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Abstract: The sensemaking task in investigative analysis generates models that connect entities and 
events in an input stream of data. We describe two knowledge systems for aiding sensemaking in 
investigative analysis. The Spade system uses crime schemas to generate an explanatory hypothesis 
and past cases to validate the hypothesis. The STAB system represents crime schemas as 
hierarchical scripts with goals and states. It generates multiple explanatory hypotheses for an input 
data stream containing interleaved sequences of events, recognizes intent in a specific event 
sequence, and calculates confidence values for the generated hypotheses. We view STAB and Spade 
as automated cognitive assistants to human analysts: they may support sensemaking in investigative 
analysis by generating and managing multiple competing hypotheses.  
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For obvious reasons, intelligence analysis is receiving increasing attention in artificial intelligence (AI) 
(e.g., Adams & Goel 2007; Jarvis, Lunt & Myers 2004; Klein Moon and Hoffman, 2006; Murdock, Aha 
& Breslow 2003; Sanfilippo et. al. 2007; Welty et. al. 2005; Whitaker et. al. 2004). Intelligence analysis 
and other related forms of information analysis, such as investigative analysis, share many common 
components. One unifying element in the various types of information analysis is the task of 
sensemaking: generation of a model of a situation that connect entities and events in an input stream of 
data about the situation (sometimes colloquially called the “connect the dots” problem). The input to the 
sensemaking task in different types of information analysis is characterized by the same kinds of 
features: the amount of data in the input stream is huge, data comes from multiple sources and in 
multiple forms, data from various sources may be unreliable and conflicting, data arrives incrementally 
and is constantly evolving, data may pertain to multiple actors where the actions of the various actors 
need not be coordinated, the actors may try to hide data about their actions and may even introduce 
spurious data to hide their actions, data may pertain to novel actors as well as rare or novel actions, and 
the  amount of useful evidence typically is a small fraction of the vast amount of data (the colloquial 
“needle in the haystack” problem). The desired output of the sensemaking task in different types of 
information analysis too has the same kinds of features: models that explain the connections among the 
entities and events, specify the intent of the various actors, make verifiable predictions, and have 
confidence values associated with them.  
 
Psychological studies of sensemaking in intelligence analysis (Heuer 1999) indicate the three main 
errors made by human analysts in hypothesis generation: (1) Due to limitations of human memory, 
analysts may have difficulty keeping track of multiple explanations for a set of data over a long period 
of time. (2) Analysts may quickly decide on a single hypothesis for the data set and stick to it even as 



new data arrives. (3) Analysts may look for data that supports the hypothesis on which they are fixated, 
and not necessarily the data that may refute the hypothesis. A technological challenge for AI is to 
develop techniques and tools that can help analysts overcome these cognitive limitations. 
 
In this article, we briefly describe two knowledge systems for aiding sensemaking in investigative 
analysis. Spade is a proof-of-concept system that uses semantic knowledge in the form of crime schemas 
to generate an explanatory hypothesis and episodic knowledge in the form of past cases to validate a 
generated hypothesis. The STAB (for STory ABduction) system generates multiple explanatory 
hypotheses for an input data stream containing interleaved sequences of events, recognizes intent in a 
specific event sequence, and calculates confidence values for the generated hypotheses. We view STAB 
and Spade as cognitive assistants to human analysts: they may potentially support sensemaking in 
investigative analysis by generating and managing multiple competing hypotheses.  
 

Spade: Connecting the Dots in a Case Study of Political Assassination 
 
Between December 2000 and April 2001, CNN posted about a dozen news stories on its website 
reporting developments in the investigation of the murder of Mike Jones (names of all entities have been 
altered for privacy reasons). Each of the news stories was in English (with no images) and contained a 
few to several sentences. Only some of the stories contained new facts in the case.  These news stories 
formed the data for the Spade project. (In December 2000, Mr. Jones, the Sheriff-elect of Cross County, 
was shot 11 times in the driveway of his home. Earlier that year, Mr. Jones had defeated Gary Durant, 
the incumbent Sheriff, in a close and bitter race. In April 2001, Mr. Durant was indicted for conspiring 
to murder Mr. Jones.  Mr. Durant and two of his deputies were later convicted of the crime.) 
 
Figure 1 illustrates Spade’s computational architecture. The evidence files contain sentences from the 
CNN news stories (see below). The semantic memory contains schemas for a small set of murder 
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Figure 1: Architecture of Spade 
 



patterns (e.g., crime of passion, organized crime, etc.). The episodic memory contains a small set of past 
cases of political assassinations. The working memory, initially empty, contains the current explanatory 
hypotheses. The translator in Spade’s architecture extracts information from the evidentiary input. The 
hypothesis selector selects schemas of murder patterns stored in the semantic memory that match the 
information extracted by the translator. And finally, once the hypothesis selector has filled the values in 
the schema and selected a specific hypothesis as its explanation for the evidentiary input, the validator 
probes the episodic memory to determine if similar cases have occurred in past. If it can find a similar 
case, Spade views the case as validation of the explanatory hypothesis. 
 
Since our focus in the Spade project was on hypothesis generation in sense making, and not on entity 
extraction through natural language processing, we manually converted long, complex sentences in the 
CNN news stories into smaller, simpler sentences. Furthermore, while we retained the chronological 
order of the data in the news stories, we included only the sentences that contained new data about the 
investigation. Table 1 illustrates a small sample of the input evidence. 
 
Spade Input 
Someone shot MikeJones in his front yard. 
MikeJones won an election. 
GaryDurant lost that election. 
TravisWilson worked for GaryDurant. 
MikeJones’ occupation was sheriff. 
Multiple weapons were used. 
MikeJones was shot 11 times. 

Table 1: Sample of Evidentiary Input 
 
The translator uses the Link Grammar Parser (http://www.link.cs.cmu.edu/) to transform the input 
sentences into a murder schema. In particular, the translator extracts entities from the input sentences, 
places them as fillers in the appropriate slots in the schema, and puts the input murder schema in the 
working memory. For example, the input sentences “Someone shot MikeJones in his front-yard” and 
“MikeJones’ occupation was sheriff” result in the following input murder schema:  
 
Location: front-yard 
Weapon: gun 
FrameID:  murder 
Victim: 
   Name: MikeJones 
   FrameID: MikeJones 
   Occupation: sheriff 
 
Once the input murder schema in the working memory begins to have some entries, the hypothesis 
selector compares the input murder schema with the schemas for various murder patterns stored in the 
semantic memory. Based on matches to slots of the input murder schema, the hypothesis selector selects 
stored murder schemas as candidate hypotheses for the input situation. The selected hypotheses are 
ranked in order of their confidence values. Each slot in the stored murder schemas has a pre-determined 
weight. The confidence value of a murder schema is computed by adding the weights of the matched 
slots.  



 
Each hypothesis is then analyzed by the validator. The validator probes the episodic memory and 
retrieves cases that are similar to a given hypothesis. The cases in the episodic memory are organized in 
a discrimination tree. The bottom of Table 2 shows excerpts of a past case, first as text and then as a 
schema. Retrieved cases are linked to the explanatory hypotheses in the working memory; hypotheses 
that have no matching cases are discarded. 
 
Spade outputs information about all explanatory hypotheses after processing all evidentiary input. A 
user may also access the hypotheses by querying the system at any time. Table 2 below shows Spade’s 
output in response to the query command after processing some evidence regarding Mike Jones’ murder. 
Note that the output contains both a confidence value for the hypothesis (the hypothesis score) and the 
similar case. 
 
Working memory contains 1 hypotheses. 
Top 1 hypotheses:  
Evidence gathered so far: 
Suspects: FrameID:  GaryDurant 
Events:    
  Winner: FrameID:    MikeJones 
    Occupation: sheriff 
  Loser: FrameID:  GaryDurant 
    FrameID:  election 
------------------------------------ 
Hypothesis -- Political Gain 
Hypothesis Score : 2 
LossSurroundingVictim: Power 
ResultOfMurder:  Political_Power_Shift 
PotentialLoss:  Enemy 
Victim:                 
  Occupation: sheriff 
  FrameID:    MikeJones 
PotentialGain:         Power 
------------------------------------ 
Similar case 
Events:            
  Winner: Tim Dunn     
  FrameID: election 
  Loser:  Charlie Lewis 
Weapons: gun 
Victim: 
  FrameID: Tim Dunn 
  Occupation: legislator 
FrameID: murder frame 
LocationOfMurder: home 
Murderer:          
  Motives: Eliminate Political Opponent 
  Occupation: assessor 
  FrameID: Charlie Lewis 

Table 2: Partial output from Spade 



 
 
Functional Role of Case-Based Reasoning 
 
Spade’s knowledge and reasoning is similar to the “data/frame” computational theory of sensemaking 
(Klein, Moon and Hoffman 2006).  However, since Spade is an operational program, it makes much 
more precise commitments of knowledge and reasoning.  
 
Spade’s use of past cases to justify explanatory hypotheses is similar to that of the AHEAD system 
(Murdock, Aha & Breslow 2003). AHEAD uses past cases to build arguments for and against an 
explanatory hypothesis given by a user. An interesting issue here pertains to the functional role of past 
cases in sensemaking in investigative analysis. In investigative analysis, past criminal cases are available 
in abundance. However, use of past cases for hypothesis generation would require adaptation knowledge 
in the form of domain models, case-independent rules or detailed explanations of reasoning used in the 
past cases. It is not evident that this adaptation knowledge is easily available or applicable in 
investigative analysis. Our work on Spade suggests that instead of hypothesis generation, past cases may 
be more useful for post-hoc validation of a hypothesis generated by some other method of reasoning.  

STAB: Finding the Needle in a Haystack of Political Blackmail and Other Crimes 
 
In early 2006, the Pacific Northwest National Laboratories released a synthetic dataset called VAST-
2006 (http://www.cs.umd.edu/hcil/VASTcontest06/). This synthetic dataset pertains to illegal and 
unethical activities, as well as normal and typical activities, in a fictitious town in the United States. It 
contains over a thousand news stories written in English, and a score of tables, maps and photographs. 
Figure 2 illustrates an example news story from the VAST dataset. We manually screened the dataset for 
stories that indicated an illegal or unethical activity, which left about a hundred news stories out of the 
more than a thousand originally in the dataset. We then manually extracted events and entities pertaining 
to illegal/unethical activities. These events/entities form the input to STAB. We also hand crafted 
representations for events in terms of the knowledge states it produces. In addition, we examined the 
maps, photos and tables that are part of the VAST dataset and similarly extracted and represented the 
relevant information about various entities. Table 3 illustrates a sample of inputs to STAB along with 
the resulting knowledge state created by an input event. 
 



 
 

Figure 2: Example news story from the VAST-2006 dataset. 
 
 
Sample STAB Inputs Resulting State 
stolen(money $40 Highway-Tire-Store) Has-object 
cured-disease(Boynton-Labs Philip-Boynton prion-disease) Is-rich-and-famous 
named-after(lab Philip-Boynton Dean-USC) Expert-involved 
was-founded(Boynton-Labs) Is-open 
have-developed(Boynton-Labs prion-disease) Exists-new-disease 
announced-investigation(USFDA Boynton-Labs) Is-investigating 
Injected-cow(Boynton-Labs prion-disease) Cow-is-infected 
treatment-cow(Boynton-Labs prion-disease) Cow-is-cured 

Table 3: Sample STAB inputs 
 
Intent Recognition  
 
In general, the desired outcomes of an investigative case are (1) Models that causally relate entities and 
sequences of events into coherent stories. (2) Explanations that specify intent of the various actors in the 
stories. Ideally, the intent should be specified for specific subsequences of actions in addition to 
complete sequences. (3) Confidence values for the explanations. (4) Explanations that can make 
verifiable predictions. 
 



STAB contains a library of hierarchical scripts relevant to the VAST domain. Unlike traditional scripts 
(Schank & Abelson 1977), STAB’s hierarchical scripts explicitly represent both state and goal at 
multiple levels of abstraction. While representation of the state caused by an event is useful for inferring 
causality, representation of goals of sequences of events is useful for inferring intention.  
We found that seven hierarchical scripts appear to cover all the illegal/unethical activities in the VAST-
2006 dataset. We handcrafted this library of scripts into STAB. Figure 3 illustrates a simple script in 
STAB’s library, which is composed of several smaller scripts. The main script (in the middle of the 
figure) is to Rob a Store, which has several steps to it: Go to Store, Break into Store, Take Money.  This 
script has the goal of Have Money, given the initial state of Not Have Money (top of figure). Each of the 
steps in this script can (potentially) be done using multiple methods. For example, the step of Break into 
Store can be done by Entering through a Window or Entering through a Door (bottom of figure). Each 
of these methods in turn is a process consisting of multiple steps. Figure 4 illustrates a more complex 
script of political conspiracy in which a political figure may get an opponent out of an electoral race 
either by exposing dirt on him (political blackmail) or having him assassinated. 
STAB’s hierarchical scripts are represented in the TMKL knowledge representation language (Murdock 
& Goel 2001). A task in TMKL represents a goal of an agent, and is specified by the knowledge states it 
takes as input, the knowledge states it gives as output, and relations (if any) between the input and 
output states. A task may be accomplished by multiple methods. A method specifies the decomposition 
of a task into multiple subtasks as well as the causal ordering of the subtasks for accomplishing the task, 
and is represented as a finite state machine. Thus, the TMKL representation of a script captures both 
intent and causality at multiple levels of abstraction. 

 
Figure 5 shows STAB’s high-level computational architecture. First, the evidence collector collects the 
input events in an evidence file in chronological order. Next, the story matcher takes one input event at a 
time and uses its resulting knowledge state of the event with the task nodes in the TMKL representations 
of the scripts stored in the story library. The story matcher tags the matching tasks and passes the 
matching plans to a working memory. Then, the story matcher inspects the next input event in the 
evidence file and repeats the above process. 
 

Figure 3: The content and structure of a script in STAB. 



If the new input event results in the retrieval of a new script, then the script is similarly stored in the 
working memory. If the newly retrieved script is already in the working memory, then additional task 
nodes that match the new input are also tagged but only one script instance is kept. Figures 6 & 7 
illustrate the two script plans, Rob a Store and Commit Vandalism, respectively, whose task nodes 
match the input event Break(Window). The matching task nodes are shown with a thick outline around 
yellow boxes and with bold text. Note that when a leaf task node in a plan (e.g., Break(Window) in the 
Rob a Store plot) is activated, then the higher-level task nodes in the method that provide the intentional 
contexts for the leaf node (Break into(Store) & Rob(Store)) are also activated. 

Figure 4: The plan for a political conspiracy intended to remove an 
opponent from an electoral race. Activated nodes are denoted by a 

thick outline around yellow boxes and with bold text. 

Figure 5: High-Level Architecture of STAB. 



 
Jarvis, Myers & Lunt’s (2004) CAPRe system for intent recognition uses Hierarchical Task Networks 
(HTNs) (Erol, Hendler & Nau 1994) for knowledge representation. TMKL is more expressive than HTN 
in part because TMKL enables explicit representation of subgoals and multiple plans for achieving a 
goal. When Hoang, Lee-Urban and Munoz-Avila (2005) designed a game-playing agent in both TMKL 
and HTN, they found that “TMKL provides constructs for looping, conditional execution, assignment 
functions with return values, and other features not found in HTN.” They also found that since HTN 
implicitly provides support for the same features, “translation from TMKL to HTN is always possible.” 

Confidence Values 
STAB calculates confidence values for multiple competing hypotheses based on two criteria (Goel et. al. 
1995): Coverage: An explanation is better than others if explains more of the observed data, and 
Parsimony: One composite explanation is better than another if it is a subset of the other. STAB stores 
the multiple competing hypotheses (Rob a Store and Commit Vandalism) in its working memory and 
assigns confidence values to them. The confidence value of a hypothesis depends on the proportion of 
the task nodes in its script that are matched by the input evidence (higher the proportion, higher is the 
confidence value) and the level of abstraction of the matched task nodes (higher the abstraction level, 

Figure 6: The activated nodes in the Rob a Store plan. 

Figure 7: The activated nodes in the Commit Vandalism plan. 



more is the weight of the node). Equation (1) represents the formula for calculating confidence values 
where level is the depth of the task within the hierarchy of the script and n is the maximum depth of the 
task hierarchy for the script. As an example, the belief value for the Commit Vandalism plan (Fig. 7) is 
(100% / 1) + (50% / 2) = 1.25. Note that only the sub-tree of the method with activated tasks is used in 
the confidence calculation. Similarly, the belief value of the Rob a Store before the Take(Money) node 
is activated equals 1.33. 
 

 (1) 

 
The hypotheses in the working memory generate expectations. Thus, the Rob a Store hypothesis 
generates expectations about the events  Go to (Store), Enter (Building), and Take (Money), while the 
Commit Vandalism hypothesis generates expectation about only Kick In (Door). As additional data 
arrives as input in the Evidence File, STAB matches the data with the expectations generated by the 
candidate hypotheses. If, for example, the new data contains evidence about Take (Money), then this 
node too in the Rob a Store story is tagged, and Equation 1 is used to update the confidence value of the 
hypothesis to 1.50. If the new data contains evidence that contradicts an expectation generated by a 
hypothesis, then the hypothesis is considered as refuted, and its confidence value is reduced to 0. 
 
At the end, STAB generates a report which displays all current hypotheses (including refuted 
hypotheses, if any), the confidence value of each hypothesis, and the evidence for and against each 
hypothesis. Since STAB continually monitors the evidence file and updates its working memory, the 
user may at any point query STAB to inspect the current hypotheses and the related evidence.  

Interface 
STAB’s graphical user interface provides the ability of viewing its scripts in a graphical manner. 
Analysts can navigate through the scripts and focus on the different levels of abstraction present in the 
scripts. 
 
The interface shows a list of all the inputs, so that the analyst can select a subset of the inputs and look at 
the scripts activated by these inputs. For an activated script, the interface also shows which tasks have 
supporting evidence and which tasks have refuting evidence. Figure 8 shows one such activated script.  
The interface also enables the analyst to search through the input list for the presence of specific entities. 

Evaluation  
Our evaluation of STAB has taken two forms. Firstly, we have evaluated STAB for the new VAST-2007 
dataset recently released by the Pacific Northwest National Laboratories 
(http://www.cs.umd.edu/hcil/VASTcontest07/). As with the VAST-2006 dataset, we handcrafted 
representations of events in the VAST-2007 dataset corresponding to illegal/unethical activities. When 
these events were given to STAB as input, we found that STAB invoked six scripts (of the seven stored 
in its library), three with high confidence values and the other three with relatively low confidence 
values.  Our own analysis of VAST-2007 dataset (done manually) suggests that STAB generates the 
right explanations for the VAST-2007 dataset. 
 



Secondly, we have demonstrated STAB to an expert in evaluation of computational tools for intelligence 
analysis. This expert found STAB’s knowledge representations and computational process as 
“plausible.” However, the expert also raised concerns about the usability of STAB as a cognitive 
assistant to human analysts because of the limited interaction its graphical interface provides. In 
particular, the expert suggested enhancing potential interaction between human analysts and STAB to 
include scenarios in which a human may enter a new hypothesis (in the form of a script) into system and 
ask it to find evidence for and against the hypothesis. 
 

Hypothesis Activated/Refuted Confidence Value 
Robbery Activated 2.00 

Vandalism Refuted  
Mad-cow Disease Activated 1.33 

Table 4: Hypotheses activated/refuted using VAST 2007 dataset and confidence in activated 
hypotheses 

 
Current Work 
One of the characteristics of intelligence and investigative analyses is that typically only a small fraction 
of the data contains evidence relevant to the final explanation. Although the VAST datasets are not 
necessarily representative of intelligence data, it is instructive to analyze them for the relative 
proportions of relevant and irrelevant data. Let N be the number of stories in the VAST-2006 dataset, 

Figure 8: An activated script with supporting and refuting evidence. 



and Ne be the number of evidentiary items (events, entities) in the N stories. Let M be in the number of 
stories relevant to STAB and Ne be the number of evidentiary items (events, entities) in the N stories. 
Let M be in the number of stories relevant to STAB and Me be the number of relevant evidentiary items 
in the M stories. Our analysis of the VAST-2006 dataset shows that it contains about N≈1200 news 
stories, each describing about ten events and related entities (see Figure 2 for a sample story). Thus, the 
total number of evidentiary items Ne in this dataset is of the order of 10,000 (Ne≈10,000). However, our 
analysis revealed only about M≈100 news stories in the dataset related to illegal and unethical activities. 
Further, the number of new evidentiary items in the 100 stories is only about 1 per story on average so 
that Me≈100. The dataset also contains some maps, photographs and tables that also describe various 
entities, but this tends to increase Ne (and not Me). Thus, we estimate that the number of evidentiary 
items relevant to illegal or unethical activities in the VAST-2006 dataset is less than 1% of all the 
entities and events in the dataset. Thus, a (second) technological challenge for AI in sensemaking is to 
find the relevant information in the stream of (largely) irrelevant data. 
 
As we mentioned above, we manually extracted these 100 odd evidentiary items for input into STAB. In 
current work, we are partially automating this process in a way that filters out data items that are 
irrelevant to STAB’s sensemaking. The basic idea is that the tasks in STAB’s hierarchical scripts can be 
used as “seed events” to focus the search for relevant events (and related entities) in the input data. Thus, 
for the new VAST-2007 dataset, each news story in is searched for a match with at least one of the seed 
events. At present this is done by simple string matching. Any news story which has no mapping with 
the seed events is filtered out. The remaining stories are used to manually generate inputs to STAB. 
Table 5 illustrates a few sample seed events and a snippet of a story matching the seed event “inject.” 
 
Seed Events 

steal 

break 

kick 

develop 

inject 

treat 

Seed: inject 
 
Story: 
For the study, Dr. Boynton and his colleagues 
produced prion protein fragments in bacteria, 
folded them into larger protein structures called 
amyloid fibrils, and then injected them into the 
brains of susceptible mice. The mice began 
exhibiting symptoms of disease in their central 
nervous systems.…………. 
 

Table 5: Sample seed events and a story obtained using a seed event 
 
Of course the above filtering process may exclude some events which are relevant but which have no 
mappings into the tasks in STAB’s scripts (false negavtives). Further some of the events thus included in 
Me may actually be irrelevant (false positives). Our hypothesis is that STAB’s scripts will enable it  
eliminate the false positives in later processing: a false positive event will either not activate any of the 
scripts or activate one with very small confidence. Further, the activated scripts will generate 



expectations for other relevant events and hence lead to new search for any false positives eliminated in 
the first round. 
 
We have developed a module which takes the VAST-2007 news stories in unstructured text and 
generates structured inputs in a form acceptable to the story matcher. Following our earlier work on 
Spade, this module utilizes the Link Grammar Parser to obtain entities present in a sentence and 
syntactic roles of the entities like subjects, verbs, objects, etc. The parser also gives links between words 
representing various syntactic relationships, for example, a link AN connects noun modifiers to nouns. 
Using rules on these links, the sentences are converted into the needed structured form. 
 
We found that the rules developed for processing the parser output to create the structured inputs left a 
large room for error (i.e., many false positives and false negatives).  There are at least two reasons for 
these errors. Firstly, it is very difficult to set up a perfect set of rules which deal with all possible 
syntactic variations of natural language sentences in a correct manner. Secondly, there can be errors in 
the other language processing stages like that of extracting sentences from documents or the parsing 
stage. However, we have also found that, for the VAST2007 dataset, the events output by the above 
module are enough activate appropriate scripts in STAB. Our work is now focusing on making this 
processing more robust. 

Discussion 
Our work on STAB and Spade is an attempt to address the first technological challenge for using AI for 
sensemaking that we mentioned in the introduction: supporting human analysts in overcoming three 
specific cognitive limitations: (i) limitations on size of memory,  (ii) cognitive fixation, and (iii) 
confirmation bias. Firstly, there are no limitations on the size of STAB’s or Spade’s knowledge libraries 
or working memory. On the contrary, STAB offers a non-volatile memory of hierarchical scripts. 
Secondly, for each new additional input event, STAB examines all the scripts whose task nodes match 
the input. Thus, it is not fixated on any particular hypothesis. Thirdly, STAB explicitly looks not only 
for evidence that may confirm the expectations generated by a hypothesis but also for evidence that may 
contradict the expectations.  
 
To accomplish this, STAB and Spade use knowledge representations and computational techniques that 
appear especially useful for sensemaking in investigative analysis. In particular, unlike traditional case-
based reasoning systems, Spade uses past cases not for generating a hypothesis but for validating a 
hypothesis generated by a different method of reasoning. Further, unlike traditional scripts, STAB uses 
hierarchical scripts with explicit representation of goals and states. This enables it to more directly 
recognize the intent of sequences of actions. 
 
We also noted a second technological challenge for AI in supporting investigative and intelligence 
analyses: finding relevant information in an input stream of data containing mostly irrelevant 
information. Our preliminary work on this issue suggests that it may be productive to combine top-down 
and bottom-up processing: the tasks in STAB’s scripts act as seed events for locating relevant 
information in the input news stories, and the link grammar parser attempts to extract events and entities 
related to the seed events. A difficulty with STAB’s current method for filtering out irrelevant 
information in its current form is that it appears to lead to the elimination of some relevant information 
and the inclusion of some irrelevant data.   
 



Finally, it is worth noting a third technological challenge for AI. We view STAB and Spade as cognitive 
assistants to human analysts. However, the use of cognitive assistants in the practice of investigative or 
intelligence analysis raises the critical issue of trust: human analysts must be able to trust the 
computational tools (or they will not use the tools). Therefore, an automated agent such as STAB must 
not only produce accurate results and provide evidentiary support for them, but it also must make its 
reasoning transparent to the analyst. In future work we will explore how STAB can generate perspicuous 
explanations of its reasoning. 
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