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SUMMARY

The Vaccine Cold Chain, an important part of the process of storing and distributing
vaccines, is by nature an energy intensive procedure. Since vaccines must be kept at low
temperatures throughout their life cycles prior to administration, dedicated refrigerated storage
facilities are required to maintain the proper conditions while the vaccines are kept on the shelf.
A key component of this cold chain for developing and transitional countries is the primary
vaccine storage warehouse. As the starting point for the distribution of vaccines throughout the
country, these buildings have a significant amount of refrigerated space and therefore consume
large amounts of energy. In addition, due to the multiple separate temperature regimes required
for various vaccines and related supplies such as diluents, these warehouses have unique
combinations of thermal zones that makes them a fundamentally different type of facility in
comparison to other buildings that also require refrigerated storage, such as grocery stores.
However, despite the energy intensive nature of these buildings, there has been a lack of detailed

examination of these buildings by the global health sector to improve their energy efficiency.

Therefore, this thesis focuses on analyzing the relative importance of parameters for the
design of an energy efficient primary vaccine storage warehouse with the end goal of achieving
Net-Zero Energy operation. A total of 31 architectural design parameters, such as roof insulation
U-Value and external wall thermal mass, along with 13 building control parameters, including
evaporator coil defrost termination and thermostat set-points, are examined. The analysis is
conducted across five locations in the developing world with significant variations in climate
conditions: Buenos Aires, Argentina; Tunis, Tunisia; Asuncion, Paraguay; Mombasa, Kenya;

and Bangkok, Thailand. Variations in the parameters are examined through the implementation

XViii



of a Monte Carlo-based global uncertainty and sensitivity analysis to a case study building
layout. A regression-based sensitivity analysis is used to analyze both the main effects of each
parameter as well as the interactions between parameter pairs. The building layout used is based

on the plans drafted for a new primary vaccine warehouse for the Tunisian Ministry of Health.

The results of this research indicate that for all climates examined, the building control
parameters have a larger relative importance than the architectural design parameters in
determining the warehouse energy consumption. This is due to the dominance of the most
influential building control parameter examined, the Chilled Storage evaporator fan control
strategy, in comparison to all other parameters within the design space. This parameter has a
standardized regression coefficient over three times that of the next most influential parameter
for all but one location. Without the dominance of this parameter, the building control
parameters as a group have a lower relative importance than the architectural design parameters.
However, their influence is far from inconsequential. On average, the top five building control
parameters account for 22% of the variance from the uncertainty analysis, while the top five
architectural parameters account for 59%. The relative importance of the entire group of
building control parameters across all climates emphasizes the need for an integrated design
method to ensure the delivery of an energy efficient primary vaccine warehouse. Through the
inclusion of the personnel responsible for the building life cycle stages post construction, the
designers can increase the probability that the warehouse will in fact operate as designed. Based
on the results, a set of recommendations to help direct the attention of designers to the most

important energy saving parameters for each climate has been formulated.

XiX



CHAPTER 1: INTRODUCTION

1.1 Motivation and Essential Background

Vaccines are one of the most important innovations of modern society. With the
exceptions of access to clean water and sanitation, no other measure so positively impacts
reduction in mortality rates as the proper administration of vaccines (Plotkin, Orenstein, and
Offit, 2008). The World Health Organization (WHO) estimates that vaccines prevent the death
of over 2.5 million children every year (WHO, UNICEF, and World Bank, 2012). In addition,
vaccines prevent millions of cases of debilitating disease and disability. Immunization is also a
key component towards achieving the Millennium Development Goals (MDGs), which are a set
of eight goals that world leaders committed to in the year 2000 for improving human
development and reducing poverty on the global scale (United Nations, 2013). Increased efforts
for vaccination are particularly relevant to the fourth MDG of reducing mortality rates for
children under the age of five (WHO et al., 2012). For the first time in recorded history, the
number of children dying each year has fallen below 10 million as the result of increased
vaccinations, along with clean water, sanitation, and the delivery of essential health interventions

(WHO etal., 2012).

As the fight to improve global health through immunization continues to expand, so too
will the need to increase and improve the infrastructure required to support vaccination.
Currently, the WHO recommends a vaccine regimen that protects against eight diseases:
tuberculosis, diphtheria, tetanus, pertussis, polio, measles, hepatitis B, and haemophilus
influenza type b (Hib). However, in the past decade scientists have developed several new

lifesaving vaccines for diseases including rotavirus, human papillomavirus (HPV), and



meningococcal meningitis (WHO et al., 2012). As countries look to add vaccines such as these
into their regimens, even in nations where the populations are relatively stable there will be a
need for larger and more efficient facilities for vaccine storage. For instance, Tunisia has a
current population growth rate of only 0.98%, which is not anticipated to increase (Sims, 2011).
However, the capacity of Tunisia’s vaccine distribution system and the volume of vaccines
handled are set to increase up to five-fold by 2020 as pneumococcal, rotavirus, and HPV

vaccines are added (WHO and PATH, 2013).

In order to ensure the potency of vaccines, many of them must be maintained at low
temperatures from the time that they are manufactured until the time that they are administered
(Galazka, Milstien, Kartoglu, and Zaffran, 2006). Because of this requirement for low
temperatures, the activities that surround this process of storage and distribution are referred to
as the Vaccine Cold Chain (VCC). An integral component of this cold chain in developing
countries is the primary vaccine storage warehouse, the principal level store that receives vaccine
directly from suppliers for holding prior to distribution to smaller regional storage facilities
(Garnett, 2002). Primary vaccine stores are by nature energy-intensive buildings due to the large
amount of refrigerated space required to keep vaccines within the proper temperature windows.
Despite the large energy consumption of these primary storage warehouses, they are often
designed without a focus on energy efficiency. A common practice is to convert an existing
warehouse into a vaccine storage facility through the addition of walk-in coolers and freezers in
a piecemeal manner as storage needs increase. This results in highly inefficient buildings that

consume far more energy than necessary.

From the lack of documentation in the global health sector addressing energy concerns

for vaccine storage facilities, it is not surprising that energy efficiency is currently not a focal
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point of primary vaccine storage warehouse design. Only the most recent version of the industry
leading Managing Drug Supply (MDS) guidebook mentions that energy consumption should be
taken into consideration for the planning and construction of these warehouses (Garnett, 2012).
The lack of guidelines from global health literature may stem from a lack of research in VCC
energy efficiency. The only study known to this author that focused directly on improving the
energy efficiency of the vaccine cold chain is the Tunisian portion of Project Optimize, a
recently completed study led by PATH (Program for Appropriate Technology in Health) and
WHO (WHO and PATH, 2013). Optimize focused on turning a regional portion of the Tunisian
vaccine cold chain into a Net-Zero Energy (NZE) process through the implementation of electric
vehicles, solar panels, and building efficiency improvements such as LED lighting. However,
the study only focused on retrofits to a regional store, and did not address primary stores. In
addition, the study did not present a method that could be used by a design team for

incorporating energy efficiency into the design process for vaccine storage facilities.

However, Optimize does indicate that the global health sector is beginning to pay
attention to the energy concerns of the vaccine cold chain. The study was conducted under a
partnership between WHO and PATH, and was funded by the Bill and Melinda Gates
Foundation. These are three of the most influential organizations in the global health sector, and
the fact that all of them helped bring to fruition a study which in part advocates for energy issues
in the vaccine cold chain opens the door for more research in this area. The increasing demand
for new vaccine storage facilities as a result of the MGDs and the expansion of vaccine regimens
provides further motivation for research into this specific field, as the conclusions from research
could potentially help to save a significant amount of the energy required to operate the vaccine

cold chain. Additionally, research that identifies a method through which a design team can



incorporate energy efficiency concerns into the design process may help to support a shift in the

global health sector towards energy efficiency.

As primary vaccine warehouses are key components of the vaccine cold chain in most all
developing countries and are also the buildings with the largest potential for energy consumption
in this cold chain due to their large storage volumes, the research in this thesis is focused on
energy efficient design for this building genre. Primary vaccine warehouses present a unique
type of building, mainly due to the combination of the several distinctive temperature zones
required for vaccines, as well as vaccine-related supplies such as syringes and safety boxes.
Therefore, even though a significant amount of research exists for similar buildings such as
grocery stores, refrigerated warehouses, and non-refrigerated warehouses, the guidelines
established by these studies are all of limited applicability towards designing a primary vaccine

warehouse.

Further motivation for examining the energy efficient design of this portion of the
vaccine cold chain is provided by an ongoing project to design a Net-Zero Energy primary
vaccine warehouse for the Department of Basic Health Care (DSSB) in Tunis, Tunisia. As the
DSSB and the Tunisian Ministry of Health (MoH) were partners in Project Optimize, both of
these groups have vested interests in continuing to “green” the vaccine cold chain in Tunisia.
While the scope of Project Optimize included retrofitting existing buildings with energy
efficiency improvements and solar modules in order to produce a Net-Zero Energy facility, this
thesis focuses on designing and constructing a completely new facility that will be NZE from the
start of operation. If constructed, the project will be the first known health facility in North

Africa and the Middle East that is designed to achieve Net-Zero Energy by design. A portion of



this project is also funded by the Bill and Melinda Gates foundation, indicating that energy

efficient vaccine storage is a larger priority within the global health sector.

In the design of a new building, the common impression exists that the most important
parameters for determining the energy efficiency of the facility are the physical design variables
such as the insulation thickness and window glazing properties (Heller, Heater, and Frankel,
2011). However, recent studies have shown that the building operational control parameters,
such as temperature set-points, can also have a substantial impact on energy consumption (Heller
etal., 2011; Ruiz, Bertangolio, and Lemort, 2012; Wang, Mathew, and Pang, 2012). Building
operational control parameters are distinct from architectural design parameters because unlike
architectural parameters, these parameters are not only under the control of the design team and
can be adjusted post-construction. They are subject to active change during the commissioning
and operation of the building without large capital or time investment, such as would be required
for a retrofit to alter the architectural parameters. The significant impact that building control
parameters can have on the energy consumption of a facility emphasizes the importance of an
integrated design method as advocated for in building performance-based design methods
(ASHRAE, 2008; Pope and Tardif, 2011). In order to help ensure that the building performs as
close as possible to how it was designed, the personnel responsible for the life stages of the
building post construction must be included in the design process and understand the impact of

these parameters on the energy consumption of building.



1.2 Thesis Scope: Research Questions, Hypotheses and Method
The first goal of this thesis is to analyze the relative importance of architectural design
parameters and building control parameters on the energy consumption of a primary vaccine

warehouse. This thesis tests the following hypothesis:

Building control parameters are as significant as architectural design parameters in the

creation of an enerqy efficient primary vaccine storage warehouse.

This hypothesis is tested through a case study examining the building design proposed for
the new primary vaccine warehouse for the DSSB in Tunis. Using the basic layout created for
the building, a building energy model is developed. The influence of these two types of
parameters is explored through global uncertainty and sensitivity analysis. The architectural
parameters varied include all building envelope thermal properties such as insulation U-value,
thermal mass, and air infiltration, as well as mechanical system performance such as equipment
Coefficients of Performance (COP). The second category of building control parameters
includes factors such as the building temperature set-points, daylighting control strategy, and
evaporator fan control strategy. In addition to comparing the effect of building control
parameters and architectural design parameters, this thesis answers the following research

question:

What are the most influential design and building control parameters in determining the

energy consumption of a Net-Zero Enerqy primary vaccine warehouse?

The results of the global sensitivity analysis are also used to answer this question. This
allows for the identification of the relative importance of the parameters, establishing where

focus and resources should be directed towards improving energy efficiency during the design



process. While the initial uncertainty and sensitivity analysis was conducted assuming that the

building was located in Tunis, several other locations were tested in order to answer the question:

How does the relative importance of design and operational control parameters vary

across the prominent climates of the developing world?

The four additional cities are Mombasa, Kenya; Bangkok, Thailand; Buenos Aires,

Argentina; and Asuncion, Paraguay.

In the process of answering these research questions, a second goal of this thesis is to
illustrate a method that can be applied during the design process of a primary vaccine warehouse
to assist in the creation of an energy efficient building. While the conclusions of this research
and guidelines presented can help to establish rules of thumb that in general will lead to
improved energy efficiency, it is strongly recommended that the method implemented in this
thesis is applied on a case-specific basis to the design process each time that a primary vaccine
warehouse is created. In order to assist in the adaptation of the method implemented in this
thesis, a simplified design tool is being considered. However, the creation of this tool is beyond
the scope of this thesis and is discussed further in section 4.7.3 Improving Practicality for

Design.

1.3 Thesis Outline
This thesis is organized as follows:

Chapter 1 provides the motivating factors and essential background for the research
conducted in this thesis. It then presents the hypothesis and research questions that are the focus

of the work, along with the methods that will be used for investigation.



Chapter 2 gives a review of the relevant literature for the proposed research, and
discusses the knowledge gained from this review. The major topics examined encompass several
fields including building performance simulation, Net-Zero Energy design method, vaccine cold

chain design, and energy efficiency guidelines from industry.

Chapter 3 provides a detailed description of the method used to investigate the proposed
hypothesis and research questions. First the creation of the building layout for the proposed
vaccine warehouse for the DSSB is discussed, followed by a section on the formulation of the
building energy model from the layout. Then the global uncertainty and sensitivity analysis
approach implemented for the architectural and building control parameter investigation is

discussed.

Chapter 4 discusses the results of the research performed. First the main effects of the
uncertainty and sensitivity analysis are discussed, followed by a discussion of the interactions
between the influential parameters. Finally, an evaluation of the method implemented in this

thesis is given.

Chapter 5 completes the thesis with a discussion of the meaningful conclusions and
insights gained from the work. In addition, the chapter suggests paths for future work to build on

the research conducted.



CHAPTER 2: LITERATURE REVIEW AND BACKGROUND

This chapter presents a review of topics pertinent to the research questions addressed by
this thesis. The discussion begins with a background of the VCC as it is currently implemented
in developing countries and details the functions and operations of the primary vaccine storage
warehouse. As the scope of the research presented in this thesis is focused on a vaccine storage
warehouse, the chapter provides a detailed discussion of the efforts of Project Optimize, which is
the only study known to this author that has examined the implementation of a Net-Zero Energy
vaccine storage facility. After this section, the scope of the literature review is widened to the
realm of efficient warehouse design and Net-Zero Energy design in general. This includes
current design guidelines for storage warehouses that have been produced by members of
industry for improving the energy efficiency of these buildings beyond the baseline constructions
required by legal codes such as ASHRAE 90.1 (ASHRAE, 2004). The review shows that there
are currently no widely available guidelines for the design of energy efficient vaccine storage
facilities, and that guidelines from organizations such as the WHO have thus far focused only on
the logistical side of the supply chain. The latter portion of the section provides an overview of
the general design method for the creation of Net-Zero Energy buildings, including an overview
of the definitions for this important term. From this discussion it is clear that the implementation
of building performance simulations, along with parametric analysis tools, play vital roles in the
creation of energy efficient buildings by informing decision making to allow for a performance
based design process. The chapter then reviews the application of uncertainty and sensitivity
analysis during design, including previous studies that have examined building control and
operational uncertainty. Lastly, an overview of the current barriers to the implementation of

global uncertainty and sensitivity analysis in practice is given. As a result, this chapter