
DEVELOPING A SMART AND LOW COST DEVICE FOR MACHINING
VIBRATION ANALYSIS

A Dissertation
Presented to

The Academic Faculty

By

Pierrick Rauby

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Mechanical Engineering in the
School of George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

August 2018

Copyright c© Pierrick Rauby 2018

DEVELOPING A SMART AND LOW COST DEVICE FOR MACHINING
VIBRATION ANALYSIS

Approved by:

Dr. Kurfess, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Saldana
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Liang
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: July 20, 2018

In a world of change, the learners shall inherit the earth, while the learned shall find

themselves perfectly suited for a world that no longer exists.

Eric Hoffer

ACKNOWLEDGEMENTS

I would like to especially thank Professor Thomas Kurfess for his guidance during this

work. He consistently helped me on the research with advice that allowed me to take a step

back when I was going the wrong way.

I also would like to thank Professor Steven Y. Liang and Dr. Christopher J. Saldana for

being part of the reading committee of this work despite their very busy schedule.

My thanks also go to the administrative staff of the Office of International Education

and the School of Mechanical Engineering, especially Mrs. Glenda Johnson whose expla-

nation tremendously helped me with paperwork.

Finally, I must express my gratitude to my parents and family for their trans-Atlantic

support throughout this year. Thank you.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

Chapter 2: Research background . 3

2.1 Machine monitoring . 3

2.1.1 Sensing methods used in previous studies 4

2.1.2 Available IoT platforms . 7

2.1.3 Comparison . 12

2.2 Machine Learning (ML) . 13

2.2.1 Supervised and unsupervised machine learning 15

2.2.2 Supervised algorithms . 16

2.3 Communication Protocols for data transmission 23

2.3.1 MQTT . 23

2.3.2 CoAP . 24

2.3.3 WebSockets . 25

v

2.3.4 Bluetooth and Bluetooth Low Energy 25

2.3.5 LORA . 25

2.3.6 Zigbee . 26

2.4 Cloud computing and Edge computing . 26

Chapter 3: Proposed Framework . 30

3.1 Hardware components . 30

3.2 Software architecture . 32

Chapter 4: Implementation and Results . 34

4.1 Hardware selection . 34

4.2 Realtime data acquisition on the ti-am335x chip 38

4.2.1 Process Realtime Unit (PRU) . 38

4.2.2 Linux Industrial I/O (IIO) subsystem 40

4.3 Experimental setup . 45

4.3.1 Coice of the Materials . 45

4.3.2 System setup on the band saw . 45

4.3.3 Sample size and frequency . 46

4.3.4 Data acquisition . 47

4.4 Feature selection and preprocessing . 48

4.4.1 choice of Kernel Support Vector Machine (KSMV) 48

4.4.2 Feature selection . 48

4.4.3 Preprocessing . 49

4.5 Trainning and deployment . 50

vi

4.5.1 Training of the algorithm . 51

4.5.2 Export classifier and deployment on the BeagleBone Black 51

4.5.3 Main Application Code . 51

4.6 Architecture validation and Classification results 52

Chapter 5: Conclusion and recommendations . 54

5.1 Contribution of this Thesis . 54

5.2 Limitations of the study and recommendations 54

5.3 Conclusion . 55

Appendix A: Eagle File for the Beaglebone Black Cape 58

A.1 The front side of the BeagleBone Cape . 58

A.2 The back side of the BeagleBone Cape . 58

Appendix B: PRU Tutorial . 61

Appendix C: ti am335x tsadc.h header . 82

Appendix D: BB-ADC-00A0.dts device tree overlay 87

Appendix E: The iio generic buffer.c application 89

Appendix F: The launch.sh script . 105

Appendix G: The preprocessing.py code . 106

Appendix H: The kernel SVM trainning.py code 109

vii

Appendix I: Detailed results for linear kernel and rbf kernel on the test set . . 111

I.1 Result for the linear kernel . 111

I.2 Result for the rbf kernel . 111

Appendix 6: The main application code . 113

References . 119

viii

LIST OF TABLES

2.1 Comparison between different microcontrollers 10

4.1 Device Tree and clock settings for the ADC 46

4.2 Sampling frequency validation . 46

4.3 Band Saw Setup . 48

4.4 Result on the test set for different kernels 51

ix

LIST OF FIGURES

1.1 The 4 industrial revolutions. [2] . 2

2.1 The different components for optical method in tool flank application. [4] . 4

2.2 Number of publications using indirect measurement methods. [7] 5

2.3 Architecture of a microcontroller. 8

2.4 Architecture of a microprocessor. 11

2.5 Classical programs and Machine Learning programs. 13

2.6 Linearly separable points (left), non-linearly separable data point (right). [22] 18

2.7 Data set where no linear boundary can be found. [22] 20

2.8 Mapping Φ from the data space X and the feature spaceH [23] 20

2.9 Data set where no linear boundary can be found. [24] 21

2.10 Multi-layer Perceptron structure. [25] . 22

2.11 MQTT protocol, subscribtion (left) and publishing (right). 24

2.12 A typical LoRa Architecture. [26] . 26

2.13 Fog based computational Network. [30] 27

2.14 Fog computing with cyber-physical interaction. [20] 28

3.1 The different steps of the training phase 31

3.2 The deployed system. 32

x

4.1 The Band Saw used for this study. 34

4.2 The mechanical adaptor for fix the accelerometer on the band saw. 35

4.3 The Beaglebone Black wireless. 36

4.4 The cape for the electrical adaptator . 37

4.5 The final hardware setup for this work. 37

4.6 Architecture of the AM3358 with Cortex R© -A8 and the 2 PRUs [33] 39

4.7 Interaction between the ARM R© and the PRUs when using RPMsg [34] . . . 40

4.8 The Linux user and kernel spaces [35] . 41

4.9 The Linux user and kernel spaces [36] . 42

4.10 The final setup on the machine . 45

4.11 The steel part (left) and aluminum part (right) 48

4.12 The 5 samples for the classes. 49

4.13 Preprocessing flow chart . 50

4.14 The main application flow chart . 52

4.15 The experimental setup for testing on the radiator 53

A.1 The front side of the BeagleBone Cape . 59

A.2 The back side of the BeagleBone Cape . 60

I.1 Confusion matrix and precision statics for the linear kernel 112

I.2 Confusion matrix and precision statics for the rbf kernel 112

xi

SUMMARY

Internet of Thing (IoT) is receiving an enormous attention especially when it comes

to monitor machining operations. However, current technology must continue to evolve

in order to reduce cost and to improve data analytics1. More importantly, IoT devices

often raise security concerns, as they transfer a considerable amount of data to the cloud.

Simultaneously, the computational power of embedded platforms has increased, giving the

ability to process data locally; thus, edge computing is able to reduce the security problem

as they minimize the quantity of information transferred to the cloud. Therefore, these

problems can be addressed by developing a truly smart low-cost device that takes advantage

of fog computing as opposed to cloud computing.

Frameworks have been developed to demonstrate the capability to remotely monitor

machine health using cloud computing, the objective of this thesis is to associate those

frameworks to the computational power of low-cost embedded platforms to process data

locally and in real-time.

For this work a BeagleBone Black is used. It is powered by an AM335x ARM Cortex-

A8 processor that runs at 1GHz. This computer is associated with an analog accelerometer

through its Analog to Digital Converter. The system is monitoring vibrations on a bandsaw,

as it is running Linux it does not have deterministic-sampling capabilities; therefore, the

Industrial I/O subsystem is used to enable hardware interrupts on the Linux Kernel space.

The vibrations generated by the cutting of different materials are recorded and used to train

a machine learning algorithm on an external computer. Training will use a Kernel Support

Vector Machine algorithm. Once the algorithms are trained they are will be implemented

locally on the BeagleBone Black so that the analytics of the data are done at the ”edge”.

The final goal is to be able to determine the nature of the material that is being cut by the

bandsaw.

1McKinsey Global Institute: Unlocking the potential of the Internet of Things, June 2015

xii

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world

CHAPTER 1

INTRODUCTION

The 4th industrial revolution is underway for years thanks to the development of Cyber-

Physical Systems (CPS). It was named Industry 4.0 by the German research union for

economy and science in 2011 when it started a 400 million euro research program to main-

tain the German industry competitivity. Industry 4.0 includes many computer-related tech-

nologies such as additive manufacturing (AM), cloud computing (CC), machine learning

(ML) or Internet of Things (IoT), aiming to connect all parts, tools and productions sys-

tems together. This allows a collection of large amount of data, to carry out analysis of the

production process and to be able to improve it.

However, with the adoption of Industry 4.0 technologies, we are facing new issues es-

pecially in the area of security. For example, it is not desirable to stream all production data

in some industries that are sensitive to information security, such as industries related to na-

tional defense. Moreover, streaming data from every possible source can lead to bandwidth

issues. Hence, the cloud computing strategies can be opposed to the need of real-time and

decentralised decision making concepts promoted by the Industry 4.0.

Some studies have shown the possibility of using computer on a local network instead of

sending data to the cloud. However, there is little wirk currently few work on the use of em-

bedded microprocessor platforms to process data at the edge. This presents the advantage

of significantly reducing the amount of data transferred to the cloud, while simultaneously

increasing security, reducing cloud storage space, and reducing transmission bandwidth

[1]. Furthermore, there are currently few studies on the used of powerful embedded mi-

croprocessor platforms for data acquisition and processing. Typically, those two task are

performed by different chips.

Based on this observation, this work tries to implement a real-time data acquisition

1

Figure 1.1: The 4 industrial revolutions. [2]

and processing solution on a BeagleBone Black micro-computer. The solution leads to a

decentralized, more private, secure data management which better adresses the Industry 4.0

concerns.

First, the previous work on this topic is introduced. Then the realtime data acquisi-

tion on a linux based microprocessor is discussed. Next, the experimental setup and the

trainning of a machine learning algorithm is presented. Finally, the system is tested in real

conditions and the results are analyzed.

2

CHAPTER 2

RESEARCH BACKGROUND

When it comes to producing a mechanical part from raw material, various techniques are

used; in most cases, machining is employed at some point in the process. With the devel-

opment of low cost sensors and the embedded platforms, automatic machine monitoring

is becoming a major axis of performance improvement for manufacturers. This chapter

presents a brief review of the state of the art in terms of automatic machine monitoring.

First the different sensors and data acquisition methods are presented, then a brief intro-

duction to machine learning common algorithms is performed. Finally, the most common

IoT protocols for data transfer are introduced.

2.1 Machine monitoring

In order to increase quality and productivity different sensing methods are widely used.

They can be classified into direct and indirect methods [3]. Direct methods such as opti-

cal and electrical enable direct measurement of the physical characteristic that need to be

accessed. This results in a high accuracy but it often requires stopping the process during

the measurement which is not suitable for online production. With indirect methods, such

as acoustic emission measurement, vibration or cutting force, the physical characteristic is

determined through the measurement of other values such as current, force, et al. which

can be acquired without interrupting the production process; thus they are more interesting

for Realtime application.

3

2.1.1 Sensing methods used in previous studies

Direct sensing methods

Optical methods are based on different components, as in Figure 2.1: a source of illumi-

nation to enhance the quality of the image, a camera and some lens that feed the computer

with data, a computer to process the data and a monitor in order to display the result of

the process. Siddhpura et al. [3] states that these methods seems to be promising because

of the high accuracy and flexibility, but they can only be used between production cycles

which is not exactly a Realtime technique.

Figure 2.1: The different components for optical method in tool flank application. [4]

Electrical methods are specially used for tool wear detection. N. H. Cook [5] discussed

these techniques; the electrical resistance at the contact between the tool and the part de-

pends on the tool’s wear; so it is possible to estimate the wear condition of the tool. Other

4

electrical methods use resistor films applied to the tool. However, the variation of the cut-

ting force can introduce bias in the resistance interpretation, these methods are not easily

applicable in the industry.

Others direct methods are such as radioactive techniques or analysis of the wear parti-

cles but they are slow and not applicable to the industry.

Indirect methods

Cutting force can be measured in order to monitor the physical characteristic that needs

to be determined, as an example, the force components vary as the tool wears. However,

other parameters such as work harnessed and cutting parameters, also have an influence on

the cutting force, which can introduce uncertitude in the measurement, in the case of tool

wear prediction Dimla E. [6] discussed the importance of monitoring the static cutting force

but also the dynamic cutting force in order to have an indication of the system’s fluctuations.

Nevertheless, this technique has been widely used by researchers, as Siddhpura et al. [7]

presents in Figure 2.2.

Figure 2.2: Number of publications using indirect measurement methods. [7]

5

Sound is recorded and the variation of low frequencies can be analyzed to have informa-

tion on the cut. Again, this technique is widely used to estimate the tool wear stage; as

Maropoulos, P.G. and Alamin, B. [8] explain, the sound spectra is a results of the rubbing

action between the tool and the workpiece. When the flank wear enters the final stage, the

sound pressure level drops off.

Variation of power input in the machine gives valuable information on the cutting pro-

cess, in any machining operation electric energy is used to remove material from the work-

piece. By subtracting the idle power of the machine from the measured power the power

consumption for the operation can be determined. This method presents the advantage of

being simple to implement; however, in some applications, it is less sensitive than other

direct methods as sound or force monitoring[7].

Vibrations can be recorded using a simple accelerometer which detects the rub between

the tool, the chip and the workpiece; then the signal contains information about the cut. In

the case of tool wear, the amplitude of the vibration at frequencies in the range from 4 to

8 kHz increases with the cutting-edge wear. This technique has been used to implement

online monitoring application by Pandit, S. M. [9]. Dan and Mathew [10] considered that,

thanks to the progress in vibration measurement, this method would become more practical

and cost effective.

Two categories of monitoring techniques have been discussed above; unlike direct mon-

itoring, indirect monitoring techniques are applicable to on-line monitoring. Multiple stud-

ies have demonstrated that cutting forces, sound emissions, variation of power consumption

and vibration are efficient to follow tool wear and to predict its breakage.

Whatever monitoring technique is employed, some computing power is needed after the

sensor, to convert the data into human-readable information. The development of processor

technology has made accessible a wide range of boards for embedded application and the

most well-known are presented below.

6

2.1.2 Available IoT platforms

The raw data from the sensor needs to be processed before being transmitted to the user;

therefore, either a microcontroller or a microprocessor can be used. Microcontrollers are

usually less powerful but also less expensive than microprocessors, which can be seen as

small computers.

Microcontrollers (MCU)

Microcontrollers can only run a single control loop; the absence of an operating system

on those chips disables multiple threads. Since they can only achieve a single task, the

relation between the input of the process and the output must perfectly understood; this

enable designers to reduce the processing power of the board and the cost. The general

architecture of a microcontroller, as in Figure 2.3, contains:

• In/Out interfaces

• timer

• RAM memory for data storage (volatile)

• ROM memory to store the programs

• Central Process Unit (CPU)

• Analogue to Digital Convert (ADC) is also present on most of the microcontrollers

The timer clock speed is usually in range from a few MHz to more than a hundred MHz;

thus microcontrollers are not suitable for processes that require a high computational power

and should only be used for simple tasks. The most well-known microcontrollers are cer-

tainly the Arduino family, but other boards such as Teensys, Particles and the ESP32 are

getting interest from the developers community. In the following, the different characteris-

tics of the Arduino Uno, the Teensy 3.2 and the Particle Photon are presented.

7

Figure 2.3: Architecture of a microcontroller.

Arduino Uno is the most famous board from Arduino R©; it is an entry level microcon-

troller which has a very important community of users, thus it is very well documented.

The Arduino Uno is based on the ATmega328P chip. It has 14 digital In/Out pins, 6 ana-

log inputs an Inter-Integrated Circuit (I2C) bus and a Serial Peripheral Interface (SPI). The

memory consists of a 2KB SRAM, 1KB EEPROM and a flash memory of 32KB, all from

the ATmega328P. The clock speed is given by a 16MHz quartz crystal. The dimensions of

the board are 68.6mm by 53.4mm for a 25g weight. It costs around $35 [11].

Teensy 3.2 is a USB-based microcontroller development system distributed by the SME

PJRC R©. As with the Arduino, the code is compiled externally and then transferred onto

the board using the USB port. For this board, the code can be written either in C code

or in Arduino code (.ino). It has a 64KB RAM, 2KB EEPROM which enables the use of

Teensy for more advanced projects than the Arduino Uno. The flash memory is also more

important, with 256KB available in the most recent version of the board. Regarding the

In/Out capabilities, the Teensy 3.2 has 34 digital In/Out pins, 21 analog inputs, a SPI and a

8

I2C bus. The board is powered by a 32-bit ARM Cortex-M4 running at 72MHz. The board

size is 35mm by 18mm (weight 15g) and it costs around $20 [12].

Particule Photon has been developed for Internet of Things projects with a Cypress

BCM43362 WIFI chip. The board is powered by a 120MHz ARM Cortex-M3, it has

128KB of RAM, 16KB or 64KB of EEPROM (depending on version) and 1MB of flash

memory. The connectivity with external sensors is ensured by 18 general In/Out pins, 8

analog pins, 2 SPI and 1 I2C. The dimensions of the board are 36.58mm by 20.32mm for a

weight of 5g, and it costs around $20 [13].

ESP32 is commercialized by Espressif. It is powered by a Tensilica Xtensa 32-bit LX6

microprocessor with 1 or 2 cores depending on the version and running at 240Mhz. The

board has also an ultra-low power co-processor that permits ADC conversions and some

computing tasks while in deep-sleep mode. As for the Photon, the ESP32 provides Internet

of Things capabilities with WIFI 802.11 b/g/n, Bluetooth and Bluetooth Low Energy. The

memory consists in 448KB of ROM, 520KB of SRAM and the flash memory is either

2MB or 4MB depending on the versions. The connectivity is ensured by 34GPIO, 18 ADC

channels, 4 SPI pins and 2 I2C pins which permits a wide range of sensors to be connected

to this board. The ESP32 dimensions are 55.3mm by 28mm for a weight of 9.6g and it

costs around $15 [14].

The microcontrollers presented above are not the only ones available on the market.

However, their characteristics, as reprensented in table 2.1 depict well the wide range of

options possible when it comes to choose a board for an application: from the first develop-

ment board such as the Arduino to more advanced board such as the ESP32 it is important

to specify the need before choosing the board for an application. Furthermore, choice can

be made to use more powerful boards such as microprocessors; this other kind of board is

introduced in the following section.

9

Table 2.1: Comparison between different microcontrollers

Characteristic Arduino Uno Tensy 3.2 Particle Photon ESP32
Processor ATmega328P ARM Cortex-M4 ARM Cortex-M3 Tensilica Xtensa
Frequency 16MHz 72MHz 120MHz 240MHz

GPIOs 14 34 18 34
ADCs 6 21 8 18

SPI/I2C yes yes yes yes
WIFI/Bluetooth on shield No yes/no yes

RAM 2KB 64KB 128KB 520KB
EEPROM 1KB 2KB 16KB or 64 KB 448KB

Flash Memory 32KB 256KB 1MB 2MB or 4MB
Dimensions(mm) 68.6 by 53.4 35 by 18 36.6 by 20.3 55 by 28mm

Weight(g) 25 15 5 10
Price 35 20 20 15

Microprocessors (MPU)

Microprocessors can be seen as mini-computers, they contain most of computer’s usual

components:

• Central Process Units (CPU) which is the part of the chip that is responsible of all

the computing tasks.

• Peripheral Interface

• Timers

• Memory such as RAM and ROM

• Inputs and Outputs chips

However, it is important to notice that those functions are not contained of a single chip,

as shown in Figure 2.4, all these components can be contained in a single board but they

are not contained in a the same chip. Unlike microcontrollers, microprocessors run op-

erating systems; usually a specific version of Linux or Android is provided and sustained

10

by the boar or chip distributor. In the following the most well-known microprocessors are

presented: The Raspberry Pi 3 B+ and the BeagleBone Black (wireless version).

Figure 2.4: Architecture of a microprocessor.

Raspberry is a mono-board micro-computer distributed by the Raspberry foundation.

It is powered by a 64-bit quad-core processor Broadcom BCM2837B0 ARM Cortex-A53

running a 1.4GHz. The memory consists in 1GB LPDDR2 SDRAM. Regarding the con-

nectivity, in addition to 40 In/Out pins and 2 USB ports, it has, 2.4GHz and 5GHz WIFI

capabilities, Bluetooth and Bluetooth Low Energy. This board has also an SPI, an I2C bus,

a full-size HDMI port, and a CSI&DSI inputs to connect camera&touchscreen. However,

there is no Analog to Digital Converter in the current version. Thus, the Raspberry Pi 3

needs some add-ons to be able to interact with analog sensors. The dimensions of the board

are 86.9mm by 58.5mm for a weight of 41g. It costs around $35 [15].

BeagleBone Black is a low-cost community supported development platform distributed

by the BeagleBoard foundation, project is totally open source, which means that all the

schematics and components of the board can be found on line and bought separately. It

is powered by the TI-am3358 ARM Cortex-A8 processor running at 1GHz, but it also has

11

two Process Realtime Units (PRU) microcontrollers, each running at 200MHz whose role

is to manage deterministic tasks, and which are totally integrated in the TI-am3358 chip.

Connectivity is ensured by 44 In/Out pins, one high speed USB port and 8 analog inputs.

The new version of the BeagleBone Black has seen its Ethernet port replaced by a 802.11

b/g/n 2.4 GHz WIFI with also Bluetooth 4.1 and Bluetooth Low Energy. The memory of

the board consists in 512MB of DDR3L DRAM and 4GB flash memory, additionally the

SD card port can be used to store data. The board dimensions are 86.4mm by 53.3mm for

a weight of 35g. This board costs around $55 [16].

The two microprocessors presented above illustrate well two different way to use mi-

croprocessors; the BeagleBone Black, thanks to its numerous In/Out pins and its Analog

to Digital Converter, is more suitable for sensor and data acquisition applications. The

ti-am3358 chip also provides very interesting computing power, and the Process Realtime

Units enable high speed and deterministic data acquisition. On the other hand, the Rasp-

berry Pi interfaces, as the HDMI port, are more suited to multimedia projects; the same

goes for its quad core processor, which provides more powerful graphics processing.

2.1.3 Comparison

In the two previous sections are presented the microcontrollers and the microprocessors.

The first ones are less expensive but, as they do not run an Operating System, they must

be dedicated to a single task, it is not possible for them to manage threads. One the other

hand, their behaviors are totally deterministic. Thus, microcontrollers are very suitable for

Realtime applications; however, the power of their Central Processing Unit does not permit

high level computation.

In contrast, microprocessors are more powerful, which enables to run some machine

learning algorithms on those boards. The use of an operating system on those chips enables

the use of threads and so to have multiple applications running at the same time. However,

it results in a loss of the deterministic behavior of those applications; the Operating System

12

can ”jump” from one application to the other, which is an important drawback when it

comes to acquiring data at a high and precise frequency. It is not doable by running an

application on the user space of the operating system of a microprocessor.

2.2 Machine Learning (ML)

Industry 4.0 transforms the way we are producing parts. Machine Learning, as a subfield

of artificial intelligence plays a very important role in this transformation. As machines

are increasingly connected to sensors and the cloud, a very important amount of data is

generated, it can be used to train machine learning algorithms. Those ”learning” techniques

are useful, when:

• humans expertise does not exist

• humans are not able to explain their expertise

• prediction problems involve a high level of complexity

Figure 2.5: Classical programs and Machine Learning programs.

Figure 2.5 presents the difference between classical programs and machine learning prob-

lems. In the first ones, data and rules are provided as an entry, and the program gives an

answer to the problem. In contrast, for machine learning programs, the entries consist in

Data and already known answers; then the program establishes rules over this training set

of data. Numerous studies have been conducted on the use of machine learning techniques

for manufacturing prognostics.

M. Elangovan et al. [17] have discussed the effect of the Support Vector Machine

(SVM) errors functions on the classification of vibration signals for single point cutting

13

tools. The condition of a carbide tipped tool is predicted using a Kernel Support Vector

Machine for two different error functions C-SVC and ν-SVC. The efficiency of these func-

tions is then compared to other classifiers such as Decision-Trees, Naı̈ve Bayes and Bayes

net. It was found that, either for C or ν errors functions, the RBF Kernel gives higher

classification efficiency. Finally, the linear Kernel can be interesting when it comes to have

very fast classification. In comparison with other classification algorithms, the Kernel Sup-

port Vector Machine (KSVM) with ν-SVC has better efficiency. Then M. Elangovan et al.

have shown that KSVM are promising for the prediction of the condition of a single point

cutting tool.

C. Drouillet et al. [18] have used the neural network technique to predict tool life by

monitoring the spindle power. End milling operations were performed on a steel work, and

different MATLAB TM learning functions were used to train a Neural Networks (NN). This

method has demonstrated a good correlation between true and computed Remaining Useful

Life (RUL); also it was very fast and could be used for Realtime RUL prediction.

Y. Fu et al. [19] have implemented Convolutional Neural Networks (CNN) for process-

ing images representations of vibration signals. The vibration states have been considered

to be a very promising way to real-time monitor machine states. Feeding the algorithm

with an image of the signal without any preprocessing avoids possible bias introduced by

the feature selection. Finally, the trained CNN showed very good results.

P. O’Donovan et al. [20] have introduced a fog computing industrial cyber-physical

system for embedded low-latency machine learning application. Their research highlights

that fog computing can be employed for real-time monitoring; this architecture enables a

more distributed and scalable network while enhancing the privacy and the security of data.

Different machine learning algorithms have been implemented over the above-mention-

ned studies. A review of the different available techniques must be conducted in the fol-

lowing. First the difference between supervised and unsupervised machine learning is in-

troduced, then the most well-known supervised ML methods are presented.

14

2.2.1 Supervised and unsupervised machine learning

As explained above, to be trained, machine learning algorithms usually expect Data and

the ”answer” of the problem. However, sometimes the output is not known, and this is

where the unsupervised machine learning is promising. The goal of these algorithms is

to highlight the structure or the distribution of the data, thus it aims to learn a new data’s

representation. The 2 major techniques of unsupervised machine learning are:

dimensional reduction: a data set of high dimension is reduced to lower dimension while

keeping the ”important” characteristics. Thus, the redundancies are removed, the

storage space and the computational power required to manage the dataset are re-

duced, finally data visualization and interpretation is improved.

clustering: the general characteristics of the data are understood, then the different ob-

ject of the data set can be grouped based on those characteristics. Again, the data

interpretability is improved.

However, most of the time the answers of the problems for the training sets are known;

then it is called supervised learning. The aim is to make predictions rather than to enhance

the data interpretability. The predictions can either be in the form of a decision function

or of a classifier, that can be binary or multi-class. The mains techniques of supervised

machine learning are:

• Decision Trees

• Naive Bayes classifiers

• Logist Regression

• Support Vector Machine

• Kernel Support Vector Machine

• Neural Networks

15

2.2.2 Supervised algorithms

Decision trees

Decision Trees can be used in other fields, but when it comes to machine learning, they are

applied to predict the value or the class of an output based on given inputs; to that end these

algorithms repetitively divide the working area into subs-sets, which are divided again and

again: ”A decision tree is a recursive partition of the training set into smaller and smaller

subsets” [21]. For data to be used in a Decision Tree model it needs to be discreet and

without any ordering (e.g. classify fruit from color, shape, texture, size). Given a split

variable j and a splitting point s, two regions (left and right) can be defined with:

Rl = x : xj ≤ s and Rr = x : xj > s

For regression problems, j and s have to be chosen in order to minimize:

minj,s

(∑
i:xi∈Rl(j,s)

(yi − cl)2 +
∑

i:xi∈Rr(j,s)
(yi − cr)2

)
For classification problems, j and s have to be set such that the impurity is minimized:

minj,s

(
|Rl(j,s)|

n
· Imp (Rl(j, s)) + |Rr(j,s)|

n
· Imp (Rr(j, s))

)
The impurity Imp() can be either:

Classification error: the minimum probability that a point is mis-classified at the node

(j, s) of the Tree:

Imp(Rm) = 1−maxk p̂mk

with p̂mk the portion of well-classified points.

Shannon’s Entropy: from information theory

Imp (Rm) = −
∑

k p̂mk log2 p̂mk

16

Gini impurity: with still p̂mk the portion of well-classified points.

Imp (Rm) =
∑K

k=1 p̂mk (1− p̂mk)

Decision Trees present many advantages; they are easy to understand and to interpret, as

they are a mirror to human decision making; however their predictive accuracy is not very

good.

Naive Bayes classifiers

This classifier uses the posterior probabilities also called emphBayes Theorem 2.1 to make

predictions.

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

For a binary classification problem, the aim is to express the probability distribution in a

parametrized form. The probability of a single data point can be written as :

pθ(x, y) = pθ(y, x1, ..., xD) (2.2)

Thanks to the Bayes Theorem 2.1 and the Naı̈ves Bayes assumption, which states that

p(xd|y, xd′) = p(xd|y) ∀ d′ 6= d, the equality 2.2 simplifies:

pθ(x, y) = pθ(y)
∏
D

pθ(xd|y) (2.3)

Then, depending on data type: binary, continuous... the model of p(y|xd) can be rewritten

using respectively Bernoulli distribution and Gaussian distribution. Finally, the classifica-

tion is the output is the class that is the more likely to be true.

Regression algorithms

Regression algorithms use the training data to fit curves and find a predictive function that

maps the inputs to a continuous output y = f(x1, ..., xn), depending on the number of

17

features and the complexity of the relationship, different models can be used: the linear

regression adjusts the coefficient bi on the following equation y =
∑

i bi · xi in the case of

n features; for more complex problems a polynomial regression can be used y =
∑

i bix
i.

Finally, for some problems the logistic regression can be employed (here with the sigmoid

function) log
(

p
1−p

)
= b0 + b1 · x

Support Vector Machine

Those algorithms are used to classify linear separable data points; as presented in Figure 2.6

(left). However, different margins can be found for the same data set and they do not split

the dataset equally. Support Vector Machine (SVM) tends to find the best linear boundary

between different classes by using an constrained optimization problem, which reads as:

min
w,b

1

γ (w, b)
+ C ·

∑
n

ξn (2.4)

with respect to : yn(w · xn + b) ≥ 1− ξn and ξn ≥ 0. In formula 2.4, γ (w, b) is the value

of the margin γ which depends on the weight vector w and the bias b , ξn is the ”cost” of

having a data point, which is not classified correctly as presented in Figure 2.6 (right). The

Figure 2.6: Linearly separable points (left), non-linearly separable data point (right). [22]

18

distance between two points x+ and x− at 1 unit from the margin read, as:

d+ =
1

‖w‖
· w · x+ + b− 1

d− =
1

‖w‖
· w · x− − b+ 1

(2.5)

So the margin γ can be expressed this way:

γ = ‖d+ − d−‖ =
2

‖w‖
(2.6)

and the constrained optimization problem is now to minimize the norm of the weight vector

w:

min
w,b

‖w‖
2

+ C ·
∑
n

ξn (2.7)

with respect to: yn(w · xn + b) ≥ 1 − ξn and ξn ≥ 0. As ξn must be positive but also

minimum, it can be written that: ξn = 1 − yn(w · xn + b) (value of the classification

error) if the point is not classified correctly and ξn = 0 if the point is classified correctly.

Introducing l(hin) the hinge loss function as :

l(hin)(a, b) = max(0, 1− a · b)

the term
∑

n ξn =
∑

n l
(hin)(yn, (w) · xn + b

and equation 2.7 becomes:

min
w,b

‖w‖
2

+ C ·
∑
n

l(hin)
(
yn, (w) · xn + b

)
(2.8)

Finding the minimum of the equation above gives information about the position of the

optimum boundary. Although, this kind of algorithm is efficient for linearly separable or

non-linearly separable data points with only few problematic points, sometimes, a linear

boundary cannot be found between the categories (Figure 2.7) In these non-linear spaces,

the use of a Kernel function is needed.

19

Figure 2.7: Data set where no linear boundary can be found. [22]

Kernel Support Vector Machine

Kernel functions can be used with a mapping Φ that projects the data points from the object

space to a feature space where linear methods can be used, as in Figure2.8 A function

Figure 2.8: Mapping Φ from the data space X and the feature spaceH [23]

K(x, x′) defined on a set X is called a Kernel function if and only if there exists a Hilbert

spaceH and a mapping Φ : X → H such that for any x, x′ inX : K(x, x′) = 〈Φ(x)·Φ(x′)〉.

This enables us to use linear techniques but, more importantly the explicit computation of

Φ(x) can be avoided, and K(x, x′) is computed instead. A Kernel Support Vector Machine

(KSVM) is useful to classify data points where the data cannot be linearly separated in the

data space and more importantly, in most cases Kernel methods reduce the computational

20

power need. Thus, they are suitable for classification problems.

Finally, the most famous algorithms for machine learning are Neural Networks, section

2.2.2 presents different type of Neural Networks: Multi-Layer Perceptron (MLP), Convo-

lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

Neural Networks

These algorithms try to replicate the way neurons work. The neuron is modeled with a

perceptron, as in Figure 2.9 and its output is given by f(x) = s
(
w0 +

∑P
j=1wj · xj

)
=

s
(
wTx

)
where s() is the threshold function. Other functions such as the sigmoid σ =

1
1+exp(−u) can be used.

Figure 2.9: Data set where no linear boundary can be found. [24]

For binary classification (using the sigmoid function), the perceptron can be trained

by adjusting all components of the weight vector w over the data set. For classification

problems the cross-entropy error is generally used (η denotes the learning rate):

H
(
f(xi), yi

)
= −yi · log(f(xi))− (1− yi) · log(1− f(xi)) (2.9)

21

Then the weight update for every iteration reads as:

∆wj = −η∂H (f(xi), yi)

∂wj

∆wj = η
(
yi − f(xi)

)
xj

(2.10)

However, in the case of multiclass classification, the softmax function, equation 2.11,

is used to find which class is more probable than the other. If class k is more probable than

the other then σk(x) ≈ 1 else σk(x) ≈ 0.

σk(x) =
exp(wk

T · x)∑K
l=1 exp(wlT · x)

(2.11)

Then, the weight update reads as ∆wkj = η (yi − fk(xi))xij . Finally, for each training

instance: wt+1
j = wtj + ∆wtj .

Adding several layers of Perceptrons as presented in Figure 2.10

Figure 2.10: Multi-layer Perceptron structure. [25]

It is composed of 3 or more layers of Perceptrons, each layer feeding the following one.

This algorithm is efficient for non-linear data classification.

Convolutional Neural Networks, on the contrary add more layers, the first operation

22

transforms the input into feature maps that compose the convolution layer; then after one

or multiple convolution maps a rectification layer is applied with functions such as ReLU,

sigmoid... At the end, the last layers consist of a common Multi-layer perceptron. Convo-

lutional neural networks are mostly used for image processing, however, Y. Fu et al. [19]

have used them for Machining vibration states monitoring based on image representation.

The advantage of this technique is that they were able to reduce the bias introduced by fea-

ture selection that must be performed for other machine learning methods such that Kernel

Support Vector Machine.

Finally, Recursive Neural Networks (RNN) add more connections between the hidden

layers of a Convolutional Neural Networks. The nodes are fed information from the previ-

ous layer but also information from their own last state. This enables them to learn from

the past.

Those different machine learning algorithms can be used to classify images or prepro-

cessed signals from sensors. The choice of the algorithm and its parameters can be made

thanks to the programmers knowledge, and different setups maybe tested to find the most

suitable one.

2.3 Communication Protocols for data transmission

In the following the major protocols for data transmission and Industry 4.0 are presented:

MQTT, CoAP, Bluetooth, Bluetooth Low Energy (BLE), HTTP and WebSockets,

2.3.1 MQTT

MQTT stands for Message Queue Telemetry Transport. It is a lightweight data protocol that

uses a publish and subscribe architecture was initially developed by Dr. Andy Standford

Clark for IMB and Alan Nipper for Arcom; now the protocol is open source and maintained

by the MQTT organization. This a Machine to Machine standard that uses a message broker

to forward messages to clients depending on topics.

23

Figure 2.11: MQTT protocol, subscribtion (left) and publishing (right).

As presented in Figure 2.11, first the different clients subscribe to the topics they want

to receive messages about. Then every time a client publishes a message about the corre-

sponding topic, the broker forwards the message to the clients that have subscribed to this

particular topic. This mode enables one to one, one to many and many to one communica-

tions.

2.3.2 CoAP

CoAp stands for Constrained Application Protocol, as is MQTT, it is designed for machine

to machine applications. It has been optimized for peripheric and constrained networks. It

is based on the REST architecture and uses a client to server model, in which clients send

requests to the server in order to receive data as a response. However, the packets are lower

than for other protocols. Such as HTTP, for example; the CoAP header is limited to 4 bytes

(compared to the 100 bytes for HTTP). This allows the use of the CoAP protocol for small

embedded devices, which makes CoAP a good protocol for Industry 4.0 and Internet of

Things applications.

24

2.3.3 WebSockets

Usually, internet communications over a client and a server use HTTP; the client sends a

request to the server in order to establish a connection, then data is transferred from the

server to the client, and at the end of the transfer the connection is closed. One the other

hand, WebSockets solve some issues of the HTTP protocol; the communication between

the client and the server stays open, and both can send and receive data at the same time.

This enables a full duplex communication that is very interesting for receiving data from

sensors and to push information from the cloud.

2.3.4 Bluetooth and Bluetooth Low Energy

The above presented protocols (MQTT, CoAP ...) usually communicate using wired or

wireless internet infrastructure. In contrast, Bluetooth and Bluetooth Low Energy (BLE)

are wireless protocols that use radio frequency 2.4GHz. The communication is established

between two devices, and even if it is very stable, the range is quite short, and commu-

nication with more that 2 devices is not possible. The protocol is widely used to connect

wireless devices for Internet of Things applications.

Bluetooth Low Energy is a new version of the Bluetooth protocol that uses a low data

rate in order to reduce the battery consumption of the devices.

2.3.5 LORA

LoRa from Lo(ng) Ra(nge) is a wireless protocol; it is a Low Power Wide Area Network

(LPWAN). This means that it is suitable for application where the range and the autonomy

are more important than the bandwidth. Lora denotes both the physical interface, which,

patented in 2014, is still proprietary, and the public LoRaWAN that was developed by

SEMTECH and defines the communication protocol. The aim of this protocol is to ensure

the communication between gateways that are connected to the Ethernet and end-nodes

that are acquiring data (Figure 2.12).

25

Figure 2.12: A typical LoRa Architecture. [26]

2.3.6 Zigbee

This is a 2.4GHz standard built on IEEE 802.15.4 norm. This mesh network is designed

for low band width, short range communication, but those compromises come with a very

low power consumption. Thanks to the mesh capability of this network, each node can act

as an end-point or as a repeater that forwards the message to the next node.

2.4 Cloud computing and Edge computing

The recent improvement of communication technologies enables the use of powerful re-

mote computers to process data. Complex architecture can be used to acquire data on the

machine shop or on other industrial infrastructure. This is known as cloud computing and

those architectures can be also used to store important amount of data.

R. I.S. Pereira et al. [27] used the cloud’s computing power to monitor a photovoltaic

plant. The data were acquired with a Raspberry Pi and sent to the cloud to be processed.

S. Yang et al. [28] have presented a unified Framework and Platform for Design of Cloud-

Based Machine Monitoring and Manufacturing Systems; this study was focused on the

26

sensor development and wireless communications. C. Kan et al. [29] have introduced

parallel computing and a network analytics for fast Industrial Internet of Things (IIoT) for

machine condition monitoring. This network, even if it is computationally expensive, uses

the embedded distributed power to follow the machine’s condition.

D. Wu et al. [30] have used the computing power of the cloud to process data and to

build predictive models. In contrast to other similar studies, those algorithms were then

exported to a private cloud and were used to make predictions on the data. A proof of

concept is used to demonstrate the architecture is presented in Figure 2.13

Figure 2.13: Fog based computational Network. [30]

P. O’Donovan et al. [20] uses the idea to process data with local resources. The main

idea is to use computers that are not located on the cloud but are physically in the factory

in order to execute a predictive model. Then this technique avoids exporting large amounts

of data to the cloud. This solves some Industry 4.0 concerns, such as decentralized and

autonomous decision-making management. Moreover, this approach improves security,

privacy and reliability of all of the system, since the data remains on at the factory level.

27

Usually the policy of data management depends on the company and may not be adequate

to the cloud service provider. The architecture proposed in their study is presented in Figure

2.14.

Figure 2.14: Fog computing with cyber-physical interaction. [20]

The Industry 4.0 proposes a more decentralized computing architecture. For economic

reasons, companies tend to improve the machine monitoring architecture to make more

accurate real-time predictions or analyse of the factory. This has been seen as a solution,

but it presents problems of security, privacy and reliability. Fog computing, on the other

hand seems to be a more promising solution to address those issues, as the new embedded

systems enable the use of powerful algorithms on very small and low cost systems, such as

the BeagleBone Black or the Raspberry Pi. Some architectures are proposed in the previous

studies; however, few of them use the entire processing power of those chips and other local

28

computers are often added to process data. In this thesis the main goal is to use the full

capacities of these processors for both data acquisitions and data processing, more than fog

computing this could be called Edge Computing.

The case study will be the vibration monitoring of cuts of different materials with a

band saw. The final system should be able to real-time distinguish the material being cut.

29

CHAPTER 3

PROPOSED FRAMEWORK

The main concern of this work is to have a system which is fast enough to be considered

Realtime and the processing power should be located on the board that realizes the data

acquisition. The following section first presents the hardware architecture used in this

thesis, then the Software architecture is introduced.

3.1 Hardware components

This part presents the hardware selected for this project. As for most machine monitoring

projects the different components are:

• a sensor to transform the physical phenomenon into an electric signal

• a mechanical adaptor to mount the sensor on the machine

• a microcontroller or microprocessor to process the data

• an adaptor may be added to fit the tension between the sensor and the Board

• a cloud service or remote computer, which is only used in the training phase

Indeed, two phases have to be identified in this project. The first one consists in the data

acquisition for training the machine learning algorithm; the second phase is the deployment

of the board with the trained algorithm on real conditions. During the first phase, the

samples are concatenated on the embedded board and sent to a remote computer. Once

all the sample sets have been acquired, the machine learning algorithm is trained on the

training set, then an evaluation is conducted on the test set. Typical ratios between the

training set and the test set are respectively 80% and 20% of the sample set. When accuracy

30

on the test set is good enough, the algorithm can be exported to the Embedded board and

the learning phase is completed. Figure 3.1 sums-up the different steps of this phase.

Figure 3.1: The different steps of the training phase

The second phase is the deployment phase where the trained algorithm has been ex-

ported onto the board. The sensor keeps sending data to it, so the samples, after being

concatenated, are fed into the algorithm. The algorithm returns the classification results

that can be sent to the cloud. Figure 3.2 presents the hardware architecture of this phase.

Type of sensor The choice of the sensor depends on the physical phenomenon that is

going to be used, as presented in 2.1.1. Indirect sensing methods are more suited for ma-

chine real-time monitoring. M. Siddhpura et al. [31] stated that vibration sensing is easy to

implement; moreover, vibrations can be acquired using a simple accelerometer. This kind

of sensor is very cheap and is suited to this application.

31

Figure 3.2: The deployed system.

Type of board The board used in this work needs to be powerful enough to process

data and run the classification algorithm in real-time. Even if the deterministic capabilities

of micro-controllers presented in 2.1.2 are an advantage for vibration acquisition because

they provide a constant and precise sampling rate, their computing power is not important

enough for the desired application. A choice is made to use a microprocessor such as the

BeagleBone Black or the Raspberry Pi. The absence of deterministic properties of this type

of board is being addressed in the following part 4.1.

3.2 Software architecture

Concerning the learning phase, as we want to sample vibration very fast the code should

first sample Nd data points and store them in a file which will constitute a sample. Nd

should be large enough to depict a representative period of the signal, but small enough to

let the process be real-time. Thus, Nd depends on the sampling frequency fs of the system,

the higher fs is, the larger Nd should be, thanks to relation 3.1:

fs ·Nd = C (3.1)

with C a time constant that should be far above the characteristic time of the system. This

sampling operation should be repeatedNs times for theNc category of sample that we want

32

to be able to classify:

• band saw off.

• band saw running, setup up to cut material 1 but not cutting (no physical interaction

between the saw and the workpiece).

• same case as above but setup for material 2.

• band saw cutting material 1 and setup for material 1.

• same case as above for material 2.

Once all the Ns samples have been acquired for the Nc classe, they are exported to the

remote computer where the features such as dominant frequencies, mean, max, min... of the

samples are extracted. For the Nc classes, tables of Ns by Nf are created and concatenated

to create a data frame of size (Nc ·Ns) by Nf , which is split into the training set and the

test set. The selected machine learning algorithm is trained thanks to these sets.

During the deployment phase, the board should acquire Nd points at the frequency fs

to create a sample, then the Nf features are extracted and feed into the algorithm. The

classification result is finally sent to the cloud.

The architecture implementation is discussed in the following chapter. First, the se-

lected hardware is presented, then a solution for deterministic data acquisition is intro-

duced, the training of the machine learning algorithm is detailed afterward, and finally the

results of the implementation are considered.

33

CHAPTER 4

IMPLEMENTATION AND RESULTS

This section presents the implementation of the above presented architecture. Once the

implementation has been validated, it is tested on real conditions.

4.1 Hardware selection

Band saw The band saw used for the work is the 8-Mark-II vertical Tilt-Frame band

saw available in the Montgomery Machining Mall (Figure 4.1). This industrial band saw is

designed for metal cutting at speeds ranging from 50 to 450 fpm.

Figure 4.1: The Band Saw used for this study.

34

Accelerometer Different types of accelerometer can be used, depending on the type of

communication that we want to be implement. The communication can be either SPI or I2C

if the sensor is a digital one. On the other hand, analog sensors do not provide these com-

munication interfaces, but they require the board to use an analog to digital converter. Most

of the low-cost accelerometers that use SPI or I2C does not have high sample frequencies.

As an example, the ADXL345 has SPI and I2C capabilities, but its preferred sampling rate

is 1000Hz for a cost of $17; the MMA8451 has I2C capabilities but a maximum output rate

of 800Hz for a cost of $7.50. In contrast, analog accelerometers such as the ADXL203EB

are a bit more expensive, but the acceleration value can be accessed at very high frequen-

cies; the sampling limit is generally set by the maximum sampling frequency of the board’s

analog to digital converter. The needed output rate of the accelerometer is directly linked to

the frequency we want to observe on the band saw. This frequency is given by the impact

of the teeth on the workpiece. In order to estimate the output frequency, the speed of the

blade is set to the maximum possible: 450 fpm, the blade has 10 teeth per inch. Thus, the

frequency of the impact is:

450·120
60

= 900 teeth per second

The Nyquist-Shannon Theorem states that to observe this frequency, the sampling fre-

quency should be at least 1800Hz. Considering the output rate of digital accelerometers,

choice is made to use the analog accelerometer: the ADXL203EB.

Figure 4.2: The mechanical adaptor for fix the accelerometer on the band saw.

35

mechanical adaptor In order to set the accelerometer on the band saw, a mechanical

adaptor is designed and machined. The final part is presented in Figure 4.2; 4 screws hold

the ADXL203EB on the adaptor, a magnet is added on the other side to ensure that the

adaptor is securely fixed on the band saw.

Only one axis of the accelerometer is going to be used; the choice of this axis is made

so that is it normal to the surface where the magnet is put. It has to be noticed that the use

of another of the ADXL203EB will note provide reliable data since the magnet can only

ensure that the accelerometer is oriented along the axis normal to the surface of reference,

it does not prevent the adaptor from sliding on this surface.

Choice of the Board As discussed in 3.1, microprocessors seems to be the more promis-

ing solution for this work. Between the BeagleBone Black and the Raspberry Pi, the main

difference is the absence of an Analog to Digital Converter on the Raspberry Pi; more-

over, this board does not have Process Real-time Units; therefore, even if the version of the

Raspberry Pi has a better processing power that the BeagleBone Black and the benefit of a

wider community, the choice goes in favor of the BeagleBone Black wireless.

Figure 4.3: The Beaglebone Black wireless.

Beaglebone cape for electrical adaptation The output tension of the ADXL203EB ran-

ges from 0 to 5V; however, the maximum input voltage on the Analog to Digital Converter

of the BeagleBone Black is 1.8V. An adaptator cape (Figure 4.4), which acts as a tension

divider, is built to avoid burning the BeagleBone Black. The two resistor values are: R1 =

36

6.8kΩ and R2 = 12kΩ, then the tension divider gives:

V max
out =

R1

R1 +R2

· V max
in =

6.8

6.8 + 12
· 5→ V max

out = 1.8 V (4.1)

The Eagle Files for the board are presented in Appendix A

Figure 4.4: The cape for the electrical adaptator

Figure 4.5 presents the final hardware for this thesis with every component ready to

be used. Now that it has been introduced, the following section discussed real-time data

acquisition on the BeagleBone Black.

Figure 4.5: The final hardware setup for this work.

37

4.2 Realtime data acquisition on the ti-am335x chip

The chip running on the BeagleBone Black is the ti-am3358. Two ways of getting deter-

ministic sampling on this chip are considered in this section. First an attempted use of

the two Process Real-time Units is detailed, then the Linux Industrial In/Out subsystem

capabilities are introduced.

4.2.1 Process Realtime Unit (PRU)

Presentation of the PRUs

The 2 PRUs are microcontrollers such as Arduino R© and the Teensy. It means that they are

able to execute real-time processing, then the ”programmable nature of the PRU, along

with its access to pins, events and all system on chip (SoC) resources, provides flexibility in

implementing fast real-time responses, specialized data handling operations” [32]. Thus,

those PRUs are fully integrated in the global architecture of the ti-am3358 chip (Figure

4.6), which is very useful when it comes to carry out time critical operations such as fast

data acquisition.

The RPMsg framework

In order to enable communication between the two process real-time units, Texas Instru-

ments has created a framework that is used to send and receive message between the ARM

and the PRU:

RPMsg is a message passing mechanism that requests resources through Re-

moteproc and builds on top of the virtio framework. Shared buffers are re-

quested through the resource table and provided by the Remoteproc module

during PRU firmware loading. The shared buffers are contained inside a vring

data structure in DDR memory. There are two vrings provided per PRU core,

one vring is used for messages passed to the ARM R© and the other vring is

38

Figure 4.6: Architecture of the AM3358 with Cortex R© -A8 and the 2 PRUs [33]

used for messages received from the ARM R©. System level mailboxes are used

to notify cores (ARM R© or PRU) when new messages are waiting in the shared

buffers.

Texas Instrument[34]

Figure 4.7 presents the interactions between the ARM R© and the PRUs the process is

quite complicated; to make it simple, the data is placed in the DDR memory of the chip

and a system of mail boxes between the Linux Kernel of the ARM and the PRU subsystem

delivers notifications that data are ready to be read.

This PRU subsystem seemed to be promising, as it was supposed to permit users to

combine the real-time advantages of a microcontroller in a processor. However, this so-

lution suffers of an important lack of documentation; to illustrate this point it has to be

considered that 2 months of work have been necessary just to start the PRUs from the

ARM. After this, a communication was established between the ARM R© user space and the

PRU subsystem via the Linux Kernel and RPMsg. This communication was then extended

to the ADXL345 using a bit banging technique on the BeagleBone GPIO. There was no

39

Figure 4.7: Interaction between the ARM R© and the PRUs when using RPMsg [34]

success in establishing a communication between the Analog to Digital Converter of the

BeagleBone and the PRUs.

The PRU subsystem approach was discontinued, and the work was documented in a

tutorial presented in Appendix B for hypothetical future works using the PRU. The next

solution consists in the use of the Linux Industrial In/Out system, which takes advantage

of the hardware Interrupt capabilities of the Linux Kernel.

4.2.2 Linux Industrial I/O (IIO) subsystem

Linux Operating System

This section presents the function of the Industrial In/Out subsystem that is used in this

work to get data from the Analog to Digital Converter of the BeagleBone Black. First, the

software structure of Linux and its interaction with the hardware is introduced, then the

Linux IIO subsystem is presented and the use of Linux Kernel Driver and Device trees is

detailed. Finally, the code used in the user space to interact with the kernel is presented.

Linux can be seen as decomposed in two parts (Figure 4.8) a Kernel Space and a User

Space. The first one has initially been developed by Linus Torvalds and is now supported

by the Linux Foundation. It derives from Unix systems, was announced in August 1991

40

and the first version (0.02) released in October of 1991. The Kernel is the corner stone of

the Linux Operating system; it is responsible for managing the interactions of the hardware

components. On the other hand, the user space is the space of applications; it is where the

user can interact with the operating system.

Figure 4.8: The Linux user and kernel spaces [35]

The communication between the user space and the kernel space is managed by the C

library and system calls. On the other side the kernel uses device modules and drivers to

interact with the hardware. The power of Linux consists in its versatility; it has to be able

to manage numerous different piece of hardware. Thus, in order to reduce the size of the

kernel, drivers and kernel modules are used; they can be loaded and unloaded to ”tell” the

kernel how to deal with a particular piece of hardware.

41

Industrial In/Out subsystem

The main interest of using a Kernel code is that it has hardware interrupt capabilities,

which are suitable for deterministic data sampling at high rates. This is the reason why

the Industrial In/Out subsystem has been introduced: for operation where it comes to get

data from sensors such as: ADC, accelerometers, DAC, gyroscopes, temperature sensors,

pression sensor... in short, every sensing device that require an analog to digital conversion.

Figure 4.9: The Linux user and kernel spaces [36]

As shown in figure 4.9 this subsystem lives in the kernel space and is used to display the

hardware information in the user space. The IIO ring, core and trigger receive information

from the user space via sysfs interface and then returns data in a device character generally

located in :

1 / s y s / bus / i i o / i i o : deviceN /

The interaction between the subsystem and the hardware is managed by hardware specific

drivers.

42

The ti am335x adc Linux Kernel driver

In order to use the Industrial In/Out subsystem the Linux kernel driver corresponding to the

ti-am3358 chip has to be compiled and loaded in the kernel. The source code is provided by

Texas Instruments on Gitorious [37]; however, in order to have a faster sampling frequency

it is possible to change the clock reference of the ADC from 3MHz to 24MHz; for this the

ti am335x tsadc.h header line 140 is changed from :

1 # d e f i n e ADC CLK 3000000

to,

1 # d e f i n e ADC CLK 24000000

The final header code is attached on Appendix C of this work.

Then the ti am335x adc.c can be compiled and loaded into the kernel. The other param-

eters required by the ADC to work are specified using device tree overlays; the BB-ADC-

00A0.dts is presented in Appendix D. the different channels that can be used are specified

on line 37, in our case the ADC’s channel 3 is the only one connected. The sampling

frequency of the ADC is set with the 3 parameters ”ti, chan-step–avg”, ”ti,chan–step–

opendelay” and ”ti,chan–step–sampledelay” (lines 38–41). The number of clock cycles

necessary for a conversion is then given by the formula:

num cycles = opendelay · (sample delay + convtime) · averaging (4.2)

In our particular setup we have:

num cycles = 1 + (13 + 1) · 8 = 112 cycles (4.3)

Then for a 3MHz clock the sampling frequency is 25kHz.

43

User space application

The data from the ADC is now ready to be displayed in the device character on the user

space. To do so the acquisition has to be launched with an application. For one sample of

Nd points the steps are:

• disable the iio trigger, because we want a software Interrupt

• activate the iio channel that we want to read on the ADC.

• create the buffer directory to set the buffer length

• in the /Results folder create a .csv file named after a timestamp to store the sample

points

• read the values on the buffer and store them on the .csv file

All these steps are done with the iio generic buffer.c (see Appendix E), this code was

adapted from Jonathan Cameron’s example [38] in order to Disable the hardware trigger

and to have the data stored.

For the training phase process, many samples have to be acquired. This process has

been automated with a script in Appendix F. Once the number of sampleNs and the number

of points per samples are specified, the script starts Ns acquisitions and stores them on the

BeagleBone and exports them to the remote computer with an SSH secure copy.

During the deployment phase only one sample is needed, and the acquisition is launched

thanks to a master application.

Finally, the data can be deterministically acquired via the IIO subsystem. The ADC

parameters are set using a device tree overlay, then the ti am335x adc driver sample the

ADC at the given frequency and the iio generic buffer application read the device character

in the user space to store the data points of the sample in a .csv file. The next part will

present the experimental setup for the data acquisition.

44

4.3 Experimental setup

This section explains the material choice for this work, then the setup on the Mark II band

saw is presented. Finally the sample size and frequency are determined.

4.3.1 Coice of the Materials

This work does not aim to realize very precise classification between different materials. In

Section 3.2 different classes are introduced. A choice has been made to limit the number of

material to 2: Aluminum and Steel. Those materials are frequently used in the Montgomery

machine shop, and data can be acquired for cuts on scraps in order to reduce the cost of the

study. Consequently, the exact alloy is unfortunately unknown.

4.3.2 System setup on the band saw

The sensor is placed on the clamp of the band saw and the BeagleBone is directly connected

to the computer. The final setup is presented on figure 4.10

Figure 4.10: The final setup on the machine

45

4.3.3 Sample size and frequency

Sampling frequency

As presented in 4.1, the sampling frequency of the ADC should be at least 1800Hz. How-

ever, because of the device tree settings, it is quite complicated to find a precise sampling

frequency. In order to have a reliable value, the parameters are set as presented in table 4.1.

Table 4.1: Device Tree and clock settings for the ADC

Parameter Value
Clock frequency 3MHz
ti,adc–channels 〈3〉

ti,chan–step–avg 〈8〉
ti,chan–step–opendelay 〈0〉

Ati,chan–step–sampledelay 〈0〉

The resulting sampling frequency of the system is 25kHz. This value is verified and

validated with a wave generator of which sine waves are sampled. Given the number of

points of the sample, the number of waves observed on the sample and the frequency of the

signal it is possible to find the sampling frequency of the ADC with the equation:

ADCfrequency =
Numberpoints · fgenerator

Nwaves

(4.4)

The results are presented in table 4.2. The frequencies of the waves were chosen to find an

integer number of waves with the hypothesis of a 25kHz sampling frequency:

Table 4.2: Sampling frequency validation

Number of points fgenerator (Hz) approximated Nwaves ADCfrequency kHz
1000 150 6 25
1000 25 1 25
1000 825 33 25
1000 57 2,3 24.7

46

Number of points per sample

In order to get a good idea of the signal it is decided to sample during at least 0.5 s. Ac-

cording to the sampling frequency chosen above the number of point needs to be more than

12500 points. Moreover, a Fast Fourier Transform will be performed on the sample. So it

is interesting to have a number of samples which is a power of 2. Finally, the number of

samples is set to 214 =16384.

4.3.4 Data acquisition

Using the above presented setup and given parameters, 2000 samples were acquired for

each of the 5 classes, presented in 3.2 according to the following steps:

• band saw off.

• band saw running, setup up to cut aluminum but not cutting (no physical interaction

between the saw and the workpiece).

• same case as above but setup for steel.

• band saw cutting Aluminum and setup for material 1.

• same case as above for steel.

It has to be noticed that the steel workpiece and the aluminum workpiece did not have the

same shape; the aluminum part was a rod and the steel part was a plate as shown in figure

4.11.

The setup parameters of the Mark II band saw to cut steel and aluminum are presented

in table 4.3:

This data sets represent 5 folders, each of them containing 2000 .csv files of 16834

lines each. Once those data are acquired and exported to the remote computer, the machine

learning algorithms have to be trained. Figure 4.12 represents 5 samples, one for each class.

47

Figure 4.11: The steel part (left) and aluminum part (right)

Table 4.3: Band Saw Setup

Material Speed (fmp) Feed (lbs)
Aluminum 300 30

Steel 150 30

4.4 Feature selection and preprocessing

This section presents some the parameters chosen for the training of the

4.4.1 choice of Kernel Support Vector Machine (KSMV)

In 2.2 different machine learning algorithms were introduced. In this work the choice of

using the Kernel Support Vector Machine is made. Indeed, this type of machine learning

algorithm is quite simple and not computationally expensive, as the classification is made

thanks to distance computation which is less complexe than the numerous calculations

needed for other algorithm based on Neural network approach. Moreover, Elangovan et al.

[17] have shown good results in machine vibration analysis using Kernel Support Vectors.

4.4.2 Feature selection

In order to train the Kernel Support Vector Machine, so features have to be extracted from

the sample. Elangovan et al. [17] have used, mean, standard error, median, standard devi-

48

Figure 4.12: The 5 samples for the classes.

ation, sample variance, kurtosis, skewness, range, minimum and maximum. In this work

the selected features are:

• the mean of the sample

• the median

• the standard deviation

• the variance

• the minimum and the maximum

• the first 3 major frequencies of the Fast Fourier Transform and their associated am-

plitudes

4.4.3 Preprocessing

The data sets from the different cuts have to be preprocessed in order to extract the features

selected in the previous section. To that end, a python script is used in a given the data

folder of one class. This script computes the features for all .csv file in this folder and

returns the result in the form of a new .csv. Figure 4.13 presents the functioning, the inputs

and outputs of preprocessing.py (code in Appendix G)

49

Figure 4.13: Preprocessing flow chart

Once all the data sets are created they are randomly concatenated in one single data

set of size Ns · Nc rows by Nf + 2 columns (for the index and the corresponding class of

the sample). This data set is going to be split into a training set and a test set to train the

algorithm in the next part.

4.5 Trainning and deployment

This part presents the training of the Kernel Support Vector Machine algorithm, then it is

exported to the BeagleBone Black. Finally, the main application functioning is detailed.

50

4.5.1 Training of the algorithm

The data set is imported and split into a 80% training set and a 20% test set; the code to train

the algorithm is presented in appendix H. Different types of the kernels are used, and the

prediction is evaluated on the test set. The results are presented in table 4.4. The detailed

confusion matrix and statistics are presented in appendix I.

Table 4.4: Result on the test set for different kernels

kernel training duration avg precision
linear 4s 0.99

rbf 3s 0.92
sigmoid 3s 0.04

poly ∞ NA

The results for the linear kernel are far better than for other kernels. This maybe a sign

of overtraining; nevertheless, this is the type of kernel that is chosen for the rest of the

study.

4.5.2 Export classifier and deployment on the BeagleBone Black

The python classifier object trained in the previous section is converted into a binary object

using the pickle method. However, the data management library Pandas and the machine

learning library scikitlearn were not successfully installed on the BeagleBone Black. The

found solution consists in using another installation method than the recommended one:

instead of using pip or apt–get install tools, miniconda was downloaded on the BeagleBone

board. This enabled the use of conda install command and finally, old version of the pandas

and scikitlearn libraries were successfully installed on the BeagleBone Black.

4.5.3 Main Application Code

A specific code needs to be written for the deployment phase. It has to load the classifier

object from the pickle binary file then perform the acquisition of the sample of 16384

51

points, extract the features out of this sample, feed those features into the classifier and

return the result of the classification. The figure 4.14 presents the flow chart of this code

(Appendix 6).

Figure 4.14: The main application flow chart

4.6 Architecture validation and Classification results

The final system is placed on the band saw and tested on an aluminum radiator. The sensor

is put at the same place as for the data acquisition phase; the BeagleBone is powered and

the main script is launched. The process worked correctly over more than 200 samples,

and every sample was acquired and analyzed in less than 1 second. Over thoses 200 sam-

ples, 71.5% where correctly predicted to be a cut of aluminum, 27.5% were wrongly

52

predicted to be a from the vibration the band saw running for steel but not cutting,

and 1% were predicted to be from the band saw running for aluminum but not cut-

ting. Figure 4.15 presents the setup for the validation of the architecture. Other tests were

conducted on an aluminum rod, an aluminum plate, a steel rod and steel plate. For the

aluminum rod and the steel plate, the precision of the algorithm is around 95%; however,

for the other shapes, the precision drops to 75%.

Figure 4.15: The experimental setup for testing on the radiator

53

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Contribution of this Thesis

This thesis contributes to 3 different topics: deterministic data acquisition, deployment of

machine learning algorithms on ARM microprocessors and the development of a single

board system for machine vibration monitoring, indeed:

• the use of a Linux power microprocessor for deterministic data acquisition with the

Industrial In/Out subsystem is presented. This subsystem was successfully used to

sample the Analog to Digital Converter of the BeagleBone Black.

• A work on the use of the Process Real-Time Units was accomplish. Even if this

solution was finally discontinued, the written documentation has already been used

several times by the BeagleBone community. It explains how to enable the 2 process

real-time units from the Linux user space and to transfer data between the ARM-

Cortex A8 and the process real-time units.

• the use of trained machine learning algorithms was demonstrated on the BeagleBone

black. This work, even if imperfect, constitutes a proof of concept and opens the door

to more advanced systems using machine learning techniques on embedded systems.

• Finally, this thesis presents a low-cost monitoring system that can be used for real-

time vibration monitoring.

5.2 Limitations of the study and recommendations

Most of this work consisted in the development of the low cost and smart system for vi-

bration analysis. However, the tests conducted in real conditions have demonstrated a high

54

influence of the form of the workpiece on the predicted class. This is certainly linked to

the training samples used in this work, a data set that includes different shapes of work-

pieces for the same material should be used to train the algorithm. Depending on the new

influence of the shape, two cases can be identified:

• if the influence of the form of the workpiece appears to be less important, then the

current classification method can be used.

• if the influence of the shape is still very important, then the classes should be modified

in order to takes the different possible shape of the workpiece into account.

Furthermore, the study has been limited to only two materials; it could be interesting to

train the model with other materials to see if the KSVM classifier with a linear kernel is

still efficient. This highlights the issue of data acquisition for Machine Learning algorithm

training: the first classes attributed to the training set cannot be labeled automatically; the

classes of these samples were hard coded in the acquisition script. Then, an important

improvement to this system could be to add a user interface where a non-expert employee

can easily select a label for the cut that he is going to perform. This way, the training set

could be easily generated without requiring an expert to stand by the machine during all

the data acquisition.

Finally, only one sensor has been used for this study. More sensors could be used such

as a microphone. Since the sound of the cut greatly changed between materials, it may be

interesting to couple a microphone with the accelerometer.

5.3 Conclusion

This thesis presents the development of a low cost smart device for machine vibration

analysis. The primary goal was to implement real-time data processing on an embedded

system using machine learning techniques. This approach aims to meet the need of a more

distributed architecture for real-time decision making in the context of the Industry 4.0. It

55

also avoids sending significant amounts of data to the cloud, simultaneously reducing the

bandwidth required and improving the safety and security of the system. First, a variety

of microprocessors were evaluated in order to find the most promising board and pro-

gramming technique for the project. Then, a deterministic data acquisition was performed

measuring a band saw cutting different materials, using the Linux Industrial In/Out kernel

subsystem. After the samples were acquired, a Linear Kernel Support Vector Machine al-

gorithm was trained and tested. This classification algorithm was exported to the embedded

system and tests in real condition were carried out showing good results. The results of the

classification were found to be very sensitive to the geometry of the work piece. Finally,

areas for future work and several ways to meliorate this system have been suggested.

56

Appendices

57

APPENDIX A

EAGLE FILE FOR THE BEAGLEBONE BLACK CAPE

A.1 The front side of the BeagleBone Cape

A.2 The back side of the BeagleBone Cape

58

Figure A.1: The front side of the BeagleBone Cape

59

Figure A.2: The back side of the BeagleBone Cape

60

APPENDIX B

PRU TUTORIAL

61

Using the PRUs and RPMsg
BeagleBone™ Black Wireless Linux Debian 4.9.45-ti-r57

Pierrick Rauby
Master Thesis Student

Last revision: July 24, 2018

Contents

1 Introduction 1

2 Hardware presentation 2

3 Enabling the PRUs 4
3.1 Setting up the PRUs . 4

3.1.1 Disabling the HDMI cape and loading the PRU overlay 4
3.1.2 Installing GCC compiler . 5
3.1.3 Creating the symbolic links between folders . 5

3.2 Testing the PRUs . 6
3.2.1 Hardware . 6
3.2.2 Code . 7
3.2.3 Running the example . 8

4 RPMsg 10
4.1 Presentation of RPMsg . 10
4.2 Setup . 11
4.3 Testing . 11

4.3.1 Code for the Cortex-A8 . 12
4.3.2 Code for the PRU . 13
4.3.3 Starting the project . 14

A PIN Header 8 16

B PIN Header 9 17

Chapter 1

Introduction

The BeagleBone™ Black is a low-cost development platform powered by an AM335x 1GHz ARM® Cortex-A8,
among its di�erent features, the AM335x presents two Process Real Time Units (PRU). For my master thesis I
will need to use those two micro-controllers in order to acquire data from an accelerometer, it took some time
to enable the PRU and the communication framework: RPMsg. The purpose of this document, is to explain
the method followed to enable those embedded micro-controllers and the framework.
Zubeen Tolani and Gregory Raven are acknowledged for the very complete documentation they have provided
about the PRUs and the RPMsg framework which can be found here:

• BeagleScope repository on GitHub from Zubeen Tolani

• PRU ADC repository on GitHub from Gregory Raven

1

Chapter 2

Hardware presentation

For this project the board used is a BeagleBone™ Black wireless powered by an Octavo Systems OSD3358 which
characteristics are :

• 512 MB DDR3 RAM

• 4GB 8-bit eMMC on board �ash storage

• 3D graphic accelerator

• Neon �oating-point accelerator

• 2 PRUs : 32-bit microcontrollers

The software used is the Debian image: Linux Beaglebone™ 4.9.45-ti-r57

As explained is the introduction the idea of the project is to use the PRUs to acquire data from a sensor and
send them to the ARM® Cortex of the BeagleBone™. But what are the PRUs and the ARM®? Basically, the
Ocotovo contains the TI AM335X chip which itself contains:

• 1 ARM® Cortex®-A8: This is the part of the chip that runs the Linux operating system. This micropro-
cessor as a "computer" processor is not able to carry out real-time operations.

• 2 Process Real-time Units (PRU) that are microcontrollers such as Arduino®/Teensy ones. It means
that they are able to execute real-time processing, then the programmable nature of the PRU, along with
its access to pins, events and all system on chip (SoC) resources, provides �exibility in implementing fast
real-time responses, specialized data handling operations [TexasInstruments, 2017]. Thus, PRUs are very
useful when it comes to carry out time critical operations such as fast data acquisitions.

2

Figure 2.1: Architecture of the AM335x with Cortex®-A8 and the 2 PRUs [TexasInstrument, 2017a]

3

Chapter 3

Enabling the PRUs

In this chapter, the setup of the PRU is explained. The di�erent steps are based on the work of [Tolani, 2016],
who presents a very complete set of instructions in order to setup the PRUs for Debian 4.4.12-ti-r31, basically
his work is adapted here for Debian 4.9.45-ti-r57..

3.1 Setting up the PRUs

3.1.1 Disabling the HDMI cape and loading the PRU overlay

The PRUs have access to many pins on the BeagleBone™, however some pins are also used by the HDMI.
Thus, the HMDI must be disabled before using the PRUs [Yoder, 2017]. In order to do so we are going to
disable the loading of the device tree corresponding to the HDMI.
Remark: The Device Tree (DT), and Device Tree Overlay are a way to describe hardware in a system. An example
of this would be to describe how the UART or HDMI interacts with the system, which pins, how they should be
mixed, the device to enable, and which driver to use [Cooper, 2015].
First of all, you need to SSH into the BeagleBone™ Black as root, then navigate to the uEnv.txt �le by typing
in:

cd /boot/
nano uEnv.txt

Then the uEnv.txt �le should appear as in �gure 3.1:

Figure 3.1: uEnv.txt

In this �le, you should go down to the section,

###Disable auto loading of virtual capes (emmc/video/wireless/adc)

4

and uncomment the two lines as shown below, this avoids the loading of the HDMI overlays at boot time:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
disable_uboot_overlay_video=1
disable_uboot_overlay_audio=1
#disable_uboot_overlay_wireless=1
#disable_uboot_overlay_adc=1
###

In the same document we are going to ask for the loading of the PRUSS overlay at boot time, scroll down to
the section:

###PRUSS OPTIONS
###pru_rproc (4.4.x-ti kernel)

change these lines:

###PRUSS OPTIONS
###pru_rproc (4.4.x-ti kernel)
#uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-4-TI-00A0.dtbo
###pru_uio (4.4.x-ti & mainline/bone kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo
###

to:

###PRUSS OPTIONS
###pru_rproc (4.4.x-ti kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-9-TI-00A0.dtbo
###pru_uio (4.4.x-ti & mainline/bone kernel)
#uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo
###

3 modi�cations: 1 uncomment, 1 comment and the 4-4-TI-00A0.dtbo becomes 4-9-TI-00A0.dtbo
Finally, just reboot the board. The HDMI capes should be disabled, so we have access to the di�erent PINs of
the board with the PRU, Figure 3.2 presents the PIN for the Header 8 (more details on appendix A and B).

3.1.2 Installing GCC compiler

Since the PRUs are based on TI’s proprietary architecture [Tolani, 2016], we have to compile the C code that
we want to execute with a compiler. In this project GCC is used.

cd
wget -c http://software-dl.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.2/

ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh
chmod +x ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh
./ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh
cd
rm ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh

3.1.3 Creating the symbolic links between folders

Then, some symbolic links have to be created:

cd /usr/share/ti/cgt-pru/
mkdir bin
cd
ln -s /usr/bin/clpru /usr/share/ti/cgt-pru/bin/clpru
ln -s /usr/bin/lnkpru /usr/share/ti/cgt-pru/bin/lnkpru

5

Figure 3.2: P8 header and corresponding PRU [Molloy, 2014]

Finally, we want that "PRU_CGT " to point to the "/usr/share/ti/cgt-pru/ ":

export PRU_CGT=/usr/share/ti/cgt-pru

Because we want this last command to be executed every time we boot the Beaglebone™:

cd
nano ~/.bashrc

and add this:

export PRU_CGT=/usr/share/ti/cgt-pru

Then save and quit and reboot.

3.2 Testing the PRUs

Now that everything is ready we can test the PRU with a "hello world!" example in which a small LED is
triggered with the PRU. Let’s create a small circuit with the LED and two resistors and copy the code testing
codes on the BeagleBone™.

3.2.1 Hardware

The circuit used to test the PRU is presented in �gure 3.3. Pin P8_45 is used as the output pin and pin P8_1 is
connected to the ground of the circuit.

6

Figure 3.3: The circuit for Hello_PRU program

3.2.2 Code

Now that the hardware is ready, let’s copy the code. First of all, go back to the "/root" folder of the BeagleBone™:

cd

And create a new folder "Hello_PRU":

mkdir Hello_PRU

In this folder we are going to put 5 �les and 2 folders:

• Hello_PRU.c

• AM335x_PRU.cmd

• resource_table_empty.h

• Make�le

• deploy.sh

• lib which contains some needed libraries

• include which contains resource �les for the di�erent TI processors

3.2.2.1 Hello_PRU.c

This is the C code that is going to make our LED blink.
Lines 38 to 40 correspond to the inclusion of needed �les. Lines 42 and 43 correspond to the declaration of
two important registers, _R30 and _R31.
In the main loop (from line 45 to the end) , the volatile "gpio" is used to toggle the value of the _R30 between
0x000F and 0x0000, waiting between each toggling thanks to the "_delay_cycles()" function (which is an in-
trinsic compiler function [Tolani, 2016]).
Remark:The compiler would not allow any variable other than _R31 and _R30 to be of the "register" type,
and the compiler does not allow to access any of the 29-R0 registers of the PRU [Tolani, 2016].

7

Figure 3.4: Hello_PRU.c code [Tolani, 2016]

3.2.2.2 AM335x_PRU.cmd

PRUs are pretty simple processing cores, but the PRUSS system is highly integrated and provides the PRU a rich
set of peripherals. All these peripherals inside the PRUSS are at di�erent address locations and they need to be
con�gured by the Linux kernel at the time of �rmware loading onto the PRUs. The "AM335x_PRU.cmd" �le provides
a mapping to the linker, from di�erent sections of code, to di�erent memory locations inside the PRUSS. [Tolani,
2016] Thus this �le is a linker command �le that is used for linking PRU programs built with the C compiler
and the resulting .out �le on an AM335x device. Basically, you will need this �le every time you create a PRU
code such as the one above and compile it with GCC.

3.2.2.3 resource_table_empty.h

This empty resource table is needed by the "AM335x_PRU.cmd", it is used by Remoteproc, on the host-side to
allocate reserved/resources. Since we do not use Remoteproc for the moment (but we will later) we just give
an empty �le to "AM335x_PRU.cmd".

3.2.2.4 Make�le

This �le is going to invoke the GCC compiler, to give the location of the resources needed to compile Hello_PRU.c
into the ".out" �le.

3.2.2.5 deploy.sh

This is a bash script that is going to clean the project and to call the Make�le. Once the compilation is �nish,
deploy.sh copy the resulting �le ".out" from the "/gen/ folder to into "/lib/�rmware/am335x-pru1-fw" folder.
This last folder is very important, because the PRU1 is kicked o�, it is going to execute the ".out" �le placed
in this folder (the corresponding folder for PRU0 is /lib/�rmware/am335x-pru0-fw).

3.2.3 Running the example

Now, everything is ready to test the PRU setup, you just have to go in the "Hello_PRU " folder and enter the
command:

8

sh deploy.sh

The "deploy.sh" script is run, calls the "MAKEFILE", places the result of the compilation and kicks of the PRU.
Finally, the LED should be blinking on PIN P8_45.

9

Chapter 4

RPMsg

The next step is to enable communication between the PRUs and the ARM®Cortex. This will be very useful
when it comes to send data collected with the PRUs.
The di�erent steps are based on the work of [Raven, 2016], who presents a very complete set of instructions
in order to enable the RPMsg framework in his project: Using the Beaglebone™ Green Programmable Real-Time
Unit with the Remoteproc and Remote Messaging Framework to Capture and Play Data from an ADC.

4.1 Presentation of RPMsg

TI explains it better than I do:

RPMsg is a message passing mechanism that requests resources through Remoteproc and builds on
top of the virtio framework. Shared bu�ers are requested through the resource_table and provided
by the Remoteproc module during PRU �rmware loading. The shared bu�ers are contained inside a
vring data structure in DDR memory. There are two vrings provided per PRU core, one vring is used
for messages passed to the ARM® and the other vring is used for messages received from the ARM®.
System level mailboxes are used to notify cores (ARM® or PRU) when new messages are waiting in
the shared bu�ers.

[TexasInstrument, 2017b]

Figure 4.1: Interaction between the ARM®and the PRUs when using RPMsg [TexasInstrument, 2017b]

10

As explained above, RPMsg uses Remoteproc to transfer messages between the PRUs and the ARM®. Actually,
Remoteproc has already been setup in the Chapter 3 when we have loaded the following device tree :

uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-9-TI-00A0.dtbo

Now we are going to enable the RPMsg mechanism.

4.2 Setup

We are going to recompile some device trees:

cd /opt/source/bb.org-overlays/
make
make install

Then a new device tree must be added when we boot the Beaglebone™:

cd
nano /boot/uEnv.txt

Go to the section:

###Custom Cape

and add the following line:

###Custom Cape
dtb_overlay=/lib/firmware/am335x-boneblack.dtbo

Then save, quit the �le and reboot the BeagleBone™ Black. In order to verify that everything is ready, once
the board is on and after few seconds you can go to:

cd /sys/bus/platform/devices
ls

In this folder you should be able to see:

4a300000.pruss
4a320000.intc
4a334000.pru0
4a338000.pru1

If yes, then everything is ok.

4.3 Testing

Now we are going to use the RPMsg framework with a small example in which we are going to send a "Hi
PRU" message from the ARM®to the PRU, which is going to answer: "Hi Cortex-A8". Go back to the "/root"
folder and create a new folder:

cd
mkdir Test_RPMsg

this folder will contain the code for the ARM®a nested folder: "PRU_codes", let’s create this last folder:

cd Test_RPMsg
mkdir PRU_codes

11

4.3.1 Code for the Cortex-A8

Inside the "Test_RPMsg" folder create these �les :

• deploy_echo_ARM.sh

• rpmsg_pru_user_space_echo.c

4.3.1.1 deploy_echo_ARM.sh

It is only a bash script that is going to compile rpmsg_pru_user _space _echo.c and execute it.

4.3.1.2 rpmsg_pru_user_space_echo.c

This code is going to be executed by the Cortex-A8. It will open the device character for PRU1, send 10 "Hello
PRU!" messages through the RPMsg channel and read the answer into the device character.

Figure 4.2: Main loop of the rpmsg_pru_user_space_echo code

12

4.3.2 Code for the PRU

Then you will put a �le and 4 folders into the "PRU_codes" folder, those codes are going to be executed on
PRU0 and PRU1:

• deploy_echo.sh

• the "lib" folder which contains some needed libraries

• the "include" folder which contains resources �les for the di�erent TI processors

• PRU_Halt which contains all needed codes for PRU0:

– AM335x_PRU.cmd
– main.c
– Make�le
– resource_table_empty.h

• PRU_RPMsg_Echo_Interrupt1, which contains the codes for PRU1:

– AM335x_PRU.cmd
– main.c
– Make�le
– resource_table_1.h

4.3.2.1 deploy.sh

As for the Cortex-A8 folder, this is a bash script that computes the codes for both PRU and that launches them.

4.3.2.2 PRU_Halt

In order to avoid any problems we are going to stop the PRU0 as soon as we start it, this is the role of the
"__Halt()" function in main.c provided by [TexasInstrument, 2014] in the Software Support Package.

Figure 4.3: Main loop of the PRU_Halt code, "__Halt()" function stops PRU0

4.3.2.3 PRU_RPMsg_Echo_Interrupt1

This is the interesting part of the PRU codes. As we did for the section 3.4, we need the "AM335x_PRU.cmd"
and "resource_table_1.h" and a "Make�le". The main.c code is presented in �gure 4.4.
After creating the device character "rpmsg_pru31" for the communication with the Cortex-A8, the PRU is going
to wait for receiving a message from the Cortex. Each time it receives a message, the PRU is going to send
back a message "Hello_Cortext-A8!" using the pru_rpmsg_send() function.

13

Figure 4.4: Main loop of the PRU_RPMsg_Echo_Interrupt1code

4.3.3 Starting the project

Once you have placed every �le in the Test_RPMsg folder you can start both PRUs and Cortex-A8. For this,
go into the PRU_codes folder and execute the deploy_echo.sh script:

cd
cd /Test_RPMsg/PRU_codes
sh deploy_echo.sh

The go into the Test_RPMsg folder and execute the other bash script:

cd
cd /Test_RPMsg
sh deploy_echo_ARM.sh

You should see something like in �gure 4.5 in the console.
If both examples of sections 3 and 4.1 were run successfully then you are good to go.

14

Figure 4.5: Expected result for the Test_RPMsg folder

15

Appendix A

PIN Header 8

Pin
$PINS

AD
D

R
G

PIO
Nam

e
M

ode7
M

ode6
M

ode5
M

ode4
M

ode3
M

ode2
M

ode1
M

ode0
C

PU
Notes

P8_01
O

ffset from
:

D
G

N
D

G
round

P8_02
44e10800

D
G

N
D

G
round

P8_03
6

 0x818/018
38

G
PIO

1_6
gpio1[6]

m
m

c1_dat6
gpm

c_ad6
R

9
Allocated em

m
c2

P8_04
7

 0x81c/01c
39

G
PIO

1_7
gpio1[7]

m
m

c1_dat7
gpm

c_ad7
T9

Allocated em
m

c2

P8_05
2

 0x808/008
34

G
PIO

1_2
gpio1[2]

m
m

c1_dat2
gpm

c_ad2
R

8
Allocated em

m
c2

P8_06
3

 0x80c/00c
35

G
PIO

1_3
gpio1[3]

m
m

c1_dat3
gpm

c_ad3
T8

Allocated em
m

c2

P8_07
36

 0x890/090
66

TIM
ER

4
gpio2[2]

tim
er4

gpm
c_advn_ale

R
7

P8_08
37

 0x894/094
67

TIM
ER

7
gpio2[3]

tim
er7

gpm
c_oen_ren

T7

P8_09
39

 0x89c/09c
69

TIM
ER

5
gpio2[5]

tim
er5

gpm
c_be0n_cle

T6

P8_10
38

 0x898/098
68

TIM
ER

6
gpio2[4]

tim
er6

gpm
c_w

en
U

6

P8_11
13

 0x834/034
45

G
PIO

1_13
gpio1[13]

pr1_pru0_pru_r30_15
eQ

EP2B_in
m

m
c2_dat1

m
m

c1_dat5
lcd_data18

gpm
c_ad13

R
12

P8_12
12

 0x830/030
44

G
PIO

1_12
gpio1[12]

pr1_pru0_pru_r30_14
EQ

EP2A_IN
M

M
C

2_D
AT0

M
M

C
1_D

AT4
LC

D
_D

ATA19
G

PM
C

_AD
12

T12

P8_13
9

 0x824/024
23

EH
R

PW
M

2B
gpio0[23]

ehrpw
m

2B
m

m
c2_dat5

m
m

c1_dat1
lcd_data22

gpm
c_ad9

T10

P8_14
10

 0x828/028
26

G
PIO

0_26
gpio0[26]

ehrpw
m

2_tripzone_in
m

m
c2_dat6

m
m

c1_dat2
lcd_data21

gpm
c_ad10

T11

P8_15
15

 0x83c/03c
47

G
PIO

1_15
gpio1[15]

pr1_pru0_pru_r31_15
eQ

EP2_strobe
m

m
c2_dat3

m
m

c1_dat7
lcd_data16

gpm
c_ad15

U
13

P8_16
14

 0x838/038
46

G
PIO

1_14
gpio1[14]

pr1_pru0_pru_r31_14
eQ

EP2_index
m

m
c2_dat2

m
m

c1_dat6
lcd_data17

gpm
c_ad14

V13

P8_17
11

 0x82c/02c
27

G
PIO

0_27
gpio0[27]

ehrpw
m

0_synco
m

m
c2_dat7

m
m

c1_dat3
lcd_data20

gpm
c_ad11

U
12

P8_18
35

 0x88c/08c
65

G
PIO

2_1
gpio2[1]

m
casp0_fsr

m
m

c2_clk
gpm

c_w
ait1

lcd_m
em

ory_clk
gpm

c_clk_m
ux0

V12

P8_19
8

 0x820/020
22

EH
R

PW
M

2A
gpio0[22]

ehrpw
m

2A
m

m
c2_dat4

m
m

c1_dat0
lcd_data23

gpm
c_ad8

U
10

P8_20
33

 0x884/084
63

G
PIO

1_31
gpio1[31]

pr1_pru1_pru_r31_13
pr1_pru1_pru_r30_13

m
m

c1_cm
d

gpm
c_be1n

gpm
c_csn2

V9
Allocated em

m
c2

P8_21
32

 0x880/080
62

G
PIO

1_30
gpio1[30]

pr1_pru1_pru_r31_12
pr1_pru1_pru_r30_12

m
m

c1_clk
gpm

c_clk
gpm

c_csn1
U

9
Allocated em

m
c2

P8_22
5

 0x814/014
37

G
PIO

1_5
gpio1[5]

m
m

c1_dat5
gpm

c_ad5
V8

Allocated em
m

c2

P8_23
4

 0x810/010
36

G
PIO

1_4
gpio1[4]

m
m

c1_dat4
gpm

c_ad4
U

8
Allocated em

m
c2

P8_24
1

 0x804/004
33

G
PIO

1_1
gpio1[1]

m
m

c1_dat1
gpm

c_ad1
V7

Allocated em
m

c2

P8_25
0

 0x800/000
32

G
PIO

1_0
gpio1[0]

m
m

c1_dat0
gpm

c_ad0
U

7
Allocated em

m
c2

P8_26
31

 0x87c/07c
61

G
PIO

1_29
gpio1[29]

gpm
c_csn0

V6

P8_27
56

 0x8e0/0e0
86

G
PIO

2_22
gpio2[22]

pr1_pru1_pru_r31_8
pr1_pru1_pru_r30_8

gpm
c_a8

lcd_vsync
U

5
Allocated H

D
M

I

P8_28
58

 0x8e8/0e8
88

G
PIO

2_24
gpio2[24]

pr1_pru1_pru_r31_10
pr1_pru1_pru_r30_10

gpm
c_a10

lcd_pclk
V5

Allocated H
D

M
I

P8_29
57

 0x8e4/0e4
87

G
PIO

2_23
gpio2[23]

pr1_pru1_pru_r31_9
pr1_pru1_pru_r30_9

gpm
c_a9

lcd_hsync
R

5
Allocated H

D
M

I

P8_30
59

 0x8ec/0ec
89

G
PIO

2_25
gpio2[25]

pr1_pru1_pru_r31_11
pr1_pru1_pru_r30_11

gpm
c_a11

lcd_ac_bias_en
R

6
Allocated H

D
M

I

P8_31
54

 0x8d8/0d8
10

U
AR

T5_C
TSN

gpio0[10]
uart5_ctsn

uart5_rxd
m

casp0_axr1
eQ

EP1_index
gpm

c_a18
lcd_data14

V4
Allocated H

D
M

I

P8_32
55

 0x8dc/0dc
11

U
AR

T5_R
TSN

gpio0[11]
uart5_rtsn

m
casp0_axr3

m
casp0_ahclkx

eQ
EP1_strobe

gpm
c_a19

lcd_data15
T5

Allocated H
D

M
I

P8_33
53

 0x8d4/0d4
9

U
AR

T4_R
TSN

gpio0[9]
uart4_rtsn

m
casp0_axr3

m
casp0_fsr

eQ
EP1B_in

gpm
c_a17

lcd_data13
V3

Allocated H
D

M
I

P8_34
51

 0x8cc/0cc
81

U
AR

T3_R
TSN

gpio2[17]
uart3_rtsn

m
casp0_axr2

m
casp0_ahclkr

ehrpw
m

1B
gpm

c_a15
lcd_data11

U
4

Allocated H
D

M
I

P8_35
52

 0x8d0/0d0
8

U
AR

T4_C
TSN

gpio0[8]
uart4_ctsn

m
casp0_axr2

m
casp0_aclkr

eQ
EP1A_in

gpm
c_a16

lcd_data12
V2

Allocated H
D

M
I

P8_36
50

 0x8c8/0c8
80

U
AR

T3_C
TSN

gpio2[16]
uart3_ctsn

m
casp0_axr0

ehrpw
m

1A
gpm

c_a14
lcd_data10

U
3

Allocated H
D

M
I

P8_37
48

 0x8c0/0c0
78

U
AR

T5_TXD
gpio2[14]

uart2_ctsn
uart5_txd

m
casp0_aclkx

ehrpw
m

1_tripzone_in
gpm

c_a12
lcd_data8

U
1

Allocated H
D

M
I

P8_38
49

 0x8c4/0c4
79

U
AR

T5_R
XD

gpio2[15]
uart2_rtsn

uart5_rxd
m

casp0_fsx
ehrpw

m
0_synco

gpm
c_a13

lcd_data9
U

2
Allocated H

D
M

I

P 8_39
46

 0x8b8/0b8
76

G
PIO

2_12
gpio2[12]

pr1_pru1_pru_r31_6
pr1_pru1_pru_r30_6

eQ
EP2_index

gpm
c_a6

lcd_data6
T3

Allocated H
D

M
I

P8_40
47

 0x8bc/0bc
77

G
PIO

2_13
gpio2[13]

pr1_pru1_pru_r31_7
pr1_pru1_pru_r30_7

pr1_edio_data_out7
eQ

EP2_strobe
gpm

c_a7
lcd_data7

T4
Allocated H

D
M

I

P8_41
44

 0x8b0/0b0
74

G
PIO

2_10
gpio2[10]

pr1_pru1_pru_r31_4
pr1_pru1_pru_r30_4

eQ
EP2A_in

gpm
c_a4

lcd_data4
T1

Allocated H
D

M
I

P8_42
45

 0x8b4/0b4
75

G
PIO

2_11
gpio2[11]

pr1_pru1_pru_r31_5
pr1_pru1_pru_r30_5

eQ
EP2B_in

gpm
c_a5

lcd_data5
T2

Allocated H
D

M
I

P8_43
42

 0x8a8/0a8
72

G
PIO

2_8
gpio2[8]

pr1_pru1_pru_r31_2
pr1_pru1_pru_r30_2

ehrpw
m

2_tripzone_in
gpm

c_a2
lcd_data2

R
3

Allocated H
D

M
I

P8_44
43

 0x8ac/0ac
73

G
PIO

2_9
gpio2[9]

pr1_pru1_pru_r31_3
pr1_pru1_pru_r30_3

ehrpw
m

0_synco
gpm

c_a3
lcd_data3

R
4

Allocated H
D

M
I

P8_45
40

 0x8a0/0a0
70

G
PIO

2_6
gpio2[6]

pr1_pru1_pru_r31_0
pr1_pru1_pru_r30_0

ehrpw
m

2A
gpm

c_a0
lcd_data0

R
1

Allocated H
D

M
I

P8_46
41

 0x8a4/0a4
71

G
PIO

2_7
gpio2[7]

pr1_pru1_pru_r31_1
pr1_pru1_pru_r30_1

ehrpw
m

2B
gpm

c_a1
lcd_data1

R
2

Allocated H
D

M
I

P9 H
eader

cat $PIN
S

AD
D

R
 +

G
PIO

 N
O

.
N

am
e

M
ode 7

M
ode 6

M
ode 5

M
ode 4

M
ode 3

M
ode 2

M
ode 1

M
ode 0

C
PU

E
X
P
LO

R
IN
G
B
E
A
G
L
E
B
O
N
E

T
O

O
L

S
 A

N
D

 T
E

C
H

N
IQ

U
E

S
 FO

R
 B

U
IL

D
IN

G
 W

IT
H

 E
M

B
E

D
D

E
D

 L
IN

U
X

w
w
w
.E
xp

lo
rin

g
B
e
ag

le
B
o
n
e
.co

m
T

h
e

 B
e

ag
le

B
o

n
e

 B
lack P

8
 H

e
ad

e
r

16

Appendix B

PIN Header 9

E
X
P
LO

R
IN
G
B
E
A
G
L
E
B
O
N
E

T
O

O
L

S
 A

N
D

 T
E

C
H

N
IQ

U
E

S
 FO

R
 B

U
IL

D
IN

G
 W

IT
H

 E
M

B
E

D
D

E
D

 L
IN

U
X

w
w
w
.E
xp

lo
rin

g
B
e
ag

le
B
o
n
e
.co

m
T

h
e

 B
e

ag
le

B
o

n
e

 B
lack P

9
 H

e
ad

e
r

se
to

N
UP

C
0e

do
M

1e
do

M
2e

do
M

3e
do

M
4e

do
M

5e
do

M
6e

do
M

7e
do

M
e

ma
N

OI
P

G
R

D
D

A
S

NI
P$

ni
PP9_01

44e10000
G

N
D

G
round

P9_02
O

ffset from
:

G
N

D
G

round

P9_03
44e10800

D
C

_3.3V
250m

A M
ax C

urrent

V3
.3

_
C

D
40

_9
P

250m
A M

ax C
urrent

V5
_

D
DV

50
_9

P
1A M

ax C
urrent

V5
_

D
DV

60
_9

P
1A M

ax C
urrent

V5
_S

YS
70

_9
P

250m
A M

ax C
urrent

V5
_S

YS
80

_9
P

250m
A M

ax C
urrent

T
UB

_
R

WP
90

_9
P

5V Level (pulled up PM
IC

)

nT
ES

E
R_

SY
S

01
_9

P
R

ESET_O
U

T
A1071
T

0ti
a

w_
c

mp
g

sr
c_

2ii
m

4n
sc

_c
mp

g
vd

_s
rc

_2
ii

mr
dc

ds
_1

c
m

m
2x

u
m_

dx
r_

4tr
au

]0
3[

0o
ip

g
DX

R_
4T

RA
U

03
07

0/
07

8x
0

82
11

_9
P

All G
PIO

s to 4-6m
A output

81
U

n1
eb

_c
mp

g
lo

c_
2ii

m
6n

sc
_c

mp
g

3t
ad

_2
c

m
m

ri
d_

c
mp

g
3x

u
m_

rk
lc

a_
0p

sa
c

m
]8

2[
1o

ip
g

82
_1

OI
P

G
06

87
0/

87
8x

0
03

21
_9

P
and approx. 8m

A on input.

71
U

np
w_

c
mp

g
rr

ex
r_

2ii
m

5n
sc

_c
mp

g
rr

ex
r_

2ii
mr

dc
ds

_2
c

m
m

2x
u

m_
dx

t_
4tr

au
]1

3[
0o

ip
g

DX
T_

4T
RA

U
13

47
0/

47
8x

0
92

31
_9

P

41
U

2a
_c

mp
g

3d
xt

_2
ii

m
3d

t_
2ii

mg
r

1t
ad

_2
c

m
m

81
a_

c
mp

g
1x

u
m_

A1
m

wp
rh

e
]8

1[
1o

ip
g

A1
M

WP
R

HE
05

84
0/

84
8x

0
81

41
_9

P

31
R

0a
_c

mp
g

ne
xt

_2
ii

mg
lt

ct
_2

ii
mr

ne
xt

_2
ii

m
61

a_
c

mp
g

tu
pn

i_
en

oz
pir

t_
1

m
wp

rh
e

]6
1[

1o
ip

g
61

_1
OI

P
G

84
04

0/
04

8x
0

61
51

_9
P

41
T

3a
_c

mp
g

2d
xt

_2
ii

m
2d

t_
2ii

mg
r

2t
ad

_2
c

m
m

91
a_

c
mp

g
1x

u
m_

B1
m

wp
rh

e
]9

1[
1o

ip
g

B1
M

WP
R

HE
15

c4
0/

c4
8x

0
91

61
_9

P

61
A

0s
c_

0i
ps

p
wd

s_
2c

m
m

L
CS

_1
C2

I
ic

ny
s_

0
m

wp
rh

e
dx

t_
0tr

au
_1

rp
]5

[0
oi

pg
L

CS
_1

C2
I

5
c5

1/
c5

9x
0

78
71

_9
P

61
B

1d
_0

ip
s

p
wd

s_
1c

m
m

A
DS

_1
C2

I
en

oz
pir

t_
0

m
wp

rh
e

dx
r_

0tr
au

_1
rp

]4
[0

oi
pg

A
DS

_1
C2

I
4

85
1/

85
9x

0
68

81
_9

PP9_19
95

2
C2

I
de

ta
co

ll
A

71
D

ns
tr

_1
tr

au
5r

e
mit

xr
_0

na
cd

L
CS

_2
C2

I
1s

c_
1i

ps
n_

str
_0

tr
au

_1
rp

]3
1[

0o
ip

g
L

CS
_2

C2
I

31
c7

1/
c7

9x
0

P9_20
94

2
C2

I
de

ta
co

ll
A

81
D

ns
tc

_1
tr

au
6r

e
mit

xt
_0

na
cd

A
DS

_2
C2

I
0s

c_
1i

ps
n_

st
c_

0tr
au

_1
rp

]2
1[

0o
ip

g
A

DS
_2

C2
I

21
87

1/
87

9x
0

71
B

0d
_0

ip
s

dx
t_

2tr
au

L
CS

_2
C2

I
B0

m
wp

rh
e

n_
str

_0
tr

au
_1

rp
1x

u
m_

3
U

ME
]3

[0
oi

pg
DX

T_
2T

RA
U

3
45

1/
45

9x
0

58
12

_9
P

71
A

kl
cs

_0
ip

s
dx

r_
2tr

au
A

DS
_2

C2
I

A0
m

wp
rh

e
n_

st
c_

0tr
au

_1
rp

1x
u

m_
2

U
ME

]2
[0

oi
pg

DX
R_

2T
RA

U
2

05
1/

05
9x

0
48

22
_9

P

41
V

1a
_c

mp
g

vd
xr

_2
ii

mg
vd

xr
_2

ii
mg

r
0t

ad
_2

c
m

m
71

a_
c

mp
g

oc
ny

s_
0

m
wp

rh
e

]7
1[

1o
ip

g
71

_1
OI

P
G

94
44

0/
44

8x
0

71
32

_9
P

51
D

dx
t_

1tr
au

p
wd

s_
2c

m
m

xr
_1

na
cd

L
CS

_1
C2

I
dx

t_
0tr

au
_1

rp
61

_1
3r

_u
rp

_0
ur

p_
1r

p
]5

1[
0o

ip
g

DX
T_

1T
RA

U
51

48
1/

48
9x

0
79

42
_9

PP9_25
107

 0x9ac/1ac
117

G
PIO

3_21
gpio3[21]

pr1_pru0_pru_r31_7
pr1_pru0_pru_r30_7

EM
U

4_m
ux2

m
casp1_axr1

m
casp0_axr3

eQ
EP0_strobe

m
casp0_ahclkx

A14
Allocated m

casp0_pins

61
D

dx
r_

1tr
au

p
wd

s_
1c

m
m

xt
_1

na
cd

A
DS

_1
C2

I
dx

r_
0tr

au
_1

rp
61

_1
3r

_u
rp

_1
ur

p_
1r

p
]4

1[
0o

ip
g

DX
R_

1T
RA

U
41

08
1/

08
9x

0
69

62
_9

PP9_27
105

 0x9a4/1a4
115

G
PIO

3_19
gpio3[19]

pr1_pru0_pru_r31_5
pr1_pru0_pru_r30_5

EM
U

2_m
ux2

m
casp1_fsx

m
casp0_axr3

eQ
EP0B_in

m
casp0_fsr

C
13

Allocated m
casp0_pins

P9_28
103

 0x99c/19c
113

SPI1_C
S0

gpio3[17]
pr1_pru0_pru_r31_3

pr1_pru0_pru_r30_3
eC

AP2_in_PW
M

2_out
spi1_cs0

m
casp0_axr2

ehrpw
m

0_synci
m

casp0_ahclkr
C

12
Allocated m

casp0_pins

P9_29
101

ni
p_

0p
sa

c
m

de
ta

co
ll

A
31

B
xs

f_
0p

sa
c

m
B0

m
wp

rh
e

0d
_1

ip
s

1x
u

m_
dc

ds
_1

c
m

m
1_

03
r_

ur
p_

0u
rp

_1
rp

1_
13

r_
ur

p_
0u

rp
_1

rp
]5

1[
3o

ip
g

0
D_

1I
PS

11
1

49
1/

49
9x

0
s

P9_30
102

m
de

ta
co

ll
A

21
D

0r
xa

_0
ps

ac
m

en
oz

pir
t_

0
m

wp
rh

e
1d

_1
ip

s
1x

u
m_

dc
ds

_2
c

m
m

2_
03

r_
ur

p_
0u

rp
_1

rp
2_

13
r_

ur
p_

0u
rp

_1
rp

]6
1[

3o
ip

g
1

D_
1I

PS
21

1
89

1/
89

9x
0

casp0_pins

P9_31
100

sa
c

m
de

ta
co

ll
A

31
A

xk
lc

a_
0p

sa
c

m
A0

m
wp

rh
e

kl
cs

_1
ip

s
1x

u
m_

dc
ds

_0
c

m
m

0_
03

r_
ur

p_
0u

rp
_1

rp
0_

13
r_

ur
p_

0u
rp

_1
rp

]4
1[

3o
ip

g
KL

CS
_1

IP
S

01
1

09
1/

09
9x

0
p0_pins

C
DA

V
23

_9
P

1.8 AD
C

 Volt. R
ef.

4
NI

A
33

_9
P

C
8

1.8V input

D
N

GA
43

_9
P

G
round for AD

C

6
NI

A
53

_9
P

A8
1.8V input

5
NI

A
63

_9
P

B8
1.8V input

2
NI

A
73

_9
P

B7
1.8V input

3
NI

A
83

_9
P

A7
1.8V input

0
NI

A
93

_9
P

B6
1.8V input

1
NI

A
04

_9
P

C
7

1.8V input

 1
1P

 f
o

12
P

ot
ht

oB
41

D
1rt

ni
_t

ne
ve

_a
md

x
ni

kl
ct

2t
uo

kl
c

1x
u

m_
7r

e
mit

61
_1

3r
_u

rp
_0

ur
p_

1r
p

0x
u

m_
3

U
ME

]0
2[

0o
ip

g
2T

U
OK

L
C

02
4b

1/
4b

9x
0

90
1

A1
4_

9P

P f
o

12
P

ot
ht

oB
31

D
1r

xa
_0

ps
ac

m
xe

dn
i_

0P
E

Qe
0r

xa
_1

ps
ac

M
3u

me
6_

03
r_

ur
p_

0u
rp

_1
rp

6_
13

r_
ur

p_
0u

rp
_1

rp
]0

2[
3o

ip
g

02
_3

OI
P

G
61

1
8a

1/
8a

9x
0

B1
4_

9P
11

P9_42A
89

0x964/164
7

G
PIO

0_7
gpio0[7]

xdm
a_event_intr2

m
m

c0_sdw
p

spi1_sclk
pr1_ecap0_ecap_capin_apw

m
_o

spi1_cs1
uart3_txd

eC
AP0_in_PW

M
0_out

C
18

Both to P22 of P11

de
ta

co
ll

A
21

B
rk

lc
a_

0p
sa

c
M

ni
_A

0P
E

Qe
2r

xa
_o

ps
ac

M
xk

lc
a_

1p
sa

c
M

4_
03

r_
ur

p_
0u

rp
_1

rp
4_

13
r_

ur
p_

0u
rp

_1
rp

]8
1[

3o
ip

g
81

_3
OI

P
G

41
1

0a
1/

0a
9x

0
B2

4_
9P

 m
casp0_pins

D
N

G
34

_9
P

 - See Pg.50 of the SR
M

D
N

G
44

_9
P

G
round

D
N

G
54

_9
P

G
round

D
N

G
)7

 e
do

M(
ta

c
64

_9
P

G
round

P9
$PIN

S
AD

D
R

 +
G

PIO
 N

O
.

N
am

e
M

ode 7
M

ode 1
M

ode 0
C

PU
N

otes

17

Bibliography

Justin Cooper. Device tree overlays. https://learn.adafruit.com/
introduction-to-the-beaglebone-black-device-tree/overview, 2015.

Derek Molloy. Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux. Wiley, 2014.
ISBN 1118935128. URL http://www.exploringbeaglebone.com/.

Gregory Raven. Using the beaglebone green programmable real-time unit with the remoteproc and remote
messaging framework to capture and play data from an adc. https://github.com/Greg-R/
pruadc1, 2016.

TexasInstrument. Pru software support package. https://git.ti.com/
pru-software-support-package, 2014.

TexasInstrument. Pru read latencies. http://processors.wiki.ti.com/index.php/PRU_
Read_Latencies, 2017a.

TexasInstrument. Pru-icss remoteproc and rpmsg. http://processors.wiki.ti.com/index.
php/PRU-ICSS_Remoteproc_and_RPMsg, 2017b.

TexasInstruments. AM335x and AMIC110 SitaraTM Processors, 2017.

Zubeen Tolani. Ptp - programming the prus 1: Blinky. https://www.zeekhuge.me/post/ptp_
blinky/, 2016.

Mark A. Yoder. Ebc exercise 30 pru via remoteproc and rpmsg. https://elinux.org/EBC_
Exercise_30_PRU_via_remoteproc_and_RPMsg, 2017.

18

APPENDIX C

TI AM335X TSADC.H HEADER

1 # i f n d e f LINUX TI AM335X TSCADC MFD H

2 # d e f i n e LINUX TI AM335X TSCADC MFD H

3

4 /∗

5 ∗ TI Touch S c re en / ADC MFD d r i v e r

6 ∗

7 ∗ C o p y r i g h t (C) 2012 Texas I n s t r u m e n t s I n c o r p o r a t e d − h t t p : / / www. t i . com /

8 ∗ Source m o d i f i e d by P i e r r i c k Rauby

9 ∗ Thi s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r

10 ∗ modify i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as

11 ∗ p u b l i s h e d by t h e Free S o f t w a r e F o u n d a t i o n v e r s i o n 2 .

12 ∗

13 ∗ Thi s program i s d i s t r i b u t e d ” as i s ” WITHOUT ANY WARRANTY of any

14 ∗ kind , whe the r e x p r e s s o r i m p l i e d ; w i t h o u t even t h e i m p l i e d w a r r a n t y

15 ∗ of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e

16 ∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

17 ∗ /

18

19 # i n c l u d e <l i n u x / mfd / c o r e . h>

20

21 # d e f i n e REG RAWIRQSTATUS 0 x024

22 # d e f i n e REG IRQSTATUS 0 x028

23 # d e f i n e REG IRQENABLE 0x02C

24 # d e f i n e REG IRQCLR 0 x030

25 # d e f i n e REG IRQWAKEUP 0 x034

26 # d e f i n e REG DMAENABLE SET 0 x038

27 # d e f i n e REG DMAENABLE CLEAR 0 x03c

28 # d e f i n e REG CTRL 0 x040

29 # d e f i n e REG ADCFSM 0 x044

30 # d e f i n e REG CLKDIV 0x04C

31 # d e f i n e REG SE 0 x054

32 # d e f i n e REG IDLECONFIG 0 x058

33 # d e f i n e REG CHARGECONFIG 0x05C

34 # d e f i n e REG CHARGEDELAY 0 x060

35 # d e f i n e REG STEPCONFIG (n) (0 x64 + ((n) ∗ 8))

82

36 # d e f i n e REG STEPDELAY(n) (0 x68 + ((n) ∗ 8))

37 # d e f i n e REG FIFO0CNT 0xE4

38 # d e f i n e REG FIFO0THR 0xE8

39 # d e f i n e REG FIFO1CNT 0xF0

40 # d e f i n e REG FIFO1THR 0xF4

41 # d e f i n e REG DMA1REQ 0xF8

42 # d e f i n e REG FIFO0 0 x100

43 # d e f i n e REG FIFO1 0 x200

44

45 /∗ R e g i s t e r B i t f i e l d s ∗ /

46 /∗ IRQ wakeup e n a b l e ∗ /

47 # d e f i n e IRQWKUP ENB BIT (0)

48

49 /∗ Step Enab le ∗ /

50 # d e f i n e STEPENB MASK (0 x1FFFF << 0)

51 # d e f i n e STEPENB(v a l) ((v a l) << 0)

52 # d e f i n e ENB(v a l) (1 << (v a l))

53 # d e f i n e STPENB STEPENB STEPENB(0 x1FFFF)

54 # d e f i n e STPENB STEPENB TC STEPENB(0 x1FFF)

55

56 /∗ IRQ e n a b l e ∗ /

57 # d e f i n e IRQENB HW PEN BIT (0)

58 # d e f i n e IRQENB EOS BIT (1)

59 # d e f i n e IRQENB FIFO0THRES BIT (2)

60 # d e f i n e IRQENB FIFO0OVRRUN BIT (3)

61 # d e f i n e IRQENB FIFO0UNDRFLW BIT (4)

62 # d e f i n e IRQENB FIFO1THRES BIT (5)

63 # d e f i n e IRQENB FIFO1OVRRUN BIT (6)

64 # d e f i n e IRQENB FIFO1UNDRFLW BIT (7)

65 # d e f i n e IRQENB PENUP BIT (9)

66

67 /∗ Step C o n f i g u r a t i o n ∗ /

68 # d e f i n e STEPCONFIG MODE MASK (3 << 0)

69 # d e f i n e STEPCONFIG MODE(v a l) ((v a l) << 0)

70 # d e f i n e STEPCONFIG MODE SWCNT STEPCONFIG MODE (1)

71 # d e f i n e STEPCONFIG MODE HWSYNC STEPCONFIG MODE (2)

72 # d e f i n e STEPCONFIG AVG MASK (7 << 2)

73 # d e f i n e STEPCONFIG AVG(v a l) ((v a l) << 2)

74 # d e f i n e STEPCONFIG AVG 16 STEPCONFIG AVG (4)

75 # d e f i n e STEPCONFIG XPP BIT (5)

76 # d e f i n e STEPCONFIG XNN BIT (6)

83

77 # d e f i n e STEPCONFIG YPP BIT (7)

78 # d e f i n e STEPCONFIG YNN BIT (8)

79 # d e f i n e STEPCONFIG XNP BIT (9)

80 # d e f i n e STEPCONFIG YPN BIT (1 0)

81 # d e f i n e STEPCONFIG INM MASK (0 xF << 15)

82 # d e f i n e STEPCONFIG INM (v a l) ((v a l) << 15)

83 # d e f i n e STEPCONFIG INM ADCREFM STEPCONFIG INM (8)

84 # d e f i n e STEPCONFIG INP MASK (0 xF << 19)

85 # d e f i n e STEPCONFIG INP (v a l) ((v a l) << 19)

86 # d e f i n e STEPCONFIG INP AN4 STEPCONFIG INP (4)

87 # d e f i n e STEPCONFIG INP ADCREFM STEPCONFIG INP (8)

88 # d e f i n e STEPCONFIG FIFO1 BIT (2 6)

89

90 /∗ Delay r e g i s t e r ∗ /

91 # d e f i n e STEPDELAY OPEN MASK (0 x3FFFF << 0)

92 # d e f i n e STEPDELAY OPEN(v a l) ((v a l) << 0)

93 # d e f i n e STEPCONFIG OPENDLY STEPDELAY OPEN(0 x098)

94 # d e f i n e STEPDELAY SAMPLE MASK (0 xFF << 24)

95 # d e f i n e STEPDELAY SAMPLE(v a l) ((v a l) << 24)

96 # d e f i n e STEPCONFIG SAMPLEDLY STEPDELAY SAMPLE (0)

97

98 /∗ Charge Conf ig ∗ /

99 # d e f i n e STEPCHARGE RFP MASK (7 << 12)

100 # d e f i n e STEPCHARGE RFP(v a l) ((v a l) << 12)

101 # d e f i n e STEPCHARGE RFP XPUL STEPCHARGE RFP (1)

102 # d e f i n e STEPCHARGE INM MASK (0 xF << 15)

103 # d e f i n e STEPCHARGE INM(v a l) ((v a l) << 15)

104 # d e f i n e STEPCHARGE INM AN1 STEPCHARGE INM (1)

105 # d e f i n e STEPCHARGE INP MASK (0 xF << 19)

106 # d e f i n e STEPCHARGE INP (v a l) ((v a l) << 19)

107 # d e f i n e STEPCHARGE RFM MASK (3 << 23)

108 # d e f i n e STEPCHARGE RFM(v a l) ((v a l) << 23)

109 # d e f i n e STEPCHARGE RFM XNUR STEPCHARGE RFM(1)

110

111 /∗ Charge d e l a y ∗ /

112 # d e f i n e CHARGEDLY OPEN MASK (0 x3FFFF << 0)

113 # d e f i n e CHARGEDLY OPEN(v a l) ((v a l) << 0)

114 # d e f i n e CHARGEDLY OPENDLY CHARGEDLY OPEN(0 x400)

115

116 /∗ C o n t r o l r e g i s t e r ∗ /

117 # d e f i n e CNTRLREG TSCSSENB BIT (0)

84

118 # d e f i n e CNTRLREG STEPID BIT (1)

119 # d e f i n e CNTRLREG STEPCONFIGWRT BIT (2)

120 # d e f i n e CNTRLREG POWERDOWN BIT (4)

121 # d e f i n e CNTRLREG AFE CTRL MASK (3 << 5)

122 # d e f i n e CNTRLREG AFE CTRL(v a l) ((v a l) << 5)

123 # d e f i n e CNTRLREG 4WIRE CNTRLREG AFE CTRL (1)

124 # d e f i n e CNTRLREG 5WIRE CNTRLREG AFE CTRL (2)

125 # d e f i n e CNTRLREG 8WIRE CNTRLREG AFE CTRL (3)

126 # d e f i n e CNTRLREG TSCENB BIT (7)

127

128 /∗ FIFO READ R e g i s t e r ∗ /

129 # d e f i n e FIFOREAD DATA MASK (0 x f f f << 0)

130 # d e f i n e FIFOREAD CHNLID MASK (0 xf << 16)

131

132 /∗ DMA ENABLE/CLEAR R e g i s t e r ∗ /

133 # d e f i n e DMA FIFO0 BIT (0)

134 # d e f i n e DMA FIFO1 BIT (1)

135

136 /∗ Sequence r S t a t u s ∗ /

137 # d e f i n e SEQ STATUS BIT (5)

138 # d e f i n e CHARGE STEP 0x11

139

140 # d e f i n e ADC CLK 24000000

141 # d e f i n e TOTAL STEPS 16

142 # d e f i n e TOTAL CHANNELS 8

143 # d e f i n e FIFO1 THRESHOLD 19

144

145 /∗

146 ∗ t ime i n us f o r p r o c e s s i n g a s i n g l e channe l , c a l c u l a t e d as f o l l o w s :

147 ∗

148 ∗ max num c y c l e s = open d e l a y + (sample d e l a y + conv t ime) ∗ a v e r a g i n g

149 ∗

150 ∗ max num c y c l e s : 262143 + (255 + 13) ∗ 16 = 266431

151 ∗

152 ∗ c l o c k f r e q u e n c y : 26MHz / 8 = 3 . 2 5MHz

153 ∗ c l o c k p e r i o d : 1 / 3 . 2 5MHz = 308 ns

154 ∗

155 ∗ max p r o c e s s i n g t ime : 266431 ∗ 308 ns = 83ms (approx)

156 ∗ /

157 # d e f i n e IDLE TIMEOUT 83 /∗ m i l l i s e c o n d s ∗ /

158

85

159 # d e f i n e TSCADC CELLS 2

160

161 s t r u c t t i t s c a d c d e v {

162 s t r u c t d e v i c e ∗dev ;

163 s t r u c t regmap ∗ regmap ;

164 vo id iomem ∗ t s c a d c b a s e ;

165 p h y s a d d r t t s c a d c p h y s b a s e ;

166 i n t i r q ;

167 i n t u s e d c e l l s ; /∗ 1−2 ∗ /

168 i n t t s c w i r e s ;

169 i n t t s c c e l l ; /∗ −1 i f n o t used ∗ /

170 i n t a d c c e l l ; /∗ −1 i f n o t used ∗ /

171 s t r u c t m f d c e l l c e l l s [TSCADC CELLS] ;

172 u32 r e g s e c a c h e ;

173 boo l a d c w a i t i n g ;

174 boo l a d c i n u s e ;

175 w a i t q u e u e h e a d t r e g s e w a i t ;

176 s p i n l o c k t r e g l o c k ;

177 u n s i g n e d i n t c l k d i v ;

178

179 /∗ t s c d e v i c e ∗ /

180 s t r u c t t i t s c ∗ t s c ;

181

182 /∗ adc d e v i c e ∗ /

183 s t r u c t a d c d e v i c e ∗ adc ;

184 } ;

185

186 s t a t i c i n l i n e s t r u c t t i t s c a d c d e v ∗ t i t s c a d c d e v g e t (s t r u c t p l a t f o r m d e v i c e ∗p)

187 {

188 s t r u c t t i t s c a d c d e v ∗∗ t s c a d c d e v = p−>dev . p l a t f o r m d a t a ;

189

190 r e t u r n ∗ t s c a d c d e v ;

191 }

192

193 vo id a m 3 3 5 x t s c s e s e t c a c h e (s t r u c t t i t s c a d c d e v ∗ t s a d c , u32 v a l) ;

194 vo id a m 3 3 5 x t s c s e s e t o n c e (s t r u c t t i t s c a d c d e v ∗ t s a d c , u32 v a l) ;

195 vo id a m 3 3 5 x t s c s e c l r (s t r u c t t i t s c a d c d e v ∗ t s a d c , u32 v a l) ;

196 vo id a m 3 3 5 x t s c s e a d c d o n e (s t r u c t t i t s c a d c d e v ∗ t s a d c) ;

197

198 # e n d i f

86

APPENDIX D

BB-ADC-00A0.DTS DEVICE TREE OVERLAY

1 /∗

2 ∗ C o p y r i g h t (C) 2012 Texas I n s t r u m e n t s I n c o r p o r a t e d − h t t p : / / www. t i . com /

3 ∗ Source m o d i f i e d by P i e r r i c k Rauby

4 ∗ Thi s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify

5 ∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as

6 ∗ p u b l i s h e d by t h e Free S o f t w a r e F o u n d a t i o n .

7 ∗ /

8

9 / d t s−v1 / ;

10 / p l u g i n / ;

11

12 / {

13 c o m p a t i b l e = ” t i , b e a g l e b o n e ” , ” t i , beag lebone−b l a c k ” , ” t i , beag lebone−g r e e n ” ;

14

15 / / i d e n t i f i c a t i o n

16 p a r t−number = ”BB−ADC” ;

17 v e r s i o n = ”00A0 ” ;

18

19 / / r e s o u r c e s t h i s cape u s e s

20 e x c l u s i v e−use =

21 ” P9 . 3 9 ” , / / AIN0

22 ” P9 . 4 0 ” , / / AIN1

23 ” P9 . 3 7 ” , / / AIN2

24 ” P9 . 3 8 ” , / / AIN3

25 ” P9 . 3 3 ” , / / AIN4

26 ” P9 . 3 6 ” , / / AIN5

27 ” P9 . 3 5 ” , / / AIN6

28

29 ” t s c a d c ” ; / / ha rdware i p used

30

31 fragment@0 {

32 t a r g e t = <&t s c a d c >;

33 o v e r l a y {

34

35 s t a t u s = ” okay ” ;

87

36 adc {

37 t i , adc−c h a n n e l s = <3>;

38 t i , chan−s t e p−avg = <8>;//we a r e a v e r a g i n g ove r 8 sample

b e f o r e s e n d i n g

39 / / t h e r e s u l t t o t h e k e r n e l

40 t i , chan−s t e p−o p e n d e l a y = <0>;

41 t i , chan−s t e p−s a m p l e d e l a y = <0>;

42 } ;

43 } ;

44 } ;

45 } ;

88

APPENDIX E

THE IIO GENERIC BUFFER.C APPLICATION

1 /∗ I n d u s t r i a l i o b u f f e r t e s t code .

2 ∗

3 ∗ C o p y r i g h t (c) 2008 J o n a t h a n Cameron

4 ∗ Source m o d i f i e d by P i e r r i c k Rauby

5 ∗ Thi s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify i t

6 ∗ under t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as p u b l i s h e d by

7 ∗ t h e F ree S o f t w a r e F o u n d a t i o n .

8 ∗

9 ∗ Thi s program i s p r i m a r i l y i n t e n d e d as an example a p p l i c a t i o n .

10 ∗ Reads t h e c u r r e n t b u f f e r s e t u p from s y s f s and s t a r t s a s h o r t c a p t u r e

11 ∗ from t h e s p e c i f i e d dev i ce , p r e t t y p r i n t i n g t h e r e s u l t a f t e r a p p r o p r i a t e

12 ∗ c o n v e r s i o n .

13 ∗

14 ∗ Command l i n e p a r a m e t e r s

15 ∗ g e n e r i c b u f f e r −n <device name> − t <t r i g g e r n a m e>

16 ∗ I f t r i g g e r name i s n o t s p e c i f i e d t h e program assumes you want a d a t a r e a d y

17 ∗ t r i g g e r a s s o c i a t e d wi th t h e d e v i c e and goes l o o k i n g f o r i t .

18 ∗

19 ∗ /

20

21 # i n c l u d e <u n i s t d . h>

22 # i n c l u d e < s t d l i b . h>

23 # i n c l u d e <d i r e n t . h>

24 # i n c l u d e < f c n t l . h>

25 # i n c l u d e <s t d i o . h>

26 # i n c l u d e <e r r n o . h>

27 # i n c l u d e <s y s / s t a t . h>

28 # i n c l u d e <s y s / d i r . h>

29 # i n c l u d e <l i n u x / t y p e s . h>

30 # i n c l u d e <s t r i n g . h>

31 # i n c l u d e <p o l l . h>

32 # i n c l u d e <e n d i a n . h>

33 # i n c l u d e <g e t o p t . h>

34 # i n c l u d e < i n t t y p e s . h>

35 # i n c l u d e <s t d b o o l . h>

89

36 # i n c l u d e <s i g n a l . h>

37 # i n c l u d e <t ime . h>

38 # i n c l u d e ” i i o u t i l s . h ”

39

40 /∗∗

41 ∗ enum a u t o c h a n − s t a t e f o r t h e a u t o m a t i c c h a n n e l e n a b l i n g mechanism

42 ∗ /

43 enum a u t o c h a n { AUTOCHANNELS DISABLED,

44 AUTOCHANNELS ENABLED,

45 AUTOCHANNELS ACTIVE,

46 } ;

47

48 /∗∗

49 ∗ s i z e f r o m c h a n n e l a r r a y () − c a l c u l a t e t h e s t o r a g e s i z e o f a scan

50 ∗ @channels : t h e c h a n n e l i n f o a r r a y

51 ∗ @num channels : number o f c h a n n e l s

52 ∗

53 ∗ Has t h e s i d e e f f e c t o f f i l l i n g t h e c h a n n e l s [i] . l o c a t i o n v a l u e s used

54 ∗ i n p r o c e s s i n g t h e b u f f e r o u t p u t .

55 ∗∗ /

56 i n t s i z e f r o m c h a n n e l a r r a y (s t r u c t i i o c h a n n e l i n f o ∗ c h a n n e l s , i n t num channe l s)

57 {

58 i n t b y t e s = 0 ;

59 i n t i = 0 ;

60 w h i l e (i < num channe l s) {

61 i f (b y t e s % c h a n n e l s [i] . b y t e s == 0)

62 c h a n n e l s [i] . l o c a t i o n = b y t e s ;

63 e l s e

64 c h a n n e l s [i] . l o c a t i o n = b y t e s − b y t e s % c h a n n e l s [i] . b y t e s

65 + c h a n n e l s [i] . b y t e s ;

66

67 b y t e s = c h a n n e l s [i] . l o c a t i o n + c h a n n e l s [i] . b y t e s ;

68 i ++;

69 }

70 r e t u r n b y t e s ;

71 }

72

73 vo id p r i n t 1 b y t e (u i n t 8 t i n p u t , s t r u c t i i o c h a n n e l i n f o ∗ i n f o)

74 {

75 /∗

76 ∗ S h i f t b e f o r e c o n v e r s i o n t o a v o i d s i g n e x t e n s i o n

90

77 ∗ of l e f t a l i g n e d d a t a

78 ∗ /

79 i n p u t >>= i n f o−>s h i f t ;

80 i n p u t &= i n f o−>mask ;

81 i f (i n f o−>i s s i g n e d) {

82 i n t 8 t v a l = (i n t 8 t) (i n p u t << (8 − i n f o−>b i t s u s e d)) >>

83 (8 − i n f o−>b i t s u s e d) ;

84 p r i n t f (”%05 f ” , ((f l o a t) v a l + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

85 } e l s e {

86 p r i n t f (”%05 f ” , ((f l o a t) i n p u t + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

87 }

88 }

89

90 vo id p r i n t 2 b y t e (u i n t 1 6 t i n p u t , s t r u c t i i o c h a n n e l i n f o ∗ i n f o , i n t j , c h a r ∗mySt r ing)

91 {

92 /∗ F i r s t swap i f i n c o r r e c t e n d i a n ∗ /

93 i f (i n f o−>be)

94 i n p u t = be16 toh (i n p u t) ;

95 e l s e

96 i n p u t = l e 1 6 t o h (i n p u t) ;

97 /∗

98 ∗ S h i f t b e f o r e c o n v e r s i o n t o a v o i d s i g n e x t e n s i o n

99 ∗ of l e f t a l i g n e d d a t a

100 ∗ /

101 i n p u t >>= i n f o−>s h i f t ;

102 i n p u t &= i n f o−>mask ;

103 i f (i n f o−>i s s i g n e d) {

104 i n t 1 6 t v a l = (i n t 1 6 t) (i n p u t << (16 − i n f o−>b i t s u s e d)) >>

105 (16 − i n f o−>b i t s u s e d) ;

106 / / p r i n t f (”%05 f ” , ((f l o a t) v a l + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

107 s p r i n t f (myStr ing ,”%d ,%05 f \n ” , j , ((f l o a t) v a l + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

108 } e l s e {

109 s p r i n t f (myStr ing ,”%d ,%05 f \n ” , j , ((f l o a t) i n p u t + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

110 / / p r i n t f (”%05 f ” , ((f l o a t) i n p u t + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

111 }

112 }

113

114 vo id p r i n t 4 b y t e (u i n t 3 2 t i n p u t , s t r u c t i i o c h a n n e l i n f o ∗ i n f o)

115 {

116 /∗ F i r s t swap i f i n c o r r e c t e n d i a n ∗ /

117 i f (i n f o−>be)

91

118 i n p u t = be32 toh (i n p u t) ;

119 e l s e

120 i n p u t = l e 3 2 t o h (i n p u t) ;

121

122 /∗

123 ∗ S h i f t b e f o r e c o n v e r s i o n t o a v o i d s i g n e x t e n s i o n

124 ∗ of l e f t a l i g n e d d a t a

125 ∗ /

126 i n p u t >>= i n f o−>s h i f t ;

127 i n p u t &= i n f o−>mask ;

128 i f (i n f o−>i s s i g n e d) {

129 i n t 3 2 t v a l = (i n t 3 2 t) (i n p u t << (32 − i n f o−>b i t s u s e d)) >>

130 (32 − i n f o−>b i t s u s e d) ;

131 p r i n t f (”%05 f ” , ((f l o a t) v a l + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

132 } e l s e {

133 p r i n t f (”%05 f ” , ((f l o a t) i n p u t + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

134 }

135 }

136

137 vo id p r i n t 8 b y t e (u i n t 6 4 t i n p u t , s t r u c t i i o c h a n n e l i n f o ∗ i n f o)

138 {

139 /∗ F i r s t swap i f i n c o r r e c t e n d i a n ∗ /

140 i f (i n f o−>be)

141 i n p u t = be64 toh (i n p u t) ;

142 e l s e

143 i n p u t = l e 6 4 t o h (i n p u t) ;

144

145 /∗

146 ∗ S h i f t b e f o r e c o n v e r s i o n t o a v o i d s i g n e x t e n s i o n

147 ∗ of l e f t a l i g n e d d a t a

148 ∗ /

149 i n p u t >>= i n f o−>s h i f t ;

150 i n p u t &= i n f o−>mask ;

151 i f (i n f o−>i s s i g n e d) {

152 i n t 6 4 t v a l = (i n t 6 4 t) (i n p u t << (64 − i n f o−>b i t s u s e d)) >>

153 (64 − i n f o−>b i t s u s e d) ;

154 /∗ s p e c i a l c a s e f o r t imes t amp ∗ /

155 i f (i n f o−>s c a l e == 1 . 0 f && i n f o−>o f f s e t == 0 . 0 f)

156 p r i n t f (”%” PRId64 ” ” , v a l) ;

157 e l s e

158 p r i n t f (”%05 f ” ,

92

159 ((f l o a t) v a l + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

160 } e l s e {

161 p r i n t f (”%05 f ” , ((f l o a t) i n p u t + i n f o−>o f f s e t) ∗ i n f o−>s c a l e) ;

162 }

163 }

164

165 /∗∗

166 ∗ p r o c e s s s c a n () − p r i n t o u t t h e v a l u e s i n SI u n i t s

167 ∗ @data : p o i n t e r t o t h e s t a r t o f t h e scan

168 ∗ @channels : i n f o r m a t i o n a b o u t t h e c h a n n e l s .

169 ∗ Note : s i z e f r o m c h a n n e l a r r a y must have been c a l l e d f i r s t

170 ∗ t o f i l l t h e l o c a t i o n o f f s e t s .

171 ∗ @num channels : number o f c h a n n e l s

172 ∗∗ /

173 vo id p r o c e s s s c a n (c h a r ∗ da ta , s t r u c t i i o c h a n n e l i n f o ∗ c h a n n e l s , i n t num channels , i n t j ,

c h a r ∗mySt r ing)

174 {

175 i n t k ;

176 f o r (k = 0 ; k < num channe l s ; k ++)

177 s w i t c h (c h a n n e l s [k] . b y t e s) {

178 /∗ on ly a few c a s e s implemented so f a r ∗ /

179 c a s e 1 :

180 p r i n t 1 b y t e (∗ (u i n t 8 t ∗) (d a t a + c h a n n e l s [k] . l o c a t i o n) ,

181 &c h a n n e l s [k]) ;

182 b r e a k ;

183 c a s e 2 :

184 p r i n t 2 b y t e (∗ (u i n t 1 6 t ∗) (d a t a + c h a n n e l s [k] . l o c a t i o n) ,

185 &c h a n n e l s [k] , j , mySt r ing) ;

186 b r e a k ;

187 c a s e 4 :

188 p r i n t 4 b y t e (∗ (u i n t 3 2 t ∗) (d a t a + c h a n n e l s [k] . l o c a t i o n) ,

189 &c h a n n e l s [k]) ;

190 b r e a k ;

191 c a s e 8 :

192 p r i n t 8 b y t e (∗ (u i n t 6 4 t ∗) (d a t a + c h a n n e l s [k] . l o c a t i o n) ,

193 &c h a n n e l s [k]) ;

194 b r e a k ;

195 d e f a u l t :

196 b r e a k ;

197 }

198 / / p r i n t f (”\ n ”) ;

93

199 }

200

201 s t a t i c i n t e n a b l e d i s a b l e a l l c h a n n e l s (c h a r ∗ d ev d i r n am e , i n t e n a b l e)

202 {

203 c o n s t s t r u c t d i r e n t ∗ e n t ;

204 c h a r s c a n e l e m d i r [2 5 6] ;

205 DIR ∗dp ;

206 i n t r e t ;

207

208 s n p r i n t f (s c a n e l e m d i r , s i z e o f (s c a n e l e m d i r) ,

209 FORMAT SCAN ELEMENTS DIR , d e v d i r n a m e) ;

210 s c a n e l e m d i r [s i z e o f (s c a n e l e m d i r)−1] = ’\0 ’ ;

211

212 dp = o p e n d i r (s c a n e l e m d i r) ;

213 i f (! dp) {

214 f p r i n t f (s t d e r r , ” E n a b l i n g / d i s a b l i n g c h a n n e l s : can ’ t open %s\n ” ,

215 s c a n e l e m d i r) ;

216 r e t u r n −EIO ;

217 }

218

219 r e t = −ENOENT;

220 w h i l e (e n t = r e a d d i r (dp) , e n t) {

221 i f (i i o u t i l s c h e c k s u f f i x (en t−>d name , ” en ”)) {

222 p r i n t f (”% s a b l i n g : %s\n ” ,

223 e n a b l e ? ”En” : ” Dis ” ,

224 en t−>d name) ;

225 r e t = w r i t e s y s f s i n t (en t−>d name , s c a n e l e m d i r ,

226 e n a b l e) ;

227 i f (r e t < 0)

228 f p r i n t f (s t d e r r , ” F a i l e d t o e n a b l e / d i s a b l e %s\n ” ,

229 en t−>d name) ;

230 }

231 }

232

233 i f (c l o s e d i r (dp) == −1) {

234 p e r r o r (” E n a b l i n g / d i s a b l i n g c h a n n e l s : ”

235 ” F a i l e d t o c l o s e d i r e c t o r y ”) ;

236 r e t u r n −e r r n o ;

237 }

238 r e t u r n 0 ;

239 }

94

240

241 vo id p r i n t u s a g e (vo id)

242 {

243 f p r i n t f (s t d e r r , ” Usage : g e n e r i c b u f f e r [o p t i o n s] . . . \ n ”

244 ” Capture , c o n v e r t and o u t p u t d a t a from IIO d e v i c e b u f f e r \n ”

245 ” −a Auto−a c t i v a t e a l l a v a i l a b l e c h a n n e l s \n ”

246 ” −A Force−a c t i v a t e ALL c h a n n e l s \n ”

247 ” −c <n> Do n c o n v e r s i o n s \n ”

248 ” −e D i s a b l e w a i t f o r e v e n t (new d a t a) \n ”

249 ” −g Use t r i g g e r−l e s s mode\n ”

250 ” − l <n> S e t b u f f e r l e n g t h t o n samples\n ”

251 ” −−dev i ce−name −n <name>\n ”

252 ” −−dev i ce−num −N <num>\n ”

253 ” S e t d e v i c e by name or number (mandatory) \n ”

254 ” −−t r i g g e r−name − t <name>\n ”

255 ” −−t r i g g e r−num −T <num>\n ”

256 ” S e t t r i g g e r by name or number\n ”

257 ” −w <n> S e t d e l a y between r e a d s i n us (even t−l e s s mode) \n ”) ;

258 }

259

260 enum a u t o c h a n a u t o c h a n n e l s = AUTOCHANNELS DISABLED;

261 c h a r ∗ d e v d i r n a m e = NULL;

262 c h a r ∗ b u f d i r n a m e = NULL;

263 boo l c u r r e n t t r i g g e r s e t = f a l s e ;

264

265 vo id c l e a n u p (vo id)

266 {

267 i n t r e t ;

268

269 /∗ D i s a b l e t r i g g e r ∗ /

270 i f (d e v d i r n a m e && c u r r e n t t r i g g e r s e t) {

271 /∗ D i s c o n n e c t t h e t r i g g e r − j u s t w r i t e a dummy name . ∗ /

272 r e t = w r i t e s y s f s s t r i n g (” t r i g g e r / c u r r e n t t r i g g e r ” ,

273 d ev d i r n am e , ”NULL”) ;

274 i f (r e t < 0)

275 f p r i n t f (s t d e r r , ” F a i l e d t o d i s a b l e t r i g g e r : %s\n ” ,

276 s t r e r r o r (− r e t)) ;

277 c u r r e n t t r i g g e r s e t = f a l s e ;

278 }

279

280 /∗ D i s a b l e b u f f e r ∗ /

95

281 i f (b u f d i r n a m e) {

282 r e t = w r i t e s y s f s i n t (” e n a b l e ” , b u f d i r n a m e , 0) ;

283 i f (r e t < 0)

284 f p r i n t f (s t d e r r , ” F a i l e d t o d i s a b l e b u f f e r : %s\n ” ,

285 s t r e r r o r (− r e t)) ;

286 }

287

288 /∗ D i s a b l e c h a n n e l s i f au to−e n a b l e d ∗ /

289 i f (d e v d i r n a m e && a u t o c h a n n e l s == AUTOCHANNELS ACTIVE) {

290 r e t = e n a b l e d i s a b l e a l l c h a n n e l s (d ev d i r n am e , 0) ;

291 i f (r e t)

292 f p r i n t f (s t d e r r , ” F a i l e d t o d i s a b l e a l l c h a n n e l s \n ”) ;

293 a u t o c h a n n e l s = AUTOCHANNELS DISABLED;

294 }

295 }

296

297 vo id s i g h a n d l e r (i n t signum)

298 {

299 f p r i n t f (s t d e r r , ” Caught s i g n a l %d\n ” , signum) ;

300 c l e a n u p () ;

301 e x i t (−signum) ;

302 }

303

304 vo id r e g i s t e r c l e a n u p (vo id)

305 {

306 s t r u c t s i g a c t i o n sa = { . s a h a n d l e r = s i g h a n d l e r } ;

307 c o n s t i n t s ignums [] = { SIGINT , SIGTERM , SIGABRT } ;

308 i n t r e t , i ;

309

310 f o r (i = 0 ; i < ARRAY SIZE (s ignums) ; ++ i) {

311 r e t = s i g a c t i o n (s ignums [i] , &sa , NULL) ;

312 i f (r e t) {

313 p e r r o r (” F a i l e d t o r e g i s t e r s i g n a l h a n d l e r ”) ;

314 e x i t (−1) ;

315 }

316 }

317 }

318

319 s t a t i c c o n s t s t r u c t o p t i o n l o n g o p t s [] = {

320 { ” dev i ce−name ” , 1 , 0 , ’n ’ } ,

321 { ” dev i ce−num ” , 1 , 0 , ’N’ } ,

96

322 { ” t r i g g e r−name ” , 1 , 0 , ’ t ’ } ,

323 { ” t r i g g e r−num ” , 1 , 0 , ’T ’ } ,

324 { } ,

325 } ;

326

327 i n t main (i n t a rgc , c h a r ∗∗ a rgv)

328 {

329 u n s i g n e d long num loops = 1 ; / / why do I would l i k e more t h a n 1 loop

330 u n s i g n e d long t i m e d e l a y = 1000000; / / w a i t a b i t so t h e c h a r a c t e r

331 / / d e v i c e f i l e a p e a r s

332 u n s i g n e d long b u f l e n = 128 ;

333

334 i n t r e t , c , i , j , t o r e a d ;

335 i n t fp = −1;

336

337 i n t num channe l s = 0 ;

338 c h a r ∗ t r i g g e r n a m e = NULL, ∗ dev ice name = NULL;

339

340 c h a r ∗ d a t a = NULL;

341 s s i z e t r e a d s i z e ;

342 i n t dev num = −1, t r i g n u m = −1;

343 c h a r ∗ b u f f e r a c c e s s = NULL;

344 i n t s c a n s i z e ;

345 i n t n o e v e n t s = 0 ;

346 i n t n o t r i g g e r = 0 ;

347 c h a r ∗dummy ;

348 boo l f o r c e a u t o c h a n n e l s = f a l s e ;

349

350 s t r u c t i i o c h a n n e l i n f o ∗ c h a n n e l s = NULL;

351

352 r e g i s t e r c l e a n u p () ;

353

354 w h i l e ((c = g e t o p t l o n g (argc , argv , ” aAc : e g l : n :N: t : T :w: ? ” , l o n g o p t s ,

355 NULL)) != −1) {

356 s w i t c h (c) {

357 c a s e ’ a ’ :

358 a u t o c h a n n e l s = AUTOCHANNELS ENABLED;

359 b r e a k ;

360 c a s e ’A’ :

361 a u t o c h a n n e l s = AUTOCHANNELS ENABLED;

362 f o r c e a u t o c h a n n e l s = t r u e ;

97

363 b r e a k ;

364 c a s e ’ c ’ :

365 e r r n o = 0 ;

366 num loops = s t r t o u l (o p t a r g , &dummy , 10) ; / / p a r s e s t h e number and

t h e name of t h e o p t i o n

367 i f (e r r n o) {

368 r e t = −e r r n o ;

369 go to e r r o r ;

370 }

371 b r e a k ;

372 c a s e ’ e ’ :

373 n o e v e n t s = 1 ;

374 b r e a k ;

375 c a s e ’g ’ :

376 n o t r i g g e r = 1 ;

377 b r e a k ;

378 c a s e ’ l ’ :

379 e r r n o = 0 ;

380 b u f l e n = s t r t o u l (o p t a r g , &dummy , 10) ;

381 i f (e r r n o) {

382 r e t = −e r r n o ;

383 go to e r r o r ;

384 }

385 b r e a k ;

386 c a s e ’n ’ :

387 dev ice name = s t r d u p (o p t a r g) ;

388 b r e a k ;

389 c a s e ’N’ :

390 e r r n o = 0 ;

391 dev num = s t r t o u l (o p t a r g , &dummy , 10) ;

392 i f (e r r n o) {

393 r e t = −e r r n o ;

394 go to e r r o r ;

395 }

396 b r e a k ;

397 c a s e ’ t ’ :

398 t r i g g e r n a m e = s t r d u p (o p t a r g) ; / / d u p l i c a t e s t h e s t r i n g

399 b r e a k ;

400 c a s e ’T ’ :

401 e r r n o = 0 ;

402 t r i g n u m = s t r t o u l (o p t a r g , &dummy , 10) ;

98

403 i f (e r r n o)

404 r e t u r n −e r r n o ;

405 b r e a k ;

406 c a s e ’w’ :

407 e r r n o = 0 ;

408 t i m e d e l a y = s t r t o u l (o p t a r g , &dummy , 10) ;

409 i f (e r r n o) {

410 r e t = −e r r n o ;

411 go to e r r o r ;

412 }

413 b r e a k ;

414 c a s e ’ ? ’ :

415 p r i n t u s a g e () ;

416 r e t = −1;

417 go to e r r o r ;

418 }

419 }

420

421 /∗ Find t h e d e v i c e r e q u e s t e d ∗ /

422 i f (dev num < 0 && ! dev ice name) {

423 f p r i n t f (s t d e r r , ” Device n o t s e t \n ”) ;

424 p r i n t u s a g e () ;

425 r e t = −1;

426 go to e r r o r ;

427 }

428 e l s e i f (dev num >= 0 && dev ice name) {

429 f p r i n t f (s t d e r r , ” Only one of −−dev i ce−num or −−dev i ce−name needs t o be s e t

\n ”) ;

430 p r i n t u s a g e () ;

431 r e t = −1;

432 go to e r r o r ;

433 }

434 e l s e i f (dev num < 0) {

435 dev num = f i n d t y p e b y n a m e (device name , ” i i o : d e v i c e ”) ;

436 i f (dev num < 0) {

437 f p r i n t f (s t d e r r , ” F a i l e d t o f i n d t h e %s\n ” , dev ice name) ;

438 r e t = dev num ;

439 go to e r r o r ;

440 }

441 }

442 p r i n t f (” i i o d e v i c e number b e i n g used i s %d\n ” , dev num) ;

99

443

444 r e t = a s p r i n t f (& de v d i r n am e , ”% s i i o : d e v i c e%d ” , i i o d i r , dev num) ;

445 i f (r e t < 0)

446 r e t u r n −ENOMEM;

447 /∗ F e t c h dev ice name i f s p e c i f i e d by number ∗ /

448 i f (! dev ice name) {

449 dev ice name = ma l lo c (IIO MAX NAME LENGTH) ;

450 i f (! dev ice name) {

451 r e t = −ENOMEM;

452 go to e r r o r ;

453 }

454 r e t = r e a d s y s f s s t r i n g (” name ” , d ev d i r n am e , dev ice name) ;

455 i f (r e t < 0) {

456 f p r i n t f (s t d e r r , ” F a i l e d t o r e a d name of d e v i c e %d\n ” , dev num) ;

457 go to e r r o r ;

458 }

459 }

460 /∗ T r i g g e r s e t u p ∗ /

461 i f (n o t r i g g e r) {

462 p r i n t f (” t r i g g e r−l e s s mode s e l e c t e d \n ”) ;

463 } e l s e i f (t r i g n u m >= 0) {

464 c h a r ∗ t r i g d e v n a m e ;

465 r e t = a s p r i n t f (& t r i g d e v n a m e , ”% s t r i g g e r%d ” , i i o d i r , t r i g n u m) ;

466 i f (r e t < 0) {

467 r e t u r n −ENOMEM;

468 }

469 t r i g g e r n a m e = m a l loc (IIO MAX NAME LENGTH) ;

470 r e t = r e a d s y s f s s t r i n g (” name ” , t r i g d e v n a m e , t r i g g e r n a m e) ;

471 f r e e (t r i g d e v n a m e) ;

472 i f (r e t < 0) {

473 f p r i n t f (s t d e r r , ” F a i l e d t o r e a d t r i g g e r%d name from\n ” , t r i g n u m) ;

474 r e t u r n r e t ;

475 }

476 p r i n t f (” i i o t r i g g e r number b e i n g used i s %d\n ” , t r i g n u m) ;

477 }

478 /∗

479 ∗ P a r s e t h e f i l e s i n s c a n e l e m e n t s t o i d e n t i f y what c h a n n e l s a r e

480 ∗ p r e s e n t

481 ∗ /

482 r e t = b u i l d c h a n n e l a r r a y (de v d i r n am e , &c h a n n e l s , &num channe l s) ;

483 i f (r e t) {

100

484 f p r i n t f (s t d e r r , ” Problem r e a d i n g scan e l e m e n t i n f o r m a t i o n \n ”

485 ” d i a g %s\n ” , d e v d i r n a m e) ;

486 go to e r r o r ;

487 }

488 i f (num channe l s && a u t o c h a n n e l s == AUTOCHANNELS ENABLED &&

489 ! f o r c e a u t o c h a n n e l s) {

490 f p r i n t f (s t d e r r , ” Auto−c h a n n e l s s e l e c t e d b u t some c h a n n e l s ”

491 ” a r e a l r e a d y a c t i v a t e d i n s y s f s \n ”) ;

492 f p r i n t f (s t d e r r , ” P r o c e e d i n g w i t h o u t a c t i v a t i n g any c h a n n e l s \n ”) ;

493 }

494

495 i f ((! num channe l s && a u t o c h a n n e l s == AUTOCHANNELS ENABLED) | |

496 (a u t o c h a n n e l s == AUTOCHANNELS ENABLED && f o r c e a u t o c h a n n e l s)) {

497 f p r i n t f (s t d e r r , ” E n a b l i n g a l l c h a n n e l s \n ”) ;

498

499 r e t = e n a b l e d i s a b l e a l l c h a n n e l s (d ev d i r n am e , 1) ;

500 i f (r e t) {

501 f p r i n t f (s t d e r r , ” F a i l e d t o e n a b l e a l l c h a n n e l s \n ”) ;

502 go to e r r o r ;

503 }

504

505 /∗ Thi s f l a g s t h a t we need t o d i s a b l e t h e c h a n n e l s a g a i n ∗ /

506 a u t o c h a n n e l s = AUTOCHANNELS ACTIVE;

507

508 r e t = b u i l d c h a n n e l a r r a y (de v d i r n am e , &c h a n n e l s ,

509 &num channe l s) ;

510 i f (r e t) {

511 f p r i n t f (s t d e r r , ” Problem r e a d i n g scan e l e m e n t ”

512 ” i n f o r m a t i o n \n ”

513 ” d i a g %s\n ” , d e v d i r n a m e) ;

514 go to e r r o r ;

515 }

516 i f (! num channe l s) {

517 f p r i n t f (s t d e r r , ” S t i l l no c h a n n e l s a f t e r ”

518 ” au to−e n a b l i n g , g i v i n g up\n ”) ;

519 go to e r r o r ;

520 }

521 }

522

523 i f (! num channe l s && a u t o c h a n n e l s == AUTOCHANNELS DISABLED) {

524 f p r i n t f (s t d e r r ,

101

525 ”No c h a n n e l s a r e enab led , we have n o t h i n g t o scan .\ n ”) ;

526 f p r i n t f (s t d e r r , ” Enab le c h a n n e l s manua l ly i n ”

527 FORMAT SCAN ELEMENTS DIR

528 ” /∗ en o r p a s s −a t o a u t o e n a b l e c h a n n e l s and ”

529 ” t r y a g a i n .\ n ” , d e v d i r n a m e) ;

530 r e t = −ENOENT;

531 go to e r r o r ;

532 }

533

534 /∗

535 ∗ C o n s t r u c t t h e d i r e c t o r y name f o r t h e a s s o c i a t e d b u f f e r .

536 ∗ As we know t h a t t h e l i s 3 l 0 2 d q has on ly one b u f f e r t h i s may

537 ∗ be b u i l t r a t h e r t h a n found .

538 ∗ /

539 r e t = a s p r i n t f (& b u f d i r n a m e ,

540 ”% s i i o : d e v i c e%d / b u f f e r ” , i i o d i r , dev num) ;

541 i f (r e t < 0) {

542 r e t = −ENOMEM;

543 go to e r r o r ;

544 }

545

546 p r i n t f (”% s\n ” , d e v d i r n a m e) ;

547 /∗ Se tup r i n g b u f f e r p a r a m e t e r s ∗ /

548 r e t = w r i t e s y s f s i n t (” l e n g t h ” , b u f d i r n a m e , b u f l e n) ;

549 i f (r e t < 0)

550 go to e r r o r ;

551

552 /∗ Enab le t h e b u f f e r ∗ /

553 r e t = w r i t e s y s f s i n t (” e n a b l e ” , b u f d i r n a m e , 1) ;

554 i f (r e t < 0) {

555 f p r i n t f (s t d e r r ,

556 ” F a i l e d t o e n a b l e b u f f e r : %s\n ” , s t r e r r o r (− r e t)) ;

557 go to e r r o r ;

558 }

559

560 s c a n s i z e = s i z e f r o m c h a n n e l a r r a y (c h a n n e l s , num channe l s) ;

561 d a t a = ma l lo c (s c a n s i z e ∗ b u f l e n) ;

562 i f (! d a t a) {

563 r e t = −ENOMEM;

564 go to e r r o r ;

565 }

102

566

567 r e t = a s p r i n t f (& b u f f e r a c c e s s , ” / dev / i i o : d e v i c e%d ” , dev num) ;

568 i f (r e t < 0) {

569 r e t = −ENOMEM;

570 go to e r r o r ;

571 }

572

573 /∗ Attempt t o open non b l o c k i n g t h e a c c e s s dev ∗ /

574 fp = open (b u f f e r a c c e s s , O RDONLY | O NONBLOCK) ;

575 i f (fp == −1) {

576 r e t = −e r r n o ;

577 f p r i n t f (s t d e r r , ” F a i l e d t o open %s\n ” , b u f f e r a c c e s s) ;

578 go to e r r o r ;

579 }

580

581

582 / / t h e f i l e where we want t o p r i n t t h e r e s u l t

583 FILE ∗ f a ;

584 t i m e t t = t ime (NULL) ;

585 s t r u c t tm tm = ∗ l o c a l t i m e (& t) ;

586 c h a r f i l eName [2 0] ;

587 s p r i n t f (f i leName , ” R e s u l t s / d a t a %d−%d−%d %d:%d:%d . csv ” , tm . t m y e a r +1900 , tm . tm mon +1 , tm .

tm mday , tm . tm hour , tm . tm min , tm . t m s e c) ;

588 f a = fopen (f i leName , ”w+”) ;

589 c h a r f i r s t L i n e [2 0] ;

590 f p u t s (f i r s t L i n e , f a) ;

591 c h a r mySt r ing [2 0] ;

592 / / S t a r t F l a s h i n g

593 r e m o v e T r i g g e r () ;

594 f l a s h L e d () ;

595 / / a c q u i s i t i o n loop

596 f o r (j = 0 ; j < num loops ; j ++) {

597 t o r e a d = b u f l e n ;

598 u s l e e p (t i m e d e l a y) ; / / n o t s h u r e t h a t t h i s p a r t has t o be commented

599 r e a d s i z e = r e a d (fp , da t a , t o r e a d ∗ s c a n s i z e) ;

600 i f (r e a d s i z e < 0) {

601 i f (e r r n o == EAGAIN) {

602 f p r i n t f (s t d e r r , ” n o t h i n g a v a i l a b l e \n ”) ;

603 c o n t i n u e ;

604 } e l s e {

605 b r e a k ;

103

606 }

607 }

608

609 f o r (i = 0 ; i < r e a d s i z e / s c a n s i z e ; i ++){

610 p r o c e s s s c a n (d a t a + s c a n s i z e ∗ i , c h a n n e l s , num channels , i , mySt r ing) ;

611 f p u t s (myStr ing , f a) ;

612 }

613 }

614 / / c l o s i n g t h e f i l e

615 f c l o s e (f a) ;

616 / / s t o p f l a h i n g Leds

617 r e m o v e T r i g g e r () ;

618 e r r o r :

619 c l e a n u p () ;

620

621 i f (fp >= 0 && c l o s e (fp) == −1)

622 p e r r o r (” F a i l e d t o c l o s e b u f f e r ”) ;

623 f r e e (b u f f e r a c c e s s) ;

624 f r e e (d a t a) ;

625 f r e e (b u f d i r n a m e) ;

626 f o r (i = num channe l s − 1 ; i >= 0 ; i−−) {

627 f r e e (c h a n n e l s [i] . name) ;

628 f r e e (c h a n n e l s [i] . g e n e r i c n a m e) ;

629 }

630 f r e e (c h a n n e l s) ;

631 f r e e (t r i g g e r n a m e) ;

632 f r e e (dev ice name) ;

633 f r e e (d e v d i r n a m e) ;

634

635 r e t u r n r e t ;

636 }

104

APPENDIX F

THE LAUNCH.SH SCRIPT

1 # ! / b i n / sh

2 # l a u n c h . sh

3 # C o p y r i g h t (c) 2018 P i e r r i c k Rauby

4 # Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify i t

5 # under t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as p u b l i s h e d by

6 # t h e Free S o f t w a r e F o u n d a t i o n .

7 N Samples=$1

8 N Loops=$2

9 # i =1

10 echo ” C l e a n i n g ’ R e s u l t s ’ f o l d e r ”

11 rm − r f R e s u l t s

12 mkdir R e s u l t s

13

14 echo ” Deploy ing . . . ”

15 gcc i i o g e n e r i c b u f f e r . c i i o u t i l s . c −o i i o g e n e r i c b u f f e r

16

17 echo ” Here we go f o r ${N Samples} r e p e t e d ${N Loops} t i m e s ”

18 # w h i l e [” $ i ” − l e $N Loops] ; do

19 . / i i o g e n e r i c b u f f e r −a − l ${N Samples} −L ${N Loops} −N i i o : d e v i c e 0

20 # echo ”∗∗∗∗Loop ${ i } done ∗∗∗∗”

21 # i =$ ((i + 1))

22 echo ”#######################################”

23 echo ”Work done r e s u l t s a r e saved i n / R e s u l t s ”

24 echo ”#######################################”

105

APPENDIX G

THE PREPROCESSING.PY CODE

1 # p r e p r o c e s s i n g . py

2 # C o p y r i g h t (c) 2018 P i e r r i c k Rauby

3 # Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify i t

4 # under t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as p u b l i s h e d by

5 # t h e Free S o f t w a r e F o u n d a t i o n .

6 # R e t u r n s a . csv from a l l . c sv f i l e c o n t a i n e d i n t h e f o l d e r where t h i s code

7 # i s l o c a t e d

8

9 # i m p o r t s

10 i m p o r t pandas as pd

11 i m p o r t numpy as np

12 np . s e t p r i n t o p t i o n s (t h r e s h o l d =np . nan)

13 i m p o r t m a t p l o t l i b . p y p l o t a s p l t

14 i m p o r t os

15 i m p o r t g lob

16

17 # R e s u l t and Data s e t i n f o :

18 c l a s s i f i c a t i o n =1

19 i =3 #Number o f dominan t f r e q u e n c i e s r e q u e s t e d

20 f f t S i z e = 16383 # Number o f Samples i n t h e D a t a S e t

21 s a m p l i n g R a t e =16383 # Samples p e r s e c o n d s

22

23 # Gets t h e l i s t o f f i l e s

24 p a t h =os . getcwd ()

25 a l l F i l e s = g lob . g lob (p a t h + ” /∗ . c sv ”)

26

27 # F i n a l r e t u r n e d l i s t

28 R e s u l t =pd . DataFrame ()

29

30 # For loop ove r t h e a l l t h e d a t a s e t s :

31 f o r f i l e i n a l l F i l e s :

32 # I n i t i a l i z e t h e r e s u l t DataFrame f o r t h i s sample

33 r e s u l t C a s h =pd . DataFrame (columns =[’Name ’ , ’ Mean ’ , ’ Median ’ , ’ Std ’ , ’ Var ’ , ’ Min ’ , ’ Max ’ , ’ sum ’ , ’

f1 ’ , ’ A1 ’ , ’ f2 ’ , ’ A2 ’ , ’ f3 ’ , ’ A3 ’ , ’ C las s ’])

34 # I m p o r t s t h e d a t a s e t

106

35 d a t a S e t =pd . DataFrame ()

36 f f t D a t a = []

37 d a t a S e t =pd . r e a d c s v (f i l e , names =[” V o l t s ”])

38 #FFT c o m p u t a t i o n

39 f o r row i n d a t a S e t . v a l u e s :

40 f f t D a t a . append (row [0])

41

42 f f t D a t a = np . a r r a y (f f t D a t a , d t y p e = f l o a t)

43

44 #Compute t h e FFT and t h e f r e q u e n c i e s

45 f f t = np . f f t . f f t (f f t D a t a) # a r r a y o f xk r e s u l t o f t h e r e a l f f t

46 f f t F r e q = np . f f t . f f t f r e q (f f t S i z e , d = 1 . / s a m p l i n g R a t e) # a r r a y wi th c o r r e s p o n d i n g

f r e q u e n c i e s

47 f f tMag = np . a b s o l u t e (f f t)

48

49 # Find i dominan t f r e q u e n c i e s

50 f f tMagCash = f f tMag [: f f t S i z e / / 2] ∗ 1 / f f t S i z e

51 f r e q u e n c i e s = []

52 f f t F r e q = f f t F r e q [: f f t S i z e / / 2]

53 f o r k i n r a n g e (i) :

54 Cash = []

55 mainFreq Index = np . argmax (f f tMagCash) # g e t t h e more i m p o r t a n t te rm

56 Cash . append (f f tMagCash [ma inFreq Index]) # s t o r i n g t h e a m p l i t u d e o f t h e max Freq

57 Cash . append (f f t F r e q [ma inFreq Index]) # s t o r i n g t h e max Freq

58 f f tMagCash =np . d e l e t e (ff tMagCash , ma inFreq Index) # removing t h e maximum f r e q u e n c y

59 np . d e l e t e (ff tMagCash , ma inFreq Index) # removing t h e maximum f r e q u e n c y

60 f r e q u e n c i e s . append (Cash) # add t h i s v a l u e s t o t h e r e s u l t l i s t

61 # p r i n t (f r e q u e n c i e s)

62 #End of FFT c o m p u t a t i o n

63

64 # S t o r e s v a l u e s i n t h e r e s u l t C a s h l i s t

65 r e s u l t C a s h =pd . c o n c a t ([r e s u l t C a s h , # p r e v i o u s d a t a DataFrame

66 pd . DataFrame ([[#New DataFrame

67 f i l e [l e n (p a t h) + 1 :] , #Name of t h e Sample

68 d a t a S e t [’ Vol t s ’] . mean () ,

69 d a t a S e t [’ Vol t s ’] . median () ,

70 d a t a S e t [’ Vol t s ’] . s t d () ,

71 d a t a S e t [’ Vol t s ’] . v a r () ,

72 d a t a S e t [’ Vol t s ’] . min () ,

73 d a t a S e t [’ Vol t s ’] . max () ,

74 d a t a S e t [’ Vol t s ’] . sum () ,

107

75 f r e q u e n c i e s [0] [1] , # f1

76 f r e q u e n c i e s [0] [0] , #A1

77 f r e q u e n c i e s [1] [1] , # f2

78 f r e q u e n c i e s [1] [0] , #A2

79 f r e q u e n c i e s [2] [1] , # f3

80 f r e q u e n c i e s [2] [0] , #A3

81 c l a s s i f i c a t i o n]] , # C l a s s o f t h e sample

82 columns =[’Name ’ , ’ Mean ’ , ’ Median ’ , ’ Std ’ , ’ Var ’ , ’ Min ’ , ’ Max ’ , ’ sum ’ , ’

f1 ’ , ’ A1 ’ , ’ f2 ’ , ’ A2 ’ , ’ f3 ’ , ’ A3 ’ , ’ C las s ’])])

83 # C r e a t e s t h e f i n a l s l i s t R e s u l t

84 R e s u l t =pd . c o n c a t ([R e s u l t , r e s u l t C a s h] , i g n o r e i n d e x =True)

85

86

87 R e s u l t . t o c s v (’ Cut ’+ s t r (c l a s s i f i c a t i o n) + ’ . csv ’)

88 p r i n t (R e s u l t)

89

90 # end of f o r l oop ove r a l l F i l e s

108

APPENDIX H

THE KERNEL SVM TRAINNING.PY CODE

1 # k e r n e l S V M t r a i n n i n g . py

2 # C o p y r i g h t (c) 2018 P i e r r i c k Rauby

3 # Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify i t

4 # under t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as p u b l i s h e d by

5 # t h e Free S o f t w a r e F o u n d a t i o n .

6 i m p o r t numpy as np

7 i m p o r t m a t p l o t l i b . p y p l o t a s p l t

8 i m p o r t pandas as pd

9

10

11 # Ass ign colum names t o t h e d a t a s e t

12 co lnames =[’Name ’ , ’ Mean ’ , ’ Median ’ , ’ Std ’ , ’ Var ’ , ’ Min ’ , ’ Max ’ , ’ sum ’ , ’ f1 ’ , ’ A1 ’ , ’ f2 ’ , ’ A2 ’ , ’ f3 ’ , ’

A3 ’ , ’ C las s ’]

13

14 # Read d a t a s e t t o pandas d a t a f r a m e

15 d a t a S e t = pd . r e a d c s v (’ D a t a s e t . csv ’ , s k i p r o w s = [0] , names= colnames)

16 p r i n t (d a t a S e t . shape)

17 X = d a t a S e t . d rop ([’ Name ’ , ’ sum ’ , ’ C las s ’] , a x i s =1) # . drop (’ Mean , a x i s =0) # t h e f e a t u r e s

18 y = d a t a S e t [’ C las s ’] # t h e p r e d i c t i o n s

19

20 # S p l i t t i n g t h e d a t a s e t be tween t r a i n n i n g s e t and t e s t s e t

21 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t

22 X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e = 0 . 2 0)

23

24 # T r a i n t h e a l g o r i t h m

25 from s k l e a r n . svm i m p o r t SVC

26

27 #Uncomment f o r polynom k e r n e l

28 # s v c l a s s i f i e r = SVC(k e r n e l = ’ poly ’ , d e g r e e =8)

29 # s v c l a s s i f i e r . f i t (X t r a i n , y t r a i n)

30

31 #Uncomment f o r Sigmoid Ke rn e l

32 # s v c l a s s i f i e r = SVC(k e r n e l = ’ s igmoid ’)

33 # s v c l a s s i f i e r . f i t (X t r a i n , y t r a i n)

34

109

35 # #Uncomment f o r G a u s s i a n Ke rn e l

36 s v c l a s s i f i e r = SVC(k e r n e l = ’ l i n e a r ’) # ’ l i n e a r , p o l y , r b f , s i g m o i d ,

37 s v c l a s s i f i e r . f i t (X t r a i n , y t r a i n)

38

39 # t e s t t o p i c k l e t h e c l a s s i f i e r

40 i m p o r t p i c k l e

41 c l a s s i f i e r p i c k l e p a t h = ’ c l a s s i f i e r p i c k l e . pkl ’ # c r e a t e s t h e name of t h e f i l e

42 c l a s s i f i e r p i c k l e = open (c l a s s i f i e r p i c k l e p a t h , ’ wb ’) # open t h e f i l e f o r binaryW

43 p i c k l e . dump (s v c l a s s i f i e r , c l a s s i f i e r p i c k l e) # p u t t h e c l a s s i f i e r i n t h e f i l e

44

45 # Th i s makes p r e d i c t i o n s

46 y p r e d = s v c l a s s i f i e r . p r e d i c t (X t e s t)

47

48 # Th i s e v a l u a t e s t h e a l g o r i t h m

49 from s k l e a r n . m e t r i c s i m p o r t c l a s s i f i c a t i o n r e p o r t , c o n f u s i o n m a t r i x

50 p r i n t (c o n f u s i o n m a t r i x (y t e s t , y p r e d))

51 p r i n t (c l a s s i f i c a t i o n r e p o r t (y t e s t , y p r e d))

110

APPENDIX I

DETAILED RESULTS FOR LINEAR KERNEL AND RBF KERNEL ON THE

TEST SET

I.1 Result for the linear kernel

I.2 Result for the rbf kernel

111

Figure I.1: Confusion matrix and precision statics for the linear kernel

Figure I.2: Confusion matrix and precision statics for the rbf kernel

112

CHAPTER 6

THE MAIN APPLICATION CODE

1 # main . py

2 # C o p y r i g h t (c) 2018 P i e r r i c k Rauby

3 # Th i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify i t

4 # under t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e v e r s i o n 2 as p u b l i s h e d by

5 # t h e Free S o f t w a r e F o u n d a t i o n .

6

7 ########################### I mpo r t needed l i b r a r i e s ##############################

8 i m p o r t os # t o e x e c u t e a c q u i s i t i o n program

9 i m p o r t p i c k l e

10 i m p o r t g lob

11 i m p o r t numpy as np

12 i m p o r t pandas as pd

13 i m p o r t d a t e t i m e

14 from s k l e a r n . svm i m p o r t SVC # n o t s u r e i f needed (maybe i n c l u d e d i n p i c k l e)

15 ############################ V a r i a b l e s d e c l a r a t i o n ###############################

16 N Samples = i n t (1 6 3 8 4 / 2)

17 i =3 #Number o f dominan t f r e q u e n c i e s a r e q u e s t e d

18 f f t S i z e = N Samples − 1 # Number o f Samples i n t h e D a t a S e t

19 s a m p l i n g R a t e =N Samples−1 # Samples p e r s e c o n d s # WARNING: check s a m p l i n g f r e q u e n c y

20 ################################# C o m p i l a t i o n ####################################

21 #Uncomment t h e f o l l o w i n g l i n e i f you want r e c o m p i l e i i o g e n e r i c b u f f e r . c

22 # os . sys tem (’ gcc i i o g e n e r i c b u f f e r . c i i o u t i l s . c −o i i o g e n e r i c b u f f e r ’)

23 ##

24 ########################### E n t e r i n g t h e e x e c u t i o n Loop ##########################

25 ##

26 w h i l e (1) :

27 # f i r s t we c a p t u r e t h e t imes t amp

28 t i m e s t a m p o b j e c t = d a t e t i m e . d a t e t i m e . now ()

29 ############################ C l e a n n i n g R e s u l t s f o l d e r ############################

30 Command Clean = ”rm − r f R e s u l t s ”

31 P r o c e s s = os . sys tem (Command Clean)

32 Command Create = ” mkdir R e s u l t s ”

33 P r o c e s s = os . sys tem (Command Create)

34 ############################ S t a r t i n g t h e a c q u i s i t i o n ############################

35 Command Acquis i t ion = ” . / i i o g e n e r i c b u f f e r −a − l ”+ s t r (N Samples) +” −N i i o : d e v i c e 0 ”

113

36 p r i n t (Command Acquis i t ion)

37 P r o c e s s = os . sys tem (Command Acquis i t ion)

38

39 # At t h i s p o i n t d a t a s h o u l d be s t o r e d i n t h e R e s u l t f o l d e r

40 p r i n t (’\ n ################################\n Data s t o r e d i n R e s u l t f o l d e r \n

################################ ’)

41

42 ######################## P r e p r o c e s s i n g t h e d a t a S e t ###############################

43 # F i n a l r e t u r n e d l i s t

44 p r e p r o c e s s e d d a t a S e t =pd . DataFrame ()

45 # Gets t h e l i s t o f f i l e s

46 p a t h =os . getcwd () #The f o l d e r wh

47 a l l F i l e s = g lob . g lob (p a t h + ” / R e s u l t s / ∗ . c sv ”)

48 # For loop ove r t h e a l l t h e d a t a s e t s :

49 f o r f i l e i n a l l F i l e s :

50 # I n i t i a l i w e t h e r e s u l t DataFrame f o r t h i s sample

51 r e s u l t C a s h =pd . DataFrame (columns =[’Name ’ , ’ Mean ’ , ’ Median ’ , ’ Std ’ , ’ Var ’ , ’ Min ’ , ’ Max ’ , ’ sum

’ , ’ f1 ’ , ’ A1 ’ , ’ f2 ’ , ’ A2 ’ , ’ f3 ’ , ’ A3 ’]) # , ’ c j ’])

52 # I m p o r t s t h e d a t a s e t

53 d a t a S e t =pd . DataFrame ()

54 f f t D a t a = []

55 d a t a S e t =pd . r e a d c s v (f i l e , names =[” V o l t s ”])

56 #FFT c o m p u t a t i o n

57 f o r row i n d a t a S e t . v a l u e s :

58 f f t D a t a . append (row [0])

59 f f t D a t a = np . a r r a y (f f t D a t a , d t y p e = f l o a t)

60 #Compute t h e FFT and t h e f r e q u e n c i e s

61 f f t = np . f f t . f f t (f f t D a t a) # a r r a y o f xk r e s u l t o f t h e r e a l f f t

62 f f t F r e q = np . f f t . f f t f r e q (f f t S i z e , d = 1 . / s a m p l i n g R a t e) # a r r a y wi th c o r r e s p o n d i n g

f r e q u e n c i e s

63 f f tMag = np . a b s o l u t e (f f t)

64 # Find i dominan t f r e q u e n c i e s

65 f f tMagCash = f f tMag [: f f t S i z e / / 2] ∗ 1 / f f t S i z e

66 f r e q u e n c i e s = []

67 f f t F r e q = f f t F r e q [: f f t S i z e / / 2]

68 f o r k i n r a n g e (i) :

69 Cash = []

70 mainFreq Index = np . argmax (f f tMagCash) # g e t t h e more i m p o r t a n t te rm

71 Cash . append (f f tMagCash [ma inFreq Index]) # s t o r i n g t h e a m p l i t u d e o f t h e max Freq

72 Cash . append (f f t F r e q [ma inFreq Index]) # s t o r i n g t h e max Freq

73 f f tMagCash =np . d e l e t e (ff tMagCash , ma inFreq Index) # removing t h e maximum f r e q u e n c y

114

74 np . d e l e t e (ff tMagCash , ma inFreq Index) # removing t h e maximum f r e q u e n c y

75 f r e q u e n c i e s . append (Cash) # add t h i s v a l u e s t o t h e r e s u l t l i s t

76 #End of FFT c o m p u t a t i o n

77 # S t o r e s v a l u e s i n t h e r e s u l t C a s h l i s t

78 r e s u l t C a s h =pd . c o n c a t ([r e s u l t C a s h , # p r e v i o u s d a t a DataFrame

79 pd . DataFrame ([[#New DataFrame

80 f i l e [l e n (p a t h) + 1 :] , #Name of t h e Sample

81 d a t a S e t [’ Vol t s ’] . mean () ,

82 d a t a S e t [’ Vol t s ’] . median () ,

83 d a t a S e t [’ Vol t s ’] . s t d () ,

84 d a t a S e t [’ Vol t s ’] . v a r () ,

85 d a t a S e t [’ Vol t s ’] . min () ,

86 d a t a S e t [’ Vol t s ’] . max () ,

87 d a t a S e t [’ Vol t s ’] . sum () ,

88 f r e q u e n c i e s [0] [1] , # f1

89 f r e q u e n c i e s [0] [0] , #A1

90 f r e q u e n c i e s [1] [1] , # f2

91 f r e q u e n c i e s [1] [0] , #A2

92 f r e q u e n c i e s [2] [1] , # f3

93 f r e q u e n c i e s [2] [0]]] , #A3

94 columns =[’Name ’ , ’ Mean ’ , ’ Median ’ , ’ Std ’ , ’ Var ’ , ’ Min ’ , ’ Max ’ , ’ sum

’ , ’ f1 ’ , ’ A1 ’ , ’ f2 ’ , ’ A2 ’ , ’ f3 ’ , ’ A3 ’])]) # , ’ c l a s s ’ # , ’ ’])])

95 # C r e a t e s t h e f i n a l s l i s t R e s u l t

96 p r e p r o c e s s e d d a t a S e t =pd . c o n c a t ([p r e p r o c e s s e d d a t a S e t , r e s u l t C a s h] , i g n o r e i n d e x =True)

97 # Using t h e t r a i n n e d a l g o r i t h m t o p r e d i c t i o n s

98 # d r o p p i n g t h e u s e l e s s f e a t u r e s

99 X t e s t = p r e p r o c e s s e d d a t a S e t . d rop ([’ Name ’ , ’ sum ’] , a x i s =1)

100 c l a s s i f i e r p i c k l e p a t h = ’ c l a s s i f i e r p i c k l e . pkl ’

101 c l a s s i f i e r p i c k l e = open (c l a s s i f i e r p i c k l e p a t h , ’ rb ’)

102 s v c l a s s i f i e r = p i c k l e . l o a d (c l a s s i f i e r p i c k l e)

103 # c o n v e r t i n g t h e t imes t amp t o s t r i n g

104 t imes t amp = s t r (t i m e s t a m p o b j e c t . y e a r) +”−”+ s t r (t i m e s t a m p o b j e c t . month) +”−”+ s t r (

t i m e s t a m p o b j e c t . day) +”T”+ s t r (t i m e s t a m p o b j e c t . hour) +” :”+ s t r (t i m e s t a m p o b j e c t .

minu te) +” :”+ s t r (t i m e s t a m p o b j e c t . second)

105

106 p r i n t (” At t ime ” + t imes t amp +” c l a s s i s ” + s t r (s v c l a s s i f i e r . p r e d i c t (X t e s t) [0]))

107

108 # TODO: send t h e r e s u l t somewhere (MQTT)

109 ##

110 ########################### End of w h i l e loop and programp #######################

111 ##

115

REFERENCES

[1] A. Froehlich, How edge computing compares with cloud computing, https://
www.networkcomputing.com/networking/how-edge-computing-
compares-cloud-computing/1264320109, Blog, 2018.

[2] C. Roser, Faster, better, cheaper” in the history of manufacturing : From the stone
age to lean manufacturing and beyond. Boca Raton: CRC Press, Taylor & Francis
Group, 2017, ISBN: 978-1498756303.

[3] A. Siddhpura and R. Paurobally, “A review of flank wear prediction methods for tool
condition monitoring in a turning process”, The international journal of advanced
manufacturing technology, vol. 65, no. 1, pp. 371–393, 2013.

[4] S. Kurada and C. Bradley, “A review of machine vision sensors for tool condition
monitoring”, Computers in industry, vol. 34, no. 1, pp. 55–72, 1997.

[5] N. Cook, “Tool wear sensors”, Wear, vol. 62, no. 1, pp. 49–57, 1980.

[6] D. E. Dimla, “Sensor signals for tool-wear monitoring in metal cutting operationsa
review of methods”, International journal of machine tools and manufacture, vol.
40, no. 8, pp. 1073–1098, 2000.

[7] A. Siddhpura and R. Paurobally, “A review of flank wear prediction methods for
tool condition monitoring in a turning process”, International journal of advanced
manufacturing technology, vol. 65, no. 1-4, pp. 371–393, 2013.

[8] P. Maropoulos and B. Alamin, “Integrated tool life prediction and management for
an intelligent tool selection system”, Journal of materials processing technology,
vol. 61, no. 1-2, pp. 225–230, 1996.

[9] S. M. Pandit, “Strategy of On-line Tool Wear Sensing”, vol. 104, no. August 1982,
pp. 217–223, 1982.

[10] L. Dan and J. Mathew, “Tool wear and failure monitoring techniques for turningA
review”, International journal of machine tools and manufacture, vol. 30, no. 4,
pp. 579–598, 1990.

[11] Arduino uno rev 3, https://store.arduino.cc/arduino-uno-rev3,
Website, Accessed : 2018-06-24.

116

https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://store.arduino.cc/arduino-uno-rev3

[12] Teensy usb development board, https://www.pjrc.com/store/teensy
32.html, Website, Accessed : 2018-06-24.

[13] Particule photon datasheet vo16, https://docs.particle.io/datashee
ts/photon-(wifi)/photon-datasheet/, Website, Accessed : 2018-06-
24.

[14] The internet of things with esp32, http://esp32.net/, Website, Accessed :
2018-06-24.

[15] The raspberry pi model 3 b+, https://www.raspberrypi.org/product
s/raspberry-pi-3-model-b-plus/, Website, Accessed : 2018-06-24.

[16] Beagleboard.org beaglebone black, https://beagleboard.org/black,
Website, Accessed : 2018-06-24.

[17] M. Elangovan, V. Sugumaran, K. I. Ramachandran, and S. Ravikumar, “Effect of
SVM kernel functions on classification of vibration signals of a single point cutting
tool”, Expert systems with applications, vol. 38, no. 12, pp. 15 202–15 207, 2011.

[18] C. Drouillet, J. Karandikar, C. Nath, A.-C. Journeaux, M. El Mansori, and T. Kur-
fess, “Tool life predictions in milling using spindle power with the neural network
technique”, Journal of manufacturing processes, vol. 22, pp. 161–168, 2016.

[19] Y. Fu, Y. Zhang, Y. Gao, H. Gao, T. Mao, H. Zhou, and D. Li, “Machining vibra-
tion states monitoring based on image representation using convolutional neural net-
works”, Engineering applications of artificial intelligence, vol. 65, no. July, pp. 240–
251, 2017.

[20] P. O’Donovan, C. Gallagher, K. Bruton, and D. T. O’Sullivan, “A fog computing in-
dustrial cyber-physical system for embedded low-latency machine learning Industry
4.0 applications”, Manufacturing letters, vol. 15, pp. 139–142, 2018.

[21] C.-A. Azencot, Foundations of machine learning chapter 9: Tree-based approaches,
2017.

[22] ——, Foundations of machine learning chapter 10: Support vector machines, 2017.

[23] F. Pérez-Cruz and O. Bousquet, “Kernel methods and their potential use in signal
processing”, Ieee signal processing magazine, vol. 21, no. 3, pp. 57–65, 2004.

[24] F Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in . . . ”, Psychological review, vol. 65, no. 6, pp. 386–408, 1958.

117

https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy32.html
https://docs.particle.io/datasheets/photon-(wifi)/photon-datasheet/
https://docs.particle.io/datasheets/photon-(wifi)/photon-datasheet/
http://esp32.net/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://beagleboard.org/black

[25] C.-A. Azencot, Foundations of machine learning chapter 11: Artificial neural net-
works, 2017.

[26] Introduction a lora, http://www.linuxembedded.fr/2017/12/introd
uction-a-lora/, Website, Accessed : 2018-06-24, 2018.

[27] R. I. Pereira, I. M. Dupont, P. C. Carvalho, and S. C. Jucá, “IoT embedded linux
system based on Raspberry Pi applied to real-time cloud monitoring of a decentral-
ized photovoltaic plant”, Measurement: Journal of the international measurement
confederation, vol. 114, no. January 2017, pp. 286–297, 2018.

[28] S. Yang, B. Bagheri, H.-A. Kao, and J. Lee, “A Unified Framework and Platform
for Designing of Cloud-Based Machine Health Monitoring and Manufacturing Sys-
tems”, Journal of manufacturing science and engineering, vol. 137, no. 4, p. 040 914,
2015.

[29] C. Kan, H. Yang, and S. Kumara, “Parallel computing and network analytics for fast
Industrial Internet-of-Things (IIoT) machine information processing and condition
monitoring”, Journal of manufacturing systems, vol. 46, pp. 282–293, 2018.

[30] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and J. A. Guzzo,
“A fog computing-based framework for process monitoring and prognosis in cyber-
manufacturing”, Journal of manufacturing systems, vol. 43, pp. 25–34, 2017.

[31] M. Siddhpura and R. Paurobally, “A review of chatter vibration research in turning”,
International journal of machine tools and manufacture, vol. 61, pp. 27–47, 2012.

[32] TexasInstruments, Am335x and amic110 sitaratm processors, 2017.

[33] TexasInstrument, Pru read latencies, http://processors.wiki.ti.com/
index.php/PRU_Read_Latencies, 2017.

[34] ——, Pru-icss remoteproc and rpmsg, http://processors.wiki.ti.com/
index.php/PRU-ICSS_Remoteproc_and_RPMsg, 2017.

[35] D. Molloy, Exploring beaglebone, Tools and techniques for building with embedded
linux. Wiley, 2015, ISBN: 978-1-118-93512-5.

[36] A. Devices, Linux industrial i/o subsystem, https://wiki.analog.com/
software/linux/docs/iio/iio, 2017.

[37] T. Instruments, Ti am335x adc, http://git.ti.com/ti-linux-kernel/
ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/
ti_am335x_adc.c, 2012.

118

http://www.linuxembedded.fr/2017/12/introduction-a-lora/
http://www.linuxembedded.fr/2017/12/introduction-a-lora/
http://processors.wiki.ti.com/index.php/PRU_Read_Latencies
http://processors.wiki.ti.com/index.php/PRU_Read_Latencies
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
https://wiki.analog.com/software/linux/docs/iio/iio
https://wiki.analog.com/software/linux/docs/iio/iio
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c

[38] J. Cameron, Iio generic buffer.c, https://github.com/torvalds/linux
/blob/master/tools/iio/iio_generic_buffer.c, 2008.

119

https://github.com/torvalds/linux/blob/master/tools/iio/iio_generic_buffer.c
https://github.com/torvalds/linux/blob/master/tools/iio/iio_generic_buffer.c

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research background
	Machine monitoring
	Sensing methods used in previous studies
	Available IoT platforms
	Comparison

	Machine Learning (ML)
	Supervised and unsupervised machine learning
	Supervised algorithms

	Communication Protocols for data transmission
	MQTT
	CoAP
	WebSocketâ•Žs
	Bluetooth and Bluetooth Low Energy
	LORA
	Zigbee

	Cloud computing and Edge computing

	Proposed Framework
	Hardware components
	Software architecture

	Implementation and Results
	Hardware selection
	Realtime data acquisition on the ti-am335x chip
	Process Realtime Unit (PRU)
	Linux Industrial I/O (IIO) subsystem

	Experimental setup
	Coice of the Materials
	System setup on the band saw
	Sample size and frequency
	Data acquisition

	Feature selection and preprocessing
	choice of Kernel Support Vector Machine (KSMV)
	Feature selection
	Preprocessing

	Trainning and deployment
	Training of the algorithm
	Export classifier and deployment on the BeagleBone Black
	Main Application Code

	Architecture validation and Classification results

	Conclusion and recommendations
	Contribution of this Thesis
	Limitations of the study and recommendations
	Conclusion

	Eagle File for the Beaglebone Black Cape
	The front side of the BeagleBone Cape
	The back side of the BeagleBone Cape

	PRU Tutorial
	ti_am335x_tsadc.h header
	BB-ADC-00A0.dts device tree overlay
	The iio_generic_buffer.c application
	The launch.sh script
	The preprocessing.py code
	The kernel_SVM_trainning.py code
	Detailed results for linear kernel and rbf kernel on the test set
	Result for the linear kernel
	Result for the rbf kernel

	The main application code
	References

