Dependable direct solutions for linear systems using a little extra precision

E. Jason Riedy jason.riedy@cc.gatech.edu

CSE Division, College of Computing Georgia Institute of Technology

21 August, 2009

Ax = b

Workhorse in scientific computing

- Two primary linear algebra problems: Ax = b, $Av = \lambda v$
- Many applications reduce problems into those, often Ax = b.
 - PDEs: Discretize to one of the above.
 - Optimization: Solve one at each step.
- Commercial supercomputers are *built* for Ax = b: LINPACK

Many people work to solve Ax = b faster. Today's focus is solving it **better**.

(I'm oversimplifying in many ways. And better can lead to faster.)

...

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Most of this work was done at/with UC Berkeley in conjunction with Yozo Hida, Dr. James Demmel, Dr. Xiaoye Li (LBL), and a long sequence of then-undergrads (M. Vishvanath, D. Lu, D. Halligan, ...).

Errors in Ax = b

Jason Riedy (GATech)

21 Aug, 2009 4 / 28

Goals for errors in Ax = b

Jason Riedy (GATech)

Dependable solver

21 Aug, 2009 5 / 28

Possible methods

- Interval arithmetic
 - Tells you when there's a problem, not how to solve it.
 - Finding the optimal enclosure is NP-hard!
- Exact / rational arithmetic

Storage (& computation) grows exponentially with dimension.

Telescoping precisions (increase precision throughout)
 Increases the cost of the O(n³) portion.

Iterative refinement

- $O(n^2)$ extra work after $O(n^3)$ factorization.
- Only a little extra precision necessary!
- Downside: Dependable, but not validated.

Dependable solver

Reduce the error to the precision's limit as often as reasonable, or clearly indicate when the result is unsure.

Jason Riedy (GATech)

Dependable solver

21 Aug, 2009 6 / 28

What I'm **not** going to explain deeply

- Precise definition of *difficulty*:
 - A condition number relevant to the error in consideration, or,
 - roughly, the error measure's sensitivity to perturbation near the solution.
- Numerical scaling / equilibration:
 - Assume all numbers in the input are roughly in the same scale.
 - Rarely true for computer-produced problems.
 - Common cases easy to handle; obscures the important points.
 - Note: Poor scaling produces simple ill-conditioning.
- Details of when each error measure is appropriate.
 - Backward: normwise, columnwise, componentwise, …
 - Forward: normwise, **componentwise**, ...

All three are inter-linked and address norms.

1) What do I mean by "better"?

3 Other applications of better: faster, more scalable

Iterative refinement

Newton's method for Ax = bAssume A is $n \times n$, non-singular, factored PA = LU, etc. • Solve $Ax^{(0)} = b$ 2 Repeat for i = 0, ...• Compute residual $r^{(i)} = b - Ax^{(i)}$. (Check backward error criteria) Solve $Adx^{(i)} = r^{(i)}$. (Check forward error criteria) **O** Update $x^{(i+1)} = x^{(i)} + dx^{(i)}$

Overall algorithm is well-known (Forsythe & Moler, 1967...).
In exact arithmetic, would converge in one step.

Iterative refinement

Newton's method for Ax = bAssume A is $n \times n$, non-singular, factored PA = LU, etc. **a** Solve $Ax^{(0)} = b$ 2 Repeat for i = 0, ...• Compute residual $r^{(i)} = b - Ax^{(i)}$. (Using double precision.) 2 (Check backward error criteria) Solve $Adx^{(i)} = r^{(i)}$. (Using working/single precision.) (Check forward error criteria) O Update $x^{(i+1)} = x^{(i)} + dx^{(i)}$. (New: x with double precision.)

- No extra precision: Reduce backward error in one step [Skeel].
- A bit of double precision: Reduce errors much, much further.

Why should this work?

A brief, informal excursion into the analysis...

•
$$r^{(i)} = b - Ax^{(i)} + \delta r^{(i)}$$

• $(A + \delta A^{(i)}) dx^{(i)} = r^{(i)}$
• $x^{(i+1)} = x^{(i)} + dx^{(i)} + \delta x^{(i+1)}$

Very roughly (**not** correct, approximating behavior, see LAWN165):

Backward Error (Residual) $r^{(i+1)} \approx \varepsilon_w A A^{-1} r^{(i)} + A \delta x^{(i)} + \delta r^{(i)}$

Forward Error

$$e^{(i+1)} \approx \varepsilon_w A^{-1} A e^{(i)} + \delta x^{(i)} + A^{-1} \delta r^{(i)}$$

Test cases

- One million random, single-precision, 30×30 systems Ax = b
 - 250k: A generated to cover factorization difficulty
 - Four (x, b), two with random x and two with random b
 - Solve for true x using greater than quad precision.
 - Working precision: $\varepsilon_w = 2^{-24} \approx 6 \times 10^{-8}$
 - Extra / double precision: $arepsilon_x=2^{-53}pprox 10^{-16}$
- Using single precision and small because
 - generating and running one million tests takes time, and alsoit's easier to hit difficult cases!
- Results apply to double, complex & double complex (with $2\sqrt{2}$ factor). Also on tests (fewer) running beyond $1k \times 1k$.
- Note: Same plots apply to sparse matrices in various collections, but far fewer than 1M test cases.

Backward error results (before)

- Omitting double-prec residuals; same limiting error as all working.
- All-double backward error is for the double-prec x.

Jason Riedy (GATech)

Backward error results (after)

- Omitting double-prec residuals; same limiting error as all working.
- All-double backward error is for the double-prec x.

Forward error results (before)

- Omitting double-prec residuals; same limiting error as all working.
- All-double *forward* error is for the *single*-prec *x*.

Forward error results (after)

- Omitting double-prec residuals; same limiting error as all working.
- All-double *forward* error is for the *single*-prec *x*.

Iteration costs: backward error

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech)

Iteration costs: backward error

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech)

Iteration costs: forward error

Practical: Stop when dx is tiny or makes little progress.

Jason Riedy (GATech)

Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Itanium 2

- Relatively balanced cpu / mem arch.
- Double *faster* than single

Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Xeon 3GHz

Horribly unbalanced

cpu / mem arch.

Vector instructions

No vectorization in

extra precision ops.

(Not parallel)

2) Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Obvious applications of better

Available in LAPACK

- Routines SGESVXX, DGESVXX, CGESVXX, ZGESVXX
- Experimental interface, subject to changes

High-level environments

- Do you want to think about all error conditions all the time?
- Should be in Octave & $MATLAB^{TM}$:

$$x = A \setminus b;$$

• The same technique applies to overdetermined least-squares [LAWN188; Demmel, Hida, Li, Riedy]. R or S⁺ (statistics):

 $\begin{bmatrix} A & \alpha I \\ 0 & A^T \end{bmatrix} \begin{bmatrix} x \\ r/\alpha \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}.$ [Björck]

Not so obvious application: Speed!

When single precision is much faster than double...

- Assume: Targeting backward error, often well-conditioned
- Factor A in single precision, use for $Adx_i = r$.
- Refine to dp backward error, or fall back to using dp overall.
- Earlier Cell (extra slow double): 12 Gflop/s ⇒ 150 Gflop/s! [LAWN175; Langou², Luszczek, Kurzak, Buttari, Dongarra]
- (Independent path to the same destination.)

When single precision fits more into memory...

- Sparse, sparse out-of-core
 - Generally limited by indexing performance [Hogg & Scott]
 - Could use packed data structures from Cell [Williams, et al.]

Not so obvious application: Scalability!

When pivoting is a major bottleneck...

• Sparse, unsymmetric *LU* factorization:

- Completely separate structural analysis from numerical work.
- Introduce backward errors to avoid *entry growth*.
- Fix with refinement.
- (SuperLU [Demmel, Li, (+ me)], earlier sym.indef. work)

When pivoting blocks *practical* theory...

- Communication-optimal algorithms for $O(n^3)$ linear algebra
 - Trade some computation for optimal memory transfers / comm. [LAWN218; Ballard, Demmel, Holtz, Schwartz]
 - Codes exist, are fast, etc.
- But LU cannot use partial pivoting!
 - Use a new strategy [Demmel, Grigori, Xiang], refine...

- We can construct an inexpensive, *dependable* solver for Ax = b.
 - Compute an *accurate* answer whenever feasible.
 - Reliably detect failures / unsure, even for the forward error.
- We can compute *better* results for Ax = b.
 - Trade some computation, a little bandwidth for accuracy.
 - Important bit is keeping all the limiting terms (residual, solution) to extra precision
- Better results can help solve Ax = b more quickly.
 - Start with a sloppy solver and fix it.

${\sf Questions}\ /\ {\sf Backup}$

Doubled-precision

- Represent $a \circ b$ exactly as a pair (h, t).
- Old algorithms [Knuth, Dekker, Linnainmaa, Kahan; 60s & 70s]
- Work on any faithful arithmetic [Priest]

Addition • h = a + b• z = h - a• t = (a - (h - z)) + (b - z)

Multiplication

• $h = a \cdot b$

•
$$(bh, bt) = split(b)$$

•
$$t = ah \cdot at - h$$

•
$$t = ((t + (ah * bt)) + (at * bh)) + (at * bt)$$

See qd package from [Bailey, Hida, Li]; recent pubs from [Rump, Ogita, Oishi].

Iteration costs: backward error to double

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech)

Dependable solver

21 Aug, 2009 28 / 28