
User Interface Constraints for
Immersive Virtual Environment Applications

Doug A. Bowman and Larry F. Hodges
{bowman, hodges}@cc.gatech.edu

Graphics, Visualization, and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract
Applications of Virtual Environments (VEs) are rapidly becoming more complex and interactive. They are not
restricted to tasks that are solely perceptual in nature; rather, they involve both perception and action on the part
of the user. With this increased complexity comes a host of problems relating to the user interface (UI) of such
systems. Researchers have produced a body of work on displays, input devices, and other hardware, but very few
guidelines have been suggested for user interface software in 3D VEs. In this paper, we discuss the usage and
implementation of constraints, a fundamental principle for desktop user interfaces, in highly interactive virtual
environment systems. Our claims are supported with examples from the literature and from our own experience
with the Conceptual Design Space (CDS) application.

INTRODUCTION
Virtual environments (VEs) and virtual reality

(VR) hold great promise for a wide variety of
applications in business, industry, education, and
entertainment. However, very few immersive VR
applications are in use outside the setting of
academic research.

Surely, however, the potential exists for
immersive VR applications to help us do more
than walk through a planned building or play a 3D
tank game. Surely some sort of “real work” -
work which produces results and benefits for real-
world problems - can best be accomplished in an
immersive VE. Many ideas and prototypes for
such applications have emerged from research
centers in such diverse areas as medicine,
education, CAD/CAM, and visualization. Why,
then, have so few of these become competitive
products among the groups for which they were
developed?

Many answers to this question exist, including
prohibitive cost of equipment, or slow and
imprecise hardware. One important answer,
however, becomes apparent when one looks at the
defining characteristics of two applications that
have made it on a commercial level. Both
architectural walkthroughs and VR video games
can be characterized by a very low or non-existent
level of user interactivity (Note: by the term
“interactivity”, we mean the user’s ability to
create, manipulate, or change the objects in the
environment, or the environment itself. The
interaction of head-tracking is excluded, because it
is a defining attribute of immersive VEs). In other
words, the user can do little more than look
around, navigate the environment in some way,
and perhaps open a door or fire at an enemy tank.

These applications are in the mainstream
precisely because they require little interactivity.
More complex systems remain in research
laboratories, because while their functionality is
impressive, their interfaces to that functionality,
and their user interaction metaphors, are
inconsistent, imprecise, inefficient, and perhaps
unusable.

We believe that many of these complex
applications suffer from a lack of attention to the
user interface (UI) software. Although a great deal
of research has gone into interaction technology
such as haptic devices, gesture-recognition, and
displays, often fundamental principles of UI design
have been ignored.

In this paper we will explore the application
of one important interaction principle for desktop
UIs, namely constraints, to immersive VE
systems. We will also offer suggestions for the
implementation of constraints in the most
common user tasks in immersive applications. We
hope that this paper will foster more discussion on
the need for better UI design for virtual
environments, and that it will offer a first step
towards more usable and efficient VR applications
through the use of constraints.

Throughout the paper, in addition to numerous
examples from the literature, we will present
instances from our own experiences with the
Conceptual Design Space (CDS) system [24].
CDS is a highly functional, complex system
offering tools for architectural design in an
immersive environment. The system has been
used by professional architects as well as
architecture students for real design projects.
Because of the high degree of interactivity as well
as the ability to do real work in the system, CDS

provides an ideal platform for the study of user
interface issues for immersive applications.

FUNDAMENTAL USER INTERFACE
GUIDELINES

Perhaps the best-known human-computer
interaction guidelines are those proposed by Donald
Norman in his book The Design of Everyday
Things [1]. Norman argues for an interface to
computers that replicates all of the best things
about our interaction with the physical world,
while letting the machines transparently perform
the computations for which they were designed.

It is important that these principles are taken
from the physical world. Since a virtual
environment usually attempts to mimic real-world
interactions, these guidelines should be even more
applicable.

Also, appropriate and usable interfaces to VE
systems will become increasingly necessary as
these systems move from the research laboratories
into more widespread use. In a real-use setting, the
developer will not always be there to coach the
users, and the users themselves will not be experts.
Thus, our interfaces must become more usable,
requiring that closer attention be paid to principles
such as those described below.

Norman proposes several general user interface
guidelines. We will briefly discuss three of these
guidelines: affordances, mappings, and feedback,
and their application to virtual environment
applications. We will focus on a fourth principle,
constraints, for the remainder of the paper. These
four guidelines cannot be seen separately, however:
they are all related and interconnected. To obtain a
usable interface, each of the principles must be
considered.

Affordances
The first guideline concerns the provision of

affordances. Affordances are those elements of
an object or tool that give away its purpose and
usage. As an example, consider a coffee mug.
The mug’s physical characteristics, especially
those of its handle, naturally lead the user to hold
it in a certain way. In other words, the mug
affords this holding position. Norman argues
that computer interface software should provide
appropriate affordances as well, so that the user is
naturally led to correct actions rather than to errors.

For virtual environments, affordances would
seem to be simple. In theory, if we provide tools
that look and act just like their counterparts in the
real world (e.g. scissors for cutting, glue for
pasting), then users will intuitively grasp their
meaning and immediately begin to perform real
work. In practice, things are never so simple.

Some researchers have attempted to implement
VE systems where all tasks are afforded naturally.
Most of this work has fallen far short of its goals,
however. Smets, et al. [2] point to artificial
intelligence and more advanced hardware
technology as the sciences that will allow them to
produce this natural interaction. For now, though,
it seems that we must explore different methods for
affording correct user actions.

Mappings
A second guideline proposed by Norman, and

one closely related to affordances, is that good
mappings must exist between user actions and
system actions. In other words, an input by the
user via the interface should produce a proportional
response within the system. For example, when
the user of a desktop interface clicks the mouse on
an icon, she expects that the internal state of the
system will change to reflect that the entity
represented by that icon is now “selected”.

Some good mappings exist in all immersive
virtual environment systems, such as mapping
user head and/or hand motion to a corresponding
change in the displayed scene. It is more difficult,
however, to produce good mappings at a higher
level. One reason for this is the immense amount
of freedom given the users of most VE
applications.

Feedback
A third characteristic proposed by Norman for

good interfaces is feedback. Feedback refers to
the process of sending back information to the user
about what has been done. Good feedback should
follow naturally from good mappings: if the user
has performed an action that triggered an internal
system response, the system should let the user
know what happened via feedback at the interface.

Just as they are built-in mappings, head and
hand motion are inherent feedback for immersive
VR systems. This feedback, however, does not
help the user to perform work except by allowing
her to view the correct portion of the environment.
Complex systems, in terms of user interactivity,
require much more feedback to keep the user
informed of system state and responses. Common
information relayed via feedback includes
selections, modes, locations, etc.

CONSTRAINTS IN 3D VIRTUAL
ENVIRONMENTS

The fourth of Norman’s guidelines, and the
focus of this paper, is the need for constraints.
Constraints are the converse of affordances: they
limit the possible actions of an object.

The word “constraint” itself generally has a
negative connotation, since it refers to something

that limits us, but constraints are necessary in both
physical and artificial situations. Consider how
impossible it would be to live our daily lives
without the constraints of gravity, impenetrability
of solid surfaces, friction, and so forth. A world
without these things would be chaos, of course.

Most virtual environment applications,
though, present exactly that world: our systems
lack gravity, solid surfaces, friction, and other
useful constraints. Herein lies a great part of the
reason why performing work in VEs is so difficult.
In this section, we discuss in detail the need for
constraints in various aspects of VR systems, and
possibilities for their implementation.

Input Devices
The input devices used to interact with a VE

system provide the all-important link between
actions in the physical and virtual worlds. Because
of this, badly designed input devices can render
unusable the most carefully constructed software
UI. Input devices in common use today for VE
applications are gloves, 3D mice (with a variety of
different names, shapes, and number of buttons),
and in some cases, voice-recognition systems.
Although this paper is mainly concerned with the
implementation of software constraints for VE
interfaces, we will briefly consider these most
common options for input devices, with respect to
their level of constraints.

When most people think of a VR input
device, the glove immediately comes to mind. It
is supposed to be the hardware that allows us to do
anything in a virtual world that our hand can do in
the real world. From the standpoint of constraints,
though, gloves provide very few. There are simply
too many degrees of freedom, too many possible
device configurations. Better recognition
algorithms are being developed, but with so few
constraints, the user of a glove device is almost
certain at some point to fail to produce the correct
position or inadvertently trigger a response by the
system [3].

Voice-recognition systems suffer from much
of the same problem. There are such a variety of
sounds produced by a single human voice, not to
mention the variety of different voices for different
users, that fast and accurate speech-recognition is
very difficult to achieve. Again, algorithms are
improving, but the most accurate still require
training by each individual user before actual use.
This is unacceptable for systems that will have a
large number of occasional and first-time users.
The lack of constrained input is again the problem.

Also, both glove and voice systems lack
constraints from the user point of view, since
nothing exists to tell users which commands are
valid (a lack of knowledge in the world).

3D mice, in all of their forms, are the most
constrained of the three types of input devices
listed above. While the device itself still has six
degrees of freedom of motion, its buttons have
only one: they are either up or down. This
constraint allows precise input to the system. It
may not be as simple or elegant as a gesture or
voice-command, but it is accurate.

Both gloves and 3D mice are usually tracked
in three-dimensional space. In effect, then, a 3D
cursor is created. This produces another constraints
problem, in the sense that spatial input with these
devices (e.g. moving an object by moving the
hand) will be imprecise. Since VEs are by nature
three-dimensional, we cannot constrain the motion
of the input device to two dimensions in general.
However, software constraints, described later, can
be implemented that help to solve this problem of
inexact spatial input.

Objects
In many applications, the objects in the

virtual environment, as well as the behavior of
these objects, should incorporate constraints. This
is a very general requirement, so let us consider
some examples.

Boundaries, a special case of the general
collision detection constraint, are almost always
applicable, but are often ignored. By boundaries,
we mean that the virtual environment should take
up a defined space, out of which users should not
be allowed to navigate. The authors have seen
many VR applications in which the user was
confused and frustrated by flying through the floor
or out of the work environment altogether.

It is simple and computationally inexpensive
to program boundary constraints that keep the user
within the working space. General collision
detection (in which no objects can pass through
one another) is often the most desirable, but may
not always be feasible in real-time. A simple
boundary constraint, though, can greatly decrease
user frustration and error.

As another example of object constraints,
consider an application such as the Conceptual
Design Space (CDS) described in the introduction.
In our observation of users of this VR design
system, an early stumbling block was the simple
task of object positioning. In the first
implementation of CDS, the only way to move an
object was to select it (our selection mechanism is
described elsewhere in this paper), which attached
the object to the hand tracker (see Figure 1a), then
move the hand and/or navigate through the
environment before detaching the object in the
desired position.

 (a) (b) (c)

Figure 1. Three techniques for object motion in CDS: (a) direct manipulation, (b) constrained to a single
dimension, (c) indirect manipulation using menu and slider widgets.

This method works very well for large-scale,
gross motions, but is totally unusable for fine
placement. Users would place the object so that it
appeared in position from their vantage point, but
would discover upon moving elsewhere that the
position and orientation of the object were
incorrect.

To solve this problem, two levels of
constrained motion were added to the system.
First, control handles were attached to the object
on each of the three principal axes (similar to the
transformation widgets described in [4]). To move
the object in one dimension only, the user simply
selects the appropriate handle (Fig. 1b).
Subsequently, all hand motion is ignored except
for translation in the selected direction, and the
object is moved along with this translation until it
is detached by the user.

Secondly, we provided even more precision
and constraint by introducing a command system
for object motion. The user first sets a translation
value using a slider widget, then issues a command
via a menu selection, specifying the direction of
motion (Fig. 1c). The selected object is moved the
specified amount in the given direction.

Taken in the order given above, these three
implementations become more cumbersome, but
also more accurate. There is a tradeoff between
ease-of-use and precision for which a compromise
must be found. We have found that redundancy (in
our case, offering three methods for object motion)
allows the user to choose the method which best
fits the task at hand.

From these examples, then, it is clear that
most, if not all, VE applications would benefit
from the use of object constraints. In general, we
have seen that it is helpful to:

• constrain the navigation of the user to a
bounded area,

• reduce the number of degrees of freedom of
an object to increase precision, and

• provide redundant methods for tasks that
allow the user to choose the level of constraint.

Tools
We define tools in a virtual environment as

those objects in the environment that assist the
user in performing work with the system. They
are specialized objects, in some ways not part of
the environment itself, but rather the
representations of methods the user may employ to
perform actions on or in the environment. In this
sense, we may use the terms “tool” and “interface
element” interchangeably (Some would argue that
“tools” consist only of those interface elements
which allow direct manipulation of virtual objects,
but we make no such distinction. We have found
that indirect methods can be quite effective in
virtual environments, even though some
researchers feel that their use detracts from the
“reality” of the environment [2]).

Given this definition, we can say that tool
constraints are also a necessary part of a usable VE
application. Tools need to be limited in their
function, their number of configurations, their
degrees of spatial freedom, and so on. However,
we must make a tradeoff between a tool’s
generality and its constraints. It is clearly desirable
for VE tools to be general and reusable: just as the
same library of interface elements are used in most
desktop applications (menus, windows, buttons,
icons, etc.), we should also be able to reuse tools
in VE systems. If tools are made too general,
though, a lack of constraints can affect their
usability.

We have implemented several interface tools
for CDS that we feel are both general and
constrained, but let us consider one example at this
point. In CDS, as in several other VE

applications [5,6,7], virtual pull-down menus are
used to issue many system commands.

First, consider the inherent constraint and
precision of pull-down menus. Unlike continuous-
value tools, such as direct object dragging, menus
have by nature only discrete values (the discrete
entries in the menu). This property leads to
increased accuracy for the user (consider the relative
difficulty of placing an object at an exact
coordinate vs. choosing a given menu entry).
Also, precision can be enhanced further through the
use of a constraint which snaps the pointer to the
center of menu items [5].

A second important constraint can be
implemented for menus when one considers the
spatial nature of pull-down menus: they require
only two degrees of freedom to operate. In other
words, viewing a pull-down menu from the side or
the bottom does not increase their utility (it will
almost certainly make them harder to use), even if
the menus are actually 3D objects. Furthermore, if
menus are fixed in the environment or only move
when the user performs a specific action (e.g.
picking them up and moving them elsewhere),
then the user will almost certainly lose track of
their location.

Figure 2. Hierarchical virtual menus in CDS.

Thus, there is no reason to allow users to
move relative to menus. In CDS, as well as in
another implementation [6], menus are normally
seen simply as titles, which are bound to the user’s
head position so that no matter where she looks,
the menu titles are in the same position in her field
of view (FOV). In CDS, this is the extreme top
edge of the FOV, so as to obscure as little
environment information as possible. When a
menu is selected, its entries appear below it, from
which an item may be chosen (see Figure 2).

These two simple constraints greatly increase
the usability of the pull-down menus: they are
accurate and always available. Furthermore, menus
are a completely general tool that can easily be

reused in any highly interactive VE system.
Careful consideration, then, of both the generality
and constraints of interface tools for VEs is
extremely important if real work is to be
performed.

CONSTRAINTS FOR UNIVERSAL
TASKS

Besides their application to the various
physical and virtual components of a system, such
as input devices, objects, and tools, we can also
consider constraints for VE user interfaces from
another point of view. Just as with desktop
applications, there are a set of tasks that are
practically universal to all interactive VE systems.

In 2D, analysis of different methods of
performing universal tasks, such as pointing,
dragging, selecting, and other fundamental actions,
has led to efficient and effective techniques, as well
as a greater understanding of some general issues
for usable interfaces (e.g. [8]).

Naturally, then, if such tasks exist for
immersive VEs, we should attempt to understand
these tasks and compare the various techniques
available. In this section, we present four
“universal” actions of immersive VR applications,
techniques used to perform these tasks, and an
informal analysis of them based on the constraints
principle.

Navigation
Probably the most common task of all in VEs

is that of navigating through the space of the
environment. Some artificial method must be
provided for the user to move through the space,
assuming that it is larger than the area that can be
accurately tracked by the tracking system, and that
the application is not so limited that a single user
position with small head motions and rotations is
sufficient. Because this task is so prevalent, there
are almost as many solutions to it as there are VR
applications! Here, we take only a brief look at
navigation techniques in the context of constraints.

Perhaps the most natural method, though not
the simplest to implement, is to use physical
user motion. This has been implemented with
treadmills, roller skates, bicycles, etc. This
method contains inherent constraints, in that the
user can move freely only in two dimensions (on
the ground plane). This is helpful because users
are less likely to become disoriented. However, it
also exhibits undesirable constraints. Since
navigation speed is usually limited to the physical
speed of the user, a large environment is difficult
to navigate in this way [23]. Also, how does the
user obtain aerial views of the world, or stand on
the top floor of the building? This technique is

clearly not general or flexible enough for most
applications.

Another simple technique that is often
implemented is artificial flying, usually in the
direction of the user’s gaze or the user’s pointing
[13,20]. Generally, the user simply looks or
points in the direction she wants to go, and presses
a button or makes a gesture to fly in that direction
with a constant speed. Most often, the user is
allowed to fly in any direction with complete
freedom. Clearly, this technique is flexible
(assuming velocity may be changed), and gives the
user complete freedom over her position and
orientation in the space. In the light of our
guidelines, though, we can see that this method
has a lack of constraints: the user can easily get
lost or disoriented if given complete freedom [23].

To solve this problem, walking can be
introduced. This is the same as the flying
techniques, except that the user’s head is
constrained to a given height above the ground
plane. Since it would be too restrictive to make
this the only method of navigation, in CDS we
have allowed users to toggle between flying and
walking modes. This has proven to be quite useful
in that the users had complete control over their
position if necessary, but could also lock
themselves to a certain height (e.g. to walk on a
floor of a building, or to determine whether an
obstacle was too low to walk underneath).

Other methods (scaling, manipulation of an
iconic representation of the user, leaning, etc.) and
issues (interactive velocity and acceleration
changes, effect on users of constant resizing, etc.)
for navigation in VEs have been discussed and
implemented [9,10,12,13]. Our purpose here is
not to list them all, but rather to demonstrate the
utility of implementing constraints for VE
navigation tasks. A successful navigation method
should offer enough constraint to avoid user
disorientation and to simulate physical walking,
but should also be flexible for special user
movement needs.

User Commands
The second universal task that we consider for

virtual environments is the issuance of commands
by the user. Anyone familiar with desktop
computing environments will recognize command-
lines and pull-down menus as two different
methods of issuing commands. In this section, we
would like to explore ways of specifying
commands to the system while working in an
immersive VE.

Some would dispute the statement that user
commands are a necessary task for VEs. In fact,
many have speculated that the next generation of
user interfaces, not just for VR but for all

computing, will be characterized as n o n -
command user interfaces [14,15]. However, we
do not believe that the need for user commands, in
the traditional sense, will be completely
eliminated.

As we have stated, not all tasks are suited for
direct manipulation or for gestures. If a
completely abstract, symbolic task is accomplished
in one of these ways, the manipulation or gesture,
in the end, is simply another command with its
own syntax (not to mention that affordances and
mappings will be either non-existent or negative).
So, we claim that a need will always exist for
appropriate command issuance techniques. Here
we discuss two common methods and a hybrid
technique, using the constraints principle as a
guide.

A common belief is that interfaces to VE
applications should be as natural (like the physical
world) as possible. It is assumed that the most
realistic system will also be the most usable and
useful system. Even though commands seem
inherently unnatural, there are physical-world
parallels. Since most of these involve giving
orders to others using our voices, it is not
surprising that one popular method of issuing
commands in a VE is through v o i c e -
recognition.

As we saw in an earlier section, though, voice
systems suffer from a lack of constraints and
affordances: there is too much freedom, and
nothing tells the user what commands are valid.

In an attempt to solve this and other problems
with voice, some VE developers, just as their
counterparts in GUI development did, turned to
menu-based commands [5,16]. Although virtual
menus (as in figure 2) have been implemented in
many different ways, they all provide better
constraints: the number of choices is limited, and
the system can distinguish the chosen command
with complete accuracy. Because of this, novice or
occasional users can more easily issue appropriate
commands.

Experience has shown virtual menus to be
both effective and efficient; however, menus will
never be as efficient as speech, because they are
more indirect. Also, pointing in a 3D
environment is still difficult, because of its lack of
constraints. We need a technique that provides the
help and constraint needed by a novice, while
allowing the expert to issue commands as quickly
as she can think of them.

This was accomplished in desktop systems, of
course, through the use of keyboard shortcuts,
which allow the user to press a key combination to
issue a command normally accessible only through
a menu. A similar fix has been implemented by
Darken [6], in which voice-recognition is used for

all commands, but the commands are organized
into hierarchical menus as well. The novice user
does not have to remember the names of all the
commands: instead he navigates through currently
available menus and submenus by speaking their
names, which are continually floating just in front
of him in the 3D environment. Thus, constraint is
maintained while efficiency is increased (through
the use of speech). Also, 3D pointing is no longer
necessary for menu selection.

For experts, Darken’s system allows direct
invocation of a command without navigating
through the menus, which is analogous to
keyboard shortcuts. Also, the menu titles can be
turned off altogether, for users who are intimately
familiar with system commands.

This hybrid scheme exhibits the important
principle of fitting the interaction method to the
task. Since commands can be seen as a one-
dimensional operation, a 1D input technique
(voice) is used. The combination of this with the
other constraints greatly increases the usability and
efficiency of command issuance.

Object Selection
A third universal task in most virtual

environment applications is the selection of
objects in the virtual world. Because of its nature,
immersive VR is used most often for the display
and manipulation of 3D models that have some
analog to real-world objects (as far as we know,
there are no immersive word processing
applications!). The objects may be direct
representations of parts of the physical world at a
one-to-one scale (architectural models), physical
objects that cannot be directly experienced
(molecular structures), or depictions of some
abstract items which nevertheless are represented as
3D objects (information visualization).

In any case, immersive 3D environments all
contain such objects, and unless we only wish to
view them, our systems must provide some
method for selection. Some of the most common
uses of object selection include the specification of
an object to which we wish to apply some
command (the “noun” in the noun-verb model), the
grouping of various related objects, or the
beginning of an object manipulation (the object we
wish to move).

The most obvious and trivial technique for
object selection is simply to select an object when
the user’s hand comes into contact with it. For
example, if the user is faced with a virtual control
panel, she can simply move her hand to the
buttons or levers to activate them. This method
works well in situations such as this because it is
natural for the user to use her hand in the same

way that she would in the physical world to press a
button, pick up an object, etc.

However, considering constraints, this method
breaks down in more complex environments.
First, the selection “device” (the hand), is not
precise enough for the differentiation of small
and/or densely crowded objects. Secondly, the user
must physically navigate to distant objects in order
to select them, which is an inappropriate
constraint. A more general technique, then, is
needed.

Extending the desktop “point-and-click” idea to
a VE, several applications use ray-casting for
object selection [4,5], including CDS. In this
scheme, a ray is extended from the user’s hand into
the environment, and the first object intersected by
the ray is selected (see figures 1 and 2 for examples
of ray-casting in CDS). This eliminates the
problem of precision, since the intersection is a
single point, and the problem of distant objects,
since any object can be selected from any location,
as long as the user can point to it.

If the user cannot position the ray accurately
enough to intersect the object, due to poor visual
resolution or tracker noise, then distance still poses
a difficulty with ray-casting. Thus, some
researchers have suggested cone-casting, in
which objects within a narrow cone cast from the
user’s hand are selected. Because the width of the
cone expands as the distance from the hand
increases, far-away objects are as easy to select as
nearby ones.

In this case, then, the relaxation of constraints
which are too stringent leads to more usable
interfaces. It is important to develop, through
experience or guidelines, the proper levels of
constraint and freedom for the given task.

Object Manipulation
Finally, we wish to consider constraints for

the task of object manipulation. As we stated
above, practically all immersive VE applications
have as their focus a collection of 3D objects.
Once a selection method is determined, techniques
must be chosen to move, transform, or otherwise
modify the selected object(s). This is, of course,
imperative for any VE system in which “real
work” will be performed.

There are basically two choices for most
object manipulation tasks, which we touched upon
earlier when describing the task of object
movement. These are direct manipulation and
indirect, command-driven manipulation. For
certain tasks, only one of these schemes will be
usable. For others, both may be possibilities. In
fact, these represent the two fundamental
interaction paradigms available to designers of
Virtual User Interfaces (VUIs).

As we have stated, the interaction method
must fit the task at hand. Since object
manipulation tasks vary so widely (consider
scaling an object, changing its color, and adding it
to a group), it is impossible to say that one of
these paradigms solves object manipulation
problems better than the other. We can, however,
make some general comments about constraining
various object manipulation tasks.

The most obvious task in this category is
object movement (as well as other types of object
transformations, which are similar in their need for
constraints). We have already discussed this
problem in the previous section on object
constraints, so let us simply reiterate that it is
imperative to constrain object motion for tasks
requiring any degree of precision, and that various
degrees of constraints are often helpful in resolving
the tradeoff between efficiency and precision.

Object creation is another important
manipulation task. Constraining the creation of
objects is perhaps more important than
constraining their transformation. To see what we
mean by this, consider an implementation where
3D objects are created by sweeping out curves in
space with a six degree-of-freedom tracker. This
unconstrained technique will certainly result in
inaccurate and unusable objects, which will be
impossible to work with even if transformation
schemes are well-constrained.

We have found in our experience with CDS
that in many cases, it is sufficient to allow
creation of a fixed set of primitive objects (via a
menu command), which can then be transformed
and grouped to create more complex designs. For
creation tasks which are spatial in nature, such as
the specification of a simple architectural building
unit, we allow the use of tracker input for creation,
but filter that input so that only motion in one or
two dimensions is considered (e.g. specification of
2D points on the ground plane for a floor plan, and
then 1D specification of building height at each of
those vertices).

A third subcategory of manipulation tasks
contains those actions which are more symbolic or
abstract in nature, such as loading of files,
selection of colors, or changes to system
parameters. We believe that in almost all cases,
such tasks should be constrained to one- or two-
dimensional manipulations. If implemented
properly, this invariably leads to greater efficiency
and overall usability. Such tasks have no need for
3D spatial input, so why should the added burden
be placed on the user?

Several good examples of importing 2D
interfaces into 3D virtual environments can be
found in the literature [16,17,18]. The “paddle”
developed at Boeing, for example allows user input

to desktop applications on a physical 2D surface (a
clipboard), which is held in the user’s non-
dominant hand. Thus, input is constrained, and
users can take advantage of the natural spatial
referencing provided by two-handed interaction
[11,19].

CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a survey of

the use of constraints in user interfaces for
immersive virtual environments. Many other
issues for the software user interface of VE
applications still need to be addressed and
researched. We believe that a great deal of work is
still to be done in this area.

First, we need a more widespread recognition
of the problems of providing usable interfaces for
VE systems. Interacting in an immersive 3D
world, without the benefit of traditional input
devices, is by nature a difficult problem.
Certainly, hardware improvements and innovations
will improve the situation somewhat. However,
more technology alone will not resolve all of the
issues. A more systematic implementation of
constraints, as well as other software-based
solutions, can help bridge the gaps where
technology is limited.

Some general guidelines have been presented
above, but more are needed. We feel strongly that
many UI principles developed for desktop systems
also apply to VEs. The guidelines of Donald
Norman, on which we focused in this paper, are
especially valid because they were drawn from the
physical world which many VE applications seek
to emulate in some way. However, many
principles specific to VR must also be developed
and compiled into useful forms for designers of
highly interactive systems. The literature is
greatly lacking in this area.

Finally, a great need exists for usability
testing of interaction techniques themselves, and
the complex virtual environment systems which
use them. Surprisingly little work has been done
in this area. First, evaluation of basic techniques
for immersive interaction should be performed.
This will provide a quantitative foundation on
which we can build more complex systems.
Second, we need to enhance or modify existing
methods for application usability testing so that it
is useful for VE systems. Prototyping techniques
should be developed for testing early in the design
cycle. We also need more research and experience
in the testing of full-blown VE systems, so that
our user interfaces can be evaluated on a more
quantitative and controlled level.

ACKNOWLEDGMENTS
The authors wish to thank the following

people for their work and comments on this
research and the CDS system: Brian Wills, Tolek
Lesniewski, Harris Dimitropoulos, Jean Wineman,
Terry Sargent, Scott O’Brien, Hamish Caldwell,
Tom Meyer, Drew Kessler, David Koller, and E.J.
Lee. This work was supported in part by the
EduTech Institute and the National Science
Foundation.

REFERENCES
1. D. Norman, The Design of Everyday Things,

Doubleday, New York, New York, 1990.
2. G. Smets, P. Stappers, K. Overbeeke, and C.

van der Mast, “Designing in Virtual Reality:
Implementing Perception-Action Coupling
with Affordances,” Proc. VRST, 1994, pp. 97-
110.

3. G. Kessler, L. Hodges, and N. Walker,
“Evaluation of a Whole-Hand Input Device,” to
appear in ACM Transactions on Computer-
Human Interaction, December 1995.

4. M. Mine, “ISAAC: A Virtual Environment
Tool for the Interactive Construction of Virtual
Worlds,” UNC Chapel Hill Computer Science
Technical Report TR95-020.

5. R. Jacoby and S. Ellis, “Using Virtual Menus
in a Virtual Environment,” Proc. SPIE, Visual
Data Interpretation, vol. 1668, 1992, pp. 39-
48.

6. R. Darken, “Hands-off Interaction with Menus
in Virtual Spaces,” Proc. SPIE, Stereoscopic
Displays and Virtual Reality Systems, vol.
2177, 1994, pp. 365-371.

7. J. Bolter, L. Hodges, T. Meyer, and A.
Nichols, “Integrating Perceptual and Symbolic
Information in VR,” IEEE Computer Graphics
and Applications, vol. 15, no. 4, July 1995,
pp. 8-11.

8. S. Card, T. Moran, and A. Newell, “The
Keystroke-Level Model for User Performance
Time with Interactive Systems,” CACM, vol.
23, no. 7, July 1980, pp. 398-410.

9. R. Stoakley, M. Conway, and R. Pausch,
“Virtual Reality on a WIM: Interactive Worlds
in Miniature,” Proc. ACM SIGCHI Human
Factors in Computer Systems, 1995, pp. 265-
272.

10.R. Pausch, T. Burnette, D. Brockway, and M.
Weiblen, “Navigation and Locomotion in
Virtual Worlds via Flight into Hand-Held
Miniatures,” Proc. SIGGRAPH 95, in
Computer Graphics, 1995, pp. 399-400.

11.J. Goble, K. Hinckley, R. Pausch, J. Snell, and
N. Kassell, “Two-Handed Spatial Interface
Tools for Neurosurgical Planning,” IEEE
Computer, July 1995, pp. 20-26.

12.K. Fairchild, L. Hai, J. Loo, N. Hern, and L.
Serra, “The Heaven and Earth Virtual Reality:
Designing Applications for Novice Users,”
Proc. IEEE 1993 Symposium on Research
Frontiers in Virtual Reality, October 1993, pp.
47-53.

13.M. Mine, “Virtual Environment Interaction
Techniques,” UNC Chapel Hill Computer
Science Technical Report TR95-018.

14.J. Nielsen, “Noncommand User Interfaces,”
Communications of the ACM, vol. 36, no. 4,
April 1993, pp. 83-99.

15.M. Green and R. Jacob, “SIGGRAPH ‘90
Workshop Report: Software Architectures and
Metaphors for Non-WIMP User Interfaces,”
Computer Graphics, vol. 25, no. 3, July 1991,
pp. 229-235.

16.M. Ferneau, J. Humphries, “A Gloveless
Interface for Interaction in Scientific
Visualization Virtual Environments,” Proc.
SPIE, Stereoscopic Displays and Virtual
Reality Systems, vol. 2409, 1995, pp. 268-
274.

17.I. Angus and H. Sowizral, “Embedding the 2D
Interaction Metaphor in a Real 3D Virtual
Environment,” Proc. SPIE, Stereoscopic
Displays and Virtual Reality Systems, vol.
2409, 1995, pp. 282-293.

18.H. Sowizral, “Interacting with Virtual
Environments Using Augmented Virtual
Tools,” Proc. SPIE, Stereoscopic Displays and
Virtual Reality Systems, vol. 2177, 1994, pp.
409-416.

19.K. Hinckley, R. Pausch, J. Goble, and N.
Kassell, “A Survey of Design issues in Spatial
Input,” Proc. ACM UIST 94 Symposium on
User Interface Software and Technology, 1994,
pp. 213-222.

20.W. Robinett and R. Holloway,
“Implementation of Flying, Scaling, and
Grabbing in Virtual Worlds,” Proceedings 1992
Symposium on Interactive 3D Graphics, 1992,
pp. 197-208.

21.R. Jacoby, M. Ferneau, and J. Humphries,
“Gestural Interaction in a Virtual
Environment,” Proc. SPIE, Stereoscopic
Displays and Virtual Reality Systems, vol.
2177, 1994, pp. 355-364.

22.R. Bukowski, C. Séquin, “Object Associations:
A Simple and Practical Approach to Virtual 3D
Manipulation,” Proc. 1995 Symposium on
Interactive 3D Graphics, 1995, pp. 131-138.

23.F. Brooks et al, “Final Technical Report:
Walkthrough Project,” report to National
Science Foundation, June, 1992.

24.D. Bowman, “WiMP Design Tools for Virtual
Environments,” video proc. of Virtual Reality
Annual International Symposium, 1995.

