
A JavaScript Pitch Shifting Library for EarSketch with
Asm.js

Juan Carlos Martinez
Georgia Tech School of Music

840 McMillan St, Atlanta GA 30332
jcm7@gatech.edu

Jason Freeman
Georgia Tech School of Music

840 McMillan St, Atlanta GA 30332
 jason.freeman@gatech.edu

ABSTRACT
A JavaScript pitch shifting library based on asm.js was developed
for the EarSketch website. EarSketch is a Web Audio API-based
educational website that teaches computer science principles
through music technology and composition. Students write code
in Python and JavaScript to manipulate and transform audio loops
in a multi-track digital audio workstation paradigm. The pitch-
shifting library provides a cross-platform, client-side pitch-
shifting service to EarSketch to change the pitch of audio loop
files without modifying their playback speed. It replaces a
previous server-side pitch-shifting service with a noticeable
increase in performance. This paper describes the implementation
and performance of the library transpiled from a set of basic DSP
routines written in C and converted to Asm JavaScript using
emscripten.

1. INTRODUCTION
Since our team began to develop a browser-based version of
EarSketch with Web Audio API in 2013, supporting pitch shifting
has remained one of our most persistent technical challenges. Web
Audio API does not support pitch-shifting natively (i.e. changing
the pitch of an audio stream or file without changing its speed),
and pitch-shifters built from Web Audio unit generators alone are
limited in quality and generalizability [10]. We initially
implemented pitch shifting using a ScriptProcessorNode but
quickly ran into scalability problems well-known to
ScriptProcessorNode, such as the inability to run multiple pitch
shifting processes simultaneously without timing and performance
artifacts and the inability to include pitch shifting effects in offline
rendering contexts.

The approach we used in original production versions of
EarSketch, then, relied on server-side audio processing to pitch-
shift audio. The web client, using the offline rendering Web
Audio functionality, created an audio WAV file and sent it to the
server. Then, the server performed the pitch shifting
transformation using the C-based Sox audio processing library [2]
and returned the result to the client. This process is described in
the UML [5] sequence diagram in figure 1.

This approach works, but with several caveats. It uses
considerable bandwidth to transmit a rendered WAV file to the

server and download the pitch-shifted result. This is particularly
problematic since EarSketch is an educational environment and
the schools which use it often have limited Internet bandwidth. It
also places increased burden on the server to process pitch-
shifting, especially as EarSketch’s usage has grown.

Figure 1. Backend Server Sequence UML Diagram

In the remainder of this paper, we discuss an updated approach to
pitch shifting in EarSketch in which we pitch-shift audio files on
the client side (Figure 2) using our own pitch shift implementation
in C (transpiled to JavaScript with asm.js and emscripten). Like
the server-side implementation, this approach works within the
current limitations of Web Audio API but creates a client-side
service for performing the pitch-shifting, eliminating the
bandwidth and server resources previously required and speeding
up performance dramatically with no loss in quality. We describe
our implementation, evaluate its performance, and suggest it as a
generalizable paradigm for addressing Web Audio API limitations
through client-side offline rendering.

2. DESIGN
There are several approaches to develop a pitch shifting
algorithm; one of them is to perform the pitch shifting
transformation by using a Phase Vocoder [8]. Such an approach
has been widely used since the 1980s as a pitch transformation
tool having outstanding quality results. It is conducted in the
frequency domain; therefore it could be slower than other
methods in the time domain such as PSOLA [4]. Although
PSOLA has good performance for audio samples with a single
perceived pitch (monophonic), it is impractical for EarSketch
where many audio samples are polyphonic. Taking into account
these considerations, the phase vocoder technique was chosen as
the best option since this method yields good music quality results
in the polyphonic audio samples context.

The implementation of a JavaScript pitch-shifting algorithm raises
two performance concerns. First, JavaScript is a dynamic

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Juan Carlos Martinez, Jason Freeman.

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA

© 2016 Copyright held by the owner/author(s).

programming language running in a web browser without the
capabilities of multithreading nor is it able to run some
mathematical procedures at a low machine level. However, a
native plugin is not a feasible option because EarSketch must be
portable to different web browsers. The second issue is that Web
Audio API does not provide a full FFT transform with the phase
information (i.e. complex domain), meaning the FFT algorithm
also has to be implemented entirely in JavaScript. To address
these issues and implement pitch shifting with reasonable
performance, we used Emscripten, a transpiler that efficiently
converts C/C++ code into Asm.js JavaScript [9]. Asm is a very
efficient low-level subset of JavaScript.

Figure 2. Client Approach Sequence UML Diagram

Our main design goal was to build a web-client solution portable
to major web browsers that fully supported Web Audio API and
that could be easily migrated to real-time implementation with
AudioWorker in the future. In accordance to these goals, the
solution design was to implement the Phase Vocoder algorithm
business logic in plain JavaScript (i.e. not asm.js) and to migrate
the basic DSP methods (i.e. FFT, Phase Computation, and
Interpolation) from C to JavaScript asm.js. As a result of this
design, the solution is portable as it is written in pure JavaScript,
efficient as the key methods are written for asm JavaScript, and
easy to migrate as the business logic is readable. An additional
advantage of this design is the ease with which additional DSP
transformations such as time stretching or spectral morphing can
be added to the current functionality. Finally, to help improve
performance in the business logic layer, the pitch shifting
algorithm implemented in readable code uses Typed Array.

3. ALGORITHM
The basic pitch shift algorithm derives from the phase vocoder C
implementation of Moore [3], adding a final step that performs
variable-time compression in one block to improve performance,
instead of doing it frame by frame. The basic process flow, based
on the standard Short Time Fourier analysis, is shown in the
figure 3, where the basic processing methods are highlighted,
these last methods are the core of the transpiled library.

First, the FFT is conducted for each frame, and then the phase is
extracted. Once previous steps are accomplished, a phase
transformation is applied on a global array. The next step is to
apply the inverse FFT to convert it to time domain and the
segment is overlap-added to a global array, this way the phase
vocoder ensures a smooth transition between frames. Finally, after
the STFT processing takes place, a variable compressed version of
the overlapped waveform is created maintaining the source WAV
file’s original total time.

Figure 3. Phase Vocoder Flow Diagram

4. EVALUATION
Tables 1, 2 and 3 show some performance metrics comparing the
implemented JavaScript pitch shifting algorithm to other methods.
The client used for test 1 and 2 (table 1 and 2) was Google
Chrome v45 running on a Mac laptop with OSX Yosemite, a 2.2
GHz Intel Core i7, and 4 GB RAM 1333 MHz DDR3. The
internet connection during testing for table 1 has an
upload/download average rate of around 40 Mbps. The client used
for test 3 (table 3) was Google Chrome v48 and Mozilla Firefox
v44 running on a Mac desktop with OSX El Capitan, a 2.8 GHz
Intel Core i5, and 16 GB RAM 1863 MHz DDR3.

Table 1 includes the total time of an endpoint testing from
EarSketch using two different audio files. The new approach
using pure JavaScript generates a 4:1 ratio improvement
compared to the previous server-side solution.

Table 1. Comparative Processing Time for Backend Server vs
Client Pure Javascript

Audio Wav File
Size

Backend Server
Duration

JS Browser
Duration

48 secs 16 secs 4 secs
96 secs 30 secs 7 secs

Table 2 shows the time differences between the C base code
running native and the transpiled JavaScript version executed by
the browser. In both implementations, the FFT plus the phase
computations take around 80% out of the total time, which is the
expected result for a phase vocoder. However, it is important to
note that the FFT computation in the native version is 72 times
faster than that of the JavaScript browser counterpart.
Consequently, if Web Audio had a native FFT transform with
phase information (i.e. complex domain), the performance of any

audio transformation in the frequency domain will be increased
radically.

Table 2. Profiling of the total time spent by the main pitch
shift methods in its two versions: JavaScript Browser and C

Native

Method C Avg Duration JS Browser Avg
Duration

FFT 165 ms / 30% 11941 ms / 51%
Phase Computations 282 ms / 50% 7931 ms / 34%

Finally, in table 3, a 34 second mono audio WAV file was
processed with a 2 semitone variable-pitch shift in two different
browsers Google Chrome and Mozilla Firefox using our
JavaScript library, and the average processing time was measured.
Then, we added the ‘use asm’ directive to our library and repeated
the test. In both cases the performance of Firefox was superior to
Chrome and when the ‘use asm’ directive is employed the Firefox
average processing time is 40% lower than corresponding Chrome
average time.

Table 3. Average processing time between Google Chrome
and Mozilla Firefox

‘use asm’ Google Chrome Mozilla Firefox
no 1534 ms 1181 ms
yes 1371 ms 814 ms

Figure 4. - EarSketch Sample Screen

5. DISCUSSION AND CONCLUSION
This paper describes the design, development and implementation
of a pitch-shifting algorithm in JavaScript. The combination of a
C/C++ transpiler as emscripten to create a basic DSP library plus
the use of typed arrays in plain JavaScript results in a readable,
portable, performance-efficient and maintainable code library in
JavaScript. Additionally, it can be executed across different web
browsers that fully support Web Audio API such as Firefox,
Chrome and Safari. Although it is possible to create a very
efficient code with this approach, the fact that Web Audio does
not provide a full FFT transform with phase information limits

significantly the development of state of the art audio
transformations at the browser level. We hope that this library
offers a generalizable paradigm for combining asm.js DSP
functionality with Web Audio API applications in an organized,
efficient, and extensible manner.

The JavaScript pitch shift library was successfully integrated in
the EarSketch environment (Figure 4) and is currently in the
production release. The source code for the library is released
under a MIT license and is available at
https://github.com/GTCMT/pitchshiftjs.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under DRL #1417835. Many thanks to the
entire EarSketch project team
(http://earsketch.gatech.edu/personnel). EarSketch is freely
available at http://earsketch.gatech.edu/.

7. REFERENCES
[1] Freeman, Jason, Brian Magerko, and Regis Verdin.

"EarSketch: A Web-based Environment for Teaching
Introductory Computer Science Through Music Remixing."
In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, pp. 5-5. ACM, 2015.

[2] Sox – Sound eXchange. “Welcome to the home of SoX, the
Swiss Army knife of sound processing programs.”
http://sox.sourceforge.net/ (accessed September 26, 2015).

[3] Moore, F. Richard. Elements of computer music. Prentice-
Hall, Inc., 1990.

[4] Valbret, Hélene, Eric Moulines, and Jean-Pierre Tubach.
"Voice transformation using PSOLA technique." In
Acoustics, Speech, and Signal Processing, 1992. ICASSP-
92., 1992 IEEE International Conference on, vol. 1, pp. 145-
148. IEEE, 1992.

[5] Rumbaugh, James, Ivar Jacobson, and Grady Booch. Unified
Modeling Language Reference Manual, The. Pearson Higher
Education, 2004.

[6] Laroche, Jean. "Time and pitch scale modification of audio
signals." In Applications of digital signal processing to audio
and acoustics, pp. 279-309. Springer US, 2002.

[7] Mousa, Allam. "Voice conversion using pitch shifting
algorithm by time stretching with PSOLA and re-sampling."
Journal of electrical engineering 61, no. 1 (2010): 57-61.

[8] Moorer, James A. "The use of the phase vocoder in computer
music applications." Journal of the Audio Engineering
Society 26, no. 1/2 (1978): 42-45.

[9] Asm.js . “an extraordinarily optimizable, low-level subset of
JavaScript.” http://asmjs.org/spec/latest/ (last accessed
September 26, 2015)

[10] Wilson, Chris. “Audio-Input-Effects.”
https://github.com/cwilso/Audio-Input-
Effects/blob/master/js/jungle.js (last accessed September 26,
2015

