
Dependable direct solutions for linear systems

using a little extra precision

E. Jason Riedy
jason.riedy@cc.gatech.edu

CSE Division, College of Computing
Georgia Institute of Technology

21 August, 2009

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 1 / 28

mailto:jason.riedy@cc.gatech.edu


Ax = b

Workhorse in scientific computing
Two primary linear algebra problems: Ax = b, Av = λv

Many applications reduce problems into those, often Ax = b.
I PDEs: Discretize to one of the above.
I Optimization: Solve one at each step.
I ...

Commercial supercomputers are built for Ax = b: Linpack

Many people work to solve Ax = b faster.

Today’s focus is solving it better.

(I’m oversimplifying in many ways. And better can lead to faster.)

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 2 / 28



Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Most of this work was done at/with UC Berkeley in conjunction with
Yozo Hida, Dr. James Demmel, Dr. Xiaoye Li (LBL), and a long
sequence of then-undergrads (M. Vishvanath, D. Lu, D. Halligan, ...).

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 3 / 28



Errors in Ax = b

(A, b)

(Ã, b̃)

x (0)

x

Ã
−1 b̃

A−1b

Difficulty

B
ac

kw
ar

d 
E

rr
or

2^−50

2^−40

2^−30

2^−20

2^−10

2^10 2^20 2^30

backward error (berr)

Difficulty

F
or

w
ar

d 
E

rr
or

2^−25

2^−20

2^−15

2^−10

2^−5

2^5 2^10 2^15 2^20 2^25 2^30

forward error (ferr)
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 4 / 28



Goals for errors in Ax = b

(A, b)

(Ã, b̃)

x (0)

x
x (k)

x (k)
Ã
−1 b̃

A−1b

Difficulty

B
ac

kw
ar

d 
E

rr
or

2^−50

2^−40

2^−30

2^−20

2^−10

2^10 2^20 2^30

backward error (berr)

Difficulty

F
or

w
ar

d 
E

rr
or

2^−25

2^−20

2^−15

2^−10

2^−5

2^5 2^10 2^15 2^20 2^25 2^30

forward error (ferr)
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 5 / 28



Possible methods

Interval arithmetic
I Tells you when there’s a problem, not how to solve it.
I Finding the optimal enclosure is NP-hard!

Exact / rational arithmetic
I Storage (& computation) grows exponentially with dimension.

Telescoping precisions (increase precision throughout)
I Increases the cost of the O(n3) portion.

Iterative refinement
I O(n2) extra work after O(n3) factorization.
I Only a little extra precision necessary!
I Downside: Dependable, but not validated.

Dependable solver
Reduce the error to the precision’s limit as often as reasonable, or

clearly indicate when the result is unsure.
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 6 / 28



What I’m not going to explain deeply

Precise definition of difficulty:
I A condition number relevant to the error in consideration, or,
I roughly, the error measure’s sensitivity to perturbation near the

solution.

Numerical scaling / equilibration:
I Assume all numbers in the input are roughly in the same scale.
I Rarely true for computer-produced problems.
I Common cases easy to handle; obscures the important points.
I Note: Poor scaling produces simple ill-conditioning.

Details of when each error measure is appropriate.
I Backward: normwise, columnwise, componentwise, ...
I Forward: normwise, componentwise, ...

All three are inter-linked and address norms.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 7 / 28



Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 8 / 28



Iterative refinement

Newton’s method for Ax = b
Assume A is n × n, non-singular, factored PA = LU , etc.

1 Solve Ax (0) = b
2 Repeat for i = 0, ...:

1 Compute residual r (i) = b − Ax (i).
2 (Check backward error criteria)
3 Solve Adx (i) = r (i).
4 (Check forward error criteria)
5 Update x (i+1) = x (i) + dx (i).

Overall algorithm is well-known (Forsythe & Moler, 1967...).

In exact arithmetic, would converge in one step.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 9 / 28



Iterative refinement

Newton’s method for Ax = b
Assume A is n × n, non-singular, factored PA = LU , etc.

1 Solve Ax (0) = b
2 Repeat for i = 0, ...:

1 Compute residual r (i) = b − Ax (i). (Using double precision.)
2 (Check backward error criteria)
3 Solve Adx (i) = r (i). (Using working/single precision.)
4 (Check forward error criteria)
5 Update x (i+1) = x (i) + dx (i). (New: x with double precision.)

No extra precision: Reduce backward error in one step [Skeel].

A bit of double precision: Reduce errors much, much further.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 9 / 28



Why should this work?

A brief, informal excursion into the analysis...

r (i) = b − Ax (i) +δr (i)

(A +δA(i))dx (i) = r (i)

x (i+1) = x (i) + dx (i) +δx (i+1)

Very roughly (not correct, approximating behavior, see Lawn165):

Backward Error (Residual)

r (i+1) ≈ εwA A−1 r (i) + A δx (i) + δr (i)

Forward Error

e(i+1) ≈ εwA−1 A e(i) + δx (i) + A−1 δr (i)

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 10 / 28



Test cases

One million random, single-precision, 30× 30 systems Ax = b
I 250k: A generated to cover factorization difficulty
I Four (x , b), two with random x and two with random b
I Solve for true x using greater than quad precision.
I Working precision: εw = 2−24 ≈ 6× 10−8

I Extra / double precision: εx = 2−53 ≈ 10−16

Using single precision and small because
I generating and running one million tests takes time, and also
I it’s easier to hit difficult cases!

Results apply to double, complex & double complex (with 2
√

2
factor). Also on tests (fewer) running beyond 1k × 1k .

Note: Same plots apply to sparse matrices in various collections,
but far fewer than 1M test cases.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 11 / 28



Backward error results (before)

Difficulty

B
ac

kw
ar

d 
E

rr
or

2^−50

2^−40

2^−30

2^−20

2^−10

2^10 2^20 2^30

All working

2^10 2^20 2^30

All double

Omitting double-prec residuals; same limiting error as all
working.

All-double backward error is for the double-prec x .
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 12 / 28



Backward error results (after)

Difficulty

B
ac

kw
ar

d 
E

rr
or

2^−50

2^−40

2^−30

2^−20

2^−10

2^10 2^20 2^30

All working

2^10 2^20 2^30

All double

Omitting double-prec residuals; same limiting error as all
working.

All-double backward error is for the double-prec x .
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 13 / 28



Forward error results (before)

Difficulty

F
or

w
ar

d 
E

rr
or

2^−25

2^−20

2^−15

2^−10

2^−5

2^5 2^10 2^15 2^20 2^25 2^30

All working

2^5 2^10 2^15 2^20 2^25 2^30

All double

Omitting double-prec residuals; same limiting error as all
working.

All-double forward error is for the single-prec x .
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 14 / 28



Forward error results (after)

Difficulty

F
or

w
ar

d 
E

rr
or

2^−25

2^−20

2^−15

2^−10

2^−5

2^5 2^10 2^15 2^20 2^25 2^30

All working

2^5 2^10 2^15 2^20 2^25 2^30

All double

Omitting double-prec residuals; same limiting error as all
working.

All-double forward error is for the single-prec x .
Jason Riedy (GATech) Dependable solver 21 Aug, 2009 15 / 28



Iteration costs: backward error

Convergence to εw

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

All working
Residual double
All double

Convergence to 10εw

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0

All working
Residual double
All double

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 16 / 28



Iteration costs: backward error

Convergence to ε2
w

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

All working
Residual double
All double

Convergence to 10ε2
w

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

All working
Residual double
All double

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 17 / 28



Iteration costs: forward error

Convergence to εw

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

All working
Residual double
All double

Convergence to
√

N · εw

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

All working
Residual double
All double

Practical: Stop when dx is tiny or makes little progress.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 18 / 28



Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Dimension

O
ve

rh
e
a
d

2

4

6

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

single
real

double
real

single
complex

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

2

4

6

double
complex

Factorization
+ Refinement loop

+ Condition numbers
+ Ref. + Cond.

Itanium 2
Relatively balanced
cpu / mem arch.

Double faster than
single

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 19 / 28



Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Dimension

O
ve

rh
e
a
d

2

4

6

8

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

single
real

double
real

single
complex

10^1.0 10^1.5 10^2.0 10^2.5 10^3.0 10^3.5

2

4

6

8

double
complex

Factorization
+ Refinement loop

+ Condition numbers
+ Ref. + Cond.

Xeon 3ghz
Horribly unbalanced
cpu / mem arch.

(Not parallel)

Vector instructions

No vectorization in
extra precision ops.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 20 / 28



Outline

1 What do I mean by “better”?

2 Refining to more accurate solutions with extra precision

3 Other applications of better: faster, more scalable

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 21 / 28



Obvious applications of better

Available in Lapack
Routines SGESVXX, DGESVXX, CGESVXX, ZGESVXX

Experimental interface, subject to changes

High-level environments
Do you want to think about all error conditions all the time?

Should be in Octave & MatlabTM:

x = A\b;
The same technique applies to overdetermined least-squares
[Lawn188; Demmel, Hida, Li, Riedy]. R or S+ (statistics):

model <- lm(response~var)

I Refine the augmented system

[
A αI
0 AT

] [
x

r/α

]
=

[
b
0

]
. [Björck]

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 22 / 28



Not so obvious application: Speed!

When single precision is much faster than double...
Assume: Targeting backward error, often well-conditioned

Factor A in single precision, use for Adxi = r .

Refine to dp backward error, or fall back to using dp overall.

Earlier Cell (extra slow double): 12 Gflop/s ⇒ 150 Gflop/s!
[Lawn175; Langou2, Luszczek, Kurzak, Buttari, Dongarra]

(Independent path to the same destination.)

When single precision fits more into memory...
Sparse, sparse out-of-core

I Generally limited by indexing performance [Hogg & Scott]
I Could use packed data structures from Cell [Williams, et al.]

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 23 / 28



Not so obvious application: Scalability!

When pivoting is a major bottleneck...
Sparse, unsymmetric LU factorization:

I Completely separate structural analysis from numerical work.
I Introduce backward errors to avoid entry growth.
I Fix with refinement.
I (SuperLU [Demmel, Li, (+ me)], earlier sym.indef. work)

When pivoting blocks practical theory...

Communication-optimal algorithms for O(n3) linear algebra
I Trade some computation for optimal memory transfers / comm.

[Lawn218; Ballard, Demmel, Holtz, Schwartz]
I Codes exist, are fast, etc.

But LU cannot use partial pivoting!
I Use a new strategy [Demmel, Grigori, Xiang], refine...

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 24 / 28



Summary

We can construct an inexpensive, dependable solver for Ax = b.
I Compute an accurate answer whenever feasible.
I Reliably detect failures / unsure, even for the forward error.

We can compute better results for Ax = b.
I Trade some computation, a little bandwidth for accuracy.
I Important bit is keeping all the limiting terms (residual,

solution) to extra precision

Better results can help solve Ax = b more quickly.
I Start with a sloppy solver and fix it.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 25 / 28



Questions / Backup

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 26 / 28



Doubled-precision

Represent a ◦ b exactly as a pair (h, t).

Old algorithms [Knuth, Dekker, Linnainmaa, Kahan; 60s & 70s]

Work on any faithful arithmetic [Priest]

Addition
h = a + b

z = h − a

t = (a− (h− z)) + (b− z)

Multiplication
h = a · b
(ah, at) = split(a)

(bh, bt) = split(b)

t = ah · at − h

t = ((t + (ah ∗ bt)) +
(at ∗ bh)) + (at ∗ bt)

See qd package from [Bailey, Hida, Li]; recent pubs from [Rump,
Ogita, Oishi].

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 27 / 28



Iteration costs: backward error to double

Convergence to εx

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

All working
Residual double
All double

Convergence to 10εx

Convergence step

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

All working
Residual double
All double

Practical: Stop when backward error is tiny or makes little progress.

Jason Riedy (GATech) Dependable solver 21 Aug, 2009 28 / 28


	Introduction
	What do I mean by ``better''?
	Refining to more accurate solutions with extra precision
	Other applications of better: faster, more scalable
	Backup

