the simulation
data.

The probability that the sequence assumes the native
structure is shown for all four sequences as a function of
inverse temperature in Fig. 5. The form in Eq.~12! can be fit
to the observedPns(b) in order to obtain values for the pa-
rameters in Eq.~13!, i.e., estimates ofNr , ^(DEi)

2&* , and
^DEi&* . The primary features in the observedPns(b) that
determine the fit parameters lie in the intermediate tempera-
ture region when Eq.~13! is expected to be a reasonable
approximation. The primary discrepancies are seen only at
low-temperature where the third- and higher-order terms in
the cumulant expansion contribute. As the temperature of the
system decreases, DS3 spends more time in the native state
for a given temperature~i.e., the slope of the DS3 curve is
greater than the slope of the other three curves!. Similarly, in
the limit of low temperature, DS3 is seen in Fig. 5 to spend
more time in its native state than that spent by any of the
other three sequences. These observations can be quantita-
tively understood on a microscopic level by a fit of Eq.~13!
to the data points. The number of states,Nr , available to the

microcanonical reference state is orders of magnitude greater
for DS3 than for any of the other three sequences, as shown
in Table III. This larger number of states corresponds to an
effectively wider funnel that focuses misfolded structures
into the native structure of DS3, i.e., DS3 is surrounded by
fewer entropic bottlenecks. This interpretation is corrobo-
rated by the maximum folding rates in Fig. 4 which are ap-
proximately correlated withNr . Note that the zero-
temperature limit ofP(ns) should equal one for all four
sequences because the native structures are the minimum en-
ergy structures with no degeneracies. However, this limit is
not visible in the apparent plateaus of the figure because the
lowest temperature displayed is still not low compared to the
excitation energy of the nearest non-native states, and hence
is far from the correct limit.

Table III also lists the average energy difference of the
accessible states,^Ei&* , for all of the structures. DS3 is once
again unlike the others as it exhibits the largest energy dif-
ference. It should be noted that this energy difference is re-
lated to the stability gap which measures the energy differ-
ence of the native structure as compared to all other
structures. But it is not exactly the same because as measured
here,^Ei&* measures the energy difference compared to the
subensemble of accessible states. As such,^Ei&* can be in-
terpreted as a reduced stability gap. These reduced stability
gaps are shown pictorially in Fig. 6, and highlight the fact
that DS3 has a much larger stability gap than the other se-
quences. The results are generally consistent with the energy
landscape theory of protein folding, which suggests that pro-
teins with a larger stability gap are more optimally designed.

The new insight, though, is that large values inboth Nr

and^Ei&* lead to a protein that has increased stability in its
native structure—vis-à-vis increased folding affinity.

B. Macroscopic properties that predict folding affinity

Topological parameters such as the contact order have
been shown to correlate well with the folding rate of
proteins.29 Indeed, as shown in Table I, the fastest folding
sequence, DS3 has a low degree of winding, and a low con-
tact order. The latter is presumably correlated with the lower
topological frustration found in NS3 in comparison with the
other native structures. That is, the bottleneck between the
unfolded structures to the native structure is wider in DS3 as
was noted at the end of Sec. III C.

FIG. 5. The normalized probability that the sequence assumes the native
structure is shown at various inverse temperatures. The best fits of the data
for DS1 ~triangles!, DS2 ~circles!, DS3 ~diamonds!, and DS4~stars! to Eq.
~13! are also shown.

TABLE III. The native state energies and the parameters extracted from fits
of Eq. ~13! to the data presented in Fig. 5 for all four sequences, DS1–DS4.
For comparison withNr , there are 1.1431011 maximally compact struc-
tures and 6352551.831018 phantom chain 27-mers.

Sequence Ens Nr ^Ei&* ^(DEi)
2&*

DS1 289 1.2931011 236.5 53.0
DS2 290 1.4331011 237.5 51.0
DS3 289 4.2031013 226.6 57.2
DS4 289 7.5831011 234.8 52.5
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Thermodynamic measures that predict whether or not a
sequence will fold are not all appropriate measures for deter-
mining the rates for foldable sequences. This can be illus-
trated using two key measures, the ratio of the folding tran-
sition temperature to the glass transition temperature,Tf /Tg ,
and thes parameter@Eq. ~1!#. Both of these quantities are
essentially sequence-independent among foldable sequences
because they depend on the glass and collapse transitions
alone which are, in turn, known to be sequence-independent
among foldable sequences.1 However, it is clear that not all
such sequences fold equally well.

The heat capacities in Fig. 3, however, do suggest that
the behavior of the proteins at the transitions are correlated
with a ‘‘folding affinity’’ via the heat of reaction. The ques-
tion, though, is how to uniquely define such a folding affin-
ity. In a two-state model, the Van’t Hoff enthalpy of reaction
is given by30

DH5
4kBNAT82DCp

Qr
, ~14!

whereNA is Avogadro’s number,DCp is the heat capacity at
the peak maximum, andQr is the heat of the reaction. By
assuming that the collapse transition is a two-state reaction
from unfolded states to collapsed states, and similarly that
the folding transition is a two-state reaction from reactant
collapsed states to a product native state, one can calculate
the heat of collapse,DHc , and the heat of folding,DH f .31 In
the present case, the two transitions are overlapping, but are
discernible through the fitting procedure described in detail
in the Appendix.

The collapse and folding enthalpies for each of the four
sequences are shown in Table IV. These enthalpies do not

seem to exhibit any obvious trends. Meanwhile DS3 should
be at an extreme because it folds at the fastest rate for all
temperatures shown in Fig. 4 and with the greatest folding
affinity as discussed earlier. The reduced stability gap,
^Ei&* , alone is also not sufficient to determine the trends in
the rates; there is little difference in the stability gaps of DS1,
DS2, and DS4 shown in Table III, though DS1 is a substan-
tially slower folder. The collapse and maximal folding rate
nonetheless exhibit some sequence-dependence because the
sequence identity defines the subspace of accessible col-
lapsed structures.

A possible alternative for the folding affinity may be
defined through a Gibb’s free energy of folding,

DGf5DH f2TfDS. ~15!

The enthalpy change is approximated using the value listed
in Table IV. The entropy change may be calculated for the
model proteins through an approximation,

DS'kB ln V'kB ln Nr , ~16!

where the number of accessible states is taken to be the value
of Nr given in Table III and determined from the folding
probability at the inverse folding temperature,b f , which
was in turn found through the heat capacity curves. These
two thermodynamic measures combine to form a folding af-
finity that correlates well~for this admittedly small number
of proteins! with the folding rates as shown in Fig. 7. Note
that the folding affinity is clearly not the transition state bar-
rier free energy~vis-à-vis kf←u5Ae2bDG) because if it were
the slope in this figure would be21. Nonetheless, the notion
of the folding affinity of a protein seems to emerge through a
relation to both the reduced stability gap and the accessibility
of non-native structures. Further work is required to see if
the definition provided by Eq.~15! is in fact universal.

V. CONCLUDING REMARKS

Some aspects of the folding mechanisms for a simple
model of protein folding can be elucidated by the four se-
quences studied in this work to represent the space of se-
quences that fold to unique ground states with weak ener-
getic frustration. For example, the heat capacity reveals that
all sequences that fold undergo a sequence-independent tran-
sition from an unfolded to a collapsed ensemble. This is
followed, at lower temperatures, by a second sequence-
dependent transition from the collapsed ensemble to the na-
tive structure. A transition characterized by a structural rear-

FIG. 6. The stability gaps listed in Table III as extracted from fits of Eq.~13!
to the data presented in Fig. 5, are shown for DS1~triangle!, DS2 ~circle!,
DS3 ~diamond!, and DS4~star!.

TABLE IV. The collapse temperatures,bc , and folding temperatures,b f ,
as determined by the maximum value in the peaks ofCV in Fig. 3. The
collapse and folding enthalpies are calculated using Eq.~14!. Note that there
is seemingly little correlation between the two enthalpies, though, as shown
in Fig. 7, the logarithm of the folding rate is seemingly correlated with the
collapse transition enthalpy.

Sequence bc b f DHc DH f

DS1 0.251 0.705 20.1 20.5
DS2 0.253 0.711 20.8 22.7
DS3 0.250 0.739 21.9 21.8
DS4 0.252 0.738 20.6 19.3

11301J. Chem. Phys., Vol. 120, No. 23, 15 June 2004 Folding behavior of model proteins

Downloaded 18 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



rangement is consistent with the random energy model for
protein folding, but had not been observed in previous mini-
malist lattice models that gave rise to unfrustrated native
structures. It is most likely seen in the present model because
of the weak frustration arising due to the presence of three
monomer types—as opposed to two in the HP model—and
the subtle differences in the contact energies assigned to each
pair. The mean first passage time rates show that the slow
step is the sequence-dependent rearrangement from the col-
lapsed ensemble to the native structure. Thus, the folding
rates of foldable model proteins depend on the primary se-
quence.

The stability gap and the conformational entropy of the
native structure for each sequence has been inferred from an
analysis of the probability that the corresponding model pro-
tein will be found in its native structure.~The conformational
entropy of the native structure is the logarithm of the number
of states accessible to the native structure.! These quantities
combine to define a folding affinity and they have been
shown to be correlated with more optimal protein sequence
design in agreement with the energy landscape perspective of
protein folding.
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APPENDIX: HEAT CAPACITY CURVES

The heat capacities measured in the numerical simula-
tions have been fit to a functional form whose sum consists
of two Gaussians—corresponding to the phase transitions—

and a quasilinear baseline—corresponding to the ‘‘back-
ground’’ heat capacity due to internal motion. Specifically,
the functional form takes the form,

Cp,fit~ t ![Gc~T!1Gf~T!1ybl~T!, ~A1!

where the Gaussians are parametrized as

Gi~T![Y ie
2a i (T2Ti* )2

, ~A2!

for i P(c, f ) corresponding to the respective collapse and
folding transition, and the baseline is determined by

ybl~T!55
0 if T<T0 ,

y1

~T2T0!

~T12T0!
if T0<T<T1 ,

y21~y12y2!
~T22T!

~T22T1!
if T1<T<T2 ,

0 if T2<T.
~A3!

This provides 11 free parameters; namely:Yc , ac , Tc* , Y f ,
a f , Tf* , T0 , T1 , T2 , y1 , andy2 . Each of the data sets have
between 23 and 24 points; and consequently the least-
squares fits are overdetermined by the data. The rms devia-
tion in the fits is less than 3~in the dimensionless units of the
data! in all four fits. The fits are displayed in Fig. 3 in com-
parison with the data as a function ofb, and the optimal
parameters are listed in Table V. Note that the linear base-
lines, ybl(T), are curved when shown versusb.

Given the least-squares fits of Eq.~A1! to the numerical
heat capacities, the free energy of each transition may be
obtained. Following Refs. 30 and 31, the heat capacity from
the baseline is ignored, and only the contribution due to the
respective Gaussian function,Gi(T), is used to compute the
effective Van’t Hoff enthalpy of the corresponding transition.
For simplicity, the heat of reaction,Qr , is obtained by inte-
gration of the Gaussian over an infinite domain ignoring the
small error that this extended domain might entail. Evalua-
tion of Eq.~14! for each of the transitions leads to the result,

DHi54kBNA~Ti* !2Aa i

p
, ~A4!

for the effective heat capacity associated with the collapse
and folding transitions.

FIG. 7. The folding rate for each designed sequence at the folding tempera-
ture ~shown in Table V! is extracted from the best-fit curves to the MFPT
data in Fig. 4 and displayed here as a function of the folding affinity,DGf ,
defined by Eq.~15!. The best fit line has a slope of20.171 and an intercept
at 221.9.

TABLE V. Parameters for the fits of Eq.~A1! to the data in Fig. 3 as
described in the Appendix.

Parameter DS1 DS2 DS3 DS4

Yc 55.8 55.8 54.9 62.8
ac 0.316 0.347 0.369 0.334
Tc* 3.98 3.95 4.00 3.97
Y f 94.3 110 103 66.0
a f 20.4 25.8 27.7 19.9
Tf* 1.42 1.41 1.35 1.36
T0 1.27 1.25 1.11 1.08
T1 1.71 1.68 1.69 1.73
T2 98.7 121 139 114
y1 153 153 109 101
y2 20.689 20.547 20.460 20.578
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