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PREFACE

The dissertation revolves around a class of infinite dimensional systems characterized

by state dependent delays or state suprema. Systems with sate-dependent delays

are ubiquitous in a lot of applications from physics, engineering, biology, ecology

and epidemiology. The delay is not constant but is modulated by the state of the

system itself. This feature makes the problem challenging. The difficulty lies in

characterizing the sate space and defining the Cauchy problem. Though systems

with constant delays have been extensively studied, the literature on state-dependent

delays is very sporadic. A unanimous framework for the analysis and design of systems

with state-dependent delays is still lacking. One of the advantages of such systems

is to use the delay information and invert it to recover the state of the system. This

leads to observer design. The work carried out in this dissertation is a step towards

the analysis and observer design for systems with state-dependent delays.

One needs to be very careful with variable delays whether time-varying or state

dependent. The system no longer remains causal when the delay rate surpasses unity.

Physically such systems make no sense. It is therefore mandatory to assume that the

delay rate is less than unity in order to ensure the causality, consistency and well-

posedness of the system.

There are systems where the evolution of the state depends not only on the current

state of the system but also on the supremum of the state over a history of a finite

or infinite memory length. Such infinite dimensional systems are a special class of

systems with state-dependent delays. The appearance of the supremum operator

makes them nonlinear. Here an effort is made to nail down the basic structure of

such systems and solve the controller synthesis and observer design problems. The
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discrete version is also studied and it is shown that such systems exhibit a character

of auto-hybrid Multi-Mode Multi-Dimensional (M3D) systems.

Practical applications are used to accompany the underlying theory of the con-

troller synthesis and observer design of systems with state-dependent delays and state

suprema. These include observer design for a subsonic rocket car, temperature con-

trol of a fluid in a tank, machine tool turning process, ocean navigation and analysis

of gene regulatory networks.
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SUMMARY

The prime objective of this research is to investigate systems with state-

dependent delays in a unified, well rounded, global and coherent framework from

the very basic first principles. Such systems are inherently nonlinear and infinite

dimensional in nature. The delay may either depend explicitly or implicitly on the

state of the system. Our goal and contribution is four-fold.

Firstly, to give an information structure i.e., to define the Cauchy problem and

characterize the state space for such systems. The state space should be a stationary

construct, it should be fixed once and for all, and should encode the minimal sufficient

information (statistic) for the evolution of the system. We use the framework of

Banach function spaces with the topology of uniform convergence. Once the state

space is well defined, stability analysis and controller synthesis is accomplished. In

systems with time-varying and/or state-dependent delays, causality plays a crucial

role and is lost when the delay rate exceeds unity. Throughout the analysis and

synthesis problems in this research, causality of the system is ensured by keeping the

time evolution rate of the delay less than unity.

Secondly, we perform the inversion of the state-dependent delay i.e., we use the

information on the delay and retrieve the state vector of the system. We use our

newly established technique of Delay Injection to recover the state of the system and

solve the observer design problem.

Thirdly, we analyze and design controllers and observers for a special class of

systems with state-dependent delays namely systems evolving with state suprema.

We nail down the rich structure possessed by these systems. First we define the

sate space for such systems and then solve the controller synthesis and the observer

xix



design problems. We also show that these systems can be expressed as Multi-Mode

Multi-Dimensional (M3D) systems.

Fourthly, we investigate the spectrum of higher order linear time delay systems

in the framework of matrix Lambert W functions and give some counter examples to

show that the already existing well established literature suffers from some discrep-

ancies and limitations.

We support our theory with practical applications including estimator design for

a subsonic rocket car for soft landing, nonlinear observer design for a turning process

for high precision machining, observer design for the temperature control of a tank

with state-dependent delay and analysis of gene expression. Throughout our analysis

and synthesis problems, we use the exact models and nothing such as linearization or

approximations by truncated Taylor series are used.
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CHAPTER I

INTRODUCTION & MOTIVATION

1.1 Introduction

Delays are ubiquitous in nature. Whenever there is a transport of material, energy

or information, there always exists a lag or latency from the cause to effect or in the

states. This latency is referred to as delay in the system. The dynamic behavior

and the evolution of such systems cannot be adequately captured and described by

Ordinary Differential Equations (ODEs). Neglecting the delays in the models of such

systems translate to neglecting the physical realities. Time Delay Systems (TDS) also

called hereditary systems or systems with after-effects are described by Functional

Differential Equations (FDEs) or Delay Differential Equations (DDEs). The initial

history of such systems does not lie as a point in a finite dimensional space Rn but is

a function in some suitable function space. As a result, TDS are inherently infinite

dimensional systems.

Time delays can be constant (fixed) as we have experienced while taking shower or

can be time-varying as in the internet congestion systems or vision based control loops.

The delays can be present in the system input, output, state or any combination of

these three. Over the last three decades, the literature on the analysis and design of

systems with fixed or constant delays has witnessed a huge proliferation. Both state

space and frequency domain based approaches have been used to study systems with

fixed delays.

There are a lot of practical examples where the delay is not constant but varies
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with the state of the dynamical system. We call such systems as systems with state-

dependent delays and the associated DDEs or FDEs as State-Dependent Delay Differ-

ential Equations (SD-DDEs). These are generally considered as very hard problems.

The major difficulty lies in defining the state space, the information structure and the

associated Cauchy problem. The literature on systems with state-dependent delays

is very sporadic and scattered and a general theory is still lacking. Also, many times

in the literature, linearization is used to translated the system to linear DDEs with

fixed delays, which is not correct! The linearized system with constant delay is not a

true replica of the original nonlinear system with state-dependent delay. To the best

of the knowledge of the author, there is no previous work on the observer design for

systems with state-dependent delays. The purpose of the work in this thesis is to fill

and bridge this gap.

The prime objective of this research is to investigate systems with state-dependent

delays in a unified, well rounded, global and coherent framework from first principles.

Such systems are inherently nonlinear and infinite dimensional in nature. The delay

may either depend explicitly or implicitly on the state of the system. Our goal and

contribution is four-fold. First, to give an information structure i.e., to define the

Cauchy Problem (Initial Value Problem) and characterize the state space for such

systems. The state space should be a stationary construct, it should be fixed once

and for all, and should encode the minimal sufficient information (statistic) for the

evolution of the system. We use the framework of Banach function spaces with the

topology of uniform convergence. Once the state space is well defined, stability anal-

ysis and controller synthesis is accomplished. In systems with time-varying and/or

state-dependent delays, causality plays a crucial role and is lost when the delay rate

exceeds unity. Throughout the analysis and synthesis problems in this research,

causality of the system is ensured by keeping the time evolution rate of the delay less

than unity.
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Secondly, we perform the inversion of the state-dependent delay i.e., we use the

information on the delay and retrieve the state vector of the system. We use our

newly established technique of Delay Injection to recover the state of the system and

solve the observer design problem.

Thirdly, we consider a special class of systems with state-dependent delays namely

systems evolving with state suprema. We nail down the rich structure possessed by

these systems. The state space, information structure and the Cauchy problem are

defined. First, we give sufficient conditions for the asymptotic stability of such systems

and then we synthesize the controllers and observers for such systems. The discrete

time counterpart of such systems is also analyzed.

Fourthly, we investigate the spectrum of higher order linear time delay systems

in the framework of matrix Lambert W functions and give some counter examples to

show that the already existing well established literature suffers from some discrep-

ancies and limitations. We support our theory with practical applications including

estimator design for a subsonic rocket car for soft landing, nonlinear observer design

for a turning process for high precision machining, observer design for the temper-

ature control of a tank with state-dependent delay and analysis of gene expression.

Throughout our analysis and synthesis problems, we use the exact models and nothing

such as linearization or approximations by truncated Taylor series are used.

1.2 Motivation

State-dependent delays can be found in a plethora of engineering applications. Here

we describe three important practical examples which will also be used as motivational

case studies in the next chapters. These examples illustrate scenarios where the delay

depends implicitly or explicitly on the state of the system under consideration.
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1.2.1 Subsonic Rocket Car (Soft Landing)

Consider the rocket car shown in Fig. 1. Let the instantaneous position of the rocket

car w.r.t. the wall be denoted by x1(t) and its velocity be x2(t). Let the thrust of

the engine be denoted by u(t). Now, assuming unit mass, it follows from Newtonian

dynamics that the rocket car can be modeled as,

ẋ1(t) = x2(t) (1)

ẋ2(t) = u(t) (2)

Now the transmitter Tx of the ultrasonic sensor transmits a sound wave signal which

travels with the speed of sound v, it is echoed by the wall and is detected by the

receiver Rx of the sensor. Let τ(t) denote the instantaneous round trip delay between

the transmission and reception of the pulse. Let us assume that the rocket car had the

position x1(t) at the moment when the pulse was received by the receiver Rx. This

means that the position of the rocket car at the moment when the sound signal was

transmitted was x1(t− τ). Thus, the round trip delay from transmission to reception

can be expressed by,

τ(t) =
x1(t) + x1(t− τ(t))

v
. (3)

Notice that here the delay τ is not only state-dependent but also implicitly related to

the state of the system. The objective is to use only the information on the implicitly

related delay τ and its derivatives to recover the state vector of the system in the

presence of known and unknown inputs. The details are given in [2] and [4].

1.2.2 Temperature Control of a Tank

Consider the problem of controlling the temperature of a fluid in a tank as illustrated

in Fig. 2. We see that there are two different pipes containing fluid at two different

temperatures. We call the ends of these pipes as hot junctions and cold junction

respectively. Let t represent an arbitrary instant of time. The fluid flowing in the
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Figure 1: Positions of the rocket car at the the instants the ultrasonic signal is
transmitted and received

hot junction is at temperature Th(t) whereas the fluid in the cold junction has a

temperature Tc(t) where Tc(t) < Th(t). The two fluids are mixed via a mixing valve

and attain a temperature Tv(t) at the output of the valve immediately after leaving

the valve. The tank is located at a distance d from the valve. The temperature of the

fluid in the tank is T0(t). Our objective is to control the temperature of the tank.

Figure 2: Temperature Control of a Fluid in a Tank

Because of the separation between the tank and the mixing valve and the fact that

the velocity (flow rate) of the fluid is not infinite, the fluid takes a finite but nonzero
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amount of time to reach the tank. This time τ is referred to as delay or more precisely

the transport lag. Let Ti(t) denote the temperature of the fluid entering the tank.

This temperature at any instant t is the delayed version of the valve temperature at

that particular time i.e.,

Ti(t) = Tv(t− τ). (4)

In this particular scenario, the control is achieved based on velocity or flow rate

control. Let the velocity of the fluid be q(t) at any time t. Here we control the

tank temperature T0 by means of velocity q that is T0 = f(q) and the actuator flow

rate or velocity is varied by the output temperature i.e., q = g(T0). Notice that in

this scenario, the delay no longer remains constant, rather it depends on the output

temperature T0. Mathematically, we can write this delay as the ratio of the distance

between sensor and actuating valve and velocity of the fluid i.e.,

τ =
d

q(t)
=

d

g(T0)
. (5)

This equation shows that the delay is state-dependent. A simple and convenient choice

would be to consider the velocity based control law as a linear or affine function of

temperature i.e., q(t) = g(T0) = k1T0 + k2 with k1 and k2 being constant gains. So,

the output temperature dynamics are given as follows [9].

Ṫ0(t) = −µT0(t) + µkT0

(
t− d

g(T0)

)
(6)

This motivates the analysis of the following state-dependent delay differential equa-

tion, where the delay is an explicit function of the state of the system.
ẋ(t) = αx(t) + βx(t− τ(x(t)))

τ(x) =
d

k1x(t) + k2

(7)

Here, x(t) ∈ R is the state and α, β ∈ R are some constants. A more practical

scenario is depicted below in Fig. 3. This shows a Continuous Stirred-Tank Reactor

(CSTR) which is used as a famous ideal reactor test bench in chemical and process
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engineering. This is also known as a vat reactor or backmix reactor. The top inlet

delivers liquid to be mixed in the tank. The objective is to maintain a constant

temperature by varying the amount of steam supplied to the heat exchanger (bottom

pipe) via its control valve. Variations in the temperature of the inlet flow are the

main source of disturbances in this process. See [9] for further details.

Figure 3: Continuous Stirred-Tank Reactor (CSTR)

1.2.3 Turning Process

Fig. 6 shows the standard schematic model of the turning process. In order to account

for the machine tool vibrations (chatter phenomenon), the tool is modeled by a mass,

spring and damper system. Fig. 4 gives a simple and conceptual diagram of the single

Degree of Freedom (1-DOF) motion of the tool, clearly depicting the desired profile

and the exaggerated actual turned profile. Because of the chatter of the machine tool,

the workpiece (job) undergoes/suffers interrupted cutting. As a result the turned

profile or surface is wavy. Fig. 5 portrays the Two Degree of Freedom (2-DOF)

motion machine tool and an exaggerated view of the the regeneration mechanism in

machine tool turning process as considered in [49].

We consider the 2-DOF motion of the machine tool as shown in Fig. 5. Ux(t) and

Uy(t) represent the horizontal x and vertical y components of the force exerted by the
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Figure 4: 1-DOF Motion of the Tool

machine tool on the workpiece respectively. Let x(t) and y(t) be the instantaneous

displacements of the tool in x and y directions respectively. The tool is characterized

by mass m, damping coefficient in the x direction bx, damping coefficient in the y

direction by, stiffness or (spring constant) in the x direction kx and the same in the y

direction ky . The motion of the tool is described by the following equations.

mẍ(t) + bxẋ(t) + kxx(t) = Ux(t) (8)

mÿ(t) + byẏ(t) + kyy(t) = −Uy(t) (9)

Referring to Fig. 5, if R is the radius of the workpiece, then the workpiece moves

by a distance of 2πR units when one revolution of the spindle is completed. Let

τ represent the lag (latency) or delay between the previous and current cut of the

workpiece. The current cut position is x(t), So the position at previous cut is x(t−τ).

Thus, the delay between the past cut and a present cut is precisely given by,

τ =
2πR + x(t)− x(t− τ)

Rω
(10)

where ω is the angular velocity of the spindle.
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Figure 5: Exaggerated View of Regeneration Mechanism in Machine Tool Turning
Process

Now we see from the above equation that the delay τ is a function of the state

(position x). We also notice that (10) is an implicit relation between the delay and

the state. This makes the inversion problem hard, challenging and intricate to analyze

because position cannot be easily recovered from the delay measurement. This fact

motivated us to estimate the position from delay measurement or observation which

leads to the design of observer.

Our scheme is based on a novel idea of delay measurements in a realistic scenario

using Fabry-Perot type interferometric sensors or high speed cameras. It is also

emphasized here that the same technique can be used for position estimation not only

in turning process discussed here as above but also in other machining techniques

such as milling and drilling. Accurate mathematical modeling and state recovery

guarantees high precision machining. The objective is to use the information on the

delay and design an observer to estimate the position and velocity of the tool.
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Figure 6: Standard Schematic Model of the Turning Process

1.3 Organization

The organization of the dissertation is as follows. In Chapter I, we give the basic

introduction, motivation, contribution and goals of this work. It also gives some

practical applications where systems with state-dependent delays arise. Chapter II

presents a comprehensive literature survey. In Chapter III, we give the necessary

mathematical machinery which involves concepts from functional analysis, operator

theory and complex analysis. These tools will be used in the subsequent chapters.

The state space characterization and the Cauchy problem for constant, time-varying

and state-dependent delays is discussed in Chapter IV. This chapter also focusses

on the causality and well-posedness of time delay systems. Chapter V describes

the qualitative behavior of systems involving state-dependent delays. Here we show

that truncation based on Taylor series approximations results in a lot of anomalies

in SD-DDEs. We also show that systems with state-dependent delays exhibit the

phenomenon of transcritical bifurcation. Chapter VI describes scale dynamic systems

and the self-starting character as one of their salient features. The novel idea of

delay injection for observer design is introduced in chapter VII and is applied to
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the position estimation of a rocket car, machine tool and basic submarine model

in a 3-D environment. Chapter VIII encapsulates the analysis and observer design

technique for a class of scalar systems with explicit state-dependent delays. Chapter

IX highlights a general framework for the analysis and synthesis of a class of nonlinear

systems with implicit and explicit state-dependent delays. The generic framework in

chapter IX is applied to gene expression regulation in chapter X. Chapter XI highlights

the analysis and observer design of scalar and higher order systems evolving with state

suprema. The discrete time counterpart is also discussed and M3D features of these

systems are also highlighted. The optimal control of a class of systems evolving with

state suprema is the subject matter of chapter XII. Chapter XIII brings the spectrum

analysis of linear time invariant systems in the LambertW function based framework.

Finally, Chapter XIV highlights the concluding remarks of the dissertation and future

recommendations.
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CHAPTER II

LITERATURE SURVEY

We divide the literature survey into three parts. The first section focusses on the work

related to systems with state-dependent delays. The second section encompasses the

literature survey relevant to systems evolving with state suprema which form a special

class of systems with state-dependent delays. The third part highlights the previous

work in the literature related to the spectrum analysis of linear time invariant systems

with constant delay in the framework of Lambert W functions.

2.1 State-Dependent Delays

Time delay systems in general and State-Dependent Delay Differential Equations

(SD-DDE) in particular have remained enigmatic in systems theory literature. A

proper system theoretic and rigorous treatment of time delay systems starts from

the seminal manuscript by Hale and Lunel [43]. In this book, the authors discuss

systems with constant and time-varying delays. They make it clear that one should

consider the state space as the function space consisting of the initial data on a delay

interval and then consider such equations as evolutionary equations in this function

space. The monographs [33] and [38] shed light on the robust stability and control

of TDS with constant or time-varying delays. In general, SD-DDEs are notoriously

hard problems, difficult to study mathematically and may possess some surprising

dynamics [58]. In [73], Runge-Kutta based methods are used to solve numerically

DDEs with time- and state-dependent delays. See [70] for a survey on TDS which

mentions systems with state-dependent delays as one of the open problems.

The analysis and observation of systems with state-dependent varying delays

brings a lot of intricacies in system and control theory. A lot of open problems
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in this area include but are not limited to information structure development, state

space characterization, solving Cauchy problem associated with state-dependent de-

lay differential equations, and stability analysis. Some recent work in this field starts

with toy systems as discussed in [85] and [86]. Besides the machine tool chatter

problem under consideration, these state-dependent delays also arise for instance in

measurement based on ultrasonic sensors in sonars, retarded potentials in electro-

magnetic theory, automatic milling machines, population dynamics, congestion con-

trol in communication networks and biological models to mention just but a few;

see [60], [44], [49], [1, 2, 4, 32, 87] and [24] and the references therein. See [71] for a

detailed survey of DDEs in single species population dynamics.

Some preliminary results on the asymptotic stability of systems with state-dependent

delay were given in [81]. Lyapunov-Krasovskii (LK) theory is used to obtain stabil-

ity conditions in the local framework. Hartung et al. in [44] illustrate the theory

and applications of functional differential equations involving state-dependent delays,

with emphasis on particular models and on the emerging theory from the dynamical

systems point of view. In [98], Walther models soft landing by an SD-DDE and it is

shown that soft landing occurs for an open set of initial data, which is determined

by means of a smooth invariant manifold. In [65], the authors consider the effect of

state-dependent delay on a weakly damped nonlinear oscillator. They also consider

Hopf Bifurcation and persistent oscillations associated with SD-DDE.

Sipahi et al. in a featured article [75] shed light on a wide spectrum of applica-

tions of time delay systems ranging from variable-pitch milling dynamics, microscopic

vehicular traffic flow, biochemical feedback in cell regulatory networks and epidemics

to operations research. They show that delays can also be used for the stabilization

of chaotic systems with unstable periodic orbits.

In [48], global stability lobes of turning processes with state-dependent delay are

investigated and in [55], bifurcation analysis is performed on a turning system with
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large and state-dependent time delay. Both the papers use approximate linearization

techniques. None of them considers the estimation problem.

Integrator back-stepping technique is used for forward-complete nonlinear systems

involving state-dependent delays [19]. A compensation technique known as predictor-

feedback design is used for the system characterized by an SD-DDE. Regional stability

results and an estimate of the domain of attraction is given. In [20], the authors

investigate a compensation technique for compensating state-dependent input delays

for both linear and nonlinear systems. For forward complete nonlinear systems with

state-dependent input delay, the authors of [20] and [21] design a predictor-based

compensator and give local results with a prescribed region of attraction.

In [3], the authors investigate the behavior of systems with state-dependent de-

lays. Here, the authors emphasize the fact that the truncated Taylor series approx-

imation or linearization of systems with state-dependent delays may lead to highly

erroneous and anomalous results. Recently in [62], a real world implementation of

a photonic dynamical system is presented and state-dependent delay is taken into

account. The system comprises a semiconductor laser with two delay loops which

are actively dependent on the laser’s dynamical state. The authors emphasize that

dynamical systems with state-dependent delays possess a different nature than the

one with time-dependent delays.

We use the exact models of state-dependent delays without any linearization or

Taylor series approximation. By first characterizing the state space, stability of

systems with state dependent delays is analyzed. Both explicit and implicit state-

dependent delays are considered. To the best of our knowledge, there is no work

done on the observation with state-dependent delays. We give a novel observer de-

sign technique referred to as Delay Injection to estimate the state of of a system with

state-dependent delay using the delay information.
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2.2 Systems Evolving With State Suprema

Voltage Regulation of a Constant Current Generator: We start with the following

system.

ẋ(t) = − 1

T
x(t)− q

T
sup

t−τ≤θ≤t
x(θ) +

1

T
w(t) (11)

The above equation was derived by E. P. Popov while studying the voltage regulation

problem of a constant current generator [69]. Here T ∈ R, q ∈ R and τ ∈ R+ are

constants which characterize the object. The state x(t) and the driving term (forcing

function) w(t) physically represent the regulated voltage and the perturbation effect

respectively at any arbitrary instant of time t. Notice that (11) not only involves the

unknown function x but also its maximum value over an interval of past history of

length τ and, therefore, represents an infinite dimensional system. Furthermore, the

presence of the sup functional makes the system nonlinear.

Hausrath Equation: One of the systems evolving with state suprema is the Haus-

rath equation [42],

ẋ(t) = −ζx(t) + ζ sup
t−τ≤θ≤t

|x(θ)|, ζ > 0, t ≥ 0 (12)

This equation possesses a richer structure than the one in (11). Here the supremum

over the past history can never go negative because of the modulus operator. However,

the regularity and smoothness of its solution are inferior to that of (11).

Vision Process in a Compound Eye: The vision process in the compound eye of

a horseshoe crab can be modeled by the following differential equation evolving with

state suprema [40].

ẋ(t) = −δx(t) + p sup
t−τ≤τ(t)≤t

(x(τ(t)), c); δ, p ∈ R, c < 0 (13)

where the state x is related to the activation potential above a certain threshold pro-

duced in sensory cell by light. The reciprocal of δ accounts for the response time

constant. τ stands for the lateral inhibition delay, which is about 100 msec. as de-

termined experimentally. The function sup(x(τ(t)), c) is called the rectifier function.
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Figure 7: Compound Eye of an Arthropod

The schematic structure of the compound eye of an arthropod is shown in Fig.

7. Light stimulation creates depolarizing graded potentials in insect photoreceptors

(as opposed to hyperpolarizing in vertebrate rods and cones). Action potentials do

not exist, generally, although they may have a role in photoreceptors of some species

(e.g. in the cockroach, [45]). The signals are processed in the first synaptic layer, the

lamina, and in the further neural centers (e.g. the medulla) in a retinotopic fashion.

Fig. 8 portrays the cross sectional anatomy of the compound eye of an insect

(arthropod). Notice that, unlike mammals and birds, it does not have a single lens.

A compound eye of a horseshoe crab is characterized by a large number of small eyes

(varying from a few to thousands) known as ommatidia, which function as indepen-

dent photoreceptor units with an optical system (lens, cornea and some accessory

structures) and normally eight photoreceptor cells. The compound eyes do not form

an image like the large lens eyes of octopi and vertebrates, but a “neural picture” is

formed by the photoreceptors in small eyes (ommatidia), which are oriented to receive

light from different directions. The authors of [52] established some very useful and

interesting links between the York 3/2 conditions, the Halanay inequality and scalar

differential equations with maxima. In [36], the authors deduced asymptotic equilib-

rium for a certain class of scalar FDEs with maxima. They use the basic inequality

of Gronwall-Bellman type, fixed point methods and contractive operators.

In [22], the authors investigate parametric stability for nonlinear differential equa-

tions with “maxima” in terms of two measures. The authors obtain several sufficient
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Figure 8: Cross Sectional Anatomy of the Compound Eye: Detailed View

conditions for parametric stability as well as uniform parametric stability. We refer

to [17] for the qualitative treatment of differential equations with maxima.

In this work, we want to understand the systems with state suprema from first

principles. Our objective is to unravel and explore the rich structure present in

this particular class of infinite dimensional systems. Very little is known about such

systems from systems and controls perspective. We want to analyze the stability and

solve the controller synthesis and observer design problem for these systems. The

discrete version is also studied and it is shown that these systems can be recast M3D

systems. The theoretical results and investigations of FDEs with “suprema” opens

the door to enormous possibilities for their applications to real world processes and

phenomena (see [17]).

2.3 Spectrum of Higher Order Systems With Fixed Delays

Consider the class of linear constant coefficient time delay systems with fixed delay,

ẋ(t) = Ax(t) +Adx(t− τ) (14)

where x(t) ∈ Rn is the state vector. The matrices A ∈ Rn×n and Ad ∈ Rn×n are

constant matrices and τ > 0 is the constant delay. The associated characteristic
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equation is,

det(sI−A−Ade
−sτ ) = 0 ; s ∈ C. (15)

In [53], a general matrix version of the Lambert W function was defined in terms of

the Jordan blocks. Following this formulation, an explicit expression was found for

the eigenvalues and spectrum of the above the system in the special case when the

system matrices A and Ad are simultaneously triangularizable which included the

special case of commutativity. It was shown that the matrix Lambert W function

based approach fails if AAd ̸= AdA.

In [105, 107], an algorithm is presented to extend and generalize the idea of find-

ing the characteristic roots and spectrum analysis to higher order case using matrix

Lambert W functions. The authors use the matrix Lambert W function based ap-

proach to find the characteristic roots and the spectrum; and analyze the stability,

controllability and observability of linear time invariant systems with a constant de-

lay. The methodology is general and is not restricted to a commuting pair of A and

Ad matrices.

We investigate some pathological and degenerate cases in the spectrum analysis of

higher order time delay systems using the idea of matrix Lambert W function. For the

scalar case i.e., first order time delay systems, the Lambert-W function framework can

be efficiently used. We show that the formulation carried out using matrix Lambert

W functions, suffers from some limitations. We provide some counter examples to

show that one needs to be very careful in drawing conclusions about the spectrum

of higher order system using this approach. In particular, Yi and Ulsoy’s algorithm

in [105, 107] does not produce satisfactory results when the modes have multiplicity

(repeated roots). In some cases, the algorithm produces unnecessary and redundant

roots which are not the actual modes of the system under consideration; in other

cases it fails to catch all the poles of the system. Also, the algorithm may give an

incorrect judgement of the dominant modes of the system.
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CHAPTER III

MATHEMATICAL MACHINERY

In this chapter we consolidate some mathematical tools which will be used in the

forthcoming chapters. This mathematical machinery contains some definitions, lem-

mas and theorems from functional analysis, operator theory and complex analysis.

3.1 Functional Analytic & Operator Theoretic Concepts

Definition 1 Set Closure The set consisting of the points of M and the accumula-

tion points (limit points of M) i.e., the union of M and its limit points is called the

closure of the set M . The closure of a set M , denoted by M̄ , is the smallest closed

set containing the set M . A set M is closed iff M = M̄

Definition 2 Dense Set A subset M of a metric space X is said to be dense in X

if the closure of M is X i.e., M̄ = X.

Definition 3 Separable Space A metric space X is said to be separable if it has a

countable subset which is dense in X.

Definition 4 Compact Operator Let X and Y be two normed linear spaces. An

operator T ∈ L(X,Y ) is said to be a compact operator if T maps bounded sets of X

onto relatively compact sets of Y . Equivalently, a compact operator is defined as a

linear operator T : X → Y such that for any bounded sequence {xn}, n ∈ N in X, the

image sequence {Txn} has a convergent subsequence in Y .

Compact operators behave in a similar fashion to those defined on finite-dimensional

spaces. Compact operators are also termed as completely continuous operators or

finite-rank operators. The following lemma is very useful in the context of compact

operators [30].
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Lemma 1 Let X and Y be two normed linear spaces and let the operator T : X → Y

be a linear operator. Then the following assertions hold:

(1). If T is bounded and dim(T (X)) < ∞ i.e., the range of T is finite-dimensional

then the operator T is compact.

(2). If the domain of T is finite i.e., dim(X) <∞ then the operator T is compact.

(3). The range of T is separable if T is compact.

(4). If S,R are elements of L(X1, X) and L(Y, Y1), respectively, and T ∈ L(X, Y ) is

compact, then so is the composite operator RTS.

(5). If {Tn} is a sequence of compact operators from X to the Banach space Y , that

converges uniformly to T i.e., ∥Tn − T∥ → 0 as n→∞, then the limit operator T is

a compact operator.

(6). The identity operator, I, on the Banach space X is compact if and only if

dim(X) < ∞. In other words, the identity operator I is not compact on infinite

dimensional spaces.

(7). If T is a compact operator in L(X, Y ) whose range is a closed subspace of Y ,

then the range of T is finite-dimensional.

Definition 5 Let X and Y be two normed linear spaces and T : D(T ) ⊂ X → Y a

linear operator. The graph G(T ) is the set

G(T ) = {(x, Tx)|x ∈ D(T )}

in the product space X × Y .

Definition 6 Closed Operator A linear operator T is called a closed operator if

its graph G(T ) is a closed linear subspace of X × Y . Alternatively, T is closed if

whenever

xn ∈ D(T ), n ∈ N and lim
n→∞

xn = x, lim
n→∞

Txn = y,

it follows that x ∈ D(T ) and Tx = y.
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The following can be easily established.

A linear operator T : D(T ) → H is closed if and only if the domain D(A) endowed

with the norm ||f ||T :=
√
||f ||2 + ||Tf ||2 is a Banach space i.e., a linear, normed and

complete space.

Definition 7 Resolvent Operator Let x ̸= {0} be a complex normed space and

T : D(T ) → X a linear operator with domain D(T ) ⊂ X. With T we associate the

operator

Tλ = λI − T

where λ ∈ C and I is the identity operator on D(T ). If Tλ has an inverse, we denote

it by Rλ(T ), i.e.,

Rλ(T ) = T−1
λ = (λI − T )−1

and is called the Resolvent Operator of T or, simply, the Resolvent of T .

Definition 8 C0-Semigroup A strongly continuous semigroup (C0-semigroup) is

an operator valued function T (t) from R+ to X that satisfies the following properties:

(1).T (t+ s) = T (t)T (s) for t, s ≥ 0;

(2).T (0) = I;

(3). ||T (t)x0 − x0|| → 0 as t→ 0+ ∀x0 ∈ X.

Definition 9 Infinitesimal Generator The infinitesimal generator A of a C0-

semigroup on Banach space X is defined by

Ax = lim
t→0+

1

t
(T (t)− I)x

whenever the limit exists; the domain of A, D(A), being the set of elements in X for

which the limit exists.

Next we present two very important generation theorems which give necessary and

sufficient conditions for open operator to qualify as an infinitesimal generator of a

semigroup.
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Theorem 1 Hille-Yosida Theorem A necessary and sufficient condition for a

closed, densely defined, linear operator A on a Banach space X to be the infinitesimal

generator of a C0-semigroup is that there exist real numbers M,ω, such that for all

real λ > ω, λ ∈ ρ(A), the resolvent set of A, and

||R(λ,A)r|| ≤ M

(λ− ω)r
, for all r ≥ 1,

where R(λ,A) = (λI −A)−1 is the resolvent operator of A. In this case

||T (t)|| ≤Meωt.

The Lumer-Phillips Theorem stated as follows gives a necessary and sufficient condi-

tion for a linear operator A on a Banach space X to be the infinitesimal generator of

a contraction semigroup.

Theorem 2 Lumer-Phillips Theorem Let a linear operator A be defined on a

domain D(A) which is a linear subspace a Banach space X the A is the infinitesimal

generator of a contraction semigroup if and only if

(1). A is closed.

(2). D(A) is dense in X.

(3). A is dissipative i.e.,||(A− λI)x|| ≤ λ ||x|| ; ∀λ > 0, ∀x ∈ D(A)

(4). A− µI is onto (surjective) for some µ > 0.

Moreover,

||T (t)|| ≤ 1, ∀t ≥ 0.

Definition 10 Regular Value, Resolvent Set, Spectrum A regular value λ ∈ C

of the operator T is a complex number λ such that

(1). Rλ(T ) exists,

(2). Rλ(T ) is a continous/bounded operator,

(3). Rλ(T ) is defined on a set which is dense in X i.e., the domain of Rλ is dense in
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X.

The resolvent set ρ(T ) of T is the set of all regular values λ of T . Mathematically,

ρ(T ) =
{
λ ∈ C : λI − T ∈ G(X)

}
=

{
λ ∈ C : λI − T has an inverse in L(X)

}
=

{
N (λI − T ) = {0} and R(λI − T ) = X

}
.

The complement of the resolvent set of T in C is called the spectrum σ(T ) of the

operator T i.e.,

σ(T ) = ρc(T ) = C− ρ(T ),

and a λ ∈ σ(T ) is called the spectral value of the operator T .

The spectrum of a bounded operator T can be classified or partitioned into three

disjoint components as follows.

Definition 11 Point Spectrum or Discrete Spectrum or Eigen Spectrum

The point spectrum or discrete spectrum of T i.e., σp(T ) is the set of spectral values

λ such that Rλ(T ) does not exist which happens when λI − T fails to be injective or

one-to-one. A λ ∈ σp(T ) is called an eigenvalue of T . Mathematically,

σp(T ) =
{
λ ∈ C : N (λI − T ) ̸= {0}

}
.

Definition 12 Continuous Spectrum The continuous spectrum σc(T ) of the op-

erator T is the set such that Rλ(T ) exists and is defined on a set which is dense in

X but Rλ(T ) is not bounded or continuous. Mathematically,

σc(T ) =
{
λ ∈ C : N (λI − T ) = {0},R(λI − T ) = X

and R(λI − T ) ̸= X
}
.
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Definition 13 Residual Spectrum The residual spectrum σr(T ) of the operator T

is is the set such that Rλ(T ) exists (and may be bounded or not) but its domain is not

dense in X. Mathematically,

σc(T ) =
{
λ ∈ C : N (λI − T ) = {0} and R(λI − T ) ̸= X

}
.

Notice that there cannot be any other component in the spectrum of T besides these

three constituent spectra.

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )

Also, the three constituent spectra are mutually disjoint. i.e.,

σp(T ) ∩ σc(T ) = σc(T ) ∩ σr(T ) = σr(T ) ∩ σp(T ) = Φ

and thus the whole (entire) complex plane C be partitioned as follows.

ρ(T ) ∪ σp(T ) ∪ σc(T ) ∪ σr(T ) = C.

It can be shown that the spectrum of a bounded operator is always compact. Fig. 9

shows various types of spectra of a bounded linear operator T defined on a Banach

space X.

Definition 14 Spectral Radius The spectral radius rT of a continuous operator

T : X → X is defined as follows.

rσ(T ) = sup
λ∈σ(T )

{|λ|}

It is the radius of the smallest disc centered at the origin that contains the spectrum

of T .

Also, it can be shown that, the following Gelfand’s formula can be used for computing

the spectral radius

rσ(T ) = lim
n→∞

n
√
||T n||
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Figure 9: Spectrum Analysis of a Continuous Operator T defined on a Banach space
X

where the norm in the above equation is any norm and, therefore, the spectral radius

of an operator is independent of the norm of the operator.

The following theorem is very useful in the spectral analysis of compact operators

[56], [67].

Theorem 3 Spectral Theorem for Compact Operators Let T : X → X be a

compact linear operator a Banach space X. The following spectral properties of T

hold:
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(1). Every nonzero λ ∈ σ(T ) is in the point or discrete spectrum σp of T i.e., it is

an eigenvalue of T .

(2). For all nonzero λ ∈ σ(T ), there exists m ∈ N such that N (λI − T )m = N (λI −

T )m+1, and this null space is finite-dimensional.

(3). The spectral values can only cluster or accumulate at 0. If dim(X) = ∞ then

{0} must be in the spectrum of T .

(4). The spectrum of T is at the most countably infinite.

(5). Every nonzero spectral value λ ∈ σ(T ) is a pole of the resolvent operator µ →

(µI − T )−1.

Remark 1:

Notice that when X is an infinite-dimensional space and T : X → X is compact then

λ = 0 must be in the spectrum of T . However it is not clear as to which part of the

spectrum it should belong. All the three cases are possible i.e., 0 ∈ σp(T ) or 0 ∈ σc(T )

or 0 ∈ σr(T ) as illustrated by the following examples. Consider the following systems.

ẋ = Ax

Example 1 Let A : l2(N)→ l2(N) be as follows.

A =



−1

−1/2

−1/3

−1/4
. . .


Here,

σ(A) =
∞∪
j=1

(
−1

j

)
︸ ︷︷ ︸

σp(A)

∪
{0}︸︷︷︸
σc(A)

Notice that here Ax = 0 implies x = 0. Therefore, 0 is not an eigenvalue of the

compact infinitesimal generator A and is, therefore, not in the point spectrum or
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discrete spectrum. Rather, {0} forms the continuous spectrum of A. It can be seen

that A does not have a continuous or bounded inverse. The system is asymptotically

stable.

Example 2 Let A : l2(N)→ l2(N) be as follows.

A =



0

−1

−1/2

−1/3
. . .


Here,

σ(A) =
∞∪
j=1

(
−1

j

)
︸ ︷︷ ︸

σp

∪
{0}︸︷︷︸
σp

.

Notice that here 0 is an eigenvalue of the compact infinitesimal generator A and is,

therefore, in the point spectrum or discrete spectrum. The system is stable but not

asymptotically stable.

Example 3 Let A : l2(N) 	 be as follows.

A =



0

1 0

0 1/2 0

0 0 1/3 0

...
...

. . .


Here,

σ(A) = σr(A) = {0}.

Notice that here 0 is in the residual spectrum (the only spectrum here) of the compact

infinitesimal generator A and is, therefore, not an eigenvalue. The range of A, R(A)

is not dense in l2, although A is injective. The system is unstable.

27



Example 4 Let A : l2 → l2 be as follows.

A =



0 1

0 0 1/2

0 0 0 1/3

0 0 0 0 1/4

...
...

. . . . . .


Here,

σ(A) = σp(A) = {0}.

Notice that here 0 is in the point spectrum (the only spectrum here) or eigenvalue of

the compact infinitesimal generator A. The residual and the continuous spectrum are

both empty. For all λ ∈ C \ {0}, the operator A − λI is always surjective as well

as injective, hence bijective and (A − λI)−1 exists and is bounded. The system is

unstable.

3.2 The Lambert W Function

The Lambert W function is defined as the multi-valued function which solves the

following transcendental equation:

W (z)eW (z) = z, z ∈ C, (16)

or, equivalently, as the multi-valued inverse of the function f : z 7→ zez. It is also

called the product log function or omega function. Equation (16) always has an

infinite number of solutions, hence the multi-valuedness of the W function. These

solutions are indexed by the integer variable j. Thus we say that (16) is solved by

the branches of the W function, Wj, for j ∈ Z. Of special relevance to physics and

engineering applications are the solutions of (16) when the argument is purely real.

In this case there can be at most two real solutions, corresponding to the branches

W0 and W1, where W0 is the principal branch of the W function. For real solutions

to exist, we must require that z ∈ (−1/e,∞), in which case W0(z) ∈ [−1,∞) and
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Figure 10: The two real branches of the W function. The solid line represents the
principal branch W0 and the dashed line represents W−1.

W−1(z) ∈ (−∞,−1]. Moreover, W0(z) < 0 if z ∈ (−1/e, 0) and W0(z) ≥ 0 for z ∈

[0,∞). The branches W0 and W−1 are monotonically increasing and monotonically

decreasing, respectively.

Fig. 10 portrays the two real branches of the Lambert W function. The solid line

represents W0 and the dashed line represents W−1. We can notice that W0(−1
e
) =

W−1(−1
e
) = −1 and W0(0) = 0. If z < −1

e
then there are no real solutions. All other

branches of W are always complex [77]. Using the Lagrange inversion theorem on

(16), the Taylor series expansion of the principal branch W0 around 0 is given by,

W0(x) =
∞∑
n=1

(−n)n−1

n!
xn = x− x2 + 3

2
x3 − 8

3
x4 +

125

24
x5 − · · · (17)

provided that |x| < 1
e
i.e. the radius of convergence is 1

e
. This shows that the principal

branch of the Lambert W function i.e. W0 is analytic at 0.

Implicit differentiation of (16) yields,

dW

dz
=

1

(1 +W (z))eW (z)
; z ̸= −1

e
(18)
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or

dW

dz
=

W (z)

z(1 +W (z))
; z /∈

{
0,−1

e

}
. (19)

Notice that,

dW

dz

∣∣∣∣
z=0

= 1. (20)

Besides the theoretical advantages of providing an adequate analytical formalism for

a given problem, another advantage of solving problems in terms of the W function is

the availability of libraries in computer algebra systems, which allows for a convenient

way to obtain values, expansions, plots, etc., of the quantity being solved for [77].

For a detailed survey on the Lambert W function and its applications we refer the

reader to a nice article by [29].

3.3 Razumikhin Theorem

We state the Lyapunov-Razumikin (LR) theorem which is a very powerful theorem

in the context of stability analysis of systems characterized by FDEs [43]. Unlike

the Lyapunov-Krasovskii (LK) functional based approach in an infinite dimensional

setting, this theorem uses functions which are relatively easier to handle with. This

theorem also gives sufficient conditions for the stability.

Here, Cn,τ = C([−τ, 0],Rn) denotes the Banach space of continuous vector func-

tions mapping the interval [−τ, 0] into Rn) with the topology of uniform convergence

and designate the norm of an element Φ in Cn,τ by

||Φ|| = sup
θ∈[−τ,0]

||Φ(θ)||a (21)

where ||.||a denotes any norm because in the finite dimensional space (Rn), all the

norms are equivalent.
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Theorem 4 Consider the functional differential equation
ẋ(t) = f(t, xt); t ≥ t0

xt0(θ) = ψ(t0 + θ),∀θ ∈ [−τ, 0]
(22)

where xt(θ), t ≥ t0 denotes the restriction of x(.) to the interval [t − τ, t] translated

to [−τ, 0], that is xt(θ) = ψ(t + θ),∀θ ∈ [−τ, 0] with ψ ∈ Cn,τ . Let the function

f(t, ψ) : R × Cn,τ → Rn be continuous in t and Lipschitzian in ψ withf(t, 0) = 0.

α, β, γ, η : R+ → R+ be continuous and nondecreasing functions with
α(r), β(r), γ(r) > 0; r > 0

α(0) = β(0) = 0

η(r) > r; r > 0

If there exists a continuous function V : R× Rn → R such that
(i). α(||x||) ≤ V (t, x) ≤ β(||x||), t ∈ R, x ∈ Rn

(ii). V̇ (t, x(t)) ≤ −γ(||x||) if

V (t+ δ, x(t+ δ)) ≤ η(V (t, x(t))), ∀δ ∈ [−τ, 0]

then the trivial solution of (22) i.e. the origin (x(t) = 0) is uniformly asymptotically

stable.

3.4 Halanay’s Inequality

The following lemma is very handy in the analysis and observer design of continuous

systems evolving with state suprema. It will be referred to as Halanay’s inequality

[41].

Lemma 2 If ḟ(t) ≤ −k1f(t) + k2 supt−τ≤σ≤t f(σ) for t ≥ t0 and if k1 > k2 > 0,

then there exists µ > 0 and k > 0 such that f(t) ≤ ke−µ(t−t0) for t ≥ t0. Moreover,

k = supt0−τ≤σ≤t0 f(σ) and µ = k1 − k2e−µτ .
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CHAPTER IV

STATE SPACE CHARACTERIZATION & CAUCHY

PROBLEM

The state of a dynamical system refers to the Minimal Sufficient Information (MSI) re-

quired for the evolution of the system or for characterizing the Cauchy problem. State

space should be fixed. For system characterized by Ordinary Differential Equations

(ODEs), the state space is the usual Euclidean space Rn. For systems governed by

Partial Differential Equations (PDEs) and/or Delay Differential Equations (DDEs),

finite dimensional spaces like Rn cannot suffice to be the state space. One needs to

consider suitable function spaces which are inherently infinite-dimensional. Once we

set the state space only then we can talk about the state, sate trajectory and stabil-

ity of the system. This chapter highlights the state space required for system with

constant, time-varying and state-dependent delays.

4.1 State Space for the Fixed Delay System

The Time Delay System (TDS) characterized by the Retarded Functional Differen-

tial Equation (RFDE) is not a finite dimensional system. The state is not just a

point on the real line R but is a function defined over an interval of compact sup-

port. The Cauchy problem for the evolution of the infinite-dimensional state can be

characterized as follows.

Σf :


ẋ(t) = αx(t) + βx(t− τ) ∀t ≥ 0

x(t) = ψ(t). ∀t ∈ [−τ, 0]
(23)

Where x(t) ∈ R is the state variable, τ ∈ R+ is the constant delay, ψ(t) ∈ C([−τ, 0];R)

is the initial infinite dimensional history function living in the Banach function space.
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Here C([−τ, 0];R) denotes the Banach space of continuous functions mapping the

interval [−τ, 0] to R with the topology of uniform convergence. This means that the

norm of an element ϕ in this function space is defined by the following uniform norm.

∥ϕ∥ = sup
θ∈[−τ,0]

||ϕ(θ)|| (24)

In mathematical analysis, the above norm is termed as the uniform norm (or sup

norm) assigns to real- or complex-valued bounded functions f defined on a set S the

non-negative number ∥f∥∞ = ∥f∥∞,S = sup { |f(x)| : x ∈ S } .

This norm is also called the supremum norm, the Chebyshev norm, or the infinity

norm. The name ”uniform norm” derives from the fact that a sequence of functions

{ϕn} converges to ϕ under the metric derived from the uniform norm if and only if

ϕn converges to ϕ uniformly.

From functional analysis, the space of continuous functions defined over compact

support and equipped with the uniform is always a complete space and is therefore a

Banach space. Also from Heine-Borel theorem, any set in Rn is compact if and only

if it is closed and bounded.

Since ϕ is a continuous function on a closed interval, or more generally a compact

set, then it is bounded and the supremum in the above definition is attained by the

Weierstrass extreme value theorem, so we can replace the supremum by the maximum.

In this case, the norm is also called the maximum norm. Therefore, (228) simplifies

to

∥ϕ∥ = max
θ∈[−τ,0]

||ϕ(θ)||. (25)

The following theorem gives a sufficient condition for the asymptotic stability of

the RFDE (23).

Theorem 5 [79] The null solution (equilibrium) x ≡ 0 of the homogenous equation

(23) is globally asymptotically stable if the following condition on the coefficients holds.

α + |β| < 0 (26)
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Note:

A more general higher order and robust version of the above theorem is proved in [79]

and [94]. It is worthy to be mentioned here that [79] is the historic paper where the

Riccati equation appears for the first time in the context of delay systems.

4.2 State Space for Time-Varying Delay System

Let the delay in (23) be a time-varying delay i.e., τ(t) so that the system becomes,

ẋ(t) = αx(t) + βx(t− τ(t)). (27)

Notice that C([−τ(t), 0],R) cannot be the state space. The state space should be fixed

and time independent. Also the delay rate τ̇ cannot be arbitrary. The backward time

t − τ(t) should be monotonically increasing in order to ensure causality, see [83].

This imposes τ̇ ≤ 1. This will be more emphasized in §4.4 when the causality and

well-posedness of variable delay systems will be discussed.

Assuming that the time-varying delay is bounded i.e., τ(t) ≤ h, h ∈ R+, and

also τ̇ ≤ 1, an appropriate state space for the time-varying delay system (27) is

C([−h, 0],R) or L2([−h, 0],R).

4.3 State Space for State-Dependent Delay System

In general, it is not an easy job to characterize the state space of an SD-DDE. The

reason is that the delay depends on the dependent variable x i.e., the solution of

the SD-DDE which we do not know a priori. One could be tempted to take the

space C([−τ(x), 0];Rn), but this makes no sense. State space should be a stationary

construct. It should be fixed once and for all. It should be independent of time

and space and it should require the minimal sufficient information or statistic for the

evolution of the system or for the characterization of the Cauchy problem. Assuming

that the state dependent delay τ(x) is bounded and 0 ≤ τ(x) ≤ τmax, one natural

choice is to take C([−τmax, 0];Rn) as the space for the initial history function to reside
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in. Unfortunately, this space is way too big for SD-DDEs and, as we elaborate in the

next subsection, there are anomalies associated with this space.

4.3.1 Some Peculiarities in the space C([−τmax, 0];Rn)

From the two counter examples given below, one can see that the space of contin-

uous functions C([−τmax, 0];Rn) is not appropriate to make the Cauchy problem of

the system characterized by the SD-DDE well posed. We need a higher degree of

smoothness or regularity on the initial history function to make the Cauchy problem

well defined.

Example 1: [32] Consider the following SD-DDE.

ẋ(t) = −2x(t− x(t)) + 5, t > 0 (28)

Consider the initial history function, ϕ(t) = x(t) = 2 +
√
|t+ 4| on −∞ < t ≤ 0.

Clearly, ϕ is continuous but not Lipschitz continuous. We can easily verify that for

this ϕ, both of the following functions satisfy (28) and are thus the solutions of the

SD-DDE.

x(t) = 4 + t, for t > 0

and x(t) = 4 + t− t2, for 0 ≤ t ≤ 2

Therefore, the solution is not unique on the space of continuous functions.

Example 2: [101] We consider the following SD-DDE.

ẋ(t) = −x(t− |x(t)|), t > 0 (29)

Consider the initial history function,

ϕ(t) = x(t) =


−1, if t ≤ −1;

3
2

3
√
t+ 1− 1, if −1 ≤ t ≤ −7

8
;

10
7
t+ 1, if−7

8
< t ≤ 0.
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Clearly, ϕ is continuous but not Lipschitz continuous. We can easily verify that for

this ϕ, both of the following functions are the solutions of (29) for small t > 0.

(i). x(t) = t+ 1, for t > 0

(ii). x(t) = t+ 1−
√
t3, for t > 0

Therefore, the solution is not unique on the space C.

In [86], the author analyzed the state space realization problem of the SD-DDE

ẋ(t) = ax(t − x(t)) and constructed the infinitesimal generator for the equivalent

system ẋ(t + x(t)) = ax(t) in the C1 framework. The infinitesimal generator was

constructed on the following state space.

X =
{
(x, ϕ(.)) ∈ R+ × C1((0, 1),R+) | ϕ̇ > 0, ϕ(0) = 1

}
Let C0,1 := C0,1([−τmax, 0];R) denote the Banach space of Lipschitz continuous func-

tions mapping the interval [−τmax, 0] to R with the topology of uniform convergence.

This means that the norm of an element ϕ in this function space is defined by the

following endowed norm.

∥ϕ∥0,1 = max{∥ϕ∥∞, ∥ϕ́∥L∞} (30)

Now, we consider a more general form of the nonlinear SD-DDE as follows.

Σs :


ẋ(t) = f(x(t− τ(x(t)))) ∀t ≥ 0

x(t) = ϕ(t) ∈ C0,1. ∀t ∈ [−τmax, 0]

(31)

where f is a function from R to R and τ is a function from C to [0, τmax]. Again here,

C := C([−τmax, 0];R) is the Banach space equipped with the norm topology as defined

in one of the previous sections.

As a standard notation for the state in the literature on TDS, let xt denote an

element of C defined by

xt(θ) = x(t+ θ), for θ ∈ [−τmax, 0]. (32)
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[60] wrote the SD-DDE (31) in the following form
ẋ(t) = F (xt)

x0 = ϕ,

(33)

where F (ϕ) = f(ϕ(−τ(ϕ))), for ϕ ∈ C. Clearly, whatever the regularity or smoothness

of f and τ may be, F is neither differentiable nor locally Lipschitz continuous.

The functions f and τ satisfy the following assumptions.

(A.1) f : R→ R is locally Lipschitz continuous.

(A.2) τ : C → [0, τmax] is Lipschitz continuous on the bounded sets of C.

(A.3) |f(x)| ≤ ξ|x|+ ζ, ∀x ∈ R with ξ and ζ being two constants.

(A.4) The functions f and τ are of class C1.

where, C1 := C1([−τmax, 0];R) denotes the Banach space of continuously differen-

tiable functions mapping the interval [−τmax, 0] to R with the topology of uniform

convergence. This means that the norm of an element ϕ in this function space is

defined by the following endowed norm.

∥ϕ∥1 = ∥ϕ∥∞ + ∥ϕ́∥∞ (34)

Clearly, we have the following inclusion.

C1 ⊆ C0,1 ⊆ C (35)

Notice that the Cauchy problem of the SD-DDE (31) is not well posed in the space C

whatever the regularity of the functions τ and f may be because of the fact that the

solution is no longer unique. As we saw in Example:1, f is a Cω (analytic) function

but the solution is not unique because the history is not a C0,1 function.

The solution on the space C0,1 is unique but a strongly continuous semigroup (C0

semigroup) cannot be constructed in this space. In order to create a C0 semigroup

and hence an infinitesimal generator of the semigroup, a closed subset of C0,1 is

required [60].

37



Notice that C0,1 is in fact a particular class of Sobolev spaces. Generally, C1 or

C0,1 is considered as a more friendly space for some classes of systems characterized

by SD-DDEs [44], [60].

4.4 Causality and Well-Posedness

In order to ensure well-posedness of systems with time varying delays [82], [83], [64]

and [90], we impose τ̇(t) ≤ 1. This is not just a technical condition to make the

analysis tractable but is an essential causality constraint and avoids inconsistencies

arising in the time-varying delay system. Violation of this constraint will make the

system non-causal and ill-posed. Non-causal systems are practically not realizable

and do not make sense physically. In summary, the following five potential problems

may arise if the delay has fast growth rate i.e., τ̇(t) > 1.

(i). Lack of causality

(ii). Lack of minimality

(iii). Non-uniqueness of the state space

(iv). Inconsistencies in the system

(v). Failure of existence and/or uniqueness of the solution

4.4.1 Implications

We now analyze this constraint and show that it is in perfect agreement with the

physical reality in the problems under consideration.

4.4.1.1 Rocket Car

From (3), in the rocket car case, we have

τ̇(t) =
ẋ1(t)− (1− τ̇)ẋ1(t− τ)

v

vτ̇(t) = ẋ1(t)− (1− τ̇)ẋ1(t− τ)

τ̇(t) =
ẋ1(t)− ẋ1(t− τ)
v − ẋ1(t− τ)

.

(36)
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Now, τ̇(t) ≤ 1 translates precisely to ẋ1(t) ≤ v which is quite natural and has a

reasonable physical meaning. How can the ultrasonic sensor measure the position of

the rocket car if the speed of the rocket exceeds the speed of sound?

For all the analysis and observer design problems it will be assumed that the

control effort is such that the rocket remains subsonic.

4.4.1.2 Turning Process

Now we come to the state-dependent delay in the turning process. From (10), we

have

τ =
2πR + x(t)− x(t− τ)

Rω

⇒ τ̇(t) =
ẋ(t)− ẋ(t− τ)(1− τ̇)

Rω

from which,

τ̇(t) =
ẋ(t)− ẋ(t− τ)
Rω − ẋ(t− τ)

. (37)

Now, using the causality and well-posedness condition,

τ̇(t) ≤ 1

⇒ ẋ(t)− ẋ(t− τ)
Rω − ẋ(t− τ)

≤ 1

⇒ ẋ(t) ≤ Rω. (38)

Notice that τ̇(t) ≤ 1 translates precisely to ẋ(t) ≤ Rω. This dictates that the linear

velocity of the workpiece cannot be smaller than the instantaneous horizontal velocity

of the tool in magnitude. This makes a realistic physical sense.

Comment 1:

It will be assumed that the control effort Ux(.) and Uy(.) in (8) and (9) respectively

are designed such that the causality and well-posedness condition is not violated.
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CHAPTER V

THE BEHAVIOR OF SYSTEMS INVOLVING

STATE-DEPENDENT DELAYS

This chapter focusses on the completely strange qualitative behavior associated with

the systems characterized by State Dependent-Delay Differential Equations (SD-

DDEs). We consider one of the most simple and innocently looking SD-DDEs ẋ(t) =

±x(t − x(t)). This retarded SD-DDE brings a lot of intricacies. It looks linear but

is actually a nonlinear SD-DDE in disguise. It exhibits the phenomenon of bifurca-

tion. Also there is a switch in the stability properties of this system. The type of

bifurcation exhibited by the system ẋ(t) = −x(t− x(t)) + µ is transcritical. Further-

more, its Taylor series approximation, based on truncation and partial sums, gives no

idea of the response. We show that Taylorization of SD-DDEs, which is ubiquitously

used in physics and engineering community, could be misleading. We also perform

singular and regular perturbation analyses and derive the solution of the small signal

perturbed system in terms of the Lambert-W function. We also demonstrate that

the instability of SD-DDE is quite different from that of ODEs. Our simulation re-

sults reveal that serious errors may occur when SD-DDEs are approximated either by

Taylorization or by constant delay systems.

5.1 Introduction

Here we explore and unravel the nature of systems with state-dependent delays. We

primarily consider the most basic dynamical system with the state-dependent delay

characterized by the functional differential equations as follows.

ẋ(t) = −x(t− x(t)) (39)
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and

ẋ(t) = x(t− x(t)) (40)

The state space for (39) was studied in [86]. Notice that the delay, x(t), should be

non-negative for all time otherwise the system is an anticipatory or advance system

which will not make any sense physically. Therefore, from the very start and scratch,

we assume that x(t) ≥ 0, ∀t ≥ 0.

We also make it clear that both of the equations (39) and (40) look apparently

simple and innocent but are nonlinear in nature because of the presence of state de-

pendent delay. It is not difficult to show that these equations fail to satisfy both the

properties of superposition (additivity and homogeneity) required for demonstrating

the linearity of a system.

Motivation:

The state-dependent delay dynamical system (39) is motivated by crystal growth

problems. Such state-dependent delays play a dominant role in the problem of for-

mation of macrosteps on crystal surfaces by agglomeration of parallel monatomic

surface steps during the growth process [66]. A rigorous analysis of the crystallogra-

phy modeling leads to the dynamics which are represented by the following type of

recursive functional differential equation.

ẋ(t) = F (x(t), x(t− x(t))) (41)

5.2 Asymptotic Stability of the Equilibrium Point

We now use the Lyapunov Razumikhin (LR) theorem to show that the trivial steady

state (equilibrium point: x = 0) of the SD-DDE system (39) is asymptotically stable.

Consider the Lyapunov function V : R+ → R+ described by V (x(t)) = 1
2
x2(t).

We have for x ∈ R+, α(x) ≤ V (x) ≤ β(x), with α(x) = 1
4
x2 and β(x) = 2x2.

Define η : R+ → R+ by η(x) = xe
√
2x, x ∈ R+. Let x(t) be the solution trajectory
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of (39), such that for t ≥ 0, θ ∈ [−τ, 0],

V (x(t+ θ)) < η(V (x(t))

⇒ |x(t− x(t))| < |x(t)|

⇒ x(t− x(t)) < x(t); (Since the delay should be positive). (42)

Now, we have for t ≥ 0

V̇ (x(t)) = x(t)ẋ(t)

= −x(t)x(t− x(t)); (Using (42))

< −x2(t)

< 0

(43)

Since V (x(t)) > 0 and V̇ (x(t)) < 0, we, therefore, conclude that the equilibrium point

of (39) is asymptotically stable. Furthermore, since V (x) = 1
2
x2(t) i.e. V → ∞ as

∥x∥ → ∞. Therefore, V is radially unbounded, and by definition this implies the

global asymptotic stability of the equilibrium point.

5.3 Perturbation Analysis

In this section we perform two types of perturbation analyses to the SD-DDEs namely

the singular perturbation and the regular perturbation.

5.3.1 Singular Perturbation Analysis

Consider the singularly perturbed SD-DDE, with the small parameter ε > 0 as the

perturbation parameter and ∀a, b ∈ R , as follows.

εẋ(t) = ax(t) + bx(t− x(t)) (44)

Notice that for ε = 0, (44) no longer remains an SD-DDE but becomes a state-

dependent delay difference equation. The small signal analysis to (44) yields,
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εẋ(t) = ax(t) + bx(t)− bẋ(t)x(t)

⇒ (bx+ ε)ẋ = (a+ b)x

⇒
∫
bx+ ε

x
dx =

∫
(a+ b)dt+ C

⇒ bx+ ε lnx = (a+ b)t+ C

⇒ ln(ebxxε) = (a+ b)t+ C

⇒ ebxxε = Be(a+b)t

⇒ xe
bx
ε = De

(a+b)
ε

t

⇒ bx

ε
e

bx
ε = D

b

ε
e

(a+b)
ε

t

⇒ bx

ε
= Wk(D

b

ε
e

(a+b)
ε

t)

⇒ x(t) =
ε

b
Wk(D

b

ε
e

(a+b)
ε

t) (45)

In the above equations B, C and D are arbitrary constants of integration and Wk(.)

represents the k − th branch of the Lambert W function.

Remark 2:

Using the Lyapunov-Razumikhin theorem, it can be shown that the singularly per-

turbed systems is asymptotically stable if a + |b| < 0, (see Theorem 14 in §8.1.1).

This is only a sufficient condition. This is also evident from (45).

5.3.2 Regular Perturbation Analysis

By introducing a small perturbation parameter σ > 0 in the delay term, we get the

following regularly perturbed version of the SD-DDE.

ẋ(t) = ax(t) + bx(t− σx(t)); ∀a, b ∈ R (46)
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Again performing the small signal perturbation analysis yields the following.

ẋ(t) = ax(t) + bx(t)− bσẋ(t)x(t)

⇒ (1 + bσx)ẋ = (a+ b)x

⇒
∫

(1 + bσx)

x
dx =

∫
(a+ b)dt+ E

⇒ lnx+ bσx = (a+ b)t+ E

⇒ ln(xebσx) = (a+ b)t+ E

⇒ xebσx = Fe(a+b)t

⇒ (bσx)e(bσx) = bσFe(a+b)t

⇒ bσx = Wk(bσFe
(a+b)t)

⇒ x(t) =
1

bσ
Wk(bσFe

(a+b)t) (47)

where E and F are arbitrary constants of integration and Wk(.) represents the k− th

branch of the Lambert W function.

Remark 3:

Using the Lyapunov-Razumikhin theorem, it can be shown that the regularly per-

turbed systems is asymptotically stable if a+ |b| < 0, (see Theorem 14 in §8.1.1 where

ρ → 1). This is only a sufficient condition. This is also evident from (47). In the

special case when σ = 0 (delay free case) a + b < 0 is a necessary and sufficient for

the stability. In this case the SD-DDE reduces to the ODE ẋ(t) = (a+ b)x(t) which

has the closed form solution x(t) = x0e
(a+b)t with x0 ∈ R being any arbitrary initial

condition.

5.4 Bifurcation and Stability Switches

Here we demonstrate that the system (39) exhibits a strange phenomenon of bifur-

cation and stability switches. In order to establish this phenomenon, we introduce a

bifurcation parameter µ to (39) so that the resulting perturbed SD-DDE becomes

ẋ(t) = −x(t− x(t)) + µ (48)
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Figure 11: Profile of State x(t) of the State-Dependent Delay System With µ = 0
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Figure 12: Profile of State x(t) of the State-Dependent Delay System With µ = 0.55

Now, we want to investigate the qualitative behavior of the SD-DDE (48) as the

bifurcation parameter µ is varied from 0 to 2.

Fig. 11 shows the state trajectory of the nominal system (39) i.e. when the

bifurcation parameter in (48) is 0. We see that the equilibrium point (origin) of

the system is asymptotically stable. This is verified by the Lyapunov-Razumikhin

theorem.

Now, we keep on increasing the bifurcation parameter µ. Fig. 12 depicts the

profile of the state when µ = 0.55. Again the same initial history is assumed that is

x(t) = 1∀t ∈ (−∞, 0]. We see that an undershoot has appeared revealing the fact

that the relative stability has decreased as compared to the nominal case.

We further increase the bifurcation parameter to µ = 1.25. The corresponding

state trajectory is shown in Fig. 13. We observe that this time there are decaying

oscillations. The system behaves pretty much like a second order under-damped

system. This shows a further decrease in the relative stability.
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Figure 13: Profile of State x(t) of the State-Dependent Delay System With µ = 1.25
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Figure 14: Profile of State x(t) of the State-Dependent Delay System With µ = 1.55

Fig. 14 demonstrates the state trajectory of the SD-DDE system (48) when µ

catches a value of 1.55. In this case the moves from the oscillatory regime to the

unstable regime. In the start, there are sustained oscillations with slowly increasing

peaks and, then all of a sudden the system ramps up. We call it a stability switch.

Notice that for µ = 1.55, the system at first exhibits oscillatory behavior for

some time and then all of a sudden enters into an unstable regime,(see also [59]

and [31]). We see that this instability is quite different from the one associated with

linear time invariant unstable systems. Here the system is unstable but with a linear

growth rate where as linear unstable systems we have exponential growth rate which

is a more violent form of instability. Basically state-dependent delay system has some

innate/inherent/intrinsic feedback in the time argument and thus has a self-regulation

feature. This is the reason that we do not have violent instability (exponential growth

rate of state trajectories).

Finally Fig. 15 reflects the profile or trajectory of the state when the bifurcation
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Figure 15: Profile of State x(t) of the State-Dependent Delay System With µ = 2

parameter µ = 2. Again we mention that the same initial history is taken as for the

previous cases. This time the system becomes unstable. Notice the ramp growth of

the state. Further increase in µ will keep the system unstable.

So we observe that there is a qualitative change in the behavior of the system as

the bifurcation parameter is varied. The system switches the stability status. This

is referred to as bifurcation of the SD-DDE. Notice that this is not the usual Hopf

bifurcation. Such a bifurcation is termed as transcritical bifurcation. The equilib-

rium point or fixed point exists for all values of a parameter and is never destroyed.

Nevertheless, such a fixed point interchanges its stability with another fixed point as

the parameter is varied. Another well known example of transcritical bifurcation is

the famous Verhulst’s logistic equation in population dynamics. We hereby mention

that such a strange behavior can never occur in a perturbed Linear Time Invariant

(LTI) system. An LTI system of the form ẋ(t) = −x(t) + µ never exhibits a stability

switch and is always stable irrespective irrespective of the parameter µ.

5.5 Consequences of Taylorization

In this section, we show that approximation or truncation by the Taylor series expan-

sion (we call it Taylorization) of SD-DDEs has very anomalous results. Let Cω denote

the space of all holomorphic or real valued analytic functions defined on R+. Now,

assuming that the solution of (39) i.e. x(t) is a Cω function, then so is t − x(t) and
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the composition of the two i.e. x(t− x(t)). Therefore, the Taylor series expansion of

the state-dependent delay system (39) is given by,

Dx = −
∞∑
j=0

(−1)j x
j

j!
Djx (49)

or

ẋ(t) = −x(t) + x(t)ẋ(t)− 1

2!
x2(t)ẍ(t) + ........ (50)

where D , d
dt
(.) is the usual Differential or Derivative operator.

Notice that this is not a linearization. All the terms in the expansion are nonlinear

because of the state dependent delay in the original equation. This is the reason that

we call it Taylorization.

A first order Taylorization of the state-dependent delay system is given as follows.

ẋ(t) = − x(t)

1− x(t)
; x(0) = x0 (51)

Notice that this (51) has a singularity at x(t) = 1. It is a nonlinear differential

equation. This system is clearly conditionally stable. It is stable when the initial

state lies inside the unit ball and is unstable when x > 1. Whereas the original

system characterized by the SD-DDE was asymptotically stable, Fig. 16. depicts

the fact that the Taylorized nonlinear system of first order is unstable. The chosen

initial condition is x0 = 1.0001. We can also show the instability of the first order

Taylor series approximated system by integrating (51) using separation of variables

as follows.

(
1− x
x

)dx = −dt

d(lnx− x) = −dt

ln
x

x0
− x+ x0 = −t

x

x0
e−x = e−x0−t
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Figure 16: Taylorization of the State-Dependent Delay System By a First Order
System
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Figure 17: Taylorization of the State-Dependent Delay System By a Second Order
System

This yields the following family of integral curves

x(t) = −W (−Ce−t) (52)

where W (.) represents the Lambert-W function and C is any arbitrary constant.

Using the initial condition, C = x0e
−x0 and thus x(t) = −W (−x0e−t−x0).

Now, we give the the second order Taylorization of the SD-DDE system as follows.


ẋ1(t) = x2(t)

ẋ2(t) =
2

x12(t)
[x1(t)x2(t)− x1(t)− x2(t)]

(53)

Fig. 17 shows the state trajectories with initial conditions

 x1(0)

x2(0)

 =

 1

0

.
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Figure 18: Taylorization of the State-Dependent Delay System By a Third Order
System

Now, we Taylorize the SD-DDE system by a third order system as follows.

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) =
3

x13(t)
[2x1(t) + 2x2(t)− 2x1(t)x2(t)

+ x1
2(t)x3(t)]

(54)

Fig. 18 shows the state trajectories with initial conditions


x1(0)

x2(0)

x3(0)

 =


1

0

0

.

We can easily see that this system is unstable. In fact, the Taylorization has also

invited a singularity at x1(t) = 0.

Finally we construct the fourth order Taylorized nonlinear ODE system version

of the SD-DDE expressed as given below.



ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = x4(t)

ẋ4(t) =
24

x14(t)
[−x1(t)− x2(t) + x1(t)x2(t)

− x1
2(t)x3(t)

2
+
x1

3(t)x4(t)

6
]

(55)
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Figure 19: Taylorization of the SD-DDE Based System By a Fourth Order System

Fig. 19 shows the state trajectories with initial conditions



x1(0)

x2(0)

x3(0)

x4(0)


=



1

0

0

0


.

We notice that the trajectories of the resulting system blow up and the system

becomes unstable. Again, Taylorization has introduced a fourth order singularity at

x1(t) = 0. Whereas, in reality, the original SD-DDE system (39) was stable as shown

by using LR function based approach. From all the discussion and simulation results

in this section, we infer that the conclusion drawn on the basis of Taylorization of

infinite dimensional (∞−D) systems like SD-DDEs can lead to serious flaws, blunders

and inaccuracies. Therefore, we proscribe the usage of Taylor series approximations

in ∞−D systems.

5.6 Decay Rates Comparisons of ODEs and SD-DDEs

Fig. 20 shows the comparison of the decay rate of the stable SD-DDE (39) and a stable

Ordinary Differential Equation (ODE) of the form ẋ(t) = −x(t). We notice that the

SD-DDE decays at a faster rate as compared to the companion ODE. We explain this

by the iterative and self-regulated nature of the SD-DDE. Notice that for the ODE

the instantaneous rate at which the trajectory falls is proportional to the value of x(t)

at that particular instant whereas the rate at which the trajectory of SD-DDE falls

is proportional to a value of x at a previous instant but that previous instant value
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Figure 20: Decay Rates Comparisons of ODEs and SD-DDEs

is larger than x(t) because x(t) is continuous and monotonically decreasing (stable).

This means that there exists a λ > 1 such that the the trajectory of the SD-DDE falls

proportional to λx(t). However, we mention that the asymptotic behavior of the two

trajectories remains the same because the delay (state-dependent delay) itself decays

as t→∞.

Fig. 21 gives a comparison of the state trajectories of the unstable SD-DDE system

(40) and a comparison unstable ODE system ẋ(t) = x(t). For ODE system, we get

the well-known exponential growth. The behavior of the SD-DDE system is quite

strange. It is unstable but it grows linearly. We explain this behavior by observing

that for this system

ẍ(t) = ẋ(t− x(t))(1− ẋ(t)) (56)

The causality constraint dictates that ẍ(t) ≥ 0 which in turn implies that ẋ(t) is

increasing. When ẋ(t) reaches 1, this forces ẍ(t) = 0 by (56). As a result a ramp

behavior of the form x(t) = at+ b is achieved.

The bifurcation phenomenon in §5.4 can also be explained on similar footings as

above. As the bifurcation parameter increases, the system behaves almost as ẋ(t) = µ

in the asymptotic sense because the delay becomes smaller and smaller and also the

decay is fast. This accounts for the ramp profile of the state when the bifurcation

parameter is sufficiently large.
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Figure 21: Comparison of Unstable ODE and SD-DDE

5.7 Concluding Remarks

In this chapter we make it clear that a special attention should be made while an-

alyzing ∞-D systems in general and systems involving state-dependent delays in

particular. Highly erroneous, anomalous and strange results may arise if Tayloriza-

tion (approximation by Taylor series partial sums) is attempted. The reason is that

systems with state-dependent delays are inherently nonlinear infinite dimensional sys-

tems. Taylorization of such systems makes them finite dimensional but the nonlinear

nature is still preserved. But this finite dimensional representation loses the inherent

structural ingredients (e.g., the initial history which lies in a suitable function space)

of the infinite dimensional systems. The Taylor series approximation is usually found

ubiquitous in physics and engineering community. Therefore, we strongly proscribe

the usage of this approximation to time delay systems in order to avoid inaccuracies.

We also demonstrated that systems with state-dependent delays exhibit bifurca-

tion and stability switches. The system is stable for certain values of the bifurcation

parameter µ and as µ incrases, the systems first breaks into oscillations and then

switches into an unstable regime. Perturbation analysis was also performed and the

results were nicely expressed in terms of the Lambert-W function. A comparison of

the decay rate of the SD-DDE and the companion ODE was also made. Furthermore,

it was also emphasized that the instability of SD-DDE based systems systems is quite

different from the violent (exponential growth) instability of LTI ODE based systems.
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CHAPTER VI

SCALE DYNAMIC SYSTEMS & SELF-STARTING

FEATURE

The main object of investigation in this chapter is the Scale Dynamic systems (SDS).

These systems form a typical class of time-varying delay differential equations where

the delay is unbounded but the delay rate is less than or equal to unity. The basic

form is ẋ(t) = ±x(αt);α ∈ [0, 1]. The central theme of this contribution is that the

infinitesimal generator associated with such systems is a compact operator on the

Hilbert space l2 or the Banach space l∞ . We investigate this behavior for the scalar

and higher order SDS in an operator theoretic framework, analyze the spectrum and

give necessary and sufficient conditions for the asymptotic stability [6].

6.1 Introduction

Consider the following system characterized by the functional differential equation

(FDE),

ẋ(t) = bx(αt) (57)

where b ∈ R and α ∈ [0, 1]. The boundary (endpoint) cases i.e., α = 0 and α = 1 are

trivial cases and are of least interest since in both the case the FDE reduces to an

ODE. In the literature, such systems are also termed as scale delay systems [88]. Such

systems appear in physics and engineering e.g., Cherenkov radiation, light absorption

by interstellar matter, the wavy motion exhibited by the overhead line attached to

pantograph used for the collection of current of an electric locomotive, the theory of

dielectric materials, number theory and continuum mechanics; see [54], [51], [88] and

the references therein.
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Using the Fundamental Theorem of Calculus, system (57) can be written in the

form of an integral equation as follows.

x(t) = x(0) + b

∫ t

0

x(αζ)dζ (58)

⇔ x(t) = x(0) +
b

α

∫ αt

0

x(θ)dθ (59)

Using Picard-Lindelöf iteration procedure, one can write the above equation in the

following iterative form.

xn+1(t) = x(0) +
b

α

∫ αt

0

xn(θ)dθ; n = 0, 1, 2, ... (60)

Starting with x0(t) = x(0),∀t ≥ 0, we get the following iterates for x(t).

x1(t) = x(0) +
b

α

∫ αt

0

x(0)dθ = (1 + bt)x(0)

x2(t) = x(0) +
b

α

∫ αt

0

x1(θ)dθ = (1 + bt+ α
(bt)2

2!
)x(0)

x3(t) = x(0) +
b

α

∫ αt

0

x2(θ)dθ = (1 + bt+ α
(bt)2

2!

+α3 (bt)
3

3!
)x(0)

x4(t) = (1 + bt+ α
(bt)2

2!
+ α3 (bt)

3

3!
+ α6 (bt)

4

4!
)x(0)

x5(t) = (1 + bt+ α
(bt)2

2!
+ α3 (bt)

3

3!
+ α6 (bt)

4

4!

+α10 (bt)
5

5!
)x(0)

...

xn(t) = (1 + bt+ α
(bt)2

2!
+ α3 (bt)

3

3!
+ α6 (bt)

4

4!
+ α10 (bt)

5

5!

+ ...+ α
n(n−1)

2
(bt)n

n!
)x(0)

Clearly, the above iterations converge and we have the following series expression for

x(t) as a closed form.

x(t) =

(
∞∑
n=0

α
n(n−1)

2
(bt)n

n!

)
x(0) (61)
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The reason that the above infinite series is absolutely convergent can be justified by

the fact that it is upper bounded by the exponential function i.e., x(t) ≤ e|bt|, by

taking the upper limit on α i.e., α = 1. Notice that the solution (61) reconciles with

the one in [76] obtained using Frobenius power series method. The Frobenius power

series method assumes that the solution is Cω (analytic).

Fundamentally, this is a delay system with the unbounded time-variant delay τ(t)

satisfying τ(t) = t−αt = (1−α)t and τ̇(t) = 1−α ≤ 1. This bounded rate condition

(τ̇ ≤ 1) makes the time-varying delay system well-posed and causal. See [82] and [83]

for the well-posedness associated with time-varying delay systems.

Now, we consider the following system.

ẋ(t) = ax(t) + bx(αt) (62)

The above equation is also called pantograph equation, see e.g., Iserles [51] and the

references therein. Using Picard-Lindelöf method, the following series solution can

be obtained for the SDS of (62).

x(t) =

(
1 +

∞∑
n=1

n−1∏
j=0

(a+ bαj)
tn

n!

)
x(0) (63)

Now, we are interested in the state space realization of (57). Let us defined our

states as x1(t) = x(t), x2(t) = x(αt), x3(t) = x(α2t), · · · , xN(t) = x(αN−1t), · · · where

N ∈ N and N represents the set of natural numbers. Therefore, the state dynamics
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are governed by the following coupled first order ODEs.

ẋ1(t) = ẋ(t) = bx(αt) = bx2(t)

ẋ2(t) = αẋ(αt) = bαx(α2t) = bαx3(t)

ẋ3(t) = α2ẋ(α2t) = bα2x(α3t) = bα2x4(t)

...

ẋN−1(t) = bαN−2xN(t)

ẋN(t) = bαN−1xN+1(t)

...

In vector-matrix form the above equations translate as follows.

Ẋ = AX

where,

A = b



0 1 0 0 0 · · ·

0 0 α 0 0 · · ·

0 0 0 α2 0 · · ·
...

0 0 · · · αN−1 0 · · ·
...

0 0 0 0 0 · · ·


and

X =



x1

x2

x3
...

xN
...


.
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Notice that

X(0) =



x1(0)

x2(0)

x3(0)

...

xN(0)

...


= 1x(0)

where 1 =

(
1 1 1 · · · 1

)⊤

is a column vector with all entries being 1’s. Here

once again we see that only the germ or seed x(0) is required for the system to evolve

and hence the term self-starting. Also, observe that limN→∞ αN−1 = 0. Therefore,

ẋN → 0 as N →∞. This means that when N is very very large, we get the following

higher order finite dimensional equivalent version of the system (57).

ẋ = ANx

where x =

(
x1 x2 x3 · · · xN

)⊤

and

AN = b



0 1 0 · · · 0 0

0 0 α 0 · · · 0

0 0 0 α2 · · · 0

...

0 0 · · · 0 0 αN−2

0 0 · · · 0 0 0


. It is noteworthy here that the matrix AN

has a special structure of a strictly upper triangular matrix. All the eigenvalues of AN

are zero. Therefore, tr(AN) = det(AN) = 0 and Spec(AN) = {0}. In fact the matrix

AN is a nilpotent matrix with the degree or index N i.e., AN
N = 0. The algebraic

multiplicity of the zero eigenvalue is N and its geometric multiplicity (dimension of

the eigenspace) is less than N . The corresponding eigenvectors cannot span RN .

Thus, the matrix AN is a defective matrix and cannot be diagonalized. Because of

the repeated eigenvalues at the origin, the system is unstable irrespective of the value
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of b ∈ R − {0}. The system behaves in a similar fashion to a chain of integrators in

cascade.

The transformation matrix which brings AN to the Jordan canonical form is as

follows.

TN =



1

1

1/α

1/α3

. . .

1/α
(N−1)(N−2)

2


Clearly, TN ∈ Gln(R) where Gln(R) represents the General linear group of all n× n

real invertible (nonsingular) matrices. Notice that,

T−1
N =



1

1

α

α3

. . .

α
(N−1)(N−2)

2


With this transformation, the matrix AN can be transformed into the Jordan canon-

ical form as follows.

AN = TNJNT
−1
N
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where the Jordan block matrix JN is as follows.

JN =



0 1

0 1

0 1

. . . . . .

0 1

0


The solution of the corresponding higher order ODE is as follows.

x(t) = eAN t1x(0) =
N−1∑
k=0

(AN t)
k

k!

From which, again (61) follows. One can truncate the series upto N terms and ensure

that the absolute error is less than certain tolerance ε for compute the solution for

time T . So from (61), for ε-accurate simulations,

α
N(N−1)

2
(|b|T )N

N !
|x(0)| ≤ ε.

This yields the upper bound Tmax as a function of N as follows.

Tmax =
1

|b|
N

√
N !ε

α
N(N−1)

2 |x(0)|
(64)

By using the Stirling formula for the approximation of N !, we get the following.

Tmax ≈
1

|b|
N

√√√√√2πN(N
e
)Nε

α
N(N−1)

2 |x(0)|
(65)

Fig. 22 shows the state trajectories for b = −1 and different values of α. The initial

condition is x(0) = 1. The value of N was taken as 10,000. Notice that the system is

unstable. There are growing oscillations for α ∈ (0, 1).

6.2 Higher Order Case

Now, we consider the higher order version of (57) as follows.

ẋ(t) = Bx(αt) (66)
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Figure 22: State Trajectories for Different Values of α and b = −1

where x(t) ∈ Rn and B ∈ Rn×n. Inspired by the series solution (61) of the corre-

sponding scalar version, we have the following solution for the system (66).

x(t) =

(
∞∑
n=0

α
n(n−1)

2
(Bt)n

n!

)
x(0) (67)

Substitution in (66) yields that the equation is satisfied. Also, the series converges

because the corresponding matrix exponential eBt converges. Likewise, extending

the theory further, we consider the general vector-matrix version of the pantograph

system (62) as follows. Now, we consider the following system,

ẋ(t) = Ax(t) +Bx(αt) (68)

where x(t) ∈ Rn and A,B ∈ Rn×n. We have the following series solution for

system (68).

x(t) =

(
I +

∞∑
n=1

n−1∏
j=0

(A+Bαj)
tn

n!

)
x(0) (69)

The above solution converges for any pair of matrices (A,B) and satisfies the FDE

(68). The following theorem provides sufficient conditions for the asymptotic stability

of the system (68). The proof is based on the following Lyapunov-Krasovskii (LK)

functional.

V (x(t)) = x⊤(t)Px(t) +

∫ t

αt

x⊤(ξ)Q(ξ)dξ; P,Q > 0 (70)
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Theorem 6 [88] The higher order pantograph SDS in (68) is globally asymptotically

stable if any of the following three equivalent conditions are satisfied. (1). Given any

symmetric and positive definite matrix Q = Q⊤ > 0, there exists a matrix Q = Q⊤ > 0

such that the following is satisfied. A⊤P + PA+Q PB

B⊤P −αQ

 < 0 (71)

(2). There exist a pair of symmetric and positive definite matrices (P,Q) such that

the following Algebraic Riccati Inequality (ARI) is satisfied.

A⊤P + PA+Q+ PB(αQ)−1B⊤P < 0 (72)

(3). There exists a triplet of symmetric and positive definite matrices (P,Q,R) such

that the following Delay Algebraic Riccati Equation (DARE) holds.

A⊤P + PA+Q+ PB(αQ)−1B⊤P +R = 0 (73)

The following theorem gives a simple sufficient condition in terms of Algebraic Lya-

punov equation which is a linear matrix equation and easy to solve as compared to

the quadratic DARE.

Theorem 7 The higher order system (68) is globally asymptotically stable if the fol-

lowing two conditions are satisfied.

Given any symmetric and positive definite matrix Q = Q⊤ > 0 and a scalar ρ > 1,

there exists a symmetric and positive definite matrix P = P⊤ > 0 such that the

following is satisfied.

λmin(Q)− 2ρλmax(P )∥B∥ > 0 (74)

where ∥B∥ = σmax(B) =
√
λmax(B⊤B) and the matrix P is the solution of the

following Algebraic Lyapunov Equation (ALE).

A⊤P + PA+Q = 0 (75)
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Proof. The proof is based on Razumikhin argument. Let the LR function be

V (x(t)) = x⊤(t)Px(t). Then ∥x(t − τ(t))∥P ≤ ρ∥x(t)∥P , ρ > 1 implies V̇ (x(t)) =

(A⊤P + PA)∥x(t)∥2 + 2x⊤PBx(αt) ≤ −λmin∥x(t)∥2 + 2ρ∥P∥∥B∥∥x(t)∥2 and the

proof is done. Q.E.D. �

Remark 4:

Using the vectorization operator and Kronecker products, from the ALE, we have,

vec(A⊤P + PA) = −vec(Q)

⇔ (A⊤ ⊗ I + I ⊗ A⊤)vec(P) = −vec(Q)

⇔ vec(P) = −(A⊤ ⊗ I + I⊗ A⊤)−1vec(Q)

where the inverse exists if the matrix (A⊤ ⊗ I + I ⊗ A⊤) does not have a 0 as an

eigenvalue.

For the scalar case, the solution of the Lyapunov equation yields q = −2ap and we

immediately get the following result as a corollary.

Corollary 1 The scalar system ẋ(t) = ax(t)+bx(αt) is asymptotically stable if a < 0

and |a| > |b|.

6.3 Necessary & Sufficient Condition for Asymptotic Sta-
bility

Let us reconsider the general SDS as follows.

ẋ(t) = Ax(t) +Bx(αt) (76)

where x(t) ∈ Rn and A,B ∈ Rn×n. In the operator form, (76) can be written as

follows.

(D − A−BSα)x = 0 (77)

where D is the differential operator and Sα is the scaling operator i.e., σtSαx = x(αt),

with σt being the evaluation functional defined as σtx := x(t). We define our new
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states as y1 := x, y2 = Sαx, y3 = Sα2x,...,yN = SαN−1x,.... In other words, y1(t) :=

x(t), y2(t) := x(αt), y3(t) = x(α2t), ..., yN(t) = x(αN−1t),..... Therefore, the new

higher order state space realization will be as follows.

ẏ = Ay

where y =

(
y1 y2 y3 · · · yN · · ·

)⊤

and

A =



A B

αA αB

α2A α2B

α3A α3B

. . . . . .

αN−1A αN−1B

. . . . . .



. (78)

Therefore, we can see that A is the infinitesimal generator for the SDS (76). Let AN

be the N × N truncated matrix of A. Notice that the matrix AN has a bidiagonal

structure and is a special case of an upper triangular matrix. The leading or principal

diagonal contains αjA and the superdiagonal contains block matrix entries of the form

αjB.

Claim 1 A : l2 → l2 is a compact operator on the Hilbert space.

Proof: Consider the sequence of operators AN : RNn → RNn which are essentially fi-

nite dimensional operators (RNn×Nn matrices). Then it is easy to show that AN → A

i.e., ∥AN −A∥ → 0 as N →∞ in the operator norm induced by l2 norm. Since AN

is compact, so is A. �

Notice that eAt, t ≥ 0 forms the C0-semigroup with the associated infinitesimal gen-

erator A. Moreover,

eAt =
∞∑
n=0

(At)k

k!
. (79)
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The series converges in the operator norm, since A is compact and bounded. One

can also use theorems of Hille-Yosida and Lumer-Phillips as generation theorems.

Since A is an infinite dimensional compact operator, we can show using Fredholm

alternative that the accumulation point {0} is indeed in its spectrum. Notice that

the spectrum of A can be given as follows.

Spec(A) =
∞∪
j=0

Spec(αjA)
∪
{0} (80)

Since Spec(αjA) = αjSpec(A), therefore, we get the following interesting result as a

proposition.

Proposition 1

Spec(A) =



∞∪
j=0

αjSpec(A)︸ ︷︷ ︸
σp

∪
{0}︸︷︷︸
σr

; A ̸= −B

∞∪
j=0

αjSpec(A)︸ ︷︷ ︸
σp

∪
{0}︸︷︷︸
σp

; A = −B
(81)

Note:

In the special case, when A = 0, there is only point spectrum i.e.,

Spec(A) = {0} = σp(A) (82)

Notice that in this case, the system is always unstable irrespective of the matrix B.

Now, we give the following result as a necessary condition for the asymptotic stability

of (68).

Theorem 8 The system characterized by the self-starting dynamics given by (68) is

asymptotically stable only if the matrix A is Hurwitz.

Proof: Indeed if A is not Hurwitz, there is at least one eigenvalue of A in the right

half plane and this mode will make the state of the system (68) unbounded for any
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arbitrary initial condition.

Conjecture: The system characterized by the self-starting dynamics given by (68)

is asymptotically stable if only if the matrix A is Hurwitz and rσ(A) > rσ(B).

6.4 Operator Theoretic Treatment

Now, we want to extend linear algebraic concepts to infinite dimensions and enter

the regime of operator theory with a more rigorous treatment. Let Ln
2 represent the

Banach space of all the functions f : R+ → Rn which are square integrable (Lebesgue

integrable), i.e.,
∫∞
0
∥f(t)∥2dt is well defined and finite. We define the L2-norm as

∥f∥L2 ≡

√∫ ∞

0

∥f(t)∥22dt. (83)

The norm on the right hand side is the usual Euclidean norm.

Now, let’s generalize this operator theoretic treatment to higher order systems.

First, we define the two operators P : Ln
2 [0, 1]→ Ln

2 [0, 1] and Pα : Ln
2 [0, 1]→ Ln

2 [0, 1]

as follows.

Px(t) =
∫ t

0

x(θ)dθ; x(t) ∈ Rn (84)

Pαx(t) =

∫ αt

0

x(θ)dθ; x(t) ∈ Rn (85)

It can be shown that both P and Pα are not only bounded but also compact on the

Banach space Ln
2 [0, 1]. Moreover,

σ(P) = σ(Pα) = {0} = σc(P). (86)

From (68), we have,

x(t) = x(0) + A

∫ t

0

x(θ)dθ +
1

α
B

∫ αt

0

x(θ)dθ

⇔ x(t) = x(0) + APx(t) + 1

α
BPαx(t)⇔ x(t) =

[
I −

(
AP +

1

α
BPα

)]−1

x(0)

⇔ x(t) =
∞∑
n=0

(
AP +

1

α
BPα

)n

x(0) (87)
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where the condition for the convergence of the composite Neumann series (87) is

∥AP + 1
α
BPα∥ < 1. In general, the operators P and Pα do not commute. Notice

that,

∥AP +
1

α
BPα∥ ≤ ∥AP∥+ ∥ 1

α
BPα∥

≤ ∥A∥∥P∥+ 1

α
∥B∥∥Pα∥

=
1√
2
∥A∥+ 1

α
∥B∥

√
α

2

=
1√
2α

(√
α∥A∥+ ∥B∥

)
.

Hence, if, ∥AP + 1
α
BPα∥ < 1, the solution to the initial value problem with t0 = 0

only depends on x(0), giving this a “self-starting character”. This means that the

dynamics behave as a finite dimensional system whose evolution only depends on the

germ x(0), thus building up its own history. For all t0 ̸= 0, one needs the history

C([αt0, t0];Rn).

6.5 Conclusions

In this chapter, we investigated scale dynamic systems. We used Picard technique to

find a closed form solution in the form of a sub-exponential series. We found that

the evolution operator or in other words the associated infinitesimal generator for

such systems is a compact operator on the Hilbert space l2 or the Banach space l∞.

This led us to ascertain the infinitesimal generator, the semigroup and the spectrum.

Necessary and sufficient conditions for stability were also given. Starting from the

basic scalar case, we extended the theory to the higher order case. Finally, we gave an

operator theoretic treatment of scale dynamic systems and showed how such systems

exhibit a self starting feature.
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CHAPTER VII

DELAY INJECTION: A NOVEL OBSERVER DESIGN

TECHNIQUE & ITS APPLICATIONS

Analysis and design of present machining methods used in mechanical engineering are

based on Taylor series approximations and linearizations which cause erroneous and

anomalous results as shown in chapter 5. High precision machining cannot tolerate

such errors. We consider and analyze an exact mathematical model of the turning

process without performing any kind of linearization of the model. We give a strategic

design of an estimator for the position of a machining tool based on first principles.

The system’s dynamics are characterized by a State-Dependent Delay Differential

Equation (SD-DDE) which is inherently nonlinear. This delay and state are implic-

itly related. The central tenet is to use inversion of the delay model and to extract the

state vector given the delay. We use our recently developed observation technique re-

ferred to as Delay Injection, (see [2]). Both linear asymptotic and nonlinear observers

with different architectures are designed for the state estimation of a machine tool

based on state-dependent delay measurement. Simulation results are depicted at the

end which portray the effectiveness, validity and usefulness of the proposed observer

schemes.
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7.1 Observation Using Delay Injection

We express the dynamics of the system and measurements in a general vector matrix

form as follows, 

Dynamics of Plant/Process/System:

ẋ(t) = Ax(t) +Aτx(t− τ) +Bu(t)

Measurements or Observations:

τ = τ0 +Mx(t) +Nx(t− τ)

(88)

The delay τ has the above described convoluted structure with the state. Notice that

it not only has a constant (fixed) component but also carries an implicit dependency

on the state x of the system. Clearly, the delays given in (10) and (3) are special

cases of the one in (88).

Here x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the control input, both matrices

A, Aτ ∈ Rn×n; τ0 is a scalar (constant) and M, N are both row vectors each of

dimension n i.e., R1×n.

Observe that if Aτ = O and N = o, the system reduces to the classical observer

design problem. Therefore, a necessary condition for the system (88) to be observable

from the delay τ is that the pair (A,M) is completely state observable.

Notice that though the system seems to be apparently linear, it is in reality a

nonlinear system because of the state-dependent delay in the dynamics as well as the

observation or measurement. We measure the delay τ(t) at each instant of time t with

the help of sensors and construct the observer for the state x(t). Let x̂(t) represent

the estimated state, the estimator will be governed by the dynamics as follows.

˙̂x(t) = Ax̂+Aτ x̂(t− τ) +Bu(t) + L(τ − τ̂) (89)

where the last term is the correction term with L ∈ Rn being the gain matrix of the

estimator and τ̂ is precisely given by,

τ̂ = τ0 +Mx̂(t) +Nx̂(t− τ) (90)
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We call this Delay Injection in contrast to the so-called output injection. This is not

the usual Luenberger Observer!

Fig. 23 gives a basic conceptual block diagram to illustrate the concept of esti-

mation using delay injection.

Figure 23: Conceptual Block Diagram for the Illustration of Delay Injection

Substitution for τ and τ̂ in (89) yields,

˙̂x(t) = Ax̂(t) +Aτ x̂(t− τ) +Bu(t) + L(Me(t) +Ne(t− τ(t))) (91)

where e(t) = x(t)− x̂(t) is the estimation error at any arbitrary time instant t.

Now we subtract the above equation from the original dynamic equation of the

system as given by the top equation in (88) to get the error dynamics for the estimator

as follows,

ė(t) = (A− LM)e(t) + (Aτ − LN)e(t− τ(t)) (92)

From the above equation it is obvious that the error dynamics satisfy a Retarded

Functional Differential Equation (RFDE) involving a time-varying delay. Now, the

problem is tractable. The only design parameter is the matrix L. The error will con-

verge asymptotically to zero if the above delay differential equation is asymptotically

stable or in other words the equilibrium point or fixed point (i.e., the origin e(t) = 0)

is asymptotically stable.
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7.2 Uncertainty Characterization

The matrices of the system are not exactly known and may subject to uncertainties.

This is because of the fact that the stiffness of the spring and the damping coefficient

cannot be measured accurately. Also the accurate modeling of the machine tool

involves nonlinearities of the spring which is typically a cubic nonlinearity. We will not

use norm bounded uncertainties because they are unstructured and may sometimes

assume the values of the parameters which the physical system never achieves in

reality. This leads to highly conservative results. Though we do not know the exact

values of mass, spring constant and damping coefficient, we do know the range or span

of the parametric values of the individual components. Therefore, it is advantageous

to characterize the uncertainty as a structured uncertainty. This will definitely help

us in reducing the conservatism in the analysis and estimator design. In this chapter,

we consider the polytopic type of uncertainty with respect to the matrices A, Aτ and

B. i.e., there exist, say, Nv elements of the uncertainty set ∆,

Λ(j) = (A(j), A(j)
τ , B(j)), j = 1, 2, . . . , Nv. (93)

known as vertices, such that ∆ can be expressed as the convex hull of these vertices

∆ = Co{ Λ(j) |j = 1, 2, . . . , Nv.} (94)

In other words, the uncertainty set ∆ consists of all the convex linear combination of

the vertices

∆ =

{
Nv∑
j=1

λjΛ
(j)|λj ≥ 0, j = 1, 2, . . . , Nv ;

Nv∑
j=1

λj = 1

}
(95)

7.3 Stability Analysis of the Error Dynamics

For the estimator to work, the asymptotic stability of the error dynamics equation

(92) is of prime importance. Unless (92) is asymptotically stable, there is no question

of estimator gain L design. Since (92) is a time-varying delay differential equation, we
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consider the linear system with a time-varying delay as characterized by the following

form of retarded functional differential equation (RFDE) or differential-difference

equation

ẋ(t) = A0x(t) + A1x(t− τ(t)) ∀t ≥ 0

x(t) = ψ(t). ∀t ∈ [−h, 0]
(96)

where x(t) ∈ Rn is the state variable, ψ(t) ∈ C([−h, 0],Rn) is the initial infinite

dimensional history function living in the Banach function space. Here C([−h, 0],Rn)

denotes the Banach space of continuous vector functions mapping the interval [−h, 0]

to Rn with the topology of uniform convergence. The matrices A0 and A1 each have

size n× n and the time-varying delay τ(t) and its rate are characterized as follows.

τ(t) ≤ h; τ̇(t) ≤ d ≤ 1. (97)

i.e., h and d are the upper bounds on the size of the time-varying delay τ(t) and its

time rate respectively. We give two approaches for the asymptotic stability analysis

of error dynamics. The first approach uses the celebrated Riccati equation and the

second one relies on Linear Matrix Inequalities (LMIs) [23].

7.3.1 Robust Stability Based on Riccati Equation

We directly use the following theorem.

Theorem 9 [80] If there exists a triple of time-invariant positive definite matrices

P,Q and R together with a scalar constant α ≥ 1 such that

A0
TP + PA+Q+R + α2PA1Q

−1AT
1 P = 0 (98)

then the system (96) is robustly Hα-asymptotically stable, where

Hα =

{
τ(.)
∣∣∣0 ≤ τ(.) ≤ h, and τ̇(.) ≤ 1− 1

α2

}
. (99)

Replacing A0 by A−LM and A1 by Aτ −LN in the above Riccati equation (98),

our estimator gain L must satisfy

(A− LM)TP +P (A− LM)+Q+R+α2P (Aτ −LN)Q−1(Aτ −LN)TP = 0. (100)
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Comment 2:

Notice that the results given by the Riccati equation (186) are highly conservative.

A full-fledged time-varying case for the matrices P (t), Q(t) and R(t) may give less

restrictive results but was not attempted. Nevertheless, this conservatism is reduced

by using the linear matrix inequality based approach in the next subsection which has

more flexibility and extra degrees of freedom of in the choice of the matrix variables

involved. Furthermore, the results not only involve the rate of the delay but also the

upper bound of the delay.

7.3.2 Stability Bounds Analysis Using LMIs

Using auxiliary system based approach [68], we introduce a comparison system as

follows.

ẇ(t) = A2w(t) + A3x(t), w(t) ∈ Rn (101)

We construct the following augmented system which comprises (101) and the original

delay-differential equation i.e., the top equation in (96). ẋ(t)

ẇ(t)

 =

 A0 0

A3 A2


 x(t)

w(t)

+

 A1 0

0 0


 x(t− τ(t))

w(t− τ(t))

 . (102)

At this point, let us introduce z(t) such that

z(t) = x(t− h)− w(t)

= x(t− h)−
∫ t

t−τ(t)

ẇ(t)dt− w(t− τ(t))

= x(t− h)−
∫ t

t−τ(t)

(A2w(β) + A3x(β))dβ − w(t− τ). (103)

Then system (96) can be rewritten as

ẋ(t) = A0x(t) + A1x(t− τ(t)) + A1w(t)− A1w(t)

= A0x(t) + A1w(t) + A1x(t− τ(t))− A1

×
∫ t

t−τ(t)

(A2w(β) + A3x(β))dβ

−A1w(t− τ(t)). (104)
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From (101) and (104) after re-organization of the terms, the following augmented

coupled system is obtained.

ξ̇(t) = Ã0ξ(t) + Ã1ξ(t− τ(t)) + Φ(t) (105)

where

Ã0 =

 A0 A1

A3 A2

 , Ã1 =

 A1 −A1

0 0

 ,
Φ(t) =

 A1

∫ t

t−τ(t)
(A2w(β) + A3x(β))dβ

0

 ,
ξ(t) =

 x(t)

w(t)

 .
Finally, we invoke the following theorem to obtain a sufficient condition.

Theorem 10 The time-delay system (96) is robustly uniformly asymptotically stable

if there exists a quadruple of matrices (Nj, Rj, Sj, Zj) where Nj ∈ Rn×2n, 2n × 2n

symmetric positive definite matrices Rj, Sj and an n× n symmetric positive definite

matrix Zj, such that the following set (system) of Linear Matrix Inequalities hold

(i.e., have a feasible solution):

Γ(j) :=


Γ
(j)
11 ⋆ ⋆

Γ
(j)
21 Γ

(j)
22 ⋆

Γ
(j)
31 0 Γ

(j)
33

 < 0, ∀ j = 1, 2, . . . , Nv. (106)
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where an ellipsis ⋆ represents an easily induced symmetric block, and

Γ
(j)
11 =

 A
(j)
0 A

(j)
1

0 0

Rj +Rj

 A
(j)
0 A

(j)
1

0 0


T

+

 0

Nj

+

[
0 NT

j

]
+ Sj

+h

 A
(j)
1

0

Zj

[
A

(j)
1

T
0

]

Γ
(j)
21 = Nj, Γ

(j)
22 = −1

h
Zj

Γ
(j)
31 = RT

j

 A
(j)
1

T
0

−A(j)
1

T
0

 , Γ
(j)
33 = −(1− d)Sj

Proof:

The proof is based on the following three term positive definite Lyapunov-Krasovskii

(LK) functional

V (ξt) = V1(ξ(t)) + V2(ξt) + V3(ξt) (107)

where,

V1(ξ(t)) = ξT (t)Pξ(t), P > 0, (108)

V2(ξt) =

∫ t

t−τ(t)

ξT (γ)Qξ(γ)dγ, Q > 0, (109)

V3(ξt) =

∫ 0

−h

∫ t

t+α

ξT (γ)

 AT
3

AT
2

Z−1

×
[
A3 A2

]
ξ(γ)dγdα, Z > 0 (110)

Using the time derivative of this LK functional along the trajectory of the system,

applying the matrix substitutions R = P−1, S = RQR and N =

[
A3 A2

]
R, Schur

complements and finally the convex polytopic uncertainty characterization in §7.2, the

LMI is formulated. The detailed proof can be accomplished using the lines in [7]. �
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Again, substitutingA−LM for A0 andAτ−LN for A1 in the above Linear Matrix

Inequality of Theorem 1 and applying congruence transformation, the estimator gain

matrix L can be computed.

7.3.3 Observer Based Controller

Once the observer is designed, one can use the estimated state x̂ to design the static

state feedback gain matrix K ∈ R1×n such that the control law becomes,

u = Kx̂. (111)

This renders the following closed-loop dynamics.

ẋ(t) = Ax(t) +Aτx(t− τ) +Kx̂(t) (112)

Using the definition of the estimation error, we get the following augmented dynamics

for the observer based control system. ẋ(t)

ė(t)

 =

 A+BK −A

O A− La1


 x(t)

e(t)


+

 Aτ O

O Aτ − La2


 x(t− τ)

e(t− τ)

 (113)

Given L, the controller gain K should be designed such that the above compos-

ite/augmented system is asymptotically stable.

Comment 3:

Notice that the estimator should be designed such that it is faster than the linear

velocity of the spindle, otherwise the true position and velocity of the tool cannot be

observed. The estimates will be faulty in this case.

Comment 4:

The observer designed as mentioned above is an infinite dimensional observer and it

uses the time varying delay. Infinite dimensional observers are practically infeasible
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because they require infinite memory. To circumvent this discrepancy, we develop fi-

nite dimensional nonlinear observers in the next section. See [95] for the observability

of systems with delay convoluted observation.

7.4 Nonlinear Observer Design: Unforced Case

Expanding the delayed term on the right hand side of (10) as a Taylor series gives

the following exact infinite dimensional expression of the the delay.

τ =
2πR + x(t)− (x(t)− τ(t)ẋ(t) + τ2(t)

2!
ẍ(t)− ......)

Rω
(114)

Now, we have different case studies related to the the machining and the rocket car

problems.

7.4.1 Case Study 1: Pure Inertia Case

For the unforced case of the system u(t) = 0 and therefore ẍ(t) = 0 and all the

third, fourth and higher derivatives of x(t) vanish. Notice that we are not neglecting

any higher order terms. This is neither an approximation nor a truncation of the

Taylor series expansion. As a result we get the following exact and accurate implicit

expression or representation of the delay τ(t) in terms of the state derivative (horizonal

velocity of the tool),

τ(t) =
2πR + τ(t)ẋ(t)

Rω
(115)

Rearrangement of the terms yields the following exact expression of for the delay τ(t)

as a nonlinear function of the state variable ẋ(t) = x2(t),

τ(t) =
2πR

Rω − x2(t)
; ẋ(t) = x2(t) ̸= Rω (116)

By analogy with the extended Kalman filter design, one may be tempted to use an

estimate of τ(t) as follows,

τ̂(t) =
2πR

Rω − x̂2(t)
(117)
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Now, using the concept of delay injection for the above τ̂(t), the nonlinear observer

equations are given as follows,

˙̂x1(t) = x̂2(t) + l1(τ(t)− τ̂(t)) (118)

˙̂x2(t) = l2(τ(t)− τ̂(t)) (119)

where l1 and l2 are the gains of the nonlinear observer. However, our simulation

results reveal that the error does not decay to zero asymptotically unlike the linear

asymptotic observer (292). This is because the delay only contains x2(t). One can

easily see that the corresponding linear version is unobservable. One can think of

using higher derivatives of τ(t) in our observation equations to get instantaneous

observability conditions. However, we can easily see that τ̇ = 0. Therefore, this case

does not carry any practical significance and is worthless for the inversion.

7.4.2 Case Study 2: Undamped Case of the Tool

In this case we consider the undamped model of the tool i.e.,
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)
(120)

Again expanding the delay in (10) as a Taylor series and using the undamped dy-

namics of the tool in (120) gives the following exact infinite dimensional expression

of the the delay,

τ=
2πR−(1− τ2

2!
+ τ4

4!
− ....)x1+x1+(τ − τ3

3!
+ τ5

5!
− ....)x2

Rω
(121)

Simplification of (121) yields,

τRω = 2πR + (1− cos τ)x1 + (sin τ)x2. (122)

Notice that we have used the exact full Taylor series without any approximation or

truncation using partial sums.
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7.4.3 Exact Instantaneous Nonlinear Observer:

In the ideal (pure mathematical) case, exact knowledge of a differentiable delay τ

implies knowledge of τ̇ . Therefore, from (122) we obtain by differentiation,

τ̇Rω = (1− cos τ)x2 + τ̇ sin τx1 + τ̇ cos τx2 − sin τx1 (123)

Expressing (122) and (123) in vector matrix form, we get;

A(τ, τ̇)

 x1

x2

 =

 τRω − 2πR

τ̇Rω

 (124)

where A(τ, τ̇) =

 1− cos τ sin τ

(τ̇ − 1) sin τ 1 + (τ̇ − 1) cos τ

.

Finally, we get the following inversion equation for the extraction of states of the

tool.  x1

x2

 = A−1(τ, τ̇)

 τRω − 2πR

τ̇Rω

 . (125)

We immediately get the observability condition for the state recovery as follows.

Given τ and τ̇ , one can completely recover the state vector if and only if the

matrix A is invertible i.e., nonsingular. In other words ker(A(τ, τ̇)) = {0} i.e., A

must have a trivial kernel. This leads to the following condition on the delay τ and

its derivative τ̇ .

(1− cos τ)(1 + (τ̇ − 1) cos τ)− (τ̇ − 1) sin2 τ ̸= 0 (126)

Simplification yields the following inequality,

(τ̇ − 2)(cos τ − 1) ̸= 0 (127)

Therefore, the simplified observability conditions are expressed neatly as follows.
τ̇(t) ̸= 2

cos(τ(t)) ̸= 1

∀t ≥ 0 (128)
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The top condition on the delay rate is already implied by the strong well-posedness

and causality constraint. The second condition must be taken care of. It simply states

that the delay at any instant of time should not be an integral multiple of 2π. Since

delay is always nonnegative for all time (otherwise it becomes an advance problem

which is noncausal and impractical), we can express this mathematically as,

τ(t) ̸= 2kπ, k ∈ Z+ ∀t ≥ 0. (129)

Using the above result in conjunction with the causality constraint, a more rigorous

and stringent condition for the nonlinear observability will be expressed in the theorem

as follows.

Theorem 11 System (120) is observable from the state-dependent delay (122) if and

only if the delay τ satisfies the following two conditions.
τ̇(t) ≤ 1

τ(t) ̸= 2kπ, k ∈ Z+

∀t ≥ 0 (130)

7.4.4 Asymptotic Nonlinear Observer:

The nonlinear asymptotic observer takes up the following form.

˙̂x1(t) = x̂2(t) + l1(τ(t)− τ̂(t)) +m1(τ̇(t)− ˆ̇τ(t)) (131)

˙̂x2(t) = −x̂1(t) + l2(τ(t)− τ̂(t)) +m2(τ̇(t)− ˆ̇τ(t)) (132)

where l1, l2,m1 and m2 are the gains of the nonlinear observer; and τ̂(t) and ˆ̇τ(t) are

precisely given by the implicit relations as follows.

τ̂Rω = 2πR + (1− cos τ̂)x̂1 + (sin τ̂)x̂2 (133)

ˆ̇τRω = (1− cos τ̂)x̂2 + ˆ̇τ sin τ̂ x̂1 + ˆ̇τ cos τ x̂2 − sin τ̂ x̂1 (134)
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7.4.5 Case Study 3: Exact Nonlinear Observer for the Rocket Car

Notice that application of Taylor series expansion to the right hand side of (3) yields,

vτ(t) = x1(t) + x1(t)− τ(t)ẋ1(t) +
τ 2(t)

2!
ẍ1(t)− ........ (135)

For the autonomous version of the system u(t) = 0 and therefore ẍ1(t) = ẋ2(t) = 0

and all the subsequent higher derivatives of x1(t) in the above expansion are zero.

This yields the following exact expression (no truncations),

τ(t) =
1

v
(2x1(t)− τ(t)ẋ1(t)) (136)

Finally, we achieve an explicit expression for the delay τ(t) in terms of the state

variables x1(t) and x2(t) as,

τ(t) =
2x1(t)

x2(t) + v
(137)

By analogy with the extended Kalman filter design, one may be tempted to use

an estimate of τ(t) as follows,

τ̂(t) =
2x̂1(t)

x̂2(t) + v
(138)

Now for the above τ̂(t) the the nonlinear observer equations with delay injection are

given as follows,

˙̂x1(t) = x̂2(t) + l1(τ(t)− τ̂(t)) (139)

˙̂x2(t) = l2(τ(t)− τ̂(t)) (140)

where l1 and l2 are the gains of the nonlinear observer. However, our simulation

results reveal that the error does not decay to zero asymptotically unlike the linear

asymptotic observer. This is because of the nonlinear nature of the estimator dy-

namics. We also used higher derivatives of τ(t) in our observation equations to get
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instantaneous observability conditions. In the ideal (pure mathematical) case, exact

knowledge of τ implies knowledge of τ̇ , as used in Kalman’s original observability

criterion.

τ̇(t) =
2x2(t)

x2(t) + v
(141)

From this equation, the inversion equations for x1(t) and x2(t) in terms of τ and τ̇

are given by,

x1(t) =
τv

2− τ̇
(142)

x2(t) =
τ̇ v

2− τ̇
(143)

We observe here that τ̇(t) ̸= 2 is the observability condition. But this is already

fulfilled by the strong causality constraint. See [95] for the observability of systems

with state-dependent delays.

7.4.6 Case Study 4: Unknown Input Observability & Observer Design
for the Rocket Car:

Here we assume that the input u in the rocket car equation is an unknown but a

constant driving agency or perturbation. Now, we are not only interested in the

observation of the states but also in the observation of this unknown input. Notice

that here we will require more regularity conditions on the delay τ . We assume that

τ ∈ C2. Successive differentiation followed by some algebraic simplification yields the

following set of equations.
vτ = 2x1 − τx2 +

τ 2

2
u

vτ̇ = 2x2 − τu+ τ τ̇u− τ̇x2

vτ̈ = −τ̈x2 + (2− 2τ̇ + τ̈ τ + τ̇ 2)u

(144)
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In a compact format, one can recast the above set of nonlinear equations as follows.
2 −τ τ2

2

0 2− τ̇ −τ + τ τ̇

0 −τ̈ 2− 2τ̇ + τ̈ τ + τ̇ 2




x1

x2

u

 = v


τ

τ̇

τ̈

 (145)

From which,

X̂ = T −1Y (146)

where,

T :=


2 −τ τ2

2

0 2− τ̇ −τ + τ τ̇

0 −τ̈ 2− 2τ̇ + τ̈ τ + τ̇ 2

 ,

X̂ :=


x1

x2

u

 ,

Y := v


τ

τ̇

τ̈

 .

The operator T in (146) is invertible if and only if

det

 2− τ̇ τ(τ̇ − 1)

−τ̈ 2− 2τ̇ + τ̈ τ + τ̇ 2

 ̸= 0

⇔ (2− τ̇)(2− 2τ̇ + τ̈ τ + τ̇ 2) + τ̈ τ(τ̇ − 1) ̸= 0

⇔ 4− 6τ̈ + 4τ̇ 2 − τ̇ 3 + τ τ̇ − 2τ τ̇ τ̈ ̸= 0. (147)

Notice that the system is observable from constant delays. Also, linearly varying

delays of the form τ(t) = αt+ β; ∀α, β ∈ R ensure observability of the system except

for α = 2. In particular, the delay rate should not be identically equal to to 2 for

all the time. Notice that τ̇ = 2 converts the above inequality into an equality. The

above result can be expressed by the following theorem.
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Theorem 12 The rocket car system (1) with the unknown steady input u is observ-

able from the delay τ ∈ C2 given by (3) if and only if 4−6τ̈+4τ̇ 2− τ̇ 3+τ τ̇−2τ τ̇ τ̈ ̸= 0.

Moreover, the exact/instanttaneous nonlinear observer for the states and the unknown

input is given by (146).

Comment 5a:

Notice that if the unknown input u is a time varying function such that Dn(u) = 0,

for some n ∈ N, then we will require more regularity on τ such that τ ∈ Cn+1. This

means that we must have the first n + 1 derivatives of the delay available to us in

order to recover completely the states x1, x2 as well as the unknown input u.

Comment 5b:

In order to extend the above theory to closed loop systems, we use the concept

of “borrowed state-feedback” (see [91]). Assume that a stabilizing feedback exists,

then the closed loop is autonomous, hence the inversion can be done exactly. We

do this inversion to obtain x̂, (we call it the “inverted state”) for the closed loop

system. Now we break the feedback open and insert the inverted state where we

used x before. This puts the observer after the controller, instead of first observing

then controlling, but in LTI, this is commutative anyway. It is a simple paradigm

shift. This is motivated by the deterministic separation principle. The observer

and controller design are completely independent in LTI systems. However, no such

separation exists for nonlinear dynamical systems.

Comment 5c:

With the designed controller u(t) = −k1x1(t) − k2x2(t), the closed loop system is

autonomous, i. e. ẍ1(t) = ẋ2(t) = u(t) = −k1x1(t) − k2ẋ1(t). By an appropriate

choice of the static state-feedback gains k1 and k2, the transient behavior (overshoot

and settling time or speed of response) of the machine tool or rocket car can be

controlled. This is the so-called regulator design problem. Practically speaking, the

tool or rocket car should move with uniform acceleration to avoid jerks in the motion.
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Therefore, it is assumed that all the derivatives of u(t) are zero and an exact expression

like (116) holds. Once the regulator design is accomplished, the nonlinear estimator

will give the estimated states x̂1 and x̂2. Now, the control law will be practically

implemented as u(t) = −k1x̂1(t)− k2x̂2(t).

7.5 Observer Design for a Model Motivated by Submarine
Dynamics in a 3-D Space

In this chapter, we design an estimator for the position of a basic submarine motivated

dynamic model in 3-D framework. The scheme is based on a novel idea of delay

measurements in a realistic scenario. Ultrasonic sensors or sonars are used to give the

measurement of the delay between the transmitted and the received signal. The delay

depends implicitly on the state of the system. We use Lagrange-Bürmann inversion

(LBI) to transform the delay to an explicit nonlinear function of the state. Then an

asymptotic nonlinear observer is designed.

7.5.1 Introduction of the Problem

Let x(t), y(t) and z(t) represent respectively the x, y and z coordinates of the position

of the prototype submarine at any instant of time t with respect to a stationary

beacon. Let αx, αy and αz be the drag coefficients or viscous damping coefficients

along respective coordinates. Let ux, uy and uz represent the thrusts or control efforts

in the x, y and z-directions respectively. Now, assuming unit mass (for simplicity),

the basic model of the submarine motivated dynamics in this 3-D framework are given

by,


ẍ(t) + αxẋ(t) = ux(t)

ÿ(t) + αyẏ(t) = uy(t)

z̈(t) + αz ż(t) = uz(t)

(148)
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It will be assumed that the control efforts u(.) is such that the submarine remains

subsonic.

Let us denote our state variables as x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z,

x6 = ż. Furthermore, let us assume symmetric damping i.e., αx = αy = αz = α.

With this the 6th order state space realization of the system will be as follows.

ẋ1(t) = x2(t)

ẋ2(t) = −αx2(t) + ux(t)

ẋ3(t) = x4(t)

ẋ4(t) = −αx4(t) + uy(t)

ẋ5(t) = x6(t)

ẋ6(t) = −αx6(t) + uz(t)

(149)

Inspired from physics and using polar coordinates for the position, let the position

vector of the submarine be −→r (t), where,

−→r (t) = x(t)̂i+ y(t)ĵ + z(t)k̂ (150)

with î, ĵ and k̂ being the unit vectors in the x, y and z-directions respectively; and

the magnitude of −→r (t) is,

r(t) = ∥−→r (t)∥ =
√
x2(t) + y2(t) + z2(t) (151)

or in terms of state variables,

r(t) =
√
x12(t) + x32(t) + x52(t) (152)

Active echo-location

Let the submarine be equipped with an ultrasonic sensor or sonar. Now the transmit-

ter Tx of the ultrasonic sensor transmits a signal/pulse, it travels with the speed of

sound c, it is echoed by the beacon and is detected by the receiver Rx of the sensor.
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The delay or the lag experienced by the pulse will give us the information of the

position of the submarine. Suppose the delay is denoted by τ and the submarine had

the position r(t) at the moment when the pulse was received by the receiver Rx. This

means that the position of the submarine at the moment when the sound signal was

transmitted was r(t− τ). Thus, the delay from transmission to reception is precisely

given by,

τ =
r(t) + r(t− τ)

c
(153)

The problem with active-echolocation is that not only the beacon but everything else

will also reflect the signal.

Passive echo-location

Now, we consider the passive echo-location problem. Let the submarine emit a con-

tinuous time stamped signal s(tr) when it is at position r(tr) and detected by a

stationary beacon located at the origin at time t. Notice that when the signal tra-

verses a distance r(tr) = (t − tr)v, it reveals a past position of the submarine with

respect to the beacon. If τ(t) = t− tr is the delay then,

τ(t) =
r(t− τ(t))

c
(154)

or equivalently in Cartesian coordinates,

τ(t) =

√
x2(t− τ(t)) + y2(t− τ(t)) + z2(t− τ(t))

c
(155)

First, we use the following theorem for the inversion of the state-dependent delay [95]

which is based on Lagrange-Bürmann Inversion (LBI) [37].

7.5.2 Lagrange-Bürmann Inversion

Now, we use the LBI to transform the delay to an explicit nonlinear function of the

state in the form of a power series.
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Theorem 13 [95] Let the state and delay be related by the following general convo-

luted expression.

G(τ) = F (r(t), r(t− τ)) (156)

where F , G and τ (equivalently r) are all analytic. If G′(τ) + F2(r(t), r(t)) ̸= 0 at

t, then the Lagrange inversion of (156) at t is explicitly given by the following power

series.

τ(t) =
∞∑
k=1

G(0) + F (r(t), r(t))k

k!

{(
∂

∂s

)k−1(
s

f(s)

)k
}

s=0

(157)

where,

f(τ) = G(τ)−G(0)− F (r(t), r(t− τ)) + F (r(t), r(t)). (158)

Now, we apply the above theorem to (154). Clearly in this particular case, by

comparison, we have, G(τ) = cτ , F (r(t), r(t − τ)) = r(t − τ) and f(s) = cs − r(t −

s) + r(t). Notice that,

lim
s→0

s

f(s)
= lim

s→0

s

cs− r(t− s) + r(t)
= lim

s→0

1

c+ r′(t− s)
=

1

c+ ṙ(t)

where we used de l’Hopital’s rule to resolve the indeterminate form. Similarly,

lim
s→0

∂

∂s

(
s

f(s)

)2

= 2 lim
s→0

s

f(s)
lim
s→0

∂

∂s

(
s

f(s)

)
= 2

1

c+ ṙ(t)
lim
s→0

f(s)− sf ′(s)

f 2(s)

=
2

c+ ṙ(t)
lim
s→0

r(t)− r(t− s)− sr′(t− s)
(cs− r(t− s) + r(t))2

=
2

c+ ṙ(t)
lim
s→0

sr′′(t− s)
2(cs− r(t− s) + r(t))(c+ r′(t− s))

=
1

c+ ṙ(t)
lim
s→0

r′′(t− s)− sr′′′(t− s)
(c+ r′(t− s))2 − r′′(t− s)(cs− r(t− s) + r(t))

=
r̈(t)

(c+ ṙ(t))3
.
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Likewise, we can compute the other terms in the Lagrange inversion expansion. Fi-

nally, the following series for the inversion of the delay τ in (154) is obtained.

τ =
r

c+Dr
+

1

2!

r2D2r

(c+Dr)3
+

1

3!

3(D2r)2 −D3rDr −D3r

(c+Dr)5
+ ...

where Dk represents the k − th order differential operator. Let us denote the first k

partial sums of the above series expansion by τk then,

τ1(t) =
r(t)

c+ ṙ(t)
and τ2(t) =

r(t)

c+ ṙ(t)
+

1

2

r2(t)r̈(t)

(c+ ṙ(t))3
etc.

Notice that the condition for the convergence of the series is σt
∥∥Dr

c

∥∥ < 1, ∀t ≥ 0.

This limits the scope of the LBI to local regimes only.

7.5.3 Direct Inversion of the State and Delay Map

Case 1: Passive echo-location

Suppose the delay τ(t) (along with its derivatives) is known to us for all t ≥ 0. The

question is how to retrieve the range information r from τ using only the following

static implicit map between r and τ .

τ(t) =
r(t− τ(t))

c

One can express r(t) as follows.

r(t) = r ((t− τ(t)) + τ(t))

Using the Lagrange/full Taylor series expansion, we get the following explicit expres-

sion for r in terms of τ and its subsequent derivatives;

r(t) = c
(
τ(t)+

τ̇(t)

(1− τ̇(t)))
.τ(t)+

τ̈(t)

(1− τ̇(t))3
.
τ 2(t)

2!
+
(1− τ̇(t))...τ (t) + 3τ̈ 2(t)

(1− τ̇(t))5
.
τ 3(t)

3!
+...
)

(159)

Case 2: Active echo-location

Here we consider the following state and delay map.

τ(t) =
r(t) + r(t− τ(t))

c
(160)
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One can easily prove by contradiction that τ is analytic if and only if r is analytic.

i.e., r ∈ Cω ⇔ τ ∈ Cω. If τ is small, r is also small. Let τ = ετ1 where ε = 1
c
is the

perturbation parameter of interest. Consider the following perturbation expansion

for r.

r(t) = εr1(t) + ε2r2(t) + ε3r3(t) + ε4r4(t) + ... (161)

Substituting this in (160) yields the following.

ε(cτ1(t)) = εr1(t) + ε2r2(t) + ε3r3(t) + ε4r4(t) + ...

+ εr1(t− ετ1(t)) + ε2r2(t− ετ1(t))

+ ε3r3(t− ετ1(t)) + ε4r4(t− ετ1(t)) + ...

= εr1(t) + ε2r2(t) + ε3r3(t) + ε4r4(t) + ...

+ εr1(t)− ε2τ1(t)ṙ1(t) +
ε3

2!
τ1(t)r̈1(t)− ...

+ ε2r2(t)− ε3τ1(t)ṙ2(t) +
ε4

2!
τ1(t)r̈2(t)− ...

+ ε3r3(t)− ε4τ1(t)ṙ3(t) +
ε5

2!
τ1(t)r̈3(t)− ...

+ ε4r4(t)− ε5τ1(t)ṙ4(t) + ...

The analyticity of τ (and hence equivalently r) guarantees the convergence of the

above infinite series. Using the method of matched asymptotic expansion, we get the

following.

O(ε1) : cτ1 − 2r1 = 0⇔ r1(t) =
c

2
τ1(t)

O(ε2) : 2r2 − τ1ṙ1 = 0⇔ r2(t) =
1

2
τ1(t)ṙ1

O(ε3) : 2r3 +
1

2!
τ1r̈1 − τ1ṙ2 = 0

⇔ r3(t) =
1

2
τ1(t)

(
ṙ2(t)−

1

2!
r̈1(t)

)
O(ε4) : 2r4 −

1

3!
τ1
...
r 1 +

1

2!
τ1r̈2 − τ1ṙ3 = 0

⇔ r4(t) =
1

2
τ1(t)

(
1

3!

...
r 1(t)−

1

2!
r̈2(t) + ṙ3(t)

)
...
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From the above, given τ(t), one can successively find r1(t), r2(t), r3(t), ... and hence

r(t) using (161).

7.5.4 Dynamic Observer Based On Delay Injection

One can easily see by using the Popov-Belevitch-Hautus (PBH) test that the linearized

system is not observable if only one delay measurement is used. This is actually

also obvious from the geometry. It turns out that one needs to have at leat three

computational platforms to estimate to position of the mobile unit (submarine) in a

3D environment. Let r⃗1, r⃗2 and r⃗3 denote the instantaneous position vectors of the

computational platforms i.e.,

r⃗1(t) = X1(t)̂i+ Y1(t)ĵ + Z1(t)k̂

r⃗2(t) = X2(t)̂i+ Y2(t)ĵ + Z2(t)k̂

r⃗3(t) = X3(t)̂i+ Y3(t)ĵ + Z3(t)k̂

Let r⃗(t) denote the instantaneous position vector of the submarine at any partic-

ular instant of time t then the measurements recorded at the three computational

platforms are as follows.

τj(t) =
1

c
∥r⃗(t− τj(t))− r⃗j∥; j = 1, 2, 3 (162)

In terms of the state variables (in Cartesian form), the above measurement equation

takes the following form.

τj(t) =

(
1

c

)√
(x1(t− τj(t))−Xj)

2 + (x3(t− τj(t))− Yj)2 + (x5(t− τj(t))− Zj)
2;

j = 1, 2, 3

Now, using the Lagrange inversion and taking c = 1 for simplicity, we get the following

explicit form for each of the delayed measurements in (162).

τj(t) = σt

( ∥r⃗ − r⃗j∥
1 +D∥r⃗ − r⃗j∥

+
1

2!

∥r⃗ − r⃗j∥2D2∥r⃗ − r⃗j∥
(1 +D∥r⃗ − r⃗j∥)3

+ ...
)

; j = 1, 2, 3
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where σt represents the evaluation functional i.e., σtx = x(t). Now, we compute

D∥r⃗ − r⃗j∥ and D2∥r⃗ − r⃗j∥ as follows. Let u⃗(t) = r⃗(t)− r⃗j. Therefore,

D∥u⃗∥ = u⃗⊤ ˙⃗u

∥u⃗∥
(163)

∴ σtD∥r⃗ − r⃗j∥ =
(r⃗(t)− r⃗j). ddt(r⃗(t)− r⃗j)

∥r⃗(t)− r⃗j∥
(164)

Using the state variables, in cartesian form, we get the following.

σtD∥u⃗∥ =
(x(t)−Xj)ẋ(t) + (y(t)− Yj)ẏ(t) + (z(t)− Zj)ż(t)√

(x(t)−Xj)2 + (y(t)− Yj)2 + (z(t)− Zj)2
;

j = 1, 2, 3

Likewise, we can compute D2∥u⃗∥ as follows.

D2∥u⃗∥2 = d2

dt2
(u⃗⊤u⃗)

⇔ D2∥u⃗∥2 = d

dt
(2u⃗⊤ ˙⃗u)

⇔ 2D(∥u⃗∥D∥u⃗∥) = 2(u⃗⊤ ¨⃗u+ ˙⃗u⊤ ˙⃗u)

⇔ ∥u⃗∥D2∥u⃗∥+ (D∥u⃗∥)2 = u⃗⊤ ¨⃗u+ ˙⃗u⊤ ˙⃗u

⇔ D2∥u⃗∥ =
u⃗⊤ ¨⃗u+ ˙⃗u⊤ ˙⃗u−

(
D∥u⃗∥

)2
∥u⃗∥

(165)

or substituting for D∥u⃗∥ from (163), we get the following handy expression.

D2∥u⃗∥ = 1

∥u⃗∥

{
u⃗⊤ ¨⃗u+ ˙⃗u⊤ ˙⃗u−

(
u⃗⊤ ˙⃗u

∥u⃗∥

)2
}

(166)

Notice that various terms in the above expression can be computed as under.

∥u⃗∥ =
√
(x(t)− xj)2 + (y(t)− yj)2 + (z(t)− zj)2

u⃗⊤ ˙⃗u = (x(t)− xj)ẋ(t) + (y(t)− yj)ẏ(t) + (z(t)− zj)ż(t)

˙⃗u⊤ ˙⃗u = ẋ2(t) + ẏ2(t) + ż2(t)

u⃗⊤ ¨⃗u = (x(t)− xj)ẍ(t) + (y(t)− yj)ÿ(t) + (z(t)− zj)z̈(t);

j = 1, 2, 3.
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Now, we set up our dynamics and measurement equations as follows.

Dynamics of the Mobile Unit in 3-D:

ẋ(t) = Ax(t) +Bu(t)

Measurements or Observations:

τj(u⃗(t)) =
∥u⃗(t)∥

1 +D∥u⃗(t)∥
+

1

2!

∥u⃗(t)∥2D2∥u⃗(t)∥
(1 +D∥u⃗(t)∥)3

where u⃗(t) = r⃗(t)− r⃗j; j = 1, 2, 3

(167)

HereA =



0 1 0 0 0 0

0 −α 0 0 0 0

0 0 0 1 0 0

0 0 0 −α 0 0

0 0 0 0 0 1

0 0 0 0 0 −α


, x(t) ∈ R6 is the state vector,B =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1



and u(t) =


ux(t)

uy(t)

uz(t)

 ∈ R3 is the control input vector. We can write the nonlinear

measurement vector as T =


τ1(u⃗(t))

τ2(u⃗(t))

τ3(u⃗(t))

. Let x̂(t) ∈ R6 be the observed or the

estimated state vector, then the dynamic observer based on Delay Injection is as

follows.

˙̂x(t) = Ax̂(t) +Bu(t) + L(T − T̂ ) (168)

where the last term is the correction term with L ∈ R6×3 being the gain matrix of

the estimator and T̂ is precisely given by,

T̂ =


τ̂1(u⃗(t))

τ̂2(u⃗(t))

τ̂3(u⃗(t))

 . (169)
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Here,

τ̂j(u⃗(t)) =
∥⃗̂u(t)∥

1 +D∥⃗̂u(t)∥
+

1

2!

∥⃗̂u(t)∥2D2∥⃗̂u(t)∥
(1 +D∥⃗̂u(t)∥)3

⃗̂u(t) = ⃗̂r(t)− r⃗j; j = 1, 2, 3.

Note:

Here we mention that in [102], a decoupled controller design based approach is used

for the formation control of autonomous underwater vehicles (AUVs). However, the

delays are taken as constant. Practically, as evident from our problem formation, the

lags are state-dependent. In [103], unscented Gauss-Helmert filter (UGHF) is used

for acoustic tracking with state-dependent propagation delay in a 2-D environment.

The problem with the Lagrange inversion is the appearance of the singularities in the

explicit form which makes the observer highly nonlinear. Another drawback is its

computational complexity. This limits the method to local regime only.

7.6 Simulation Results

7.6.1 Example 1: Rocket Car

In this example, we design an asymptotic observer for the autonomous rocket car

system. Clearly, for the rocket car discussed here, A =

 0 1

0 0

 and B =

 0

1

.

Fig. 24 shows the original position of the rocket car and its estimate. The initial

conditions for the system are

 7.5

−0.5

 and those for the estimator are

 1.5

−0.3

.

The gain of the asymptotic estimator was chosen as L =

 90

100

. The speed of

sound v in the air was taken as 332 m/s and the delay τ(t) = 15−t
v−0.5

in a realistic

fashion. A set of positive definite and symmetric matrices R,S and Z which makes

the inequality (106) feasible were found using Matlab and are given as follows.
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R =



59.2052 12.4865 37.5752 0

12.4865 39.1904 25.2265 0

37.5752 25.2265 46.2072 0

0 0 0 32.9406



S =



17.0862 −2.2315 −1.8066 0

−2.2315 10.9154 7.1515 0

−1.8066 7.1515 26.6621 0

0 0 0 23.7484


Z =

 4.1265 0

0 2.9230


The rectangular matrix N in (106) was found as follows.

N =

 −0.7365 20.4172 −25.8251 0

0 0 0 −25.8743


Fig. 25 shows the profiles for position error e1(t) and velocity error e2(t) of the

rocket car. We see that the error decays down to zero as time progresses. In other

words the estimated position approaches the actual position. Same is the case for the

velocity.

7.6.2 Example 2: Machine Tool

In this academic example, we design an asymptotic observer for the autonomous

system. Here we consider the following uncertain model for the horizontal motion of

the machine tool,

A =

 0 1

−0.5 + δ1 −1

, Aτ =

 0 1

−1 −0.4− δ2

 and B =

 0

1

. Here

δ1 and δ2 are representing the uncertainties in the model (lack of perfect model or

discrepancies in the parameters i.e., mass, spring and stiffness of the tool). In this
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Figure 24: Actual Position x1(t), its estimate x̂1(t) and Actual Velocity x2(t), its
estimate x̂2(t) of the rocket car

Figure 25: Profiles for Position Error e1(t) and Velocity Error e2(t) of the rocket car

example, we take |δ1| ≤ 0.21 and |δ2| ≤ 0.16. Therefore, A and Aτ can be recast in

terms of the convex hull of the four vertices of polytope as described in section IV.

The initial conditions for the estimation error vector are taken as

 −4.54
2.62

.

The state-dependent delay is τ = 2 + x1(t) + x1(t − τ). Therefore, in terms of the

format in (6), we have τ0 = 2, M = N =

(
1 0

)
. The gain of the asymptotic

estimator was chosen as L =

 5.4573

0.2618

. This selection of the observer makes the

inequalities in section VI feasible. All the feasible matrices are not reproduced here

because of space limitations.

Fig. 26 shows the profiles for the estimation error e1(t) in the horizontal position
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x1(t) of the machine tool for all the four polytopic vertices. Fig. 27 shows the profiles

for the estimation error e2(t) in the horizontal velocity x2(t) of the machine tool

for all the four polytopic vertices. We clearly notice that the error decays down to

zero as time progresses. In other words the estimated position approaches the actual

position. The same is true for the velocity case.

Figure 26: Estimation Error e1(t) in the horizontal position of the tool

Figure 27: Estimation Error e2(t) in the horizontal velocity of the tool

7.6.3 Example 3: Exact Nonlinear Observer

This example manifests the power of the exact nonlinear observer based on delay

inversion. This observer uses the delay τ and its time evolution rate τ̇ to exactly

recover or estimate the state vector of the machine tool. The following implicit

realistic delay model was used. The radius R of the workpiece was taken as 75 cm
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and the angular velocity of the spindle ω was assumed to be 10 radians/second.

Thus, the linear velocity being 7.5 metres/second. The following implicitly defined

pair of τ and τ̇ were used as the observation/measurement equations.


τ =

2πR + cos t− cos(t− τ)
Rω

τ̇ =
(1− τ̇) sin(t− τ)− sin t

Rω

Fig. 28 shows the profiles of the delay and its rate. These profiles serve as our

measurements or observations. We see that the delay and its rate fairly satisfy the

nonlinear observability criteria for inversion given by (130). It is clear that there is

no zero crossover of the delay at non-negative integral multiple of 2π. Also, the slope

of the delay (delay rate) at any instant of time is less than unity. Therefore, exact

instantaneous inversion is possible. Fig. 29 gives the estimated state trajectories of

the position and velocity of the tool using the exact nonlinear estimator in (125).

Notice that we have not shown the estimation errors e1 and e2 in this figure. Both of

these errors are identically equal to zero because the observer is exact! The estimated

states are the same as the true states.

Figure 28: Delay τ and its Rate τ̇ Profiles
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Figure 29: Tool Position and Velocity Recovery Using Exact Nonlinear Inversion
Based Observer

7.6.4 Example 4: Basic Submarine (No Input Case)

In this example we take all the inputs as zero. Let the computational platforms be

located at (1,0,0), (0,1,0) and (0,0,1) in the 3-D space. For simplicity we took c = 1

and symmetric damping with α = 1. Fig. 30 shows the actual and the estimated

states and Fig. 31 portrays the estimation error profile for each of the states.
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Figure 30: Actual States and Their Estimates
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Figure 31: Profiles for the Estimation Error in the States

7.6.5 Example 5: Basic Submarine (Unknown Noisy Input)

In this example, all the parameters are the same as the previous example except

that now there are unknown inputs. Here we take ux, uy and uz as white noises

of zero means and variances 0.04, 0.16 and 0.09 respectively. Fig. 32 shows the

trajectories for the actual and the estimated states. Fig. 33 shows the trajectories of

the estimation errors in each of the states. The observer gain matrix L was taken as

follows.

L =



0.0001 0.0001 0.0001

0.01 0.01 0.01

0.23 0.23 0.23

0.02 0.02 0.02

0.1 0.1 0.1

0.002 0.002 0.002


.

The initial conditions for actual and the observes state vectors are as follows.

x0 = (2 0.1 1 0.2 3 0.3)⊤,

x̂0 = (2.025 0.08 1.01 0.18 3.01 0.28)⊤.

7.7 Concluding Remarks

The main focus of this chapter was to introduce the technique of delay injection for

the observer design in a general setting. Two types of observers were considered
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Figure 32: Actual States and Their Estimates in Presence of Noisy Inputs

namely asymptotic and exact. The observer can be designed via two approaches

i.e., Riccati or LMIs. Both finite-dimensional and infinite-dimensional observers were

designed. In a nutshell, we designed estimators for state-dependent delay systems

and considered four case studies. These case studies involved the estimation of the

states of a machine tool in a turning process and the position of a rocket car. We

used the inversion of the state-dependent delay models (3) and (10) to retrieve or

extract the state vector. We designed a robust asymptotic estimator which accounts

for the parametric uncertainties of the system. Contrary to the existing methods in

the literature, no approximation technique such as linearization or Taylorization of

the system was used. All the work is based on the first principles. The central point is

that using delay injection technique, the estimation error dynamics satisfy a Retarded

Functional Differential Equation (RFDE) with a time-varying delay. The stability

of such RFDEs can be ensured under the causality and well-posedness constraints.

We also constructed two types of nonlinear observers. The first one, referred to as

instantaneous observer, uses exact inversion of the delay model and showed that the

nonlinear observer is much faster than the linear asymptotic case. The second type of

observer is the nonlinear asymptotic observer and is based on delay and its derivative
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Figure 33: Profiles for the Estimation Error in the States in the Presences of Noisy
Inputs

information. Finally we also gave observer design for a model motivated by submarine

dynamics using LBI. Simulation results were presented to show the usefulness of the

proposed observation and observer design schemes utilizing the inversion of the state-

dependent delay.
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CHAPTER VIII

SYSTEMS WITH EXPLICIT STATE-DEPENDENT

DELAY: ANALYSIS & OBSERVER DESIGN

In this chapter, the delay is a an explicit nonlinear function of the state of the system

and the resulting dynamics are governed by a nonlinear State-Dependent Delay Dif-

ferential Equation (SD-DDE). The problem is inspired from the temperature control

of a fluid in a tank as discussed in the preliminary chapter. We perform the stability

analysis using Lyapunov-Razumikhin based approach. Using the new concept of de-

lay injection with inversion, an infinite dimensional observer is designed to estimate

the state of the system. We also shed some light on the state space required for

characterizing the Cauchy problem and the evolution of the SD-DDE based system.

Simulation results are depicted at the end which portray the effectiveness, validity

and usefulness of the proposed observer scheme.

8.1 Problem Formulation

The DDE in the temperature control problem motivates us to analyze the stability

properties of the following system.

ẋ(t) = αx(t) + βx(t− τ) + f(t) (170)

Let us first investigate the unforced force where the delay τ depends explicitly on

the state of the system. This motivates the analysis of the following explicit state-

dependent delay differential equation.
ẋ(t) = αx(t) + βx(t− τ(x(t)))

τ(x) =
d

k1x(t) + k2

(171)
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Notice that (171) is now no longer a linear constant coefficient delay differential

equation. The dependence of the delay on the state makes this Functional Differential

Equation (FDE) nonlinear. Also observe that the delay is a nonlinear function of the

state. Even if the delay is a linear function of the state, the system is nonlinear

because of the state-dependent delay. Such problems are very hard to handle.

Remark 5:

From the geometry and physical nature of the problem, it is evident that the delay τ

is always non-negative. It cannot be zero because the sensor and actuator always have

some separation. Also, mathematically τ < 0 means an anticipatory and advanced

system which is noncausal and physically not realizable. Therefore, it is reasonable

to assume that τ(x) > 0 and hence k1x(t) + k2 > 0,∀t. Taking the state to be non-

negative which physically means that the temperature is non-negative implies that

k1 > 0 and k2 > 0. Also, ∂τ
∂x

= −k1
d
τ 2 < 0. This shows that the state-dependent

delay τ(x) will be a monotonically decreasing function of the state x at any arbitrary

instant of time. We can see that τ(x) is bounded on the domain x ∈ [0,∞). In fact,
inf

x∈[0,∞)
τ(x) = 0

sup
x∈[0,∞)

τ(x) =
d

k1
≡ τmax

(172)

8.1.1 Asymptotic Stability of the Equilibrium Point of (171)

It was shown in [81], that the Lyapunov-Krasovskii (LK) functional based approach

is not a suitable choice for the stability analysis of SD-DDEs governed systems.

We now use the LR theorem to show that equilibrium point (x = 0) of the SD-

DDE system (171) is asymptotically stable.

Consider the Lyapunov function V : R+ → R+ described by V (x) = 1
4
x2. We

have for x ∈ R+, α(x) ≤ V (x) ≤ β(x), with α(x) = 1
16
x2 and β(x) = 8x2.

Define η : R+ → R+ by η(r) = ρ2r, r ∈ R+ and ρ > 1. This ensures one of

the requirements of the LR theorem that η(r) > r,∀r > 0. Let x(t) be the solution
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trajectory of (171), such that for t ≥ 0, θ ∈ [−τmax, 0],

V (x(t+ θ)) < η(V (x(t)) (173)

⇒ x2(t+ θ) < ρ2x2(t)

⇒ |x(t− τ(x))| < ρ|x(t)| (174)

Now, we have for t ≥ 0

V̇ (x(t)) =
∂V

∂x

dx

dt

=
1

2
αx2(t) +

1

2
βx(t)x(t− τ(x(t)))

≤ 1

2
αx2(t) +

1

2
|β||x(t)||x(t− τ(x(t)))|

=
1

2
(α + ρ|β|)x2(t)

< 0 if α+ ρ|β| < 0

(175)

Since V (x(t)) > 0 and V̇ (x(t)) < 0 whenever V (x(t + δ)) ≤ η(V (x(t))),∀δ ∈ [−τ, 0],

all the conditions of LR theorem are satisfied. We, therefore, conclude that the equi-

librium point (origin) of (171) is asymptotically stable. Furthermore, since V (x) =

1
2
x2(t) = 1

2
∥x∥2 i.e. V → ∞ as ∥x∥ → ∞. Therefore, V is radially unbounded, and

by definition this implies the global asymptotic stability of the equilibrium point.

The above general result is very useful and can be stated as the following theorem.

Theorem 14 The SD-DDE system characterized by (171) is uniformly globally asymp-

totically stable if there exists a scalar ρ > 1 such that α + ρ|β| < 0.

Remark 6:

Notice that the application of Razumikhin theorem requires the hypothesis that the

right hand side of the FDE must be Lipschitz in x. In our problem, τ is Lipschitz and

because of the fact that the composition of two Lipschitz maps is again a Lipschitz

map, this hypothesis is satisfied and the LR theorem can be safely applied.

Remark 7:
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We can express V̇ (x) in the above analysis as follows.

V̇ (x(t)) ≤ 2(α + ρ|β|)V (x(t)) (176)

The corollary given below is an immediate consequence of the above result.

Corollary 2 The SD-DDE system given by (171) is globally exponentially stable if

there exists a scalar ρ > 1 such that α + ρ|β| < 0.

An even more generic and beautiful result can be obtained, by following the same

lines as above in the spirit of LR theorem, for the nonlinear time-varying version of

the SD-DDE i.e. 
ẋ(t) = α(t)x(t) + β(t)x(t− τ(x(t)))

τ(x) =
d

k1x(t) + k2

(177)

where α and β are continuous functions on R such that −α(t) ≥ ϵ > 0, and there is

a κ, 0 ≤ κ < 1 such that |β(t)| ≤ κϵ.

Corollary 3 The non-autonomous system (177) is globally uniformly asymptotically

(and exponentially) stable if there exists a scalar ρ > 1 such that 1− ρκ > 0.

8.2 Perturbation Analysis

Here, we want to consider the effect of the parameter d on the dynamics of the SD-

DDE. We nondimensionalize or normalize it and call it σ = d
d0
. By introducing a

small perturbation parameter σ > 0 in the delay term, we get the following regularly

perturbed version of the SD-DDE (171).

ẋ(t) = αx(t) + βx

(
t− σ d0

k1x(t) + k2

)
; ∀α, β ∈ R (178)
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Performing the small signal perturbation analysis yields the following.

ẋ(t) = αx(t) + βx(t)− βσ d0
k1x(t) + k2

ẋ(t)

⇒ (1 + βσ
d0

k1x(t) + k2
)ẋ = (α + β)x

⇒
∫ (

1

x
+ σ

βd0
x(k1x+ k2)

)
dx =

∫
(α + β)dt+ E

⇒ ln |x|+ σβd0
k2

ln |x| − σβd0
k2

ln |k1x+ k2|

= (α + β)t+ E

⇒ x
1+σ

βd0
k2

(k1x+ k2)
σ

βd0
k2

= Fe(α+β)t

⇒ x

(
x

k1x+ k2

)σ
βd0
k2

= Fe(α+β)t (179)

where E and F are arbitrary constants of integration. This shows that if α + β < 0,

then as t → ∞, x(t) → 0. As expected, in the special and trivial case when σ = 0

(physically meaning that the pipe gets arbitrarily short), x(t) = x0e
(α+β)t because the

SD-DDE reduces to an Ordinary Differential Equation (ODE).

8.3 Observation Using Delay Injection

We express the dynamics of the system and measurements as a setup or formulation

for our observer problem as follows.

Dynamics of Plant/Process/System:

ẋ(t) = αx(t) + βx(t− τ(x(t))) + θu(t)

Measurements or Observations:

τ(x) =
d

k1x(t) + k2

(180)

The delay has the above described explicit dependence on the state x of the sys-

tem. The state is infinite dimensional and lives in the Banach function space C0,1.

Here x(t) ∈ R is the state vector, u(t) ∈ R is the control input, all the coefficients

α, β, θ, d, k1 and k2 ∈ R are scalars (constants). Moreover, d > 0, k1 > 0 and k2 > 0.
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We measure the delay τ(t) at each instant of time t with the help of a flow sensor.

The measurement might be contaminated by noise. For feedback one needs the state

of the system. Our objective here is to construct the observer for the recovery of the

state x(t). Since τ is a nonlinear function (inversely related function) of the state,

we use the inverted delay 1
τ
in our observer equation and call this technique as delay

injection with inversion. Since the delay is always nonzero, there is no harm in its

inversion. In fact, the delay τ is always positive. Let x̂(t) represent the estimated

state, the estimator (being a replica of the state) will be governed by the dynamics

as follows.

˙̂x(t) = αx̂(t) + βx̂(t− τ̂) + θu(t) + L

(
1

τ
− 1

τ̂

)
(181)

where the last term is the correction term with L ∈ R being the gain of the estimator

and τ̂ is precisely given by,

τ̂ =
d

k1x̂(t) + k2
(182)

Fig. 34 gives a basic conceptual block diagram to illustrate the concept of estimation

using delay injection with inversion. Substitution for τ and τ̂ in (291) yields,

Figure 34: Conceptual Block Diagram for the Illustration of Delay Injection with
Inversion
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˙̂x(t) = αx̂(t) + βx̂(t− τ) + θu(t) (183)

+L

(
k1x(t) + k2

d
− k1x̂(t) + k2

d

)
⇒ ˙̂x(t) = αx̂(t) + βx̂(t− τ) + θu(t)+L

k1
d
e(t) (184)

where e(t) = x(t)− x̂(t) is the estimation error or observation error at any arbitrary

time instant t.

Now we subtract the above equation from the original dynamic equation of the

system as given by the top equation in (180) to get the error dynamics for the observer

as follows,

ė(t) = (α− L
k1
d
)e(t) + βe(t− τ(t)) (185)

From the above equation it is obvious that the error dynamics satisfy an autonomous

Retarded Functional Differential Equation (RFDE) involving a time-varying delay.

Now, the problem is tractable. The only design parameter is the gain L. The error

will converge asymptotically to zero if the above delay differential equation is asymp-

totically stable or in other words the equilibrium point or fixed point (i.e., the origin

e = 0) is asymptotically stable.

Remark 8:

One might be tempted to use the static direct inversion of the delay model to re-

cover the state. However, we want to mention here that if the measurement is

impaired or contaminated by noise, the direct inversion might not be useful. Let

1
τ̃
= 1

τ
+ υ(t) denote the noisy measurement where υ(t) is the Additive White Gaus-

sian Noise (AWGN) that corrupts the observation. The estimate of the state by direct

inversion would be x̃ = 1
k1

(
d 1
τ̃
− k2

)
rendering the state estimation error ẽ = − d

k1
υ(t).

Let V ar(n(t)) denote the variance of the AWGN, then the variance of the estimation

error will be V ar(ẽ) = d2

k21
V ar(n(t)). Therefore, the variance of the error increases

linearly as the noise variance increases (or in other words as the Signal to Noise Ratio

(SNR) decreases) i.e., the error escalates or worsens with noise. Another potential
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problem with the direct inversion is its singularity. On the other hand, the delay

injection with inversion based observer is a dynamic system and it acts like a filter

for the incoming noise provided that the dynamics are stable. As we show in the

simulation results, it nicely and uniformly tracks the original state even in the pres-

ence of noise. In the transient regime, the direct observer may compete the injection

observer because of large initial error due to mismatch between the initial conditions

of the actual and estimated state. To overcome that pathological case, the solution

will be a hybrid observer. The dynamic observer outperforms the direct one in the

steady state because of its inherent integrating, averaging and smoothing property.

8.4 Stability Analysis of the Error Dynamics & Observer
Design

ReplacingA0 by the scalar α−Lk1
d
andA1 by the scalar β in the above Riccati equation

(98), our estimator gain L must satisfy the following scalar Riccati equation.

2(α− L
k1
d
)p+ q + r + ν2β2p

2

q
= 0 (186)

8.4.1 Observer Design Using Riccati Equation

The scalar Riccati equation always has a positive definite solution p > 0 if

−(α− L
k1
d
) > ν|β| (187)

which means that the observer gain must be chosen such that

L >
d

k1
(α+ ν|β|). (188)

8.4.2 Observer Design Using LR Theorem

Using the Lyapunov Razumikhin function, there should exist ρ > 1 such that (α −

Lk1
d
) + ρ|β| < 0 in order that the observer error dynamics are asymptotically stable.

This gives the same condition on L as in (188) and the two approaches reconcile to
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give the same results.

Comment 6:

Notice that the estimator should be designed such that it is faster than the output

temperature dynamics of the closed loop system, otherwise the true temperature

cannot be observed. The estimates will be faulty in this case.

Comment 7:

The observer designed as mentioned above is an infinite dimensional observer and it

uses the time-varying delay. Infinite dimensional observers are practically infeasible

because they require infinite memory. To circumvent this discrepancy, we develop

finite dimensional nonlinear observers which we leave as a future task.

8.5 Simulation Results

Example 1: Consider the nonlinear non-autonomous (time-varying) system with the

state-dependent delay.
ẋ(t) = −10(0.6 + e−0.25t)x(t) + 2.5 cos(10t)x(t− τ(x(t)))

τ(x) =
10

x(t) + 10

Here, ϕ(t) = 2.5t+1.4 cos(5t)+3 ∈ C0,1, ∀t ∈ [−1, 0] was taken as the initial history

function. It is obvious to see that the example meets all the condition of Corollary 3.

Fig. 35 shows the variation of the state-dependent delay and Fig. 36 shows the state

trajectory. We can clearly see that the system is asymptotically stable.

Example 2: In this example, we design an asymptotic observer for the au-

tonomous system ẋ(t) = −10.69x(t) + 2.6x(t − τ(x(t))) with the nonlinear state-

dependent delay τ(x(t)) = 10
x(t)+10

. Taking ν = 15, the observer gain was computed as

L = 8.5. The C0,1 initial histories for the state and the estimate are t+ 1.4 and 0.95

respectively for t ∈ [−1, 0]. We also consider the case of a noisy observation where

the noise in the flow was assumed to be AWGN with a standard deviation of 0.25.

Fig. 37 shows the profiles for the actual temperature, the estimated temperature
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Figure 35: Profile of the State-Dependent Delay

Figure 36: State Trajectory x(t)

and the observation error. We clearly notice that the error decays down to zero as time

progresses in both the noisy and noiseless cases. In other words the estimated state

approaches the actual state. Fig. 38 shows a comparison between the estimation

error in the case of the dynamic observer based on delay injection and the direct

observer for the same noise variance. Notice the spikes in the direct scheme and the

smoothness of the delay injection observer. These spikes increase in magnitude as the

noise variance increases.
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Figure 37: Trajectories of the Actual State, Observed State and Observation Error

Figure 38: Comparison of the Estimation Error for the two Observation Schemes

8.6 Concluding Remarks

In this chapter we solved the problem of analysis and observer design for the state of

temperature control of a fluid in a tank based on the observation of delay measure-

ments using flow sensor. Unlike the usual cases in the literature, the delay considered

here is neither fixed nor time-varying, rather it depends explicitly on the state of the

system. The delay depends nonlinearly on the state and as a result the governing

dynamics exhibit a nonlinear SD-DDE. To the best of our knowledge, no work is

done for the observation or estimation of the states of temperature control systems

involving state-dependent delays. For the state feedback control synthesis problem,

one always needs the complete state vector of the system which is seldom (almost

never) available. Therefore, it is always mandatory to estimate the state vector of
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the system. Here we used our new idea of delay injection with inversion for the re-

trieval of the state from the knowledge of delay measurement. We also emphasized

that the state space required for the SD-DDEs is not the usual function space of con-

tinuous functions over a compact support. Stability analysis was carried out using

Razumikhin framework for the both the time-invariant and time-varying cases. We

also performed regular perturbation analysis of the system. At the end, simulation

results were shown to express the benefits of our analysis and observer design for the

nonlinear SD-DDE based systems.
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CHAPTER IX

GENERAL FRAMEWORK: ANALYSIS OF SYSTEMS

WITH STATE-DEPENDENT DELAYS

The objective of this chapter is to develop a generic framework for the analysis and

observer design of systems with state-dependent delays and state suprema. In the

previous chapters, we analyzed the stability and designed observer in the general

setting when the delay free system was linear. The only source of nonlinearity was

the state-dependent delay. Now, we extend the idea to a more general setting where

the dynamics as well as the observation are nonlinear as follows.
ẋ(t) = Ax(t) + f(x(t)) + g(x(t− τ(t))),

τ(t) = h(x(t)),

x0 = ϕ ∈ C0,1([−τsup, 0];Rn); τ ∈ [τinf , τsup]

(189)

where f : Rn → Rn, g : C([−τsup, 0];Rn) → Rn, A ∈ Rn×n and h : Rn → R+ are

all Lipschitz continuous functions. Moreover, we assume that f(0) = g(0) = 0. The

delay function τ is assumed to be non-negative and τsup > τinf . After identifying the

equilibrium solutions, the next step will be to determine the stability of the equilibria

of (189). Notice that the Lyapunov-Krasovskii functional (LKF) of §7.3.2 cannot be

used here because of the delay dependence on the state. The derivative of LKF results

in a very convoluted expression from the stability condition is hard to conclude. We

propose to use Lyapunov-Razumikhin function based approach to find the sufficient

conditions for the asymptotic stability of (189). Likewise we can setup the nonlinear

observer design problem with the state-dependent delay τ = h(x) as the observation

or measurement and the dynamics as in (189). The objective is to extract the state

vector using the delay injection concept. Let Lf > 0, Lg > 0 and Lτ > 0 denote the
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Lipschitz constants of the the vector fields (functions) f, g and τ respectively i.e.,

∥f(x)− f(y)∥ ≤ Lf∥x− y∥, ∀x, y ∈ Rn (190)

∥g(x)− g(y)∥ ≤ Lg∥x− y∥, ∀x, y ∈ C (191)

|τ(x)− τ(y)| ≤ Lτ∥x− y∥, ∀x, y ∈ Rn (192)

The general implicit form of the state-dependent delay system to be investigated is

as follows.
ẋ(t) = Ax(t) + f(x(t− τ(t))),

τ̇(t) = h(x(t), τ(t)),

(x0, τ(0)) = (ϕ, τ) ∈ C0,1([−τsup, 0];Rn)× [τinf , τsup] ≡ C0,1 ×K

(193)

The analysis technique for the system (189) will be used to investigate the problem

of gene expression regulation in the next chapter.

9.1 Explicit State-Dependent Delay

The following theorem gives sufficient conditions for the global asymptotic stability

of the explicit state-dependent delay system (189).

Theorem 15 The equilibrium solution of the nonlinear time delay system (189),

with state dependent delay characterized as above, is uniformly globally asymptotically

stable if given any symmetric and positive definite matrix R (R = R⊤ > 0) there exists

a symmetric and positive definite matrix T = T⊤ > 0 together with a scalar ξ such

that 
A⊤T + TA+R = O;

λmin(R)− 2∥T∥(Lf + ξLg) > 0;

ξ > 1

(194)

Proof:

Consider the Lyapunov function V : Rn → R+ described by V (x) = x⊤Tx where T =
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T⊤ > 0. We have for x ∈ Rn, α(∥x∥) ≤ V (x) ≤ β(∥x∥), with α(∥x∥) = λmin(T )∥x∥2

and β(∥x∥) = λmax(T )∥x∥2.

Define η : R+ → R+ by η(r) = ξ2r, r ∈ R+ and ξ > 1. This ensures one of

the requirements of the LR theorem that η(r) > r,∀r > 0. Let x(t) be the solution

trajectory of (227), such that for t ≥ 0, θ ∈ [−τmax, 0],

V (x(t+ θ)) < η(V (x(t))

⇒ x⊤(t+ θ)Tx(t+ θ) < ξ2x⊤(t)Tx(t)

⇒ ∥x(t+ θ)∥2P < ξ2∥x(t)∥2P

⇒ ∥x(t− τ)∥P < ξ∥x(t)∥P ;∀τ ∈ [τinf , τsup]

Now, we have for t ≥ 0,

V̇ (x(t)) =

(
∂V

∂x

)⊤
dx

dt

= D(x⊤(t)Tx(t))

= ẋ⊤(t)Tx(t) + x⊤(t)T ẋ(t)

= x⊤(t)(A⊤T + TA)x(t) + (f⊤(x(t))Tx(t) + x⊤(t)Tf(x(t)))

+ (g⊤(x(t− h(x(t))))Tx(t) + x⊤(t)Tg(x(t− h(x(t)))))

= −x⊤(t)Rx(t) + 2x⊤(t)Tf(x(t))) + 2x⊤(t)Tg(x(t− h(x(t)))))

≤ −λmin(R)∥x(t)∥2 + 2Lf∥T∥∥x(t)∥2 + 2Lg∥T∥∥x(t)∥∥x(t− h(x(t)))∥

≤ −(λmin(R)− 2∥T∥(Lf + ξLg))∥x(t)∥2

(195)

This completes the proof. �

9.2 Implicit State-Dependent Delay

Likewise, by using the Lyapunov Razumikhin function

V (x) = x⊤(t)Sx(t) +
1

2
τ 2(t);S = S⊤ > 0, (196)
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we have the following result for the system (193) with implicit delay.

Theorem 16 The equilibrium solution of the nonlinear time delay system (193),

with state dependent delay characterized as above, is uniformly globally asymptotically

stable if given any symmetric and positive definite matrix R (R = R⊤ > 0) there exists

a symmetric and positive definite matrix S = S⊤ > 0 together with a scalar ξ such

that 
A⊤S + SA+R = O;

λmin(R)− 2ξ∥S∥Lf − τsup > 0;

ξ > 1

(197)

Proof:

By the causality constraint, τ̇ = h(x, τ) < 1. Now, using Razumikhin argument as in

the previous theorem, from (196) we have,

V̇ (x(t)) = ẋ⊤(t)Sx(t) + x⊤(t)Sẋ(t) + τ(t)τ̇(t)

= x⊤(t)(A⊤S + SA)x(t) + 2(f⊤(x(t− τ(t))))Sx(t) + τ(t)h(x(t), τ(t))

= −x⊤(t)Rx(t) + (f⊤(x(t− τ(t))))Sx(t) + τ(t)h(x(t), τ(t))

≤ −λmin(R) + 2Lf∥S∥∥x(t)∥ξ∥x(t)∥+ τsup∥x(t)∥2

≤ −(λmin(R)− 2ξ∥S∥Lf − τsup)∥x(t)∥2

This concludes the proof. �

9.3 Controller Synthesis & Stabilization

Consider the following non-autonomous system corresponding to (189).

ẋ(t) = Ax(t) + f(x(t)) + g(x(t− τ(t))) +Bu(t),

τ(t) = h(x(t)),

x0 = ϕ ∈ C0,1([−τsup, 0];Rn); τ ∈ [τinf , τsup]

u(t) = Kx(t)

(198)
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where u(t) ∈ Rm is the control law to be designed so that the resulting closed-loop

systems is globally asymptotically stable. Here B ∈ Rn×m and K ∈ Rm×n is the static

state feedback gain matrix. The following corollary is an immediate consequence of

Theorem 15.

Corollary 4 The equilibrium solution of the nonlinear time delay system (198), with

state dependent delay characterized as above, is uniformly globally asymptotically sta-

bilizable by the control law u(t) = Kx(t) if given any symmetric and positive defi-

nite matrix R (R = R⊤ > 0) there exists a symmetric and positive definite matrix

W =W⊤ > 0 together with a scalar ξ and a matrix K ∈ Rm×n such that
(A+BK)⊤W +W (A+BK) +R = O;

λmin(R)− 2∥W∥(Lf + ξLg) > 0;

ξ > 1

(199)

9.4 Observer Synthesis

Consider the following observer structure for the system (189), with L ∈ Rn being

the observer gain matrix.

˙̂x(t)) = Ax̂(t) + f(x̂(t)) + g(x̂(t− τ(t))) + L(τ − τ̂),

τ(t) = h(x(t)),

τ̂(t) = h(x̂(t)),

x̂0 = ϕ ∈ C0,1([−τsup, 0];Rn); τ ∈ [τinf , τsup]

(200)

The error dynamics are as follows.

ė(t) = Ae(t)+(f(x(t))−f(x̂(t)))+(g(x(t−τ(t)))−g(x̂(t−τ(t))))−L(h(x(t))−h(x̂(t)))

(201)

The following corollary can be used to design the observer.
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Corollary 5 The error dynamics (201) is globally asymptotically stable if given any

symmetric and positive definite matrix R (R = R⊤ > 0) there exists a symmetric and

positive definite matrix Z = Z⊤ > 0 together with a scalar ξ such that
A⊤Z + ZA+R = O;

λmin(R)− 2∥Z∥(Lf + ξLg + Lh∥L∥) > 0;

ξ > 1

(202)

9.5 Concluding Remarks

In this chapter, we provided a generic framework for the stability analysis, controller

synthesis and observer design for systems with state-dependent delays. Here, the

delay free system is also nonlinear. The nonlinearities considered in this chapter are

of Lipschitz type. Notice that the Lipschitzness is also necessary for ensuring the

existence and uniqueness of the solutions. Both explicit and implicit state-dependent

delays were considered in the analysis. The next chapter supplements these results

for applications in genetic circuits.
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CHAPTER X

MODELING & ANALYSIS OF GENE EXPRESSION AS A

NONLINEAR FEEDBACK PROBLEM WITH

STATE-DEPENDENT DELAY

This short chapter models the dynamics of gene expression as a nonlinear feedback

system with a state-dependent delay. The delay accounts for the lag from the ini-

tiation of translation until the appearance of the mature protein messenger RNA

(mRNA). We do not consider this delay to be constant. Rather, we take this delay

to be dependent on the instantaneous concentration of the protein. This gives rise to

a nonlinear biological system with a state-dependent delay. We consider the degra-

dation of mRNA and protein in the mathematical model. We give conditions for the

asymptotic stability of the system. We also give examples and simulation results for

which periodic (oscillatory) solutions/limit cycles are obtained [5].

10.1 Modeling of Gene Expression Regulation

Generally, gene expression is modeled by the following coupled system of nonlinear

ordinary differential equations (see e.g., [27], [46], [10], [75], [74] and the references

therein). 
Ṙ(t) = f(P (t))− AR(t)

Ṗ (t) = BR(t)− CP (t)
(203)

where R(t) denotes the concentration of the messenger RNA (mRNA), P (t) stands

for the concentration of the protein, which is the end product of the reaction, at

any arbitrary instant of time t. The rates Ṙ(t) and Ṗ (t) account for the balance

between mRNA synthesis and the consumption of the end product. The real scalars
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(constants) A > 0 and C > 0 respectively describe the degradation effects of mRNA

and protein. B > 0 is the translational constant. f is the nonlinear feedback function

which describes transcription. Generally, f is taken as the Hill function [10].

In [27], the authors use Taylor series approximation and propose a linear tran-

scription model corresponding to (203). Experimentally, the linearized model with

and without constant delay does not capture all the features (limit cycle, steady state

equilibrium) of gene expression regulation. We modify the above model (203) by

taking into consideration the fact that the process of transcription is not instanta-

neous. There is always a latency τ required for the transcription of protein to mRNA.

Furthermore, we propose that this delay is not constant but varies with the concen-

tration of protein i.e., τ = τ(P ). This is justified by the fact that the mechanisms

which transport mRNA from the nucleus to the cytoplasm become saturated [78].

When the protein concentration is higher (overcrowded), the delay will be more and

vice versa. We also assume that τ is not unbounded but is given by a monotone Hill

function. In other words, both supP τ(P ) and infP τ(P ) exist. Therefore, we have

the following model. 
Ṙ(t) = f(P (t− τ(P )))− AR(t)

Ṗ (t) = BR(t)− CP (t)
(204)

The above equation has a delay which depends on the state of the system and is

therefore an SD-DDE where the delay τ is given by,

τ(P ) = Kτ
P n

1 + P n
; n ∈ Z+. (205)

Here, Z+ denotes the set of positive integers. Clearly, the state-dependent delay τ is

bounded on the domain P ∈ [0,∞). In fact,
inf

P∈[0,∞)
τ(P ) = 0 ≡ τinf

sup
P∈[0,∞)

τ(P ) = Kτ ≡ τsup

(206)
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Fig. 39 portrays the Hill function for the state-dependent delay τ(P ) for different

values of the index n.

Figure 39: Hill Function for the Normalized (Kτ = 1) State-Dependent Delay τ(P )
for Different Values of the Index n

The nonlinear feedback network of genes, mRNAs and proteins with state-dependent

delay is depicted in Fig. 40.

Figure 40: Block Diagram of Gene Regulation With Feedback Mechanism and State-
Dependent Delay

The nonlinear feedback function f which accounts for the transcription is a mono-

tone decreasing function and is given by the following Hill function with the Hill

coefficient or sigmoidity index N .

f(P ) =
KP

1 + PN
; N ∈ Z+ (207)
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where KP ∈ R+ is a positive constant. The greater the value of N , also called the

Hill coefficient, the more the sigmoidity of the function f . Fig. 41 portrays the Hill

function for the normalized (KP = 1) nonlinear feedback: f(P ) for different values

of the sigmoidity index or Hill exponent N .

Figure 41: Hill Function for the Normalized (KP = 1) Nonlinear Feedback: f(P ) for
Different Values of the Sigmoidity Index N

Definition 15 Schwarzian Let f ∈ C3(R,R) be a three times times continuously

differentiable function defined over real numbers then the Schwarzian or the Schwarzian

derivative of f is defined as follows.

Sf(t) = D3f(t)

Df(t)
− 3

2

(
D2f(t)

Df(t)

)2

(208)

where D := d
dt

is the usual differential operator.

Schwarzians are invariant under linear fractional transformations. Moreover, we use

the Hill functions for modeling the state-dependent delay and for the feedback. Hill

functions have the property that they have negative Schwarzian derivatives. The

hyperbolic tangent functions are another example of such functions. It can be shown

that for both the delay as well as the feedback functions in (205) and (207), Sτ(x) < 0

and Sf(x) < 0; ∀x ∈ R. The Schwarzian of any function is zero (Sf = 0) if and only

if f is a linear fractional transformation i.e., f(x) = ax+b
cx+d

, a, b, c, d ∈ R.
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We can see that the derivative of f from (207) can be found as follows.

f ′(P ) = −NKPP
N−1

(1 + PN)2
; P ≥ 0 (209)

From the above expression, it is easy to see that f ′ is bounded ∀P ≥ 0 and therefore

f is Lipschitz continuous. Let Lf > 0 denote the Lipschitz constant of f , then by

definition,

|f(P1)− f(P2)| ≤ Lf |P1 − P2| ∀P1 ̸= P2 (210)

In fact, from (209)

arg max
0≤P<∞

|f ′(P )| = N

√
1

N − 1
;N ̸= 1 (211)

and

Lf = max
0≤P<∞

|f ′(P )| = KPN
3 N
√
(N − 1)1−3N . (212)

10.1.1 Bendixon’s Criterion

If fx and gy are continuous in a region R which is simply-connected (i.e., without

holes), and fx + gy ̸= 0 at any point of R, then the system
ẋ(t) = f(x(t), y(t))

ẏ(t) = g(x(t), y(t))

has no closed trajectories inside R.

Using this criterion it is easy to show that the delay free model (203) of the gene

expression cannot have a limit cycle.

10.1.2 Causality Constraint:

From (205), we get the following.

1

τ
= 1 +

1

P n

⇔ − 1

τ 2
τ̇ = −nP−n−1Ṗ

⇔ τ̇ = τ 2(nP−n−1)(BR− CP )

⇔ τ̇ = n
(BR− CP )P n−1

(1 + P n)2
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Therefore, the causality constraint translates to the following region in the R − P

plane.

τ̇ ≤ 1 ⇔ n(BR− CP )P n−1 ≤ (1 + P n)2

⇔ R ≤ (1 + P n)2 + nCP n

nB

Remark 9:

The above causality constraint reveals that mRNA and protein levels are always

bounded. Notice that in [78], the authors assume the dependence of the delay on the

mRNA concentration without taking into account the delay rate constraint. More-

over, the delay becomes unbounded as the mRNA concentration becomes larger and

larger which seems to be unrealistic. In our model, the delay is a Hill function of

protein concentration which makes more sense because protein is the end product of

the reaction i.e., the whole gene-mRNA-protein cycle.

10.1.3 Equilibria of (204)

Notice that the equilibria (P ∗, R∗) of (204) can be derived to satisfy the following

polynomial equations. 
(P ∗)N+1 + P ∗ − BK

AC
= 0

R∗ =
CP ∗

B

(213)

Our objective will be to analyze the asymptotic stability of the equilibria of the system

(204) and investigate the existence of a limit cycle (periodic solution).

10.2 Asymptotic Stability of the Equilibrium Point of (204)

We now use the above (LR) theorem to show that the steady state (equilibrium point)

of the SD-DDE system (204) is asymptotically stable.

Consider the Lyapunov function V : R2 → R+ described by V (R,P ) = 1
2
R2+ 1

2
P 2.

We have for x ∈ R2, α(x) ≤ V (x) ≤ β(x), with α(R,P ) = 1
4
R2 + 1

4
P 2 and β(R,P ) =

R2 + P 2.
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Define η : R+ → R+ by η(r) = ρ2r, r ∈ R+ and ρ > 1. This ensures one of

the requirements of the LR theorem that η(r) > r,∀r > 0. Let x(t) be the solution

trajectory of (204), such that for t ≥ 0, θ ∈ [−τmax, 0],

V (P (t+ θ), R(t)) < η(V (P (t), R(t)) (214)

⇔ 1

2
P 2(t+ θ) +

1

2
R2(t) < ρ2

1

2
P 2(t) +

1

2
R2(t)

⇔ 1

2
P 2(t+ θ) < ρ2

1

2
P 2(t)

⇔ P 2(t+ θ) < ρ2P 2(t)

⇔ |P (t− τ(P ))| < ρ|P (t)| (215)

Now, we have for t ≥ 0

V̇ (R(t), P (t))

=
∂V

∂R

dR

dt
+
∂V

∂P

dP

dt

= R(t)Ṙ(t) + P (t)Ṗ (t)

= R(t)f(P (t− τ(P (t))))− AR2(t)−BP (t)R(t)− CP 2(t)

≤ LfR(t)P (t− τ(P (t)))− AR2(t)−BP (t)R(t)− CP 2(t)

≤ LfR(t)|P (t− τ(P (t)))| − AR2(t)−BP (t)R(t)− CP 2(t)

≤ LfρR(t)|P (t)| − AR2(t)−BP (t)R(t)− CP 2(t)

= −

 R(t)

P (t)


T  A 1

2
(B − ρLf )

1
2
(B − ρLf ) C


 R(t)

P (t)


< 0 if

 A 1
2
(B − ρLf )

1
2
(B − ρLf ) C

 > 0

(216)

Since V (x(t)) > 0 and V̇ (x(t)) < 0 whenever V (x(t + δ)) ≤ η(V (x(t))),∀δ ∈ [−τ, 0],

all the conditions of LR theorem are satisfied. We, therefore, conclude that the equi-

librium point of (204) is asymptotically stable. Furthermore, since V (x) = 1
2
x2(t) =

1
2
∥x∥2 i.e. V → ∞ as ∥x∥ → ∞. Therefore, V is radially unbounded, and by

definition this implies the global asymptotic stability of the equilibrium point.
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The above result is very useful and can be stated as the following theorem.

Theorem 17 The SD-DDE system characterized by (204) is uniformly globally asymp-

totically stable if there exists a scalar ρ > 1 such that (B − ρLf )
2 < 4AC.

10.3 Experimental Study From the Literature

In [47], an experimental data is provided which shows the periodic nature of mRNA

and protein profiles. Fig. 42 shows the data which shows the trajectories of the

concentrations of Hes1 mRNA and protein obtained from [47].

Figure 42: The left and right panel give two time courses of relative concentrations
of Hes1 mRNA and protein obtained in Hirata et al. [47]. The observed data are
given by the discrete points in the plots which are connected only for illustration. In
one experiment (left panel), 17 discrete data points are available that describe the
contemporaneous time course of the mRNA and protein at 30 min long time interval-
sexcept the first protein measurement was taken 45 min after an initial measurement
at time 0. Protein and mRNA are not measured at the same time but are 15 min
apart. A further time course for both variables (right panel) with 10 data points
measured at 15 min interval length was also obtained by Hirata et al. [47]. Both data
sets are used in the estimations [46].
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10.4 Simulation Results

10.4.1 Example 1:

Consider the nonlinear biological feedback system with the state-dependent delay

with the parameters N = 2, A = B = C = Kp = 1 and n = 1. The initial history

function for the mRNA and protein concentration was chosen as ϕ(t) =

 0.5

0.5

 ∈
C0,1, ∀t ∈ [−1, 0]. Fig. 43 shows the state trajectories depicting the profiles of mRNA

and protein concentrations. Clearly, the system is asymptotically stable.

Figure 43: mRNA and Protein Concentrations: State Trajectories

10.4.2 Example 2:

Consider the nonlinear biological feedback system with the state-dependent delay with

the parameters N = 4, A = 1, B = 4.2, C = 1, Kp = 1 and n = 1. The initial history

function for the mRNA and protein concentration was chosen as ϕ(t) =

 0.5

0.5

 ∈
C0,1, ∀t ∈ [−1, 0]. Fig. 44 shows the state trajectories depicting the profiles of mRNA

and protein concentrations. The graph shows that the system exhibits periodicity

(oscillatory behavior). Fig. 45 shows the phase plane portrait of the system. We can

easily see that there is a limit cycle.
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Figure 44: mRNA and Protein Concentrations: State Trajectories

Figure 45: Phase Plane Portrait: A Limit Cycle

10.5 Concluding Remarks

In this chapter we solved the problem of modeling and analysis of gene expression

as a nonlinear feedback system with a state-dependent delay. The delay accounts

for the lag from the initiation of translation until the appearance of the mature

protein messenger RNA (mRNA). We considered the delay to be dependent on the

instantaneous concentration of the protein. This gave birth to to a nonlinear biological

system with a state-dependent delay. We considered the degradation of mRNA and

protein in the mathematical model. We gave conditions for the asymptotic stability

of the system. We also showed simulation results depicting the limit cycle.
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CHAPTER XI

SYSTEMS EVOLVING WITH SUPREMA: STATE SPACE,

EQUILIBRIA, STABILITY, CONTROL, OBSERVATION &

M 3D STRUCTURE

In this chapter, we consider systems in which the evolution of the dynamics is governed

by the supremum of the states in an interval containing past history. It is a class

of nonlinear infinite-dimensional systems. We analyze the systems in the framework

of Banach function spaces with the topology of uniform convergence. Our objective

is to investigate the state space, equilibria, stability, control and observation of this

class of systems. Three different kinds of equilibria, namely behavioral, Cauchy and

asymptotic equilibria, are explained in the chapter. The state spaces associated with

finite as well as infinite memory horizons are discussed in detail. First we start

with the scalar case and then we extend the theory to higher order case where the

partial state x(t) of the system lies in Rn. We use Razumikhin’s framework for the

stability analysis and controller design of these systems. The basic discrete systems

counterpart of the continuous systems evolving with state suprema is also expounded

in a fully detailed way. It is shown that such systems exhibit the features of Multi-

Mode Multi-Dimensional (M3D) systems. We derive conditions for the exponential

solutions in terms of the Lambert-W function. We use Halanay’s inequality for the

observer design of scalar systems and Razumikhin argument for the higher order

systems. At the end, simulation results are shown which shed light on the usefulness

of the proposed theory.
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11.1 Introduction & Motivation

We first investigate the behavior of the following scalar system evolving with state

supremum,

ẋ(t) = αx(t) + β sup
t−τ≤θ≤t

x(θ) (217)

where x(t) ∈ R is the scalar state of the system and α, β are constants. τ is the

length of the memory of the sup functional which could be finite or infinite. This

is the reason that we are using the sup and not the max throughout the chapter in

order to maintain generality. Of course for finite memory τ , one can replace sup with

max.

Very little is known about such systems. Our objective is to unravel the informa-

tion in this system and exploit the structure present in this system. These systems,

though complex, nonlinear and non-smooth in nature, form an important class of

infinite-dimensional systems and are therefore worth researching. Examples of such

systems are stuck float and rachet where the decision is to be made by the maxi-

mum value of the state variable. When a float valve gets faulty or stuck, it can only

give the indication of the maximum level of the liquid over a certain time intrerval.

System (217) can be thought of as a feedback system in which the control policy at

any instant of time t depends on the supremum of the state over the past history of

length τ units of time. We consider systems with both finite and infinite memory

horizons and give the state space characterization for each of them. We also give the

symmetric version of the system. Three different kinds of equilibria related to these

systems are expounded in the chapter. We refer to [17] for the qualitative treatment

of differential equations with maxima.

11.1.1 Notations:

Z and R = (−∞,∞) represent the set of integers and real numbers respectively.

R+ = [0,∞) stands for the set of non-negative real numbers. W0 denotes the principal
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branch of the Lambert-W function. C represents the space of continuous functions

and C denotes the Banach space of continuous functions over a compact support. |.|

and ∥.∥ denote the absolute value (modulus) and norm respectively. D represents the

usual differential operator i.e., D := d
dt
. P > 0 means that the matrix P is positive

definite.

11.2 System With State Suprema as a Nonlinear System

In this section, we list down some useful properties of the supremum (sup) functional

and show that the sup is a nonlinear functional or operator. It can be seen using

elementary real analysis that the sup functional exhibits the following properties.

Let Θ ⊂ R represent a set which may be a compact interval over a finite support in

R.

(1). The sup functional does not satisfy the additivity property. In fact, it is

sub-additive. This means that for any two continuous functions x1 and x2,

sup
θ∈Θ

(x1(θ) + x2(θ)) ≤ sup
θ∈Θ

x1(θ) + sup
θ∈Θ

x2(θ) (218)

(2). The sup functional also fails to satisfy the homogeneity property. ∀x ∈ C, c ∈ R,

Case: 1). If c ≥ 0,

sup
θ∈Θ

(cx(θ)) ≤ c sup
θ∈Θ

x(θ) (219)

Case: 2). If c ≤ 0,

sup
θ∈Θ

(cx(θ)) ≥ c sup
θ∈Θ

x(θ) (220)

Notice that the equality holds only if the constant c is either zero or 1.

(3). Replacing x1 by x1−x2 in property 1 i.e., in (218), we get the following useful

property.

sup
θ∈Θ

(x1(θ)− x2(θ)) ≥ sup
θ∈Θ

x1(θ)− sup
θ∈Θ

x2(θ) (221)
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(4). The modulus of the supremum of a function is always dominated by the supre-

mum of modulus of the function i.e., ∀x ∈ C, c ∈ R,

∥c sup
θ∈Θ

(x(θ))∥ ≤ |c| sup
θ∈Θ
∥x(θ)∥ (222)

In particular for c = 1, we have the following,

∥ sup
θ∈Θ

(x(θ))∥ ≤ sup
θ∈Θ
∥x(θ)∥ (223)

Notice that the equality holds only if the function x is non-negative i.e., if x(t) ≥ 0, ∀t

then,

∥c sup
θ∈Θ

(x(θ))∥ = |c|∥ sup
θ∈Θ

x(θ)∥ = |c|(sup
θ∈Θ

x(θ)). (224)

(5). The supremum of the square of absolute value of a function is the same as

the square of the supremum of the absolute value of a function i.e.,

sup
θ∈Θ
∥x(θ)∥2 = (sup

θ∈Θ
∥(x(θ)∥)2. (225)

(6). The supremum of the negative of a function is the negative infimum of that

function i.e.,

sup
θ∈Θ

(−x(θ)) = − inf
θ∈Θ

(x(θ)). (226)

(7). The supremum of a continuous function over a compact support is again a

continuous function.

Nonlinear Nature:

In the light of the first two properties of the sup functional listed above, we

establish that systems evolving with state suprema neither exhibit additivity nor ho-

mogeneity. This implies the absence of a superposition principle. Therefore, systems

evolving with state suprema are nonlinear in nature. More precisely and rigorously,

the sup functional is a sublinear functional or a Banach functional.

11.3 Information Structure

By information structure we mean the minimal sufficient statistic required, on the

initial history, to make the problem well defined. We consider two different cases.
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11.3.1 Finite Memory Horizon (τ <∞):

From a deeper look at (11), we see that the dynamic evolution of the system not only

depends on its current state but also on previous states. In fact, the system requires a

memory of length τ ∈ R+ for its complete evolution. Therefore, its Cauchy Problem

(Initial Value Problem) cannot be characterized just by considering a point on the

real line (ψ ∈ R) as the initial value. The system is no longer finite dimensional.

We shall use the Banach space of continuous functions over an interval of compact

support, which is a complete normed space, as our framewok. The Cauchy problem

for the evolution of the infinite dimensional state can be characterized as follows,

Σc :


ẋ(t) = αx(t) + β sup

t−τ≤θ≤t
x(θ); ∀t ≥ 0

x(t) = ψ(t); ∀t ∈ [−τ, 0]
(227)

where α, β ∈ R are constant scalars, x(t) ∈ R is the state variable and ψ(t) ∈

C([−τ, 0];R) is the initial infinite dimensional history function living in the Banach

function space of continuous functions mapping the interval [−τ, 0] to R with the

topology of uniform convergence. This means that the norm of an element ϕ in this

function space is defined by the following uniform norm.

∥ϕ∥C = sup
θ∈[−τ,0]

|ϕ(θ)| (228)

One restatement of the Stone-Weierstrass theorem is that the set of all continuous

functions on [a, b] is the uniform closure of the set of polynomials on [a, b]. Therefore,

C is a separable Banach space.

11.3.2 Infinite Memory Horizon (τ →∞):

In this case the memory of the sup is not finite. In other words we are interested in

the information structure required when τ → ∞. It is worthy to be mentioned here

that this not mere the limiting case of the first case. One might get deceived and

could think of taking the interval (−∞, 0) and C((−∞, 0];R) as the initial history
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function. Unfortunately, this is not correct! The common and major difficulty is

that the interval (−∞, 0) is not compact, and the images of a solution map of closed

and bounded sets in in C((−∞, 0];R) with uniform norm may not be compact in

the same space. Therefore, the space of continuous functions C equipped with the

uniform norm (228), as used in the first case, is not an appropriate space for the case

of infinite memory horizon.

Another choice could be the space BC((−∞, 0];R) i.e., the space of bounded and

continuous functions mapping the interval (−∞, 0] to R and equipped with the uni-

form norm. Unfortunately, this space does not work either. In ( [72]), it was shown

that with such a space the delay differential equations with unbounded delay are not

well posed.

Inspired by the idea of fading memory spaces for infinite (unbounded) delays as

used by Haddock in [39] and [57], we use UCg spaces for the systems with infinite

memory horizon. The details of these friendly fading memory space are given in the

next subsection.

The Fading Memory Space: UCg: Let UC denote the space of uniformly continuous

functions on (−∞, 0]. The fading memory space UCg is defined as follows.

UCg :=


Φ ∈ C((−∞, 0];R) : ||Φ||g <∞,
Φ(s)

g(s)
∈ UC((−∞, 0];R)

 (229)

where,

||Φ||g = sup
s≤0

||Φ(s)||Rn

g(s)
(230)

and the parameterizing function g : (−∞, 0] → [1,∞] must possess the following

three characteristics.

(1). g ∈ C((−∞, 0]; [1,∞]) is a continuous and nonincreasing (monotonically

decreasing) function on (−∞, 0] such that g(0) = 1;

(2). g(s+u)
g(s)

→ 1 uniformly on (−∞, 0] as u→ 0−;
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(3). g(s)→∞ as s→ −∞.

One example of a candidate parameterizing function g is the exponential function

g(s) = e−γs, γ > 0.

Notice that the space UCg together with the uniform norm (230) is a normed space.

It can be shown that any Cauchy sequence {fn}∞n=1 ∈ UCg will converge uniformly to

the limit function f ∗ ∈ UCg. Therefore, UCg is complete and hence a Banach space.

11.4 Symmetric sup System

Notice that the system characterized by (227) has one serious limitation that it is not

symmetric. This equation holds only for positive initial history and loses its structure

for negative initial data. Though we can still define it! Clearly, replacing x by −x in

(227) we get the following.

Σc :


−ẋ(t) = −αx(t) + β sup

t−τ≤θ≤t
(−x(θ)); ∀t ≥ 0

x(t) = −ψ(t); ∀t ∈ [−τ, 0].
(231)

which is in fact equal to the following equation.

Σc :


−ẋ(t) = −αx(t)− β inf

t−τ≤θ≤t
(x(θ)); ∀t ≥ 0

x(t) = −ψ(t); ∀t ∈ [−τ, 0].
(232)

Clearly, the above equation does not posses the same sup structure as the original

equation. In order to circumvent this problem, we symmetrize (227) as follows.

Σs :



ẋ(t) = αx(t) + βx(θ⋆(t)); ∀t ≥ 0

θ⋆(t) = arg( sup
t−τ≤θ≤t

|x(θ)|),

x(t) = ψ(t); ∀t ∈ [−τ, 0].

(233)

Since supt−τ≤θ≤t | − x(θ)| = supt−τ≤θ≤t |x(θ)|, we can observe that (233) is symmetric

with respect to x as well as the initial history ψ.
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The symmetrized version in the vector case will be as follows.

Σs :



ẋ(t) = Ax(t) + bc⊤x(θ⋆(t));

θ⋆(t) = arg( sup
t−τ≤θ≤t

|(c⊤x(θ)|)) ∀t ≥ 0;

x(t) = ψ(t); ∀t ∈ [−τ, 0].

(234)

Where A ∈ Rn×n is a constant matrix and b ∈ Rn, c⊤ ∈ Rn are constant vectors.

x(t) ∈ Rn is the state vector and ψ(t) ∈ C([−τ, 0];Rn) is the initial history function

living in the Banach function space. Here C([−τ, 0];Rn) denotes the Banach space of

continuous functions mapping the interval [−τ, 0] to Rn with the topology of uniform

convergence. i.e.,

∥ϕ∥C = sup
θ∈[−τ,0]

∥ϕ(θ)∥Rn . (235)

Notice that by using the symmetric version of the sup system, we are taking into

account both the positive and negative excursions into account i.e., we can capture

the maximal as well as the minimal symmetrical swings.

11.5 The Behavior of the sup Operator

In this section, we expound the behavior of the sup operator Op : C → C and defined

by:

Op x(t) = sup
θ∈[t−τ,t]

x(θ). (236)

Observe that Op is a bounded but nonlinear operator. Notice that continuity and

boundedness of operators are equivalent for linear operators only. This is not true,

in general, for nonlinear operators. The boundedness of the operator can be seen as

follows.

∥Op∥ = sup
x ̸=0

∥Op x∥C
∥x∥C

= 1 (237)

The nonlinearity of the operator is evident from the properties of the sup functional.

Op is a continuous operator. Also observe that ∀x, y ∈ C,

∥Opx−Op y∥ ≤ ∥x− y∥ = LOp∥x− y∥. (238)
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This shows that Op is a Lipschitz Operator with the Lipschitz constant LOp = 1.

Therefore, Op is a non-expansive map. We denote the kernel of the operator Op by

ker(Op) and define it as follows.

ker(Op) = {x ∈ C|Opx = 0} (239)

We can see that ker(Op) ̸= {0}. In fact {0} ⊂ ker(Op). The nontriviality of the

kernel indicates that there are also non-zero functions x in the kernel ofOp besides the

trivial zero (x ≡ 0) function. In fact, any monotone non increasing function defined

on R+ with zero as the infimum serves as the example e.g., (e−t − 1)H(t), −t2H(t)

etc., where H is the usual Heaviside unit step function. The point spectrum of the

Op contains the zero eigenvalue. This means that Op is not bijective and therefore,

the inverse operator Op−1 does not exist!

We denote the image of the operator Op by Im(Op) and define it as follows.

Im(Op) = {y ∈ C|∃x ∈ C s.t. Op x = y} (240)

When the memory is infinite, the image is a subset of C and is the set of all monotone

nondecreasing functions.

Here we remark that though the notion of kernel, image and spectrum make a good

sense for linear operators, these concepts are vaguely defined for nonlinear operators.

It is a hard problem in general and still an open area of research in pure mathematics

and functional analysis. For the spectral theory of continuous nonlinear operators,

see ( [99]).

We consider two cases namely the infinite memory case and the finite memory

case.

11.5.1 Infinite Memory Case:

Fig. 46 elucidates the action of the sup operator. Here we consider infinite length

memory i.e., τ → ∞. The initial history is represented by ψ. x(t) represents the
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original function (solid line) and z(t) = supt−τ≤θ≤t x(θ)∀t ≥ 0 represents the action

of the sup which is portrayed by a dotted line. In this particular figure, we have the

maximum value of the history ψ at point A. Notice that when x(t) is monotonically

increasing i.e., (ẋ ≥ 0), z(t) follows x(t). However, when x(t) starts decreasing, z(t)

remains held at the previous value xB until x again starts increasing and reaches the

value xB at the point C whereafter x(t) ≥ z(t). From point C onwards z(t) faithfully

tracks x(t). Observe that in this case, z is always a monotone nondecreasing function.

This action can be simplified by observing that z(t) = x(t−τ(t)) where τ(t) is a special

type of time varying delay with rate unity as depicted in the bottom sub figure in Fig.

2. This special unit rate delay is either zero or of sawtooth type with unity slope.

Figure 46: The action of the sup operator with infinite memory

11.5.2 Finite Length Memory Case:

Fig. 47 depicts the action of the sup operator. Here we consider a finite length

memory of length τ units. This case is a bit more complex. The initial history is

represented by ψ from A to B with the maximum at B. x(t) represents the original

function (solid line) and z(t) = supt−τ≤θ≤t x(θ) represents the action of the sup which

is shown by a dotted line. Notice that when x(t) is monotonically increasing (from

B to C) i.e., (ẋ ≥ 0), z follows x till t ≤ tC . However, when x(t) starts decreasing
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z(t) remains held at the previous maximum value xC until the memory is exhausted

(point D). From point D onwards, z is a shifted version (τ delayed) of x till point

E where x ≥ z, now again x starts rising and z follows (overlaps) x. This action

can be simplified by observing that z(t) = x(t − τ(t)) where τ(t) is a special type

of time varying delay with rate unity as depicted in the bottom sub figure in Fig.

3. This special unit rate delay is either zero or of sawtooth type with unity slope

or constant. Observe that z is not always a monotone nondecreasing function in

the finite memory horizon case. Here, z is always a continuous function which is

differentiable a.e. In this case, we have an additional feature of constant delay. In

general the time-varying delay function τ(t) looks of trapezoidal or sawtooth type or

zero. Notice that the initial history ψ ∈ C does play a significant role in the output

waveform of the sup functional.

Figure 47: The action of the sup operator with finite memory of length τ time units

11.5.3 Natural Feature as a State-Dependent Delay System:

We notice that the behavior of the sup operator can be encapsulated by a special

type of variable delay. This delay is continuous almost everywhere. The delay has

jumps but the set of discontinuity is at the most countable. Moreover, the delay is
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differentiable a.e. Let t∗ be the argument of the sup then, x(t∗) = x(t− (t− t∗)) and

the delay τ(t) = t − t∗. However, t∗, the instant where the sup is attained, always

depends on the state xt. Here xt = x(t+ θ); ∀θ ∈ [−τ, 0]. Therefore, τ(x) is a state-

dependent delay and systems evolving with state suprema can be regarded as a special

class of systems with state-dependent delays. Systems governed by State-Dependent

Delay Differential Equations (SD-DDEs) are inherently nonlinear and require more

regularity on the initial data than continuity, see [9], [4] and [2] and the references

therein.

11.6 Existence of Exponential Solutions

Consider a slightly more general version of (227) as follows.

Σs :


ẋ(t) = αx(t) + β sup

t−τ≤θ≤t
x(θ); ∀t ≥ t0

x(t) = ψ(t− t0) ∈ C. ∀t ∈ [t0 − τ, t0]
(241)

Now, we have the following theorem which gives the conditions on the parameters α

and β for the existence of exponentially decaying solutions of (227). Notice that this

is one of the many solutions.

Theorem 18 If β ≥ 0 and α < − 1
τ
W0(τβe

−ατ ), then there exists M > 0 and γ > 0

such that

x(t) =Me−γ(t−t0); t ≥ t0 (242)

is a solution of (241) with x(t0) = ψ(t0), where W0 denotes the principal branch of

the Lambert-W function.

Proof:

Let x(t) = Me−γ(t−t0); t ≥ t0 be the solution of (241), then by definition it should
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satisfy (241). This means that,

D(Me−γ(t−t0))=α(Me−γ(t−t0))+β sup
t−τ≤θ≤t

(Me−γ(θ−t0))

⇒ −γ(Me−γ(t−t0))=α(Me−γ(t−t0))+β(Me−γ(t−τ−t0))

⇔ −γ = α + βeγτ

⇔ −(γ + α)e−γτ = β

⇔ −τ(γ + α)e−τ(γ+α) = τβe−ατ

⇔ −τ(γ + α) = Wk(τβe
−ατ ); k ∈ Z

⇔ γ = −α− 1

τ
Wk(τβe

−ατ ); k ∈ Z

In order to get a unique solution γ, we must require the principle branch of the

Lambert-W function i.e., W0. To get a unique real solution, we should have the

argument of the Lambert-W function to be non-negative. This dictates that,

γ = −α− 1

τ
W0(τβe

−ατ ); k ∈ Z (243)

and also,

τβe−ατ ≥ 0 (244)

But we know that τ ∈ R+ and the real exponential function is always positive i.e.,

e−ατ > 0. This means that,

β ≥ 0 (245)

Also for γ < 0, it is mandatory to have that,

α < −1

τ
W0(τβe

−ατ ). (246)

Q.E.D. �

The above theorem can be relaxed using the following Corollary which is an im-

mediate consequence.

143



Corollary 6 If −α ≥ β > 0, then there exists a decay rate γ > 0 and M > 0 such

that for (241),

x(t) =Me−γ(t−t0)

Notice that M = inft0−τ≤θ≤t0 x(θ). The above condition is independent of the memory

length.

11.7 Equilibria

Before analyzing the stability of the system (233), it is primordial to investigate the

equilibria or fixed points, also called singular points, of the system. We presents three

different notions of the equilibria namely the equilibria in the behavioral sense, the

equilibria in the Cauchy sense and the asymptotic equilibrium.

Equilibria in the Behavioral Sense: This definition is inspired from Willems’s

behavioral theory for open and interconnected systems ( [100]). In this particular

case, the time set T = R, the signal space W = R in the scalar case; and W = Rn

in the higher order case. The set of all maps from T to W, denoted by WT is called

the universum. Any behavior B of the system is a strict subset of the universum i.e.,

B ⊂WT.

Here an equilibrium solution is characterized by a constrained equation that sat-

isfies a particular constraint for all time t. In other words, the equilibrium point

is a particular behavior (a set or family of trajectories) exhibited by the dynamical

system.

Definition 16 An equilibrium point of the symmetrized system (233) is defined by

the following behavior.

B =



w : R→W
∣∣∣w(t) = −β

α

(
w(θ⋆(t))

)
,

θ⋆(t) = arg( sup
θ∈[t−τ,t]

|w(θ)|),

α ̸= 0; ∀t a.e.


(247)

144



Clearly, the origin, 0 ∈ B is the trivial fixed point in WR.

From (247), we get

(α + β)|x∗|sgn(x∗) = 0 (248)

where x∗ is the equilibrium point. Using the definition of sgn(.), the above equation

simplifies to,

(α + β)x∗ = 0 (249)

Now there are two cases.

(1). If α + β = 0, any x∗ ∈ R is an equilibrium point.

(2). If α + β ̸= 0, only x∗ = 0 is the unique equilibrium point.

Now, we consider the equilibrium points for the higher order version (234). Indeed,

the equilibrium point x∗ must satisfy the following equation.
Ax∗ = −bc⊤x∗(θ⋆),

θ⋆(t) = arg( sup
t−τ≤θ≤t

|(c⊤x∗(θ))|)
(250)

We have the following theorem.

Theorem 19 Any x∗ ∈ ker(A+ bc⊤) is an equilibrium point of (250).

Proof:

One can always use the state transformation (similarity transformation) and reduce

(250) to a scalar version as follows. Let c⊤x∗ := y1 = e⊤1 y be the first component of

the vector y ∈ Rn (which is given by the following state transformation.)

y =Mx∗ ⇔ x∗ =M−1y (251)

where M ∈ Gln(R). Here Gln(R) represents the General Linear Group of n × n

invertible matrices with elements in R i.e., real entries. Since we have y = Mx∗ s.t.

y1 = c⊤x∗, i.e.,

e⊤1M = c⊤ (252)
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where, ej represents the unit column vector with 1 at the j − th position and rest of

the entries zero. Therefore, (250) takes the form,

Ax∗ = −bc⊤x∗(θ⋆(t))

⇒ Ax∗ = −b sup
t−τ≤θ≤t

|y1(θ)|sgn(y1(θ⋆(t)))

⇒ AM−1Mx∗ = −b sup
t−τ≤θ≤t

|y1(.)|sgn(y1(.))

⇒ (AM−1)(Mx∗) = −by1

⇒ Āy = −by1

⇒ (Ā+ be⊤1 )y = 0

⇒ (Ā+ be⊤1 )Mx∗ = 0

⇒ (A+ bc⊤)x∗ = 0

⇒ x∗ ∈ ker(A+ bc⊤)

where, Ā , AM−1. This completes the proof. �

Comment 8:

Notice that the equilibrium point x∗ is unique if and only if ker(A + bc⊤) is trivial.

That is the matrix (A+ bc⊤) is nonsingular (invertible).

Comment 9:

Using the Woodbury’s lemma or matrix inversion lemma (ABCD lemma), we have

(A+ bc⊤)−1 = A−1 − A−1bc⊤A−1

1 + c⊤A−1b
. (253)

This means that a necessary condition for the system (250) to have a unique trivial

equilibrium point is that A is invertible and 1 + c⊤A−1b ̸= 0.

Equilibrium Points in the Cauchy Sense: Such an equilibrium point may depend

on the initial history of the system.

Definition 17 x∗ is called the equilibrium point of (233) in the Cauchy sense if

ẋ∗ ≡ 0 ∀t ≥ 0 given x(t) = ϕ(t) ∀t ∈ [−τ, 0].
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For the scalar case with infinite memory horizon (τ =∞), x∗(t) is an equilibrium in

the Cauchy sense if there exists t such that
x∗(t) = −β

α

(
x(θ⋆(t))

)
,

θ⋆(t) = arg(sup
θ<t
|x∗(θ)|); α ̸= 0

(254)

Likewise we can define the equilibria in the Cauchy sense for the vector case. Note

that the set of equilibria in the behavioral sense is always contained in the set of the

one in the Cauchy sense.

Equilibria in the Asymptotic Sense: This notion of equilibrium is inspired from

the asymptotic or long term behavior of the system. The definition given below is

inspired from ( [36]). Here Bρ represents an open ball of center 0 (the origin) and

radius ρ i.e., Bρ = {x ∈ R|∥x∥ < ρ}.

Definition 18 The symmetrized differential equation with suprema (233) is said to

exhibit the property of asymptotic equilibrium if:

(i). There exists ρ > 0 such that (233), with initial history x(t) = ψ(t), for all

t ∈ [−τ, 0] and ∥ψ∥C < ρ, has a solution defined for all t ≥ −τ and there exists ξ ∈ Bρ

which satisfies

lim
t→∞

x(t) = ξ. (255)

(ii). There exists ρ > 0 such that for all ξ ∈ Bρ, there exists a solution x(t) of

(233), which is defined on the interval [−τ,∞) and verifies (255).

We conjecture the equivalence of the asymptotic equilibria and the equilibria in

the behavioral sense.
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11.8 Global Existence and Uniqueness

Let us consider a more general nonlinear version of the system as follows.

Σg :



ẋ(t) = f(t, x(t), x(θ⋆(t))); ∀t ≥ 0,

θ⋆(t) = arg( sup
t−τ≤θ≤t

|x(θ)|);

x(t) = ψ(t); ∀t ∈ [−τ, 0].

(256)

Here x(t) ∈ R and f ∈ C(R+ × R × R;R). The theorem given below relates the

conditions on the global existence of the solution and the asymptotic equilibrium of

(256) and is the extension of ( [36]) to the symmetrized systems with supremum.

Theorem 20 If f in (256) satisfies the following conditions:

(A1). f(t, 0, 0) is integrable on I = [0,∞),

(A2). f is continuous on I × R× R,

(A3). There exists a function g which is integrable on I such that 0 ≤ g(s) ≤

Kg(s− τ), ∀s ∈ I, K a constant and, ∀(t, x1, y1), (t, x2, y2) ∈ I × R× R,

|f(t, x1, y1)− f(t, x2, y2)| ≤ g(t)(|x1 − x2|+ |y1 − y2|). (257)

Then ∀ξ ∈ R there exists a solution of (256) over the whole interval [−τ,∞) and

satisfies the initial history i.e., x(t) = ψ(t),∀t ∈ [−τ, 0]. Moreover,

x(t) = ξ +

∫ ∞

t

f(s, 0, 0)ds+O(G(t)) (258)

where G(t) =
∫∞
t
g(s)ds. Also, the solution is unique.

Proof:

The proof relies on the central idea of contraction mapping principle and Schauder/Banach

fixed point theorem. Let Cb denote Banach space of bounded and continuous real val-

ued functions defined on [−τ,∞]; and equipped with the uniform norm. Let us define
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the operator T : Cb → Cb as follows.

T (x)(t) =



ξ; ∀t ∈ [−τ, 0],

ξ −
∫ ∞

t

f(s, x(s), x(arg( sup
v∈[s−τ,s]

|x(v)|)))ds;

∀t ≥ 0.

(259)

In order to show that T has a fixed point, it suffices to show that there exists a

positive integer n ∈ N such that T n is a contraction where T n = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n−times

is the

composition operator. This can be shown by applying the principle of mathematical

induction to the following ( [36]).

|(T nx)(t)− (T ny)(t)| ≤ 1

Kn!
(2KG(t− τ))n∥x− y∥ (260)

By the assumption (A1) of integrability of the function g on I, therefore, one can find

n ∈ N such that T n is a contractive operator. This implies that indeed there exists a

fixed point x of T and thus,

x(t) = ξ −
∫ ∞

t

f(s, x(s), sup
v∈[s−τ,s]

|x(v)|sgn(x(v)))ds; ∀t ≥ 0. (261)

The uniqueness argument is simple by assuming two solutions w and z and showing

that ∥w − z∥ = 0 by using the integral inequalities in ( [17]). This completes the

proof. �

11.9 Stability Analysis Using Razumikhin Framework

Since the nature of the problem is infinite dimensional, simple Lyapunov functions

cannot be used for stability analysis. Also, because of the sup functional in the

dynamics, a direct use of the ubiquitous Lyapunov-Krasovskii (LK) functional, used

in the delay literature, fails to work here. We now use the Razumikhin theorem

( [43]) to ascertain the sufficient conditions such that the fixed point at the origin

(equilibrium point: x = 0) or the trivial steady state of the suprema based system

(233) is asymptotically stable. We express our sufficiency result as the following

theorem.
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Theorem 21 The symmetric scalar system with state supremum characterized by

(233) is globally asymptotically stable if there exists a scalar R+ ∋ ρ > 1 such that

α + ρ|β| < 0.

Proof: Consider the Lyapunov function V : R+ → R+ described by V (x) = 1
2
x2. We

have for x ∈ R+, ϑ(x) ≤ V (x) ≤ ζ(x), with ϑ(x) = 1
4
x2 and ζ(x) = 2x2.

Define η : R+ → R+ by η(r) = ρ2r, ρ > 1. This ensures one of the requirements

of the Lyapunov-Razumikhin (LR) theorem that η(r) > r,∀r > 0. Let x(t) be the

solution trajectory of (233), such that for t ≥ 0, θ ∈ [−τ, 0],

V (x(t+ θ)) < η(V (x(t))

⇒ x2(t+ θ) < ρ2x2(t)

⇒ |x(t+ θ)| < ρ|x(t)|; ∀θ ∈ [−τ, 0]

⇒ sup
t−τ≤θ≤t

|x(θ)| < ρ|x(t)|

⇒ |x(θ⋆(t))| < ρ|x(t)|

where the last inequality is the result of using the definition of θ⋆(t) = arg(supt−τ≤θ≤t |x(θ)|).

Now, we have for t ≥ 0;

V̇ (x(t)) =
∂V

∂x

dx

dt

= x(t)
(
αx(t) + βx(θ⋆(t))

)
= αx2(t) + βx(t)x(θ⋆(t))

≤ αx2(t) + |β||x(t)||x(θ⋆(t))|

< αx2(t) + |β||x(t)|.ρ|x(t)|

= (α + ρ|β|)x2(t)

< 0 if α + ρ|β| < 0

Since V (x(t)) > 0 and V̇ (x(t)) < 0 whenever V (x(t + δ)) ≤ η(V (x(t))),∀δ ∈ [−τ, 0],

all the conditions of LR theorem are satisfied. We, therefore, conclude that the equi-

librium point (origin) of (227) is asymptotically stable. Furthermore, since V (x) =
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Figure 48: Stability Region α + |β| < 0

1
2
x2(t) = 1

2
∥x∥2 i.e., V → ∞ as ∥x∥ → ∞. Therefore, V is radially unbounded, and

by definition this implies the global asymptotic stability of the equilibrium point.

This concludes the proof. �

Fig. 48 shows the stability region for ρ = 1, in the parameter space i.e., α − β

plane. Notice that as ρ increases, the stability region gets squeezed.

11.10 Discrete Systems With Suprema

Consider the following scalar discrete system with suprema.

Σd :


xk+1 = αxk + βmax

k
(xk, xk−1); ∀k ∈ Z, k ≥ 0,

x0, x−1 : Given.

(262)

The above system can be visualized as an auto-hybrid state-dependent switched sys-

tem. It is in fact a Multi-Mode Multi-Dimensional (M3D) system (see [84]) and can

151



be equivalently expressed as follows.

ΣM3D
d :



Mode I:

xk+1 = (α + β)xk if xk ≥ xk−1; ∀k ∈ Z, k ≥ 0,

x0 ∈ R : Given Mode History

Mode II:

xk+1 = αxk + βxk−1 if xk ≤ xk−1; ∀k ∈ Z, k ≥ 0 x−1

x0

 ∈ R2 : Given Mode History

(263)

Theorem 22 The discrete system with maxima characterized by (262) is globally

asymptotically stable if given 0 < ϵ < 1, the parameters of the system satisfy the

following set of algebraic inequalities.
α2 < 1− ϵ,

β2 − 1 < 0

(α + β)2 < 1− ϵ

(264)

Proof:

Consider the following common quadratic Lyapunov function (CQLF) for each of the

modes in (263).

V (xk, xk−1) = x2k + ϵx2k−1; ϵ > 0 (265)

Now, we want to find the evolution of the above Lyapunov function V along the

trajectories of each mode.

∆V = V (xk+1, xk)− V (xk, xk−1)

⇔ ∆V = x2k+1 + ϵx2k − x2k − ϵx2k−1

⇔ ∆V = x2k+1 − x2k + ϵ(x2k − x2k−1)
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Now,

∆V
∣∣∣
Mode: I

= (α + β)2x2k − x2k + ϵ(x2k − x2k−1)

⇔ ∆V
∣∣∣
Mode: I

= ((α + β)2 + ϵ− 1)x2k − ϵx2k−1

⇔ ∆V
∣∣∣
Mode: I

=

 xk

xk−1


⊤ (α+ β)2 + ϵ− 1 0

0 −ϵ


 xk

xk−1


Clearly,

∆V
∣∣∣
Mode: I

< 0 ⇔

 (α + β)2 + ϵ− 1 0

0 −ϵ

 < 0

⇔


(α + β)2 + ϵ− 1 < 0

ϵ > 0

(266)

Similarly, using the very same Lyapunov function,

∆V
∣∣∣
Mode: II

= (αxk + βxk−1)
2 − x2k + ϵ(x2k − x2k−1)

⇔ ∆V
∣∣∣
Mode: II

= (α2 + ϵ− 1)x2k + 2αβxkxk−1 + (β2 − 1)x2k−1

⇔ ∆V
∣∣∣
Mode: II

=

 xk

xk−1


⊤ α2 + ϵ− 1 αβ

αβ β2 − 1


 xk

xk−1


Clearly,

∆V
∣∣∣
Mode: II

< 0 ⇔

 α2 + ϵ− 1 αβ

αβ β2 − 1

 < 0

⇔


α2 + ϵ− 1 < 0

β2 − 1 < 0

(267)

Since the parameter of the system α and β must be real, so that the system makes

sense physically and practically, we require that ϵ < 1. This condition in conjunction

with the conditions obtained in (266) and (267) shows that ∆V < 0 for both the
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modes using the common Lyapunov function V . This ensures asymptotic stability.

Moreover, since V is radially unbounded, the system is asymptotically stable in the

large. This completes the proof. �

Fig. 49 shows the stability region for ϵ = 0+. Notice that as (the free parameter)

ϵ increases, the stability region gets squashed.

Figure 49: Stability Region for the Discrete System With Maxima

Observe that the the necessary and sufficient condition for stability for the Mode:

I alone, irrespective of Mode: II, is given by

−1 < α + β < 1. (268)

Similarly by using the Möbius transformation (bilinear transformation) z = s+1
s−1

to

the characteristic equation of Mode: II, z2 − αz − β = 0, one gets the following

transformed characteristic equation.

s2 + 2

(
β + 1

1− α− β

)
s+

1 + α− β
1− α− β

= 0
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From, this the necessary and sufficient conditions for the global asymptotic stability

of Mode: II can be readily ascertained as follows.

Ω =


(α, β) ∈ R2

∣∣∣∣∣∣∣∣∣∣∣
β > −1;

α+ β < 1;

α− β > −1


(269)

Remark 10:

Fig. 50 illustrates a comparison of the stability regions of the individual modes and

that of the overall switched system. Notice that the stability region for Mode: I is the

shaded region bounded bounded by the parallel lines
←→
PQ and

←→
RS. The stability region

for Mode: II is the region bounded by the red triangle ∆ABC. It is noteworthy here

that the stability region of the discrete switched system (system with maxima) is not

the intersection of the stability regions of the individual modes. Another remarkable

point is that there is a portion of the region of stability where the switched system

is stable but Mode: II is unstable. Likewise, there is region of stability where the

switched system is unstable but both of the modes are stable. Finally, notice that the

stability of Mode: I is a necessary condition for the stability of the switched system.

11.11 Higher Order Nonlinear Systems Evolving with State
Suprema

Now, we consider the general higher order case where the partial state, x(t), lies in Rn.

The state space for such systems is an infinite-dimensional Banach space equipped

with the uniform convergence topology. The stability and observer design for such

systems is studied, the first using Razumikhin’s framework, the second using the

new concept of sup based output injection. Simulation results are shown at the end

which demonstrate the effectiveness, validity and usefulness of the proposed observer

scheme.
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Figure 50: Comparison of Stability Regions for the Individual Modes and the Overall
Discrete System With Maxima

11.11.1 Problem Formulation

We investigate the behavior of the following system evolving with state suprema,

ẋ(t) = Ax(t) + B sup
t−τ≤θ≤t

CTx(θ) (270)

where x(t) ∈ Rn represents the state vector of the system, A ∈ Rn×n is a constant

time-invariant matrix and B ∈ Rn, C ∈ Rn are constant vectors. τ ∈ R+ is the length

of the memory of the sup functional. Notice that (270) is not an Ordinary Differential

Equation (ODE) but is indeed a Functional Differential Equation (FDE).System (270)

can also be equivalently written in the following fashion.

Σu :


ẋ(t) = Ax(t) +Bu(t)

u(t) = sup
t−τ≤θ≤t

CTx(θ).
(271)

156



In this format, it can be thought of as a closed-loop feedback system in which the

control policy u(t) ∈ R at any instant of time t depends on the supremum of the

weighted linear combination of the states over the past history interval of length τ

units of time.

11.11.2 State Space & The Cauchy Problem

The Cauchy problem for the evolution of the infinite dimensional state can be char-

acterized as follows.

Σc :


ẋ(t) = Ax(t) +B sup

t−τ≤θ≤t
CTx(θ); ∀t ≥ 0

x(t) = ψ(t); ∀t ∈ [−τ, 0].
(272)

Where A ∈ Rn×n is a constant matrix and B ∈ Rn, C ∈ Rn are constant vectors.

x(t) ∈ Rn is the state vector and ψ(t) ∈ C([−τ, 0];Rn) is the initial infinite dimensional

history function. Here C([−τ, 0];Rn) denotes the Banach space of continuous functions

mapping the interval [−τ, 0] to Rn with the topology of uniform convergence. This

means that the norm of an element ϕ in this function space is defined by the following

norm.

∥ϕ∥C = sup
θ∈[−τ,0]

∥ϕ(θ)∥ (273)

11.11.3 Asymptotic Stability of the Equilibrium Point of (272)

We now use the Lyapunov-Razumikhin (LR) theorem which is a very powerful theo-

rem in the context of stability analysis of systems characterized by FDEs ( [43]) and

derive the sufficient conditions for the asymptotic stability of the trivial steady state

(equilibrium point: x = 0) of the sup based system (272). Unlike the Lyapunov-

Krasovskii (LK) functional based approach in an infinite dimensional setting, this

theorem uses functions which are relatively easier to handle with. This theorem also

gives sufficient conditions for the stability.
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Consider the Lyapunov function V : Rn → R+ described by V (x) = xTPx where

P = P T > 0. We have for x ∈ Rn, α(∥x∥) ≤ V (x) ≤ β(∥x∥), with α(∥x∥) =

λmin(P )∥x∥2 and β(∥x∥) = λmax(P )∥x∥2.

Define η : R+ → R+ by η(r) = ρ2r, r ∈ R+ and ρ > 1. This ensures one of

the requirements of the LR theorem that η(r) > r,∀r > 0. Let x(t) be the solution

trajectory of (272), such that for t ≥ 0, θ ∈ [−τmax, 0],

V (x(t+ θ)) < η(V (x(t))

⇒ xT (t+ θ)Px(t+ θ) < ρ2xT (t)Px(t)

⇒ ∥x(t+ θ)∥2P < ρ2∥x(t)∥2P

⇒ sup
t−τ≤θ≤t

∥x(θ)∥ < ρ∥x(t)∥

Now, we have for t ≥ 0,

V̇ (x(t)) =

(
∂V

∂x

)T
dx

dt

= ∇V (x).
dx

dt

= D(xT (t)Px(t))

= ẋT (t)Px(t) + xT (t)Pẋ(t)

= xT (t)(ATP + PA)x(t) + (BTPx+ xTPB) sup
t−τ≤θ≤t

CTx(θ)

≤ xT (t)(ATP + PA)x(t) + ∥(BTPx+ xTPB) sup
t−τ≤θ≤t

CTx(θ)∥

≤ xT (t)(ATP + PA)x(t) + ∥(BTPx+ xTPB)∥∥C∥∥ sup
t−τ≤θ≤t

x(θ)∥

≤ xT (t)(ATP + PA)x(t) + ∥(BTPx+ xTPB)∥∥C∥ρ∥x(t)∥

≤ xT (t)(ATP + PA)x(t) + 2ρ∥B∥∥C∥∥P∥∥x(t)∥2

= −xT (t)Qx(t) + 2ρ∥B∥∥C∥∥P∥∥x(t)∥2

≤ −(λmin(Q)− 2ρ∥B∥∥C∥∥P∥)∥x(t)∥2

< 0 if λmin(Q) > 2ρ∥B∥∥C∥∥P∥.

(274)
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Since V (x(t)) > 0 and V̇ (x(t)) < 0 whenever V (x(t + δ)) ≤ η(V (x(t))),∀δ ∈ [−τ, 0],

all the conditions of LR theorem are satisfied. We, therefore, conclude that the equi-

librium point (origin) of (272) is asymptotically stable. Furthermore, since V (x) =

xTPx = ∥x∥2P i.e. V → ∞ as ∥x∥P → ∞. Therefore, V is radially unbounded, and

by definition this implies that the origin is a global attractor.

The above result is very useful and can be stated as the following theorem.

Theorem 23 The infinite-dimensional system evolving with state suprema charac-

terized by (272) is uniformly globally asymptotically stable if given any symmetric and

positive definite matrix Q (Q = QT > 0) there exists a scalar ρ > 1 such that

λmin(Q) > 2ρ∥B∥∥C∥∥P∥ (275)

where the matrix P = P T > 0 precisely satisfies the following algebraic Lyapunov

equation.

ATP + PA+Q = O (276)

Remark 11:

Notice that the above theorem requires that it is mandatory that the sup free system

is asymptotically stable. In other words, the matrix A must be Hurwitz. Also since

∥P∥ =
√
λmax(P TP ) is the induced or spectral norm of P , the upper bound on ρ in

(310) can also be stated as follows.

ρ <
λmin(Q)

2∥B∥∥C∥
√
λmax(P TP )

(277)

Remark 12:

We can express V̇ (x) in the above analysis as follows.

V̇ (x(t)) ≤ −ζV (x(t)) (278)

where ζ = λmin(Q)− 2ρ∥B∥∥C∥∥P∥.

The corollary given below is an immediate consequence of the above result.
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Corollary 7 The dynamical system with suprema given by (272) is exponentially

stable if A is Hurwitz and there exists a scalar ρ > 1 such that (310) and (310) hold.

11.11.4 Controller Synthesis and the Stabilization Problem

Consider the following problem.

Σfb :



ẋ(t) = Ax(t) + B sup
t−τ≤θ≤t

CTx(θ) + Γu(t); ∀t ≥ 0

u(t) = Kx(t)

x(t) = ψ(t); ∀t ∈ [−τ, 0].

(279)

Suppose that the unforced system (272) is not stable and we want to solve the sta-

bilization problem i.e., we want to design a control policy u = Kx such that the

resulting closed-loop feedback system (279) is asymptotically stable. Here K repre-

sents the static state feedback gain matrix. Notice that a necessary condition for this

problem is that the pair (A,Γ) must be controllable. We express our result as the

following theorem.

Theorem 24 The infinite-dimensional system evolving with state suprema charac-

terized by (279) is uniformly globally asymptotically stabilizable if (A,Γ) is controllable

and given any symmetric and positive definite matrix Q ∈ Rn×n (Q = QT > 0) and a

row vector K ∈ R1×n there exists a scalar ρ > 1 such that

λmin(Q) > 2ρ∥B∥∥C∥∥P∥ (280)

where the matrix P = P T > 0 precisely satisfies the following algebraic Lyapunov

equation.

(A+ ΓK)TP + P (A+ ΓK) +Q = O (281)

Proof:

The proof an immediate consequence of the application of Theorem 23 to the closed

loop system (279). �
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By using a change of variable and setting K = rΓTP for some scalar r ̸= 0. we

get the following result in the form of Riccati equation.

Corollary 8 The infinite-dimensional system evolving with state suprema character-

ized by (279) is uniformly globally asymptotically stabilizable if (A,Γ) is controllable

and given any symmetric and positive definite matrix Q ∈ Rn×n (Q = QT > 0) there

exists a scalar ρ > 1 such that

λmin(Q) > 2ρ∥B∥∥C∥∥P∥ (282)

where the matrix P = P T > 0 precisely satisfies the following delay algebraic Riccati

equation

ATP + PA+ 2rPΓΓTP +Q = O (283)

and the controller (gain matrix) is given by:

K = rΓTP. (284)

Remark 13:

It is noteworthy here that the Algebraic Riccati Equation (283) is different from the

usual one obtained in the optimal control problem i.e., the infinite horizon Linear

Quadratic Regulator (LQR) problem. In the LQR case, the ARE has a negative

sign in front of the nonlinear (quadratic) term. The ARE in (283) is called the delay

Riccati equation because of its ubiquitous appearance in the stability analysis of Time

Delay Systems (TDS). By using Schur complements the delay ARE can be converted

into the equivalent LMI as follows: ATP + PA+Q PΓ

ΓTP −1
2
r−1I

 < 0. (285)
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Synthesis of Output Feedback Controller: Consider the following output feedback

control synthesis problem,

Σofb :



ẋ(t) = Ax(t) + bu(t)

y(t) = sup
t−τ≤θ≤t

(c⊤x(θ∗)); ∀t ≥ 0

u(t) = ky(t)

x(t) = ψ(t); ∀t ∈ [−τ, 0].

(286)

where u(t) ∈ R is the control effort, y(t) ∈ R is the output and k ∈ R is the output

feedback gain. The controlled closed loop system exhibits the following dynamics.

ẋ(t) = Ax(t) + bk sup
t−τ≤θ≤t

(c⊤x(θ∗)); ∀t ≥ 0 (287)

Using LR framework, we want to design the controller k such that (287) is asymp-

totically stable. The following corollary gives the result.

Corollary 9 (287) is globally asymptotically stable if (A, b) is controllable and given

any Q ∈ Rn×n such that Q = Q⊤ > 0 and k ∈ R there exists a scalar ϱ > 2 such that

λmin(Q) > ϱ|k|∥b∥∥c∥σmax(P ) (288)

where the matrix P = P T > 0 precisely is a solution of algebraic Lyapunov equation,

A⊤P + PA+Q = O (289)

and σmax(P ) denotes the upper singular value of P .

11.12 The Observation Problem

In this section we present the observation problem for systems involving state suprema.

We express the dynamics of the system and measurements as a setup or formulation

for the observer problem as follows.
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Dynamics of the Plant Model:

ẋ(t) = Ax(t) + Γw(t)

Observation or Measurement Equation:

y(t) = sup
t−τ≤θ≤t

CTx(θ)

(290)

Here x(t) ∈ Rn is the state vector, w(t) ∈ Rp is the driving force (control input

or some known perturbation or disturbance), the state coupling matrix A ∈ Rn×n,

the input coupling matrix (read in matrix) Γ ∈ Rn×p and C ∈ Rn the readout or

measurement matrix. The scalar y(t) represents the nonlinear measurement at any

arbitrary instant of time t and τ > 0 denotes the memory associated with the sup

functional. Notice that though the system seems to be apparently linear, it is in reality

a nonlinear system because of the presence of the sup operator in the measurements.

The goal is the inversion of the measurement model i.e., our objective is to observe

or estimate the state vector given the plant model, input and output of the system.

For controller synthesis (state feedback), we require the complete state vector of the

system to be available to us.

11.12.1 Observer Design

We will use the concept of sup Based Output Injection to construct the observer

for the recovery of the state x(t) in the same spirit as in [9]. Let x̂(t) represent

the estimated state, the infinite-dimensional estimator (being a replica of the state

dynamics) will be governed by the dynamics as follows.

˙̂x(t) = Ax̂(t) + Γw(t) + L (y(t)− ŷ(t)) (291)

where the last term is the correction term with L ∈ Rn being the gain matrix of the

estimator and the estimated output ŷ(t) is precisely given by,

ŷ(t) = sup
t−τ≤θ≤t

CT x̂(θ) (292)
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Fig. 51 gives a basic conceptual block diagram to elucidate the observation scheme

using the concept of sup based output injection. Notice that the observer is nonlinear

because of the presence of the sup block. Substituting the expressions for y and ŷ in

Figure 51: Illustrative Block Diagram of sup Based Observer

(291) yields,

˙̂x(t) = Ax̂(t) + Γw(t) + L

(
sup

t−τ≤θ≤t
CTx(θ)− sup

t−τ≤θ≤t
CT x̂(θ)

)
(293)

Defining e(t) = x(t)−x̂(t) as the estimation error or observation error at any arbitrary

time instant t and subtracting the observer dynamics (293) from the plant dynamics

equation in (290) , we get the observer error dynamics as follows.

ė(t) = Ae(t)− L

(
sup

t−τ≤θ≤t
CTx(θ)− sup

t−τ≤θ≤t
CT x̂(θ)

)
⇒ ė(t) ≤ Ae(t) + L+ sup

t−τ≤θ≤t

(
CTx(θ)− CT x̂(θ)

)
(294)

⇒ ė(t) ≤ Ae(t) + L+ sup
t−τ≤θ≤t

(
CT e(θ)

)
(295)

Notice that the first inequality (294) is obtained from the preceding equation by using

the subadditivity/difference property of the sup functional i.e.,

sup
θ∈Θ

(x1(θ)− x2(θ)) ≥ sup
θ∈Θ

x1(θ)− sup
θ∈Θ

x2(θ).

In all the above inequalities, L+ stands for the vector L but with a restriction that

all the entries strictly positive. So our observer gain matrix L cannot have zero or
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negative elements. This positivity preserves the error inequality and is needed to

make the observer design proof tractable using Theorem 23.

From (295), we can see that the error dynamics follow an infinite-dimensional

vector differential inequality. The only design parameter is the observer gain matrix

L+. The error will converge asymptotically to zero if the above differential inequality

is asymptotically stable or in other words the equilibrium point or fixed point (i.e., the

origin e = 0) is asymptotically stable. Also notice that when there is no memory in the

sup function (no past history taken into account) i.e., τ = 0, we require the complete

state observability of the pair (CT , A) as a necessary and mandatory condition for

the observer design. We give the following theorem for the observer design.

Theorem 25 The infinite-dimensional system of error dynamics evolving with error

suprema characterized by (295) is asymptotically stable if the pair (CT , A) is observ-

able and given any symmetric and positive definite matrix S (S = ST > 0) there

exists a scalar ρ > 1 such that

∥L+∥ < λmin(S)

2ρ∥C∥
√
λmax(RTR)

(296)

where the matrix R = RT > 0 is precisely a solution the following algebraic Lyapunov

equation.

ATR +RA+ S = O (297)

Proof:

The proof relies on the fact that the observer design is basically a dual problem of

the control synthesis. The result is based on Razumikhin framework and application

of Theorem 23 to the error dynamics (295). �

Remark 14:

We can see that there are two important conditions which need to be fulfilled before

the observer is designed. The first condition is that the system must be asymptotically

stable i.e. the matrix A must be Hurwitz. The second one is the observability
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of the (CT , A) pair. If any of these conditions fail, the observer design is out of

question. Secondly, because of the nonlinearity of the sup functional, the deterministic

separation principle may not hold. Also, from a practical point of view, the error

dynamics of the observer must decay faster as compared to the plant dynamics.

Remark 15:

Notice that the observer above in (293) is an infinite-dimensional nonlinear system. It

will require a memory of length τ units. The reason is evident from the measurement

equation. Though the plant is finite dimensional, the observer cannot be. We do

need to store the past history of measurement in order for the observer dynamics to

evolve with the passage of time.

Remark 16:

One potential practical application of the above observation scheme can be the water

level (water head) control of a hydroelectric power dam as shown in Fig. 52. One can

make observations of the maximum intake water level from the reservoir over a period

of week or a month and, from this maximum, can reconstruct the instantaneous level

which can be used for the head control. The head control mechanism can be employed

for the turbine speed which can be consequently used for the generation of desired

power.

11.12.2 Observer Design Technique 2: Scalar Case

Here, we give another observer design technique which is based on Halanay’s inequal-

ity [41]. This technique is only valid for scalar plants.

Plant:

ẋ(t) = αx(t) + ξw(t)

Measurements:

y(t) = β sup
t−τ≤θ≤t

x(θ)

(298)
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Figure 52: Hydroelectric Power Dam Water Level Control

Here x(t) ∈ R is the state, w(t) ∈ R is the driving agency (could be the control input

or any known disturbance or perturbation), all the coefficients α, ξ, β ∈ R are scalars

(constants). y(t) ∈ R is the output of the system. We propose the following structure

for our infinite dimensional observer to compute the estimated state x̂(t).

˙̂x(t) = αx̂(t) + ξw(t) + l(y(t)− ŷ(t)) (299)

where the last term accounts for the correction in which l is the observer gain and

ŷ(t) is the estimated output given as follows.

ŷ(t) = β sup
t−τ≤θ≤t

x̂(θ). (300)

With the above substitution, (299) takes the following form.

˙̂x(t) = αx̂(t) + ξw(t) + l

(
β sup

t−τ≤θ≤t
x(θ)− β sup

t−τ≤θ≤t
x̂(θ)

)
. (301)

Subtracting the the observer equation (301) from the plant equation (298) and de-

noting the observation error e(t) = x(t) − x̂(t), we obtain the error dynamics of the
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observer as follows.

ė(t) = αe(t)− lβ
(

sup
t−τ≤θ≤t

x(θ)− sup
t−τ≤θ≤t

x̂(θ)

)
. (302)

Using the difference property of the sup functional and assuming that lβ < 0, the

above error equation translates to the inequality as under.

ė(t) ≤ αe(t)− lβ sup
t−τ≤θ≤t

(x(θ)− x̂(θ)) (303)

or equivalently,

ė(t) ≤ αe(t)− lβ sup
t−τ≤θ≤t

e(θ). (304)

Using Halanay’s inequality, we give the following theorem.

Theorem 26 If −α > −lβ > 0 then there exists δ > 0 and κ > 0 such that

e(t) ≤ κe−δt (305)

and the decay rate satisfies the following nonlinear transcendental equation.

δ + α− lβe−δτ = 0. (306)

Fig. (51) portrays the block diagram of the proposed observer architecture. Notice

that the observer is nonlinear because of the presence of the sup block.

Comment 10:

The above theorem requires that α < 0 i.e., the homogeneous version of the plant

(unforced system) should be asymptotically stable. Now, given any α < 0 and β as

the system parameters, the observer can be designed as follows.
|l| <

∣∣∣α
β

∣∣∣,
sgn(l) = −sgn(β)

(307)

where sgn : R → {−1, 0, 1} represents the usual signum or sign function defined as

follows.

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(308)
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Clearly,

sgn(x) :=


x

|x|
if x ̸= 0

0 if x = 0

(309)

= 2H(x)− 1

where H is the usual Heaviside function or unit step function. Also, the sign function

is an odd function i.e., sgn(−x) = −sgn(x).

Also, from the quasi-polynomial equation (306), we can get the following explicit

expression for the worst case decay rate δ of the estimation error e as,

δ + α− lβe−(δ+α)τ .eατ = 0

⇔ τ(δ + α) = lβτeατe−(δ+α)τ

⇔ τ(δ + α) = Wk(lβτe
ατ ); k ∈ Z

⇔ δ = −α+
1

τ
Wk(lβτe

ατ ); k ∈ Z.

Indeed for a unique and real value of δ, we must the take into account only the

principal branch W0 i.e.,

δ = −α +
1

τ
W0(lβτe

ατ ) (310)

11.13 Simulation Results

We illustrate the applicability and effectiveness of our sup based output injection

technique for the observer design by the following academic examples.

Example 1:

Consider the following example for the observer design problem.
ẋ(t) = −0.5x(t) + ξw(t)

ψ(t) = 6.5 cos(t); t ∈ [−2, 0]

y(t) = 1.25 sup
t−2≤θ≤t

x(θ)

(311)
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For simplicity and “proof of concept”, we consider the unforced version of the plant.

Clearly, α = −0.5, β = 1.25, τ = 2 and ξ = 0. The observer gain satisfying the

bound was selected as l = −0.005. This yields the worst case estimation error decay

rate δ = 0.4977. Fig. 53 shows the actual state x, output y, initial history function

ψ ∈ C([−2, 0];R), the worst case estimation error e and the estimate x̂.

Figure 53: Actual State x, Output y, Initial History ψ, the Worst Case Error e and
Estimate x̂

Example 2:

Consider the following second order non-autonomous coupled system with sup based

measurement. 
ẋ1(t) = x1(t)− x2(t)

ẋ2(t) = 5x1(t)− 3x2(t) + 0.5w(t)

y(t) = 1.75 sup
t−1≤θ≤t

x1(θ)

We take ϕ(t) =

 t+ 1

1 + 0.25 cos(4.5t)

 ∈ C,∀t ∈ [−1, 0] and

ϕ̂(t) =

 0.85− 0.1 sin(t)

t+ 1.75

 ∈ C,∀t ∈ [−1, 0] as the initial infinite-dimensional

history functions for the actual states and the observed states respectively. Clearly,

our system and measurement matrices are as follows:
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A =

 1 −1

5 −3

 , Γ =

 0

0.5

 , C =

 1.75

0

.

It is easy to check that A is Hurwitz and the pair (CT , A) is observable. For

simplicity, the matrix S was taken as the Identity matrix and ρ > 1 was picked as

ρ = 2. Solving the Lyapunov equation yields R =

 1.5 2

2 3.5

 with the spectral

norm, ∥R∥ = 4.7361. The unit Heaviside function was taken as the known pertur-

bation/disturbance w(t). Using Theorem 25, we designed the observer as L = L+ = 0.0125

0.0185

. This observer gain matrix L+ ensures that ∥L+∥ = 0.023 < 0.03016

and thus all the requirements of Theorem 25 are totally satisfied.

Fig. 54 portrays the actual state trajectories, the observed state trajectories and

the estimation errors of the states. We can clearly see that the error profiles are

asymptotically stable. In other words, the estimated states are faithfully tracking the

actual states as time progresses.

Figure 54: Actual, Observed State Trajectories and Estimation Error Profiles

Example 3:

Consider the following discrete time system with maxima.

Σd :


xk+1 = −0.48xk + 0.85max

k
(xk, xk−1); ∀k ∈ Z, k ≥ 0,

x0 = 1.5, x−1 = 1.0

(312)
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It is easy to see that Mode: II in itself is unstable but the overall switched system

is stable as expected from the stability region in Fig. 49. Fig. 55 shows the state

trajectory of the discrete system with maxima. It verifies that the overall switched

system is asymptotically stable.

Figure 55: Discrete System with Maxima

11.14 Concluding Remarks

In this chapter we investigated and solved the problem of stability analysis, controller

synthesis and observer design for scalar as well as general higher order systems with

dynamics evolving with state suprema. We used Razumikhin function based platform

for the analysis and synthesis. The state space for the characterization of trajecto-

ries and Cauchy problem is the infinite dimensional Banach space endowed with the

topology of uniform convergence. The system was symmetrized and three different

types of equilibria of the system were investigated. Conditions on global existence

and uniqueness were also given using contraction mapping principle. Finally, some

simulation results were shown to express the benefits of our analysis and observer

design for the higher order systems evolving with state suprema.
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CHAPTER XII

OPTIMAL CONTROL OF SYSTEMS EVOLVING WITH

STATE SUPREMA

This chapter studies the optimal control of processes governed by a specific family

of systems described by functional differential equations (FDEs) involving the sup-

operator. Systems evolving with the state suprema constitute a useful abstraction for

various models of technological and biological processes. The specific theoretic frame-

work incorporates state suprema in the right hand side of the initially given differential

equation and finally leads to a FDE with the state-dependent delays. We study a class

of nonlinear FDE-featured optimal control problems (OCPs) in the presence of some

additional control constraints. Our aim is to develop implementable first-order op-

timality conditions for the retarded OCPs under consideration. In [12], Azhmyakov

used the celebrated Lagrange approach and prove a variant of the Pontryagin-like

Minimum Principle for the given OCPs. Moreover, Azhmyakov discussed a compu-

tational approach to the main dynamic optimization problems and also considered

a possible application of the developed methodology to the Maximum Power Point

Tracking (MPPT) control of solar energy plants.

12.1 Problem Formulation and Motivation

Consider the following initial-value problem for the differential equation involving the

sup-operator in the right hand side

ẋ(t) = Ax(t) + bk sup
t−τ≤θ≤t

cT (t)x(θ) ∀t ∈ [0, tf ].

x(t) = ϕ(t) ∀t ∈ [−τ, 0].
(313)
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Here tf ∈ R+, x(t) ∈ Rn, n ∈ N is a state vector, A ∈ Rn×n and b ∈ Rn are given

system matrix and system vector. By τ ∈ R+ we denote a “memory length” associated

with the given sup-functional. The control vector u(t) := (k, cT (t))T ∈ U ⊂ Rn+1

constitutes an input in system (313). The admissible (vector) control function c(·) is

assumed to be square integrable on the given time interval c(·) ∈ L2
n(0, tf ) and the

gain k is bounded. We also assume that the admissible control region (a compact) U

is determined by the following box-type restrictions

|k| ≤ ∆1, ||c(t)||Rn ≤ ∆2 ∀t ∈ [0, tf ], ∆1,∆2 ∈ R+.

Let us denote by C(−τ, 0) the Banach space of all continuous functions from the

interval [−τ, 0] into Rn equipped with the usual (uniform convergence) norm

||ϕ(·)||C(−τ,0) := max
s∈[−τ,0]

||ϕ(s)||Rn .

Suppose ϕ(·) ∈ C(−τ, 0). We call a function x(·) a solution (or trajectory) of (313),

if there is tf > 0 such that the function x : [τ, tf )→ Rn is absolutely continuous and

satisfies conditions (313) for almost all t ∈ [−τ, tf ). For a given trajectory x : I → Rn

defined on some interval I ⊂ R with [t − τ, t] ⊂ I, a segment xt(·) of x(·) can be

defined by the relation

xt(ϑ) := x(t+ ϑ),

where ϑ ∈ [−τ, 0]. In fact, xt(·) is a restriction of the function x(·) on the interval

[t − τ, t]. Using the presented notation, we can interpret (313) as an initial-value

problem for a time-delayed differential equation with state-dependent delays:

ẋ(t) = Ax(t) + bkcT (t)x(t− r[xt(·)]) ∀t ∈ [0, tf ]

x(t) = ϕ(t) ∀t ∈ [−τ, 0].
(314)

By r : C(−τ, 0) → [0, τ ] we denote here the ”delay functional”. This functional

expresses the action of the sup-operator in the original setting (313)

cT (t)x(t− r[xt(·)]) ≡ sup
t−τ≤θ≤t

cT (t)x(θ).
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Note that the linear-affine structure of the dynamic equation from (314) guarantees

the existence of an absolutely continuous solution to the initial value problems (314)

and (313) (see e.g., [17]). Let f : Rn → R be a continuously differentiable function.

By xu(·) we denote a solution of (313) generated by an admissible control u(·) with

u(t) ∈ U . The corresponding pair (u(·), xu(·)), is called an admissible pair. We are

now ready to formulate our main optimization problem, namely, the following OCP

minimize J(u(·))

subject to (313), |k| ≤ ∆1, ||c(t)||Rn ≤ ∆2, t ∈ [0, tf ],

(315)

where J(u(·)) := f(xu(tf )) is a terminal (Mayer-type) functional. Let us note that

using the simple coordinate transformations the given Mayer-type problem can be

transformed into the general Bolza OCP (see e.g., [34, 50]).

Definition 19 An admissible pair (uopt(·), xopt(·)), where uopt(·) = (kopt, copt
T
(·))T ,

is called a local (locally optimal) solution for OCP (315), if

J(uopt(·)) ≤ J(u(·))

for all admissible control (vector) functions u(·) with ||uopt(·) − u(·)||R×L2
n(0,tf )

≤ ϵ,

where ϵ > 0 is a sufficiently small number.

Note that a neighborhood of an optimal control uopt(·) from Definition 19 is in

fact determined by the inequality

|kopt − k|+ ||copt(·)− c(·)||L2
n(0,tf )

≤ ϵ.

where k and c(·) are admissible components of u(·). We next assume that OCP (315)

has an optimal solution in the sense of Definition 19.

Note that the celebrated Pontryagin Minimum Principle as well some useful first-

order optimality conditions are not sufficiently advanced to optimal control processes

175



governed by some newly established classes of differential equations (see e.g. [13–15]

for the optimality conditions in hybrid and switched systems. The same is also true

with respect to the OCPs associated with the general delayed differential equation

involving state-dependent delays. In fact one has the adequate results only for the

case of constant delays in a specific LQ type OCP (see e.g., [18,61] and the references

therein). Let us also mention some initial results that generalizes the conventional

Bellman approach for the case of retarded OCPs. The usual equivalent transfor-

mations techniques that permit to reduce the differential equations with retarded

arguments to the non-delayed FDEs may lead to a significant lack of smoothness

(see [31,43]). This is exactly the case of the state-dependent delays in the right hand

sides of systems of the type (314). Additionally, the main analytic tool for the proof

of the classic variants of the Pontryagin Minimum Principle, namely, the needle vari-

ations technique can not be applied in the case of delayed differential equations with

state-dependent delays. Evidently, the delay functional r[xt(·)] introduced above is

determined by an a priory unknown relation. The formal situation here is in some

sense similar to the general feedback optimal control problem. This fact and the

infinite-dimensional nature of the FDE (314) make it difficult to derive the necessary

adjoint equations and the related Pontryagin-like formalism.

Let us finally note that the abstract system (313) with a state suprema term in

the right hand side can be naturally interpreted as an initially given linear control

system

ẋ = Ax+ bw

with an output y(t) = cT (t)x(t) whose measurement only consists of the suprema over

some past time interval supt−τ≤θ≤t y(θ, ). This non-linear measurement information

can be fed back in order to control the given system. Finally one gets the resulting
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system (313) closed with the specific feedback control

w(t, xt) := k sup
t−τ≤θ≤t

cT (t)x(θ).

Note that this feedback depends on the “memory” xt(·) of the given dynamic system.

Let us now consider a practically oriented example of the obtained OCP (315) for the

MPP-based solar plant system.

Example 5 A simple mathematical model of the photovoltaic (PV) system is given

by the following relations

dP

dVpv
(t) = Ipv(t) + Vpv(t)

dIpv
dVpv

(t),

dϕ(t)

dt
= Aϕ(t) + bk sup

t−τ≤θ≤t
cT (t)P (θ),

d2ϕ(t)

dt2
= F (t, ϕ(t)).

(316)

Here dP
dVpv

is a power-voltage characteristic of a PV cell, V and I constitutes a voltage

current characteristic of a solar plant. The presented model is a simple consequence of

the conductance of PV cells (see [63]). Second and third equations in (316) represent

a mechanical part of the solar system, namely, an orientation angle ϕ and the corre-

sponding angular velocity dϕ(t)
dt

and acceleration d2ϕ(t)
dt2

of the orientation system. The

measured power is given by cTP such that the control gain k implements an instrumen-

tation based non-linear feedback with ”memory”. Following the MPP methodology, the

above feedback-type control depends on the maximum of the (measured) power. An op-

timized (in the sense of the energy) solar plant can now be formalized by the following

variant of the main OCP (315):

minimize J(u(·)) := −P 2(tf ) + ϕ2(tf ) + (
dϕ(tf )

dt
)2

subject to (316), |k| ≤ ∆1, ||c(t)||Rn ≤ ∆2, t ∈ [0, tf ],

(317)

for some given instrumentation-control parameters k and c(·) and corresponding bounds

∆1,∆2. Note that the objective functional in (317) corresponds to the output power

maximization under simultaneous resources optimization.
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Let us finally note that the conventional MPP algorithm discussed in Example 5

requires a heavy computation of the signature of the values dP
dVpv

at every control time

instant. The mathematical model of the OCP associated with a concrete dynamic

system evolving with state suprema makes it possible to control optimally a sophisti-

cated engineering process (for example, a solar plant) using the main OCP (315) and

a suitable numerical solution procedure.

In [12], Azhmyakov proposes a new numerical approach for the optimal control

processes governed by dynamic systems evolving with state suprema. The developed

computational scheme is based on the extended abstract variant of the conventional

Lagrange approach.
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CHAPTER XIII

SPECTRUM ANALYSIS OF HIGHER ORDER LTI TDS

We investigate some pathological and degenerate cases in the spectrum analysis of

higher order time delay systems using the idea of matrix Lambert W function. For

the scalar case i.e., first order time delay systems, the Lambert-W function framework

can be efficiently used. In (Yi and Ulsoy, 2006 and Yi et al. 2010, 2014), an algorithm

(hereafter called Yi & Ulsoy’s Algorithm) is presented to extend and generalize the

idea to higher order case using matrix Lambert W functions. The aim of this chapter

is to show that the formulation carried out using matrix Lambert W functions, suffers

from some limitations. We provide some counter examples to show that one needs

to be very careful in drawing conclusions about the spectrum of higher order system

using this approach. In particular, Yi and Ulsoy’s algorithm does not produce sat-

isfactory results when the modes have multiplicity (repeated roots). In some cases,

the algorithm produces spurious characteristic roots (poles) which are not the actual

modes of the system under consideration.

13.1 Introduction & Motivation

We consider the class of linear constant coefficient time delay systems with fixed delay

of the following form.

ẋ(t) = Ax(t) +Adx(t− τ) (318)

where x(t) ∈ Rn is the state vector. The matrices A ∈ Rn×n and Ad ∈ Rn×n are

constant matrices and τ > 0 is the constant delay.

The characteristic equation associated with system (318) is as follows.

det(sI−A−Ade
−sτ ) = 0 ; s ∈ C (319)
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In [53], a general matrix version of the Lambert W function was defined in terms of

the Jordan blocks. Following this formulation, an explicit expression was found for

the eigenvalues and spectrum of the above the system in the special case when the

system matrices A and Ad are simultaneously triangularizable which included the

special case of commutativity. It was shown that the matrix Lambert W function

based approach fails if the system matrices A and Ad do not commute.

In [106], the same idea of matrix Lambert W functions has been extended to

the solution of a system of Delay Differentia Equations (DDEs) when the coefficient

matrices in the system do not commute. In [104], point-wise controllability and

observability of linear systems of DDEs is ascertained in the framework of matrix

Lambert W functions.

In [105], an algorithm is presented to extend and generalize the idea of finding the

characteristic roots and spectrum analysis to higher order case using matrix Lambert

W functions. The authors use the matrix Lambert W function based approach to

find the characteristic roots and the spectrum; and analyze the stability, controlla-

bility and observability of linear time invariant systems with a constant delay. The

methodology is general and is not restricted to a commuting pair of A and Ad ma-

trices. In [25], some special cases of this class of systems were considered and it was

shown that in general there is no one to one correspondence between the branches of

the matrix Lambert W function and the roots of the characteristic equation.

In [96,97], the authors present a method for computing all the zeros of a retarded

quasi-polynomial that are located in a large region of the complex plane. The method

is based on mapping the quasi-polynomial and on utilizing asymptotic properties of

the chains of zeros. The method is called Quasi-Polynomial mapping based Root

finder (QPmR). We use QPmR as a double check for the validation and verification

of our results.

The aim and objective of this chapter is to show that the formulation carried
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out in the book and the papers [105], [107], [106], [104] and [11], which is about

the analysis of systems of linear delay differential equations using matrix Lambert W

functions, suffers from some serious limitations. We provide some counter examples to

show that one needs to be very careful in drawing conclusions about the spectrum of

higher order system using this approach. In particular, Yi and Ulsoy’s algorithm does

not produce satisfactory results when the modes have multiplicity (repeated roots).

In some cases, the algorithm produces spurious roots which are not the actual modes

of the system under consideration and hence do not constitute the actual spectrum of

the system. The claim is supported by counter examples which contradict the results

obtained using the algorithm presented in [105], [104] and [11].

13.2 Spectrum Analysis

13.2.1 Scalar Case

Consider the following scalar DDE,

Σf :


ẋ(t) = αx(t) + βx(t− τ) ∀t ≥ 0

x(t) = ψ(t). ∀t ∈ [−τ, 0]
(320)

where x(t) ∈ R is the state variable, ψ(t) ∈ C([−τ, 0];R) is the continuous initial

infinite dimensional history function living in the Banach function space. We use the

method of characteristics to ascertain the spectrum and closed form general solution

of the homogeneous time delay system (320). Suppose that x(t) = Neλt, N ̸= 0 is

mode of the system where N, λ ∈ C are constants. Then, substitution in the DDE
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follows that,

D(Neλt) = αNeλt + βNeλ(t−τ)

⇔ λ(Neλt) = (α + βe−λτ )(Neλt)

⇔ λ− α = βe−τλ

⇔ eτ(λ−α)(λ− α) = βe−τα

⇔ eτ(λ−α)τ(λ− α) = τβe−τα

⇔ τ(λk − α) = Wk(τβe
−τα)

⇔ λk = α +
1

τ
Wk(τβe

−τα)

where in the above equations, k ∈ Z is an integer index, Wk represents the k-

th branch of the Lambert W function, D is the usual differential operator and λk

denotes the k-th eigenvalue associated with the k-th eigen mode eλkt of the system.

The Lambert W function is defined as the multi-valued function which solves the

following transcendental equation:

W (z)eW (z) = z, z ∈ C, (321)

Therefore, the spectrum of the system is only a point spectrum or discrete spectrum

and is given by the following theorem.

Theorem 27 The spectrum of the system (320) is

Spec(Σf ) =

{
λk

∣∣∣k ∈ Z, λk = α +
1

τ
Wk(τβe

−τα)

}
(322)

where Wk denotes the k-th branch of the Lambert W function.

No continuous spectrum or residual spectrum is present for this infinite dimensional

system Σf with discrete or fixed or constant delay.

The closed form general solution of the homogeneous system Σf given by (320) will

be given as a linear combination of the the countably infinite eigen modes (assuming
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simple poles i.e., of multiplicity one) as follows.

x(t) =
∞∑

k=−∞

Cke
λkt, ∀k ∈ Z (323)

=
∞∑

k=−∞

Cke
(α+ 1

τ
Wk(τβe

−τα))t (324)

where Ck’s, k ∈ Z are arbitrary constants which can be determined by the initial

history function ψ(t) using the Stone-Weirstrass theorem. Notice from (323) that the

necessary and sufficient condition for the asymptotic stability of (320) is,

Re

(
α +

1

τ
Wk(τβe

−τα)

)
< 0, ∀k ∈ Z (325)

where Re(.) represents the Real part of the complex number.

13.2.2 Higher Order Case

Now, we consider the higher order case as follows.

ẋ(t) = Ax(t) +Adx(t− τ) (326)

where x(t) ∈ Rn is the state vector. The matrices A ∈ Rn×n and Ad ∈ Rn×n are

constant matrices and τ > 0 is the constant delay.

The method of spectrum analysis of the higher order system (326), suggested

in [105], is based on finding a matrix S ∈ Cn×n which satisfies the following transcen-

dental matrix equation.

S−A−Ad exp(−Sτ) = 0. (327)

In order to generalize the theory and circumvent the highly restricted commutativity

requirement of the matrices A and Ad, a matrix Q is introduced in [105] which

satisfies the following equation.

τ(S−A) exp(τ(S−A)) = τAdQ (328)

The above equation is in matrix Lambert-W friendly format and its solution is given

as follows.

Sk =
1

τ
Wk(M) +A (329)
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where k ∈ Z and M , τAdQ.

The set of all the eigenvalues of the matrix Sk, k ∈ Z constitutes the spectrum of

the higher order time delay system. Substitution of (329) in (326) yields the following

equation.

Wk(M) exp(Wk(M) +Aτ)− τAd = 0 (330)

13.2.3 Yi and Ulsoy’s Algorithm

The above method can be expressed by the following Yi and Ulsoy’s Algorithm [105].

Repeat for k = 0,±1,±2, · · ·

Step 1: Solve the nonlinear transcendental equation.

Wk(Mk) exp(Wk(Mk) +Aτ)− τAd = 0 (331)

for Mk = τAdQk.

Step 2: Compute Sk corresponding to Mk as

Sk =
1

τ
Wk(Mk) +A. (332)

Step 3: Compute the eigenvalues of Sk.

13.2.4 Main Problem With Yi and Ulsoy’s Algorithm:

Notice that (327) in [105] was derived by assuming the solution x(t) = exp(St)x0 to

the system (318) which, after substitution in (318), yields the following.

(S−A−Ad exp(−Sτ))x(t) = 0 (333)

If P ∈ Rn×n, x ∈ Rn and Px = 0 then the nontrivial solution for x exists iff ker(P) ̸=

0, equivalently iff P is singular i.e., det(P) = 0. Here, ker(P) denotes the kernel or

Null space of the matrix P.

In the light of the above fact, equation (327) is an incorrect characteristic equation.

The correct characteristic equation should be,

det(S−A−Ad exp(−Sτ)) = 0 (334)
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Unfortunately when equation (334) is employed in the analysis, it does not boil down

to matrix Lambert W functions, in general. Our strategy of finding the spectrum, in

the counter examples below, is based on the scalar characteristic equation (319). We

use factorization of the left hand side of (319) and scalar Lambert W function based

approach rather than the matrix one.

In [28], it was shown that the matrix LambertW function evaluated at the matrix

A does not represent all possible solutions of S exp(S) = A.

13.3 Counter Examples

We give the following counter examples as our main results. Our counter exam-

ples bring some pathological cases where Yi and Ulsoy’s algorithm does not produce

satisfactory results. We have meticulously designed these examples so that the char-

acteristic equation associated with the higher order system can be easily factorized

into scalar systems so that one use the tools of the scalar Lambert W function. No-

tice that there is no problem with the usage of scalar Lambert W functions. Some of

the examples deal with the repeated root (multiple eigenvalue) cases where Yi and

Ulsoy’s algorithm fails to produce the multiple eigen modes.

Example 1: 4th Order System

Consider the following 4th order system of DDEs in which,

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 −4 −6 −4


, Ad =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


and the delay τ = 4.

This system has the following characteristic equation.

(λ+ 1)4 − e−4λ = 0 (335)

The above characteristic equation can be easily split and factorized into four linear
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pseudo-polynomials or quasi-polynomials (scalar Lambert-W friendly format factors)

as follows.

(λ+ 1 + e−λ)(λ+ 1− e−λ)(λ+ 1 + je−λ)(λ+ 1− je−λ) = 0 (336)

Fig. 56 shows the eigenvalues (poles) of the system found using Yi and Ulsoy Algo-

rithm for the branches −10 ≤ k ≤ 10; k ∈ Z using the hybrid branch based approach.

The actual eigenvalues are shown in Fig. 57. Notice that there is indeed at eigenvalue

at the origin as also evident from the characteristic equation as well. The original

system is stable. One can easily see the difference between the actual poles and the

poles captured by Yi and Ulsoy’s Algorithm.
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Example 2: Triple Root at the Origin

Consider the following 2nd order time delay system.

ÿ(t)− 2ẏ(t) + 2y − 2y(t− 1) = 0. (337)

By defining our states as x1 = y and x2 = ẏ, the above system can be expressed in the

state space format of (326) by recognizing that A =

 0 1

−2 2

, Ad =

 0 0

2 0


and the delay is unity i.e. τ = 1. The characteristic equation for this system is

λ2 − 2λ+ 2− 2e−λ = 0. By using the Taylor series expansion of e−λ, we observe the

following scenario.

λ2 − 2λ+ 2− 2e−λ = 0

⇔ 1− λ+
1

2
λ2 = e−λ

⇔ 1− λ+
1

2
λ2 = 1− λ+

1

2
λ2 +

1

6
λ3 + · · ·

⇔ λ3(
1

3!
+ λ

1

4!
+ · · · ) = 0

This shows that the system has a repeated eigenvalue (characteristic root) of multi-

plicity 3 at the origin (λ = 0). Fig. 58 depicts the actual roots for this system when

−7 ≤ Re(λ) ≤ 1 using QPmR. Fig. 59 shows that Yi and Ulsoy’s Algorithm not

only fails to detect this repeated root but also produces a lot of extraneous poles (a

whole cluster instead of a triple root) which are not part of the actual spectrum of

the system under consideration. In particular, notice the spurious poles in the region

0 < Re(λ) < 1 of the complex plane.

Example 3: All Repeated Roots Except the One at the Origin

Consider the following 3rd order time delay system.

(D − T )(D − T )Dy = 0. (338)

where D is the usual Differential Operator and T is the unit delay operator. By

defining our states as x1 = y, x2 = Dy = ẏ and x3 = (D − T )Dy = ÿ − ẏ(t − 1),
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Figure 58: Actual Poles: −7 ≤ Re(λ) ≤ 1 for Example: 2
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Figure 59: Poles Using Yi and Ulsoy’s Algorithm for the Branches: −10 ≤ k ≤
10; k ∈ Z for Example: 2

the above system can be expressed in the vector-matrix form of (326) with A =
0 1 0

0 0 1

0 0 0

, Ad =


0 0 0

0 1 0

0 0 1

 and the delay is unity i.e., τ = 1. Clearly, the

matrices A and Ad do not commute. The characteristic equation for this system is

λ(λ− e−λ)2 = 0. This system has a simple eigenvalue λ = 0 and repeated eigenvalues

λk =Wk(1);∀k ∈ Z of multiplicity 2. Fig. 60 shows the actual poles of this system for

the branches −10 ≤ k ≤ 10; k ∈ Z resembling a swallow-tail pattern. Fig. 61 shows

the poles generated by Yi and Ulsoy’s Algorithm. The initial value of the matrix Q
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Figure 60: Actual Poles: −10 ≤ k ≤ 10; k ∈ Z for Example: 3

was chosen such that all the entries are unity.

It is clear from this figure that the algorithm not only fails to produce repeated

poles but also generates some spurious poles which are not the characteristic roots of

the original system. One can observe the extraneous roots generated by the algorithm

in the region −1 < Re(λ) < 0 of the complex plane.
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Figure 61: Poles for the Branches: −10 ≤ k ≤ 10; k ∈ Z using Yi & Ulsoy’s
Algorithm for Example: 3

Example 4: Antipodal System With a Delay

Consider the following system.

Σa : ÿ − y(t− 1) = 0. (339)

By defining our states as x1 = y and x2 = ẏ, the above system can be expressed in
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Figure 63: Poles Generated by Yi and Ulsoy’s Algorithm for the Branches: −10 ≤
k ≤ 10; k ∈ Z for Example: 4

the state space format of (326) by recognizing that A =

 0 1

0 0

, Ad =

 0 0

1 0


and the delay is unity i.e., τ = 1. Clearly, here A and Ad do not commute. The

characteristic equation of (345) is λ2 − e−λ = 0. From which, λ = ±e−λ
2 . Therefore,

the spectrum associated with this system is,

Spec(Σa) = Ω+

∪
Ω− where,

Ω± =

{
λk

∣∣∣λk = 2Wk

(
±1

2

)
; k ∈ Z

}
. (340)

Fig. 62 and Fig. 63 can be compared and contrasted for actual poles and the one

generated by Yi and Ulsoy’s algorithm respectively. Notice the false poles generated

190



by the later as shown enclosed in the red ellipse in the region −18 ≤ Re(λ) ≤ −16

and the spurious multiple poles in the region 0 ≤ Re(λ) ≤ 2 .

Example 5: Double Root at the Origin

Consider the following 2nd order system with the delay τ = 2 units.

Σd : ÿ(t)− 2ẏ(t) + y(t)− y(t− 2) = 0. (341)

By defining our states as x1 = y and x2 = ẏ, the above system can be expressed in the

state space format of (326) by recognizing that A =

 0 1

−1 2

, Ad =

 0 0

1 0


and the delay is 2 units i.e., τ = 2. Clearly, A and Ad do not commute. The

characteristic equation of the system (341) is the following.

λ2 − 2λ+ 1− e−2λ = 0⇔ (λ− 1)2 = e−2λ

⇔ (λ− 1 + e−λ)(λ− 1− e−λ) = 0

⇔ λ2(
1

2!
− λ 1

3!
+ . . .)(λ− 1− e−λ) = 0

This clearly shows that the transcendental characteristic equation has a double root

at the origin. Furthermore, the spectrum associated with this system is,

Spec(Σd) = Ω+

∪
Ω− (342)

where, Ω± =
{
λk

∣∣∣λk = 1 +Wk (±e−1) ; k ∈ Z
}
.

Fig. 64 shows the actual poles of this system for the branches −10 ≤ k ≤ 10; k ∈

Z. Notice that there is only one right half plane pole at λ = 1.27846. There are no

poles in the region of the complex s-plane where 0 ≤ Re(λ) ≤ 1. The poles produced

using Yi and Ulsoy’s algorithm are depicted in Fig. 65. One can see that there is

a clear difference between the actual spectrum and the one captured in Fig. 65.

Example 6: Two Realizations

Consider the following 2nd order time delay system.

(D + T )(D − T )y = 0. (343)
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where D is the usual Differential Operator and T is the unit delay operator. By

defining our states as x1 = y and x2 = (D−T )x1, the above system can be expressed

in the vector-matrix form of (326) with A =

 0 1

0 0

, Ad =

 1 0

0 −1

 and the

delay is unity i.e., τ = 1. Clearly, the matrices A and Ad do not commute. The

characteristic equation for this system is (λ+ e−λ)(λ− e−λ) = 0. This system has the

spectrum Spec = {λk = Wk(±1), k ∈ Z}. One can also write the system in (343) as

follows.

(D − T )(D + T )y = 0. (344)

By defining our new states as x1 = y and x2 = (D + T )y, the above system can be

expressed in the vector-matrix form of (326) with a new state space realization where,

A =

 0 1

0 0

, Ad =

 −1 0

0 1

 and the delay is unity i.e., τ = 1. Clearly, the

matrices A and Ad do not commute.

Example 7: Delayed Resonator

Consider the following system which is in fact the ”delayed” version of the well known

harmonic oscillator. The system is characterized by,

Σo : ÿ + y(t− 1) = 0. (345)
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By defining our states as x1 = y and x2 = ẏ, the above system can be expressed in the

state space format of (326) by recognizing that A =

 0 1

0 0

, Ad =

 0 0

−1 0


and the delay is unity i.e., τ = 1. Clearly, AAd ̸= AdA. The characteristic equation

of (345) is λ2+e−λ = 0. From which, λ = ±je−λ
2 . Therefore, the spectrum associated

with this system is,

Spec(Σo) = Ω+

∪
Ω− (346)

where,

Ω+ =

{
2Wk

(
j

2

)}
; k ∈ Z (347)

Ω− =

{
2Wk

(
−j
2

)}
; k ∈ Z. (348)

Fig. 68 shows the actual poles of this system for the branches −10 ≤ k ≤ 10; k ∈

Z. Notice that there is a complex conjugate pair of dominant poles in the region

−4 ≤ Re(λ) ≤ −3 which is not captured by the Yi and Ulsoy’s algorithm in Fig. 69.

One can see that there is a clear difference between the actual spectrum and the one

captured in Fig. 69. Moreover, here, Yi and Ulsoy’s algorithm fails to capture the

two distinct characteristic spectra Ω+ and Ω−.

194



−10 −8 −6 −4 −2 0 2
−150

−100

−50

0

50

100

150

Real (λ)

Im
ag

in
ar

y(
λ)

Actual Poles for the Branches: −10 ≤k ≤10; k∈ Z

 

 

Ω
+

Ω
−

Figure 68: Actual Poles for the Branches: −10 ≤ k ≤ 10; k ∈ Z for Example: 7
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13.4 Concluding Remarks

We investigated some pathological and degenerate cases in the spectrum analysis of

higher order time delay systems using the idea of matrix Lambert W function. The

idea of matrix Lambert functions presented in [11], [106], [104], [107] and [105] has

some limitations and one needs to be very careful in drawing conclusions about the

spectrum of higher order system using this approach. In particular, Yi and Ulsoy’s

algorithm does not produce satisfactory results when the modes have multiplicity

(repeated roots). In some cases, the algorithm produces unnecessary and redundant

roots which are not the actual modes of the system under consideration; in other

cases it fails to catch all the poles of the system. Also, the algorithm may give an

incorrect judgement of the dominant poles. Our counter examples show that a lot of

care must be taken while drawing conclusion about the spectrum and eigenvalues of

higher order time delay systems using Yi and Ulsoy’s Algorithm in [107] and [105]. All

the examples can be reduced via factorization [89] to the scalar Lambert W friendly

format. The authors also verified their results using the QPmR algorithm given

in [97].
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CHAPTER XIV

CONCLUSIONS & FUTURE RECOMMENDATIONS

14.1 Conclusions

Systems with constant time delays are very well understood. A well defined state

space exists for such systems. The state space is either a Banach space of continuous

functions C([−τ, 0];Rn) with the uniform norm topology or a Hilbert space of square

integrable functions L2([−τ, 0];Rn). Inconsistencies arise when the delay is not con-

stant or fixed. When the delay is time-varying, among other inconsistencies, causality

is a prime problem which needs to be addressed. In order to have a well defined state

space and ensure causality, the rate of the delay must be bounded by unity i.e., τ̇ ≤ 1.

When the time-varying delay is bounded and its rate is bounded by unity, only then

one can use C([−τ, 0];Rn) or L2([−τ, 0];Rn) as the state space and characterize the

Cauchy problem. When the delay depends on the state of the system, the state space

is not well defined in general. The space C fails to define the Cauchy problem and

characterize the state space. Extra regularity on the initial data is required e.g., in

some cases C1([−τ, 0];Rn) or a closed subspace of C0,1([−τ, 0];Rn) =W1,∞([−τ, 0];Rn)

(Sobolev space) can be used as a state space. In a particular case, when the state-

dependent delay incurs a zero crossover, the system behaves as a finite-dimensional

system called self-starting system. This is a special case of the scale dynamic systems

or scale delay systems.

Some salient features of the problems anlayzed and discussed in the dissertation

are as follows.

• Stability analysis of a class of systems with explicit state-dependent delays

• Stability analysis of a class of systems with implicit state-dependent delays
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• Observer design for a class of systems with explicit state-dependent delays

• Observer design for a class of systems with implicit state-dependent delays

• State space characterization of a class of systems with state-dependent delay

• Analysis of scale dynamic systems and the self-starting features

• Spectrum analysis of higher order linear time delay systems in the Lambert W

function based framework

• Stability analysis and controller synthesis for systems evolving with state suprema

• Observer design for systems evolving with state suprema

• Characterization of discrete systems evolving with state suprema as M3D sys-

tems

• Applications to position estimation of rocket car and machine tool with state-

dependent delay

• Application to tank temperature observation with state-dependent delay

• Application to position estimation of a submarine in a 3-D environment and

ocean navigation

• Application of state-dependent delays in gene regulatory networks

14.2 Future Recommendations

There are still a lot of challenging areas and open problems in the context of sys-

tems with state-dependent delays and state suprema. Some of the avenues for future

research are listed as follows.

• In all the state-dependent delay systems, we assumed a single delay. One may

also extend the developed theory to multiple delays.
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• Likewise, one may consider the problem of system evolving with state suprema

with multiple memory elements.

• In the dissertation we considered only RFDEs with state-dependent delays. The

study of neutral systems with state dependent delays i.e., NFDEs is a future

research avenue.

• The case when the memory τ of the sup functional is time-varying or state

dependent is highly complex. It requires more regularity and smoothness as-

sumptions on the initial history function. This is under the umbrella of our

ongoing research.

• Throughout the dissertation we considered continuous systems with state-dependent

delays. It will be useful to study the discrete counterpart of such systems.

• The problem of state space characterization when the state-dependent delay is

unbounded (infinite memory) is an open problem for research.

• Optimal control of systems involving state suprema by the M3D characteriza-

tion is also a future research direction.
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[97] Vyhĺıdal, T. and Źıtek, P., “QPmR-quasi-polynomial root-finder: Algo-
rithm update and examples,” in Delay Systems, pp. 299–312, Springer Interna-
tional Publishing, 2014.

[98] Walther, H.-O., “On a model for soft landing with state-dependent delay,”
Journal of Dynamics and Differential Equations, vol. 19, no. 3, pp. 593–622,
2007.

[99] Widder, A., Spectral Theory for Nonlinear Operators. Vienna University of
Technology: Master Thesis, 2012.

[100] Willems, J. C., “The behavioral approach to open and interconnected sys-
tems,” IEEE Control Systems Magazine, vol. 27, pp. 46–99, 2007.

[101] Winston, E., “Uniqueness of the zero solution for differential equations with
state-dependence,” Journal of Differerential Equations, vol. 7, pp. 395–405,
1970.

207



[102] Yang, H., Wang, C., and Zhang, F., “A decoupled controller design ap-
proach for formation control of autonomous underwater vehicles with time de-
lays,” IET Control Theory & Applications, vol. 7, no. 15, pp. 1950–1958, 2013.

[103] Yang, R., Bar-Shalom, Y., Huang, H. A. J., and Ng, G. W., “UGHF for
acoustic tracking with state-dependent propagation delay,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1747–1761, 2015.

[104] Yi, S., Nelson, P. W., and Ulsoy, A. G., “Controllability and observability
of systems of linear delay differential equations via the matrix Lambert W
function,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 854–
860, 2008.

[105] Yi, S., Nelson, P. W., and Ulsoy, A. G., Time-delay Systems: Analysis
and Control Using the Lambert W Function. Singapore: World Scientific, 2010.

[106] Yi, S. and Ulsoy, A. G., “Solution of a system of linear delay differential
equations using the matrix lambert function,” Proc. 25th Amer. Control Conf.,
Minnearpolis, MN, pp. 2433–2438, 2006.

[107] Yi, S., Duan, S., Nelson, P. W., and Ulsoy, A. G., “Analysis and control
of time delay systems using the LambertWDDE toolbox,” in Delay Systems,
pp. 271–284, Springer International Publishing, 2014.

208



VITA

Aftab Ahmed (Khattak) was born in Nowshera, Khyber Pakhtunkhwa province of

Pakistan. He acquired initial education from his uncle, Said Afzal (late), who taught

him counting and basic mathematics. He got first position each in SSC and HSSC

examinations of the Federal Board of Intermediate & Secondary Eduction (FBISE),

Islamabad and topped his school and college. He then got admission in University

of Engineering & Technology Peshawar from where he got BS Electrical Engineering

with honors and with distinction. Throughout the four years, he has been the recipient

of University Merit Scholarships and awards for the top position holders. He then did

MS in Systems Engineering from PIEAS where he was awarded the Best Thesis Gold

Medal. He is also the recipient of the Fauji Foundation Academic Distinction Award

and Excellence Award. He then came to the United States after getting the Fulbright

Scholarship in Fall 2012. After passing the preliminary examination in Fall 2012, he

started his Ph.D. research with Prof. Verriest in Spring 2013. He completed the MS in

Electrical Engineering in Summer 2014 from Georgia Tech. In Fall 2015, he completed

the MS Mathematics degree from Georgia Tech. The work in this dissertation is a

part of the Ph.D. degree. He was affiliated with MAST Lab. and Decision & Control

Laboratory (DCL). He also organized the Annual Student Symposium of the DCL

and served as general chair and program chair for two years. Apart from ECE and

DCL seminars, he was also an active participant and attendee of the seminars in the

schools of mathematics and physics at Georgia Tech. He also served as the elected

senator from ECE in the Student Government Association (SGA) at Georgia Tech.

In his free time, he enjoys doing calligraphy in Pashto, Urdu, Arabic and English.

His research interests include Mathematical Systems Theory, Systems and Controls,

209



Theory & Applications of Time Delay systems, Functional Differential Equations,

Infinite Dimensional Systems and Electromagnetics.

A. Related Publications

1. Ahmed, A., Farooq, S., Khan, A. Q., and Abid, M., “An LMI based approach
to passivity analysis and robust passification of uncertain neutral systems with
time varying delays,” in 51st IEEE Conference on Decision and Control (CDC),
Maui, HI, pp. 7799-7804, 2012.

2. Ahmed, A. and Verriest, E. I., “Estimator design for a subsonic rocket car
(soft landing) based on state-dependent delay measurement,” Proceedings of
the 52-nd IEEE Conference on Decision and Control (CDC), Florence, Italy,
pp. 5698-5703, Dec. 2013.

3. Ahmed, A. and Verriest, E. I., “Nonlinear systems evolving with state suprema
as multi-mode multi-dimensional (M3D) systems: Analysis observation,” IFAC-
PapersOnLine, vol. 48, no. 27, pp. 242-247, 2015.

4. Ahmed, A. and Verriest, E. I., “The behavior of systems involving state- de-
pendent delays,” Proc. 10-th IEEE Asian Control Conference (ASCC), Kota
Kinabalu, Malaysia, pp. 2974-2979, 2015.

5. Ahmed, A. and Verriest, E. I., “Design of linear & nonlinear observers for a
turning process with implicit state-dependent delay,” Proc. 53rd IEEE Annual
Allerton Conference (UIUC), Monticello, IL, USA, pp. 546-551, 2015.

6. Ahmed, A. and Verriest, E. I., “Modeling & analysis of gene expression as
a nonlinear feedback problem with state-dependent delay,” IFAC 2017 World
Congress, Toulouse, France, pp. -, 2017 (Accepted).

7. Ahmed, A. and Verriest, E. I., “Solution of scale dynamic systems,” ENOC
2017, Budapest, Hungary, pp. -, 2017 (Accepted).

8. Ahmed, A. and Iqbal, N., “Synthesis of a robust dynamic memoryless state feed-
back controller for systems with time-varying delays using LMIs,” in Proceed-
ings of the 26th IASTED International Conference on Modeling, Identification,
and Control, pp. 158-163, ACTA Press, 2007.

9. Ahmed, A. and Verriest, E. I., “Observer based temperature control of a tank:
From constant to nonlinear state-dependent delay,” IFAC-PapersOnLine, vol.
48, no. 12, pp. 197-202, 2015.

10. Azhmyakov, V., Ahmed, A., and Verriest, E. I., “On the optimal control of sys-
tems evolving with state suprema,” in 2016 IEEE 55th Conference on Decision
and Control (CDC), pp. 3617-3623, 2016.

210



B. Presentations, Posters, Seminars and Symposia

1. Ahmed, A. and Verriest, E. I., “Weird behaviour associated with systems in-
volving state-dependent delays,” 1st International Conference on Dynamics of
Differential Equations, Atlanta, Georgia, 2013.

2. Ahmed, A. and Verriest, E. I., “Chaos quenching in the Lorenz system via
memory controller using delayed feedback,” Georgia Tech Research & Innova-
tion Conference (GTRIC), Atlanta, Georgia, 2014.

3. Ahmed, A. and Verriest, E. I., “Synthesis of observers for systems with implicit
state-dependent delays,” Georgia Tech Annual Decision & Control Laboratory
(DCL) Student Symposium, 2014.

4. Ahmed, A. and Verriest, E. I., “Infinite-dimensional systems evolving with state
suprema: Analysis & observation,” Georgia Tech Annual Decision & Control
Laboratory (DCL) Student Symposium, 2015.

5. Ahmed, A. and Verriest, E. I., “State observation in systems with explicit or
implicit state-dependent delay,” Seventh International Conference on Dynamic
Systems and Applications & Fifth International Conference on Neural, Parallel,
and Scientific Computations, GA, USA, 2015.

6. Ahmed, A. and Verriest, E. I., “Analysis of Gene Regulatory Networks (GRNs)
with state-dependent delay,” Career, Research, Innovation and Development
Conference (CRIDC), Georgia Tech, 2016.

7. Ahmed, A. and Verriest, E. I., “Stability and Passivity Analysis of Systems with
State-Dependent Delays,” 7th International Conference on Dynamic Systems
and Applications, GA, USA, 2015.

8. Ahmed, A. and Verriest, E. I., “Inversion of the state-dependent delay: Observer
design & applications,” Georgia Tech Annual Decision & Control Laboratory
(DCL) Graduate Student Symposium, 2016.

9. Ahmed, A. and Verriest, E. I., “Observer based temperature control of a uid in
a tank with explicit state-dependent delay,” 13th Annual Graduate Technical
Symposium, Atlanta, Georgia, 2016.

10. Ahmed, A. and Verriest, E. I., “Scale Dynamic Systems: Self-Starting Charac-
ter,” GTMAP Seminar, GA, 2017.

211


