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An analytical model for the equilibrium flux surface geometry, widely known as the Miller
equilibrium model, has been exploited to improve a variety of simplified tokamak computation
models that incorporate an approximate flux surface geometry. Also discussed are improved models
for an effective unelongated toroidal plasma representation of elongated flux surfaces; mapping
temperature (and density) gradients measured at one poloidal location to other poloidal locations
and to an average gradient over the flux surface; interpreting experimental heat diffusivities from
local temperature gradients and average conductive heat fluxes; calculating the poloidal distribution
of radial conductive heat fluxes; and evaluating the gyroviscous angular momentum transport

rate. © 2008 American Institute of Physics. [DOI: 10.1063/1.3039946]

I. INTRODUCTION

The “natural” coordinates for tokamak plasma physics
computations are the nested magnetic flux surfaces because
of the striking differences in particle and energy flows within
and across these flux surfaces. However, there are many cal-
culation models in tokamak plasma physics that utilize sim-
pler, more conventional geometries. Such models generally
employ, explicitly or implicitly, some approximation to the
flux surfaces to enable exploitation of the great differences in
flows across and within the flux surfaces to reduce the re-
quired dimensionality of the calculation.

Several years ago, Miller et al." introduced an analytical
equilibrium model for localized stability studies in which the
flux surface is completely described by the aspect ratio, elon-
gation, triangularity, and safety factor. We have recently been
motivated (by an application2 of the Miller equilibrium to
estimate the poloidal heat flux distribution) to apply this
Miller equilibrium model to improve one-dimensional calcu-
lation models that reflect two-dimensional effects on plasma
transport by the incorporation of a simple analytical model

J
—l/IK‘l[sinz(0+x sin 6)(1 + x cos ) + k> cos” 6
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for the plasma flux surface geometry. The purpose of this
paper is to describe a number of such applications of the
Miller equilibrium model.

Il. MILLER EQUILIBRIUM
A. Geometry

Miller ef al.' derived analytical expressions for an equi-
librium flux surface in a plasma as shown in Fig. 1 with
elongation «, triangularity &, and displaced centers Ry(r),
where r is the half-diameter of the plasma along the mid-
plane with center located at distance R(r) from the toroidal
centerline.

The R and Z coordinates of this plasma are described by1

R(r) =Ry(r) + rcos[ 0+ x sin ] = Ry(r) + r cos &,

(1)
Z(r) = krsin 6,

where x=sin"! 6.
The poloidal magnetic field in such flux surface geom-
-

etry 1s

12
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A

where s,=r/ kdk/dr and s 5=rdd/ dr/ \/(1— &%) account for the
change in elongation and triangularity, respectively, with ra-
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dial location.
The shifted circle model (which leads to the Shafranov
shift) yields'
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and a shifted ellipse model by Lao et al’ yields
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FIG. 1. Miller equilibrium parameters.
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Here B,=nT/ B%,/ 2 and €; is the internal inductance.

l(K )

2 (3% 1)} (3b)

B. Flux surface average

The flux surface average (FSA) of a quantity A(r,6) in
this flux surface geometry is

jg % § A(r,0)z(r, 0)dt,
(A(r.0)) = dep = : (4)
—L § z(r,0)d¢,
B,

where

OR
cos(x sin ) + (9—0 cos O+ [s,—sscos O+ (1 +s5,)x cos f]sin O sin(f+ x sin 6)
r

z2(r,0) =

and the differential poloidal length is (see Fig. 1)

dt, = r[cos2(0+ x sin 6) + &2 sin® G]d0. (6)

lll. EQUIVALENT TOROIDAL MODELS

Complicated flux surface geometries are frequently re-
duced to effective one-dimensional toroidal models for trans-
port calculations and experimental data interpretation. The
more sophisticated of such models (the so-called “1.5D”
models; e.g., Ref. 4) make use of a 2D MHD (magnetohy-
drodynamic) calculation of the flux surface geometry to con-
struct an effective toroidal model that conserves certain prop-
erties of the equilibrium. Simpler models that use analytical
representations of the flux surface geometry, instead of a 2D
MHD calculation, are also commonly used (e.g., Ref. 5).

A common representation is the “elliptical equilibrium
model” of an elongated plasma described by R=R,
+rcos 0,Z=kr sin 0,Bp=Bp0/(1 +r/Rycos #). With refer-
ence to Fig. 2, an effective nonelongated toroidal model
that preserves the area of the exterior flux surface of the
elliptical equilibrium model with the same elongation, «, as
the actual flux surface is constructed by defining an effective
radius variable 7 that is related to the actual radial variable
in the horizontal midplane r and the elongation by
7=ry1/2(1+«?). This model preserves surface area but does
not account for compression/expansion of the spacing be-
tween flux surfaces.

[sin?(6+ x sin 6)(1 +x cos 6)> + k> cos® 8]"*/{R,(r) + r cos[ 6+ x sin 4]}

(5)

The Miller equilibrium model can be used to obtain an
improved nonelongated toroidal model that takes into ac-
count triangularity and the “Shafranov shift” compression/
expansion of flux surfaces, as well as the elongation. The
area of the flux surface ¢ passing through the midplane ra-
dius r in the Miller equilibrium model is

2
A(¢)=3€ depf h¢d¢=2w3§ Rd(,
b 0 b

2
= 271'rR0(r)fO [1 + Ro(r)

X[cos?(0+ x sin 6) + k* sin® 6]'?d6. (7)

cos(f+ x sin 0)}

The area of an unelongated torus with radial variable 7 is
A (r)=2mRy(a)27r. Equating the two areas and solving for

R
= Ro(r)_ [ 1+ cos( 0+ x sin 0)}
27TR()(a) Ro(r)
X[cos?(0+ x sin 6) + k> sin® 6]'?d6 (8)

defines the radial variable of an equivalent toroidal model
that preserves the surface area of the Miller equilibrium flux
surface. The effective radius at the exterior surface of the
torus is a, determined by evaluating Eq. (8) for r=a, the
half-radius at the horizontal midplane of the actual exterior
flux surface.

A comparison calculation was made for a plasma repre-
sentative of a DIII-D (Ref. 6) discharge with minor horizon-
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FIG. 2. (Color online) Effective toroidal model superimposed on flux sur-
face geometry.

tal radius a=0.583 m, varying triangularity, elongation
k=1.75, and major radius Ry(a)=1.77 m. The elliptical
model predicts for these parameters an effective circular
plasma radius @=0.830 m. Evaluation of Eq. (8) with
x=sin"! § yields almost the same value of @=0.817 m for

k'[sin?(6+ x sin O)(1 +x cos 6)* + k> cos® ¢
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TABLE 1. Effect of triangularity on effective toroidal radius and
H(a,0=0).

) a(m) a(m) H(a, 0=0) H(a, 0=0)
Triangularity Miller equil. Elliptic equil. Miller equil. Elliptic equil.
0.0 0.817 0.830 1.73 1.43
0.1 0.800 B 1.73
0.2 0.784 e 1.73
0.3 0.769 B 1.73
0.4 0.753 B 1.72
0.5 0.739 1.71
0.6 0.725 B 1.69
0.7 0.710 B 1.66
0.8 0.696 S 1.62
0.9 0.680 B 1.55

6=0, as shown in Table 1. For nonzero values of the trian-
gularity, the Miller model predicts increasingly smaller
equivalent toroidal radii than the elliptical model to preserve
surface area.

IV. INTERPRETATION OF THERMAL CONDUCTIVITIES
FROM MEASURED TEMPERATURE GRADIENTS

Another application of the Miller equilibrium that imme-
diately comes to mind is in the inference of experimental
thermal diffusivities from measured temperature gradients in
tokamaks. The measured temperature gradient (d7/dr)e,
pertains of course to the location (r, f,,) at which the mea-
surement is made [although sometimes the reported value is
mapped along flux surfaces to another location such as the
outboard midplane at (r,#=0)]. On the other hand, one-
dimensional radial transport codes of the type discussed in
the previous section calculate an average conductive heat
flux {(g(r)). In order to use the calculated average heat flux
and the local (in #) measured temperature gradient in the
heat conduction relation to infer a measured thermal diffu-
sivity x=-q/n(dT/dr)=qLy/nT, the local temperature gra-
dient scale length must be mapped into an average value
over the flux surface

(Ly)exp = = T(dr/dT) ey, = (Lp)

== T(dr/dT) e [ {dr)/dr(Bey,) ]

= (Lp)expl(dr)/dr(eyp) ]

= (Lp)expl [V Oex) [ V)] 9)
From Eq. (2), the local |Vr| may be written

12

[Vr(r,0)| =

(10)

JR
cos(x sin 6) + a—o cos O+ [s,—sscos O+ (1 +s,)x cos Osin O sin(f+ x sin 6)
r

Using this in Eq. (4) yields an expression for the FSA value
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where
. JRg . . .
cos(x sin ) + N cos O+ [s,—sscos O+ (1 +s,)x cos Flsin O sin(O+ x sin 6)
r

F(r,0) = 12 : (12)

The FSA value of the temperature gradient scale length,
(Ly)=—(T/(dT/dr)), which is the quantity needed for the
inference of experimental thermal diffusivity using the aver-
age heat flux calculated by 1D transport codes, is related to
the local value of the temperature gradient scale length,
L(0)==T/(dT/dr),, which is the quantity measured, by

(Ly(r) |Vr(r.0)
L(r,0) (|Vr(r))
For the case =0, corresponding to the outboard midplane

location of the measured gradient scale lengths, Eq. (10) re-
duces to the Shafranov shift correction

= H(r,0). (13)

1

V(r,0=0))= ———.
V(. 6=0)| (1 + Ry dr)

(14)

A series of calculations was performed for the same
plasma model with minor horizontal radius a=0.583 m,
varying triangularity, elongation k=1.75, and major radius
Ro(a)=1.77 m, using Egs. (10)-(13) with s,=0,55=0 and

dRy
o K 1+—rcos€

« [sin?(0+ x sin 6)(1 + x cos 6)” + k*cos” @

using the elliptical model discussed in the previous section,
for which H(r,0=0)=1/2(1+«%*)=1.43. The results are
shown in Table I. The Miller model predicts values of
H(a, 6=0) that are 10%-20% larger than those predicted by
the elliptical model.

Following the procedures described in Ref. 5, the
thermal diffusivities were calculated from measured tem-
perature gradients (mapped to the outboard midplane) for a
different ELMing H-mode DIII-D discharge between edge-
localized modes (ELMs). This discharge had parameters
(I=1.0 MA, B=1.6 T, k=1.83, 6=0.44, A’=-0.25). Both
the effective radius of the unelongated toroidal model and
the factor H given by Eq. (13) were calculated first with the
elliptical equilibrium model and then with the Miller equilib-
rium model, as discussed above. Use of the Miller model
instead of the simpler elliptical model to represent the flux
surface geometry increases the inferred thermal diffusivities
significantly, as shown in Fig. 3.

Neglecting the effect of the radial variation of the elon-
gation and triangularity (s,=0,s5=0) and also momentarily
neglecting the triangularity (6=0), reduces Eq. (13) to a form
that more readily exhibits the various factors involved

[Ry+ rcos O][1+ (k*> - 1)sin” 6]"2d6

2 2 G112
LAr [1+ (k"= 1)cos” 6]
(Ly(r)) = H(r,0=0) = 0 ~
LT(r,t9=0) z?RO .
1+—
ar 1Jo

V. PREDICTION OF POLOIDAL DISTRIBUTION
OF CONDUCTIVE HEAT FLUX

One-dimensional transport codes calculate an average
conductive heat flux, (g). Assuming that the density, tem-
perature and thermal diffusivity are uniform over the flux
surface, the poloidal dependence of the conductive heat flux
must arise through the poloidal dependence of the radial tem-
perature gradient

(15)

[Ry+rcos O][1+ (k*—1)sin’ 0]"2d6

q(r,60) =n(r)T(r)x(r)L7(r,6)
=n(r)T(r) X(r){(L(r))"'H(r, 6). (16)

The value of H(r,0)=q(r,0)/{q(r))={Ly(r))/L{r,6)
calculated from Egs. (10)—(13) near the separatrix (r—a) of
one of the DII-D plasmas previously described (A’
=-0.25,k=1.75,r/R=1/3) is plotted in Fig. 4. The curve
labeled “symmetric” uses averaged values «=1.77,
6=0.07 for all values of 6, while the curve labeled “asym-
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FIG. 3. (Color online) Inferred experimental thermal diffusivities for a
DIII-D shot using the elliptical and the Miller models to represent the flux
surface geometry.

metric” uses experimental values k,,=1.50, 6,,=0.0 in the
upper half 0= @< and «k=2.32,5=0.14 in the lower half
T< <2

For comparison, the heat flux through a flux surface
about 6 cm inside the separatrix calculated”® by the 2D
transport codes UEDGE (Ref. 9) and SOLPs (Ref. 10) using the
same temperature and density data are also shown. The
UEDGE heat flux includes the convective component as
well as the conductive component and is normalized to the
average value over the flux surface (rather than the flux
surface average normalization of H). The SOLPS result is the
conductive heat flux normalized to its FSA, which is identi-
cal to the quantity H as calculated by SOLPS. The bunching
of the flux surfaces at the outboard midplane and the
elongation at the top and bottom of the plasma account for
the distribution. The Miller model does not contain an
explicit representation of the lower divertor present in this
shot, and the difference between the Miller model prediction
and the numerical results increased as the separatrix was
approached.

VI. MAPPING RADIAL GRADIENTS TO DIFFERENT
POLOIDAL LOCATIONS

The above formalism can also be used to map a radial
gradient (temperature or density or any other quantity) deter-
mined (by measurement or calculation) at a poloidal location
0, to a different location 6,. The gradient scale length of any
flux surface quantity X,L=-X/(dX/dr) maps according to
Eq. (13),

H(r,6,)
H(r, 02)

L(r,0,) = H'(r,0,)(L(r)) = L(r,6)). (17)
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FIG. 4. (Color online) Predicted poloidal distribution of the conductive heat
flux near the separatrix for a DIII-D shot.

Vil. GYROVISCOUS TORQUE

. . o
The neoclassical gyroviscous torque can be written

RV ¢V 1D, = — -2 (V/(R2V - T1- V)

V' o
1 d
= vﬁ_(rlj(v <RI]¢, -1I- lleB,,))
19 1/ P2
= Va—w(V (R°B,I14)), (18)
where
T V4R dt
Hd)ll‘:_ﬂR(_(L)’ V' = i_p (19)
ZeB LWP B

P

When the elliptical equilibrium model R=Ry+r cos 6,
Z=xrsin 0, B,(r,0)=B,(r)/(1+rcos 6/Ry) is used, this
becomes'"

1 nmT;
(R*V ¢V -1L),, =Rnmjv,Vy = ~0,G;-—1y
J78 Jra) @l 2 J Z]eB ]
(20)
where an effective angular momentum transfer frequency
T
V= ———G0, 21
‘T 2R%e B 20

has been defined. The poloidal asymmetry and spatial gradi-
ent factors are

0;=(4+)Vy + (1= V),
(22)
-1 -1 -1
Gir)= r(Lnj + LTj + LV¢/_)

and the poloidal asymmetries have been normalized ﬁj‘

=n"/(r/Ry), V*=V5*/ (r/R).
Low-order Fourier expansions
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n(r,0) = n;)(r)(l +n;sin 6+ nj cos 0),

(23)
Vyi(r,0) = V?J,j(r)(l + Vi, sin 0+ V. cos 6)
have been used in deriving Egs. (20) and (21). These Fourier
components of the density and rotation velocities can be cal-
culated by taking low order Fourier moments of the momen-
tum and particle balance equations to relate the poloidal
asymmetry components to the density asymmetry compo-
nents

0

ViVo== 1" ion() = Vi + ),

(24)
0

n .
AT rn—g Vin(€ +1S) = Vop*
and to calculate the density asymmetry components.'3’14
The radial component of the momentum balance then
can be used to relate the toroidal velocity coefficients to the
. . . 14
poloidal density coefficients

010
s n,By E, S .
V(f)/>jV¢j= lonjnoB(z)(8+” +ny, )+{E;—P;]nj—vg)jnj
J
(25a)
and
010
. n,By B E, ,
Vgﬁjvfﬁiz_ lon]nOBg(n +n, )+L??, j](28+nc)
J
= Vi, +n9), (25b)

where P; =(1/n° nje; )B(,(?po/ Jr and the electron density asym-
metries are related to the ion density asymmetries by charge
neutrality
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e _ Zan;" + Zin®

n,

= yil; 4+ Y. 26
Zl’l +ank ’y.]j Yiltk ( )

With the Miller equilibrium model described above,
the same Eqgs. (18) and (19) obtain, leading to the explicit

relation
nm;T; (Vg R
35 AVfR)
5 i ZeB o,
<R V¢‘V‘Hj>gu dgp
Bp
-4 jg R3n!-m-Ti a(véf/R)da
ar ZieB a0
= 70 . (27)
fﬁ a3y
B, dr
where
apdt,  F(O)R(O)[cos’(6+x sin 6) + < sin” 0]d6
ar B, K[sin2(6+x sin 0)(1 + x cos 0)% + k° cos” 6]"*°

(28)

Evaluation of these relations leads again to Eq. (21) for
the effective angular momentum transport frequency, but
now with the radial gradient factor

Lt

29
RO dr ( )

_ -1 -1 -1 _
Gj_ r(Lnj +LTj +LV¢]_

modified to take into account the “Shafranov shift” effect of

the flux surface compression/expansion, and with the poloi-
dal asymmetry factor now given by

2(A +B)/&*

= 24+Bie (30)

«C

where

= 3@ (1+n°cos 0+ n’sin O)(1 + & cos )(1 + & cos §)2(V5¢ cos 00—V, sin 0)do,

B= g§ (1+ncos 8+ n'sin O)(1 + & cos O)(1 +& cos §(1 +x cos O)sin &(1 + Vi sin 0+ Vi, cos 0)do,

dR
[cos? &+ sin® 6]"2(1 + cos §){Cos(x sin 6) + d_o cos O+ [s,—sscos O+ (1 +s,)x cos f]sin 6 sin §}
r

(1)

4

&= 0O+xsin 6.

In the limit k— 1,8—0, Egs. (30) and (31) reduce identi-
cally to the first of Egs. (22).

The effects of using the Miller equilibrium model in-
stead of the simpler elliptic equilibrium model to evaluate

[sin® &1 + x cos 6)% + k* cos® 0]

de,

the gyroviscous torque are (i) to add a “Shafranov shift”
effect in the radial gradient term G; and (ii) to introduce a
new form for the poloidal asymmetry factor ®;. Neither of
these changes in factors should, in themselves, produce new
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terms that would cause an order of magnitude or larger
change in the predicted gyroviscous torque. However, use of
the Miller equilibrium in the evaluation of the poloidal asym-
metries themselves (n*¢, V*¢) might be expected to produce
both significantly larger asymmetries and a gyroviscous
torque of significantly larger magnitude. In order to investi-
gate this, it will be necessary to extend the solution
procedurelz_14 for the Fourier moments of the poloidal mo-
mentum balance equation to be based on the Miller equilib-
rium model, and that will be the subject of a future paper.

Vill. SUMMARY

The Miller equilibrium model, an analytical representa-
tion of the flux surface geometry that includes elongation,
triangularity, and  “Shafranov  shift” flux surface
compression/expansion, has been applied to improve several
practical computation models for tokamak plasmas that in-
corporate an analytical treatment of the flux surface geom-
etry. Improved models for an effective unelongated toroidal
plasma representation of elongated flux surfaces, for map-
ping temperature (and density) gradients measured at one
poloidal location to other poloidal locations and to an aver-
age gradient over the flux surface, for interpreting experi-
mental heat diffusivities from local experimental temperature
gradients and calculated average conductive heat fluxes, for
calculating the poloidal distribution of radial conductive heat
fluxes, and for evaluating the gyroviscous angular momen-
tum transport rate were discussed. Illustrative numerical cal-
culations were presented for DIII-D plasmas.
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