DEVELOPING A SMART AND LOW COST DEVICE FOR MACHINING
VIBRATION ANALYSIS

A Dissertation
Presented to
The Academic Faculty

Pierrick Rauby

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Mechanical Engineering in the
School of George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

August 2018

Copyright (©) Pierrick Rauby 2018

DEVELOPING A SMART AND LOW COST DEVICE FOR MACHINING
VIBRATION ANALYSIS

Approved by:

Dr. Kurfess, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Saldana
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Liang

School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: July 20, 2018

In a world of change, the learners shall inherit the earth, while the learned shall find
themselves perfectly suited for a world that no longer exists.

Eric Hoffer

ACKNOWLEDGEMENTS

I would like to especially thank Professor Thomas Kurfess for his guidance during this
work. He consistently helped me on the research with advice that allowed me to take a step
back when I was going the wrong way.

I also would like to thank Professor Steven Y. Liang and Dr. Christopher J. Saldana for
being part of the reading committee of this work despite their very busy schedule.

My thanks also go to the administrative staff of the Office of International Education
and the School of Mechanical Engineering, especially Mrs. Glenda Johnson whose expla-
nation tremendously helped me with paperwork.

Finally, I must express my gratitude to my parents and family for their trans-Atlantic

support throughout this year. Thank you.

v

TABLE OF CONTENTS

Acknowledgments i ittt e e e e e v
Listof Tables i i i it it et it i it i et ix
Listof Figures @i it ittt it ittt ittt e e X
Chapter 1: Introduction i i i it i it i it it e oo e oo nas 1
Chapter 2: Researchbackground 3
2.1 Machinemonitoring 3
2.1.1 Sensing methods used in previous studies 4

2.1.2 Available IoT platforms 7

2.1.3 Comparison e e e 12

2.2 Machine Learning (ML) oo 13
2.2.1 Supervised and unsupervised machine learning 15

2.2.2 Swpervised algorithms 16

2.3 Communication Protocols for data transmission 23
23.1 MQTTo 23

232 CoAP . . . 24

233 WebSockets 25

2.3.4 Bluetooth and Bluetooth Low Energy 25

235 LORA . . . 25

23.6 Zigbee e e 26

2.4 Cloud computing and Edge computing 26
Chapter 3: Proposed Framework00, 30
3.1 Hardwarecomponents. 30
3.2 Software architecture Lo 32
Chapter 4: ImplementationandResults 34
4.1 Hardwareselection 34
4.2 Realtime data acquisition on the ti-am335xchip 38
42.1 Process Realtime Unit (PRU) 38

4.2.2 Linux Industrial I/O (IIO) subsystem 40

4.3 Experimental setupo 45
4.3.1 Coice of the Materials, 45
43.2 Systemsetuponthebandsaw 45

4.3.3 Samplesize and frequency, 46
434 Dataacquisition 47

4.4 Feature selection and preprocessing 48
4.4.1 choice of Kernel Support Vector Machine (KSMV) 48
442 PFeatureselection 48
443 PreprocessSing e e e e 49

4.5 Trainning and deployment L. 50

vi

4.5.1 Training of the algorithm 51

4.5.2 Export classifier and deployment on the BeagleBone Black 51

4.5.3 Main ApplicationCode 51

4.6 Architecture validation and Classificationresults 52
Chapter 5: Conclusion and recommendations.00 54
5.1 Contribution of this Thesis 54

5.2 Limitations of the study and recommendations 54

5.3 Conclusion L 55
Appendix A: Eagle File for the Beaglebone Black Cape 58
A.1 The front side of the BeagleBone Cape 58
A.2 The back side of the BeagleBone Cape 58
Appendix B: PRUTutorialttt eenns 61
Appendix C: ti_ am335x tsadc.hheader 82
Appendix D: BB-ADC-00A0.dts device treeoverlay 87
Appendix E: The iio_generic_buffer.c application 89
Appendix F: Thelaunchshseript 0000, 105
Appendix G: The preprocessing.pycodettt eeneonen 106
Appendix H: The kernel SVM _trainning.pycode 109

vil

Appendix I: Detailed results for linear kernel and rbf kernel on the test set . . 111

I.1 Result for the linear kernel 111
1.2 Resultfortherbfkemel 111
Appendix 6: The main applicationcode 113
References . . v v v v v i i et e e e e e e e e e e e e e e e e e e e 119

viil

2.1

4.1

4.2

4.3

4.4

LIST OF TABLES

Comparison between different microcontrollers 10
Device Tree and clock settings for the ADC 46
Sampling frequency validation 46
Band Saw Setup 48
Result on the test set for differentkernels 51

1X

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

3.1

32

LIST OF FIGURES

The 4 industrial revolutions. [2] 2
The different components for optical method in tool flank application. [4] . 4
Number of publications using indirect measurement methods. [7] 5
Architecture of a microcontroller.o 8
Architecture of a miCroprocessor. 11
Classical programs and Machine Learning programs. 13

Linearly separable points (left), non-linearly separable data point (right). [22] 18

Data set where no linear boundary can be found. [22] 20
Mapping ¢ from the data space X’ and the feature space H [23] 20
Data set where no linear boundary can be found. [24] 21
Multi-layer Perceptron structure. [25] 22
MQTT protocol, subscribtion (left) and publishing (right).. 24
A typical LoRa Architecture. [26] 26
Fog based computational Network. [30] 27
Fog computing with cyber-physical interaction. [20] 28
The different steps of the training phase 31
The deployed system. 32

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

A.l

A2

I.1

1.2

The Band Saw used for thisstudy. 34
The mechanical adaptor for fix the accelerometer on the band saw. 35
The Beaglebone Black wireless. 36
The cape for the electrical adaptator 37
The final hardware setup for thiswork. 37
Architecture of the AM3358 with Cortex® -A8 and the 2 PRUs [33] 39
Interaction between the ARM® and the PRUs when using RPMsg [34] . . . 40
The Linux user and kernel spaces [35] 41
The Linux user and kernel spaces [36] 42
The final setup on the machine 45
The steel part (left) and aluminum part (right) 48
The 5 samples fortheclasses. 49
Preprocessing flowchart 50
The main application flowchart 52
The experimental setup for testing on the radiator 53
The front side of the BeagleBone Cape 59
The back side of the BeagleBone Cape 60
Confusion matrix and precision statics for the linear kernel 112
Confusion matrix and precision statics for the tbf kernel 112

X1

SUMMARY

Internet of Thing (I0T) is receiving an enormous attention especially when it comes
to monitor machining operations. However, current technology must continue to evolve
in order to reduce cost and to improve data analytics'. More importantly, IoT devices
often raise security concerns, as they transfer a considerable amount of data to the cloud.
Simultaneously, the computational power of embedded platforms has increased, giving the
ability to process data locally; thus, edge computing is able to reduce the security problem
as they minimize the quantity of information transferred to the cloud. Therefore, these
problems can be addressed by developing a truly smart low-cost device that takes advantage
of fog computing as opposed to cloud computing.

Frameworks have been developed to demonstrate the capability to remotely monitor
machine health using cloud computing, the objective of this thesis is to associate those
frameworks to the computational power of low-cost embedded platforms to process data
locally and in real-time.

For this work a BeagleBone Black is used. It is powered by an AM335x ARM Cortex-
A8 processor that runs at IGHz. This computer is associated with an analog accelerometer
through its Analog to Digital Converter. The system is monitoring vibrations on a bandsaw,
as it is running Linux it does not have deterministic-sampling capabilities; therefore, the
Industrial I/O subsystem is used to enable hardware interrupts on the Linux Kernel space.
The vibrations generated by the cutting of different materials are recorded and used to train
a machine learning algorithm on an external computer. Training will use a Kernel Support
Vector Machine algorithm. Once the algorithms are trained they are will be implemented
locally on the BeagleBone Black so that the analytics of the data are done at the “edge”.
The final goal is to be able to determine the nature of the material that is being cut by the

bandsaw.

'"McKinsey Global Institute: Unlocking the potential of the Internet of Things, June 2015

Xii

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world

CHAPTER 1
INTRODUCTION

The 4" industrial revolution is underway for years thanks to the development of Cyber-
Physical Systems (CPS). It was named Industry 4.0 by the German research union for
economy and science in 2011 when it started a 400 million euro research program to main-
tain the German industry competitivity. Industry 4.0 includes many computer-related tech-
nologies such as additive manufacturing (AM), cloud computing (CC), machine learning
(ML) or Internet of Things (IoT), aiming to connect all parts, tools and productions sys-
tems together. This allows a collection of large amount of data, to carry out analysis of the
production process and to be able to improve it.

However, with the adoption of Industry 4.0 technologies, we are facing new issues es-
pecially in the area of security. For example, it is not desirable to stream all production data
in some industries that are sensitive to information security, such as industries related to na-
tional defense. Moreover, streaming data from every possible source can lead to bandwidth
issues. Hence, the cloud computing strategies can be opposed to the need of real-time and
decentralised decision making concepts promoted by the Industry 4.0.

Some studies have shown the possibility of using computer on a local network instead of
sending data to the cloud. However, there is little wirk currently few work on the use of em-
bedded microprocessor platforms to process data at the edge. This presents the advantage
of significantly reducing the amount of data transferred to the cloud, while simultaneously
increasing security, reducing cloud storage space, and reducing transmission bandwidth
[1]. Furthermore, there are currently few studies on the used of powerful embedded mi-
croprocessor platforms for data acquisition and processing. Typically, those two task are
performed by different chips.

Based on this observation, this work tries to implement a real-time data acquisition

Mechanization, Mass production,
water power, steam assembly line,
power electricity

Computer and Cyber Physical
automation Systems

Figure 1.1: The 4 industrial revolutions. [2]

and processing solution on a BeagleBone Black micro-computer. The solution leads to a
decentralized, more private, secure data management which better adresses the Industry 4.0
concerns.

First, the previous work on this topic is introduced. Then the realtime data acquisi-
tion on a linux based microprocessor is discussed. Next, the experimental setup and the
trainning of a machine learning algorithm is presented. Finally, the system is tested in real

conditions and the results are analyzed.

CHAPTER 2
RESEARCH BACKGROUND

When it comes to producing a mechanical part from raw material, various techniques are
used; in most cases, machining is employed at some point in the process. With the devel-
opment of low cost sensors and the embedded platforms, automatic machine monitoring
is becoming a major axis of performance improvement for manufacturers. This chapter
presents a brief review of the state of the art in terms of automatic machine monitoring.
First the different sensors and data acquisition methods are presented, then a brief intro-
duction to machine learning common algorithms is performed. Finally, the most common

IoT protocols for data transfer are introduced.

2.1 Machine monitoring

In order to increase quality and productivity different sensing methods are widely used.
They can be classified into direct and indirect methods [3]. Direct methods such as opti-
cal and electrical enable direct measurement of the physical characteristic that need to be
accessed. This results in a high accuracy but it often requires stopping the process during
the measurement which is not suitable for online production. With indirect methods, such
as acoustic emission measurement, vibration or cutting force, the physical characteristic is
determined through the measurement of other values such as current, force, et al. which
can be acquired without interrupting the production process; thus they are more interesting

for Realtime application.

2.1.1 Sensing methods used in previous studies

Direct sensing methods

Optical methods are based on different components, as in Figure 2.1: a source of illumi-
nation to enhance the quality of the image, a camera and some lens that feed the computer
with data, a computer to process the data and a monitor in order to display the result of
the process. Siddhpura et al. [3] states that these methods seems to be promising because

of the high accuracy and flexibility, but they can only be used between production cycles

]

which is not exactly a Realtime technique.

Digitizer
CCD Camera & Monitor
\ Frame Buffe,
Microscopic Lens Computer

muninﬁu\h |_|

Flank face

«

Figure 2.1: The different components for optical method in tool flank application. [4]

Electrical methods are specially used for tool wear detection. N. H. Cook [5] discussed
these techniques; the electrical resistance at the contact between the tool and the part de-

pends on the tool’s wear; so it is possible to estimate the wear condition of the tool. Other

4

electrical methods use resistor films applied to the tool. However, the variation of the cut-
ting force can introduce bias in the resistance interpretation, these methods are not easily

applicable in the industry.

Others direct methods are such as radioactive techniques or analysis of the wear parti-

cles but they are slow and not applicable to the industry.

Indirect methods

Cutting force can be measured in order to monitor the physical characteristic that needs
to be determined, as an example, the force components vary as the tool wears. However,
other parameters such as work harnessed and cutting parameters, also have an influence on
the cutting force, which can introduce uncertitude in the measurement, in the case of tool
wear prediction Dimla E. [6] discussed the importance of monitoring the static cutting force
but also the dynamic cutting force in order to have an indication of the system’s fluctuations.
Nevertheless, this technique has been widely used by researchers, as Siddhpura et al. [7]

presents in Figure 2.2.

Indirect Measurement Methods

For, Viby,,. Soy Ag Te Spin, Surf; dis,
- tion r“:V""""f?l.r:e:nu,.-, "Peratyr, Ve powe, ¢ ro"eh:;atement
d Ss

Figure 2.2: Number of publications using indirect measurement methods. [7]

Sound is recorded and the variation of low frequencies can be analyzed to have informa-
tion on the cut. Again, this technique is widely used to estimate the tool wear stage; as
Maropoulos, P.G. and Alamin, B. [8] explain, the sound spectra is a results of the rubbing
action between the tool and the workpiece. When the flank wear enters the final stage, the

sound pressure level drops off.

Variation of power input in the machine gives valuable information on the cutting pro-
cess, in any machining operation electric energy is used to remove material from the work-
piece. By subtracting the idle power of the machine from the measured power the power
consumption for the operation can be determined. This method presents the advantage of
being simple to implement; however, in some applications, it is less sensitive than other

direct methods as sound or force monitoring[7].

Vibrations can be recorded using a simple accelerometer which detects the rub between
the tool, the chip and the workpiece; then the signal contains information about the cut. In
the case of tool wear, the amplitude of the vibration at frequencies in the range from 4 to
8 kHz increases with the cutting-edge wear. This technique has been used to implement
online monitoring application by Pandit, S. M. [9]. Dan and Mathew [10] considered that,
thanks to the progress in vibration measurement, this method would become more practical
and cost effective.

Two categories of monitoring techniques have been discussed above; unlike direct mon-
itoring, indirect monitoring techniques are applicable to on-line monitoring. Multiple stud-
ies have demonstrated that cutting forces, sound emissions, variation of power consumption
and vibration are efficient to follow tool wear and to predict its breakage.

Whatever monitoring technique is employed, some computing power is needed after the
sensor, to convert the data into human-readable information. The development of processor
technology has made accessible a wide range of boards for embedded application and the

most well-known are presented below.

2.1.2 Available IoT platforms

The raw data from the sensor needs to be processed before being transmitted to the user;
therefore, either a microcontroller or a microprocessor can be used. Microcontrollers are
usually less powerful but also less expensive than microprocessors, which can be seen as

small computers.

Microcontrollers (MCU)

Microcontrollers can only run a single control loop; the absence of an operating system
on those chips disables multiple threads. Since they can only achieve a single task, the
relation between the input of the process and the output must perfectly understood; this
enable designers to reduce the processing power of the board and the cost. The general

architecture of a microcontroller, as in Figure 2.3, contains:

e In/Out interfaces

e timer

e RAM memory for data storage (volatile)

e ROM memory to store the programs

Central Process Unit (CPU)

Analogue to Digital Convert (ADC) is also present on most of the microcontrollers

The timer clock speed is usually in range from a few MHz to more than a hundred MHz;
thus microcontrollers are not suitable for processes that require a high computational power
and should only be used for simple tasks. The most well-known microcontrollers are cer-
tainly the Arduino family, but other boards such as Teensys, Particles and the ESP32 are
getting interest from the developers community. In the following, the different characteris-

tics of the Arduino Uno, the Teensy 3.2 and the Particle Photon are presented.

Microcontroller : CPU on single chip

In / Out

\ Memory RAM

Analogue to Central Process
Digital Convert |« Unit (CPU)
(ADC) T
| Memory ROM
Timers

Figure 2.3: Architecture of a microcontroller.

Arduino Uno is the most famous board from Arduino®:; it is an entry level microcon-
troller which has a very important community of users, thus it is very well documented.
The Arduino Uno is based on the ATmega328P chip. It has 14 digital In/Out pins, 6 ana-
log inputs an Inter-Integrated Circuit (I2C) bus and a Serial Peripheral Interface (SPI). The
memory consists of a 2KB SRAM, 1KB EEPROM and a flash memory of 32KB, all from
the ATmega328P. The clock speed is given by a 16MHz quartz crystal. The dimensions of
the board are 68.6mm by 53.4mm for a 25g weight. It costs around $35 [11].

Teensy 3.2 is a USB-based microcontroller development system distributed by the SME
PJRC®. As with the Arduino, the code is compiled externally and then transferred onto
the board using the USB port. For this board, the code can be written either in C code
or in Arduino code (.ino). It has a 64KB RAM, 2KB EEPROM which enables the use of
Teensy for more advanced projects than the Arduino Uno. The flash memory is also more
important, with 256KB available in the most recent version of the board. Regarding the

In/Out capabilities, the Teensy 3.2 has 34 digital In/Out pins, 21 analog inputs, a SPI and a

I2C bus. The board is powered by a 32-bit ARM Cortex-M4 running at 72MHz. The board

size is 35mm by 18mm (weight 15g) and it costs around $20 [12].

Particule Photon has been developed for Internet of Things projects with a Cypress
BCM43362 WIFI chip. The board is powered by a 120MHz ARM Cortex-M3, it has
128KB of RAM, 16KB or 64KB of EEPROM (depending on version) and 1MB of flash
memory. The connectivity with external sensors is ensured by 18 general In/Out pins, 8
analog pins, 2 SPI and 1 I12C. The dimensions of the board are 36.58mm by 20.32mm for a
weight of 5g, and it costs around $20 [13].

ESP32 is commercialized by Espressif. It is powered by a Tensilica Xtensa 32-bit LX6
microprocessor with 1 or 2 cores depending on the version and running at 240Mhz. The
board has also an ultra-low power co-processor that permits ADC conversions and some
computing tasks while in deep-sleep mode. As for the Photon, the ESP32 provides Internet
of Things capabilities with WIFI 802.11 b/g/n, Bluetooth and Bluetooth Low Energy. The
memory consists in 448KB of ROM, 520KB of SRAM and the flash memory is either
2MB or 4MB depending on the versions. The connectivity is ensured by 34GPIO, 18 ADC
channels, 4 SPI pins and 2 I12C pins which permits a wide range of sensors to be connected
to this board. The ESP32 dimensions are 55.3mm by 28mm for a weight of 9.6g and it
costs around $15 [14].

The microcontrollers presented above are not the only ones available on the market.
However, their characteristics, as reprensented in table 2.1 depict well the wide range of
options possible when it comes to choose a board for an application: from the first develop-
ment board such as the Arduino to more advanced board such as the ESP32 it is important
to specify the need before choosing the board for an application. Furthermore, choice can
be made to use more powerful boards such as microprocessors; this other kind of board is

introduced in the following section.

Table 2.1: Comparison between different microcontrollers

Characteristic Arduino Uno Tensy 3.2 Particle Photon ESP32
Processor ATmega328P | ARM Cortex-M4 | ARM Cortex-M3 | Tensilica Xtensa
Frequency 16MHz 72MHz 120MHz 240MHz

GPIOs 14 34 18 34
ADCs 6 21 8 18
SPI/I2C yes yes yes yes
WIFI/Bluetooth on shield No yes/no yes
RAM 2KB 64KB 128KB 520KB
EEPROM 1KB 2KB 16KB or 64 KB 448KB
Flash Memory 32KB 256KB IMB 2MB or 4MB
Dimensions(mm) | 68.6 by 53.4 35by 18 36.6 by 20.3 55 by 28mm
Weight(g) 25 15 5 10
Price 35 20 20 15
Microprocessors (MPU)

Microprocessors can be seen as mini-computers, they contain most of computer’s usual

components:

e Central Process Units (CPU) which is the part of the chip that is responsible of all

the computing tasks.

Timers

Peripheral Interface

Inputs and Outputs chips

Memory such as RAM and ROM

However, it is important to notice that those functions are not contained of a single chip,

as shown in Figure 2.4, all these components can be contained in a single board but they

are not contained in a the same chip. Unlike microcontrollers, microprocessors run op-

erating systems; usually a specific version of Linux or Android is provided and sustained

10

by the boar or chip distributor. In the following the most well-known microprocessors are

presented: The Raspberry Pi 3 B+ and the BeagleBone Black (wireless version).

In / Out

;

Microprocessor/CPU + other

chips
Analogue to /
R Central Process

Memory RAM

[y

Digital Convert .
(ADC) Unit ,(.CPU)

™ Memory ROM

A 4

Timers

Figure 2.4: Architecture of a microprocessor.

Raspberry is a mono-board micro-computer distributed by the Raspberry foundation.
It is powered by a 64-bit quad-core processor Broadcom BCM2837B0 ARM Cortex-AS53
running a 1.4GHz. The memory consists in 1IGB LPDDR2 SDRAM. Regarding the con-
nectivity, in addition to 40 In/Out pins and 2 USB ports, it has, 2.4GHz and SGHz WIFI
capabilities, Bluetooth and Bluetooth Low Energy. This board has also an SPI, an I2C bus,
a full-size HDMI port, and a CSI&DSI inputs to connect camera&touchscreen. However,
there 1s no Analog to Digital Converter in the current version. Thus, the Raspberry Pi 3
needs some add-ons to be able to interact with analog sensors. The dimensions of the board

are 86.9mm by 58.5mm for a weight of 41g. It costs around $35 [15].

BeagleBone Black is a low-cost community supported development platform distributed
by the BeagleBoard foundation, project is totally open source, which means that all the
schematics and components of the board can be found on line and bought separately. It

is powered by the TI-am3358 ARM Cortex-A8 processor running at 1GHz, but it also has

11

two Process Realtime Units (PRU) microcontrollers, each running at 200MHz whose role
is to manage deterministic tasks, and which are totally integrated in the TI-am3358 chip.
Connectivity is ensured by 44 In/Out pins, one high speed USB port and 8 analog inputs.
The new version of the BeagleBone Black has seen its Ethernet port replaced by a 802.11
b/g/n 2.4 GHz WIFI with also Bluetooth 4.1 and Bluetooth Low Energy. The memory of
the board consists in 512MB of DDR3L DRAM and 4GB flash memory, additionally the
SD card port can be used to store data. The board dimensions are 86.4mm by 53.3mm for
a weight of 35g. This board costs around $55 [16].

The two microprocessors presented above illustrate well two different way to use mi-
croprocessors; the BeagleBone Black, thanks to its numerous In/Out pins and its Analog
to Digital Converter, is more suitable for sensor and data acquisition applications. The
ti-am3358 chip also provides very interesting computing power, and the Process Realtime
Units enable high speed and deterministic data acquisition. On the other hand, the Rasp-
berry Pi interfaces, as the HDMI port, are more suited to multimedia projects; the same

goes for its quad core processor, which provides more powerful graphics processing.

2.1.3 Comparison

In the two previous sections are presented the microcontrollers and the microprocessors.
The first ones are less expensive but, as they do not run an Operating System, they must
be dedicated to a single task, it is not possible for them to manage threads. One the other
hand, their behaviors are totally deterministic. Thus, microcontrollers are very suitable for
Realtime applications; however, the power of their Central Processing Unit does not permit
high level computation.

In contrast, microprocessors are more powerful, which enables to run some machine
learning algorithms on those boards. The use of an operating system on those chips enables
the use of threads and so to have multiple applications running at the same time. However,

it results in a loss of the deterministic behavior of those applications; the Operating System

12

can “jump” from one application to the other, which is an important drawback when it
comes to acquiring data at a high and precise frequency. It is not doable by running an

application on the user space of the operating system of a microprocessor.

2.2 Machine Learning (ML)

Industry 4.0 transforms the way we are producing parts. Machine Learning, as a subfield
of artificial intelligence plays a very important role in this transformation. As machines
are increasingly connected to sensors and the cloud, a very important amount of data is
generated, it can be used to train machine learning algorithms. Those “learning” techniques

are useful, when:
e humans expertise does not exist
e humans are not able to explain their expertise

e prediction problems involve a high level of complexity

Rules Answer
g Classical Answer > ML P Rules
— rogram |—
Data R Program Data g

Figure 2.5: Classical programs and Machine Learning programs.

Figure 2.5 presents the difference between classical programs and machine learning prob-
lems. In the first ones, data and rules are provided as an entry, and the program gives an
answer to the problem. In contrast, for machine learning programs, the entries consist in
Data and already known answers; then the program establishes rules over this training set
of data. Numerous studies have been conducted on the use of machine learning techniques
for manufacturing prognostics.

M. Elangovan et al. [17] have discussed the effect of the Support Vector Machine

(SVM) errors functions on the classification of vibration signals for single point cutting

13

tools. The condition of a carbide tipped tool is predicted using a Kernel Support Vector
Machine for two different error functions C-SVC and v-SVC. The efficiency of these func-
tions is then compared to other classifiers such as Decision-Trees, Naive Bayes and Bayes
net. It was found that, either for C or v errors functions, the RBF Kernel gives higher
classification efficiency. Finally, the linear Kernel can be interesting when it comes to have
very fast classification. In comparison with other classification algorithms, the Kernel Sup-
port Vector Machine (KSVM) with v-SVC has better efficiency. Then M. Elangovan et al.
have shown that KSVM are promising for the prediction of the condition of a single point
cutting tool.

C. Drouillet et al. [18] have used the neural network technique to predict tool life by
monitoring the spindle power. End milling operations were performed on a steel work, and
different MATLAB " learning functions were used to train a Neural Networks (NN). This
method has demonstrated a good correlation between true and computed Remaining Useful
Life (RUL); also it was very fast and could be used for Realtime RUL prediction.

Y. Fu et al. [19] have implemented Convolutional Neural Networks (CNN) for process-
ing images representations of vibration signals. The vibration states have been considered
to be a very promising way to real-time monitor machine states. Feeding the algorithm
with an image of the signal without any preprocessing avoids possible bias introduced by
the feature selection. Finally, the trained CNN showed very good results.

P. O’Donovan et al. [20] have introduced a fog computing industrial cyber-physical
system for embedded low-latency machine learning application. Their research highlights
that fog computing can be employed for real-time monitoring; this architecture enables a
more distributed and scalable network while enhancing the privacy and the security of data.

Different machine learning algorithms have been implemented over the above-mention-
ned studies. A review of the different available techniques must be conducted in the fol-
lowing. First the difference between supervised and unsupervised machine learning is in-

troduced, then the most well-known supervised ML methods are presented.

14

2.2.1 Supervised and unsupervised machine learning

As explained above, to be trained, machine learning algorithms usually expect Data and
the “answer” of the problem. However, sometimes the output is not known, and this is
where the unsupervised machine learning is promising. The goal of these algorithms is
to highlight the structure or the distribution of the data, thus it aims to learn a new data’s

representation. The 2 major techniques of unsupervised machine learning are:

dimensional reduction: a data set of high dimension is reduced to lower dimension while
keeping the “important” characteristics. Thus, the redundancies are removed, the
storage space and the computational power required to manage the dataset are re-

duced, finally data visualization and interpretation is improved.

clustering: the general characteristics of the data are understood, then the different ob-
ject of the data set can be grouped based on those characteristics. Again, the data

interpretability is improved.

However, most of the time the answers of the problems for the training sets are known;
then it is called supervised learning. The aim is to make predictions rather than to enhance
the data interpretability. The predictions can either be in the form of a decision function
or of a classifier, that can be binary or multi-class. The mains techniques of supervised

machine learning are:

Decision Trees

Naive Bayes classifiers

Logist Regression

Support Vector Machine

Kernel Support Vector Machine

Neural Networks

15

2.2.2 Supervised algorithms

Decision trees

Decision Trees can be used in other fields, but when it comes to machine learning, they are
applied to predict the value or the class of an output based on given inputs; to that end these
algorithms repetitively divide the working area into subs-sets, which are divided again and
again: A decision tree is a recursive partition of the training set into smaller and smaller
subsets” [21]. For data to be used in a Decision Tree model it needs to be discreet and
without any ordering (e.g. classify fruit from color, shape, texture, size). Given a split

variable j and a splitting point s, two regions (left and right) can be defined with:
Ri=xz:z;<sand R, =z :2; > s
For regression problems, 7 and s have to be chosen in order to minimize:
min; s (Zi::pieRl(j,s) Wi =)* + Ysmen, sy Vi — Cr)2>
For classification problems, j and s have to be set such that the impurity is minimized:

ming, (P82 tmp (Ry(j, 5)) + 282 mp (R, (j,s))

n

The impurity Imp() can be either:

Classification error: the minimum probability that a point is mis-classified at the node

(4, s) of the Tree:
Imp(R,,) = 1 — maxy Pk

with p,,i the portion of well-classified points.

Shannon’s Entropy: from information theory
Imp (Rin) = = > 5 Dk 1085 Dok

16

Gini impurity: with still p,,; the portion of well-classified points.

Imp (Ri) = Y1 Bk (1 — Pok)

Decision Trees present many advantages; they are easy to understand and to interpret, as
they are a mirror to human decision making; however their predictive accuracy is not very

good.

Naive Bayes classifiers

This classifier uses the posterior probabilities also called emphBayes Theorem 2.1 to make

predictions.

B|A)P(A)

P(A|B) = il PB) 2.1)

For a binary classification problem, the aim is to express the probability distribution in a

parametrized form. The probability of a single data point can be written as :

p9<x7y) :pe(yaxla'“axD> (22)

Thanks to the Bayes Theorem 2.1 and the Naives Bayes assumption, which states that

p(zaly, za) = p(xqly) V d' # d, the equality 2.2 simplifies:

po(z,y) = po(y) Hpe(xdw) (2.3)

Then, depending on data type: binary, continuous... the model of p(y|z,) can be rewritten
using respectively Bernoulli distribution and Gaussian distribution. Finally, the classifica-

tion is the output is the class that is the more likely to be true.

Regression algorithms

Regression algorithms use the training data to fit curves and find a predictive function that

maps the inputs to a continuous output y = f(xy,...,z,), depending on the number of

17

features and the complexity of the relationship, different models can be used: the linear
regression adjusts the coefficient b; on the following equation y =) . b; - x; in the case of
n features; for more complex problems a polynomial regression can be used y = Y, b;a".
Finally, for some problems the logistic regression can be employed (here with the sigmoid

function) log (ﬁ) =by+b-x

Support Vector Machine

Those algorithms are used to classify linear separable data points; as presented in Figure 2.6
(left). However, different margins can be found for the same data set and they do not split
the dataset equally. Support Vector Machine (SVM) tends to find the best linear boundary

between different classes by using an constrained optimization problem, which reads as:

o
o w) ¢ anfn 24

with respect to : y,(w - z, +b) > 1 — &, and &, > 0. In formula 2.4, v (w, b) is the value
of the margin v which depends on the weight vector w and the bias b , £, is the “cost” of

having a data point, which is not classified correctly as presented in Figure 2.6 (right). The

Figure 2.6: Linearly separable points (left), non-linearly separable data point (right). [22]

18

distance between two points " and 2~ at 1 unit from the margin read, as:

T g
n 2.5)
d_ :—wﬂj__b_’_].
[w]
So the margin ~ can be expressed this way:
n _ 2
y=dt—d7 | = (2.6)
]|

and the constrained optimization problem is now to minimize the norm of the weight vector
w:

+C- Zﬁn @7

min
w,b

whg

with respect to: y,(w - x, +b) > 1 —¢, and &, > 0. As &, must be positive but also
minimum, it can be written that: &, = 1 — y,(w - z, + b) (value of the classification
error) if the point is not classified correctly and &, = 0 if the point is classified correctly.

Introducing [the hinge loss function as :
1) (a,b) = max(0,1 — a - b)
the term >° &, = > 1) (y,, (w) -z, +

and equation 2.7 becomes:

+C- Zl hin) (yn cTp+ b> 2.8)

min
w,b

w\@

Finding the minimum of the equation above gives information about the position of the
optimum boundary. Although, this kind of algorithm is efficient for linearly separable or
non-linearly separable data points with only few problematic points, sometimes, a linear
boundary cannot be found between the categories (Figure 2.7) In these non-linear spaces,

the use of a Kernel function is needed.

19

Figure 2.7: Data set where no linear boundary can be found. [22]

Kernel Support Vector Machine

Kernel functions can be used with a mapping ¢ that projects the data points from the object

space to a feature space where linear methods can be used, as in Figure2.8 A function

X A <
X A 2 X
X X x X
x X
X < X X
. . X
- — X
- > \ X
X X// 5 \\X X A X
e) 5 > 1 o\ X
T T o)
) \
XN >/ PO x % g,
x ~_° _Tx SRISIAN
x | x '
X
x %
X)
X ' Z,

Figure 2.8: Mapping ® from the data space X" and the feature space H [23]

K(x,2") defined on a set X is called a Kernel function if and only if there exists a Hilbert
space H and a mapping ® : X — H such that forany z, 2’ in X : K(x,2") = (®(x)-®(z')).
This enables us to use linear techniques but, more importantly the explicit computation of
®(x) can be avoided, and K (z, z") is computed instead. A Kernel Support Vector Machine
(KSVM) is useful to classify data points where the data cannot be linearly separated in the

data space and more importantly, in most cases Kernel methods reduce the computational

20

power need. Thus, they are suitable for classification problems.
Finally, the most famous algorithms for machine learning are Neural Networks, section
2.2.2 presents different type of Neural Networks: Multi-Layer Perceptron (MLP), Convo-

lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

Neural Networks

These algorithms try to replicate the way neurons work. The neuron is modeled with a

perceptron, as in Figure 2.9 and its output is given by f(x) = s (wo + Zle wj - ij) =

s (QTQ) where s() is the threshold function. Other functions such as the sigmoid o =

1
HTM can be used.

output

Figure 2.9: Data set where no linear boundary can be found. [24]
For binary classification (using the sigmoid function), the perceptron can be trained

by adjusting all components of the weight vector w over the data set. For classification

problems the cross-entropy error is generally used () denotes the learning rate):

H(f(a).y') = —y' -log(f(a)) — (1 —y') - log(1 — f(a!)) (2.9)

21

Then the weight update for every iteration reads as:

OH (f(2'),y")
Ow; (2.10)
Aw; =1 (y — f(z)) z;

Aw; = —n

J

However, in the case of multiclass classification, the softmax function, equation 2.11,
is used to find which class is more probable than the other. If class % is more probable than

the other then oy (z) ~ 1 else oy (z) =~ 0.

exp(w*’ - z)

Zl[il eXp(ﬂlT)

op(r) = (2.11)

Then, the weight update reads as Aw’ = 7 (y" — fe(z')) 2. Finally, for each training

instance: w§-+1 = w§- + Awg.

Adding several layers of Perceptrons as presented in Figure 2.10

°
b 4
Al I wheN
U
/ 0 Uh Vf
o0
20 = °
) Why w
Wh1 hp

O'oo ®

270—1 I

Figure 2.10: Multi-layer Perceptron structure. [25]

It is composed of 3 or more layers of Perceptrons, each layer feeding the following one.
This algorithm is efficient for non-linear data classification.

Convolutional Neural Networks, on the contrary add more layers, the first operation

22

transforms the input into feature maps that compose the convolution layer; then after one
or multiple convolution maps a rectification layer is applied with functions such as ReLLU,
sigmoid... At the end, the last layers consist of a common Multi-layer perceptron. Convo-
lutional neural networks are mostly used for image processing, however, Y. Fu et al. [19]
have used them for Machining vibration states monitoring based on image representation.
The advantage of this technique is that they were able to reduce the bias introduced by fea-
ture selection that must be performed for other machine learning methods such that Kernel
Support Vector Machine.

Finally, Recursive Neural Networks (RNN) add more connections between the hidden
layers of a Convolutional Neural Networks. The nodes are fed information from the previ-
ous layer but also information from their own last state. This enables them to learn from
the past.

Those different machine learning algorithms can be used to classify images or prepro-
cessed signals from sensors. The choice of the algorithm and its parameters can be made
thanks to the programmers knowledge, and different setups maybe tested to find the most

suitable one.

2.3 Communication Protocols for data transmission

In the following the major protocols for data transmission and Industry 4.0 are presented:

MQTT, CoAP, Bluetooth, Bluetooth Low Energy (BLE), HTTP and WebSockets,

2.3.1 MQTT

MQTT stands for Message Queue Telemetry Transport. It is a lightweight data protocol that
uses a publish and subscribe architecture was initially developed by Dr. Andy Standford
Clark for IMB and Alan Nipper for Arcom; now the protocol is open source and maintained
by the MQTT organization. This a Machine to Machine standard that uses a message broker

to forward messages to clients depending on topics.

23

Subscribe
to topic

Forward
message

Broker

Publish
on topic

Subscribe
to topic

Forward
message

Figure 2.11: MQTT protocol, subscribtion (left) and publishing (right).

As presented in Figure 2.11, first the different clients subscribe to the topics they want
to receive messages about. Then every time a client publishes a message about the corre-
sponding topic, the broker forwards the message to the clients that have subscribed to this
particular topic. This mode enables one to one, one to many and many to one communica-

tions.

2.3.2 CoAP

CoAp stands for Constrained Application Protocol, as is MQTT, it is designed for machine
to machine applications. It has been optimized for peripheric and constrained networks. It
is based on the REST architecture and uses a client to server model, in which clients send
requests to the server in order to receive data as a response. However, the packets are lower
than for other protocols. Such as HTTP, for example; the CoAP header is limited to 4 bytes
(compared to the 100 bytes for HTTP). This allows the use of the CoAP protocol for small
embedded devices, which makes CoAP a good protocol for Industry 4.0 and Internet of

Things applications.

24

2.3.3 WebSockets

Usually, internet communications over a client and a server use HTTP; the client sends a
request to the server in order to establish a connection, then data is transferred from the
server to the client, and at the end of the transfer the connection is closed. One the other
hand, WebSockets solve some issues of the HTTP protocol; the communication between
the client and the server stays open, and both can send and receive data at the same time.
This enables a full duplex communication that is very interesting for receiving data from

sensors and to push information from the cloud.

2.3.4 Bluetooth and Bluetooth Low Energy

The above presented protocols (MQTT, CoAP ...) usually communicate using wired or
wireless internet infrastructure. In contrast, Bluetooth and Bluetooth Low Energy (BLE)
are wireless protocols that use radio frequency 2.4GHz. The communication is established
between two devices, and even if it is very stable, the range is quite short, and commu-
nication with more that 2 devices is not possible. The protocol is widely used to connect
wireless devices for Internet of Things applications.

Bluetooth Low Energy is a new version of the Bluetooth protocol that uses a low data

rate in order to reduce the battery consumption of the devices.

2.3.5 LORA

LoRa from Lo(ng) Ra(nge) is a wireless protocol; it is a Low Power Wide Area Network
(LPWAN). This means that it is suitable for application where the range and the autonomy
are more important than the bandwidth. Lora denotes both the physical interface, which,
patented in 2014, is still proprietary, and the public LoORaWAN that was developed by
SEMTECH and defines the communication protocol. The aim of this protocol is to ensure
the communication between gateways that are connected to the Ethernet and end-nodes

that are acquiring data (Figure 2.12).

25

APPLICATION APPLICATION

SERVER

END DEVICES GATEWAYS

Q) NETWORK —
= SERVER t) E

4;;;,;””" ETHERNET, 4G, _.

ETHERMET. HTTP, MQTT,

" ((K) &

Figure 2.12: A typical LoRa Architecture. [26]

2.3.6 Zigbee

This is a 2.4GHz standard built on IEEE 802.15.4 norm. This mesh network is designed
for low band width, short range communication, but those compromises come with a very
low power consumption. Thanks to the mesh capability of this network, each node can act

as an end-point or as a repeater that forwards the message to the next node.

2.4 Cloud computing and Edge computing

The recent improvement of communication technologies enables the use of powerful re-
mote computers to process data. Complex architecture can be used to acquire data on the
machine shop or on other industrial infrastructure. This is known as cloud computing and
those architectures can be also used to store important amount of data.

R. LS. Pereira et al. [27] used the cloud’s computing power to monitor a photovoltaic
plant. The data were acquired with a Raspberry Pi and sent to the cloud to be processed.
S. Yang et al. [28] have presented a unified Framework and Platform for Design of Cloud-

Based Machine Monitoring and Manufacturing Systems; this study was focused on the

26

sensor development and wireless communications. C. Kan et al. [29] have introduced
parallel computing and a network analytics for fast Industrial Internet of Things (IIoT) for
machine condition monitoring. This network, even if it is computationally expensive, uses
the embedded distributed power to follow the machine’s condition.

D. Wu et al. [30] have used the computing power of the cloud to process data and to
build predictive models. In contrast to other similar studies, those algorithms were then
exported to a private cloud and were used to make predictions on the data. A proof of

concept is used to demonstrate the architecture is presented in Figure 2.13

3. Build predictive

models
| Remote Public Cloud
(High bandwidth, low latency

2.2 Stream training &

2.1 Stream raw data to testing datasets to a

N E T T T I TN ey remote public cloud
e —
| Gateway P Local Private Cloud |
! Device b :
1. Collect large T
volumes of real- | - .
time streaming i e
i Cluster Computer Local Storage

Ll :_'_'_'_'_'_'_' _'_'_'_'_'_'_'_'_'_'_'_'_"i_'_'_'_'_'_'_'_'_'_'_'_'_'_‘lﬁ_'_'_'_'_'_'_'E,: """"""""""""""""""""""""""""""

© I) =0 H _
1 9 ; 4. Apply predictive
' models to raw data

Figure 2.13: Fog based computational Network. [30]

P. O’Donovan et al. [20] uses the idea to process data with local resources. The main
idea is to use computers that are not located on the cloud but are physically in the factory
in order to execute a predictive model. Then this technique avoids exporting large amounts
of data to the cloud. This solves some Industry 4.0 concerns, such as decentralized and
autonomous decision-making management. Moreover, this approach improves security,

privacy and reliability of all of the system, since the data remains on at the factory level.

27

Usually the policy of data management depends on the company and may not be adequate

to the cloud service provider. The architecture proposed in their study is presented in Figure

2.14.
- Download Download Download
PMML Models PMML Models PMML Models
Execute Execute Execute Execute
Model Model Model Model

Figure 2.14: Fog computing with cyber-physical interaction. [20]

The Industry 4.0 proposes a more decentralized computing architecture. For economic
reasons, companies tend to improve the machine monitoring architecture to make more
accurate real-time predictions or analyse of the factory. This has been seen as a solution,
but it presents problems of security, privacy and reliability. Fog computing, on the other
hand seems to be a more promising solution to address those issues, as the new embedded
systems enable the use of powerful algorithms on very small and low cost systems, such as
the BeagleBone Black or the Raspberry Pi. Some architectures are proposed in the previous

studies; however, few of them use the entire processing power of those chips and other local

28

computers are often added to process data. In this thesis the main goal is to use the full
capacities of these processors for both data acquisitions and data processing, more than fog
computing this could be called Edge Computing.

The case study will be the vibration monitoring of cuts of different materials with a

band saw. The final system should be able to real-time distinguish the material being cut.

29

CHAPTER 3
PROPOSED FRAMEWORK

The main concern of this work is to have a system which is fast enough to be considered
Realtime and the processing power should be located on the board that realizes the data
acquisition. The following section first presents the hardware architecture used in this

thesis, then the Software architecture is introduced.

3.1 Hardware components

This part presents the hardware selected for this project. As for most machine monitoring

projects the different components are:

e a sensor to transform the physical phenomenon into an electric signal

a mechanical adaptor to mount the sensor on the machine

e a microcontroller or microprocessor to process the data

an adaptor may be added to fit the tension between the sensor and the Board

a cloud service or remote computer, which is only used in the training phase

Indeed, two phases have to be identified in this project. The first one consists in the data
acquisition for training the machine learning algorithm; the second phase is the deployment
of the board with the trained algorithm on real conditions. During the first phase, the
samples are concatenated on the embedded board and sent to a remote computer. Once
all the sample sets have been acquired, the machine learning algorithm is trained on the
training set, then an evaluation is conducted on the test set. Typical ratios between the

training set and the test set are respectively 80% and 20% of the sample set. When accuracy

30

on the test set is good enough, the algorithm can be exported to the Embedded board and

the learning phase is completed. Figure 3.1 sums-up the different steps of this phase.

Machine to W@Physical _(Sensor Convert into
monitor J phenomenon L electric signal

@

Electric|signal

A 4

©) Concatenated
« (Board Create Samples

samples sent

@) ... wait until J

enough samples
‘b ® Trained algorithm
J exported to the
board
(5) Sample
preprocessing and

ML algorithm
training

Figure 3.1: The different steps of the training phase

The second phase is the deployment phase where the trained algorithm has been ex-
ported onto the board. The sensor keeps sending data to it, so the samples, after being
concatenated, are fed into the algorithm. The algorithm returns the classification results

that can be sent to the cloud. Figure 3.2 presents the hardware architecture of this phase.

Type of sensor The choice of the sensor depends on the physical phenomenon that is
going to be used, as presented in 2.1.1. Indirect sensing methods are more suited for ma-
chine real-time monitoring. M. Siddhpura et al. [31] stated that vibration sensing is easy to
implement; moreover, vibrations can be acquired using a simple accelerometer. This kind

of sensor is very cheap and is suited to this application.

31

Machine to W (D Physical f Sensor Convert into
monitor J phenomenon L electric signal

@

Electric|signal

A 4

@ Classification (

"~ results sent L Board

Create Samples &
classification

Figure 3.2: The deployed system.

Type of board The board used in this work needs to be powerful enough to process
data and run the classification algorithm in real-time. Even if the deterministic capabilities
of micro-controllers presented in 2.1.2 are an advantage for vibration acquisition because
they provide a constant and precise sampling rate, their computing power is not important
enough for the desired application. A choice is made to use a microprocessor such as the
BeagleBone Black or the Raspberry Pi. The absence of deterministic properties of this type

of board is being addressed in the following part 4.1.

3.2 Software architecture

Concerning the learning phase, as we want to sample vibration very fast the code should
first sample /N; data points and store them in a file which will constitute a sample. Ny
should be large enough to depict a representative period of the signal, but small enough to
let the process be real-time. Thus, N; depends on the sampling frequency f, of the system,

the higher f; is, the larger V; should be, thanks to relation 3.1:

fs-Ng=C (3.1)

with C' a time constant that should be far above the characteristic time of the system. This

sampling operation should be repeated N, times for the /V, category of sample that we want

32

to be able to classify:

e band saw off.

band saw running, setup up to cut material 1 but not cutting (no physical interaction

between the saw and the workpiece).

e same case as above but setup for material 2.

band saw cutting material 1 and setup for material 1.
e same case as above for material 2.

Once all the N, samples have been acquired for the N, classe, they are exported to the
remote computer where the features such as dominant frequencies, mean, max, min... of the
samples are extracted. For the NV, classes, tables of N, by /N are created and concatenated
to create a data frame of size (N, - N) by N, which is split into the training set and the
test set. The selected machine learning algorithm is trained thanks to these sets.

During the deployment phase, the board should acquire N, points at the frequency f;
to create a sample, then the N, features are extracted and feed into the algorithm. The
classification result is finally sent to the cloud.

The architecture implementation is discussed in the following chapter. First, the se-
lected hardware is presented, then a solution for deterministic data acquisition is intro-
duced, the training of the machine learning algorithm is detailed afterward, and finally the

results of the implementation are considered.

33

CHAPTER 4
IMPLEMENTATION AND RESULTS

This section presents the implementation of the above presented architecture. Once the

implementation has been validated, it is tested on real conditions.

4.1 Hardware selection

Band saw The band saw used for the work is the 8-Mark-II vertical Tilt-Frame band
saw available in the Montgomery Machining Mall (Figure 4.1). This industrial band saw is

designed for metal cutting at speeds ranging from 50 to 450 fpm.

Figure 4.1: The Band Saw used for this study.

34

Accelerometer Different types of accelerometer can be used, depending on the type of
communication that we want to be implement. The communication can be either SPI or I2C
if the sensor is a digital one. On the other hand, analog sensors do not provide these com-
munication interfaces, but they require the board to use an analog to digital converter. Most
of the low-cost accelerometers that use SPI or 12C does not have high sample frequencies.
As an example, the ADXL.345 has SPI and I2C capabilities, but its preferred sampling rate
is 1000Hz for a cost of $17; the MMAB8451 has I2C capabilities but a maximum output rate
of 800Hz for a cost of $7.50. In contrast, analog accelerometers such as the ADXIL.203EB
are a bit more expensive, but the acceleration value can be accessed at very high frequen-
cies; the sampling limit is generally set by the maximum sampling frequency of the board’s
analog to digital converter. The needed output rate of the accelerometer is directly linked to
the frequency we want to observe on the band saw. This frequency is given by the impact
of the teeth on the workpiece. In order to estimate the output frequency, the speed of the
blade is set to the maximum possible: 450 fpm, the blade has 10 teeth per inch. Thus, the

frequency of the impact is:

450-120

50— = 900 teeth per second

The Nyquist-Shannon Theorem states that to observe this frequency, the sampling fre-
quency should be at least 1800Hz. Considering the output rate of digital accelerometers,

choice is made to use the analog accelerometer: the ADXL203EB.

Surface of
contact

Axis used

Figure 4.2: The mechanical adaptor for fix the accelerometer on the band saw.

35

mechanical adaptor In order to set the accelerometer on the band saw, a mechanical
adaptor is designed and machined. The final part is presented in Figure 4.2; 4 screws hold
the ADXL203EB on the adaptor, a magnet is added on the other side to ensure that the
adaptor is securely fixed on the band saw.

Only one axis of the accelerometer is going to be used; the choice of this axis is made
so that is it normal to the surface where the magnet is put. It has to be noticed that the use
of another of the ADXIL.203EB will note provide reliable data since the magnet can only
ensure that the accelerometer is oriented along the axis normal to the surface of reference,

it does not prevent the adaptor from sliding on this surface.

Choice of the Board As discussed in 3.1, microprocessors seems to be the more promis-
ing solution for this work. Between the BeagleBone Black and the Raspberry Pi, the main
difference is the absence of an Analog to Digital Converter on the Raspberry Pi; more-
over, this board does not have Process Real-time Units; therefore, even if the version of the
Raspberry Pi has a better processing power that the BeagleBone Black and the benefit of a

wider community, the choice goes in favor of the BeagleBone Black wireless.

Figure 4.3: The Beaglebone Black wireless.

Beaglebone cape for electrical adaptation The output tension of the ADXL203EB ran-
ges from O to 5V; however, the maximum input voltage on the Analog to Digital Converter
of the BeagleBone Black is 1.8V. An adaptator cape (Figure 4.4), which acts as a tension

divider, is built to avoid burning the BeagleBone Black. The two resistor values are: Ry =

36

6.8k(2 and Ry, = 12k(), then the tension divider gives:

Ry 6.8

mar __ Vma:u _ 5 —s max

=18V

out m in - 6.8 + 12) out

The Eagle Files for the board are presented in Appendix A

Figure 4.4: The cape for the electrical adaptator

4.1)

Figure 4.5 presents the final hardware for this thesis with every component ready to

be used. Now that it has been introduced, the following section discussed real-time data

acquisition on the BeagleBone Black.

Figure 4.5: The final hardware setup for this work.

37

4.2 Realtime data acquisition on the ti-am335x chip

The chip running on the BeagleBone Black is the ti-am3358. Two ways of getting deter-
ministic sampling on this chip are considered in this section. First an attempted use of
the two Process Real-time Units is detailed, then the Linux Industrial In/Out subsystem

capabilities are introduced.

4.2.1 Process Realtime Unit (PRU)

Presentation of the PRUs

The 2 PRUs are microcontrollers such as Arduino® and the Teensy. It means that they are
able to execute real-time processing, then the “programmable nature of the PRU, along
with its access to pins, events and all system on chip (SoC) resources, provides flexibility in
implementing fast real-time responses, specialized data handling operations” [32]. Thus,
those PRUs are fully integrated in the global architecture of the ti-am3358 chip (Figure
4.6), which is very useful when it comes to carry out time critical operations such as fast

data acquisition.

The RPMsg framework

In order to enable communication between the two process real-time units, Texas Instru-
ments has created a framework that is used to send and receive message between the ARM

and the PRU:

RPMsg is a message passing mechanism that requests resources through Re-
moteproc and builds on top of the virtio framework. Shared buffers are re-
quested through the resource_table and provided by the Remoteproc module
during PRU firmware loading. The shared buffers are contained inside a vring
data structure in DDR memory. There are two vrings provided per PRU core,

one vring is used for messages passed to the ARM® and the other vring is

38

ARM® Subsystem Real-Time Coprocessor Subsystem
PRUO PRU1 “ PRUO VO

(200MHz) | (200 MHz)
4= PRUTIVO

Cortex®-A

GP IO

Figure 4.6: Architecture of the AM3358 with Cortex® -A8 and the 2 PRUs [33]

used for messages received from the ARM®. System level mailboxes are used
to notify cores (ARM® or PRU) when new messages are waiting in the shared

buffers.

Texas Instrument[34]

Figure 4.7 presents the interactions between the ARM® and the PRUs the process is
quite complicated; to make it simple, the data is placed in the DDR memory of the chip
and a system of mail boxes between the Linux Kernel of the ARM and the PRU subsystem
delivers notifications that data are ready to be read.

This PRU subsystem seemed to be promising, as it was supposed to permit users to
combine the real-time advantages of a microcontroller in a processor. However, this so-
lution suffers of an important lack of documentation; to illustrate this point it has to be
considered that 2 months of work have been necessary just to start the PRUs from the
ARM. After this, a communication was established between the ARM® user space and the
PRU subsystem via the Linux Kernel and RPMsg. This communication was then extended

to the ADXL345 using a bit banging technique on the BeagleBone GPIO. There was no

39

ARM running Linux DDR
User Space VRINGS (two for each PRU)

/dev/rpmsg_pruN (character device) VRINGO VRINGA
Host Slave

Kernel Space Available Available
Buffers Buffers

pruss pru_rproc rpmsg_pru
Used Used
Buffers Buffers

remoteproc driver rpmsg

PRUO (Run)
Resource Table

INTC PRU1 (Run) Mailboxes

Resource Table

mappings
configured

Mailbox 2 Mailbox 3

KICK(0)

Application
(RPMsg Lib)

Application
(RPMsg Lib)

PRU Subsystem

Figure 4.7: Interaction between the ARM® and the PRUs when using RPMsg [34]

success in establishing a communication between the Analog to Digital Converter of the
BeagleBone and the PRUs.

The PRU subsystem approach was discontinued, and the work was documented in a
tutorial presented in Appendix B for hypothetical future works using the PRU. The next
solution consists in the use of the Linux Industrial In/Out system, which takes advantage

of the hardware Interrupt capabilities of the Linux Kernel.

4.2.2 Linux Industrial I/O (IIO) subsystem

Linux Operating System

This section presents the function of the Industrial In/Out subsystem that is used in this
work to get data from the Analog to Digital Converter of the BeagleBone Black. First, the
software structure of Linux and its interaction with the hardware is introduced, then the
Linux 1O subsystem is presented and the use of Linux Kernel Driver and Device trees is
detailed. Finally, the code used in the user space to interact with the kernel is presented.
Linux can be seen as decomposed in two parts (Figure 4.8) a Kernel Space and a User
Space. The first one has initially been developed by Linus Torvalds and is now supported

by the Linux Foundation. It derives from Unix systems, was announced in August 1991

40

and the first version (0.02) released in October of 1991. The Kernel is the corner stone of
the Linux Operating system; it is responsible for managing the interactions of the hardware
components. On the other hand, the user space is the space of applications; it is where the

user can interact with the operating system.

User-Level Programs
/shin/init User Code Linux Terminal

GNU C Library (glibc)

System Call Interface

Kernel Services

Device Modules & Drivers

CPU Memory Devices

Figure 4.8: The Linux user and kernel spaces [35]

The communication between the user space and the kernel space is managed by the C
library and system calls. On the other side the kernel uses device modules and drivers to
interact with the hardware. The power of Linux consists in its versatility; it has to be able
to manage numerous different piece of hardware. Thus, in order to reduce the size of the
kernel, drivers and kernel modules are used; they can be loaded and unloaded to "tell”” the

kernel how to deal with a particular piece of hardware.

41

Industrial In/Out subsystem

The main interest of using a Kernel code is that it has hardware interrupt capabilities,
which are suitable for deterministic data sampling at high rates. This is the reason why
the Industrial In/Out subsystem has been introduced: for operation where it comes to get
data from sensors such as: ADC, accelerometers, DAC, gyroscopes, temperature sensors,

pression sensor... in short, every sensing device that require an analog to digital conversion.

Figure 4.9: The Linux user and kernel spaces [36]

As shown in figure 4.9 this subsystem lives in the kernel space and is used to display the
hardware information in the user space. The IIO ring, core and trigger receive information
from the user space via sysfs interface and then returns data in a device character generally

located in :

/sys/bus/iio/iio:deviceN/

The interaction between the subsystem and the hardware is managed by hardware specific

drivers.

42

The ti_am335x_adc Linux Kernel driver

In order to use the Industrial In/Out subsystem the Linux kernel driver corresponding to the
ti-am3358 chip has to be compiled and loaded in the kernel. The source code is provided by
Texas Instruments on Gitorious [37]; however, in order to have a faster sampling frequency
it is possible to change the clock reference of the ADC from 3MHz to 24MHz; for this the

ti_am335x_tsadc.h header line 140 is changed from :

#define ADC.CLK 3000000

to,

#define ADCCLK 24000000

The final header code is attached on Appendix C of this work.

Then the ti_am335x_adc.c can be compiled and loaded into the kernel. The other param-
eters required by the ADC to work are specified using device tree overlays; the BB-ADC-
00AO.dts is presented in Appendix D. the different channels that can be used are specified
on line 37, in our case the ADC’s channel 3 is the only one connected. The sampling
frequency of the ADC is set with the 3 parameters “ti, chan-step—avg”, “’ti,chan—step—

opendelay” and ’ti,chan—step—sampledelay” (lines 38—41). The number of clock cycles

necessary for a conversion is then given by the formula:

num cycles = opendelay - (sample delay + convtime) - averaging (4.2)

In our particular setup we have:

num cycles =1+ (13 + 1) - 8 = 112 cycles (4.3)

Then for a 3MHz clock the sampling frequency is 25kHz.

43

User space application

The data from the ADC is now ready to be displayed in the device character on the user
space. To do so the acquisition has to be launched with an application. For one sample of

N, points the steps are:

e disable the iio_trigger, because we want a software Interrupt

activate the iio_channel that we want to read on the ADC.

create the buffer directory to set the buffer length

in the /Results folder create a .csv file named after a timestamp to store the sample

points

read the values on the buffer and store them on the .csv file

All these steps are done with the iio_generic_buffer.c (see Appendix E), this code was
adapted from Jonathan Cameron’s example [38] in order to Disable the hardware trigger
and to have the data stored.

For the training phase process, many samples have to be acquired. This process has
been automated with a script in Appendix F. Once the number of sample N, and the number
of points per samples are specified, the script starts N acquisitions and stores them on the
BeagleBone and exports them to the remote computer with an SSH secure copy.

During the deployment phase only one sample is needed, and the acquisition is launched
thanks to a master application.

Finally, the data can be deterministically acquired via the IIO subsystem. The ADC
parameters are set using a device tree overlay, then the ti_am335x_adc driver sample the
ADC at the given frequency and the iio_generic_buffer application read the device character
in the user space to store the data points of the sample in a .csv file. The next part will

present the experimental setup for the data acquisition.

44

4.3 Experimental setup

This section explains the material choice for this work, then the setup on the Mark II band

saw is presented. Finally the sample size and frequency are determined.

4.3.1 Coice of the Materials

This work does not aim to realize very precise classification between different materials. In
Section 3.2 different classes are introduced. A choice has been made to limit the number of
material to 2: Aluminum and Steel. Those materials are frequently used in the Montgomery
machine shop, and data can be acquired for cuts on scraps in order to reduce the cost of the

study. Consequently, the exact alloy is unfortunately unknown.

4.3.2 System setup on the band saw

The sensor is placed on the clamp of the band saw and the BeagleBone is directly connected

to the computer. The final setup is presented on figure 4.10

S - l e P
!r EEN

~¥__ g

B Accelerometer ,,|

. Computer where data is
exorted

Figure 4.10: The final setup on the machine

45

4.3.3 Sample size and frequency

Sampling frequency

As presented in 4.1, the sampling frequency of the ADC should be at least 1800Hz. How-
ever, because of the device tree settings, it is quite complicated to find a precise sampling

frequency. In order to have a reliable value, the parameters are set as presented in table 4.1.

Table 4.1: Device Tree and clock settings for the ADC

Parameter Value

Clock frequency 3MHz
ti,adc—channels (3)
ti,chan—step—avg (8)
ti,chan—step—opendelay (0)
Ati,chan—step—sampledelay | (0)

The resulting sampling frequency of the system is 25kHz. This value is verified and
validated with a wave generator of which sine waves are sampled. Given the number of
points of the sample, the number of waves observed on the sample and the frequency of the

signal it is possible to find the sampling frequency of the ADC with the equation:

Numberpoints : fgenerator

ADCfrequency = (44)

NW&VGS

The results are presented in table 4.2. The frequencies of the waves were chosen to find an

integer number of waves with the hypothesis of a 25kHz sampling frequency:

Table 4.2: Sampling frequency validation

Number of points | faenerator (Hz) | approximated Nyqves | ADCrequency kHzZ
1000 150 6 25
1000 25 1 25
1000 825 33 25
1000 57 2,3 24.7

46

Number of points per sample

In order to get a good idea of the signal it is decided to sample during at least 0.5 s. Ac-
cording to the sampling frequency chosen above the number of point needs to be more than
12500 points. Moreover, a Fast Fourier Transform will be performed on the sample. So it
is interesting to have a number of samples which is a power of 2. Finally, the number of

samples is set to 2!* =16384.

4.3.4 Data acquisition

Using the above presented setup and given parameters, 2000 samples were acquired for

each of the 5 classes, presented in 3.2 according to the following steps:

e band saw off.

band saw running, setup up to cut aluminum but not cutting (no physical interaction

between the saw and the workpiece).

e same case as above but setup for steel.

band saw cutting Aluminum and setup for material 1.
e same case as above for steel.

It has to be noticed that the steel workpiece and the aluminum workpiece did not have the
same shape; the aluminum part was a rod and the steel part was a plate as shown in figure
4.11.

The setup parameters of the Mark II band saw to cut steel and aluminum are presented
in table 4.3:

This data sets represent 5 folders, each of them containing 2000 .csv files of 16834
lines each. Once those data are acquired and exported to the remote computer, the machine

learning algorithms have to be trained. Figure 4.12 represents 5 samples, one for each class.

47

Figure 4.11: The steel part (left) and aluminum part (right)

Table 4.3: Band Saw Setup

Material \ Speed (fmp) \ Feed (Ibs)
Aluminum 300 30
Steel 150 30

4.4 Feature selection and preprocessing

This section presents some the parameters chosen for the training of the

4.4.1 choice of Kernel Support Vector Machine (KSMV)

In 2.2 different machine learning algorithms were introduced. In this work the choice of
using the Kernel Support Vector Machine is made. Indeed, this type of machine learning
algorithm is quite simple and not computationally expensive, as the classification is made
thanks to distance computation which is less complexe than the numerous calculations
needed for other algorithm based on Neural network approach. Moreover, Elangovan et al.

[17] have shown good results in machine vibration analysis using Kernel Support Vectors.

4.4.2 Feature selection

In order to train the Kernel Support Vector Machine, so features have to be extracted from

the sample. Elangovan et al. [17] have used, mean, standard error, median, standard devi-

48

Result form the ADC Result form the ADC

2150 2150
21001 2100 -
Q (%}
2 g
o 2050 A o 2050 1
S s
£ £
2 2
&= =
& 2000 © 2000 1
2 2
o o
> >
1950 4 . 1950 4 .
—— Steel not cutting —— Steel cutting
~— Aluminum not cutting ~—— Aluminum cutting
— Off — Off
1900 T T T T T T T 1900 T T T T T T T
0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000
Sample number Sample number

Figure 4.12: The 5 samples for the classes.

ation, sample variance, kurtosis, skewness, range, minimum and maximum. In this work

the selected features are:
e the mean of the sample

the median

the standard deviation

the variance

the minimum and the maximum

the first 3 major frequencies of the Fast Fourier Transform and their associated am-

plitudes

4.4.3 Preprocessing

The data sets from the different cuts have to be preprocessed in order to extract the features
selected in the previous section. To that end, a python script is used in a given the data
folder of one class. This script computes the features for all .csv file in this folder and
returns the result in the form of a new .csv. Figure 4.13 presents the functioning, the inputs

and outputs of preprocessing.py (code in Appendix G)

49

For each i samples in
current work directory

Compute major FFT frequencies:
fl! Al! f2: AZ: f3: AS
v
Get other features :
mean, median, standard dev,
variance, min, max

Add new line to the returned dataset :
Sample i, feature 1, ... ,feature N

\ 4
[Save the features’ dataset as .csv]

Figure 4.13: Preprocessing flow chart

Once all the data sets are created they are randomly concatenated in one single data
set of size N, - N, rows by Ny + 2 columns (for the index and the corresponding class of
the sample). This data set is going to be split into a training set and a test set to train the

algorithm in the next part.

4.5 Trainning and deployment

This part presents the training of the Kernel Support Vector Machine algorithm, then it is

exported to the BeagleBone Black. Finally, the main application functioning is detailed.

50

4.5.1 Training of the algorithm

The data set is imported and split into a 80% training set and a 20% test set; the code to train
the algorithm is presented in appendix H. Different types of the kernels are used, and the
prediction is evaluated on the test set. The results are presented in table 4.4. The detailed

confusion matrix and statistics are presented in appendix I.

Table 4.4: Result on the test set for different kernels

kernel | training duration | avg precision
linear 4s 0.99
rbf 3s 0.92
sigmoid 3s 0.04
poly 00 NA

The results for the linear kernel are far better than for other kernels. This maybe a sign
of overtraining; nevertheless, this is the type of kernel that is chosen for the rest of the

study.

4.5.2 Export classifier and deployment on the BeagleBone Black

The python classifier object trained in the previous section is converted into a binary object
using the pickle method. However, the data management library Pandas and the machine
learning library scikitlearn were not successfully installed on the BeagleBone Black. The
found solution consists in using another installation method than the recommended one:
instead of using pip or apt—get install tools, miniconda was downloaded on the BeagleBone
board. This enabled the use of conda install command and finally, old version of the pandas

and scikitlearn libraries were successfully installed on the BeagleBone Black.

4.5.3 Main Application Code

A specific code needs to be written for the deployment phase. It has to load the classifier

object from the pickle binary file then perform the acquisition of the sample of 16384

51

points, extract the features out of this sample, feed those features into the classifier and

return the result of the classification. The figure 4.14 presents the flow chart of this code

[Enter the loop]

d
«
A

(Appendix 6).

A

Run the iio_generic_buffer executable
v

Load the 16384 points of the sample
v

Compute major FFT frequencies:
fl: Alr f2: AZ: f31 A3

Get other features :
mean, median, standard dev,

variance, min, max

\
Ve

Infinite loop]

[Feed the classifier with theses features]

v

[Send the result to the cloud]

\ 4

[Exit in case of keyboard interrupt]

Figure 4.14: The main application flow chart

4.6 Architecture validation and Classification results

The final system is placed on the band saw and tested on an aluminum radiator. The sensor
is put at the same place as for the data acquisition phase; the BeagleBone is powered and
the main script is launched. The process worked correctly over more than 200 samples,
and every sample was acquired and analyzed in less than 1 second. Over thoses 200 sam-

ples, 71.5% where correctly predicted to be a cut of aluminum, 27.5% were wrongly

52

predicted to be a from the vibration the band saw running for steel but not cutting,
and 1% were predicted to be from the band saw running for aluminum but not cut-
ting. Figure 4.15 presents the setup for the validation of the architecture. Other tests were
conducted on an aluminum rod, an aluminum plate, a steel rod and steel plate. For the
aluminum rod and the steel plate, the precision of the algorithm is around 95%; however,

for the other shapes, the precision drops to 75%.

Figure 4.15: The experimental setup for testing on the radiator

53

CHAPTER §
CONCLUSION AND RECOMMENDATIONS

5.1 Contribution of this Thesis

This thesis contributes to 3 different topics: deterministic data acquisition, deployment of
machine learning algorithms on ARM microprocessors and the development of a single

board system for machine vibration monitoring, indeed:

e the use of a Linux power microprocessor for deterministic data acquisition with the
Industrial In/Out subsystem is presented. This subsystem was successfully used to

sample the Analog to Digital Converter of the BeagleBone Black.

e A work on the use of the Process Real-Time Units was accomplish. Even if this
solution was finally discontinued, the written documentation has already been used
several times by the BeagleBone community. It explains how to enable the 2 process
real-time units from the Linux user space and to transfer data between the ARM-

Cortex A8 and the process real-time units.

e the use of trained machine learning algorithms was demonstrated on the BeagleBone
black. This work, even if imperfect, constitutes a proof of concept and opens the door

to more advanced systems using machine learning techniques on embedded systems.

e Finally, this thesis presents a low-cost monitoring system that can be used for real-

time vibration monitoring.

5.2 Limitations of the study and recommendations

Most of this work consisted in the development of the low cost and smart system for vi-

bration analysis. However, the tests conducted in real conditions have demonstrated a high

54

influence of the form of the workpiece on the predicted class. This is certainly linked to
the training samples used in this work, a data set that includes different shapes of work-
pieces for the same material should be used to train the algorithm. Depending on the new

influence of the shape, two cases can be identified:

e if the influence of the form of the workpiece appears to be less important, then the

current classification method can be used.

e if the influence of the shape is still very important, then the classes should be modified

in order to takes the different possible shape of the workpiece into account.

Furthermore, the study has been limited to only two materials; it could be interesting to
train the model with other materials to see if the KSVM classifier with a linear kernel is
still efficient. This highlights the issue of data acquisition for Machine Learning algorithm
training: the first classes attributed to the training set cannot be labeled automatically; the
classes of these samples were hard coded in the acquisition script. Then, an important
improvement to this system could be to add a user interface where a non-expert employee
can easily select a label for the cut that he is going to perform. This way, the training set
could be easily generated without requiring an expert to stand by the machine during all
the data acquisition.

Finally, only one sensor has been used for this study. More sensors could be used such
as a microphone. Since the sound of the cut greatly changed between materials, it may be

interesting to couple a microphone with the accelerometer.

5.3 Conclusion

This thesis presents the development of a low cost smart device for machine vibration
analysis. The primary goal was to implement real-time data processing on an embedded
system using machine learning techniques. This approach aims to meet the need of a more

distributed architecture for real-time decision making in the context of the Industry 4.0. It

55

also avoids sending significant amounts of data to the cloud, simultaneously reducing the
bandwidth required and improving the safety and security of the system. First, a variety
of microprocessors were evaluated in order to find the most promising board and pro-
gramming technique for the project. Then, a deterministic data acquisition was performed
measuring a band saw cutting different materials, using the Linux Industrial In/Out kernel
subsystem. After the samples were acquired, a Linear Kernel Support Vector Machine al-
gorithm was trained and tested. This classification algorithm was exported to the embedded
system and tests in real condition were carried out showing good results. The results of the
classification were found to be very sensitive to the geometry of the work piece. Finally,

areas for future work and several ways to meliorate this system have been suggested.

56

Appendices

57

APPENDIX A
EAGLE FILE FOR THE BEAGLEBONE BLACK CAPE

A.1 The front side of the BeagleBone Cape

A.2 The back side of the BeagleBone Cape

58

SAMCD

fNME QUTLINE

0,
|
|_
=
o
LU
E:._-: =1
oo
LU
—
0
L
L
oo

BEALGLEEY

Figure A.1: The front side of the BeagleBone Cape

59

b
L
.
_
.
L
=
)
[ui}
L
L
[}

BEY(rEBLHAE OINLTIKE

E

Figure A.2: The back side of the BeagleBone Cape

60

APPENDIX B
PRU TUTORIAL

61

Georgia Nechanical
Tech || Ehgiheering]

© The George W. Woodruff School
of Mechanical Engineering

Using the PRUs and RPMsg

BEAGLEBONE™ BLACK WIRELESS LINUX DEBIAN 4.9.45-TI-R57

Pierrick RAuBy
Master Thesis Student

Last revision: July 24, 2018

Contents

1 Introduction 1
2 Hardware presentation 2
3 Enabling the PRUs 4
3.1 SettingupthePRUs e 4
3.1.1 Disabling the HDMI cape and loading the PRUoverlay 4

3.1.2 Installing GCCcompiler 5

3.1.3 Creating the symbolic links between folders 5

3.2 Testingthe PRUs. e 6
3.21 Hardware 6

322 Code e 7

3.23 Runningtheexample L 8

4 RPMsg 10
4.1 Presentation of RPMsg e 10

42 Setup 11

43 Testing 11
43.1 Code for the Cortex-A8 12

432 CodeforthePRU e 13

433 Starting the project 14

A PIN Header 8 16
B PIN Header 9 17

Chapter 1

Introduction

The BeagleBone™ Black is a low-cost development platform powered by an AM335x 1GHz ARM® Cortex-AS8,
among its different features, the AM335x presents two Process Real Time Units (PRU). For my master thesis I
will need to use those two micro-controllers in order to acquire data from an accelerometer, it took some time
to enable the PRU and the communication framework: RPMsg. The purpose of this document, is to explain
the method followed to enable those embedded micro-controllers and the framework.

Zubeen Tolani and Gregory Raven are acknowledged for the very complete documentation they have provided
about the PRUs and the RPMsg framework which can be found here:

«+ BeagleScope repository on GitHub from Zubeen Tolani

« PRU ADC repository on GitHub from Gregory Raven

Chapter 2

Hardware presentation

For this project the board used is a BeagleBone™ Black wireless powered by an Octavo Systems OSD3358 which
characteristics are :

+ 512 MB DDR3 RAM

« 4GB 8-bit eMMC on board flash storage
« 3D graphic accelerator

+ Neon floating-point accelerator

e 2 PRUs : 32-bit microcontrollers

The software used is the Debian image: Linux Beaglebone™ 4.9.45-ti-r57

As explained is the introduction the idea of the project is to use the PRUs to acquire data from a sensor and
send them to the ARM® Cortex of the BeagleBone™. But what are the PRUs and the ARM®? Basically, the
Ocotovo contains the TI AM335X chip which itself contains:

« 1 ARM® Cortex®-A8: This is the part of the chip that runs the Linux operating system. This micropro-
cessor as a "computer” processor is not able to carry out real-time operations.

« 2 Process Real-time Units (PRU) that are microcontrollers such as Arduino®/Teensy ones. It means
that they are able to execute real-time processing, then the programmable nature of the PRU, along with
its access to pins, events and all system on chip (SoC) resources, provides flexibility in implementing fast
real-time responses, specialized data handling operations [TexasInstruments, 2017]. Thus, PRUs are very
useful when it comes to carry out time critical operations such as fast data acquisitions.

ARM® Subsystem Real-Time Coprocessor Subsystem

oo | cooms IR
Cortex®-A

Data “ PRU1 VO

)
RAM | RAM | RAM

L1 L1
Instruction Data
Cache Cache

Interconnect

L2 Data Cache

L4 Interconnect

Figure 2.1: Architecture of the AM335x with Cortex®-A8 and the 2 PRUs [TexasInstrument, 2017a]

Chapter 3

Enabling the PRUs

In this chapter, the setup of the PRU is explained. The different steps are based on the work of [Tolani, 2016],
who presents a very complete set of instructions in order to setup the PRUs for Debian 4.4.12-ti-r31, basically
his work is adapted here for Debian 4.9.45-ti-r57..

3.1 Setting up the PRUs

3.1.1 Disabling the HDMI cape and loading the PRU overlay

The PRUs have access to many pins on the BeagleBone™, however some pins are also used by the HDMI.
Thus, the HMDI must be disabled before using the PRUs [Yoder, 2017]. In order to do so we are going to
disable the loading of the device tree corresponding to the HDML

Remark: The Device Tree (DT), and Device Tree Overlay are a way to describe hardware in a system. An example
of this would be to describe how the UART or HDMI interacts with the system, which pins, how they should be
mixed, the device to enable, and which driver to use [Cooper, 2015].

First of all, you need to SSH into the BeagleBone™ Black as root, then navigate to the uEnv.txt file by typing
in:

cd /boot/
nano uEnv. txt

Then the uEnv.txt file should appear as in figure 3.1:

AL http:/felinux .org/Beagleboard :U-boot _partitioning_lavo

uname_r=4.9.45-Li-r&7

Flelinuy . .org/Beag lebogrd :Beag leBoneE Lack _Debiandl-EBoot _Over lavs

Figure 3.1: uEnv.txt

In this file, you should go down to the section,

###Disable auto loading of virtual capes (emmc/video/wireless/adc)

and uncomment the two lines as shown below, this avoids the loading of the HDMI overlays at boot time:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1

disable_uboot_overlay_video=1

disable_uboot_overlay_audio=1

#disable_uboot_overlay_wireless=1

#disable_uboot_overlay_adc=1

Hi#

In the same document we are going to ask for the loading of the PRUSS overlay at boot time, scroll down to
the section:

###PRUSS OPTIONS
###pru_rproc (4.4.x-ti kernel)

change these lines:

###PRUSS OPTIONS

###pru_rproc (4.4.x-ti kernel)
#uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-4-TI-00A0.dtbo
###pru_uio (4.4.x-ti & mainline/bone kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo

Hi#

to:

###PRUSS OPTIONS

###tpru_rproc (4.4.x-ti kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-9-TI-00A0.dtbo
###pru_uio (4.4.x-ti & mainline/bone kernel)
#uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo

Hi#

3 modifications: 1 uncomment, 1 comment and the 4-4-TI-00A0.dtbo becomes 4-9-TI-00A0.dtbo

Finally, just reboot the board. The HDMI capes should be disabled, so we have access to the different PINs of
the board with the PRU, Figure 3.2 presents the PIN for the Header 8 (more details on appendix A and B).

3.1.2 Installing GCC compiler

Since the PRUs are based on TI’s proprietary architecture [Tolani, 2016], we have to compile the C code that
we want to execute with a compiler. In this project GCC is used.

cd

wget -c http://software-dl.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.2/
ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh

chmod +x ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh

./ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh

cd

rm ti_cgt_pru_2.1.2_armlinuxa8hf_busybox_installer.sh

3.1.3 Creating the symbolic links between folders
Then, some symbolic links have to be created:

cd /usr/share/ti/cgt-pru/

mkdir bin

cd

In -s /usr/bin/clpru /usr/share/ti/cgt-pru/bin/clpru
1In -s /usr/bin/lnkpru /usr/share/ti/cgt-pru/bin/lnkpru

P8_20 33 0x884/084 63 GPIO1 31 gpiol[31] prl_prul_pru r31_13 prl_prul_pru_r30_13

P8_21 32 0x880/080 62 GPIO1_30 gpiol[30] prl_prul_pru_r31_12 prl_prul_pru_r30_12
P8 22 5 0x814/014 37 GPIO1_5 gpiol[5]

P8_23 4 0x810/010 36 GPIO1_4 gpiol[4]

P8_24 1 0x804/004 33 GPIO1_1 gpiol[1]

P8_25 0 0x800/000 32 GPIO1_0 gpiol[0]

P8_26 31 0x87¢/07¢c 61 GPIO1_29 gpiol[29]

P8_27 56 0x8e0/0e0 86 GP102_22 gpio2([22] prl_prul_pru_r31_8 prl_prul_pru_r30_8
P8_28 58 0x8e8/0e8 88 GPIO2_24 gpio2[24] prl_prul _pru_r31_10 prli_prul_pru_r30_10
P8_29 57 0x8e4/0ed 87 GP102_23 gpio2(23] prl_prul_pru_r31_9 prl_prul_pru_r30_9
P8_30 =k Ox8ec/0ec 89 GPI02_25 gpio2[25]

P8 31 54 0x8d8/0d8 10 UART5_CTSN gpio0[10] uart5_ctsn

P8 32 55 0x8dc/0dc 11 UART5_RTSN gpioO[11] uart5_rtsn

P8 33 53 0x8d4/0d4 9 UART4_RTSN gpio0[9] uartd_rtsn

P8 34 51 0x8cc/0cc 81 UART3_RTSN gpio2(17] uart3_rtsn

P8_35 52 0x8d0/0d0 8 UART4_CTSN gpioO[8] uartd_ctsn

P8 36 50 0x8c8/0c8 80 UART3_CTSN gpio2[16) uart3_ctsn

P8 37 48 0x8¢0/0c0 78 UARTS5_TXD gpio2[14] uart2_ctsn

P8_38 49 0x8c4/0cd 79 UART5_RXD gpio2[15] uart2_rtsn

P8_39 46 0x8b8/0b8 76 GPIO2_12 gpio2[12] prl_prul pru_r31_6 prl_prul_pru_r30_6
P8_40 47 0x8bc/0bc 77 GPI02_13 gpio2[13] prl_prul_pru_r31_7 prl_prul_pru_r30_7
P8_41 44 0x8b0/0b0 74 GPIO2_10 gpio2[10] prl_prul_pru_r3l_4 pri_prul_pru_r30_4
P8_42 45 0x8b4/0b4 75 GPIO2_11 gpio2[11] prl_prul pru_r31_5 prl_prul_pru_r30_5
P8_43 42 0x8a8/0a8 72 GPI0O2_8 gpio2[8] prl_prul_pru_r31_2 prl_prul_pru_r30_2
P8_44 43 0x8ac/0ac 73 GPIO2_9 gpio2[9] prl_prul pru_r31 3 prl_prul_pru_r30_3
P8_45 40 0x8a0/0a0 70 GPI02_6 gpio2[6] prl_prul pru_r31 0 prl_prul_pru_r30_0
P8_46 41 0x8a4/0ad 71 GPlO2_7 gpio2[7] prl_prul_pru_r31_1 prl_prul_pru_r30_1

Figure 3.2: P8 header and corresponding PRU [Molloy, 2014]

Finally, we want that "PRU_CGT" to point to the "/usr/share/ti/cgt-pru/":
export PRU_CGT=/usr/share/ti/cgt-pru
Because we want this last command to be executed every time we boot the Beaglebone™:

cd
nano ~/.bashrc

and add this:
export PRU_CGT=/usr/share/ti/cgt-pru

Then save and quit and reboot.

3.2 Testing the PRUs

Now that everything is ready we can test the PRU with a "hello world!" example in which a small LED is
triggered with the PRU. Let’s create a small circuit with the LED and two resistors and copy the code testing
codes on the BeagleBone™.

3.2.1 Hardware

The circuit used to test the PRU is presented in figure 3.3. Pin P8_45 is used as the output pin and pin P8_1 is
connected to the ground of the circuit.

Felolir2 o)

.) ’le"'. .

1 cHeTe ceeee v

okQ|Z|' —YEINIE

o ® o o o 0 0 "§'S

BeagleBone :::::LED:]':::: ‘e
o s oo Red(633nm) |2 °

fritzing

Figure 3.3: The circuit for Hello_PRU program

3.2.2 Code

Now that the hardware is ready, let’s copy the code. First of all, go back to the "/root" folder of the BeagleBone™:

cd

And create a new folder "Hello PRU":

mkdir Hello_ PRU

In this folder we are going to put 5 files and 2 folders:

Hello PRU.c

AM335x_PRU.cmd
resource_table_empty.h

Makefile

deploy.sh

lib which contains some needed libraries

include which contains resource files for the different TI processors

3.2.2.1 Hello PRU.c

This is the C code that is going to make our LED blink.

Lines 38 to 40 correspond to the inclusion of needed files. Lines 42 and 43 correspond to the declaration of
two important registers, _R30 and _R31.

In the main loop (from line 45 to the end) , the volatile "gpio" is used to toggle the value of the _R30 between
0x000F and 0x0000, waiting between each toggling thanks to the "_delay_cycles()" function (which is an in-
trinsic compiler function [Tolani, 2016]).

Remark:The compiler would not allow any variable other than _R31 and _R30 to be of the "register" type,
and the compiler does not allow to access any of the 29-R0 registers of the PRU [Tolani, 2016].

#include <stdint.h>
#include <pru_cfg.h>
#include "resource_table_empty.h"

volatile register uint32_t _ R30;
volatile register uint32_t _ R31;

void main(void)

{
volatile uint32_t gpio;

CT_CFG.SYSCF

gpio = 0x000F;

TODO
while (1) {
__R30 ~= gpio;
__delay_cycles(100000000) ;
}
}

Figure 3.4: Hello_PRU.c code [Tolani, 2016]

3.2.2.2 AM335x_PRU.cmd

PRUs are pretty simple processing cores, but the PRUSS system is highly integrated and provides the PRU a rich
set of peripherals. All these peripherals inside the PRUSS are at different address locations and they need to be
configured by the Linux kernel at the time of firmware loading onto the PRUs. The "AM335x_PRU.cmd" file provides
a mapping to the linker, from different sections of code, to different memory locations inside the PRUSS. [Tolani,
2016] Thus this file is a linker command file that is used for linking PRU programs built with the C compiler
and the resulting .out file on an AM335x device. Basically, you will need this file every time you create a PRU
code such as the one above and compile it with GCC.

3.2.2.3 resource_table_empty.h
This empty resource table is needed by the "AM335x_PRU.cmd", it is used by Remoteproc, on the host-side to

allocate reserved/resources. Since we do not use Remoteproc for the moment (but we will later) we just give
an empty file to "AM335x_PRU.cmd".

3.2.2.4 Makefile

This file is going to invoke the GCC compiler, to give the location of the resources needed to compile Hello_PRU.c
into the ".out" file.

3.2.2.5 deploy.sh

This is a bash script that is going to clean the project and to call the Makefile. Once the compilation is finish,
deploy.sh copy the resulting file ".out" from the "/gen/ folder to into "/lib/firmware/am335x-prul-fw" folder.
This last folder is very important, because the PRU1 is kicked off, it is going to execute the ".out" file placed
in this folder (the corresponding folder for PRUO is /lib/firmware/am335x-pru0-fw).

3.2.3 Running the example

Now, everything is ready to test the PRU setup, you just have to go in the "Hello_PRU" folder and enter the
command:

sh deploy.sh

The "deploy.sh" script is run, calls the "MAKEFILE", places the result of the compilation and kicks of the PRU.
Finally, the LED should be blinking on PIN P8_45.

Chapter 4

RPMsg

The next step is to enable communication between the PRUs and the ARM®Cortex. This will be very useful
when it comes to send data collected with the PRUs.
The different steps are based on the work of [Raven, 2016], who presents a very complete set of instructions
in order to enable the RPMsg framework in his project: Using the Beaglebone™ Green Programmable Real-Time
Unit with the Remoteproc and Remote Messaging Framework to Capture and Play Data from an ADC.

4.1 Presentation of RPMsg

TI explains it better than I do:

RPMsg is a message passing mechanism that requests resources through Remoteproc and builds on
top of the virtio framework. Shared buffers are requested through the resource_table and provided
by the Remoteproc module during PRU firmware loading. The shared buffers are contained inside a
vring data structure in DDR memory. There are two vrings provided per PRU core, one vring is used
for messages passed to the ARM® and the other vring is used for messages received from the ARM®.
System level mailboxes are used to notify cores (ARM® or PRU) when new messages are waiting in

the shared buffers.

[TexasInstrument, 2017b]

ARM running Linux
User Space

Kernel Space

pruss pru_rproc

remoteproc driver

/devirpmsg_pruN (character device)

romsg_pru

rpmsg

DDR
VRINGS (two for each PRU)

VRINGO VRING1
Host Slave

Available Available
Buffers Buffers

Used Used
Buffers Buffers

PRUO (Run)
Resource Table

INTC

mappings
configured

Application
(RPMsg Lib)

PRU Subsystem

PRU1 (Run)

Resource Table

Application
(RPMsg Lib)

Mailboxes

Mailbox 2 Mailbox 3

KICK(0)

Figure 4.1: Interaction between the ARM®and the PRUs when using RPMsg [TexasInstrument, 2017b]

10

As explained above, RPMsg uses Remoteproc to transfer messages between the PRUs and the ARM®. Actually,
Remoteproc has already been setup in the Chapter 3 when we have loaded the following device tree :

uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-9-TI-00A0.dtbo

Now we are going to enable the RPMsg mechanism.

4.2 Setup

We are going to recompile some device trees:
cd /opt/source/bb.org-overlays/

make
make install

Then a new device tree must be added when we boot the Beaglebone™:

cd
nano /boot/uEnv.txt

Go to the section:
###Custom Cape
and add the following line:

###Custom Cape
dtb_overlay=/1ib/firmware/am335x-boneblack.dtbo

Then save, quit the file and reboot the BeagleBone™ Black. In order to verify that everything is ready, once
the board is on and after few seconds you can go to:

cd /sys/bus/platform/devices
1s

In this folder you should be able to see:
4a300000.pruss
4a320000.1intc

4a334000.pru0

4a338000.prul

If yes, then everything is ok.

4.3 Testing

Now we are going to use the RPMsg framework with a small example in which we are going to send a "Hi
PRU" message from the ARM®to the PRU, which is going to answer: "Hi Cortex-A8". Go back to the "/root"
folder and create a new folder:

cd
mkdir Test_RPMsg

this folder will contain the code for the ARM®a nested folder: "PRU_codes", let’s create this last folder:

cd Test_RPMsg
mkdir PRU_codes

11

4.3.1 Code for the Cortex-A8

Inside the "Test_ RPMsg" folder create these files :
« deploy_echo_ARM.sh
« rpmsg_pru_user_space_echo.c

4.3.1.1 deploy_echo_ARM.sh

It is only a bash script that is going to compile rpmsg_pru_user _space _echo.c and execute it.

4.3.1.2 rpmsg_pru_user_space_echo.c
This code is going to be executed by the Cortex-A8. It will open the device character for PRU1, send 10 "Hello

PRU!" messages through the RPMsg channel and read the answer into the device character.

" /dev/rpmsg_pru31"

t pollfd pollfds[1l];
i;
int result 'H

pollfds[@]. open(DEVICE_NAME, O_RDWR);

if (pollfds[el.fd < @) {
tf("Failed to open n", DEVICE_NAME);

printf("Opened %s, sending %d messages)\ ", DEVICE_NAME, NUM_MESSAGES);
(i = @; i < NUM_MESSAGES; i++) {
result = write(pollfds[@].fd, "hello PRU!", 18);

if (result = 0)
tf("Message %d: Sent to PRU\n", i);

result pollfds[@].fd, readBuf, 13);
if (result > @)
printf("Message %d received from PRU:% ", i, readBuf);

printf("Received %d messages, closing %s\n", NUM_MESSAGES, DEVICE_NAME);

se(pollfds[@].fd);

return @;

Figure 4.2: Main loop of the rpmsg_pru_user_space_echo code

12

4.3.2 Code for the PRU

Then you will put a file and 4 folders into the "PRU_codes" folder, those codes are going to be executed on
PRUO and PRU1:

« deploy_echo.sh

the "lib" folder which contains some needed libraries

« the "include" folder which contains resources files for the different TI processors
« PRU_Halt which contains all needed codes for PRUO:

- AM335x_PRU.cmd
— main.c
— Makefile

— resource_table_empty.h
« PRU_RPMsg_Echo_Interruptl, which contains the codes for PRU1:

- AM335x_PRU.cmd
— main.c
— Makefile

— resource_table_1.h

4.3.2.1 deploy.sh

As for the Cortex-A8 folder, this is a bash script that computes the codes for both PRU and that launches them.

4.3.2.2 PRU_Halt

In order to avoid any problems we are going to stop the PRUO as soon as we start it, this is the role of the
"__Halt()" function in main.c provided by [TexasInstrument, 2014] in the Software Support Package.

#include <stdint.h>
#in "resource_table_empty.h"

int main(void)

{

__halt();
}

Figure 4.3: Main loop of the PRU_Halt code, "__Halt()" function stops PRUO

4.3.2.3 PRU_RPMsg Echo_Interruptl

This is the interesting part of the PRU codes. As we did for the section 3.4, we need the "AM335x_PRU.cmd"
and "resource_table_1.h" and a "Makefile". The main.c code is presented in figure 4.4.

After creating the device character "rpmsg_pru31" for the communication with the Cortex-A8, the PRU is going
to wait for receiving a message from the Cortex. Each time it receives a message, the PRU is going to send
back a message "Hello_Cortext-A8!" using the pru_rpmsg_send() function.

13

ine VIRTIO_CONFIG_S_DRIVE

payload [RPMSG_BUF_SIZE] ;

t pru_rpmsg_transport transport;
src, dst, len;
in #status;

CT_INTC. . FROM_ARM_HOST;

status &resourceTable. R

while (!(*xstatus & VIRTIO_CONFIG_S_DRIVER_OK));

init(&transport, - , &resourceTable. , TO_ARM_HOST, FROM_ARM_HOST);

g_channel(RPMSG_NS_CREATE, &transport, CHAN_NAME, CHAN_DESC, CHAN_PORT) != PRU_RPMSG_SUCCESS);

f (__R31 & HOST_INT) {
CT_INTC. 5 FROM_ARM_HOST;
ansport, &src, &dst, payload, &len) PRU_RPMSG_SUCCESS) {

payload, "Helle Cortex-AB8!");
transport, dst, src, payload, 16);

Figure 4.4: Main loop of the PRU_RPMsg_Echo_Interrupticode

4.3.3 Starting the project

Once you have placed every file in the Test RPMsg folder you can start both PRUs and Cortex-A8. For this,
go into the PRU_codes folder and execute the deploy_echo.sh script:

cd

cd /Test_RPMsg/PRU_codes
sh deploy_echo.sh

The go into the Test_RPMsg folder and execute the other bash script:
cd

cd /Test_RPMsg
sh deploy_echo_ARM.sh

You should see something like in figure 4.5 in the console.

If both examples of sections 3 and 4.1 were run successfully then you are good to go.

14

root@beaglebone:~/Test_RPMsg# sh deploy_echo_ARM.sh
——#H#HHH A #—Compilling C code——########HHI—

—— R n##—Starting. ..
Opened /dev/rpmsg_pru3l, sending 10 messages

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Message
Message

Received 10 messages,

@: Sent to
@ received

1: Sent to
1 received

2: Sent to
2 received

3: Sent to
3 received

4: Sent to
4 received

5: Sent to
5 received

6: Sent to
6 received

7: Sent to
7 received

8: Sent to
8 received

@: Sent to
9 received

PRU
from

PRU
from

PRU
from

PRU
from

PRU
from

PRU
from

PRU
from

PRU
from

PRU
from

PRU

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

PRU:Hello

Cortex-A8!

Cortex-A8!

Cortex-A8!

Cortex-A8!

Cortex-A8!

Cortex-A8!

Cortex-AS8!

Cortex-A8!

Cortex-AS8!

from PRU:Hello Cortex-AS8!

root@beaglebone:~/Test_RPMsg#

Figure 4.5: Expected result for the Test_RPMsg folder

15

closing /dev/rpmsg_pru3l

Appendix A

PIN Header 8

P8_01 Offset from: DGND

P8_02 44€10800 DGND

P8_03 0x818/018 38 GPIO1_6 apio[6] mme1_daté gpme_ad6 RO

P8_04 0x81c/01c 39 GPIO1_7 gpiol[7] mmei_dat? gpme_ad7 T9

P8_05 0x808/008 34 GPIO1_2 gpiol[2] mmei_dat2 gpme_ad2 R8 Allocated emmc2

P8_06 0x80c/00c 35 GPIO1_3 gpiot[3] mmei_datd gpme_ad3 T8 located emmc2

P8_07 0x890/090 66 TIMER4. gpio2(2] timerd gpme_advn_ale R7

P8_08 0x894/094 67 TIMER? gpio2(3] timer7 gpmc_oen_ren 7

P8_09 0x89c/09c 69 TIMERS gpio2(5] timer gpme_beOn_cle T6

P8_10 0x898/098 68 TIMERS gpio2(4] timer6 gpme_wen Us

P8_11 0x834/034 45 GPIO1_13 9pio1[13] pri_pru0_pru_r30_15 mme2_datt mmei_dats lod_data8 gpme_ad13 R12

P8_12 12 0x830/030 44 GPIO1_12 gpio1[12] pri_pru0_pru_r30_14 EQEP2A_IN MMC2_DATO MMC1_DAT4 LCD_DATA19 GPMC_AD12 T2

P8_13 9 0x824/024 23 EHRPWM2B gpio0[23] ehpwm28 mme2_dats mmei_datt lod_data22 gpme_ad9 0

P8_14 10 0x828/028 26 GPIO0_26 9pio0[26] ehrpwm2_tripzone_in mme2_dats mmei_dat2 lod_data21 gpme_ad10 T

P8_15 15 0x83c/03¢ 47 GPIO1_15 gpiof[15] pri_pru0_pru_r31_15 €QEP2_strobe mme2_datd mme1_dat? lod_data16 gpme_ad15 u13

P8_16 14 0x838/038 46 GPIO1_14 gpio1[14] pri_pru0_pru_r31_14 ©QEP2_index mme2_dat2 mme1_dat6 Icd_data17 gpme_ad14 V13

P8_17 1 0x82c/02¢ 27 GPIO0_27 gpio0[27] ehrpwmo0_synco mmc2_dat? mmei_dat3 lod_data20 gpme_ad11 u12

P8_18 0x88c/08c 65 GPI02_1 gpio2(1] measp0_fsr mme2_clk gpme_wait1 lod_memory_clk _gpme_ck_mux0 V12

P8_19 0x820/020 22 EHRPWM2A gpio0[22] ehrpwm2A mmc2_datd mmei_dato lod_data23 gpme_ads u10

P8_20 0x884/084 63 GPIO1_31 gpio1(31] pri_prul_pru_r31_13 pri_prui_pru_r30_13 mmet_emd gpme_betn gpme_csn2 v Allocated emmc2

P8 21 0x880/080 62 GPIO1_30 9pio1[30] pri_prui_pru_r31_12 pri_prul_pru_r30_12 mme1_clk gpme_clk gpme_csnt ug Allocated emmc2

P8_22 0x814/014 37 GPIO1_5 gpioi[s] mmei_dats gpme_ads Ve located emmo2

P8_23 0x810/010 36 GPIO1_4 gpiot[4] mmei_datd gpme_add us Allocated emmc2

P8_24 0x804/004 33 GPIO1_1 gpio[1] mmei_datt gpme_ad1 V7 located emmc2

P8_25 0x800/000 32 GPIO1_0 apiot[0] mmei_dato gpme_ado u7 Allocated emmc2

P8_26 0x87c/07c 61 GPIO1_29 gpio1[29] gpme_csn0 V6

P8_27 0x820/0e0 86 GPI02_22 gpio222] pri_prul_pru_r31_8 pri_prul_pru_r30_8 gpme_ag Ied_vsync us Allocated HOMI

P8_28 0x8e8/0e8 88 GPI02_24 gpio2(24] pri_prul_pru_r31_10 pri_prul_pru_r30_10 gpme_at10 Ied_pclk Vs Alocated HOMI

P8_29 OxBed/ed 87 GPI02_23 gpio2(23] pri_prul_pru_r31_9 pri_prui_pru_r30_9 gpme_ag lod_hsync. RS Allocated HOMI

P8_30 Ox8eclOec 89 GPI02_25 gpio2(25] pri_prul_pru_r31_11 pri_prul_pru_r30_11 gpme_atl led_ac_bias_en R6 Allocated HOMI

P8_31 0x8d8/0d8 10 UART5_CTSN gpio0[10] uart5_ctsn uart5_rxd measp0_axr1 €QEP1_index gpme_at8 lod_data14 V4 Allocated HOMI

P8_32 0x8dc/0de 11 UART5_RTSN gpio0[11] uarts_tsn measp0_ax3 measp0_ahclkx €QEP1_strobe gpme_at19 led_data15 T5 Allocated HOMI

P8_33 0x8d4/0d4 9 UART4_RTSN gpio0[9] uartd_rtsn mcasp0_axr3 measp0_fsr €QEP1B_i gpme_at7 lod_data13 V3 Allocated HOMI

P8_34 0x8cc/0cc 81 UART3_RTSN gpio2(17] uart3_rtsn measp0_axr2 mcasp0_ahclkr ehrpwm18 gpme_ats led_data11 ua Allocated HDMI

P8_35 0x8d0/0d0 8 UART4_CTSN __ gpio0[8] uartd_ctsn mcasp0_axr2 mcasp0_aclkr €QEP1A i gpme_a16 lod_data12 v2 Allocated HOMI

P8_36 0x8c8/0c8 80 UART3_CTSN gpio2[16] uart3_ctsn mcasp0_axi0 ehrpwm1A gpme_at4 Icd_data10 u3 Allocated HDMI

P8_37 0x8c0/0c0 78 UART5_TXD gpio2[14] uart2_ctsn uarts_txd measp0_aclkx ehpwm1_tripzone_in gpme_a12 Icd_data8 ut

P8_33 0x8c4/0c4 79 UART5_RXD gpio2[15] uart2_rtsn uart5_rxd mcasp0_fsx ehrpwm0_synco gpme_at3 Icd_data9 U2 Alocated HOMI

P8_39 0x8b8/0b8 76 GPI02_12 gpio212] pri_prul_pru_r31_6 pri_prui_pru_r30_6 ©QEP2_index gpme_aé Icd_data6 T3 Allocated HOMI

P8_40 0x8bc/Obe 77 GPI02_13 gpio2(13] pri_prul_pru_r31_7 pri_prul_pru_r30_7 pri_edio_data_out? €QEP2_strobe gpme_a7 Icd_data7 T4 Alocated HOMI

P8_41 0x8b0/0b0 74 GPI02_10 gpio210] pri_prul_pru_r31_4 pri_prul_pru_r30_4 eQEP2A_in gpme_ad. Icd_datad T Allocated HOMI

P8_42 0x8b4/0bd 75 GPI02_11 gpio2(11] pri_prul_pru_r31.5 pri_prul_pru_r30_5 gpme_as Icd_data5 T2 Allocated HOMI

P8_43 0x8a8/0a8 72 GPIO2_8 gpio2(8] pri_prui_pru_r31_2 pri_prui_pru_r30_2 gpme_a2 Icd_data2 R3 Allocated HOMI

P8_44 0x8acl0ac 73 GPI02_9 gpio2(9) pri_prul_pru_r31.3 pri_prul_pru_r30_3 ehrpwmo0_synco gpme_a3 Icd_data3 R4 Allocated HDMI

P8_45 0x8a0/0a0 70 GPIO2_6 apio2(6] pri_prul_pru_r31_0 pri_prul_pru_r30_0 ehrpwm2A gpme_a0 Icd_data0 R1 Allocated HOMI

P8_46 0x8a4/0ad 7 GPI02_7 gpio2(7] pri_prul_pru_r31_1 pri_prul_pru_r30_1 ehrpwm28 gpme_at cd_data1 R2 Allocated HDMI
P9 Header _cat $PINS ADDR + GPIONO. Name Mode 7 Mode 6 Mode 5 Mode 4 Mode 3 Mode 2 Mode 1 Mode 0 CcPU

EXPLORINGBEAGLEBONE

The BeagleBone Black P8 Header

www.ExploringBeagleBone.com

16

Appendix B

PIN Header 9

$PINS ADDR GPIO

Pg_01 44810000 GND Ground
P9_02 Offset from: GND Ground
P9_03 4410800 DC_3.3V. 250mA Max Current
P9_04 DC_33V. 250mA Max Current
P9_05 VDD_5V 1A Max Current
P9_06 VDD_5v 1A Max Current
Pg_07 SYS_5V. 250mA Max Current
P9_08 SY8_5V 250mA Max Current
P9_09 PWR_BUT 5V Level (pulled up PMIC)
P9_10 SYS_RESETn RESET_OUT A10
P9_11 28 0x870/070 30 UART4_RXD gpio0[30] uartd_rxd_mux2 mme1_sded rmii2_crs_dv. gpme_csnd gpme_waitd T17 All GPIOs to 4-6mA output
P9_12 30 0x878/078 60 GPIO1 28 gpio[28] measp0_aclkr_mux3 gpmo_dir mmc2_datd gpme_csné gpme_betn U18 and approx. 8mA on input.
Pg_13 29 0x874/074 31 UART4_TXD gpio0[31] uartd_txd_mux2 mmc2_sded rmii2_rxerr gpmc_csn§. gpme_wpn u17
P9_14 18 0x848/048 50 EHRPWMIA gpiol[18] ehpwm1A_mux1 gpme_a18 mmc2_datt rgmii2_td3 gpme_a2 ut4
PY_15 16 0x840/040 48 GPIO1_16 gpio1[16] ehrpwm1_tripzone_input gpmc_a16 mii2_txen rmii2_tetl gmii2_txen gpme_a0 R13
P9_16 19 0x84c/04c 51 EHRPWM1B gpio1[19] ehrpwm1B_mux1 gpme_a19 mmc2_dat2 rgmii2_td2 mii2_txd2 gpme_ad Ti4
P9_17 87 0x95¢/15¢ 5 12C1_SCL gpio0[5] ©ehrpwm0_synci 12C1_SCL mmc2_sdwp spi0_cs0. A16
P9_18 86 0x958/158 4 12C1_SDA gpio0[4] ehrpwmo_tripzone 12C1_SDA mme1_sdwp spi0_d1 B16
P9_19 95 0x97c/17c 13 12C2_SCL gpio0[13] spi1_cs1 12C2_SCL dcan0_rx timer5 uart1_rtsn D17 Allocated 12C2
P9_20 94 0x978/178 12 12C2 SDA gpio0[12] spi1_csO 12C2_SDA dean0_tx timer6 varti_ctsn Dig Allocated 12C2
P9_21 85 0x954/154 3 UART2_TXD gpio0[3] EMU3_mux1 ehrpwm0B 12C2_SCL uart2_txd spi0_do B17
P9 22 84 0x950/150 2 UART2_RXD gpio0[2] EMU2_mux1 ehrpwmOA 12C2_SDA vart2_nd 5pi0_solk A7
P9_23 17 0x844/044 49 GPIO1_17 gpio1[17] ehrpwm0_synco gpme_al7? mmc2_dat0 rgmii2_rxdv. gmii2_nxdv. gpme_at V14
P9 24 0x984/184 15 UARTI_TXD gpio0[15] pri_pru0_pru_r31_16 | pri_uadobd | 12C1_SCL doant_nx mme2_sdwp uarti_txd D15
P9_25 0x9ac/1ac "7 GPI03_21 gpio3[21] pri_pru0_pru_r31_7 pr1_pru0_pru_r30_7 EMU4_mux2 mcasp1_axr1 mcasp0_axr3 eQEPO_strobe mcasp0_ahclkx A4 cated mcasp0_pins
P9_26 0x980/180 14 UARTIRXD gpio0[14] pri_prut_pru_r31_16 | priuaiOnd | 12C1_SDA deant_tx mme1_sdwp vart1_nd D16
P9_27 0x9ad/1a4 15 GPIO3_19 gpio3[19] pri_pru0_pru_r31_5 pr1_pru0_pru_r30_5 EMU2_mux2 mcasp1_fsx mcasp0_axr3 QEPOB_in mcasp0_fsr C13 cated mcasp0_pins
P9 28 0x99¢/19¢ 13 SPI1_CSO gpio3[17] pri_pru0_pru_r31 3 pri_pru0_pru_r30_3 eCAP2_in PWM2_out spi1_cs0 moasp0_axr2 _ehrpwm0_synci measp0_ahclkr ci2 cated mcasp0_pins
P9_29 0x994/194 11 SPI1_DO gpio3[15] pri_pru0_pru_r31_1 pr1_pru0_pru_r30_1 ‘mme1_sded_mux1 spi1_do ‘ehrpwm0B ‘mcasp0_fsx B13 cated mcasp0_pins
P9_30 0x998/198 112 SPI1_D1_ gpio3[16] pri_pru0_prur31 2 pri_pru0_pru 302 mmc2_sdod_muxi spi1_d1 ehrpwm0_tripzone mcasp0_axr0 D12 cated mcasp0_pins
P9_31 0x990/190 110 SPI1_SCLK gpio3[14] pri_pru0_pru_r31_0 pr1_pru0_pru_r30_0 ‘mmec0_sded_mux1 spi1_sclk ‘ehrpwm0A mcasp0_aclkx A13 cated mcasp0_pins
P9 32 VADC 1.8 ADC Volt. Ref.
P9_33 AIN4 cs 1.8V input
P9 34 AGND Ground for ADC
P9_35 AING A 1.8V input
P9_36 AINS B8 1.8V input
P9_37 AIN2 B7 1.8V input
P9 38 AIN3 AT 1.8V input
P9_39 AINO B6 1.8V input
P9_40 AIN1 c7 1.8V input
P9_41A 109 0x9b4/1bd 20 CLKOUT2 gpio0[20] EMU3_mux0 pr1_pru0_pru_r31_16 timer7_mux1 clkout2 telkin xdma_event_intr1 D14 Both to P21 of P11
P9_418 0x9a8/128 116 GPIO3 20 gpiod[20] pri_pru0_pru_r31 6 pri_pru0_pru_r30_6 emu3 Mcasp1_ax0 €QEPO_index measp0_axr D13 Both to P21 of P11
P9_42A 0x964/164 7 GPIO0_7 gpio0[7] xdma_event_intr2 ‘mmc0_sdwp spit1_sclk pri_ecap0_ecap_capin_apwm_o spi1_cs1 uart3_txd eCAPO_in_PWMO0_out Cc18 Both to P22 of P11
P9_428 0x9a0/120 14 GPIO3 18 gpiod[18] pri_pru0_pru_r31 4 pri_pru0_pru_r30_4 Mcasp1_aclkx Mcaspo_ax2 eQEPOA i Mcasp0_aclkr B12 Allocated mcasp0_pins
P9_43 GND - See Pg.50 of the SRM
P9 44 GND Ground
P9_45 GND Ground
P9_46 cat (Mode 7) GND Ground

P9 SPINS ADDR+ GPIONO. Name Mode 7 Mode 1 Mode 0 cPy Notes

The BeagleBone Black P9 Header

www.ExploringBeagleBone.com

17

Bibliography

Justin Cooper. Device tree overlays. https://learn.adafruit.com/
introduction-to-the-beaglebone-black-device-tree/overview, 2015.

Derek Molloy. Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux. Wiley, 2014.
ISBN 1118935128. URL http://www.exploringbeaglebone. com/.

Gregory Raven. Using the beaglebone green programmable real-time unit with the remoteproc and remote
messaging framework to capture and play data from an adc. https://github.com/Greg-R/
pruadcl, 2016.

TexasInstrument. Pru software support package. https://git.ti.com/
pru-software-support-package, 2014.

TexasInstrument. Pru read latencies. http://processors.wiki.ti.com/index.php/PRU_
Read Latencies, 2017a.

TexasInstrument. Pru-icss remoteproc and rpmsg. http://processors.wiki.ti.com/index.
php/PRU-ICSS_Remoteproc_and_RPMsg, 2017b.

TexasInstruments. AM335x and AMIC110 SitaraTM Processors, 2017.

Zubeen Tolani. Ptp - programming the prus 1: Blinky. https://www.zeekhuge.me/post/ptp_
blinky/, 2016.

Mark A. Yoder. Ebc exercise 30 pru via remoteproc and rpmsg. https://elinux.org/EBC_
Exercise_30_PRU_via_remoteproc_and_RPMsg, 2017.

18

APPENDIX C

TI_AM335X_TSADC.H HEADER

#ifndef __LINUX_TI_.AM335X_TSCADC_-MFD_H

#define __LINUX_TI_.AM335X_TSCADC_MFD_H

/%

* TI Touch Screen / ADC MFD driver

*

* Copyright (C) 2012 Texas Instruments

* Source modified by Pierrick Rauby

* This program

* modify

is free software; you can

redistribute

Incorporated — http ://www. ti.com/

it and/or

it under the terms of the GNU General Public License as

* published by the Free Software Foundation version 2.

* This program is distributed

* kind ,

whether express or implied;

”»

as is” WITHOUT ANY WARRANTY of any

without even the

implied warranty

* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General

*/

#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

<linux/mfd/core.h>

REG_RAWIRQSTATUS
REG_IRQSTATUS
REG_IRQENABLE
REG_IRQCLR
REG_IRQWAKEUP
REG_DMAENABLE_SET
REG_DMAENABLE_CLEAR
REG.CTRL
REG_ADCFSM
REG_CLKDIV

REG_SE
REG_IDLECONFIG
REG.CHARGECONFIG
REG_CHARGEDELAY
REG_STEPCONFIG (n)

0x024
0x028
0x02C
0x030
0x034
0x038
0x03c
0x040
0x044
0x04C
0x054
0x058
0x05C
0x060

Public License for more details.

(0x64 + ((n) * 8))

82

36 #define REG.STEPDELAY (n) (0x68 + ((n) = 8))
37 #define REG_FIFOOCNT 0xE4

38 #define REG_FIFOOTHR 0xE8

39 #define REG_FIFOICNT 0xFO0

40 #define REG_FIFOITHR 0xF4

41 #define REGDMAIREQ 0xF8

42 #define REG_FIFOO 0x100

43 #define REG_FIFOIl 0x200

44

45 I% Register Bitfields */

46 [+ IRQ wakeup enable =/

47 #define IRQWKUP_ENB BIT (0)

48

49 /* Step Enable x*/

s0 #define STEPENB_MASK (0x1FFFF << 0)
51 #define STEPENB(val) ((val) << 0)

50 #define ENB(val) (1 << (val))
53 #define STPENB_STEPENB STEPENB (0 x 1 FFFF)
s« #define STPENB_STEPENB_TC STEPENB (0 x 1 FFF)
56/« IRQ enable =/

57 #define IRQENB_HW_PEN BIT(0)

ss #define IRQENB_EOS BIT(1)

59 #define IRQENB_FIFOOTHRES BIT(2)

60 #define IRQENB_FIFOOOVRRUN BIT (3)

61 #define IRQENB_FIFOOUNDRFLW BIT (4)

62 #define IRQENB_FIFOITHRES BIT(5)

63 #define IRQENB_FIFOIOVRRUN BIT (6)

64 #define IRQENB_FIFOIUNDRFLW BIT(7)

65 #define IRQENB_PENUP BIT (9)

66

67 [+ Step Configuration =/

68 #define STEPCONFIGMODE_-MASK 3 << 0)

0 #define STEPCONFIGMODE(val) ((val) << 0)

70 #define STEPCONFIGIMODE_SWCNT STEPCONFIG.MODE(1)
71 #define STEPCONFIGMODE HWSYNC STEPCONFIG.MODE(2)
72 #define STEPCONFIG_AVG_-MASK (7 << 2)

73 #define STEPCONFIG_AVG(val) ((val) << 2)

74 #define STEPCONFIG_AVG_16 STEPCONFIG_AVG (4)
75 #define STEPCONFIG_XPP BIT(5)

76 #define STEPCONFIG_XNN BIT(6)

83

77

78

86

87

88

89

90

91

92

93

94

95

96

116

117

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/+ Delay
#define
#define
#define
#define
#define
#define

/%
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/%
#define
#define
#define

/%
#define

Control

STEPCONFIG_-YPP
STEPCONFIG_YNN
STEPCONFIG_XNP
STEPCONFIG_.YPN
STEPCONFIG_INM_MASK
STEPCONFIG_INM (val)
STEPCONFIG_INM_ADCREFM
STEPCONFIG_INP_MASK
STEPCONFIG_INP (val)
STEPCONFIG_INP_AN4
STEPCONFIG_INP_.ADCREFM
STEPCONFIG_FIFO1
register x/
STEPDELAY_OPEN_MASK
STEPDELAY_OPEN(val)
STEPCONFIG_OPENDLY
STEPDELAY_SAMPLE_MASK
STEPDELAY _SAMPLE(val)
STEPCONFIG_SAMPLEDLY

Charge Config */

STEPCHARGE _RFP_-MASK
STEPCHARGE_RFP(val)
STEPCHARGE_RFP_XPUL
STEPCHARGE_INM_MASK
STEPCHARGE_INM(val)
STEPCHARGE_INM_AN1

STEPCHARGE_INP_MASK
STEPCHARGE_INP(val)
STEPCHARGE RFM_MASK
STEPCHARGE RFM(val)
STEPCHARGE_RFM_XNUR

Charge delay x/

CHARGEDLY_OPEN_MASK
CHARGEDLY.OPEN(val)
CHARGEDLY_OPENDLY

register =/

CNTRLREG_TSCSSENB

BIT(7)

BIT (8)

BIT (9)

BIT(10)

(0xF << 15)
((val) << 15)
STEPCONFIG_INM (8)
(0xF << 19)
((val) << 19)
STEPCONFIG_INP (4)
STEPCONFIG_INP (8)
BIT (26)

(0x3FFFF << 0)

((val) << 0)
STEPDELAY_OPEN (0x098)
(0XFF << 24)

((val) << 24)
STEPDELAY _SAMPLE (0)

(7 << 12)
((val) << 12)
STEPCHARGE RFP (1)
(0OXF << 15)
((val) << 15)
STEPCHARGE_INM (1)
(0XF << 19)
((val) << 19)

(3 << 23)

((val) << 23)
STEPCHARGE RFM (1)

(0x3FFFF << 0)
((val) << 0)
CHARGEDLY_OPEN(0x400)

BIT (0)

84

118 #define CNTRLREG-STEPID BIT(1)

119 #define CNTRLREG_STEPCONFIGWRT BIT(2)

120 #define CNTRLREGPOWERDOWN BIT (4)

121 #define CNTRLREG_AFE.CTRL.MASK (3 << 5)

122 #define CNTRLREG_AFE_CTRL(val) ((val) << 5)

123 #define CNTRLREG4WIRE CNTRLREG_AFE_CTRL (1)
124 #define CNTRLREG_SWIRE CNTRLREG_AFE_.CTRL (2)
125 #define CNTRLREG_SWIRE CNTRLREG-AFE_CTRL (3)
126 #define CNTRLREG.TSCENB BIT(7)

128/« FIFO READ Register =/
129 #define FIFOREAD DATA MASK (0xfff << 0)
130 #define FIFOREAD_CHNLID MASK (0xf << 16)

132 /+ DMA ENABLE/CLEAR Register x*/
133 #define DMA_FIFOO BIT (0)
134 #define DMA_FIFO1 BIT (1)

136/ Sequencer Status x/

137 #define SEQ.STATUS BIT(5)

138 #define CHARGE_STEP 0x11

139

140 #define ADC_CLK 24000000
141 #define TOTAL_STEPS 16

142 #define TOTAL_.CHANNELS 8

143 #define FIFOI_THRESHOLD 19

144

145 /%

146 x time in us for processing a single channel, calculated as follows:

147 %
148 % max num cycles = open delay + (sample delay + conv time) * averaging
149 %

150 * max num cycles: 262143 + (255 + 13) x 16 = 266431

152 % clock frequency: 26MHz / 8 = 3.25MHz
153 x clock period: 1 / 3.25MHz = 308ns

155 % max processing time: 266431 *x 308ns = 83ms(approx)

156 %/

157 #define IDLE_.TIMEOUT 83 /x milliseconds x/

85

160

161

162

164

165

166

168

169

170

179

180

181

189

190

191

192

196

197

198

#define TSCADC_CELLS 2

struct

struct

struct

ti_tscadc_dev {
device xdev;

regmap xregmap;

void __iomem xtscadc_base;

phys_addr_t tscadc_phys_base;

int irq;

int used_cells; /* 1-2 %/

int tsc_wires;

int tsc_cell; /* —1 if not used =x/
int adc_cell; /% —1 if not used =x/
struct mfd_cell cells [TSCADC.CELLS];

u32 reg_se_cache;

bool adc_waiting;

bool adc_in_use;

wait_queue_head_t reg_se_wait;

spinlock_t reg_lock;

unsigned int clk_div;

/% tsc

struct

/* adc

struct

}

static

{

struct

return

}

device x/

titsc *xtsc;

device x/

adc_device xadc;

inline struct ti_tscadc_dev =ti_tscadc_dev_get(struct platform_device x*p)

ti_tscadc_dev #xtscadc_dev = p—>dev.platform_data;

xtscadc_dev ;

void am335x_tsc_se_set_cache(struct ti_tscadc_dev =xtsadc, u32 val);

void am335x_tsc_se_set_once(struct ti_tscadc_dev xtsadc, u32 val);

void am335x_tsc_se_clr(struct ti_tscadc_dev =xtsadc, u32 val);

void am335x_tsc_se_adc_done(struct ti_tscadc_dev =xtsadc);

#endif

86

APPENDIX D

BB-ADC-00A0.DTS DEVICE TREE OVERLAY

(C) 2012 Texas Instruments

errick Rauby
software; you can redistribute
the GNU General

Software Foundation.

,beaglebone”,

/%
* Copyright
* Source modified by Pi
% This program is free
* it under the terms of
* published by the Free
*/
/dts—v1/;
/plugin/;
1A
compatible = "ti
// identification

part—number =

"BB-ADC”;

version = “00A0”;

/! resources thi
exclusive —use =
”P9.39”,
”"P9.407,
”P9.37”,
”P9.38”,
”P9.33”,
"P9.36”,

”P9.357,

“tscadc”

fragment@0 {

S cape uses

/1 AINO
/1 AIN1
/1 AIN2
/1 AIN3
/1 AIN4
/1 AINS5
/1 AIN6

; // hardware ip used

target = <&tscadc >;

__overlay__ {

status = “okay”;

87

it

”ti ,beaglebone—black”,

Incorporated — http ://www. ti.com/

and/or modify

”»

Public License version 2 as

ti ,beaglebone—green”;

ade {
ti ,adc—channels = <3>;
ti ,chan—step—avg = <8>;//we are averaging over 8 sample
before sending
// the result to the kernel
ti ,chan—step—opendelay = <0>;

ti ,chan—step—sampledelay = <0>;

88

/%

x/

#in
#in
#in
#in
#in

#in

#include

#in

#include
#include
#include
#include
#include
#include

#include

APPENDIX E
THE IIO_GENERIC_BUFFER.C APPLICATION

Industrialio buffer test code.

Copyright

(c) 2008 Jonathan Cameron

Source modified by Pierrick Rauby

This program is free software; you can redistribute it and/or modify it

under the

terms of the GNU General Public License version 2 as published by

the Free Software Foundation.

This program is primarily intended as an example application.

Reads the current buffer setup from sysfs and starts a short capture
from the specified device, pretty printing the result after appropriate
conversion .

Command line parameters

generic_buffer —n <device_name> —t <trigger_name>

If trigger name is not specified the program assumes you want a dataready

trigger associated with the device and goes looking for it.

clude <unistd.h>

clude <stdlib .h>

clude <dirent.h>

clude <fcntl.h>

clude <stdio.h>

clude <errno.h>

<sys/stat.h>

clude <sys/dir.h>

<linux/types.h>
<string .h>
<poll.h>
<endian .h>
<getopt.h>
<inttypes.h>

<stdbool .h>

89

46

47

48

49

50

51

59

60

61

62

63

64

65

66

68

69

70

#include <signal .h>

#include <time.h>

#include

»

/% %

enum autochan { AUTOCHANNELS_DISABLED,

% enum autochan —

*/

iio_utils .h”

state for the automatic channel

enabling mechanism

num_channels)

AUTOCHANNELS ENABLED,
AUTOCHANNELS_ACTIVE,
I
/% %
* size_from_channelarray () — calculate the storage size of a scan
* @channels: the channel info array
* @num-_channels: number of channels
*
* Has the side effect of filling the channels[i].location values used
* in processing the buffer output.
* %/
int size_from_channelarray (struct iio_channel_info xchannels, int
{
int bytes = 0;
int i = 0;
while (i < num_channels) {
if (bytes % channels[i].bytes == 0)
channels[i].location = bytes;
else
channels[i].location = bytes — bytes % channels[i].bytes
+ channels[i].bytes;

bytes =
i++;

}

channels[i].location + channels[i].bytes;

return bytes;

void printlbyte(uint8_t input, struct

{

/%
* Shift

before conversion to avoid

iio_channel_info =xinfo)

sign extension

90

86

87

88

89

90

96

116

117

*

of left aligned data

*/

input >>= info—>shift;

input &= info—>mask;

if (info—>is_signed) {

int8_t

printf ("%05f ”,

}

(8 — info—>bits_used);

else {

((float)val + info—>offset) x*

val = (int8_t)(input << (8 — info—>bits_used)) >>

info—>scale) ;

printf("%05f ”, ((float)input + info—>offset) * info—>scale);

void print2byte (uintl6_t

{

/+* First swap if

input, struct

incorrect endian x/

if (info—>be)
input = bel6toh(input);
else
input = lel6toh(input);
/%
* Shift before conversion to avoid
* of left aligned data
*/

input >>= info—>shift;

input &= info—>mask;

if (info—is_signed) {

11

}

intl6_t val = (intl6_t)(input << (16 — info—>bits_used)) >>

(16 — info—>bits_used);

printf ("%05f”,

((float)val + info—>offset)*info—>scale);

iio_channel_info xinfo ,

sign extension

int j,

char *myString)

sprintf (myString ,”%d,%05f\n”, j,((float)val + info—>offset) * info—>scale);

else {

sprintf (myString ,”%d,%05f\n”, j,((float)input + info—>offset) % info—>scale);

/1
}

printf ("%05f”, ((float)input + info—>offset)xinfo—>scale);

void printdbyte(uint32_t

{

/+* First swap

if (info—>be)

if

input, struct

incorrect

endian x/

91

iio_channel_info =xinfo)

118 input = be32toh(input);

119 else

120 input = le32toh(input);

121

122 /%

123 *+ Shift before conversion to avoid sign extension

124 * of left aligned data

125 */

126 input >>= info—>shift;

127 input &= info—>mask;

128 if (info—is_signed) {

129 int32_t val = (int32_t)(input << (32 — info—>bits_used)) >>
130 (32 — info—>bits_used);

131 printf ("%05f 7, ((float)val + info—>offset) * info—>scale);
132 } else {

133 printf("%05f ”, ((float)input + info—>offset) * info—>scale);
134 }

135}

137 void print8byte(uint64_t input, struct iio_channel_info =xinfo)

138 {

139 /* First swap if incorrect endian x/

140 if (info—>be)

141 input = be64toh(input);

142 else

143 input = le64toh(input);

144

145 /%

146 * Shift before conversion to avoid sign extension
147 * of left aligned data

148 */

149 input >>= info—>shift;

150 input &= info—>mask;

151 if (info—is_signed) {

152 int64_t val = (int64_t)(input << (64 — info—>bits_used)) >>
153 (64 — info—>bits_used);

154 /+* special case for timestamp x*/

155 if (info—>scale == 1.0f && info—>offset == 0.0f)
156 printf("%” PRId64 » 7, val);

157 else

158 printf("%05f 7,

92

159

160

161

162

163

164

165

166

168

169

170

186

187

188

189

190

191

192

193

194

195

196

197

198

((float)val + info—>offset) x info—>scale);

} else {
printf ("%05f 7, ((float)input + info—>offset) * info—>scale);
}
}
/% %
* process_scan() — print out the values in SI units

* @data: pointer to the start of the scan

% @channels: information about the channels.

* Note: size_from_channelarray must have been called first

* to fill the location offsets.

% @num_channels: number of channels

* k[

void process_scan(char xdata, struct iio_channel_info *channels, int num_channels,int j,

char *myString)

int k;
for (k = 0; k < num_channels; k++)
switch (channels[k].bytes) {
/+ only a few cases implemented so far =/
case 1:
printlbyte (x(uint8_t =*)(data + channels[k].location),
&channels [k]) ;
break ;
case 2:
print2byte (x(uintl6_t *)(data + channels[k].location),
&channels[k],j, myString);
break ;
case 4:
printdbyte (x(uint32_t x)(data + channels[k].location),
&channels[k]) ;
break ;
case 8:
print8byte (x(uint64_t x)(data + channels[k].location),
&channels [k]) ;
break ;
default:
break ;

}

//printf("\n”);

93

static

{

int enable_disable_all_channels (char xdev_dir_name, int enable)

const struct dirent xent;
char scanelemdir[256];
DIR xdp;

int ret;

snprintf (scanelemdir , sizeof(scanelemdir),
FORMAT_SCAN_ELEMENTS_ DIR, dev_dir_-name);

scanelemdir[sizeof (scanelemdir)—1] = *\0’;

dp = opendir(scanelemdir);
if (1dp) {
fprintf (stderr, "Enabling/disabling channels: can’t open %s\n”,
scanelemdir) ;

return —EIO;

ret = —ENOENT;
while (ent = readdir(dp), ent) {
if (iioutils_check_suffix (ent—>d_name, "_en”)) {
printf("%sabling: %s\n”,
enable ? ”En” : ”Dis”,
ent—>d_name) ;
ret = write_sysfs_int(ent—>d_name, scanelemdir ,
enable) ;
if (ret < 0)
fprintf (stderr, ”Failed to enable/disable %s\n”,

ent—>d_name) ;

if (closedir(dp) == —1) {
perror (" Enabling/disabling channels: ”
”Failed to close directory”);
return —errno;

}

return 0;

94

240

241

242

243

244

245

246

247

248

260

261

262

263

264

265

266

267

268

269

270

278

279

280

void

{

enum
char
char

bool

void

print_usage (void)

fprintf (stderr, ”"Usage: generic_buffer [options]...\n”

”Capture , convert and output data from IIO device buffer\n”

7 —a Auto—activate all available channels\n”
” A Force—activate ALL channels\n”

o —c <n> Do n conversions\n”

” —e Disable wait for event (new data)\n”

7 —g Use trigger—less mode\n”

7 =1 <n> Set buffer length to n samples\n”

—device—name —n <name>\n"
—device—num —N <num>\n”
Set device by name or number (mandatory)\n”
—trigger —name —t <name>\n”
—trigger —num —T <num>\n”
Set trigger by name or number\n”

7w <n> Set delay between reads in us (event—less mode)\n”);

autochan autochannels = AUTOCHANNELS_DISABLED;
«dev_dir_.name = NULL;
*buf_dir_name = NULL;

current_trigger_set = false;

cleanup (void)

int ret;

/+ Disable trigger =/
if (dev_-dir.name && current_trigger_set) {
/+* Disconnect the trigger — just write a dummy name. x/
ret = write_sysfs_string (”trigger/current_trigger”,
dev_dir_name , ”"NULL”);
if (ret < 0)
fprintf (stderr, "Failed to disable trigger: %s\n”,
strerror(—ret));

current_trigger_set = false;

/* Disable buffer =/

95

281 if (buf_dir-name) {

282 ret = write_sysfs_int(”enable”, buf_dir.name, 0);

283 if (ret < 0)

284 fprintf (stderr, ”Failed to disable buffer: %s\n”,
285 strerror(—ret));

286 }

287

288 /+* Disable channels if auto—enabled x*/

289 if (dev_dir_name && autochannels == AUTOCHANNELS_ACTIVE) {

290 ret = enable_disable_all_channels (dev_dir_.name, 0);

291 if (ret)

292 fprintf (stderr, ”Failed to disable all channels\n”);
293 autochannels = AUTOCHANNELS_DISABLED;

294 }
295}

296
297 void sig_handler(int signum)

208 {

299 fprintf (stderr, ”Caught signal %d\n”, signum);
300 cleanup () ;

301 exit(—signum);

302}

303

304 void register_cleanup (void)

305 {

306 struct sigaction sa = { .sa_handler = sig_handler };

307 const int signums[] = { SIGINT, SIGTERM, SIGABRT };

308 int ret, 1i;

309

310 for (i = 0; i < ARRAY.SIZE(signums); ++i) {

311 ret = sigaction(signums[i], &sa, NULL);

312 if (ret) {

313 perror (” Failed to register signal handler”);
314 exit(—1);

316 }
317}

318

319 static const struct option longopts[] = {
320 { "device—name”, 1, 0, 'n” },
32 { ”device—num”, 1, 0, 'N” },

{ “trigger —name”,
{ “trigger —num?”,
{3

}s

int main(int

{

argc, char =xxargv)

unsigned long num-_loops = 1;

unsigned long timedelay =
// device file apears
unsigned long buf_len = 128;

int ret, ¢, i, j, toread;

int fp = —1;
int num_channels = 0;

char xtrigger_name = NULL,

char xdata = NULL;

ssize_t read_size;

int dev.num = —1, trig_.num =
char xbuffer_access = NULL;
int scan_size;

int noevents = 0;

int notrigger = 0;

char xdummy;

bool force_autochannels = fal

struct

register_cleanup () ;

while ((c = getopt_long(argc,
NULL)

switch (¢) {

case ’‘a’:
autochannels
break ;

case 'A’:
autochannels

force_autocha

1000000;

xdevice_name =

//why do I would like more than 1 loop

// wait a bit so the character

NULL;

se;

iio_channel_info =xchannels = NULL;

argv ,

) = =D A

“aAc:egl:n:N:t:T:w:?”, longopts,

= AUTOCHANNELS ENABLED;

= AUTOCHANNELS_ENABLED;

nnels = true;

97

368

369

370

389

390

391

392

394

395

396

398

399

400

case

case

case

case

case

case

case

case

‘¢

e

'8

break ;

errno = 0;

num-_loops = strtoul (optarg , &ummy, 10); //parses the number and

the name of the option
if (errno) {
ret = —errno;

goto error;

break ;

LI

noevents = 1;

break ;

L

notrigger = 1;

break ;

e

‘n

errno = 0;
buf_len = strtoul (optarg , &ummy, 10);
if (errno) {

ret = —errno;

goto error;

}

7.

N’

break ;

device_name = strdup (optarg);
break ;

errno = 0;

dev_num = strtoul (optarg , &dummy, 10);
if (errno) {

ret = —errno;

goto error;

}
break ;

TR

trigger_-name = strdup(optarg); //duplicates
break ;

T’

errno = 0;

trig-num = strtoul (optarg , &ummy, 10);

98

the

string

403

404

406

407

409

410

411

412

413

414

415

416

417

418

419

420

421

422

424

425

426

428

429

436

437

438

440

441

442

if (errno)
return —errno;
break;
case ‘'w’:
errno = 0;
timedelay = strtoul (optarg, &dummy, 10);
if (errno) {
ret = —errno;
goto error;
}
break;
case ?’:
print_usage () ;
ret = —1;

goto error;

/+ Find the device requested x/
if (dev_num < 0 && !device_name) {
fprintf (stderr, "Device not set\n”);
print_usage () ;
ret = —1;
goto error;
}
else if (dev_num >= 0 && device_name) {
fprintf(stderr, ”Only one of —device—num or —device—name needs to be set
\n”);
print_usage () ;
ret = —1;
goto error;
}
else if (dev_num < 0) {
dev_num = find_type_by_name (device_name , “iio:device”);
if (devonum < 0) {
fprintf (stderr, ”Failed to find the %s\n”, device.name);
ret = dev_num;

goto error;

}

printf(”iio device number being used is %d\n”, dev_num);

99

449

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

476

477

478

480

481

482

483

/%

ret = asprintf(&dev_dir_name , "%siio:deviced%d”, iio_dir , dev_num);
if (ret < 0)
return —ENOMEM;
/+* Fetch device_name if specified by number x/
if (!device_name) {
device_name = malloc (IIOLMAX_NAME_LENGTH) ;
if (!device_name) {
ret = —ENOMEM;
goto error;
}
ret = read_-sysfs_string (”"name”, dev_dir_name , device_name);
if (ret < 0) {
fprintf (stderr, ”Failed to read name of device %d\n”, dev_num);

goto error;

}
Trigger setup */
if (notrigger) {
printf (" trigger—less mode selected\n”);
} else if (trig.num >= 0) {
char xtrig_dev_name;
ret = asprintf(&trig-dev_name , "%strigger%d”, iio_dir, trig_num);
if (ret < 0) {
return —ENOMEM;
}
trigger-name = malloc (IOLMAX_NAME_LENGTH) ;
ret = read_sysfs_string ("name”, trig_dev_name , trigger_name);
free (trig_dev_name);
if (ret < 0) {
fprintf (stderr, "Failed to read trigger%d name from\n”, trig_-num);
return ret;
}
printf(”iio trigger number being used is %d\n”, trig-num);
}
/%
*+ Parse the files in scan_elements to identify what channels are

* present

*/
ret = build_channel_array (dev_dir_name , &channels, &num_channels);
if (ret) {

100

484 fprintf(stderr , "Problem reading scan element information\n”

485 “diag %s\n”, dev_dir_name);

486 goto error;

487 }

488 if (num_channels && autochannels == AUTOCHANNELS_ENABLED &&

489 Iforce_autochannels) {

490 fprintf (stderr, ”“Auto—channels selected but some channels ”
491 “are already activated in sysfs\n”);

492 fprintf(stderr, "Proceeding without activating any channels\n”);
493 }

494

495 if ((!num_channels && autochannels == AUTOCHANNELSENABLED) ||

496 (autochannels == AUTOCHANNELS ENABLED && force_autochannels)) {
497 fprintf (stderr, ”"Enabling all channels\n”);

498

499 ret = enable_disable_all_channels(dev_dir_.name, 1);

500 if (ret) {

501 fprintf (stderr, ”Failed to enable all channels\n”);
502 goto error;

503 }

504

505 /+* This flags that we need to disable the channels again x*/
506 autochannels = AUTOCHANNELS_ACTIVE;

507

508 ret = build_channel_array (dev_dir_name , &channels,

509 &num_channels) ;

510 if (ret) {

511 fprintf(stderr, ”Problem reading scan element ”

512 ”information\n”

513 ”diag %s\n”, dev_dir_name);

514 goto error;

515 }

516 if (!num_channels) {

517 fprintf(stderr, ”Still no channels after ”

518 “auto—enabling , giving up\n”);

519 goto error;

520 }

523 if (!num_channels &% autochannels == AUTOCHANNELS DISABLED) {
524 fprintf (stderr ,

101

525 “"No channels are enabled, we have nothing to scan.\n”);

526 fprintf(stderr, "Enable channels manually in ”

527 FORMAT_SCAN_ELEMENTS_DIR

528 ”/+x _en or pass —a to autoenable channels and ”
529 “try again.\n”, dev_dir_name);

530 ret = —ENOENT;

531 goto error;

534 /%

535 *+ Construct the directory name for the associated buffer.
536 * As we know that the 1is3102dq has only one buffer this may
537 * be built rather than found.

538 */

539 ret = asprintf(&buf_dir_name ,

540 "%siio:device%d/buffer”, iio_dir , dev_num);
541 if (ret < 0) {

542 ret = —ENOMEM;

543 goto error;

544 }

545

546 printf("%s\n”, dev_dir_name);

547 /+* Setup ring buffer parameters =/

548 ret = write_sysfs_int(”length”, buf_dir_.name, buf_len);
549 if (ret < 0)

550 goto error;

551

552 /+x Enable the buffer x/

553 ret = write_sysfs_int(”enable”, buf_dir_name, 1);

554 if (ret < 0) {

555 fprintf (stderr ,

556 “"Failed to enable buffer: %s\n”, strerror(—ret));
557 goto error;

559

560 scan_size = size_from_channelarray (channels, num_channels);
561 data = malloc(scan_size * buf_len);

562 if (!data) {

563 ret = —ENOMEM;

564 goto error;

565 }

102

566

567 ret = asprintf(&buffer_access, ”/dev/iio:device%d”, dev_num);
568 if (ret < 0) {

569 ret = —ENOMEM;

570 goto error;

571 }

572

573 /+* Attempt to open non blocking the access dev x*/

574 fp = open(buffer_access , ORDONLY | ONONBLOCK) ;

575 if (fp == -1 {

576 ret = —errno;

577 fprintf (stderr , "Failed to open %s\n”, buffer_access);
578 goto error;

579 }

580

581

52 //the file where we want to print the result

583 FILE % fa;

584 time_t t = time (NULL);

585 struct tm tm = xlocaltime(&t);

586 char fileName[20];

587 sprintf (fileName ,” Results/data_%d—%d—%d_%d:%d:%d.csv”, tm.tm_year+1900, tm.tm_mon+1, tm.
tm-mday, tm.tm_hour, tm.tm_min,tm.tm_sec);

58 fa= fopen(fileName ,”w+”);

589 char firstLine [20];

500 fputs(firstLine ,fa);

591 char myString[20];

592 // Start Flashing

593 removeTrigger () ;

504 flashLed () ;

595 //acquisition loop

506 for (j = 0; j < num_loops; j++) {

597 toread=buf_len;

598 usleep (timedelay); // not shure that this part has to be commented
599 read_size = read(fp, data, toread % scan_size);

600 if (read_size < 0) {

601 if (errno == EAGAIN) {

602 fprintf(stderr, “"nothing available\n”);

603 continue ;

604 } else {

605 break ;

103

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

632

633

634

for (i = 0; i < read_size / scan_size; i++){

process_scan(data + scan_size * i,

fputs (myString , fa);

}

//closing the file
fclose (fa);

/] stop flahing Leds
removeTrigger () ;
error:

cleanup () ;

if (fp >= 0 && close(fp) == —1)

channels ,num_channels ,i,

perror (” Failed to close buffer”);

free (buffer_access);
free (data);

free (buf_dir_name) ;

for (i = num_channels — 1; i >= 0; i—) {

free (channels[i].name) ;

free (channels[i]. generic_.name);

}

free (channels) ;
free (trigger_name);
free (device_name) ;

free (dev_dir_name);

return ret,;

104

myString) ;

APPENDIX F

THE LAUNCH.SH SCRIPT

#!/bin/sh

launch . sh

This program is free software; you can redistribute it and/or modify it

#
Copyright (c) 2018 Pierrick Rauby
#
#

under the terms of the GNU General
the Free Software Foundation.
N_Samples=$1
N_Loops=$2
i=1
echo ”Cleaning ° Results’ folder”
rm —rf Results

mkdir Results

echo ”Deploying...”

Public License version 2 as published by

gce iio_generic_buffer.c iio_utils.c —o iio_generic_buffer

echo ”"Here we go for ${N_Samples} repeted ${N_Loops} times”

while [”$i” —le $N_Loops]; do

./iio_generic_buffer —a —1 ${N_Samples} —L ${N_Loops} —N iio:device0

echo 7sxxxLoop ${i} donessxx”

#i=$(C i+ 1))

echo V#HH#H###H#H#H#HHHHHHHHHHHHAHAHHHHHHHHHHHHHR

echo ”"Work done results are saved in /Results”

echo VHHHHHHHHHHHAHHAHHHHHHAHHAHHHHHHHHHBHHHAT

105

HF HF H H H H*

APPENDIX G
THE PREPROCESSING.PY CODE

preprocessing.py

Copyright (c) 2018 Pierrick Rauby

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as published by
the Free Software Foundation.

Returns a .csv from all .csv file contained in the folder where this code

is located

#imports

import pandas as pd

import numpy as np
np.set_printoptions (threshold=np.nan)
import matplotlib.pyplot as plt
import os

import glob

#Result and Data set info:

classification=1

i=3 #Number of dominant frequencies requested
fftSize = 16383 # Number of Samples in the DataSet

samplingRate=16383 # Samples per seconds

#Gets the list of files

path=os.getcwd ()

allFiles=glob. glob(path+"/*.csv”)

#Final returned list

Result=pd.DataFrame ()

#For loop over the all the data sets:

for file_ in allFiles:

#Initialize the result DataFrame for this sample

resultCash=pd.DataFrame (columns=[’Name’, Mean’,’ Median’,’ Std’,’ Var’, Min’, Max’

f1°,7Al”,>f2°,7A2° ,°f37,7A3’,’ Class ’])

#Imports the dataset

106

5

’sum

B
B

>

35 dataSet=pd.DataFrame ()

36 fftData = []

37 dataSet=pd.read_csv(file_. ,names=["Volts”])
38 #FFT computation

39 for row_ in dataSet.values:

40 fftData .append(row_[0])

41

42 fftData = np.array (fftData ,dtype=float)

43

44 #Compute the FFT and the frequencies

45 fft = np. fft. fft(fftData) #array of xk result of the real fft
46 fftFreq = np. fft. fftfreq (fftSize , d=1./samplingRate) #array with corresponding

frequencies

47 fftMag = np.absolute (fft)

48

49 #Find i dominant frequencies

50 fftMagCash=fftMag [: fftSize //2]x1 / fftSize
51 frequencies =[]

52 fftFreq=fftFreq [: fftSize //2]

53 for k in range(i):

54 Cash=[]

55 mainFreqlndex = np.argmax(fftMagCash) #get the more important term

56 Cash.append (fftMagCash [mainFreqIndex]) #storing the amplitude of the max Freq
57 Cash.append (fftFreq [mainFreqIndex]) #storing the max Freq

58 fftMagCash=np.delete (fftMagCash , mainFreqIndex) #removing the maximum frequency
59 np.delete (fftMagCash , mainFreqIndex) #removing the maximum frequency

60 frequencies .append (Cash) #add this values to the result list

61 #print (frequencies)

62 #End of FFT computation

64 #Stores values in the resultCash list

65 resultCash=pd.concat ([resultCash ,#previous data DataFrame
66 pd.DataFrame ([[#New DataFrame

67 file_.[len(path)+1:], #Name of the Sample
68 dataSet[’ Volts ’].mean() ,

69 dataSet[’ Volts ’]. median () ,

70 dataSet[’ Volts "].std (),

71 dataSet[’ Volts "]. var(),

72 dataSet[’ Volts ’].min() ,

73 dataSet[’ Volts ’].max() ,

74 dataSet[’ Volts ’].sum() ,

107

79

80

81

85

86

o

%0

8

89

90

#Creates the finals

frequencies [0][1], #f1

frequencies [0][0], #Al

frequencies [1][1], #f2

frequencies [1][0], #A2

frequencies [2][1], #f3

frequencies [2][0], #A3

classification

columns=[’Name’,’Mean’,’ Median’,’Std’,’ Var’, Min’, Max’,’ sum

f1°,’Al”,7f2°,7A2° ,°f3’,7A3" " Class ’])])

list Result

11, #Class of the sample

Result=pd.concat ([Result ,resultCash],ignore_index=True)

Result.to_csv(’Cut’+str(classification)+’.csv’)

print (Result)

#end of for loop over

allFiles

108

B
B

>

APPENDIX H
THE KERNEL_SVM_TRAINNING.PY CODE

kernel _SVM _trainning . py
Copyright (c) 2018 Pierrick Rauby

#

#

This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License version 2 as published by
#

the Free Software Foundation.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Assign colum names to the dataset

colnames =[’Name’,’Mean’,’Median’,’Std’,’ Var’,’Min’,’Max’,’ ’sum’,’ f1’,"Al’, 2", A2’ 3"’

A3’ ,’ Class]

Read dataset to pandas dataframe

dataSet = pd.read_cs

print(dataSet.shape)

X = dataSet.drop ([’Name’,’sum’,’ Class '], axis=1)#.drop(Mean, axis=0)#the features

y = dataSet[’ Class ']

v(’Data_set.csv’, skiprows=[0],names=colnames)

#the predictions

#Splitting the dataset between trainning set and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y-_t

#Train the algorithm

rain, y_test = train_test_split(X, y, test_size =

from sklearn.svm import SVC

#Uncomment for polynom kernel

svclassifier = SVC(kernel="poly’, degree=8)

svclassifier. fit(X_train, y_train)

#Uncomment for Sigmoid Kernel

svclassifier = SVC(kernel="sigmoid ’)

svclassifier.fit(X_train, y_train)

109

0.20)

#Uncomment for Gaussian Kernel
svclassifier = SVC(kernel="linear ’) # linear , poly s rbf N sigmoid

svclassifier. fit(X_train, y_train)

#test to pickle the classifier

import pickle

classifier_pickle_path = ’classifier_pickle.pkl’ #creates the name of the file
classifier_pickle = open(classifier_pickle_path ,’wb’) #open the file for binaryW

pickle .dump(svclassifier ,classifier_pickle) #put the classifier in the file

#This makes predictions

y-pred = svclassifier.predict(X_test)

#This evaluates the algorithm
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix (y_-test , y_pred))

print(classification_report(y_test, y_pred))

110

APPENDIX I
DETAILED RESULTS FOR LINEAR KERNEL AND RBF KERNEL ON THE
TEST SET

I.1 Result for the linear kernel

I.2 Result for the rbf kernel

111

[[425 8 8 %] @]
[@ 388 @ @ @]
[@ 2 368 12 3]
[@ %] 8 393 8]
[@ %) 2 B 487]

precision

(%] l1.88

1 8.99

2 8.97

3 8.97

4 8.99

avg / total 8.99

recall

1

9.

.80
1.60
8.96
9.

1.60

98

99

fl-score

1.0
1.08@
8.96
.98
8.99

.99

support

425
388
3858
491
489

2008

Figure I.1: Confusion matrix and precision statics for the linear kernel

@ %)

&3 & & O
& ® 0 ®

91

(%) @ 48]
230 @ 139]
2 338 53]
@ @ 485]]

precision

WM ®

avg / total 9.

1.
1.
@.
1.
a.

= 1%
=12
99
= 1%
62

92

recall

@.
@.
8.
a.
1.

al-

g8
88
62
86
= 1)

87

fl-score

8.99
.94
@.77
8.92
@.76

@8.88

support

417
416
369
393
485

2000

Figure 1.2: Confusion matrix and precision statics for the rbf kernel

112

CHAPTER 6
THE MAIN APPLICATION CODE

main . py
Copyright (c) 2018 Pierrick Rauby
This program is free software; you can redistribute it and/or modify it

under the terms of the GNU General Public License version 2 as published by

#* ¥ H H FHF

the Free Software Foundation.

##t## R Import needed libraries ##########HHHH## Y
import os #to execute acquisition program
import pickle
import glob
import numpy as np
import pandas as pd
import datetime
from sklearn.svm import SVC # not sure if needed (maybe included in pickle)
H#### AR Variables declaration ######H#H### 4 ## Y
N_Samples = int(16384/2)
i=3 #Number of dominant frequencies a requested
fftSize = N_Samples — 1 # Number of Samples in the DataSet
samplingRate=N_Samples—1 # Samples per seconds # WARNING: check sampling frequency
#EHSHHHH R A Compilati on ###### - ##HHHHHHHHHH A
#Uncomment the following line if you want recompile iio_generic_buffer.c
#0s.system(’gcc iio_generic_buffer.c iio_utils.c —o iio_generic_buffer ”)
#####H R
##EH#HHH A A Entering the execution Loop################HH#H#H#HH#H
##t## I
while (1) :
first we capture the timestamp
timestamp_object = datetime . datetime .now ()
#t# I Cleanning Results folder ########H###H S H###
Command_Clean = ”"rm —rf Results”
Process = os.system (Command_Clean)
Command_Create = “mkdir Results”
Process = os.system(Command_Create)

##H#H A Starting the acquisition ########HHH#H# S EHHH

Command_Acquisition = ”./iio_generic_buffer —a —1 "+str(N_Samples)+” —N iio:device0”

113

36 print (Command_Acquisition)

37 Process = os.system(Command_Acquisition)

38

39 # At this point data should be stored in the Result folder

40 print (C\ n######H## R #H A # A # A ####4\ 0 Data stored in Result folder\n

HAHHHHHHHHHHHHH B R R IR R HRHE)

41

42 #it# R Preprocessing the dataSet #########HH#HHHHH###

43 #Final returned list

44 preprocessed_dataSet=pd.DataFrame ()

45 #Gets the list of files

46 path=os.getcwd () #The folder wh

47 allFiles=glob. glob(path+”/Results/*.csv”)

48 #For loop over the all the data sets:

49 for file_ in allFiles:

50 #Initialiwe the result DataFrame for this sample

51 resultCash=pd.DataFrame (columns=[’Name’, ’Mean’,’ Median’,’ Std’,’ Var’,’Min’, Max’,’sum

CUfL ALY 20 0A2 U E30 A3 #.0¢ 0]

52 #Imports the dataset

53 dataSet=pd.DataFrame ()

54 fftData = []

55 dataSet=pd.read_csv(file_. ,names=["Volts”])

56 #FFT computation

57 for row_ in dataSet.values:

58 fftData .append(row_[0])

59 fftData = np.array (fftData ,dtype=float)

60 #Compute the FFT and the frequencies

61 fft = np. fft. fft(fftData) #array of xk result of the real fft

62 fftFreq = np. fft. fftfreq (fftSize , d=1./samplingRate) #array with corresponding
frequencies

63 fftMag = np.absolute (fft)

64 #Find i dominant frequencies
65 fftMagCash=fftMag [: fftSize //2]x1 / fftSize
66 frequencies =[]

67 fftFreq=fftFreq [: fftSize //2]

68 for k in range(i):

69 Cash=[]

70 mainFreqlndex = np.argmax (fftMagCash) #get the more important term

71 Cash.append (fftMagCash [mainFreqIndex]) #storing the amplitude of the max Freq
72 Cash.append (fftFreq [mainFreqIndex]) #storing the max Freq

73 fftMagCash=np. delete (fftMagCash , mainFreqlndex) #removing the maximum frequency

114

74 np.delete (fftMagCash , mainFreqIndex) #removing the maximum frequency

75 frequencies .append (Cash) #add this values to the result list
76 #End of FFT computation

77 #Stores values in the resultCash list

78 resultCash=pd.concat([resultCash ,#previous data DataFrame

79 pd.DataFrame ([[#New DataFrame

30 file_[len(path)+1:], #Name of the Sample
81 dataSet[’ Volts ’].mean() ,

82 dataSet[’ Volts ’]. median () ,

83 dataSet[’ Volts *].std (),

84 dataSet[’ Volts "].var(),

85 dataSet[’ Volts *].min() ,

86 dataSet[’ Volts *].max() ,

87 dataSet[’ Volts *].sum() ,

88 frequencies [0][1], #f1

89 frequencies [0][0], #Al

90 frequencies [1][1], #f2

91 frequencies [1][0], #A2

92 frequencies [2][1], #f3

93 frequencies [2][0]]], #A3

94 columns=[’Name’,’Mean’,’ Median’,’Std’,’ Var’,’Min’, ’Max’,’sum

L1 AL 020) CA2 037) CA3])]) #, 0 class T#L,C 7)) D)

95 #Creates the finals list Result

96 preprocessed_dataSet=pd.concat ([preprocessed_dataSet ,resultCash],ignore_index=True)
97 #Using the trainned algorithm to predictions

98 #dropping the useless features

99 Xtest = preprocessed_-dataSet.drop ([’Name’,’sum’], axis=1)

100 classifier_pickle_path = ’classifier_pickle.pkl’

101 classifier_pickle = open(classifier_pickle_path ,’rb’)

102 svclassifier = pickle.load(classifier_pickle)

103 #converting the timestamp to string

104 timestamp=str (timestamp_object.year)+ ’—"+str (timestamp_object.month)+”—"+str (

timestamp_object.day)+ T"+str (timestamp_object.hour)+”:"+str (timestamp_object.

2,9

minute) +7:"+str (timestamp-object.second)

”»

106 print (" At time + timestamp +” class is ” + str(svclassifier.predict(Xtest)[0]))
108 # TODO: send the result somewhere (MQIT)

100 H##HHHHHHHH SR S R S R

110 ##H##HH A #EH###HEnd of while loop and programp ###########H####HSH#HHE#H

V11 H##HHE R R R R R A R S R R R

115

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

A. Froehlich, How edge computing compares with cloud computing, https://
www .networkcomputing.com/networking/how—edge—-computing-
compares-cloud-computing/1264320109, Blog, 2018.

C. Roser, Faster, better, cheaper” in the history of manufacturing : From the stone
age to lean manufacturing and beyond. Boca Raton: CRC Press, Taylor & Francis
Group, 2017, 1SBN: 978-1498756303.

A. Siddhpura and R. Paurobally, “A review of flank wear prediction methods for tool
condition monitoring in a turning process”’, The international journal of advanced
manufacturing technology, vol. 65, no. 1, pp. 371-393, 2013.

S. Kurada and C. Bradley, “A review of machine vision sensors for tool condition
monitoring”, Computers in industry, vol. 34, no. 1, pp. 55-72, 1997.

N. Cook, “Tool wear sensors”, Wear, vol. 62, no. 1, pp. 49-57, 1980.

D. E. Dimla, “Sensor signals for tool-wear monitoring in metal cutting operationsa
review of methods”, International journal of machine tools and manufacture, vol.
40, no. 8, pp. 1073-1098, 2000.

A. Siddhpura and R. Paurobally, “A review of flank wear prediction methods for
tool condition monitoring in a turning process”, International journal of advanced
manufacturing technology, vol. 65, no. 1-4, pp. 371-393, 2013.

P. Maropoulos and B. Alamin, “Integrated tool life prediction and management for

an intelligent tool selection system”, Journal of materials processing technology,
vol. 61, no. 1-2, pp. 225-230, 1996.

S. M. Pandit, “Strategy of On-line Tool Wear Sensing”, vol. 104, no. August 1982,
pp. 217-223, 1982.

L. Dan and J. Mathew, “Tool wear and failure monitoring techniques for turningA
review”, International journal of machine tools and manufacture, vol. 30, no. 4,

pp. 579-598, 1990.

Arduino uno rev 3, https://store.arduino.cc/arduino-uno-rev3,
Website, Accessed : 2018-06-24.

116

https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://www.networkcomputing.com/networking/how-edge-computing-compares-cloud-computing/1264320109
https://store.arduino.cc/arduino-uno-rev3

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Teensy usb development board, https://www.pjrc.com/store/teensy
32.html, Website, Accessed : 2018-06-24.

Particule photon datasheet vol6, https://docs.particle.io/datashee
ts/photon—- (wifi) /photon—-datasheet/, Website, Accessed : 2018-06-
24,

The internet of things with esp32, http://esp32.net/, Website, Accessed :
2018-06-24.

The raspberry pi model 3 b+, https://www.raspberrypi.org/product
s/raspberry-pi-3-model-b-plus/, Website, Accessed : 2018-06-24.

Beagleboard.org beaglebone black, https : / /beagleboard. org/black,
Website, Accessed : 2018-06-24.

M. Elangovan, V. Sugumaran, K. I. Ramachandran, and S. Ravikumar, “Effect of
SVM kernel functions on classification of vibration signals of a single point cutting
tool”, Expert systems with applications, vol. 38, no. 12, pp. 15202-15207, 2011.

C. Drouillet, J. Karandikar, C. Nath, A.-C. Journeaux, M. El Mansori, and T. Kur-
fess, “Tool life predictions in milling using spindle power with the neural network
technique”, Journal of manufacturing processes, vol. 22, pp. 161-168, 2016.

Y. Fu, Y. Zhang, Y. Gao, H. Gao, T. Mao, H. Zhou, and D. Li, “Machining vibra-
tion states monitoring based on image representation using convolutional neural net-

works”, Engineering applications of artificial intelligence, vol. 65, no. July, pp. 240—
251, 2017.

P. O’Donovan, C. Gallagher, K. Bruton, and D. T. O’Sullivan, “A fog computing in-
dustrial cyber-physical system for embedded low-latency machine learning Industry

4.0 applications”, Manufacturing letters, vol. 15, pp. 139-142, 2018.

C.-A. Azencot, Foundations of machine learning chapter 9: Tree-based approaches,
2017.

——, Foundations of machine learning chapter 10: Support vector machines, 2017.

F. Pérez-Cruz and O. Bousquet, “Kernel methods and their potential use in signal
processing”, leee signal processing magazine, vol. 21, no. 3, pp. 57-65, 2004.

F Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in ...”, Psychological review, vol. 65, no. 6, pp. 386—408, 1958.

117

https://www.pjrc.com/store/teensy32.html
https://www.pjrc.com/store/teensy32.html
https://docs.particle.io/datasheets/photon-(wifi)/photon-datasheet/
https://docs.particle.io/datasheets/photon-(wifi)/photon-datasheet/
http://esp32.net/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://beagleboard.org/black

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

C.-A. Azencot, Foundations of machine learning chapter 11: Artificial neural net-
works, 2017.

Introduction a lora, http://www.linuxembedded.fr/2017/12/introd
uction—-a-lora/, Website, Accessed : 2018-06-24, 2018.

R. L. Pereira, I. M. Dupont, P. C. Carvalho, and S. C. Jucd, “loT embedded linux
system based on Raspberry Pi applied to real-time cloud monitoring of a decentral-
ized photovoltaic plant”, Measurement: Journal of the international measurement
confederation, vol. 114, no. January 2017, pp. 286-297, 2018.

S. Yang, B. Bagheri, H.-A. Kao, and J. Lee, “A Unified Framework and Platform
for Designing of Cloud-Based Machine Health Monitoring and Manufacturing Sys-
tems”, Journal of manufacturing science and engineering, vol. 137, no. 4, p. 040914,
2015.

C. Kan, H. Yang, and S. Kumara, “Parallel computing and network analytics for fast
Industrial Internet-of-Things (IloT) machine information processing and condition
monitoring”, Journal of manufacturing systems, vol. 46, pp. 282-293, 2018.

D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and J. A. Guzzo,
“A fog computing-based framework for process monitoring and prognosis in cyber-
manufacturing”, Journal of manufacturing systems, vol. 43, pp. 25-34, 2017.

M. Siddhpura and R. Paurobally, “A review of chatter vibration research in turning”,
International journal of machine tools and manufacture, vol. 61, pp. 27-47, 2012.

TexasInstruments, Am335x and amicl10 sitaratm processors, 2017.

TexasInstrument, Pru read latencies, http://processors.wiki.ti.com/
index.php/PRU_Read_Latencies, 2017.

——, Pru-icss remoteproc and rpmsg, http://processors.wiki.ti.com/
index.php/PRU-ICSS_Remoteproc_and_RPMsg, 2017.

D. Molloy, Exploring beaglebone, Tools and techniques for building with embedded
linux. Wiley, 2015, 1SBN: 978-1-118-93512-5.

A. Devices, Linux industrial i/o subsystem, https://wiki .analog.com/
software/linux/docs/iio/iio, 2017.

T. Instruments, Ti_am335x_adc, http://git.ti.com/ti-linux-kernel/

ti-linux—-kernel/blobs/ti-linux—-3.14.y/drivers/iio/adc/
ti_am335x_adc.c, 2012.

118

http://www.linuxembedded.fr/2017/12/introduction-a-lora/
http://www.linuxembedded.fr/2017/12/introduction-a-lora/
http://processors.wiki.ti.com/index.php/PRU_Read_Latencies
http://processors.wiki.ti.com/index.php/PRU_Read_Latencies
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
http://processors.wiki.ti.com/index.php/PRU-ICSS_Remoteproc_and_RPMsg
https://wiki.analog.com/software/linux/docs/iio/iio
https://wiki.analog.com/software/linux/docs/iio/iio
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c
http://git.ti.com/ti-linux-kernel/ti-linux-kernel/blobs/ti-linux-3.14.y/drivers/iio/adc/ti_am335x_adc.c

[38] J. Cameron, lio_generic_buffer.c, https://github.com/torvalds/linux
/blob/master/tools/iio/iio_generic_buffer.c, 2008.

119

https://github.com/torvalds/linux/blob/master/tools/iio/iio_generic_buffer.c
https://github.com/torvalds/linux/blob/master/tools/iio/iio_generic_buffer.c

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research background
	Machine monitoring
	Sensing methods used in previous studies
	Available IoT platforms
	Comparison

	Machine Learning (ML)
	Supervised and unsupervised machine learning
	Supervised algorithms

	Communication Protocols for data transmission
	MQTT
	CoAP
	WebSocketâ•Žs
	Bluetooth and Bluetooth Low Energy
	LORA
	Zigbee

	Cloud computing and Edge computing

	Proposed Framework
	Hardware components
	Software architecture

	Implementation and Results
	Hardware selection
	Realtime data acquisition on the ti-am335x chip
	Process Realtime Unit (PRU)
	Linux Industrial I/O (IIO) subsystem

	Experimental setup
	Coice of the Materials
	System setup on the band saw
	Sample size and frequency
	Data acquisition

	Feature selection and preprocessing
	choice of Kernel Support Vector Machine (KSMV)
	Feature selection
	Preprocessing

	Trainning and deployment
	Training of the algorithm
	Export classifier and deployment on the BeagleBone Black
	Main Application Code

	Architecture validation and Classification results

	Conclusion and recommendations
	Contribution of this Thesis
	Limitations of the study and recommendations
	Conclusion

	Eagle File for the Beaglebone Black Cape
	The front side of the BeagleBone Cape
	The back side of the BeagleBone Cape

	PRU Tutorial
	ti_am335x_tsadc.h header
	BB-ADC-00A0.dts device tree overlay
	The iio_generic_buffer.c application
	The launch.sh script
	The preprocessing.py code
	The kernel_SVM_trainning.py code
	Detailed results for linear kernel and rbf kernel on the test set
	Result for the linear kernel
	Result for the rbf kernel

	The main application code
	References

