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SUMMARY

Recent work by Barker, et al. (1) indicated that a high yield of nondialyz-

able material (i.e., material retained by a dialysis membrane) could be obtained

by -irradiating deaerated aqueous solutions of glucose with gamma-rays from a

cobalt-60 source. As a result of several chemical tests conducted on the mater-

ial, they suggested that the nondialyzable material was a polymer of gluconic acid

linked together by carbon-carbon bonds. No indication of the size and shape of

the molecules was given.

In this thesis, 1.0% aqueous glucose solutions were irradiated with high

energy electrons. The yield of polymer, measured as either nondialyzable material

or ethanol precipitate, increased with both the dose and the dose rate. This

would be expected in view of Barker's proposed mechanism which involves hydrogen

abstraction from the sugar molecules followed by coupling of the resulting sugar

free radicals. Increasing the dose rate would be expected to increase the con-

centration of hydrogen and hydroxyl free radicals, which in turn would increase

the concentration of sugar free radicals and thus increase the liklihood of

radical coupling.

The weight average molecular weights of the whole polymers isolated by

ethanol precipitation were measured by light scattering in water solution. The

molecular weights ranged from 9800 to 5,000,000, and hence are much larger than

previously imagined. Measurement of the number average molecular weight of one

of the polymers by osmometry established an M/Mn ratio of 4.9, thus indicating

a broad distribution of molecular weights within the polymer.

The polymers exhibited intrinsic viscosities in the range of 0.02 to 0.26

dl./g. in water at 30.000 + 0.005°C., and are therefore thought to be very highly

branched.
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A marked polyelectrolyte effect was encountered in osmometry, a slight

effect in light scattering, and no apparent effect in viscosity measurements.

The results can be explained on the basis of a highly branched, weak polyelectro-

lyte. Apparently, the molecule is too highly branched to allow the charges to

expand the molecule upon dilution, thus preventing the usual polyelectrolyte

effect in viscometry.

In order to gain insight into the structure, one polymer was fractionated

on a column of Sephadex, and the chemical composition of the fractions compared.

Fractionation by molecular weight was demonstrated by molecular weight determin-

ations on the fractions by light scattering and osmometry. The carboxyl content

of the fractions, measured by titration with dilute sodium hydroxide, increased

regularly with molecular weight. The carboxyl groups are therefore thought to

be the result of secondary oxidative attack which takes place on the molecule

as it grows in size. This is opposed to the earlier hypothesis that the repeat-

ing monomer unit in the initial stages of polymerization was gluconic acid.

Infrared absorption spectra of the fractions showed a single carbonyl peak

at 1760 cm. for the low molecular weight material and peaks at 1760 and 1720

cm. for the higher molecular weight material. The peak at 1760 cm. was

attributed to lactone formation and that at 1720 cm. to carboxyl formation.

Elemental analysis of the fractions showed that the composition of the low

molecular weight material was similar to that of gluconolactone. Despite the

increase in carboxyl content, the hydrogen and oxygen content decreased with

molecular weight. To account for the loss of oxygen, it is proposed that, as

polymerization proceeds, oxygen-rich fragments such as carbon dioxide or formic

acid are lost from the polymer.



Ultraviolet absorption spectra indicated that unsaturated chromophoric

groups are formed as the polymer increases in molecular weight. These groups

are possibly of the enediol type proposed by preceding workers.
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INTRODUCTION

HISTORICAL BACKGROUND

This thesis was undertaken as a sequel to the work of Barker, Grant, Stacey,

and Ward (1), who reported the production of nondialyzable material (i.e., mater-

ial retained by a dialysis membrane) upon irradiation of deaerated aqueous solu-

tions of certain sugars and organic acids. Barker, et al. irradiated 0.1%

solutions with gamma-rays from a 200 curie cobalt-60 source, and found the amount

of nondialyzable material to vary with both the compound irradiated and the

conditions of irradiation. This is shown in Table I.

Substrate

Maltose

Glucose

Glucose

1,4-Gluconolactone

Lactic acid

Glycolic acid

Glycolic acid

Glycolic acid

Glycolic acid

TABLE I (1)

YIELDS OF POLYMERS

Dose Rate,
rad./min.a

610

610

610

2280

2280

2280

610

610

610

Dose,
megarad

7.10

2.34

7.10

7.26

7.26

7.26

1.46

6.88

14.8

Yield, %
nondialyzable

1.4

1.3

45

51

4.8

4.5

0

2.2

6.4

A rad is defined as the absorption of 100 ergs of energy per gram of material
irradiated. A megarad is 10 rads.

bThe concentration of this solution was 0.15%,the balance were 0.10%.
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Although no molecular weights were obtained, the authors assumed the material

was polymeric, and devoted most of their work to a chemical characterization of

the material. The work on the polymer formed by the 7.10 megarad (Mrad) treat-

ment of glucose is of particular interest to this thesis, and may be summarized

as follows:

a. The material was acidic, having an equivalent weight of 328, or a

carboxyl content of 13.7%.

b. The polymer had an aldehyde content of 16.0%, as measured by alkaline

hypoiodite.

c. The polymer was resistant to acid hydrolysis. In fact, most of the

polymer precipitated in hot acid. The precipitate had an infrared

absorption spectrum similar to that of the original polymer, and the

soluble portion showed no mobile components with paper chromatography.

d. The polymer contained 51.91% carbon and 5.07% hydrogen.

e. The polymer exhibited absorption at approximately 265 mu in the ultra-

violet.

f. The polymer reacted with sodium metaperiodate; about one-third of the

material remained nondialyzable.

From the above information, the authors concluded that the polymeric linkage

was neither that of a glycoside nor an ester. Instead, they proposed a carbon-

carbon linkage similar to that formed upon irradiation of alcohols (2, .3). The

proposed mechanism involved the production of H. and .OH radicals from the water,

which in turn abstracted a hydrogen atom from the carbohydrate substrate. Coupl-

ing of the sugar free radicals was then thought to produce the polymer. A

similar mechanism has been used to explain polymer production from mannose (4),

sorbitol (5), and glycolic: acid (6). In all cases, the presence of an excess of
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oxygen inhibited polymerization, as would be expected by the proposed free radical

mechanism.

Since a high yield of gluconic acid was obtained in another study (7), and

a high yield of polymer was obtained from 1-4 gluconolactone, Barker, Grant,

Stacey, and Ward suggested that the main route of polymerization was through

gluconic acid. In a later paper, Barker, Lloyd, and Stacey (8) proposed that,

in the early stages of polymerization, the repeating unit was gluconic acid, as

shown in Fig. 1.

COOH

-- OH

HO -- H

H -- OH

H OH

H -OH

Figure 1. Proposed Monomer Unit (8)

On further irradiation, this unit would undergo radiation damage, and the

chemical composition of the polymer would be expected to change.

Up to this time most of the work on radiation-induced polymers of carbo-

hydrates had been chemical analyses of the polymer. Nothing was known about the

physical properties, such as size and shape, of the molecules. This thesis repre-

sents what the author believes is the first contribution which concerns the

molecular size and shape .of polymers produced by high energy radiation of carbo-

hydrate solutions. It also represents the first time such a polymer has been

fractionated by molecular weight, followed by the study of the chemical composi-

tion of the fractions to yield information on the structure of the polymer.
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CHOICE OF SUGAR AND RADIATION SOURCE

Although the radiation-induced polymerization of any carbohydrate would be

of interest from a purely scientific viewpoint, glucose was chosen because of

the prior work of Barker, et al. (1), and because of its relationship to cellu-

lose and the broader problem of crosslinking of cellulosic materials. Several

authors (9-11) have reported the crosslinking of cellulosic materials by radia-

tion, but the chemistry of the process is not understood. Since the crosslinking

mechanism in this case is believed to be similar to that of the polymerization

of the monomer, it seems logical to first study the simpler case of the polymer-

ization of glucose.

Electrons were chosen rather than gamma-rays mainly because of the higher

dose rates available with electrons. Irradiations that would have taken weeks

with conventional gamma-ray sources such as cobalt-60, were conducted in a

matter of hours. Also, the use of electrons extended the work into an area of

dose rates never used before for the polymerization of glucose. One final

advantage of electrons was that the actual irradiation procedure was simpler

because the accelerator could be shut off and approached while the samples were

handled by the operator. Penetration was the main problem encountered with

electrons, but this was overcome by proper design of the sample container.
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THE EFFECT OF RADIATION ON MATTER

IRRADIATION OF MATTER IN GENERAL

The passage of a gamma-ray through a material produces one or more fast

electrons and a photon of lower energy. Since the ejected electrons then cause

subsequent ionization and excitation of molecules, the net chemical effect is

considered to be similar for gamma-rays and high energy electrons (12). In fact,

the effect is considered to be similar for all types of ionizing radiation (alpha

particles, protons, x-rays, gamma-rays, etc.) except for the penetration of the

radiation and the density and distribution of the ions and excited molecules

produced by the radiation. Since electrons were used in this thesis, this dis-

cussion will deal specifically with the interaction of electrons with matter.

The information has been taken largely from Charlesby (12), Chapiro (13),

Hollaender (14), and a bulletin from the High Voltage Engineering Corporation

(15).

The penetrating ability of electrons varies directly with the energy of

the electrons and indirectly with the density of the material being irradiated,

as shown in Fig; 2;

5-
u - WATER

z - /

Z-

0 5 10

BEAM ENERGY) MEV.

Figure 2. The Penetration of Electrons (15)
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While the total beam energy is all delivered within the range shown in Fig.

1, the dose is not uniform at all depths. Several factors contribute to cause

the characteristic dose-depth relationship shown in Fig. 3.

Figure 3. Dose-Depth Curves for Electrons (13)

After scattering of the incident beam, the electrons are, on the average,

moving obliquely to the forward direction of the beam and thus leave more energy

behind in a thin layer normal to the beam direction. Also, the rate of energy

loss per unit length of path, dE/dx, increases as the electrons slow down, as

shown by the following equation (12):

dE 2ne NZB (1)
dx m V2

where N is the number of atoms of atomic number Z per cubic centimeter, V is

the velocity of the electron, e and m are the charge and mass of the electron,

and B is the stopping number of the medium. After a depth of about one-third

the total range, most of the electrons have been scattered, so the dose starts

to fall off again, and at a depth about two-thirds the total range, the dose is

equal to that at the surface. This particular depth is significant because it is



-10-

the optimum thickness of sample to use. Here the best balance is obtained be-

tween minimizing overdosage and maximizing the total use of the beam's penetration.

A further complication involved in trying to irradiate a sample uniformly is

that the electron beam produced by the accelerator is circular in cross section

with the most intense portion in the center. To remedy this, the target is

scanned by magnetic deflection of the beam. The result is a thin slot-shaped

beam of nearly uniform intensity, as shown in Fig. 4.

BEAM WIDTH
Figure 4. Scanned Electron Beam (15)

In passing through a specimen each electron loses energy by reaction either

with the orbital electrons or with the nuclei of the atoms encountered. Since

the masses of the electron and the nucleus are so different, only a small per-

centage of the electron's energy is transferred to the nucleus, and the main

effect of electron-nucleus interaction is simply the scattering-it causes the

incident beam. Electrons lose most of their energy by reacting with orbital

electrons. The primary electron is deviated and the bound electron may either

be given sufficient energy to leave its parent atom completely (ionization) or

move into an orbit of higher energy (excitation). In the former case a secondary,

or 8 electron, is produced which can in turn cause further ionization and excita-

tion. For lack of definite knowledge, it is generally assumed that the energy

lost through ionization equals that lost through excitation.
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The path of the charged particle as it passes through a condensed medium is

believed to be similar to that observed in a gas by means of the Wilson Cloud

Chamber. The size of the track would, of course, be reduced according to the

relative densities of the liquid and gas. The track of an electron may therefore

be pictured as a string of randomly spaced spurs, as shown in Fig. 5.

Figure 5. Schematic Diagram of the

Track of a Fast Electron (13)

Since the frequency of the spurs depends on the speed and charge of the

particle, the spurs become more closely spaced as the particle slows down. For

1 million electron volt (Mev.) electrons it is estimated that an elastic colli-

sion occurs at about every micron along the path of the electron in most solids

and liquids. Branching off from the main string of spurs are other strings

caused by & electrons. Secondary electrons are believed to dissipate most of

their energy within 10 A. of their point of origin in most solids and liquids.

Initially each spur contains only the primary products of irradiation,

but the nature and concentration of the active species soon changes due to

chemical reaction and diffusion.

The species produced in the primary event (ions, excited molecules, and

secondary electrons) react with each other in the spurs or with nearby normal
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molecules. The ions may react with other molecules, but more commonly they react

with electrons or negative ions according to the following reactions (13):

a. Ion - electron recombination.

AB + + e- - AB* (2)

where AB* is an excited molecule.

b. Positive ion - negative ion interaction.

AB+ + CD- AB* + CD* (3)

The excited molecules generally dissociate as follows (13):

a. Dissociation into free radicals.

AB* ---> A- + B- (4)

b. Dissociation into molecular products.

AB*. C +-D (5)

Some authors have also suggested that excited molecules react with nonexcited

molecules, but little is known about such reactions.

The eventual fate of the electrons after they lose their ability to ionize

and excite molecules has been the subject of much speculation. It seems to be

generally agreed that they probably become attached to neutral molecules or com-

bine with positive ions as shown (13):

AB + e- AB- (6)

AB+ + e- ( AB* (7)
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Although other active species such as ions are responsible for some specific

effects, the predominant radiation-chemical changes are believed to be caused by

free radicals. The radiation induced polymerization of carbohydrates is there-

fore most likely due to free radicals produced in the solution.

When a single substance is irradiated, all the reactions must be due to

primary ionizations and excitations of the substance itself. If a substance

is irradiated in solution, though, the question arises as to whether the re-

actions are due to direct hits on the solute molecules or to hits on the solvent

molecules which then react with the solute. The first is referred to as direct

action and the second as indirect action. The proportion of solute molecules

affected by a given dose will be independent of their concentration if the action

is direct, but the actual number of affected molecules will be proportional to

the concentration. If the action is indirect, however, the number of solute

molecules reacted is independent of the concentration, and consequently the

relative number reacted decreases as the concentration is increased (16). In

other words, if the action is direct, the per cent yield should be independent

of concentration, but if the action is indirect, the per cent yield should fall

off as the concentration increases.

IRRADIATION OF SPECIFIC COMPOUNDS

In the preceding section, the interaction of radiation with matter was

discussed in a general sense. In this section, the effect of radiation on

molecules of specific interest to this thesis will be discussed.

WATER

Early work on the radiolysis of water indicated that hydrogen and hydrogen

peroxide are decomposition products. Upon long exposure, oxygen is also formed,
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but this has been shown to be a secondary product formed upon decomposition of

the hydrogen peroxide (17, 18).

Although the net result of the irradiation of water is very simple, namely,

the production and recombination of hydrogen and hydroxyl radicals, the different

steps leading to these products are very complex. The preceding section, though,

provides a guide for understanding the phenomenon.

In the initial step, a primary or secondary electron ionizes or excites a

water molecule according to one of the following equations (19):

H20 + e-' H20 + e~ + e'- (ionization) (8)

H 0+ e - H 0* + e' (excitation) (9)

where e' is a secondary electron and e'- is simply a lower energy state of the
s

electron e-. This initial step is often referred to as the physical stage, and

has a duration of 10-1 3 sec. or less (20).

In the second stage, the .ions, secondary electrons, and excited molecules

formed in the primary act react with each other in the spurs or with nearby

neutral water molecules. The ions formed may react by ion - electron recombina-

tion, positive ion - negative ion interaction, or ion - molecule reactions (13)

according to the following equations:

H20+ + et - H O* (10)

H20+ + OH- > H20* + -OH (11)
2 2

H2 0+ + H20o H3 + O 'OH (12)
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where et is a thermal electron. The thermal electron occupies the lowest posi-
t

tion in the energy scale e- > e'- > es > et, and hence represents the last stage

before the electron disappears by reaction with otheractive species in solution.

The excited water molecule dissociates immediately:

H2O* -- H + *OH (13)

The secondary electrons continue to ionize and excite water molecules until

they are reduced to thermal electrons. At this time they react with neutral

water molecules or positive water ions (13). The equations are given as

e H +H0 O -e- (14)
t 2 aq

et + H2 - H20* (15)

where e~ is the hydrated electron. The hydrated electron is simply an electron
aq

with one or more water molecules associated with it. The positive ends of the

polar water molecules tend to line up toward the electron, thus creating a shell

or cage of water molecules around the electron.

This second stage, in which the energetically unstable species undergo a

series of transformations, establishes thermal equilibrium in the system and

is referred to as the physical-chemical stage (20). It lasts about 10-1 1 sec.

(20). The net result of the first two stages is, therefore, the production of H

and .OH radicals, with perhaps small amounts of H0
+ and eq .

In the third, or chemical stage, the hydrogen and hydroxyl radicals react

with each other or diffuse out of the spurs and react with other solvent mole-

cules to eventually establish chemical equilibrium. The duration of this stage

is 10-8 sec. or longer (20). At the start of this stage the spurs are 20 to
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50 A. in diameter and consist of 2 to 12 radicals (20), which can take part in

any of several reactions. Some of these reactions are given (19):

H· + H- H2 (16)

'OH + -OH ---- H202 (17)

H.+ OH-- H20 (18)

*OH + H --- H20 + *H (19)

H- + H 02 -- OH + H0 (20)

OH+ + H02 > H- - (21)

2 H02. -- H20 2 + 02 (22)

H02.+ H202 -- 0 + o2 + H (23)

The hydrated electron has a half life of only 16 microseconds, but is

believed to be an important intermediate in the radiolysis of aqueous solutions.

For example, the water ion and a secondary electron may produce hydrogen and

hydroxyl radicals by the following processes (19):

:H20 + H0 -4> H3 + + OH (24)

H20 + es - ea (25)

e- -H + OH- (26)aq

OH-+ HI30+ 2H20 (27)

The net reaction is:

H20+ + e -- H + -OH (28)2 s
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In order for the radicals to react with solute molecules they must diffuse

out of the spurs. Typical reactions with organic solute molecules are given:

H + RCH2OH RCHOH + H2 (29)

H- + HCHO ---> HCO + H (30)

2 2*OH+RC20Ho-- > RCHO + H20 (31)

OH+HCHO > CHO + HO2 (32)

:ALCOHOLS

The effect of ionizing radiations on alcohols is to cause fission of one of

the alpha carbon - hydrogen bonds to give a hydrogen atom and a radical which can

either give a dimer or be oxidized to give a carbonyl compound. This pattern

seems to apply to irradiation of either the pure alcohol or solutions of the

alcohol (2, 3, 21-24).

McDonell and Newton (3) irradiated several liquid, air-free, aliphatic

alcohols with 28 Mev. alpha particles (helium ions) and obtained aldehydes and

glycols from primary alcohols, and aldehydes, ketones and glycols from secondary

alcohols and ketones with minor amounts of glycols from tertiary alcohols. Water,

carbon monoxide, hydrogen, and saturated hydrocarbons of one less carbon atom

than the parent alcohol were also formed. Principal bond rupture was at the

carbinol carbon atom, with the reactivity of the carbinol groups exhibiting the

order H >CH > CH3 CH3

Burr (2) irradiated several deuterated ethanols and proposed the following

mechanism to account for the products butane-2,3 -diol, butane-1,4-diol, acet-

aldehyde, diethyl peroxide, 1-hydroxyethyl ethyl ether, and 2-hydroxy ethyl ether.
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CH3CH20H - )CH3CHOH + H- (100%) (33)

H- +.CHCH2 OH'- > H2 + CHCH 2 0 (80-90%) (34)

H- + CI CH H- > H + CH2CHOH (10-20%) (35)

2 CICHOH > (CH3CHOH) 2 (36)

2 CH3CHOH -- (CIHCHOH) 2 (37)

2 CH3CH0- ) CH3 CHO + CH3CH2 0H (38)

Jayson, Scholes, and Weiss (23) and Allen, Hayon, and Weiss (24) irradiated

aqueous solutions of ethanol and obtained acetaldehyde and butane-2,3-diol with

deaerated solutions. With oxygen-saturated solutions, no butane-2,3-diol . was

obtained. The mechanism postulated involved hydrogen abstraction from the a

carbon atom as shown:

H20 - >H- + -OH (39)

C3CH2 OH + OH > CH3CHOH + H2 0 (40)

CH 5CH20H + -H - > CH3CHOH + 112 (41)

In the absence of oxygen, the ethanol radicals react:

H H
2 CHICHOH > CHE - .CCH3 (42)

"HOH¢

CH3CHOH + *OH o- CCHO + H20 (43)

In the presence of oxygen, they react:

CHCHOH + 2 ---- C H 2 (44
CH3CHOH + 02 >-CICHOH . : (44)
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H- + o2 -- 02 (45)

1°2
CH3 CHOH + HO2 -- CHCHO + + 22 2 (46)

b0 H .H
I2 I

2 CH3CHOH-i CHC-o-O-CCH + 02 (47)
OH OH

CARBOHYDRATES

Work other than that of Barker, et al. described in the introduction will

be discussed in this section. Phillips (25) gives a summary of the work done

up to 1960 in Advances in Carbohydrate Chemistry.

The precise nature of the products of irradiation has been studied in consid-

erable detail for carbohydrates in aqueous solution. The presence or absence of

oxygen in the solution is important, so precautions must be taken to maintain

either evacuated or oxygenated systems. Apparently, the predominant chemical

reactions are oxidation and scission of carbon-carbon bonds. This is indicated

by the fact that the following compounds have been reported as decomposition

products of glucose by one or more authors (7, 26-28): gluconic acid, glucosone,

arabonic acid, arabinose, erythrose, 1,3-dihydroxy acetone, glycol aldehyde,

glyoxal, formaldehyde, carbon dioxide, and carbon monoxide. In addition, 2-

oxogluconic acid, lyxose, oxalic acid, and formic acid have been obtained from

mannose (29, 30).

Yield-dose curves for the products are used to distinguish the primary

products from the secondary products. Phillips and Griddle (30) showed that

irradiation of deaerated aqueous mannose solutions gave mannonic acid, glucosone,

and two, three, and four-carbon aldehydic fragments as primary products. -In
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the presence of oxygen, though, scission between C1 and C2 took place to give

formaldehyde and arabinose as primary products instead of glucosone (29).

Reductones have been proposed as products to account for the absorption

at 265 to 275 mu commonly observed with irradiated carbohydrate solutions (7,

31, 32). The proposed mechanism involves hydrogen abstraction:

O _cR 0 ° cR o- cCR

H -C - OH H- or 'OH C - OH H- or *OH C = \ - OH
* I L 1 II

H -C- OH H- C -OH H- C -OH C - OH

R' R' R' R'

The most likely reductone formed from glucose would be xyloascorbic acid, although

any enediol structure would likely give the observed absorption in the ultraviolet.

Coleby (32) isolated xyloascorbic acid as a product of the irradiation of glucono-

lactone.

Reduction is generally not reported, but apparently it is possible because

Michelakis (33) reported small amounts of methane and ethane in the gas produced

upon irradiation of an aqueous solution of glucuronic acid.

In an attempt to find the position on the pyranose ring most favorable for

dimerization, Bailey, Barker, Lloyd, and Moore (34) measured the rate of dimeri-

zation of model tetrahydropyranols. The conclusion reached was that dimerization

proceeds much more readily through a primary hydroxyl group than a secondary

hydroxyl group. A similar study (35) indicated that the rate of polymerization

was still greater if a carbonyl group was attached to C6 instead of a primary

alcohol group. If a secondary hydroxyl group occupied the reducing position of

a pyranose ring, though, polymerization proceeded readily, presumably due to the

ready oxidation of this site to the lactone or acid.
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EXPERIMENTAL METHODS

RADIATION SOURCE

All irradiations were conducted by the High Voltage Engineering Corporation.

Most of the work was done at their Rockford, Illinois laboratory, but one run

was made at their Burlington, Massachusetts laboratory.

A Linac Mark I accelerator, built by Applied Radiation Corporation, Oak

Creek, California, was used at Rockford. This is a linear accelerator which is

capable of producing l to 12 million electron volt (Mev.) electrons. 8.5 Mev.

electrons were used in all the work with this machine, but certain details

differed among irradiations. For example, a diffused beam was used for the

second irradiation and a scanned beam was used for the fourth irradiation.

These variables could not be avoided, but it is felt that they did not affect

the nature of the product formed to any great extent. They were simply the

result of a series of improvements made on the radiation facilities by the High

Voltage Engineering Corporation personnel. The details of each irradiation are

given in Appendix I.

A series of belts made up the conveyor system at Rockford, as shown in

Fig. 6. The belt which runs under the accelerator could either be used as part

of a continuous system, or could be used as a reversible conveyor. In the latter

case, the samples were placed on the reversible belt, and passed back and forth

under the beam until the desired dose was built up. Both the continuous and

reversible systems were used.

A Van de Graaff "GS" accelerator was used at Burlington. The major differ-

ence between this machine and the linear accelerator is that it produced a-steady
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beam of 1.5 Mev. electrons instead of a pulsed beam of 8.5 Mev. electrons. The

details of this irradiation are also given in Appendix I.

Figure 6. Conveyor Belt at Rockford

High Voltage personnel conducted the dosimetry for each irradiation. Cobalt

glass dosimetry, which had previously been calibrated by Argonne National Labora-

tories, was used at Rockford. Blue cellophane, polyvinyl chloride, and the Faraday

cup were used at Burlington.

PREPARATION OF SOLUTIONS FOR IRRADIATION

The two types of containers used for the solutions were polyethylene bags

and glass tubes. These are shown in Fig. 7. No difference was noticed in the

results obtained with the two types of container.

The polyethylene bags were used for most irradiations because they enabled

treatment of a large volume of solution at a minimum sample thickness. Since

the polyethylene bags are known to be somewhat permeable to oxygen, the glass

tubes were used in the study of the effect of oxygen on the yield of polymer.
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POLYETHYLENE BAG "PILLOW"

GLASS TUBE

Figure 7. Containers for Irradiation

The deaerated glucose solutions were prepared by boiling 1.0% glucose

solutions at 100°C. for about 5 min. The flasks were stoppered, cooled to

room temperature, and then placed in a nitrogen box. Oxygen was removed from

the atmosphere of the nitrogen box until it gave an Orsat analysis for oxygen

of approximately zero. The polyethylene bags, which had previously been placed

in the nitrogen box, were each filled with 400 ml. of solution and closed by

heat sealing. This gave a "pillow" measuring approximately 5 by 7-1/2 by 3/4

inches. The bags were stored in the nitrogen box-until the night before the

trip to Rockford, at which time they were sealed in larger polyethylene bags

and removed from the box. This provided an atmosphere of nitrogen around the

small bags and therefore cut down the rate of diffusion of oxygen into the solu-

tions during the trip to Rockford.

Just before the bags were removed from the nitrogen box, one bag was opened,

and the oxygen content of the solution measured. The oxygen content was measured

by the short Theriault modification of the Winkler test (36). Since the presence
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of glucose interfered slightly with the test, a calibration curve was determined

to correct the oxygen contents. The correction was small.

The glass tubes were made from 25 by 250 mm. test tubes. After alternately

evacuating and filling the glass tubes with nitrogen 3 times, they were filled

with about 75 ml. of deaerated glucose solution. Finally, the tubes were sealed

off in a gas flame. When the tubes were placed on their side, the solution depth

was about 3/4 inch.

One irradiation was conducted with 1.5 Mev. electrons at Burlington, Massa-

chusetts, so this required some modifications in sample preparation. Since lower

energy electrons were used, only 100 ml. of solution were put into the polyethy-

lene bags. This presented a depth of about 1 cm. of solution to the electron

beam. The bags were packed in 5-gallon drums which were lined with large poly-

ethylene bags. The drums were flushed with nitrogen before being loaded with

bags of solution, and then after loading, the large polyethylene bag liners

were heat sealed shut. The drums were then sealed and shipped to Burlington

by air express.

ANALYSIS OF WHOLE IRRADIATED SOLUTIONS

After irradiation, the solutions were analyzed for pH and solids content.

Solids contents were determined by evaporating a 5-ml. aliquot of solution to

dryness at 50°C. in vacuo. pH was measured on a Beckman model H 2 glass elec-

trode pH meter.

Paper chromatography of the irradiated solutions was run in ethyl acetate -

pyridine - water (8:2:1, v/v) and butanol - acetic acid - water (4:1:5, v/v).

The spots were revealed by dipping the chromatograms in silver nitrate according
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to the method of Trevelyan, Proctor, and Harrison (37). Streaked chromatograms

were obtained, but a spot for unreacted glucose and for polymer, which stayed on

the starting line, could generally be detected.

To determine the yield of nondialyzable material, twenty-five milliliter

aliquots of the irradiated solutions were placed in bags made of Fischer dialyzer

tubing (seamless cellulose tubing: Fischer Scientific Company). All dialyzer

tubing was taken from the same roll to minimize the variation of pore size be-

tween pieces of tubing. The bags were immersed in approximately 300 ml. of water

which was changed daily. Paper chromatography of the solutions in the bags re-

vealed that 3 days were sufficient to complete dialysis. The amount of nondi-

alyzable material was found by evaporating an aliquot of the solutions in the

bags to dryness.

ISOLATION OF POLYMERS

The polymers were isolated for characterization by precipitation with ethanol.

The same procedure, with minor variations, was used for each polymer, so the de-

tailed procedure will be given only for Polymer No. 11.

Five hundred milliliters of whole Solution No. 11 were evaporated almost to

dryness on a rotary evaporator. Complete dryness was not obtained, since it was

feared that difficulty would be encountered in redissolving the polymer. Another

500 ml. of whole solution were added to the flask, and the evaporation process

repeated. After evaporation again, it was estimated that about 1 ml. of water

remained with the solids. Nine more milliliters of water were added to give a

sirup, and then 450 ml. of absolute ethanol added to precipitate the polymer.

The 45/1 ratio of ethanol/water is quite large, but this was used to maximize

the yield of polymer without precipitating out glucose. The resulting flocculent
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precipitate was separated by centrifugation and then washed twice with 20 ml. of

each of the following: 45/1 ratio of ethanol/water solution, absolute ethanol,

absolute diethyl ether, and low boiling petroleum ether. A few drops of hydro-

chloric acid were added to aid precipitation during the washing steps. With

Polymer 9 the electrolyte was required to get the initial precipitation of polymer

from the ethanol solution. Finally, the precipitate was dried in vacuo at 30°C.

The absence of simple sugars in the isolated polymers was verified by paper

chromatography. A yield of 10.2% was obtained for Polymer No. 11.

ANALYSIS OF POLYMERS

LIGHT SCATTERING

Choice of Solvent

The solubility of Polymer 9 was studied in a number of solvents in an

attempt to find a suitable one for light-scattering measurements. The acetate

of Polymer 9 was also made by the pyridine - acetic anhydride method of Heyne

and Whistler (38) and described by Koleske (39). The results of the solubility

tests on the polymer and its acetate are given in Appendix II. All solutions of

the acetate were so dark colored though, that they could not be used for light-

scattering measurements. Dimethyl sulfoxide, formamide, pyridine, and water

dissolved the unacetylated polymer, but the pyridine and formamide solutions

were considerably darker in color than those of water and dimethyl sulfoxide.

Water was chosen over dimethyl sulfoxide for most of the work because dimethyl

sulfoxide is very hygroscopic and would be expected to pick up water from the

atmosphere during measurements, thus introducing possible solvent complications

(40). One run was made, however, in 98% dimethyl sulfoxide to check the possi-

bility of aggregation. Two per cent water was added in an attempt to reduce the
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rate of moisture pickup from the air. Goring and Timell (41) used this technique

with hemicelluloses.

Although the aqueous solutions of the polymers were amber colored, they

were well within the limits of absorption allowed without having to apply an

absorption correction (42). This is illustrated in Fig. 8. Since the most con-

centrated solution of 9 used for light scattering was about 0.1% instead of 0.69%,

this polymer was also well within the absorption limits.

Figure 8. Transmittance Requirements for
Light Scattering (42)
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Clarification of Solvent

As is well known, the removal of dust particles from water is a difficult

task. The procedure finally adopted in this work was repeated filtration of

distilled water through a 2500 A. Polypore filter. A Polypore pressure filtra-

tion funnel was used to filter the water about 12 times, after which it was

collected in a small separatory funnel. For the highest molecular weight mater-

ial, the solvent exhibited a turbidity of less than 1% of the value for a 0.1%

solution. For the lower molecular weight materials, the turbidity of the solvent

was a larger percentage since the scattering of the solutions was less. Usually

the solvent exhibited a turbidity of roughly 6% that of a 1.0% solution of

Polymer 11. The dissymmetry of the clarified water was generally in the range

of 1.2 to 1.8. Although this is rather high, it apparently did not effect the

dissymmetry measurements on the polymer which lay in the range 1.05 to 1.20.

Clarification of Solutions

Solutions of the polymers were made up to approximately 1.0% in distilled

water and then centrifuged in a laboratory centrifuge equipped with a high-speed

head* which produced a centrifugal force of about 12,000 g. The solutions were

carefully removed from the centrifuge cells with a syringe, and placed in the

Polypore filtering apparatus. The solutions were filtered through 4500 A.

pore size Polypore filters 5 times, with the last filtration being made directly

into the light-scattering cell. A sample of the last filtrate was taken for a

solids content determination.

In some cases the solvent was filtered directly into the light-scattering

cell, and the solution into the small separatory funnel. When this was done,

*International Equipment Company part No. 296, 4 place, 40° angle head. Maximum
radius 6.4 cm., minimum radius 2.5 cm., average radius 4.95 cm.
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solution was added to the solvent for light-scattering measurements instead of

the solvent being added to the solution. The methods were found to be equally

satisfactory.

Light-Scattering Apparatus

Light-scattering measurements were made on a Brice-Phoenix Photometer (Series

1937). Since the polymer solutions exhibited very high absorption with light of

436 mu wavelength, measurements were made with 546 mu wavelength light.

The light-scattering instrument was calibrated earlier by Swenson (43) and

other workers (39, 44). As a further check, the Rayleigh ratio, R90 = (3T/16,r),

was determined for benzene, where T is the turbidity exhibited by benzene. A

value of 16.9 x 10 was obtained for RQ0 which checks favorably with the liter--90',

ature (45). As another check, the molecular weight of McCormick's B-3 poly-

styrene (46) was measured in toluene. The data, given in Appendix III, gives

a molecular weight within 10% of the value reported by McCormick.

Calculations

Molecular weights were calculated by Debye's method of dissymmetry (40, 42,

47, 48) which employs the equation:

Hc = i- + 2A c +. * (48
T MP 2e

where M is the weight average molecular weight, T the excess turbidity due to

the dissolved polymer, c the concentration of polymer in g./ml. and A the second

virial coefficient. P is a correction factor which depends on the size and shape
-e

of the particle as well as the angle of observation, 0, and H is a constant given

by the following equation for 546 mu light:
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H = 6.18 x 10- 5 n2 (dn/dc)2 (49)0

where n is the refractive index of the solvent and dn/dc the refractive index
-o

gradient. The apparent turbidity of the solutions was calculated from:

T = 1.21 (nRw/Rc) a F G r- (50)
o

where Go/G is the ratio of galvanometer deflections for the light scattered at

90° and 0°; F is the product of the transmittances of the neutral filters used

in determining the scattering ratio; a is a constant relating the working standard

to the opal glass reference standard; n is the refractive index of the solvent,

Rw/Rc is an experimentally determined correction for incomplete compensation of

refraction effects, and r/r' is a calibration factor relating the small light-

scattering cell to the large cell. The excess turbidity, upon which the molecu-

lar weight depends, is the apparent turbidity of the solution minus that of the

solvent.

To determine the molecular weight, HC/T is plotted against c and the y inter-

cept equated to 1/MPe. For 900 scattering, then, the apparent molecular weight is

calculated from:

1 1M x (51)
intercept P (51)

P9 0

A value for l/Pg is determined from the dissymmetry of scattering, .Z, which is

the ratio of scattering intensities at 45 and 135 °. Dissymmetry was calculated

from the equation:

(F Go )olutin G o olvent (52

G soluti Go solve\ solution \ o /solvent
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Since Z is a function of concentration, it must be extrapolated to zero concentra-

tion to get the intrinsic dissymmetry [Z]. Beattie and Booth (49) have tabulated

values of 1/Pg as a function of [Z] for different shaped particles. For values

of [Z] less than 2.0, there is very little difference in 1/P90 for coils, rods,

spheres, or disks. The tables of Beattie and Booth (49) are for monomolecular

solutions, but in another publication (50) they treat polymolecular systems of

coils. For values of [Z] less than 2.0, the values of 1/P90 for monomolecular

and most polymolecular systems differ by less than 10%. Therefore, in this

thesis, values of 1/P90 were taken from Beattie and Booth's values for mono-

molecular spherical molecules. The reason for choosing a spherical shape will

be apparent later.

If appreciable fluorescence is present, turbidities and molecular weights

will be too high unless the scattering ratios are corrected for fluorescence.

Brice, et al. (51) developed a method for correcting the scattering ratio for

fluorescence. If the ratio of the horizontal component to the vertical component

of the scattered light is approximately equal to the ratio for the fluorescent

light, the corrected scattering ratio, CSR, may be calculated from the equation:

CSR = 0.5 l - e _

\o solution o solvent

(55)

solution o solvent

solution - H solve

solution o9solvent AF
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where AF indicates measurements taken with an auxilary cut off filter and placed

between the cell and the phototube, and H and V represent the horizontal and

vertical components of the light. The horizontal and vertical components are

measured by placing a Polaroid lens between the cell and the photometer tube.

The corrected scattering ratio replaces G /G in Equation (51).
-90 -o

In the absence of fluorescence, the light scattered at 90o will be completely

polarized in the vertical plane if the particles are isotropic. For anisotropic

particles, however, in which the polarizabilities along various directions in the

particle are not equal, the scattered light will not be perfectly polarized in the

vertical direction, but will exhibit a weak component in the horizontal direction.

The depolarization factors were calculated by the equation:

G He * 1 £9H , 0 (54)

o solution o solvent0 o /solution \ > o olvent

Values of Pu were extrapolated to zero concentration, to give (p u)o which

enabled calculation of the Cabannes factor, CU, by the following Equation (48):

6-7(P )6

u 7=-- T (55)

The apparent molecular weight is multiplied by the Cabannes factor to obtain

the true molecular weight. The Cabannes factor generally has a value greater

than 0.9, and thus imparts a correction of less than 10% to the molecular weight.

Although the Cabannes factor was not intended for use with solutions that exhibit

fluorescence, the correction was applied to the data on Polymer 11. Results were
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obtained which were similar to those obtained on the same polymer by applying

the fluorescence correction alone, thus supporting the accuracy of Brice's method.

All calculations were carried out with the aid of the I.B.M. 1620 computer.

Refractive Index Gradient

The refractive index gradient, dn/dc, was measured, in most cases, on a

Rayleigh interferometer (Baird Associates, Cambridge, Mass.) at 546 mu. Inter-

ference fringes were matched at several concentrations, and dn/dc calculated from

the relation (39):

dn/dc = [(D-D)/47 X/c L (56)

where

D = instrument drum reading for the solution

D = instrument drum reading for the solvent
-o

X = wavelength of light used; 5.46 x 10-5 cm.

c = solution concentration, g./ml.

L = cell length; 1.00 cm.

Plots of (D - D ) versus c were made and a straight line drawn through the

points. In cases where the straight line did not pass through the origin, a

parallel line was drawn through the origin and points taken from this line for

use in the above equation. A sample calculation is given in Appendix IV.

The solutions of Polymer 9 in water and dimethyl sulfoxide possessed enough

color so that it was difficult to match the fringes on the Rayleigh interferometer.

In these cases, the refractive index of several solutions of different concen-

tration was measured with a Bausch and Lomb dipping refractometer, and dn/dc

obtained from a plot of refractive index versus concentration. White light was

used as a source, and the temperature was held at 25°C. by means of a circulating
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water bath. The A prism was used with the water solution and the D prism with

the 98% dimethyl sulfoxide solution. The data are given in Appendix IV.

OSMOMETRY

Osmometer

A Mechrolab Model 501 High Speed Membrane Osmometer was used for all osmotic

pressure measurements. This is a dynamic method, and the principle of operation

is shown in-Fig. 9. Solvent flow through the membrane is detected by focusing an

optical system on the section of capillary where a small bubble has been intro-

duced. The light intensity changes sharply with movement of the air bubble. With

aqueous solutions it is necessary to coat the capillary with a small amount of

wetting agent to obtain smooth movement of the bubble (52). Pluronic L-62

(Wyandotte Chemical Company) was used in this work. The change of light intensity

activates a servo motor which adjusts the pressure on the bottom of the membrane

by adjusting the height of the elevator. A counter reads the position of the

elevator, and the osmotic pressure is the difference between the reading for the

solution and the pure solvent. A Sargent Recorder S-72150 was used to record the

position of the elevator.

Dynamic measurement of osmotic pressure offers advantages over the static

method. In addition to greatly increasing the speed of measurements, it increases

the accuracy of measurement where molecules are present which can permeate the

membrane (53). This is because measurement is made before the molecules have

time to permeate the membrane. Staverman, et al. (54-57) have concluded

that a measurement should be made as soon as possible after putting the solution

into the osmometer. The pressure observed will be less than the theoretical

osmotic pressure, because of the Staverman effect (53, 58, 59), but will be closer

to the theoretical pressure than values obtained by the static method. The
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Staverman effect is the observation that molecules capable of permeating the

membrane do not contribute their full share to the osmotic pressure even if they

have not permeated the membrane at the time of measurement.

Figure 9. Mechrolab High Speed Membrane Osmometer.
(Courtesy of Mechrolab, Inc., Mountain View, Cal.)

Solutions

In order to reduce the polyelectrolyte effect (60-62) the polymers

were dissolved in 0.33N potassium chloride and neutralized to approximately pH

7 with a few drops of O.1N potassium hydroxide. All solutions were made up by

weight.
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Membranes

After some exploratory work with S & S 0-7, 0-8, B-19, and B-20 membranes

(Schleicher and Schuell Company, Keene, New Hampshire) the B-20 membrane was

chosen. The B series membranes are recommended for aqueous solutions, and B-20

has an average pore size of 50 A.

Calculations

The concentration dependence of the osmotic, pressure is represented by the

series:

c = RT (1 +Ac +B .... ) (57)

where i is the osmotic pressure in g./sq. cm., c the concentration in g./cc.,

R the gas constant, T the absolute temperature, M the molecular weight, and A

and B the second and third virial coefficients. The molecular weight is calcu-

lated from the equation:

RT 8 .315 x 107 T
M = (i/c)od.g = 980.7 x (58)

(Alc) d 980.7 x A/c'Titc

where d1 is the density of the solvent and g is the acceleration due to gravity.

The subscript zero indicates that the value t/c must be taken at zero concen-

tration. The equation can be simplified by making up the solutions by weight

(i.e., c is in g./kg.). For a temperature of 37°C., the simplified equation

becomes:

M =26 00

VISCOMETRY

Viscosities were measured at 30.000 + 0.005°C. in a Ubbelohde viscometer,

Cannon size 50, of the small volume type. The specific viscosity, n , was

calculated from the efflux times by the equation:
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t - t
0
T1 (59)sp t

where t is the efflux time for the solution and t that for the solvent. The-o

intrinsic viscosity [n], was obtained by extrapolation of a plot of np /c
sp -

versus c to zero concentration, according to the following definition of in-

trinsic viscosity:

[n] = lim (nsp/c) (60)sp
c~O

where c is the concentration in grams per deciliter.

Since the difference in efflux time between the solutions and solvent was

a mere 2 to 3 seconds for most solutions, there was some scatter to the data.

The scatter was minimized, though, by plotting (n sp/c) versus c on semilogarithmic

graph paper, as is often done. It was not felt that going to a size 25 viscometer

would increase the difference in efflux times between the solvent and solution

enough to justify the expected increase in difficulty in maintaining a clean

viscometer. Reproducible data could be obtained with the size 50 viscometer only

if it was cleaned scrupulously with alcoholic potassium hydroxide followed by

hydrogen peroxide - hydrochloric acid cleaning solution before each measurement.

Each concentration was made up separately by weight, and the measurement made in

a clean viscometer.

The kinetic energy correction was calculated by the following equation from

Time.l (63) and Schulz (64):

1 F t + t

'sp = s p i - t (61)

1
wheresp is the apparent specific viscosity,sp the corrected value, t the

sp Sp -

efflux time of the solution in seconds, and t the efflux time of the solvent.

F is calculated from the formula:
-o



-38-

M d V

o 8 · o0 . to L

where m, the kinetic energy coefficient, is given the value unity, d is the
-o

density of the solvent, V the volume of the viscometer bulb in cc., To the vis-

cosity of the solvent in poises, t the efflux time of the solvent in seconds,
-o

and L the length of the capillary in cm. Since the kinetic correction changed

the value for the specific viscosity by less than 0.5%, it was neglected.

CHEMICAL MEASUREMENTS

Elemental analyses were performed in duplicate by the Geller Microanalytical

Laboratories, Charleston, West Virginia. Carbon was measured as C02, hydrogen as

H20, and oxygen by difference. The analyses were corrected for ash where appli-

cable.

Carboxyl groups were measured by potentiometric titration with 0.01N sodium

hydroxide. Nitrogen was passed over the solutions during titration to prevent

any reaction with carbon dioxide in the air. The end point was taken as the

position of maximum slope in the pH versus ml. of titrant curve. The pH at the

end point varied from about 6.5 to 7.5, depending on the particular polymer

titrated. Polymer 9 gave such a poor titration curve that the carboxyl content

could not be determined.

Infrared absorption spectra were run on a Perkin-Elmer Model 21 recording

spectrophotometer. Sodium chloride optics were used, and the samples were run in

solid potassium bromide pellets.

Ultraviolet absorption spectra were measured in aqueous solution on a

Beckman DK-2 recording spectrophotometer.
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FRACTIONATION

Fractionation Procedure

Fractionation was performed on Sephadex, manufactured by AB Pharmacia,

Uppsala, Sweden. Sephadex is a cross-linked dextran gel which has been used to

successfully fractionate proteins (65-67), oligosaccharides (68), and poly-

saccharides (69). It comes in several pore sizes, and the proper pore size is

selected according to the molecular weight range of the material to be fractionated.

A column chromatographic procedure is generally employed in which the lower

molecular weight molecules diffuse selectively into the smaller pores of the

Sephadex, and hence take a longer time to reach the bottom of the column. The

larger molecules are excluded from the small pores and come out in the early

fractions. Molecules which are excluded from all the pores come out in the void

volume of the column. The void volume is usually determined by measuring the

elution volume for a high molecular weight solute which is known to be completely

excluded from the gel.

Sephadex was chosen over precipitation for fractionation because exploratory

work with precipitation indicated that difficulty would be encountered in obtaining

an even weight distribution among the fractions. Sephadex also has the advantage

that, if free of adsorption effects, it comes close to separating molecules on the

basis of size alone. Precipitation depends on solubility which is also affected

by the chemical composition and physical form of the material. The use of eluents

containing salts has been found to improve the separation of acidic oligosaccharides

(66). Exploratory work with Polymer 11, though, indicated that similar results

were obtained in the presence and absence of salt.

About 2 g. of Polymer 11 were dissolved in 100 ml. of water and subjected

to the clarification procedure described in the light-scattering section. Some
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dilution of the sample was necessary to avoid sample loss during clarification.

A 100-ml. aliquot of the solution containing 1.5550 g. of polymer was placed on

a 4-1/2 by 15 in. column of Sephadex G-25, and elution started with distilled

water. Since the solute was colored, it was easy to follow its progress as it

passed down the column. Solute started to appear in the effluent after 1260 ml.

had been collected. This is close to the void volume figure of 1300 ml. which

was quoted for this particular column (70). Two hundred milliliter fractions

were collected until a total of 10 fractions had been collected. This accounted

for 95.4% of the solids placed on the column.

The supernatant liquid left from the ethanol precipitation of Polymer 11 was

also fractionated on the column of Sephadex G-25. A similar procedure was used.

Analysis of the Fractions

The pH of each fraction was measured, and the solids content determined by

evaporation of an aliquot to dryness. The polymers in each fraction were iso-

lated by freeze-drying and the molecular weights measured by light scattering and

osmometry. Elemental analyses, infrared and ultraviolet absorption spectra, and

carboxyl content were also determined on each fraction.
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RESULTS AND DISCUSSION

THE EFFECT OF DIFFERENT CONDITIONS OF IRRADIATION

DOSE

The yield of polymer, measured as either the amount of nondialyzable

material, the amount of ethanol precipitate, or the amount of immobile material

on a paper chromatogram, increased with dose. The effect of dose on the amount

of nondialyzable material and ethanol precipitate is shown in Fig. 10.

Figure 10. The Effect of Dose on Yield of Polymer. Data
are on Samples 5, 6, and 7

It also appears that the average molecular weight of the polymer increases

with dose. The above data on the yield of nondialyzable material suggests that

the molecules grow in size as they receive a higher dosage. A large increase in

nondialyzable material is obtained in going from 20 to 40 Mrads, as if this

represents a threshold at which many more molecules become large enough to be

stopped by the dialysis membrane. Work on some of the other polymers isolated

by ethanol precipitation indicated that, as a general rule, the average molecular

weight increased as the yield of ethanol precipitate increased. This is shown

in Table III.



Infrared absorption spectra, given in Fig. 11, show the total carbonyl

-1
absorption in the region 1760 - 1720 cm. to increase with dose. The two poly-

mers were formed under identical conditions exceptthat one received a dose of

20 Mrads and the other 40 Mrads. In a later section the absorption in this

region will be shown to be due to at least two types of carbonyl, the absorption

of which both increase as the polymer grows in size.
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DOSE RATE

The effect of different dose rates on the yield of polymer is shown in

Table II.

TABLE II

THE EFFECT OF DOSE RATE ON YIELD

Total Dose: 20 Mrad

Sample No. Dose Rate Nondialyzable Material, %

10 1 Mrad/pass; 1 pass/5.5 min. 0.8
6 1 Mrad/pass; 1 pass/0.78 min. 2.7
8 4 Mrad/pass; 1 pass/3.12 min. 2.8

Total Dose: 40 Mrad

Dose Rate

11 1 Mrad/pass; 1 pass/5.5 min. 3.8
12 2 Mrad/pass; 1 pass/5.5 min. 3.2
7 1 Mrad/pass; 1 pass/0.77 min. 21.3

13 2 Mrad/pass; 1 pass/0.6 min. 28.7
9 1 Mrad/pass; 1 pass/0.64 min. 60.0

aIrradiation conducted at Burlington on the Van de Graaff accelerator; all
others at Rockford on the linear accelerator.

It can be seen that, in general, increasing the dose rate increased the

yield of polymer. When the frequency of the passes under the beam was increased

(compare Samples 10 and 6 or 11 and 7), a larger yield was obtained. The apparent

inconsistencies between Samples 6 and 8 and between 11 and 12 are thought to be

due to the shortcomings of dialysis as a measure of polymer yield. Increasing

the dose rate would tend to increase the concentration of hydrogen and hydroxyl

free radicals in solution, which in turn would tend to increase the concentration

of sugar free radicals. This would make coupling of the free radicals more

likely, and hence increase the yield of polymer. The high yield of polymer from

the Burlington treatment can be accounted for by a similar explanation. The
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steady beam at Burlington would tend to give a higher concentration of free

radicals than a pulsed beam, and also the rate of energy loss per unit path length

is greater for the 1.5 Mev. electrons used at Burlington than for the 8.5 Mev.

electrons used at Rockford [see Equation (1)].

The other factor that must be considered in analyzing the effect of dose

rate is that the heat built up in the samples was greater at the higher dose

rates. All irradiations were conducted at ambient temperature,' with no temper-

ature control. Higher temperatures would be expected to increase the mobility

of the sugar radicals, and thus make coupling more likely.

The molecular weights of three polymers each made at 40 Mrad but different

dose ratesare given in Table III. The same explanation used for the effect on

yield can be used to explain the effect of dose rate on molecular weight.

TABLE III

THE EFFECT OF DOSE RATE ON YIELD AND MOLECULAR WEIGHT

Total Dose: 40 Mrad

Yield, % Light-Scattering
Polymer Dose Rate ethanol ppt. Molecular Weight

11 1 Mrad/pass; 1 pass/5.5 min. 10.2 9,800
7 1 Mrad/pass; 1 pass/0.77 min. 16.6 140,000
9 1 Mrad/pass; 1 pass/0.64 min. 41.8 5,000,000

The effect of dose rate found in this work is exactly opposite to the effect

reported for more conventional free radical polymerizations. For example,

Collinson and Swallow (21), report that increasing the dose rate lowers the rate

of polymerization of styrene because it increases the rate of chain termination

by initiating radicals. Increasing the temperature of a conventional free radical

polymerization also usually lowers the molecular weight due to an increase in the

rate of chain termination (60).- However, the proposed mechanism for radiation-induced
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polymerization of glucose is the very mechanism by which the more conventional

free radical polymerizations are terminated - i.e., by free radical coupling.

The data on the effect of dose rate, therefore, support the proposed mechanism

of hydrogen abstraction from the carbohydrate followed by coupling of free

radicals.

OXYGEN CONTENT OF THE SOLUTIONS

The effect of small amounts of dissolved oxygen on the yield of polymer is

given in Table IV.

TABLE IV

THE EFFECT OF OXYGEN

Sample No. Oxygen Content, p.p.m. Nondialyzable Material, %

1 006 1.2
4 7.8 2.9

Both samples were irradiated to 20 Mrads in glass tubes. The low yields of

Table IV are typical of the 20-Mrad treatment. The difference in yield between

the two samples is thought to be due to variation in pore size between pieces of.

dialyzer tubing rather than to the effect of oxygen. The fact that polymer was

obtained in the presence of oxygen is surprising since other workers (1-10) using

gamma-rays have found the presence of oxygen to inhibit polymerization. Appar-

ently, at the high doses and dose rates employed in this work, the small amounts

of dissolved oxygen are used up early in the process, and subsequent reactions

occur as if oxygen were absent.

GLUCOSE CONCENTRATION

From Table V it can be seen that the per cent yield of polymer dropped by a

factor of roughly 10 when going from a 1.00 to a l0.0% glucose solution.
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Sample

TABLE V

THE EFFECT OF GLUCOSE CONCENTRATION

Nondialyzable
No. Concentration, % Material, %

1 1.0 1.2

3 10.0 0.09
Both:irradiations were to 20 Mrad at 1 Mrad/pass and 1 pass/.782
min.

This is the result predicted for an indirect mechanism where the radiation

decomposes the solvent molecules, and the resulting products attack the solute

molecules (16).

THE PHYSICAL NATURE OF THE MOLECULES

The molecular weights and intrinsic viscosities for three of the polymers

formed at 40 Mrads are summarized in Table VI.

TABLE VI

MOLECULAR WEIGHT AND VISCOSITY DATA ON WHOLE POLYMERS

Molecular Weight,
light scattering

9,800
140,000

5,000,000
2,500,000

[n , dl./g.

0.024
0.026
0.205

aMeasured in 98% dimethyl sulfoxide; all others in water.

MOLECULAR WEIGHT

Light-scattering measurements on the polymers indicated that they were of

much higher molecular weight than previously imagined. Barker, Lloyd, and Stacey

(71) suggested that, on the basis of viscosity measurements, their polymer had a

molecular weight in the range 1200 to 4000. This was a very rough approximation,

Polymer

11
7
9
9

dn/dc

0.166
0.200
0.215
-0.135

z

1.1
1.6
2.35
1.7
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for, as they pointed out, no reliable constants were available for estimation of

molecular weight from viscosity data. The molecular weights given by Barker, et

al. would correspond to a degree of polymerization of 6 to 22, and would hence

border on the range of an oligosaccharide rather than a true high polymer. Light-

scattering measurements on Polymers 11, 7, and 9 in water and 9 in 98% dimethyl

sulfoxide indicate that the materials are truly high polymers. The light-scattering

data are presented in Fig. 12 through 16.

Very'low second virial coefficients were obtained for the polymers in water,

thus indicating very little polymer - solvent interaction (40). The polymer is

apparently on the threshold of precipitation as evidenced by the negative second

virial coefficients noticed for Polymers 11 and 9. Other authors (43, 72) have

attributed negative second virial coefficients to aggregation effects, and

Tanford (73) presents a theoretical discussion which predicts negative coefficients

where aggregation takes place. The fact that a molecular weight of 2,500,000 was

obtained in 98% dimethyl sulfoxide in comparison to 5,000,000 in water indicates

that although some aggregation did occur in water, the polymer is indeed of very

high molecular weight. The higher second virial coefficient obtained in 98% di-

methyl sulfoxide indicates a more highly solvent-swollen molecule in this solvent.

The values for dn/dc in Table VI increase with molecular weight, reflecting

a change in the chemical composition of the molecules with molecular weight. The

same result was found with the fractions of Polymer 11, which will be discussed in

a later section.

A test for fluorescence on Polymers 7 and 9 indicated a negligible amount of

fluorescence. However, Polymer 11, the lowest molecular weight polymer,

exhibited a great deal of fluorescence. Therefore, for Polymer 11 the 90°

scattering ratios were corrected for fluorescence by the method of Brice, et

al. (51). For comparison purposes, plots of Hc/T versus c are given using
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Figure 12. Light-Scattering Data on Polymer 7,in Water
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Figure 15. Light-Scattering Data on Polymer 9 in Water
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both the corrected and uncorrected scattering ratios. The fact that Polymer 11

exhibited fluorescence and Polymers 7 and 9 did not is puzzling. The only major

difference between the three appears to be molecular weight. However, Moacanin,

et al. (74) noticed that fluorescence was greater for low molecular weight ligno-

sulfonate molecules than for higher molecular weight ones. The same thing appears

to be true for the system studied in this thesis.

The number average molecular weight of Polymer 11, measured on the membrane

osmometer, was 2000. The accuracy of this value was confirmed by measurements on

a vapor-pressure osmometer, as described in Appendix VI. Since the weight average

molecular weight was 9800, this gives an M /M ratio of 4.9, which is quite
-w -n

reasonable for branched molecules. For a normal distribution of linear polymers,

a ratio of 2.0 would be expected, but as the distribution gets broader, a larger

ratio is expected (73). In fact, Flory (60) and Erlander and French (75) have

applied a statistical analysis to the molecular weight distribution of branched

molecules and concluded that the ratio M /M becomes very large for broad dis-

tribution of highly branched molecules such as amylopectin and glycogen. Data on

the weight average and number average molecular weights on polymers in the lit-

erature is presented in Table VII, along with that for Polymer 11.

TABLE VII

COMPARISON OF WEIGHT AND NUMBER AVERAGE MOLECULAR WEIGHTS

~~~~~M ~ M.

Polymer Light Scattering Osmometry -w /-n

Polymer 11 9,800 2,000 4.9
Polyacrylonitrile-polyvinyl

acetate copolymer (76) 435,000 40o,800 10.6
Branched polyethylene(77) 3550,000 32,000 10.9
Starch amylopectin (78)- 80,000,000 300,000 267



It appears then, that the molecular weight distribution of Polymer 11 is

broader than a normal distribution, but is sharper than many branched polymers

reported in the literature.

EVIDENCE FOR BRANCHING

Although the polymers had high light-scattering molecular weights, they had

very low intrinsic viscosities. This is shown in Fig. 17. The possibility of a

high molecular weight compound with a low intrinsic viscosity is quite reasonable

when the properties of highly branched molecules are considered. Highly branched

molecules retain low intrinsic viscosities even at high molecular weights. For

example, Goring (79) obtained an intrinsic viscosity of 0.08 dl./g. for a dioxane-

hydrochloric acid lignin molecule of 50,000 molecular weight in pyridine. Simi-

larly, Greenwood and Robertson (80) report an intrinsic viscosity of 0.10 dl./g.

for glycogen of 4,800,000 molecular weight in l.ON potassium hydroxide. Methyl-

ation studies on this material indicated that there were approximately 2500

branches per molecule (i.e., a branch every 10 anhydroglucose units).

Goring's (79, 81) conception of the lignin molecule is that of a molecule

so highly branched that it assumes a spherical shape in solution. For hard,

nonswelling spheres, the intrinsic viscosity is given by

[n] = 0.025-V

where V is the specific volume of the material. The intrinsic viscosity is seen

to depend only on the specific volume and not the size of the spheres. When the

sphere is a macromolecule comprised of a porous, solvent-swollen network, V

becomes the volume of the swollen macromolecule per unit weight of solute. Thus,

V, and hence [n], increases with the swelling of the molecule in the solvent.
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Figure 17. Viscosity Data on Polymers in Water at 30°C. The Size
of the Data Points Represents the Error in n /c Intro-

by an Error of 0.1 Sec. in the Measured Efflux Time
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The results on polymers formed by irradiation of glucose solutions suggest

that the configuration of the molecule lies somewhere between that of a hard

sphere and a random coil. The low second virial coefficients obtained in the

light-scattering work are consistent with this hypothesis.

THE POLYELECTROLYTE EFFECT

Osmometry

A marked polyelectrolyte effect was encountered in the osmotic pressure

measurements, as shown in Fig. 18. In one case the polymer was dissolved in

water to give a solution of pH 2.5; in another case it was dissolved in 0.33N

potassium chloride and partially neutralized; and in the third case it was

dissolved in 0.33N potassium chloride and neutralized to pH 7.3. It can be seen

from the figure that negative slopes were obtained unless the polymer was run in

the presence of salt and also neutralized. The curve for the water solution is

below the others because a more porous membrane was used which apparently led to

diffusion and a large Staverman effect. In water, apparently hydrogen ions

dissociate from the carboxyl groups as dilution proceeds and thus act as separate

osmotic species to cause spurious results. If the polymer is neutralized and run

in the presence of salt, normal results are obtained.

Other authors (60, 61, 62) have also found it necessary to run polyelectrolytes

in the presence of salt. For example, Strauss and Foss (61) found the ratio of

ir/c to increase with dilution when poly-4-vinyl-N-n-butylpyridinium bromide was

run in 93% ethanol solution. The explanation given was that at the more dilute

concentrations the bromide ions diffused away from the polymer and acted as a

separate osmotic species. The addition of lithium bromide suppressed the

dissociation, and gave results similar to those for a neutral polymer. In

addition to producing a slightly positive slope, the addition of the salt shifted

the curve to slightly lower osmotic pressure values.
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Light Scattering

It is customary to dissolve polyelectrolytes in salt solution for light-

scattering measurements (40) to reduce the interaction between solute molecules.

Because of the electrostatic repulsion of like charges, the distance of closest

approach of two ionized molecules in solution is greater than that of two molecules.

in the nonpolar systems. This restriction places some degree of order on the

system, and there is a decrease in the extent of concentration fluctuations.

Since the theory of light scattering is based on refractive index fluctuations,

and hence concentration fluctuations, the scattering of interacting molecules is

less than the theoretical value. For example, Guinand, et al. (82) found the

intensity of the 90° scattering of polyacrylic acid to be 1/50th the value for

the unionized acid. Doty and Steiner (83, 84) developed a theory for charged

macromolecules, and found it to fit qualitatively the light-scattering measure-

ments taken on bovine serum albumin. The latter is a protein which carries a

charge of about 50 protons per molecule. The authors found the Hc/T versus c

plot for bovine serum albumin to rise steeply from the intercept at zero concen-

tration, then bend over and gradually become horizontal at higher concentrations.

In addition, the dissymmetry fell sharply from unity at zero concentration,

passed through a minimum, and then rose slowly at higher concentrations. When

the material was dissolved in salt, interaction between the solute molecules was

reduced and normal light-scattering results were obtained.

Light-scattering measurements were taken on Polymer 11, Fraction 2 under

three conditions: (1) dissolved in water, (2) dissolved in 0.33N potassium

chloride, and (3) dissolved in 0.33N potassium chloride and neutralized to pH

7.8. The results are given in Fig. 19 through 21. The data points based on
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the scattering ratio corrected for fluorescence were rather erratic, as seen in

Fig. 19. The maximum deviation in Hc/T in Fig. 19 is such that the molecular

weights differed by about 25%. Plots of HC/T versus c using the uncorrected

scattering ratio typically gave plots with little deviation. It can be seen

from Fig. 19-21 that the peculiar results obtained by Doty and Steiner were not

obtained for the polymer in water. Greater negative slopes were obtained in the

HC/T versus c curves in the presence of salt, suggesting that more aggregation

occurred under these conditions. Anacker, et al. (85) found the degree of

aggregation of dodecyltrimethylammonium bromide to increase in the presence of

salt. The molecular weights calculated from the corrected scattering ratios

are given for Polymer 11, Fraction 2 in Table VIII.

TABLE VIII

THE EFFECT OF SALT ON LIGHT SCATTERING

Conditions of Measurement Molecular Weight

Dissolved in water; pH 2.5 12,000
Dissolved in 0.33N KC1; pH 2.7 22,000
Dissolved in 0 .33N KC1; pH 7.8 19,000

Since the peculiar results noted by Doty and Steiner were not obtained, and

since the degree of aggregation appeared to be greater in the presence of salt,

no more light-scattering work was done in the presence of salt. It is believed

the salt had little effect on the light-scattering results because the charge

per molecule was much less than that for the bovine serum albumin. Titration

data indicated, the maximum number of carboxyl groups expected per molecule was

about 19 for Polymer 11.
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Viscometry

Usually, with polyelectrolytes, the charges on the molecules cause them to

expand in dilute solution, thus giving a viscosity larger than would be expected

for the molecule in the absence of charge (60). The ratio ns /c often increases

with dilution iii such a manner that the curve appears asymptotic to the ordinate

axis. The addition of salt to the system usually suppresses the effect, and

normal curves are obtained.

As seen from Fig. 17, although no attempt was made to suppress the poly-

electrolyte effect with salt, the linear plots suggest that polyelectrolyte effects

upon viscosity were negligible. Apparently, the molecules are too highly branched

and compact to expand significantly during dilution.



Figure 20. Light-Scattering Data on-Polymer 11,
Fraction 2 in 0.33N KC1,,pH = 2.7
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Figure 21. Light-Scattering-Data on Polymer 11, Fraction 2
in 0.33N KC1 and Neutralized to pH 7.8
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FRACTIONATION

The solids distribution obtained upon fractionation of Polymer 11 is shown

in Fig. 22. The manufacturers of Sephadex claim that, as a general rule, mole-

cules larger than 5,000 in molecular weight should be excluded from G-25 gel and

hence come out in the void volume of the column, which in this case was 1300 ml.

If a dilution factor of 2/1 is assumed, Fraction 1 would be expected to be of

molecular weight greater than 5,000, Fraction 2 about 5,000, and Fraction 3 slightly

less than 5,000, etc. Too many other factors are involved to apply the rule strict-

ly, but it may be used as a rough approximation. The fact that the diagram is

skewed toward the early fractions indicates that most of the material was of higher

molecular weight.

Figure 22. Fractionation of Polymer 11 on Sephadex G-25. Void Volume
of the Column = 1300 ml.
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The molecular weights of the fractions were measured by light scattering

and osmometry. The results are summarized in Table IX. The osmometry data are

given in Fig. 23. Since the light-scattering plots for the fractions are similar

to those already presented, they are given in Appendix V.

TABLE IX

MOLECULAR WEIGHT DETERMINATIONS ON FRACTIONS OF POLYMER 11

Yield, MW M
Fraction g. dn/dc [Z] light scattering osmometry

1 .3100 .185 1.10 13,000 4,900
2 .4260 .167 1.25 12,000 3,800
3 .3240 .165 1.05 4,200 2,900
4 .1740' .163 2.00 21,000
5 .0780 2,200

whole
polymer .].66 1.10 9,800 2,000

The fractions after Fraction 5 contained too little material for molecular

weight determinations, but they would be expected to follow the same trend

established in the first five fractions. The high dissymmetry found for Fraction

4 indicates that dust was probably present in this sample, so the high light-

scattering molecular weight for Fraction 4 should be discounted. Such high

sensitivity settings for the photometer were required with these low molecular

weight materials that the readings were exceptionally sensitive to small amounts

of dust.

The values for dn/dc were determined very carefully, as shown by the sample

calculation in Appendix IV. As was the case with the whole polymers, dn/dc in-

creases with molecular weight, thus indicating a variation in chemical composition

among the fractions. Any of the chemical changes that occur in the molecule as it

grows in size could account for the change in dn/do. These changes will be dis-

cussed later.



CONCENTRATION, G./KG.

Figure 23. Osmotic Pressure Data on Fractions of Polymer 11. All
Solutions Were in 0.33N KC1 and Neutralized to Approximately pH 7
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The value of 2,000 for the molecular weight of the whole polymer determined

by osmometry is reasonable when it is recalled that 10 fractions were taken, and

that the number average molecular weight is very sensitive to small amounts of

low molecular weight material.

The osmometry data of Table IX clearly indicate that fractionation by

molecular weight was obtained on the Sephadex column. The ratios of M /M

for the fractions range from about 1.4 to 3.2, and are therefore less than the

ratio of 4.9 for the whole polymer. As expected, the fractions are apparently

less polymolecular than the whole polymer.

THE CHEMICAL NATURE OF THE MOLECULES

COMPARISON OF THE POLYMERS WITH THOSE OF BARKER ET AL.

Since the net effect of the passage of gamma-rays and electrons through

matter is considered to be similar, the polymers produced in this thesis would

be expected to be similar in over-all nature to those produced by Barker, et al.

(1). An indication of this is the fact that the results of an attempted acid

hydrolysis were similar to those reported by Barker, et al. Polymer 2 was

treated with 1N hydrochloric acid at 100°C. for three hours, during which time

the solution darkened and a brown precipitate gradually formed. The infrared

absorption spectrum of the precipitate is shown in Fig. 24, and can be seen to

be similar to that of the original material except for a slight decrease in the

intensity of the carbonyl absorption. Paper chromatography of the neutralized

supernatant liquid in ethyl acetate - pyridine - water (8:2:1 v/v) indicated

a large spot of immobile material. No glucose was found, but a very light

streak was present indicating the possible presence of trace amounts of mobile

material.
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The fact that the polymers produced in this work are similar to those of

Barker, et al. is conclusively demonstrated by examination of the infrared ab-

sorption spectrum of a sample of Dr. Barker's polymer (71) shown in Fig. 24.

The spectrum is similar to that of Polymer 2 except for a slight difference in

intensity of carbonyl absorption.

For comparison purposes, curves for glucose, cellulose, and starch are pre-

sented in Fig. 25. It can be seen that the absorption spectrum for the radiation-

induced polymer is less detailed than those for glucose, cellulose, and starch,

which indicates that it is chemically more complex than the naturally occurring

materials. Perhaps more than one monomer is incorporated into the polymer, and

perhaps more than one type of polymeric linkage is involved. From the carbonyl

absorption at approximately 1720 cm. , the radiation-induced polymers appear to

be more highly oxidized than the naturally occurring polymers. The carbonyl band

is quite broad, suggesting the presence of more than one kind of carbonyl group.

This was shown to be the case by fractionation of Polymer 11.

The infrared absorption spectrum can be used to reveal information on the

possible presence of unsaturation in the radiation-induced polymer. In contrast

to the strong carbonyl absorption in the infrared, the C=C stretching vibration

gives rise only to a weak band in nonconjugated compounds (88). The position of

this band is generally 1680-1620 cm. In considering carbon-carbon double

-1
bonds it is often helpful to look in the region 690-970 cm. for C-H out-of-

plane deformation bands. The exact position of absorption in this region depends

on the substitution at the double bond, and as the degree of substitution in-

creases, the number of characteristic frequencies is reduced. Unsaturation in

completely substituted olefins of the nature R1R2C =CR3R4 is very difficult to
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detect, as the only remaining characteristic frequency is the C=C stretching mode,

the intensity of which is considerably reduced by the symmetry around the double

bond.

-1
Polymer 2 can be seen to absorb weakly at 1630 cm. , but this is also the

region of absorption of water, which is very likely present in trace amounts.

Examination of the 690-970 cm. region eliminates all double bonds except the

completely substituted type, of which an enediol would be the most likely.

Free OH stretching gives rise to a sharp absorption band in the region

5650-3590 cm. Intermolecular hydrogen bonding decreases the frequency to

3400-3200 cm.- and broadens the absorption peak. As seen from Fig. 24 and 25

-1
all the compounds considered exhibit broad absorption at approximately 3370 cm.-1 ,

indicating intermolecular hydrogen bonding.

ANALYSIS OF FRACTIONS

The chemical properties of the fractions of Polymer 11 were studied in an

attempt to further elucidate the structure of the polymer. A necessary assumption

in this analysis is that the high molecular weight material is formed from the

low molecular weight material. Since all evidence points to the fact that a more

severe radiation treatment gives a higher molecular weight product, this assump-

tion seems reasonable.

Carboxyl Content

The carboxyl content of the fractions is plotted in Fig. 26. The fraction

numbers are plotted in reverse order so that the molecular weight increases in

the plot from left to right. The carboxyl groups are seen to be associated mainly

with the higher molecular weight material, and hence are thought to be the result



of a secondary reaction which takes place on the molecule as it grows in size.

If the polymer was a polymer of gluconic acid as postulated by Barker, et al.

(1, 8), the carboxyl content of the fractions would be expected to be about the

same.

FRACTION NUMBER (M. W.-.)
Figure 26. Carboxyl Content of the Fractions of Polymer no. 11

(Fractions 10 and 4 Were Not Measured Because of Insufficient Sample)

Infrared Absorption Spectra

The infrared absorption spectra, given in Fig. 27, show that as the molecular

weight of the polymer increases, the carbonyl absorption band increases in intensity



-72-



-73 -

and gradually splits into two peaks. Since the carboxyl content increases with

molecular weight, it would be expected that the peak at 1720 cm. was due to

the carboxyl group. This falls into the range of 1725-1700 cm.- quoted by

Bellamy (88) for saturated aliphatic acids. The peak at 1760 cm. , though, is

too high to be in the normal aldehyde or ketone range, but is in the range of

esters and lactones. Bellamy gives 1740-1720 and 1725-1705 cm. as the position

for saturated aldehydes and ketones, respectively, and 1750-1735 and 1780-1760

cm. for b and 7 lactones, respectively. The lactone is considered more likely

than an ester because the polymer is resistant to acidic and alkaline hydrolysis

(1), and because Barker, Lloyd, and Stacey (8) found evidence of lactone formation

in the polymer. Sodium borohydride reduction by the method for lactones (89) re-

duced the intensity of the peak at 1760 cm. , but left a peak at 1730 cm.

The peak at 1620 cm. is due to the salt of a carboxylic acid.

Ultraviolet Absorption Spectra

The absorption of the fractions in the ultraviolet is shown in Fig. 28.

The spectra show a maximum at 264 mu, which is within the region of 260-270 mu

reported by Barker, et al. (1). The fact that the absorption extends out into the

visible region of the spectrum suggests the presence of a double bond conjugated

with the carbonyl group. Carbonyl groups in themselves do not cause absorption

in the visible region.

The specific extinction coefficient at 265 mu was calculated for each

fraction and is plotted in Fig. 29. If the absorption at 265 mu is due to an

enediol structure as suggested by Grant and Ward (7), the production of the

enediol increases with molecular weight; most likely this is the result of radical

attack on the polymer molecule as it grows in size.



The results of the elemental analyses on the fractions are given in Table

X and Fig. 30. For comparison purposes, the elemental compositions of some per-

tinent carbohydrates are given in Table XI.
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Figure 29. The Specific Extinction Coefficient at 265 mj for Fractions
of Polymer 11

The elemental analyses of the low molecular weight fractions come closest

to fitting the composition of gluconolactone. Surprisingly enough the oxygen

content of the fractions decreases with molecular weight in spite of the fact

that the carboxyl content increases. At the same time the carbon content in-

creases probably as a result of the loss of hydrogen and oxygen.
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TABLE X

ELEMENTAL ANALYSIS OF POLYMER 11

Fraction Carbon, % Hydrogen, % Oxygen, %a

1 46.13 5.42 48.41
2 44.53 5.54 49.93
3 45.19 5.64 49.17
5 44.32 5.65 50.03
6 44.25 5.61 50.14
7 44.82 5.27 49.91
8 42.24 5.56 52.21
9 41.75 5.76 52.80
10 41.35 5.80 52.85

aBy difference.

TABLE XI

ELEMENTAL COMPOSITION OF CARBOHYDRATES

Compound C, % H, % O, %

Glucose 40.0 6.7 53.3
Gluconic acid 36.7 6.1 57.1
Gluconolactone 40.4 5.6 53.9

If the ratio of moles of hydrogen per mole of carbon and the ratio of

moles of oxygen per mole of carbon are plotted against the fraction number, the

results shown in Fig. 31 are obtained. The only way the loss of oxygen can be

accounted for is by the loss of hydroxyl groups or oxygen-rich fragments such as

carbon dioxide or formic acid. Dehydration could account for some of the oxygen

loss, but not all of it. If dehydration alone were taking place, the slope of

the plot for the loss of oxygen would be one-half that for the loss of hydrogen.

If carbon dioxide were lost from gluconolactone, the carbon content would increase

to 44.8% and the oxygen content would decrease to 47.7%.
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Figure 30. Elemental Analyses of Fractions of Polymer 11
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Elemental Analyses of.the Fractions on a Mole Basis
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The elemental analysis and infrared data both appear to be consistent with

the hypothesis that gluconolactone is incorporated into the polymer in the early

stages of formation. Although neither gluconic acid or gluconolactone were iso-

lated as products of irradiation in this study, other workers (7, 27) have es-

tablished gluconic acid as a product. Also, it may be recalled that Barker, et

al. (1) obtained slightly a larger yield of polymer from gluconolactone than from

glucose.

FRACTIONATION OF THE SUPERNATANT FROM ETHANOL PRECIPITATION

The supernatant left from the ethanol precipitation of Polymer 11 was

fractionated on the column of G-25 Sephadex. An approximately normal distri-

bution of solids was obtained among the 20 fractions taken. Paper chromatography

showed that unreacted glucose appeared in Fraction 7 and lasted through Fraction

14. A low molecular weight acidic material appeared in Fractions 8 through 17.

The polymers in Fractions 1 through 6 showed the same trends in carboxyl

content, elemental analyses, and ultraviolet and infrared absorption spectra as

noted for the polymers precipitated by the ethanol. The molecular weight of

Fraction 1 was estimated by osmometry to be about the same as that for Fraction 4

of the ethanol precipitate. The original ethanol precipitation apparently did

not give a sharp fractionation on the basis of molecular weight alone.

MISCELLANEOUS NEW CHEMICAL INFORMATION

During the course of the thesis several miscellaneous chemical tests were

run on the polymers. The results of these tests do not contribute to the main

theme of the thesis, but should be reported for the benefit of other workers in
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the field. This work may be considered supplementary to the more extensive chemi-

cal analysis by Barker, et al. (1).

Molisch Test

Glucose and Polymers 9 and 7 were each subjected simultaneously to the

Molisch test for carbohydrates. The test employs a-naphthol in the presence of

sulfuric acid, and gives a pink color with monosaccharides, oligosaccharides,

and many polysaccharides. The color is due to condensation products between a-

naphthol and furfural or hydroxymethyl furfural. Functional derivatives, such

as acids, do not give a test.

Polymers 7 and 9 gave negative tests. This is not surprising though, when

it is recalled that the polymer is resistant to acid hydrolysis, thus preventing

the formation of furfural or hydroxymethyl furfural.

Optical Rotation

Polymer 7 exhibited no detectable optical rotation when a 0.26% aqueous

solution was examined with sodium light on a Zeiss Winkel polarimeter. This is

somewhat surprising since the naturally occurring polysaccharides are usually

optically active. For example, soluble starch and glycogen have specific ro-

tations of + 375 and 366 °, respectively, in aqueous solution (90). Cellulose has

a specific rotation of -46° in a 1:1 mixture of water and Triton B (90). It may

be that the polymer is heterogeneous enough that the optical rotations of different

portions of the molecule cancel each other, and the net effect is no rotation.

Treatment with Hydrobromic Acid

The treatment used by Hough, Jones, and Wadman (91) to demethylate methylated

sugars was tried on Polymer 11. The polymer was dissolved in 47% hydrobromic acid

and heated on a boiling water bath for 2 hours. During the heating a dark brown



precipitate formed similar to that noted upon treatment with 1N hydrochloric acid.

After neutralization, paper chromatography of the supernatant liquid revealed a

trace of material which was apparently glucose. The yield, estimated by visual

observation, was about 0.2%.

The results suggest the presence of a small number of ether linkages in the

polymer. Since the yield was very low, though, most of the linkages are still

thought to be carbon-carbon bonds.
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CONCLUSIONS

Irradiation of aqueous glucose solutions with high energy electrons pro-

duces a highly branched, high molecular weight, acidic polymer. Molecular

weights can be produced which are much higher than previously expected, and are

definitely in the high polymer range.

A wide range of molecular weights may be produced, depending on the con-

ditions of irradiation. For example, the weight average molecular weights of

the polymers produced in this thesis ranged from 9,800 to 5,000,000. Increasing

either the dose or the dose rate appears to increase the molecular weight of the

product. As would be expected, the distribution of molecular weights within a

given product is quite broad. For instance, the polymer which had a 9,800 weight

average molecular weight had a number average molecular weight of 2,000, thus

giving a M /M ratio.of 4.9.

In addition to being heterogeneous with respect to molecular weight, the

polymers are heterogeneous in chemical composition. The carboxyl content in-

creases with molecular weight and is therefore thought to be the result of

secondary attack on the molecule which takes place as it grows in size. This

is opposed to the earlier hypothesis that the repeating monomer unit during the

initial stages of polymerization was gluconic acid. Infrared spectroscopy and

elemental analysis data are consistent with the hypothesis that gluconolactone is

incorporated into the polymer in the early stages of formation. Secondary attack

then results in the formation of carboxyl groups, enediol groups, and the loss

of oxygen-rich fragments.



-83-

SUGGESTIONS FOR FUTURE WORK

A tremendous amount of work remains to be done before the system is fully

understood, but the most immediate work that is needed is a more thorough

chemical analysis of the fractions of the polymer. Hydroxyl and carbonyl content

and periodate oxidation data would contribute significantly to the knowledge of

the nature of the changes that take place in the molecule as it grows in size.

All the experimental facts pointing toward a carbon-carbon bond in the

polymer are negative evidence (i.e., resistance to hydrolysis, etc.). In order

to pinpoint the nature and location of the polymeric bond, dimers will have to

be isolated and studied. Brooks (92) has suggested that periodate oxidation of

dimers formed from L-mannose might shed some light in this area.

In interpreting the results of the analysis of the fractions, it was

necessary to assume that the high molecular weight material was derived from

the low molecular weight material. A check on this would be to irradiate a

solution of low molecular weight polymer to see if a high molecular weight

polymer is formed. Analysis of the solution for low molecular weight fragments

would indicate the nature of the radiation-induced degradation.

Temperature control of the solutions during irradiation would enable one to

separate this variable in the effect of dose rate on the molecular weight of the

product. A series of irradiations at different temperatures and different dose

rates would be necessary to establish the effect of each variable.
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POLYMER NOMENCLATURE

During the course of the laboratory work, the solutions and polymers were

each given a hyphenated number. The first number referred to the page of the

research notebook on which the sample was first described, and the second

number referred to the particular sample on that page. For example, 67-5 re-

ferred to Sample 5 on page 67. For the written thesis the polymers are re-

numbered as follows:

Old Numbe:

67-5
67-9
68-1
70-1
71-1
71-2
71-3
71-4

125-1

34-1
34-2
34-3
34-4

Research
Notebook

No. 2101

Research
Notebook
No. 2215

New Number

1
2

3
4
5
6
7
8
9

10
11
12

13
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APPENDIX I

IRRADIATION DATA

SAMPLES 1, 2, 3, 4, 5, 6, 7, AND 8

Solution concentration: 1.0 except 3 which was 10.0%.

Containers: glass tubes for 1, 2, 3, and 4; polyethylene bags for 5, 6, 7, and 8.

Oxygen content of the solutions: 0.6 p.p.m. for all except 4 which had 7.8 p.p.m.

Date of irradiation: October 22, 1962.

Location: Rockford, Ill.

Type of machine: Linac Mark I.

Energy of electrons: 8.5 Mev.

Average beam current: 40 ua.

Width of beam: 6 inches; diffused

Pulse rate: 120 p.p.s.

Distance of samples from beam window: 14-3/4 in.

Dose rate: 1 Mrad/pass except for 8 which was 4 Mrad/pass

Dosimetry: cobalt glass

Conveyor speed: 31 in./min. except for 8 which was 7.75 in./min.

Distance of conveyor travel before reversing directions: 24 in.

Dose: 5 ................................. 10 Mrad

1, 3, 4, 6, and 8.................20 Mrad

2 and 7........................ ...40 Mrad

SAMPLE 9

Solution concentration: 1.00%

Containers: polyethylene bags

Oxygen content of solutions: 0.8 p.p.m.

Date of irradiation: March 1, 1963
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Location: Burlington, Mass.

Type of machine: Van de Graaff "GS"

Energy of electrons: 1.5 Mev.

Beam current: 1.0 ma.

Width of beam: 13 inches; scanned

Distance of samples from beam window: 6 in.

Dose rate: 1 Mrad/pass

Dosimetry: MSC 300 blue cellophane, polyvinyl chloride, and Faraday Cup

Conveyor speed: 93 in./min.

Distance of conveyor travel before reversing direction: 24 in.

Dose: 40 Mrad

SAMPLES 10, 11, 12, AND 13

Solution concentration: 1.0%

Containers: polyethylene bags for 10, 11, and 12; glass tubes for 13.

Oxygen content of solutions: 1.8 p.p.m. for 10, 11, and 12; 0.6 p.p.m. for 13.

Date of irradiation: June 14, 1963

Location: Rockford, Ill.

Type of machine: Linac Mark I

Energy of electrons: 8.5 Mev.

Average beam current: 35 ua. for 10, and 11; 70 ua. for 12 and 13.

Width of beam: 18 inches; scanned.

Pulse rate: 60 p.p.s. for 10 and 11; 120 p.p.s. for 12 and 13.

Distance of samples from beam window: 7 inches for 10, 11, and 12; 3.5 inches

for 13.

Dose rate: 1 Mrad/pass for 10 and 11; 2 Mrad/pass for 12 and 13.
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A continuous conveyor system was used for 10, 11, and 12 with the samples

travelling at 31 in./min. and passing under the beam every 5.5 min. The

reversible conveyor, which traveled at 31 in./min. and reversed direction

every 18 in. was used for 13.

Dosimetry: cobalt glass

Dose: 10........................20 Mrad

11, 12, and 13 ............ 40 Mrad
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APPENDIX II

SOLUBILITY STUDIES

An attempt was made to dissolve Polymer 9 and its acetate in several sol-

vents. The results are given in Table XII.

SOLUBILITY

Solvent

Water
Formamide
Ethanol
Nitromethane
Dimethyl sulfoxide
Acetonitrile
1,3-Dichloro-2-propanol
Pyridine
o-Chlorophenol
Tetrachloroethane
Acetone
Ethyl lactate
Dimethyl formamide
2-Butanone
Chloroform
Diethyl ether
3-Bromo-l-propanol
Trifluoroethanol
Tetrahydrofuran
Diglyme

S = soluble
P = partially soluble
I = insoluble

TABLE XII

OF POLYMER 9 AND ITS ACETATE

5 Reference Polymer 9

23.4 (93) S
20.5 (93) S
12.7 (93) I
12.6 (93)
12.6 (93) s
11.9 (93) I
10.8 ( 9) P
10.7 (93) s
10.6 (9A) P
10.2 (39) I
10.0 (93) I
10.0 (39) P
9.6 (39) P
9.4 (9k) I
9.3 (93) I
7.5 (93) I
5.6 (9) P

I
I
I

The tests were performed by placing a pinch of the solute in a 10 by 75-mm.

test tube and adding about 1 ml. of the solvent. The solute was judged insoluble

if it remained undissolved and there was no appreciable coloration of the solvent.

When soluble, the material dissolved completely leaving no residual precipitate.

Acetate

I
S
I
I

I
P
S
P
I
I
I
S
I
I
I
P
S
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If, after standing overnight, part of the polymer had dissolved but swollen pieces

remained, the material was listed as partially soluble. Also listed in Table

XII are the solubility parameters, 8. The. solubility parameter is a measure of

the cohesive energy of the solvent and is calculated from the energy of vapori-

zation at zero pressure and the molar volume of the liquid (95). As seen from

Table XII, there does not seem to be any correlation between the solubility

parameter and the solubility of the acetate. This was also noted by Koleske

(39) in his work with guaran triacetate. There does, however, seem to be a larger

number of solvents for the original polymer among solvents with a high solubility

parameter. In order to dissolve the acetate in trifluoroethanol, it was necessary

to use the freshly prepared acetate. If allowed to stand for a period of time, it

became resistant to solution. Also, after a month or so, the dry unacetylated

polymer became resistant to solution in water, presumably due to intermolecular

hydrogen bonding.
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APPENDIX III

LIGHT-SCATTERING DATA ON B-3 POLYSTYRENE

The performance of the light-scattering apparatus was checked by determining

the molecular weight of B-3 Polystyrene in toluene. The data give a molecular

weight of 234,000 (Fig. 32) which is within 10 of the value of 214,000 obtained

by McCormick (46) by sedimentation velocity experiments.
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APPENDIX IV

REFRACTIVE INDEX GRADIENT DATA

The refractive index gradient data measured with the dipping refractometer

is given in Fig. 33 and 34.
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A sample calculation is given for the determination of dn/dc with the Rayleigh

interferometer.

200 -

Figure 35. Rayleigh Interferometer Readings for Fraction 1 of Polymer 11
in Water

Since the line through the data points did not pass through the origin, a

parallel line was drawn through the origin. This line was used for the cal-

culation.

dn

dc
Net drum reading x wavelength of light

47 x concentration

92 x 5.46 x 10-5

47 x 0.58 x 10-5

0.185
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APPENDIX VI

DETERMINATION OF MOLECULAR WEIGHTS WITH THE VAPOR PRESSURE OSMOMETER

Samples of whole Polymer 11 and Fraction 2 of Polymer 11 were sent to

Mechrolab, Inc., Mountain View, Cal. for determination of molecular weight on

their Model 301A Vapor Pressure Osmometer. In this osmometer, a sample of

solution and pure solvent are introduced into a temperature-controlled enclosure

which is saturated with solvent vapor. Since the vapor pressure of the solution

is lower than that of the solvent, solvent vapor condenses on the solution, caus-

ing its temperature to rise. The change in temperature is measured by a thermistor,

and the molecular weight of the solute calculated from the Clausius-Clapeyron

equation.

The molecular weight of the whole polymer was measured in water by Mechrolab,

and a value of 1600 obtained. The value obtained on the membrane osmometer for

this sample dissolved in 0.33N potassium chloride and neutralized was 2000.

Insufficient material was available to run more than one concentration of

Fraction 2 of Polymer 11 on the vapor pressure osmometer, but the molecular weight

calculated from the one data point was 2300. The value obtained on the membrane

osmometer was 3800.

The conclusion reached by Mechrolab, Inc., was that the molecular weights

obtained for the polymers on the membrane osmometer were very realistic.


