Dependable direct solutions for linear systems using a little extra precision

E. Jason Riedy
jason.riedy@cc.gatech.edu
CSE Division, College of Computing
Georgia Institute of Technology

21 August, 2009

$A x=b$

Workhorse in scientific computing

- Two primary linear algebra problems: $A x=b, A v=\lambda v$
- Many applications reduce problems into those, often $A x=b$.

PDEs: Discretize to one of the above.
Optimization: Solve one at each step.

- Commercial supercomputers are built for $A x=b$: LinPACK

Many people work to solve $A x=b$ faster. Today's focus is solving it better.

(I'm oversimplifying in many ways. And better can lead to faster.)

Outline

(1) What do I mean by "better"?
(2) Refining to more accurate solutions with extra precision
(3) Other applications of better: faster, more scalable

Most of this work was done at/with UC Berkeley in conjunction with Yozo Hida, Dr. James Demmel, Dr. Xiaoye Li (LBL), and a long sequence of then-undergrads (M. Vishvanath, D. Lu, D. Halligan, ...).

Errors in $A x=b$

backward error (berr) forward error (ferr)

Goals for errors in $A x=b$

backward error (berr) forward error (ferr)

Possible methods

- Interval arithmetic

Tells you when there's a problem, not how to solve it.
Finding the optimal enclosure is NP-hard!

- Exact / rational arithmetic

Storage (\& computation) grows exponentially with dimension.

- Telescoping precisions (increase precision throughout)

Increases the cost of the $O\left(n^{3}\right)$ portion.

- Iterative refinement
$O\left(n^{2}\right)$ extra work after $O\left(n^{3}\right)$ factorization.
Only a little extra precision necessary!
Downside: Dependable, but not validated.

Dependable solver

Reduce the error to the precision's limit as often as reasonable, or clearly indicate when the result is unsure.

What I'm not going to explain deeply

- Precise definition of difficulty:

A condition number relevant to the error in consideration, or, roughly, the error measure's sensitivity to perturbation near the solution.

- Numerical scaling / equilibration:

Assume all numbers in the input are roughly in the same scale.
Rarely true for computer-produced problems.
Common cases easy to handle; obscures the important points.
Note: Poor scaling produces simple ill-conditioning.

- Details of when each error measure is appropriate.

Backward: normwise, columnwise, componentwise, ...
Forward: normwise, componentwise, ...

All three are inter-linked and address norms.

Outline

(1) What do I mean by "better"?
(2) Refining to more accurate solutions with extra precision (3) Other applications of better: faster, more scalable

Iterative refinement

Newton's method for $A x=b$

Assume A is $n \times n$, non-singular, factored $P A=L U$, etc.
(1) Solve $A x^{(0)}=b$
(2) Repeat for $i=0, \ldots$:
(1) Compute residual $r^{(i)}=b-A x^{(i)}$.
(2) (Check backward error criteria)
(3) Solve $A d x^{(i)}=r^{(i)}$.
(9) Check forward error criteria)
(5) Update $x^{(i+1)}=x^{(i)}+d x^{(i)}$.

- Overall algorithm is well-known (Forsythe \& Moler, 1967...).
- In exact arithmetic, would converge in one step.

Iterative refinement

Newton's method for $A x=b$
Assume A is $n \times n$, non-singular, factored $P A=L U$, etc.
(1) Solve $A x^{(0)}=b$
(2) Repeat for $i=0, \ldots$:
(1) Compute residual $r^{(i)}=b-A x^{(i)}$. (Using double precision.)
(2) (Check backward error criteria)
(3) Solve $A d x^{(i)}=r^{(i)}$. (Using working/single precision.)
(0) (Check forward error criteria)
(3) Update $x^{(i+1)}=x^{(i)}+d x^{(i)}$. (New: \mathbf{x} with double precision.)

- No extra precision: Reduce backward error in one step [Skeel].
- A bit of double precision: Reduce errors much, much further.

Why should this work?

A brief, informal excursion into the analysis...

$$
\begin{aligned}
& \text { - } r^{(i)}=b-A x^{(i)}+\delta r^{(i)} \\
& \text { - }\left(A+\delta A^{(i)}\right) d x^{(i)}=r^{(i)} \\
& \text { - } x^{(i+1)}=x^{(i)}+d x^{(i)}+\delta x^{(i+1)}
\end{aligned}
$$

Very roughly (not correct, approximating behavior, see Lawn165):
Backward Error (Residual)

$$
r^{(i+1)} \approx \varepsilon_{w} A A^{-1} r^{(i)}+A \delta x^{(i)}+\delta r^{(i)}
$$

Forward Error

$$
e^{(i+1)} \approx \varepsilon_{w} A^{-1} A e^{(i)}+\delta x^{(i)}+A^{-1} \delta r^{(i)}
$$

Test cases

- One million random, single-precision, 30×30 systems $A x=b$ 250k: A generated to cover factorization difficulty Four (x, b), two with random x and two with random b Solve for true x using greater than quad precision.
Working precision: $\varepsilon_{w}=2^{-24} \approx 6 \times 10^{-8}$
Extra / double precision: $\varepsilon_{x}=2^{-53} \approx 10^{-16}$
- Using single precision and small because generating and running one million tests takes time, and also it's easier to hit difficult cases!
- Results apply to double, complex \& double complex (with $2 \sqrt{2}$ factor). Also on tests (fewer) running beyond $1 k \times 1 k$.
- Note: Same plots apply to sparse matrices in various collections, but far fewer than 1 M test cases.

Backward error results (before)

- Omitting double-prec residuals; same limiting error as all working.
- All-double backward error is for the double-prec x.

Backward error results (after)

- Omitting double-prec residuals; same limiting error as all working.
- All-double backward error is for the double-prec x.

Forward error results (before)

- Omitting double-prec residuals; same limiting error as all working.
- All-double forward error is for the single-prec x.

Forward error results (after)

- Omitting double-prec residuals; same limiting error as all working.
- All-double forward error is for the single-prec x.

Iteration costs: backward error

Convergence to ε_{w}
All working
Residual double All double

Convergence to $10 \varepsilon_{w}$
All working
Residual double All double

Practical: Stop when backward error is tiny or makes little progress.

Iteration costs: backward error

Convergence to ε_{w}^{2}
All working
Residual double
All double

Convergence to $10 \varepsilon_{w}^{2}$

> All working
> Residual double All double

Practical: Stop when backward error is tiny or makes little progress.

Iteration costs: forward error

Convergence to ε_{w}

Convergence to $\sqrt{\mathbf{N}} \cdot \varepsilon_{\mathbf{w}}$

Practical: Stop when $d x$ is tiny or makes little progress.

Performance costs

Overhead each phase by precision and type

Itanium 2

- Relatively balanced cpu / mem arch.
- Double faster than single

Overhead is time for phase (incl. fact.) / time for factorization

Performance costs

Overhead each phase by precision and type

Dimension

- Factorization
$+\quad+$ Condition numbers
\triangle + Refinement loop
$\times \quad+$ Ref. + Cond.

Overhead is time for phase (incl. fact.) / time for factorization

Xeon 3GHz

- Horribly unbalanced cpu / mem arch.
- (Not parallel)
- Vector instructions
- No vectorization in extra precision ops.

Outline

(1) What do I mean by "better"?

(2) Refining to more accurate solutions with extra precision

(3) Other applications of better: faster, more scalable

Obvious applications of better

Available in LAPACK

- Routines SGESVXX, DGESVXX, CGESVXX, ZGESVXX
- Experimental interface, subject to changes

High-level environments

- Do you want to think about all error conditions all the time?
- Should be in Octave \& Matlab ${ }^{\text {TM }}$:

$$
x=A \backslash b ;
$$

- The same technique applies to overdetermined least-squares [Lawn188; Demmel, Hida, Li, Riedy]. R or S ${ }^{+}$(statistics): model <- lm(response~var)
Refine the augmented system $\left[\begin{array}{cc}A & \alpha I \\ 0 & A^{T}\end{array}\right]\left[\begin{array}{c}x \\ r / \alpha\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]$. [Björck]

Not so obvious application: Speed!

When single precision is much faster than double...

- Assume: Targeting backward error, often well-conditioned
- Factor A in single precision, use for $A d x_{i}=r$.
- Refine to dp backward error, or fall back to using dp overall.
- Earlier Cell (extra slow double): 12 Gflop/s $\Rightarrow 150$ Gflop/s! [Lawn175; Langou², Luszczek, Kurzak, Buttari, Dongarra]
- (Independent path to the same destination.)

When single precision fits more into memory...

- Sparse, sparse out-of-core

Generally limited by indexing performance [Hogg \& Scott] Could use packed data structures from Cell [Williams, et al.]

Not so obvious application: Scalability!

When pivoting is a major bottleneck...

- Sparse, unsymmetric LU factorization:

Completely separate structural analysis from numerical work. Introduce backward errors to avoid entry growth.
Fix with refinement.
(SuperLU [Demmel, Li, (+ me)], earlier sym.indef. work)

When pivoting blocks practical theory...

- Communication-optimal algorithms for $O\left(n^{3}\right)$ linear algebra

Trade some computation for optimal memory transfers / comm.
[Lawn218; Ballard, Demmel, Holtz, Schwartz]
Codes exist, are fast, etc.

- But LU cannot use partial pivoting!

Use a new strategy [Demmel, Grigori, Xiang], refine...

Summary

- We can construct an inexpensive, dependable solver for $A x=b$.

Compute an accurate answer whenever feasible.
Reliably detect failures / unsure, even for the forward error.

- We can compute better results for $A x=b$.

Trade some computation, a little bandwidth for accuracy. Important bit is keeping all the limiting terms (residual, solution) to extra precision

- Better results can help solve $A x=b$ more quickly.

Start with a sloppy solver and fix it.

Questions / Backup

Doubled-precision

- Represent $a \circ b$ exactly as a pair (h, t).
- Old algorithms [Knuth, Dekker, Linnainmaa, Kahan; 60s \& 70s]
- Work on any faithful arithmetic [Priest]

Addition

- $h=a+b$
- $z=h-a$
- $t=(a-(h-z))+(b-z)$

Multiplication

- $h=a \cdot b$
- $(a h, a t)=\operatorname{split}(a)$
- (bh, bt) $=\operatorname{split}(b)$
- $t=a h \cdot a t-h$
- $t=((t+(a h * b t))+$ $(a t * b h))+(a t * b t)$

See qd package from [Bailey, Hida, Li]; recent pubs from [Rump, Ogita, Oishi].

Iteration costs: backward error to double

Convergence to ε_{x}
All working
Residual double All double

Convergence to $10 \varepsilon_{\mathrm{x}}$

Practical: Stop when backward error is tiny or makes little progress.

