
Time-Critical Visual Exploration of
Scalably Large Data

William Ribarsky, Davis King, Ada Gavrilovska, and Rogier van de Pol
Graphics, Visualization, and Usability Center

Georgia Institute of Technology
{ribarsky, kingd, ada, rogier}@cc.gatech.edu

Abstract

This paper discusses visualization and analysis issues as datasets grow towards very large sizes, and it
develops an approach to attack these issues. Datasets of this size become exploration-dominant since the
scientists who create or collect them do not know, in detail, what's inside. Thus the methods developed
here support exploratory visualization. To be fully successful these methods must be fast, so issues of
time-criticality are addressed. Fast global overviews are prepared automatically based on an analysis of
patterns in the data. From these, particular overviews can be generated followed by detailed subviews,
where these last steps are controlled by user interaction. A particular approach is developed to recognize
spatial clustering in 3D data, and this is applied to a variety of datasets. The performance of the approach as
a function of dataset size is analyzed, and it is found that it holds promise for the exploration of large
datasets. In addition an octree decomposition method is also developed as an adjunct to the clustering
method. Both methods can be used to develop hierarchical structures for the datasets, which can be extended
by user interaction. Information derived from the methods can be analyzed so that patterns in the datasets
can be segmented according to shape, size, dynamic behavior, or content

I. Introduction

Society faces a data overload. With the advent
of instrumentation to collect and digitize ever
growing amounts of data, faster and faster
computers for spewing out numbers, networking
to permit pooling of information, and cheaper,
faster, and bigger data storage capabilities, we
have more data available than we ever dreamed
possible. The result in most cases is that most
of this data goes untouched, either archived and
never seen again or simply thrown out.
However, these unexplored data stores often
contain useful information and even important
revelations. One approach frequently taken is to
glean some useful information by boiling the
data down to a few essential details using pre-
programmed, automated processes and then
displaying only those details. But the catch is
that for such larger data stores even the experts,
the users who generated them, do not know their
structure in detail. Thus there is little chance
that a pre-programmed procedure, even one based
on an expert user's insight, will discover new
features and capture all key details. This problem
will continue to grow as we move from terabyte
to petabyte storage capacities (and needs) and as
even desktop computers have processing speeds
approaching GigaHertz (and beyond).

There are many examples of this data overload
situation from a wide variety of areas. Earth
observations and simulational data will soon be
augmented at rates of terabytes per day. Global
companies with millions of transactions per day

need hands-on capabilities to track their inventory
distribution and sales. Atomic-level physics
simulations of macroscopic processes (e.g.,
material crack propagation) now exceed a billion
particles. High resolution global terrain
databases now reach hundreds of gigabytes and
will soon be much larger with the advent of high
resolution geographic imaging satellites (capable
of collecting data at 1M resolution). Very large
scale, unsteady, 3D computational fluid dynamics
simulations approach a GB per time step and
must be followed for thousands of time steps.
Scanned 3D seismic data that must be studied in
detail to find ever more precious oil reservoirs
approach a terabyte per area explored.

This paper presents an approach to attack the
problem of investigating very large scale data.
Our premise is that as datasets grow in size they
inevitably become exploration-dominant. The
first question one asks about such large datasets
is, "What's in there?" This is especially so if the
dataset is time-dependent, has lots of variables,
and/or contains complex patterns. For
exploration-dominant data, the first goal is to
present quick global overviews based on user-
selected variables and ranges. Further refinement
of the data view is based on user selection. The
user may see a pattern that she wants to explore
in greater detail; she may decide that the initial
variable range needs adjustment or that different
variables should be displayed; she may want to
navigate through time or through space to see
dynamic data evolve or to get a new or clearer
view; she may want to apply specific

2

visualization and analysis tools to regions of
data. For optimal exploration, the user should be
able to accomplish any of these actions with
high interactivity and thus the process becomes
one of time-critical visualization.

We present here a framework for time-critical
visualization directed by user explorations. This
framework is applicable to large datasets, and we
show how it can be extended to datasets of very
large scale and beyond. For such datasets a
hierarchy of scales is necessary; we discuss the
order of these scales and the time budgets that
must be met for each order and for various
exploratory operations and interactions. Finally
we present an implementation and results based
on a "fast clustering" method we have devised.
We also discuss other implementations.

The key new items in this paper are the casting
of the visual exploration framework into
questions of scales, time budgets, and user
involvement. This leads to a consideration of the
trade-offs between time cost and accuracy.
Whereas, for example, there have been many
approaches to clustering that concentrate on
getting reasonably optimal clustering, our
approach also concentrates on deriving results
that are both fast and "good enough". Here "good
enough" may be evaluated in terms of whether
the results fit into a framework that supports
continuous user involvement (e.g., where users
can easily dig deeper or even unfold detail pre-
attentively--without conscious selection or
application of tools) and whether enough detail is
presented at any scale to give hints to important
features that merit deeper investigation.
Additionally our approach yields a set of general
procedures applicable to data of many different
types.

II. An Approach for Exploring
Scalably Large Data

It is useful to enumerate some capabilities that
an ideal approach to the visual exploration of
datasets of any size and general type might have.

¥ Strict upper bound on complexity
¥ Adjustable threshold proportional to

scene complexity. This should:
- have a screen-space threshold.
- be either automated or user-controlled.

¥ View-dependent detail management
¥ Closely-spaced levels of detail (LODs)
¥ On-the-fly development of hierarchical

structure (visualization-driven hierarchies)
A strict upper bound on complexity is

mandated by the needs of interactive
visualization. Obviously the first step in
evaluating raw data will be of the order of the

complexity of the raw data. However, thereafter
the ideal algorithm would have a strict upper
bound on complexity that would be different than
the raw data complexity and would never be
exceeded, even for very large datasets. Indeed for
the original evaluation of very large datasets, one
can imagine methods that sample the dataset and
thus have complexity of the order of the number
of samplings rather than of the order of the raw
data.

The notion of controlling complexity through
frame-by-frame adjustment of a screen-space
threshold comes from our work on terrain
visualization [Lindstrom et.al., 1996; Koller
et.al., 1995]. There we showed that such a
mechanism could be used to relate perceptual
fidelity to scene complexity. In particular this
mechanism provides a direct way to choose on a
frame-by-frame basis which details can be
removed because they are sub-pixel. Such a
threshold can be interactively adjustable so that
when different details from different sources are
fused in the rendered scene their complexities can
be modulated based on relative importance.
Closely related is the notion of view-dependent
detail management in which the highest detail is
rendered where the view is focused and where
details not in the view are efficiently culled away.

Closely spaced LODs help optimize fast
navigation. Distracting jumps and popping in
detail are minimized, and the smooth unfolding
of detail can significantly enhance the rate at
which information is assimilated. We have
shown a continuous LOD approach in our terrain
work [Lindstrom et.al., 1996], where the system
makes on-the-fly adjustments of details on a per
pixel basis depending on visual importance. The
result is smooth unfolding of detail during
navigation. The challenge is to develop a
comparable general set of methods for other types
of data.

All these elements form a basis for effective
and efficient user involvement. As we have
discussed in the Introduction, user involvement is
necessary for general and unexplored datasets of
large to very large sizes, because there will be
neither the time nor the capability for thorough
and automatic explorations of their structures.
However, our contention is that users will find it
worthwhile to probe quickly presented global
overviews (even if crude), especially if the
exploratory system responds promptly to their
requests for more detail. Indeed, a fully
interactive approach opens the possibility of on-
the-fly extension of hierarchical structure based
on user focus or application of user-selected tools
that operate by direct manipulation in the
visualization environment. Fig. 1 shows a

3

Particular Overview

Global
Overview

Detailed Subview

Fig. 1 A structure for exploratory visualization

structure for exploratory visualization based on
the ideas of this section. Everything but the
global overview might be developed based on
user attention or selection. This user-in-the-loop
approach need not be laborious; it should be
semi-automated and only involve either simple or
occasional user interactions. Also, the
visualization and analysis methods in going from
gross to highly detailed views could (and
probably should) be different.

How can we reveal enough detail, even in a
gross but fast global overview, to permit further
exploration? And how can particular overviews
derived from the global view, then its sub-views
and so on, be fitted into a consistent structure for
exploration? Our approach is to

Extract/Abstract/Model
at each level of exploration. To do this we

need to develop a system that helps users
¥ Seek and formulate models
¥ Seek and formulate heuristics
¥ Develop more accurate models and then

extract quantitative information
The idea is for the exploratory system to extract

enough information so the user can derive
preliminary abstractions that the she can follow
and then establish initial heuristics for data
behavior. The system should then provide tools
for developing more accurate models and for
quantitative analysis based on those models.

Our particular approach to extraction,
abstraction, and modeling is to search for patterns
in the data. If these are spatial data, the patterns
will be spatial. However, the approach should
support finding patterns in any collection of
variables, whether spatial or not. The patterns
might be clumping or clustering in the data,
which might be defined in terms of the

correlations of two or more variables. It is easy
to define clumping or clustering in spatial data,
but requires more care and thought for non-spatial
data. Various techniques have been tried for non-
spatial information spaces such as, for example,
topical databases or Web spaces. In terms of
visualizations, one question is how to define and
display such clusters in the most visually-
informative way [Wise et.al, 1995]. In spite of
these questions, it is apparent that such an
approach is general and should be applicable to
data regardless of its type. After the patterns are
found in the data, it should be possible to define
simple models. For example, spatial clusterings
should yield simple shape and volume
information that can be depicted visually and also
compiled into quantitative histories.

An ideal approach for visual exploration should
also have optimal interactivity. At every level
the system must be responsive enough to
support and encourage exploration. Just what is
optimal at all scales of exploration is unclear,
although there is certainly a wealth of usability
studies examining specific interaction regimes
and performance in graphical user interfaces and
virtual environments. To clarify the issues
involved in optimal interactivity, we present the
rough framework in Fig. 2. There should be
some maximum amount of time to obtain a
global overview, no matter what the scale of the
dataset. It's not clear what that time should be,
but if its too long, the user may be dissuaded
from exploring the data. In fact, this is what
often happens. For example, a colleague at
Georgia Tech who generates sequences of
computational fluid dynamics time steps, each
step being quite large, typically does not look at
them (except for automatically producing some

4

O (N); sample (random or
otherwise) to M<<N

O (M)
O (MlogM)

O (M)
O (M)
etc....

2 or O (N)
subset of N

sub

N

C
ou

pl
ed

Global Overview
Adjustment of metric/change of variable
Navigation including investigation
 of multiple LODs

< 100 sec
< 1 sec
< 0.1 sec

Fig. 2 A framework for optimal interactivity and exploration

general, averaged histories) because of the time
barrier to producing individual visualizations.
Let us say, then, that this initial time for
producing the first view is of the order of 100
seconds--the point being that it should be of the
order of a small number of minutes rather than an
hour or more. Of course if one has a long
sequence of time steps, each of which takes 100
seconds for initial display, one may well be
reluctant to explore the data very deeply. In this
case, time dependence may be the most important
feature, and the system should be adjustable to
allow display of even cruder features in less time
if dynamic character can still be revealed.
Alternatively, the entire collection of time steps
could be considered as one huge dataset (with
time as one of its dimensions) and then probed
with pattern recognition tools. The initial
visualization would have time as one of the axes,
and there would be support for allowing the user
to select subsets along the time axis for further
exploration.

After the initial view, the time scale must
change completely if one is to have effective
exploratory visualization. For example,
successful navigation in a variety of contexts
requires system responsiveness (time between
user input and display of the result of that input)
of 0.1 seconds or less [Watson et.al., 1997;
Bryson, 1993]. For optimal information
collection, the system should also unfold detail
(through multiple LODs) at that time scale. In
addition, having seen data displayed for the first
time, the user may well decide to adjust controls
or ranges, or even change the variables being
viewed. This process will require more
computational effort than navigation; however it

should still not take much time. Perhaps 1
second or less is a reasonable goal.

It is obviously not possible to achieve this
time budget with methods that touch each data
element in very large datasets. Our approach is
indicated at the bottom of Fig. 2. Depending on
the size of the dataset N , there is an initial
sampling process of O (N). This can be a highly
parallelized process (e.g., a bin sort method) but
there still will be dataset sizes that do not fit the
stated time budget, especially if the required time
is only, say, 100 seconds. In this case random
sampling would be the alternative where now the
complexity is of O (S) where S is the number of
samples. Not only is the random sampling also
parallelizable, but in addition one can imagine
how it could be extended to data structures that
are collections of directories, distributed, and so
on. We plan to investigate this further.

Whatever the initial step in our process, we end
up with data at a sampled set of points M, whose
properties are averaged over the properties of the
original data elements associated with each
sample point. Our position here is that this step
should be fast and simple. In our present
implementation we just perform a fast bin sort
with no further analysis of, for example, variable
distribution or correlation. After this step,
further analyses are performed on the sampled
points. To insure speed, the initial subsequent
step might be O (M). As the user homes in on a
specific part of the data, analyses might be more
thorough (O (MlogM) or O (M2), say). At some
point the user might choose to look at the
original data in some part of the visualization, or
to look at a more detailed sampling of the
original data. Note that we have provided the

5

option of retaining the links between each
sample point and its original data, so such a
choice is possible. But any display of the
original data is based on user involvement. With
the bin sort it is simple to select subsets of the
original data for detailed viewing. It is apparent
that this exploration process has an inherent
hierarchy that should be exploited and may be
extended by user involvement and selection.

To make these ideas more concrete we apply
them to spatially coherent sets of data. Here the
spatial coordinates are dominant, so one typically
maps them onto the 3D coordinates of the
visualization. Most scientific visualizations are
of this type, and the data modeling is based on
spatial clustering. One can then derive 3D
spatial shapes from the clusterings, extract the
shape information, and model features that can be
followed, compared, and measured. The initial
step in our approach is a spatial bin sort, which
is applicable to data input in any structure. After
that step the bins form their own structure which
provides a consistent basis for subsequent steps.
Before going on with the description of this
approach, we will discuss relevant previous
work.

III. Relevant Previous Work

There is little work that has been done that
specifically considers the question of speed versus
accuracy in developing tools for exploration and
analysis of large-scale data, especially 3D data.
In addition we are not aware of any work that
develops a framework for explicitly immersing
the user in the visual exploration process. There
is, however, work on 2D systems that is
relevant. Schneiderman and his group investigate
dynamic query interfaces (DQIs) [Tanin, Beigel,
and Schneiderman, 1997]. DQIs are a database
access mechanism that provides continuous
feedback to the user during query formulation.
They have proven quite successful for small
databases but slow down considerably for larger
ones. Tanin et. al. discuss the response times
that are necessary to provide continuous response
and how larger databases might be arranged to
achieve these. Their response times are similar
to the ones discussed in Sec. II above. We can
think of our 4D (3D + time) visual explorations
as dynamic queries so that the work of
Schneiderman's group should be applicable. In
contrast to the work on fast interaction, there is a
significant amount of work on cluster analysis of
spatial or other (multivariate) distributions and
also relevant work on structure recognition,
shape analysis and spatial feature extraction. In
this section we will address the work most

relevant to the methods described in this paper
but will not attempt an exhaustive analysis of
this large field.

Clustering
Spatial clustering is the partitioning of a set of

n data points into m subsets such that the sum of
a distance (or similar) metric between each data
point and the center of its cluster is minimized
[Gross, 1994; Hagen, 1994; Hoffman, 1996].
Clustering is used for simplification by replacing
all the points in a cluster with a single, average
point at the center. In analyzing
multidimensional data sets, one can either simply
combine nearby observations and compute
averages, or one can perform clustering in a state-
space to group regions of similar characteristics
together. Spatial clustering can be thought of as
an optimal sub-space decomposition where the
metric is based on distance, weighted distance, or
a related parameter.

The disadvantage of clustering is that it can be
very computationally expensive. There are kn/k!
ways to assign n points to k clusters, and
choosing the optimal clustering among these is
an NP-complete problem [Gross, 1994; Hagen,
1994]. There are a variety of ways to show it is
NP-complete, depending on the exact formulation
of the clustering problem; some proofs work by
considering clustering as equivalent to a related
geometric problem like covering points with a
certain number of disks of a certain maximum
size or to some graph problems that can be
solved by clustering nodes on the graph
[Johnson, 1982]. One reason for the complexity
of the problem is the interaction between each
decision -- changing the assignment of one point
to a cluster will change the centers of both
clusters and thus affect the merits of other
decisions [see Gross, 1994]. The only way to
ensure complete optimality is to consider all or
at least a large subset of all possible point
assignments.

Many sophisticated approximation techniques,
such as simulated annealing and cluster-finding
neural nets, are relatively good at escaping local
minima, but they are generally too slow or have
too high overhead for interactive use. Some
faster methods are k-means clustering perhaps
combined with algorithms based on Voronoi
diagrams of cluster centers. K-means starts with a
fixed number k of essentially arbitrary clusters,
and it chooses one point at a time to move from
cluster to cluster, improving the arrangement
step by step until a local optimum or error bound
is reached. Since a formula exists for the effect
of each candidate move on the error function, the
worth of a move can be evaluated in constant

6

time [Gross, 1994]. Each iteration therefore
costs n * k steps to choose a good point to
move, and that cost can be reduced greatly by
using a smart data structure to keep track of
which clusters {1..k} are near enough to bother
checking [Faber, 1994]. Choosing the initial
cluster center positions is a key to both fast and
optimal k-means operation. In the basic
algorithm these centers are allocated either on a
regular grid or randomly. Our method described
in the next section provides a fast clustering
approach based on a preliminary analysis of
where these centers should lie. It uses a divide-
and-conquer approach where new centers are
inserted based on the shape, orientation, and
weights of existing clusters. This should provide
a faster path to optimal clustering than the
arbitrary methods used in the basic approach.

Most authors using k-means do not analyze the
number of iterations it takes. Selim, however,
proves that it converges in a finite number of
iterations [Selim, 1984]. Tovey analyzes the
convergence of hill-climbing problems in spaces
similar to the space k-means must search [Tovey,
1985]. He finds a convergence in 3/2 e*n
iterations for problems that involve searching the
vertices of an n-dimensional cube. The k-means
problem is similar, except that instead of having
a space corresponding to the vertices of an n-
dimensional cube (n binary digits), it has kn/k!
possible states, equivalent to an n-dimensional
lattice with k sites along each edge of the cube.
As described below, we use a finite number of
iterations to constrain the problem complexity.
In this instance, however, it would be quite
useful to have some estimate of the distance from
convergence.

Feature Analysis
A straight cluster analysis may not bring out

certain features very well. For example, there
may be certain shapes (e.g., annular regions or
long filaments in the data) that would not be well
represented by collections of clusters unless the
number were rather large. Although
Edelsbrunner has shown in his work on alpha
shapes that clusters of spheres can, quite
generally, be used to describe any 3D shape to
arbitrary accuracy [Edelsbrunner and Mucke,
1993], in practice this method can be quite time-
consuming and not appropriate for exploration of
very large datasets. Simpler feature extraction
and feature tracking techniques have been
developed by Silver and her colleagues [Silver,
1995; van Walsum et.al., 1996]. Silver points
out the utility and importance of "object-oriented
visualization" techniques for segmenting and
analyzing complex datasets. van Walsum et.al.

develop iconic feature extraction methods for
identifying and following 3D features. This
work is directly applicable to the clustering
approach we offer here.

IV. Fast Clustering

As Hagen discusses [Hagen, 1994], many
spatial clustering methods begin by considering
the whole set of data points and define the initial
cluster center using some sort of weighted mean.
A subdivision strategy is then applied to create
new cluster centers. This procedure is often via
the k-means method. As described above,
typically a Voronoi construction is made around
all the centers to define the nearest cluster center
for the data points. Then one usually iterates
until each Voronoi cell center coincides with the
weighted centroid of the points in the cell. The
iteration produces changes in the Voronoi cell
boundaries, sometimes significant ones.

For our approach, key elements are how long
the above steps take and how optimal the
subdivision into new clusters can be given that it
must occur in a restricted amount of time. Of
course, the timing for each step depends on the
number of data points, and steps such as the
Voronoi construction can be time-consuming.
(In the worst case it is O (N2).) As discussed in
Sec. II, we get around this bottleneck by doing
an initial bin sort and then forming clusters on
the bins. The bin sort requires two steps, both O
(N). The first step determines the extent of the
dataset in x,y,z. The second step uses these
extents to form the bins and sort the data. For
each bin, we keep a weighted centroid, weighted
averages for selected variables, number of points,
and (optionally) a list of data pointers. The
optional list of data pointers can be turned on or
off depending on whether its generation exceeds
the time budget or space allocation. Using the
list of pointers, other properties can be computed
as needed. At this stage we don't perform further
analysis (for example, to determine where we
might need a finer set of bins to pick up detail).
To an extent the clustering step in this section,
or the octree decomposition described in the next
section, carries out this analysis. Fig. 3 shows a
progression through these steps. The initial
feature extraction is easily based on the clustering
step. Further analysis of the features (bottom of
Fig. 3) can use the octree decomposition method
described in Sec. V, further clustering, or another
method.

As we have discussed in Sec. II, the bin sort
results in a set of M sample points derived from
the original N data elements. For very large
datasets, M << N. The question arises as to the

7

Cluster grouping (based on
sampled not original data)

Feature extraction based
on simple models

User chooses subspace or new control
variable (e.g., using selection tool or
by navigational direction)

More precise clustering, feature extraction,
etc., including data re-sampling

Features

Forest of trees (e.g., octrees, etc.)
Fig. 3 Steps in the process of exploration and feature discovery

statistical error or uncertainty introduced by the
sampling. For uniform sampling where every
data element is touched, as described here, the
optimal error should be of the order of the bin
resolution. Thus spatial features smaller than the
spatial bins would not be resolved. For random
sampling a statistical analysis must be
performed. For example, if random samples were
dropped into a set of bins, the uncertainties in per
bin averages of selected variables, fraction of
total number of elements, etc., would depend on
the total number of samples and the number in
each bin. What uncertainty is "acceptable" is a
topic that should be looked at further. Certainly
if the user knows beforehand what size features
are critical to analysis, sampling can be at a fine
enough resolution to resolve these. (Here "size"
is a general concept covering not only spatial
extent and shape but also ranges in other variable
spaces.) However, one should resist the
temptation to trade too much interactivity for
finer resolution. With high interactivity
(including the ability to obtain finer detail
quickly), the question becomes one of providing
just enough detail in an initial view so that the
user can ask for more where needed. Of course
the cluster analysis and feature extraction
described here are useful here because they bring
out patterns in the data. The system could
automatically analyze such structure and decide
where to provide more detail based on some pre-
determined criteria. But our focus is exploratory
visualization, and here the user may not know
what features are significant until she starts
looking at the data. For exploratory visual
analysis the user must be tightly in the loop.

Our fast clustering approach applies a rough
analysis of cluster extent and orientation for each
cluster. All analyses are performed on the
weighted bins. The steps are:

¥ Determine cluster extent in x,y,z and
define a box enclosing the cluster.

¥ Subdivide the box into 27 sub-boxes; a
central one and 26 nearest neighbors.

¥ Compute the number of weighted
samples and their centroids in each sub-box.

¥ Using a table of rules for the pattern of
sub-boxes, define the orientation and shape of the
cluster.

¥ Use the orientation and shape to decide
how to subdivide the cluster. Collected
information such as the number of weighted
samples in the cluster, along with shape and
extent information, can be used to determine
whether to subdivide the cluster.

¥ Locally iterate a few times to determine
optimal position of the new clusters with respect
to existing clusters.

¥ Choose candidates for further
subdivision (a priority list of candidates based on
number of sample points and extent) and repeat
first 4 steps for the new clusters and any clusters
whose weighted averages (including number of
points) have changed significantly. Otherwise
skip to subdivision.

¥ Stop when the predetermined number of
clusters has been reached or when another
criterion has been met (e.g., when the total
distance metric falls below a certain value or
when certain thresholds are reached in terms of
individual cluster extents or number of points).

8

The 27 sub-boxes permit an omnidirectional
analysis of orientation and shape. By quickly
applying a set of rules, one can determine
whether the cluster is flat, round, or long and
thin. Further one can find orientation
information; in many cases this is clear enough
to define a definite principal axis. The
orientation information is quite useful in
determining good positions for new clusters. We
subdivide into either two or 3 clusters, depending
on how the sub-boxes with the highest weights
are distributed. Further the shape, orientation,
and weighted averages provide a set of properties
for each cluster that can be visualized or tracked
for analysis.

The fast clustering approach is a variant of the
k-means method discussed in Sec. III. However,
we restrict the number of iterations in the
optimization step because the method is only
approximate anyway, especially during the
intermediate cluster subdivision step. Often one
uses a Voronoi decomposition to better define
which sample points go with which cluster
centers and to also determine what centers might
be affected by the addition of a new center.
Instead of doing this we use a measure of locality
to determine the mostly strongly affected centers.
It should also be possible to build an
approximate, localized Voronoi construction that
would be significantly faster than the full
Voronoi construction and that could handle new
centers. We plan to investigate this. But again
one could delay global optimization to the final
step of the cluster subdivision, as long as the
centers are not too far away from their optimal
positions, and still obtain an optimal clustering
at that point.

Cluster Results
We have applied the above approach to sets of

test data so that we have control over the size and
distribution of the datasets. We are also now
applying it to data from our global atmospheric
models. The test datasets are 3D spatial

distributions in varying patterns and of varying
sizes. We clustered based just on the spatial
distribution of the test data; there were no
variables associated with each point and thus no
analysis of variable distribution. For our data we
wanted to see how well our clusters reproduced
the distribution and clumping in the data and how
fast they ran.

The number of data points in the datasets
ranged from 5K to 200K. We chose one of the
datasets for extensive timing tests. In Table 1
below we compare results with and without the
bin sort for number of points up to 50,000. In
the bin sorted set we first determined the x,y,z
extent of the dataset and then divided these
extents into nx,ny,nz equal partitions. In this
case the partitions are 10x10x10, so the total
number of bins is 1,000. For each set of points,
we found around 50-60 cluster centers. (The
number varies slightly depending on the
distribution of data points.) All calculations were
performed on an SGI O2 with R10000 CPU.
Initialization is the time to read in the dataset and
find its x,y,z extent, and set up the bins (in the
bin sort case). "Iteration" is the time to perform
the cluster subdivision and reorganization
calculations until the target number of clusters is
reached. Table 1 reflects that the bin sort is a
small part of the total time as the number of
points grows above 25K; further analysis shows
that the data read takes most of the time. As we
might expect, in the bin sort case (Table 1a) the
cluster calculation times do not grow with
number of points. However, the clustering
without the bin sort grows in a super-linear
fashion and is 40 times slower than the sorted
case at 50K points. Although the timings in
Table 1b can undoubtedly be lowered by
optimization of the code, it is clear that one
cannot do cluster analysis of the original data
points if one has a small time budget.

Table 1a With bin sort
Size: 5,000 10,000 25,000 50,000
Initialization

time: 0.198s 0.391s 0.990s 2.048s
Iteration time: 0.311s 0.263s 0.256s 0.361s
Total time: 0.508s 0.654s 1.246s 2.410s

Table 1b Without bin sort
Size: 5,000 10,000 25,000 50,000
Initialization

time: 0.196s 0.376s 0.912s 1.808s
Iteration time: 3.913s 8.705s 36.815s 93.650s
Total time: 4.110s 9.081s 37.727s 95.458s

9

To further investigate the effects of dataset size,
we looked at bin sorted datasets with up to 200K
points (Table 2). It is clear that the effects of the
initial data read begin to dominate while the
clustering continues to remain constant. At
200K points the data read time is nearly 20 times
that of the clustering, dominating both the
clustering and the bin sort. Thus if we had a
time budget of, say, 100 sec. (see Fig. 2) for the
initial global overview of the data, we might be
restricted to datasets no larger than around 2M

points. Of course, these results clearly suggest
where big improvements in speed can be made.
If the data reading (and perhaps the bin sort, too)
were parallelized, significantly larger clusters
could be rendered within the time budget.
Ultimately, however, touching each data point no
longer works and one must convert to a
statistical sampling approach. This analysis
gives information about where that point might
occur.

Table 2 Bin sorted clusters as a function of size
Size: 50,000 100,000 200,000
Initialization time: 2.048s 4.21s 8.31s
Iteration time: 0.361s 0.39s 0.40s
Total time: 2.41s 4.60s 8.71s

The question remains as to how good our fast
clustering method is. We have not done a
thorough analysis, but our results indicate that
the method is reasonably good in defining
appropriate clusterings. Certainly it appears
good enough to give a quick overview of data
patterns and structure with enough information
that the user can build a more detailed
exploration. For example, Fig. 4 shows both
the points from one dataset and the cluster centers
derived from them. This is for the case where a
bin sort was applied first. The cluster centers are
represented by spheres whose sizes are
proportional to the number of points contained.
We chose this simple representation for this first
work but have additional information about the
shape and orientation of the clusters that we
could also represent. This information will be
the basis of the feature extraction and feature-
following methods that we will pursue in the
future. The "arched" spatial structure of the
dataset in Fig. 5, with number of points varied as
needed, forms the basis of the analyses presented
in Tables 1-3. We have tried datasets with other
spatial structures and find that clustering also
captures these structures reasonably well. For
comparison we have also run the arched dataset
without the bin sort as shown in Fig. 6. The
clustering results with and without bin sort show
the same arched structure and clumping of cluster
centers near the top of the arch, though they
differ in some details. This general agreement is
good news because it supports using the much
faster bin sort method. We are presently working
to further minimize the differences between the
two methods.

V. Octree Hierarchical
Construction

The above clusters can be put in a loose
hierarchical structure (e.g., clusters unfold into
sub-clusters and so on), but it is often useful to
make a more formal hierarchical construction
with a well-defined structure. Among the
simplest 3D spatial hierarchies are octrees, which
have been applied to a variety of topics including
visualization of 3D scalar fields and development
of multiresolution grids for 3D simulations.
Here we use them for exploratory visualization
because it is relatively easy both to adapt the
level of detail to local features and to control the
level of detail dynamically.

In our approach we initially subdivide each
octcell until its data satisfies some constraint,
such as the number of points in the cell reaches a
predetermined minimum, a measure of the
variance in a control variable falls below a certain
value, or the depth of the octree at that cell
exceeds a predetermined level. The subdivision
can be controlled interactively by adjusting any
of these controls. The selection could occur
either by an active choice or by a procedure that
responds to the motion of the viewpoint through
the data. In practice we apply a combination of
these constraints; for example, we use a variance
threshold in the control variable and also don't
allow the octree to exceed a certain depth. Of
course, the octree approach has the usual problem
of possibly dividing clumpings of data along
arbitrary cell boundaries. This may be acceptable
when the approach is used as an exploratory
technique to be followed by more precise
analyses. And the octree provides an efficient
hierarchical data structure that can be used for

10

further data analysis or can even be a building
block for other techniques.

The chief difficulty in creating octrees for large
datasets is that building a tree by recursive
subdivision can be rather slow, since each point
must be touched at each level (unless a cell
reaches a threshold and thus does not divide into
children at the next level) . As a trade-off we
apply the bin sort described in the last section (in
this case to 23n bins where there are n+1 octree
levels) and initialize the corresponding octree.
The depths for the initial visualization can then
be set lower in less interesting regions by setting
a 'deleted' flag on particular octree branches.
When the user selects individual regions to
deepen, the cost of expansion will be less than
the cost of expanding the whole tree because only
a fraction of the points will need to be resorted.

To choose which bins to merge into the next
higher level of the octree , we first move up the
tree to compute summary statistics at every node.
Then we move back down the tree, deleting the
children of any node that fails to satisfy
constraints such as those mentioned at the
beginning of this section. The 'deleted' flags
speed the response to a user's request to show
more detail in a region. If the user selects an area
with some deleted bins, the system can simply
change flags back to 'undeleted' to refine the
visualization. During this process a hierarchical
pointer structure is built connecting parent cells
to children and providing pointers to original data
values at the lowest levels of the octree. The
pointers to data values permit analyses based on
subcells of the octree to be carried out, where the
hierarchical structure permits the correct data
values to be located quite quickly. Of course, as
the dataset grows in size, retaining these pointers
to original data may produce an unbearable
overhead. Thus we have provided the option of
turning off these pointers; the user would access
the original data for further analyses only after
choosing a small region of the hierarchy.

One disadvantage of starting with a tree
expanded to a constant depth is that it may waste
a lot of memory on sparse branches.
Furthermore, allocating large blocks of memory
for each bin can be the slowest part of using the
octree. We have found that we can reduce those
costs to a barely noticeable level by allocating
only a small amount of initial memory to each
bin, and then allocating additional memory as
needed on a bin-by-bin basis. For example, each
bin might start with memory proportional to the
average number of points per bin in the entire
dataset. As the bin sort progresses, some bins
will remain almost empty, and the bins that start
to fill can request additional memory.

Octree Results
To test out our approach we have applied our

octree method to some of the test data described
in the last section. Fig. 7 reveals the hierarchical
subdivision for a dataset with three main
clumpings of data. A simple metric based on the
density of data points was used to decide where to
merge octcells. One can easily add a metric based
on the distribution within the cell. Fig. 8
reveals more detail in the data clumpings by
coloring cells where the color represents density
of contained points. Gold cells have the highest
density of points, and some cells are made semi-
transparent to reveal the internal structure.
Results for the test datasets show that the octree
distributions match the fast cluster distributions.
Since the octrees tend to be slower, one might
employ the fast clusters for initial overviews.
However, the octrees provide a data structure that
can even be used with the clusters and offer an
orderly LOD structure when more detail is
desired. This structure can be traversed quickly
with delete and undelete flags set to switch detail
off and on.

VI. Exploratory Visualization
Applied to Terrain

A significant motivation for this work is our
ongoing work on real-time terrain visualization
[Lindstrom et. al., 1996; Koller et.al., 1995;
Lindstrom et.al, 1997]. In this paper we recast
the terrain visualization as a problem in
exploratory visualization of very large databases.
It then becomes a working demonstration of how
one can start with a (global) overview and unfold
ever greater detail, in this case continuously and
just by looking closer at regions of interest.

VGIS (Virtual Geographic Information System)
has recently been totally revamped into a global
visual simulation system [Lindstrom et. al., 97].
It support accurate depiction of terrain elevation
and imagery, moving vehicles, buildings and
other static objects, and features such as ground
cover, trees, and roads. VGIS permits interactive
display of geo-specific global terrain down to
millimeter resolution at interactive rates. It
provides a geographic-based data structure where
elevation and image data can be added to existing
datasets and where nested high resolution insets
can be placed accurately in lower resolution
background data. VGIS supports fine-grained
multithreading for maximum CPU utilization
and rendering speed, navigation within multiple
independent windows, and detailed control of
visual detail allowing either manual or automatic

11

mechanisms for balancing display accuracy and
rendering speed.

VGIS conforms to several of the criteria
established in Sec. II. The continuous LOD
terrain algorithm [Lindstrom et.al., 1996]
produces an adjustable threshold proportional to
scene complexity. It is view-dependent and has a
screen-space threshold. The latter means that one
has a direct means of relating scene (and thus
time) complexity to image quality. It has an
optimized data paging and caching mechanism
whereby data is brought in (in fixed size blocks)
and is swapped with data blocks no longer in use.
On the other hand, the VGIS hierarchical
structure exploits the special characteristics of
terrain or other height field data. It builds its
quadtrees from the bottom up in contrast to the
top-down approach used in the fast clustering
methods. Highest resolution patches for any
given area form leaf nodes to which lower
resolution nodes are linked until finally they
connect to the lowest resolution global overview.
All data is pre-processed so that it can be inserted
into the linked hierarchical structure for fast
retrieval. Although this precludes the fast
overview discussed above, it is appropriate for
terrain data where one usually has a good general
idea of which high resolution areas are of
interest. Furthermore, we have recently
developed new capabilities in terrain dataset
building that permit high resolution inserts to be
added to existing datasets in relatively short time,
no matter what the size of the existing dataset.
Thus one could explore more flexibly by adding
(or removing) higher resolution patches to a
global view. In fact an expanded version of
VGIS that we are planning will have both the
top-down (for visualizing certain 3D fields of
data) and bottom-up (for terrain) approaches
depending on the type of data.

In Figs. 9a and 9b, we show navigation of a
terrain dataset where one moves from a view of
the Southeast U.S. to a closer view of Georgia
around the Atlanta area. The terrain dataset being
navigated is nearly 3 GB in size. It starts with
an overview of the world at 8 Km resolution, has
the U.S. at 1 Km resolution, Georgia at 100 M
resolution, central Atlanta at 1 M resolution, and
the Georgia Tech campus at 0.5 M resolution.
Fig. 10 shows a 3D view of downtown Atlanta
that appears as one moves closer. Thus a user
can continuously navigate (except for a few
momentary pauses to page in high resolution
data) from a view of the whole earth to discover
features that are just a few feet across. Detail
unfolds and features reveal themselves as the user
moves closer to them. This is an example of

what we wish to achieve with our visual
exploration methods.

VII. Conclusions and
Future Work

In this paper we have considered the visual
exploration of scalably large datasets and
developed some new methods for this process.
Since user involvement is essential in this
process, we looked carefully at issues of time
criticality. We have thus cast the visual
exploration framework into questions of scales,
time budgets, and user involvement. In
particular we have shown that one can get useful
global overviews from resampled data at a small
fraction of the cost for considering the whole
dataset. Nevertheless one can still delve down to
get greater detail in any part of the data that
evokes interest and can, if desired, even analyze
original data. In addition an octree
decomposition method is also developed as an
adjunct to the clustering method. The data
structure derived for the octree method is of use
for both methods considered here. Both methods
can be used to develop hierarchical structures for
the datasets that can be extended by user
interaction. Information derived from the
methods can be analyzed so that patterns in the
datasets can be segmented according to shape,
size, dynamic behavior, or content. Finally we
recast our terrain visualization approach as a
problem in exploratory visualization. This
highlights key general issues for developing
tools to explore very large datasets and shows
what can be done with a particular, optimized
application.

This research suggest much future work. Data
from the clustering and octree methods can be
used to establish 3D features that can then be
categorized, tracked in time (or in response to the
changing of any other variable), and analyzed.
New methods for unfolding the detailed structure
of selected parts of the dataset via user interaction
should be pursued. These methods will lead to
on-the-fly building of a database hierarchy. Based
on the techniques presented here, new, more
accurate fast clustering methods with larger
numbers of clusters and support for sub-
clustering could be developed. The work
described in this paper suggests a separation of
data I/O and initial sorting procedures to data-
resident processors (perhaps distributed or
running in parallel) followed by transport of
results to a visual interface for analysis and
steering of the exploration process. We are
pursuing several of these possibilities.

12

VIII. References

1. Bryson, S. (1993). Implementing virtual
reality. SIGGRAPH 1993 Course #43
Notes, pp. 1.1.1-1.6.6, 16.1-16.12.

2. Edelsbrunner, H. and E. Mucke (1994).
Three-dimensional Alpha Shapes. ACM
Trans. Graphics 13, pp. 43-72.

3. Faber, V (1994). Clustering and the
Continuous K-means Algorithm. Los
Alamos Science 22.

4. Gross, M (1994). Subspace Methods for
the Visualization of Multidimensional Data
Sets. Scientific Visualization, pp. 172-185
(Academic Press, New York, 1994).

5. Hagen, H (1994). Visualization of Large
Data Sets. Scientific Visualization, pp.
186-198 (Academic Press, New York,
1994).

6. Hofmann, T., J. Puzicha, and J. Buhmann
(1996). "Unsupervised Segmentation of
Textured Images by Pairwise Data
Clustering. International Proceedings of
IEEE International Conference on Image
Processing Vol. III, pp. 137-140.

7. Johnson, David S. (1982). The NP-
Completeness Column: An Ongoing
Guide. Journal of Algorithms 3, pp. 182-
195.

8. Koller, David, Peter Lindstrom, William
Ribarsky, Larry Hodges, Nick Faust, and
Gregory Turner (1995). Virtual GIS: A
Real-Time 3D Geographic Information
System. Report GIT-GVU-95-14,
Proceedings IEEE Visualization '95, pp.
94-100.

9. Lindstrom, Peter, David Koller, William
Ribarsky, Larry Hodges, Nick Faust, and
Gregory Turner (1996). Real-Time,
Continuous Level of Detail Rendering of
Height Fields. Report GIT-GVU-96-02,
Computer Graphics (SIGGRAPH 96), pp.
109-118 (1996).

10. Lindstrom, Peter, David Koller, William
Ribarsky, Larry Hodges, and Nick Faust
(1997). An Integrated Global GIS and
Visual Simulation System. Report GIT-
GVU-97-07, submitted to Transactions on
Visualization and Computer Graphics.

11. Selim, Shokri and M.A. Ismail (1984). K-
means-type Algorithms: A Generalized
Convergence Theorem and Characterization
of Local Optimality. IEEEÊTransactions
on Pattern Analysis and Machine
Intelligence, PAMI-6 1, pp. 81-73.

12. Silver, D. (1995). Object-Oriented
Visualization. IEEE Computer Graphics
and Applications, 15, 3 pp. 54-64.

13. Tanin, Egemen, Richard Beigel, and Ben
Schneiderman (1997). Design and
Evaluation of Incremental Data Structures
and Algorithms for Dynamic Query
Interfaces. Proceedings IEEE InfoVis '97,
pp. 81-86.

14. Tovey, Craig (1985). Hill Climbing with
Multiple Local Optima. SIAM Journal of
Algorithms and Discrete Methods 63, pp.
384-393.

15. van Walsum, T., F. Post, D. Silver, and F.
Post (1996). Feature Extraction and Iconic
Visualization. IEEE Transactions on
Visualization and Computer Graphics, 2,2
pp. 111-119.

16. Watson, Ben, Neff Walker, William
Ribarsky, and Victoria Spaulding (1997).
The Effects of Variation of Frame Rate And
Latency on Performance in Virtual
Environments. Report GIT-GVU-96-33, to
be published in Transactions on Computer-
Human Interactions.

17. Wise, J., J. Thomas, K. Pennock, D.
Lantrip, M. Pottier, A. Schur, and V. Crow
(1995). Visualizing the non-Visual:
Spatial Analysis and Interaction with
Information from Text Documents.
Proceedings IEEE InfoVis '95, pp. 51-58.

