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Vision-Based Range Regulation of a Leader-Follower Formation
Patricio Vela, Amir Betser, James Malcolm, and Allen Tannenbaum

Abstract—This brief describes a single-vehicle tracking al-
gorithm relying on active contours for target extraction and
an extended Kalman filter for relative position estimation. The
primary difficulty lies in the estimation and regulation of range
using monocular vision. The work represents a first step towards
treating the problem of the control of several unmanned vehi-
cles flying in formation using only local visual information. In
particular, allowing only onboard passive sensing of the external
environment, we seek to study the achievable closed-loop perfor-
mance under this model.

Index Terms—Active contours, active vision, range-estimation,
vehicle tracking.

I. INTRODUCTION

T HIS BRIEF utilizes geometric active contours and Kalman
filtering for the visual segmentation and tracking of flying

vehicles. Tracking is a basic control problem whereby a system’s
output is to follow or track a reference signal, or equivalently a
system’s tracking error should be as small as possible relative to
some well-defined criterion (say energy, power, peak value, etc.).
The problem of visual tracking differs from standard tracking
problems in that the feedback signal is not directly measured by
the imaging sensors proper. The true measurements must be ex-
tracted via computer vision algorithms and interpreted by a rea-
soning algorithm before being used in the control loop. Within
the context of vehicle tracking and regulation of leader-follower
formations, the follower must be able to maintain a specific rela-
tive positioning between itself and the target. Line of sight angle
is readily computable from the image itself and is used to infer the
relative vector direction to the target. Range, on the other hand, is
not generically observable from the image sequence alone; ad-
ditional motion commands and processing are required to esti-
mate range [1], [2]. This brief describes an extension to [1] for
range-regulation.

The problem we consider here is the tracking of a leading un-
manned vehicle (UV) the Leader, by another UV the Follower,
without communication between the two vehicles. For the mo-
ment, we are considering planar motion only in order to assess
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how vision-based measurements can be used to improve an ex-
isting non-vision-based method. Sensing, for the Follower, is ac-
complished completely onboard and is passive. Such a problem
is considered in Sattigeri et al. [3], however, the authors rely
on the existence of relative range measurements, which are not
immediately available in the problem we wish to solve. Con-
sequently, vision-based estimation of the relative range will be
introduced.

1) Related Work: The majority of vision-based techniques
for range or depth estimation result in dense range-maps. Dense
range-maps may be estimated using optical flow [4], [5] or
optical differentiation [6]. Harding and Lane [7] compute depth
by solving the inverse image projection using multiple views. A
Minimum Descriptor Length approach to optical flow compu-
tation and range estimation is given in [8]. PDE based methods
for solving the range problem can be found in [9]. Another
approach couples a nonlinear observer with the tracking of
various geometric objects (lines, curves, etc.) across multiple
frames [10]. Murphey et al. [11] describe a “depth-finder”
algorithm for planar motion. Many of these approaches are not
real-time implementable or rely on static scenery. There are
also geometric methods for tracking a coherent object across
multiple frames for range estimation. Avidan and Shashua [2]
utilize trajectory triangulation to solve for the relative range.
Stein et al. [12] work out the geometry of vision for planar
vehicles and compute the optimal sampling rate for estimation
of range. These techniques are limited by model assumptions
that need not hold in our case.

Much of the work regarding range estimation from bearings-
only information is relevant to the problem at hand. The
bearings-only problem deals with range estimation using pas-
sively obtained bearing data (typically from sonar). Huster
and Rock [13] examine the real-time implementation of the
extended Kalman filter found in [1]. This work was extended
by Frew et al. within the context of optimal maneuvers for
bearings-only target estimation and visual navigation [14], [15].
Other methods incorporate particle filters [16], multiple model
hypotheses [17], or bias correction [18] to overcome the in-
herent limitations found in [1]. The limitations of bearings-only
estimation can be traced to the paucity of sensor information
regarding the external environment/target [19], [20], as does
the need for persistent maneuvering of the follower [21]. Bear-
ings-only target estimation cannot be used to regulate range as
needed for a Leader-Follower scenario.

Using a visual sensor, information beyond target bearing is
available. Recent efforts to fully incorporate the visual signal
for achieving formation control can be found in [22]–[26].
Although the [26] incorporates additional information from the
visual signal, the brief focuses on flocking and velocity heading
consensus, as opposed to range-regulated formation control.
While relevant, the other references incorporate additional
knowledge in one of two ways: 1) through the use of a visual
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Fig. 1. Leader-Follower configuration.

sensor that allows for direct estimation of range or 2) through
inter-vehicle communication and centralized control. For the
problem at hand, neither of these two options is available.

2) Contribution: In the proposed vision-based range estima-
tion implementation, additional image information is used to
augment the standard bearings-only estimation process leading
to an additional state in the estimation EKF when compared
to the traditional bearings-only EKF. This brief focuses on
proof-of-concept simulations implementing active contour
tracking with the augmented EKF model for estimation of
range and line of sight. Empirical analysis of the original versus
the modified EKF exemplify the beneficial role of the visual
sensor in the estimation process. The vision-based range esti-
mator is an improvement over the standard bearings-only range
estimator and also eliminates the need to follow an oscillatory
trajectory. Furthermore, with the added vision-based estimation
component, closed-loop formation regulation relative to a lead
vehicle with piecewise constant velocity is achievable whereas
it is not possible with bearings-only range estimation.

3) Problem Formulation: The problem consists of two planar
UVs, one of which is labelled the Leader and the other Fol-
lower. The Leader is following an unknown trajectory relative
to which the Follower must track (c.f., Fig. 1). Available to the
Follower are measurements of its own state (configuration, ve-
locity, and acceleration) and the image obtained from a fixed,
forward-pointing, onboard, monocular camera system.

The complete closed-loop system is summarized by the block
diagram of Fig. 2. Of importance is the additional block for the
vision sensor in the feedback loop. The image processing/com-
puter vision block produces “measurements” (described in the
sequel), which are sent to the Estimation block, itself imple-
menting a Kalman filter strategy. The Estimation block calcu-
lates the relative range, the line of sight (LOS), and the LOS
rate between the Leader and the Follower. These parameters are
used by the Guidance block to produce the velocity and accel-
eration commands for the vehicle’s inner controller loop.

The measurement input to the Kalman filter are two angles.
The first angle is the lead angle and the second is the maximum
angle subtended by the Leader in the image plane (depicted in
Fig. 4 from the active contour tracking the Leader on the image
plane.

4) Organization: This brief is decomposed into sections ac-
cording to the bold blocks comprising the feedback loop in the

Fig. 2. System block diagram.

block diagram of Fig. 2. The active contour algorithm for image
segmentation is reviewed in Section II and its implementation
within the context of object tracking is discussed. Using the
track signal provided by the active contour algorithm, Section III
proposes an extended Kalman filter for range estimation. Once
range is estimated and relative pose can be reconstructed, a con-
troller is required to achieve the desired control objective. A
simple, linear controller derived from missile guidance laws is
described in Section IV. Finally, all of the elements are com-
bined in Section IV-A with a Leader-Follower scenario whose
resulting performance is analyzed.

II. OBJECT TRACKING VIA ACTIVE CONTOURS

The segmentation method for tracking the target relies on
snakes or active contours [27], [28]. This section briefly dis-
cusses the active contour model chosen and how active contours
function. Active contours are closed curves whose interior do-
main represents an object of interest. They have the ability to
conform to various object shapes and motions, making them
ideal for segmentation, edge detection, shape modelling, and vi-
sual tracking. While there are a variety of alternative methods to
arrive at target segmentations, in this brief, we use active con-
tours to dynamically track a target and its shape across a se-
quence of images. The information extracted from the active
contour process are the vision derived measurements.

In order to extract the target location and geometry from the
image, an active contour algorithm tailored to the photometric
properties of the imaged target should be chosen. Given that
the target and background region have unique disjoint statistics,
region-based active contours are effective solutions to the seg-
mentation problem. The region-based active contour algorithm
chosen is the Bayesian active contour method given in [29]. The
algorithm assigns probability distributions to the interior and
exterior regions and maximizes the integral of the negative log
likelihood over the domain, as per
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Fig. 3. Sample segmentation using active contour. The initial contour is the
white dotted circle and the final contour is the white line surrounding the
airplane.

where describes the active contour defined over the planar
domain , represents a Gaussian distribution with param-
eters and , and is the interior region of the
curve. Applying the logarithm function to the Gaussian distri-
butions leads to

whose first variation is used to derive the gradient descent equa-
tions for the closed curve

The method was shown to perform well even if the background
did not precisely fit a Gaussian distribution so long as the fore-
ground was well represented by a Gaussian. The extension to
vector-valued imagery can be readily obtained from the pre-
vious equations [29]. Alternative distributions to a Gaussian can
be chosen for more complex imagery.

There are fast implementations of these snake algorithms
based on level set methods [30], [31]. The ability of snakes to
change topology and quickly capture desired features makes
them an indispensable tool for visual tracking algorithms [32].
Active contours derive the segmented data (as depicted in
Fig. 3) that then drive the estimation process.

III. ESTIMATION PROCESS

In this section, we describe a modified algorithm for esti-
mating the relative range , LOS angle , and the LOS rate

using the visual information obtained from a fixed, forward-
pointing onboard camera. The algorithm is a modification of the
extended Kalman Filter found in Aidala and Hammel [1]. The
extended Kalman filter model equations involving relative range
and LOS are

(1)

Fig. 4. Measurement inputs to Kalman filter as visualized in the simulation.

Fig. 5. Geometry of subtended angle.

with the filter states

(2)

where and are the relative acceleration normal and
tangent to the LOS, respectively. The available measurement is
the LOS angle as obtained from the lead angle , shown in Fig. 4

(3)

where is the heading of the Follower, and is measurement
noise.

Aidala and Hammel demonstrated that the range state is un-
observable except during certain Follower maneuvers [1]. Fur-
thermore, should the Leader accelerate or maneuver in any way,
the extended Kalman filter could diverge. Work has gone into
understanding the optimal maneuvers for range estimation [33],
and into extensions to the Kalman filter framework for over-
coming the effects of Leader acceleration [17], [18].

1) Extended Model: The Kalman filter equations (1)–(3) do
not completely utilize the information provided by an imaging
camera. In particular, the captured image of the Leader provides
indirect observation of the range through the equation

(4)

where the parameter is the nominal length of the Leader, an
unknown quantity (c.f. Fig. 5). This length is defined to be the
longest axis of the plane (typically along the wing). By mea-
suring the angle subtended by the Leader in the image plane ,
the unobservable state may be rendered observable during Fol-
lower motion. Consequently, adding the fifth state , with
the dynamics

(5)
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Fig. 6. Open-loop comparison of the Aidala and Hammel EKF to the proposed EKF with pointwise maneuvers of the lead aircraft. (a) Depicts a sample plot of
the estimation error versus time and (b) shows the relative � -norm error difference between the original and modifed EKF algorithms as a percentage of 1000
simulations as a probability density. The NaN entry means that the Aidala and Hammel EKF failed to estimate; this happened for approximately 6% of the runs.
The median performance difference for bearings-only EKF is 30% worse (assuming convergence occurs).

should improve the range estimates and provide a level of ro-
bustness to the estimation framework. This new state now pro-
vides range information during maneuvers tangent to the line
of sight, whereas the original Kalman filter did not. Any accel-
eration by the Follower will provide range information to the
Kalman filter.

Unfortunately, acceleration by the Leader still causes prob-
lems for the estimation process. Although the open-loop esti-
mation process may suffer as a result, range limits introduced
in the closed-loop system curtail the potential consequences.
The range limits are obtained from (4) by assuming that the
Leader size lies within a particular range , which
does not severely limit its possible size (the simulations used

).

A. Open-Loop Results

The (1)–(5) were implemented using a discrete extended
Kalman filter with the addition of process noise to the model
equations [34]. Using the original extended Kalman filter
equations (1)–(3), the range is observable only during certain
Follower maneuvers (typically oscillatory motion) so long as
the Leader does not accelerate [1]. Beginning at randomly
assigned locations within a ball of radius 25 ft around the origin
for the follower and around the position (100, 0) for the leader,
and with an initial range estimate lying in the interval [50, 150],
the estimation process was simulated for 1000 instances with
the follower undergoing oscillatory motion. At various points
in the simulation the leader accelerates, decelerates, and/or
engages in a turning maneuver (at times 50, 80, 240, and
300 s). The maneuvers are where the estimation algorithms go
awry before resettling to steady state once the Leader resumes
with a constant velocity. Correct measurement of and
requires knowledge of the camera parameters [35].

Fig. 6(a) depicts the estimation error arising from such a sce-
nario. The Kalman filters are capable of tracking the correct
range, however, it can be seen that the vision-based estimator
has improved convergence properties relative to the bearings-

Fig. 7. Axial acceleration command control loop.

only estimator. The -norm of the estimation error was com-
puted for the estimated range as a function of time for the two
EKF models. Fig. 6(b) is a plot of the relative -norm error
difference of the original EKF and the modified EKF as a per-
centage density; the relative error is the difference between the
two -norm errors divided by the -norm error of the mod-
ified EKF. Median performance difference between the orig-
inal EKF compared to the proposed EKF indicates 30% worse

-error for the original EKF (the mean error was several orders
of magnitude larger due to extreme outliers). In approximately
6% of the cases, the bearings-only EKF was not able to estimate
the relative range and diverged.

IV. GUIDANCE AND CONTROL

This section provides an algorithm for tracking the Leader
UV so as to move from estimation to feedback control. The al-
gorithm is based on Proportional Navigation and LOS guidance
laws [36]. Referring to the block diagram of Fig. 2, the Guid-
ance block receives inputs from the Estimation block and two
commands: the desired relative range and the desired relative
(lead) angle . The output of the algorithm are the acceleration
commands to the inner control block of the UV. Control accel-
eration for the autonomous vehicle is decomposed into normal
and tangential acceleration components and .

1) Computation of and : The purpose of the input
is to maintain the desired LOS angle between the Leader and
Follower. Using the estimated values for the LOS and the LOS
rate, define

(6)
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Fig. 8. Closed-loop Leader-Follower scenario. Changes in bearing ��� or velocity denote a response to leader acceleration. (a) Range error versus time;
(b) � versus time; (c) follower velocity versus time.

Fig. 9. Analysis of closed-loop performance of vision-based estimator. (a) Compares � -norm error of the closed-loop vehicle tracking problem versus the open-
loop estimation for the first 100 simulation runs. The two signals are not rigorously comparable since the vehicle was programmed to follow the correct trajectory in
the open-loop problem. (b) Examines the relative error between the open- and closed-loop � -norms for the 1000 simulations as a probability density. Open-loop
estimation performance is expected to be approximately 90% worse than closed-loop performance on average.

where is the proportional navigation constant, is a param-
eter in the range [0,1], is the forward velocity of the Follower,
and . The role of is to track the desired
relative range between the Leader and Follower. Consequently,

is a function of the range error , described by
the control loop depicted in Fig. 7, where is the nominal
forward velocity of the Follower. The control loop also incor-
porates actuation limits.

The control commands were filtered during simulation to re-
produce the dynamics of a vehicle with an autopilot. All simu-
lations used the following transfer function realizations for the
acceleration dynamics normal and tangent to the LOS

respectively.

A. Closed-Loop Results

By incorporating the guidance and control algorithms into
the estimation process described in Section III, it is possible to

achieve the desired trajectory tracking goal of the Follower. Fur-
thermore, the oscillatory trajectory required when performing
bearings-only estimation is not needed in the closed-loop sim-
ulations. Under these conditions, the bearings-only estimator
cannot achieve closed-loop vehicle tracking. Demonstrative
simulation results of the closed-loop scenario with vision-based
estimation are depicted in Fig. 8. As in the open-loop sim-
ulations, here the Leader maintains a steady velocity with
occasional changes in bearing and/or speed. Leader accelera-
tions induce disturbances in the estimation, which can be see
in Fig. 8(a). The visual processing and estimation algorithms
work together to estimate the proper feedback for the guidance
and control laws so that the Follower may track the Leader. The
vision-based feedback rate was 2 Hz in order to account for
processing time of the algorithm on nominal hardware. Fig. 9(a)
depicts the open- and closed-loop -norm of the estimation
error for 100 of the 1000 simulations performed. Comparing
all of the simulations run, the open-loop estimation is expected
to result in 90% worse -error performance on average.
Strictly speaking, one should not compare the open-loop to the
closed-loop performance, but lacking any additional reference,
the open-loop data is the best available reference.
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Fig. 10. Analysis of closed-loop performance of vision-based estimator with and without noise. (a) compares � -norm error of the closed-loop vehicle tracking
problem with noise and without noise. For the level of noise utilized, estimation performance is expected to be approximately 50% worse than closed-loop perfor-
mance without noise on average. (a) � -norm of estimation error; (b) relative error density of � -norm errors.

Fig. 11. Expected performance change when reducing the imaging sensor resolution. (a) Boxplot of estimation error � -norm; (b) relative error versus baseline.

The estimation was also performed with Gaussian noise in-
troduced into the measured follower dynamics. The standard de-
viations associated to the position estimates were ,

, and , associated to the velocity estimates
were , , and , and associated
to the acceleration estimates were , , and

, where the velocities and accelerations are with respect
to body coordinates. The active contour measurements naturally
have noise due to pixelization effects (and is present in all simu-
lations). The noisy estimation is compared to the non-noisy esti-
mation in Fig. 10. The uncertainty in the follower dynamics de-
graded the -error by approximately 50% percent on average.
The expected -error per measurement for non-noisy estima-
tion is 16 feet (within 10% error), whereas for noisy estimation
it is 22 ft (slightly over 10% error).

In [12], Stein determines the expected error in their estimation
algorithm based on the imaging sensor and its resolution. The
resolution of the camera imposes limitations on the ability of
the camera to resolve target geometry and motion. Fig. 11 illus-
trates the expected performance degradation when lowering the
resolution of the imaging sensor. In Fig. 11(a) a boxplot of four
different scenarios is given, describing the statistics arising from
100 simulations. Fig. 11(b) shows the mean percent change in
estimation performance as the image resolution (baseline is 800

600) is reduced up to a factor of eight. Significant degradation
can be seen in the eight times reduction case; it is expected to
perform approximately 100% worse than the baseline case. For
eight times reduction with a target distance of 200 ft (the com-
manded following range), a one pixel error encodes for approx-
imately 4 ft, which approaches 10% of the size of the Leader. A
one pixel error also results in a range estimation error of about
20 ft, corresponding to 10% of the commanded distance. Equiv-
alently, commanding a range eight times larger will result in the
same level of uncertainty and one cannot achieve good tracking
performance. As to be expected, the algorithm’s effectiveness
is range limited, where the imaging sensor and the target size
determine the limiting range.

V. CONCLUSION AND FUTURE RESEARCH

The extended Kalman filter found in [1] was augmented by
introducing additional image information available to vehicles
with a fixed forward-pointing monocular camera. Active con-
tours were used to track the follower in the image plane and
provide the Kalman filter with the required input. Successful
simulation of the proposed method has provided the proof-of-
concept needed to continue investigation into real-time imple-
mentation of range estimation for automatic tracking of flying
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vehicles. A full 3-D estimation strategy is needed for flying ve-
hicles to track other flying vehicles. To achieve this, the filter
state will have to incorporate the additional angle measurement
found in the equivalent 3-D range estimation problem (using
spherical coordinates) [16], [37]. Additional research should
also go into reducing the sensitivity of the extended Kalman
filter to target acceleration and into minimizing the convergence
time and steady-state error of the estimator.

Adaptive estimation methods appear to be a promising av-
enue for dealing with these challenges [38], however, further
investigation will be required to minimize the control cost of
these methods. Once these objectives have been accomplished,
the final step will be to integrate the vision-based range estima-
tion strategy with the formation control algorithm of [3] on an
experimental platform. Successful integration will provide us
with a testbed to examine more complex vision-based naviga-
tion scenarios.
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