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Ax = b

Workhorse in scientific computing
Two primary linear algebra problems: Ax = b, Av = λv

Many applications reduce problems into those, often Ax = b.
I PDEs: Discretize to one of the above.
I Optimization: Solve one at each step.
I ...

Commercial supercomputers are built for Ax = b: Linpack

Many people work to solve Ax = b faster.

Today’s focus is solving it better.

(I’m oversimplifying in many ways. And better can lead to faster.)
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Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Most of this work was done at/with UC Berkeley in conjunction with
Yozo Hida, Dr. James Demmel, Dr. Xiaoye Li (LBL), and a long
sequence of then-undergrads (M. Vishvanath, D. Lu, D. Halligan, ...).
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Errors in Ax = b
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Goals for errors in Ax = b
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Possible methods

Interval arithmetic
I Tells you when there’s a problem, not how to solve it.
I Finding the optimal enclosure is NP-hard!

Exact / rational arithmetic
I Storage (& computation) grows exponentially with dimension.

Telescoping precisions (increase precision throughout)
I Increases the cost of the O(n3) portion.

Iterative refinement
I O(n2) extra work after O(n3) factorization.
I Only a little extra precision necessary!
I Downside: Dependable, but not validated.

Dependable solver
Reduce the error to the precision’s limit as often as reasonable, or

clearly indicate when the result is unsure.
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What I’m not going to explain deeply

Precise definition of difficulty:
I A condition number relevant to the error in consideration, or,
I roughly, the error measure’s sensitivity to perturbation near the

solution.

Numerical scaling / equilibration:
I Assume all numbers in the input are roughly in the same scale.
I Rarely true for computer-produced problems.
I Common cases easy to handle; obscures the important points.
I Note: Poor scaling produces simple ill-conditioning.

Details of when each error measure is appropriate.
I Backward: normwise, columnwise, componentwise, ...
I Forward: normwise, componentwise, ...

All three are inter-linked and address norms.
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Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable
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Iterative refinement

Newton’s method for Ax = b
Assume A is n × n, non-singular, factored PA = LU , etc.

1 Solve Ax (0) = b
2 Repeat for i = 0, ...:

1 Compute residual r (i) = b − Ax (i).
2 (Check backward error criteria)
3 Solve Adx (i) = r (i).
4 (Check forward error criteria)
5 Update x (i+1) = x (i) + dx (i).

Overall algorithm is well-known (Forsythe & Moler, 1967...).

In exact arithmetic, would converge in one step.
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Iterative refinement

Newton’s method for Ax = b
Assume A is n × n, non-singular, factored PA = LU , etc.

1 Solve Ax (0) = b
2 Repeat for i = 0, ...:

1 Compute residual r (i) = b − Ax (i). (Using double precision.)
2 (Check backward error criteria)
3 Solve Adx (i) = r (i). (Using working/single precision.)
4 (Check forward error criteria)
5 Update x (i+1) = x (i) + dx (i). (New: x with double precision.)

No extra precision: Reduce backward error in one step [Skeel].

A bit of double precision: Reduce errors much, much further.
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Why should this work?

A brief, informal excursion into the analysis...

r (i) = b − Ax (i) +δr (i)

(A +δA(i))dx (i) = r (i)

x (i+1) = x (i) + dx (i) +δx (i+1)

Very roughly (not correct, approximating behavior, see Lawn165):

Backward Error (Residual)

r (i+1) ≈ εwA A−1 r (i) + A δx (i) + δr (i)

Forward Error

e(i+1) ≈ εwA−1 A e(i) + δx (i) + A−1 δr (i)
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Test cases

One million random, single-precision, 30× 30 systems Ax = b
I 250k: A generated to cover factorization difficulty
I Four (x , b), two with random x and two with random b
I Solve for true x using greater than quad precision.
I Working precision: εw = 2−24 ≈ 6× 10−8

I Extra / double precision: εx = 2−53 ≈ 10−16

Using single precision and small because
I generating and running one million tests takes time, and also
I it’s easier to hit difficult cases!

Results apply to double, complex & double complex (with 2
√

2
factor). Also on tests (fewer) running beyond 1k × 1k .

Note: Same plots apply to sparse matrices in various collections,
but far fewer than 1M test cases.
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Backward error results (before)
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Backward error results (after)
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All-double backward error is for the double-prec x .
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Forward error results (before)
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Forward error results (after)
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working.

All-double forward error is for the single-prec x .
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Iteration costs: backward error
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Practical: Stop when backward error is tiny or makes little progress.
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Iteration costs: backward error
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Practical: Stop when backward error is tiny or makes little progress.
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Iteration costs: forward error
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Practical: Stop when dx is tiny or makes little progress.
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Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Dimension

O
ve

rh
e
a
d

2

4

6

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

single
real

double
real

single
complex

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

2

4

6

double
complex

Factorization
+ Refinement loop

+ Condition numbers
+ Ref. + Cond.

Itanium 2
Relatively balanced
cpu / mem arch.

Double faster than
single

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 19 / 28



Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization
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(Not parallel)

Vector instructions

No vectorization in
extra precision ops.
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Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable
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Obvious applications of better

Available in Lapack
Routines SGESVXX, DGESVXX, CGESVXX, ZGESVXX

Experimental interface, subject to changes

High-level environments
Do you want to think about all error conditions all the time?

Should be in Octave & MatlabTM:

x = A\b;
The same technique applies to overdetermined least-squares
[Lawn188; Demmel, Hida, Li, Riedy]. R or S+ (statistics):

model <- lm(response~var)

I Refine the augmented system

[
A αI
0 AT

] [
x

r/α

]
=

[
b
0

]
. [Björck]
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Not so obvious application: Speed!

When single precision is much faster than double...
Assume: Targeting backward error, often well-conditioned

Factor A in single precision, use for Adxi = r .

Refine to dp backward error, or fall back to using dp overall.

Earlier Cell (extra slow double): 12 Gflop/s ⇒ 150 Gflop/s!
[Lawn175; Langou2, Luszczek, Kurzak, Buttari, Dongarra]

(Independent path to the same destination.)

When single precision fits more into memory...
Sparse, sparse out-of-core

I Generally limited by indexing performance [Hogg & Scott]
I Could use packed data structures from Cell [Williams, et al.]
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Not so obvious application: Scalability!

When pivoting is a major bottleneck...
Sparse, unsymmetric LU factorization:

I Completely separate structural analysis from numerical work.
I Introduce backward errors to avoid entry growth.
I Fix with refinement.
I (SuperLU [Demmel, Li, (+ me)], earlier sym.indef. work)

When pivoting blocks practical theory...

Communication-optimal algorithms for O(n3) linear algebra
I Trade some computation for optimal memory transfers / comm.

[Lawn218; Ballard, Demmel, Holtz, Schwartz]
I Codes exist, are fast, etc.

But LU cannot use partial pivoting!
I Use a new strategy [Demmel, Grigori, Xiang], refine...
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Summary

We can construct an inexpensive, dependable solver for Ax = b.
I Compute an accurate answer whenever feasible.
I Reliably detect failures / unsure, even for the forward error.

We can compute better results for Ax = b.
I Trade some computation, a little bandwidth for accuracy.
I Important bit is keeping all the limiting terms (residual,

solution) to extra precision

Better results can help solve Ax = b more quickly.
I Start with a sloppy solver and fix it.
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Questions / Backup
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Doubled-precision

Represent a ◦ b exactly as a pair (h, t).

Old algorithms [Knuth, Dekker, Linnainmaa, Kahan; 60s & 70s]

Work on any faithful arithmetic [Priest]

Addition
h = a + b

z = h − a

t = (a− (h− z)) + (b− z)

Multiplication
h = a · b
(ah, at) = split(a)

(bh, bt) = split(b)

t = ah · at − h

t = ((t + (ah ∗ bt)) +
(at ∗ bh)) + (at ∗ bt)

See qd package from [Bailey, Hida, Li]; recent pubs from [Rump,
Ogita, Oishi].
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Iteration costs: backward error to double

Convergence to εx
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Practical: Stop when backward error is tiny or makes little progress.
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