
UNCERTAINTY QUANTIFICATION IN THE CONTEXT OF 6D POSE
ESTIMATION

A Dissertation
Presented to

The Academic Faculty

By

Maya Boumerdassi

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science
College of Computing

Georgia Institute of Technology

May 2022

© Maya Boumerdassi 2022

UNCERTAINTY QUANTIFICATION IN THE CONTEXT OF 6D POSE
ESTIMATION

Thesis committee:

Dr. Cédric Pradalier
College of Computing
Georgia Institute of Technology

Dr. Gerandy Brito
College of Computing
Georgia Institute of Technology

Dr. Diyi Yang
College of Computing
Georgia Institute of Technology

Date approved: April 22, 2022

To my family,

ACKNOWLEDGMENTS

First and foremost, I have to thank my research supervisors, Dr. Cédric Pradalier and

Benjamin Joffe. Without their assistance and dedicated involvement in every step through-

out the process, this thesis would have never been accomplished. I would like to thank you

very much for your support and understanding over this past year.

I would like to thank Benjamin Joffe for allowing me to work at his side on this deep

learning project at the Georgia Tech Research Institute, providing me the opportunity to

work in a stimulating environment which helped me to develop my understanding of the

field and for offering me continuous support and valuable insights.

I would also like to thank Dr. Cédric Pradalier for accepting to be my thesis advisor,

for informing the direction of my research and for always providing valuable inputs that

informed my research.

I would like to thank my friend and collaborator Richard Huang for his valuable help,

contribution, guidance and support for my thesis.

I would also like to show gratitude to my committee, including Dr. Diyi Yang and Dr.

Gerandy Brito.

I would like to give special thanks to my family and friends for their continuous support

and understanding when undertaking my research and writing my thesis.

iv

CONTENTS

Acknowledgments . iv

List of Figures . viii

List of Acronyms . xi

Summary . xii

Chapter 1: Introduction and Background . 1

1.1 Background . 1

1.2 Motivation . 3

Chapter 2: Related Work . 4

Chapter 3: Methods . 8

3.1 Original Deep Evidential Approach . 8

3.2 General Framework . 10

3.2.1 Multidimensional case . 11

3.2.2 Predicting an angle . 13

3.2.3 2D Special Euclidean Group SE(2) case 14

3.2.4 Points on a sphere: the S(2) case 16

3.2.5 3D Orthogonal Group SO(3) case 17

v

3.2.6 3D Special Euclidean Group SE(3) case 23

Chapter 4: Experiments . 25

4.1 Replicating the experiments of the base paper 25

4.1.1 Same setting and hyperparameters as base paper 25

4.1.2 Adding ”holes” in the data . 27

4.1.3 Applying Gaussian Noise . 29

4.1.4 Conclusion . 30

4.2 Multidimensional case . 31

4.2.1 Predicting multiple uncertainty measures 31

4.2.2 Predicting a single dimension of uncertainty 34

4.3 Predicting an angle . 36

4.3.1 Predicting a single dimension of uncertainty 36

4.4 Points on a sphere: the S(2) case . 39

4.4.1 Predicting a single dimension of uncertainty 39

4.5 2D Special Euclidean Group SE(2) case 40

4.5.1 Predicting multiple uncertainty measures 40

4.5.2 Predicting a single dimension of uncertainty 43

4.6 3D Orthogonal Group SO(3) case . 44

4.6.1 Predicting a single dimension of uncertainty 44

4.7 3D Special Euclidean Group SE(3) . 48

4.7.1 Predicting multiple uncertainty measures 48

4.7.2 Predicting a single dimension of uncertainty 51

vi

Chapter 5: Conclusion and Future Work . 53

References . 55

vii

LIST OF FIGURES

1.1 Dense Fusion Model: deep network model for 6D pose estimation from
RGB-D data, performing predictions for real-time applications such as robot
grasping and manipulation [8]. 2

2.1 Softmax Score on a modified image from the ImageNet dataset using the
VGG-16 classifier [14]. 4

2.2 Illustration and examples of using an ensemble of heterogeneous models
for uncertainty quantification. They calculate the average disagreement of
K pose predictions from K different estimators as an estimation of uncer-
tainty [11] . 5

2.3 Densities of the Bingham distribution represented for different dimension-
ality. For the circular case (a), for the spherical case (b), and for the 4d case
(quaternions in SO(3) (c). This representation allows to simultaneously
represent the orientation and the corresponding uncertainty [10]. 7

3.1 Deep Evidential Neural Network . 9

3.2 Modified Deep Evidential NN to predict 1D uncertainty in SO(3) 21

3.3 Euler angles using the roll, pitch, yaw representation [34] 22

4.1 Reproducing the experiment on the toy example from the base paper [1] . . 26

4.2 Loss obtain on the toy example from the base paper [1] 26

4.3 Plotting Aleatoric and Epistemic Uncertainties along with the train Noise
(constant σ case) . 27

4.4 Experiment with holes in the train set centered aroung 0 28

viii

4.5 Plotting Aleatoric and Epistemic Uncertainties along with the train Noise
with holes . 28

4.6 Plotting Aleatoric and Epistemic Uncertainties along with the train Noise
(σ ∼ N(0, 3) + 3 case) . 29

4.7 Plotting Aleatoric and Epistemic Uncertainties along with the train Noise
(σ ∼ N(1, 3) + 3 case) . 30

4.8 Overall Results for Multidimensional Case with Gaussian Noise 33

4.9 Plotting Distance to Ground Truth, Applied Gaussian Noise and Epistemic
and Aleatoric Uncertainties for the Multidimensional Case 33

4.10 Overall Results for Multidimensional Case with Gaussian Noise - 1D un-
certainty case . 35

4.11 Plotting Distance to Ground Truth, Applied Gaussian Noise and Epistemic
and Aleatoric Uncertainties for the Multidimensional Case - 1D uncertainty
case . 36

4.12 Plotting the Distance dS(1) to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the 1D-angle case 38

4.13 Plotting the Distance dgeo to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the 1D-angle case 38

4.14 Plotting Geodesic Distance to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the S(2) case 40

4.15 Plotting Distance to Ground Truth, Applied Gaussian Noise, Epistemic and
Aleatoric Uncertainties for the SE(2) case 42

4.16 Plotting Geodesic Distance to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the S(2) case - 1D uncertainty case . . 44

4.17 Overall results with Gaussian Noise for the SO(3) case 45

4.18 Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic
and Aleatoric Uncertainties for the SO(3) 47

4.19 Modified Deep Evidential NN in SE(3) . 48

4.20 Overall results with Gaussian Noise for the SE(3) case : Rotation Part . . . 49

ix

4.21 Overall results with Gaussian Noise for the SE(3) case : Translation Part . . 49

4.22 Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic
and Aleatoric Uncertainties for the SE(3) case 50

4.23 Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic
and Aleatoric Uncertainties for the SE(3) case - 1D uncertainty case 52

x

LIST OF ACRONYMS

CAD Computer Aided Design

NNs Neural Networks

OOD Out-Of-Distribution

UQ Uncertainty Quantification

xi

SUMMARY

We use the work on Deep Evidential Regression [1] that was initially developed in the

context of simple regression in R, and extend it to work on higher dimensional groups

and manifolds with a Lie algebra structure. We develop a general framework for the Deep

Evidential Loss and assess how well the models perform on several manifolds, identify

and discuss several limitations encountered through experiments. Finally, one of the major

goals of this thesis is to assess whether we could be use the Deep Evidential method in

the context of 6D Object Pose Estimation, where it can be crucial to have both information

on the prediction and the uncertainty on the prediction (really important for safety-critical

robotic manipulation).

xii

CHAPTER 1

INTRODUCTION AND BACKGROUND

Deep Neural Networks (NNs) are now a widely used in many research fields, going from

speech and text recognition tasks [2] to complex tasks in safety-critical settings such as

medical image analysis [3]. In particular, a lot of research has been done in the field of

robotics, where Deep Neural Networks can benefit from the access to -sometimes live-

sensor data. Indeed, there has been a lot of work done in the field of autonomous driving

as discussed in [4]. Such applications require the access to models detecting and predicting

accurate pose of objects with respect to a car. Moreover, as we are in a safety-critical con-

text, it is crucial that the model not only predicts accurate poses, but it should also give a

reliable uncertainty measure over its predictions, resist to adversarial attacks to prevent ma-

licious hijacking and detect In- and Out-Of-Distribution (OOD) samples [5] (as the model

is less likely to perform well on OOD data). If the model can successfully predict a reliable

uncertainty measure, we could then build a system where, for instance, a human takes over

the machine when the uncertainty goes over a given threshold [6].

1.1 Background

In this work, we are interested in Uncertainty Quantification (UQ) in the field of 6D Object

Pose Estimation. Let us first introduce the field of 6D Object Pose Estimation in Deep

Learning.

Deep Pose Estimation

Deep Neural Networks are now widely used to predict 6D Object Pose in SE(3). Recent

work has enabled the prediction of 6D Object Pose from RGB-D images [7, 8], a prominent

task in a lot of robotic applications such as robotic grasping or autonomous driving.

1

Recent work have focused on predicting 6D Pose from RGB-D input data -while it was pre-

viously done from RGB data- to build more robust method and benefit from the addition

of the depth dimension: such models are more robust to lighting, scaling, shifting, noise,

obstruction in the input data since they have access to the depth information, major infor-

mation when dealing with problems in 3D. To accurately predict 6D Object Poses, some

models [8] use predefined Computer Aided Design (CAD) models of the object classes at

hand.

Figure 1.1: Dense Fusion Model: deep network model for 6D pose estimation from RGB-D
data, performing predictions for real-time applications such as robot grasping and manipu-
lation [8].

Other papers focused on improving the models to work on different instances belonging

to the same class (for example, different instances, ie .models, of cameras in the class

’camera’) without prior CAD models [7]. For a given object category, [7] use canonically

oriented instances and normalize them to lie within the Normalized Object Coordinate

Space (NOCS).

Most work focused on improving the accuracy of the models, leading to new state-of-

the-art models for 6D Object Pose Estimation. But some robotic manipulation are safety-

critical (e.g. manipulation with hazardous products, autonomous driving) such that we

cannot simply rely on accuracy metric and require reliable uncertainty estimation to make

decisions.

2

Uncertainty Quantification

Uncertainty Quantification has previously been studied in the context of 6D Pose Estima-

tion [9]. Most of the methods used in the 3D Orthogonal Group SO(3) and the 3D Special

Euclidean Group SE(3) use the Bingham Loss [10]. Other methods focused on estimating

an uncertainty ”by committee” [11]. We will further discuss these methods in chapter 2, but

we believe that the Deep Evidential Regression method developed in [1] is promising as it

combines aleatoric (uncertainty from the data) and epistemic (uncertainty from the model

prediction) uncertainties.

1.2 Motivation

Uncertainty Quantification has also previously been studied in the context of 6D Pose Es-

timation [9]. Most of the methods used in the 3D Orthogonal Group SO(3) and the 3D

Special Euclidean Group SE(3) use the Bingham Loss [10]. Other methods focused on

estimating an uncertainty ”by committee” [11]. We will further discuss these methods in

chapter 2, but we believe that the Deep Evidential Regression method developed in [1] is

promising as it combines aleatoric (uncertainty from the data) and epistemic (uncertainty

from the model’s prediction) uncertainties. This method [1] that it was only used in R. Our

work focuses on applying the method developed in [1] and extend it to higher dimensional

groups and spaces with a Lie algebra structure (groups more commonly used in the context

of robotic manipulation and state estimation). More precisely, we show that we can use our

adapted version of the Deep Evidential Regression loss in SE(3).

3

CHAPTER 2

RELATED WORK

In this section, we review previous research work on uncertainty quantification methods

and their application to orientation and pose estimation.

Uncertainty Quantification is well researched topic that can be addressed using two ap-

proaches. The first one is to consider that UQ can be addressed in the form of a probabilis-

tic distribution of possible outcomes on a prediction [10]. The second one is that it can be

considered as a deterministic measure [11].

Overview of Uncertainty Quantification in Deep Learning

Let us first give an overview of uncertainty quantification in Deep Learning. Uncertainty

Quantification is a well known topic in the field of classification and regression in R [12,

9, 13]: most of them introduce a new method based on density modelisation. Indeed, [14]

shows that using Softmax as the last layer of the model is not a good choice (the model can

be “fooled” if presented with noisy images, see Figure 2.1)

Figure 2.1: Softmax Score on a modified image from the ImageNet dataset using the VGG-
16 classifier [14].

In [14], they propose their own new method for estimating predictive confidence based on

density modeling. Their idea is to compare the distance of the current point to the points

belonging to either classes to compute the confidence.

4

[15, 16] showed that ”ReLU type” networks are not robust confidence estimators as

they produce almost always high confidence predictions far away from the training data.

They introduce a new robust optimization technique similar to adversarial training which

enforces low confidence predictions far away from the training data. They show that this

technique is surprisingly effective in reducing the confidence of predictions far away from

the training data while maintaining high confidence predictions and test error on the original

classification task compared to standard training. Most of these methods [14, 15, 16] cannot

be used in our setting since we are not handling classification tasks.

Deterministic Uncertainty Estimation

Let us now consider the case where UQ is computed using a deterministic modelisation.

Another important research area of Uncertainty Quantification (UQ) is ensemble methods

[17, 18, 19], which is the combination of multiple models to get a more performant one.

[11] focus on a deterministic approximation of the quality of a certain pose prediction.

Figure 2.2: Illustration and examples of using an ensemble of heterogeneous models for
uncertainty quantification. They calculate the average disagreement of K pose predictions
from K different estimators as an estimation of uncertainty [11]

5

They introduce the Average Disagreement (ADD) as an uncertainty estimation. The

idea is to train two or more heterogeneous models and computes their average disagree-

ment against one another and consider this quantity as the uncertainty estimation - see

Figure 2.2. Their study shows that this ADD metric is a relevant metric that successfully

works in real-robot grasping application. This method benefits from the fact that it is a

learning-free metric (ie. not internally learnt by the model). This method could be a good

approach but it requires to train several Deep Neural Networks.

The first diadvantage is that, in the context of Pose Estimation NNs, the training is

computationally heavy and can be hard to tune. Since most of the popular ensemble tech-

niques require multiple samples during the inference, they are equivalent to independently

trained models [20]. Besides, the number of parameters, along with the computational

cost, linearly scales with the size of the ensemble, which is not acceptable in many crit-

ical time/memory-sensitive applications. Moreover, there is no clear recommendation as

to how to select the different models to train. Besides, this method does not produce an

uncertainty measure precisely identifying when the uncertainty comes from the data (for

instance, when dealing with OOD samples) or when it comes from the model (epistemic

uncertainty). That is why we decided to revert to another method.

Probabilistic Uncertainty Estimation

The other type of approach to uncertainty quantification is to use probabilistic distribution

of possible outcomes distribution [9, 21]. It is also referred to as Bayesian Deep Learning

[22]. This allows a probabilistic interpretation of uncertainty by inferring some distribu-

tions over the model weights. Some techniques in Bayesian Deep Learning use methods

such as dropout approximation [23] or Markov chain Monte Carlo [24].

When the models are used to predict orientations in SO(3) or 6D poses in SE(3), one

of the most commonly used prior-distribution is the Bingham Distribution, which is a prob-

6

ability distribution with antipodal symmetry defined on the n-sphere. The characteristics

of this distribution allow to formulate losses that naturally captures the antipodal symmetry

of the representation [10, 25, 26].

In [10], they introduced the Bingham loss, a loss function based on the Bingham dis-

tribution that enables neural networks to predict uncertainty over unit quaternions and thus

predict uncertain orientations. This work enables the use of highly symmetric objects and

ambiguous sensor data in the context of pose and orientation estimation with uncertainty

predictions -see Figure 2.3.

Figure 2.3: Densities of the Bingham distribution represented for different dimensionality.
For the circular case (a), for the spherical case (b), and for the 4d case (quaternions in
SO(3) (c). This representation allows to simultaneously represent the orientation and the
corresponding uncertainty [10].

The major drawback with these methods is once again that they are computationally

heavy, since they require multiple forward passes with some priors on the model parame-

ters.

The Deep Evidential Regression method developped in [1] benefits from the fact that

there is no need for multiple forward passes or sampling during inference, which speeds up

the process. The other major advantage of this method is that it predicts both an epistemic

(uncertainty of the model in the prediction) and aleatoric (uncertainty coming from the

data) uncertainties. We will now dive deeper into this method and the framework we use in

our work.

7

CHAPTER 3

METHODS

In this thesis, we focus on applying the Deep Evidential Regression loss [1] to different

groups and manifolds with a Lie algebra structure. The main objective is to assess whether

the Deep Evidential method can be applied to more complex manifolds and accurately

predict both the regression target as well as a good uncertainty measure.

3.1 Original Deep Evidential Approach

In the base paper, [1] estimates uncertainty over a regression prediction in R. Their main

idea is to suppose that the targets yi ∈ R are drawn i.i.d from a Gaussian Distribution with

unknown mean and variance (µ, σ2) and train a model to estimate the parameters of this

unknown distribution. To do so, they place a Gaussian prior on the unknown mean µ and an

Inverse Gamma prior on the unknown variance σ2. Let m ∈ N be the number of samples.

We have the following:

∀i ∈ J1,mK, yi ∈ R

(y1, ..., ym) ∼ N (µ, σ2),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.1)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

To estimate the parameters of this unknown distribution, they develop a Deep Evidential

Regression model which outputs 4 parameters ω = [γ, α, β, ν] for each target yi, where

γ ∈ R, α > 1, β > 0, ν > 0. ω is then used to compute both the regression target and the

uncertainty over the prediction.

8

On Figure 3.1 is represented the architecture of the neural network used in [1]. They in-

troduce a custom final dense layer referred to as ”Linear Normal Gamma Layer”. Through

this custom layer, they apply different activation functions for each parameter: they apply

a softplus(·) activation on (α, β, ν) with an additional +1 to α since α > 1; they apply a

linear activation function for γ.

Figure 3.1: Deep Evidential Neural Network

To estimate the unknown distribution parameters µ and σ2 and the uncertainty over the

prediction, they use the following formulas:

E(µ) = γ︸ ︷︷ ︸
prediction

, E(σ2) =
β

α− 1︸ ︷︷ ︸
aleatoric

, Var(µ) =
β

ν(α− 1)︸ ︷︷ ︸
epistemic

(3.2)

The three quantitiees respectively represent the prediction, the aleatoric uncertainty (uncer-

tainty coming from the input data) and epistemic uncertainty (uncertainty of the model in

the prediction).

To train the model, they introduce the Deep Evidential loss Li. Let us denote yi ∈ R the

i-th regression target and ω = [γ, α, β, ν] the model output where γ ∈ R is the model’s

prediction and α > 1, β > 0, ν > 0 are the evidential parameters.

9

The loss Li is defined by:

Li(yi, ω) = LNLL
i (yi, ω) + λLR

i (yi, ω) (3.3)

where λ > 0 the regularization coefficient.

LNLL
i (yi, γ) is the Negative Logarithm of model evidence and LR

i (yi, γ) is the evidence

regularizer defined by::

LNLL
i (yi, ω) =

1

2
log

π

ν
− α log Ω +

(
α +

1

2

)
log
(
(yi − γ)2 ν + Ω

)
+ log

(
Γ(α)

Γ
(
α + 1

2

))
(3.4)

LR
i (yi, ω) = |yi − E [µi]| .Φ = |yi − γ| (2ν + α) (3.5)

where Ω = 2β(1 + ν), and Γ(·) is the gamma function.

3.2 General Framework

We noticed that the work by Amini et. al. [1] on Deep Evidential Regression is adapted

to regression tasks in R in the cartesian space. The thesis focuses on extending the Deep

Evidential Loss to:

1. multi-dimension regression tasks in Rn in the Cartesian Space

2. regression tasks in groups and manifolds with a Lie Algebra structure.

Let us first define a general framework for Deep Evidential Regression. The depen-

dence of Li as defined by Amini et. al.[1] on yi is through its distance to γ (see Equation 3.4

and Equation 3.5). Let us introduce the distance function d(yi, γ). Using this distance func-

tion, we can rewrite the formula of the loss Li and get a general framework for computing

10

Li as follows:

Li (d(yi, γ), ω) = LNLL
i (d(yi, γ), ω) + λLR

i (d(yi, γ), ω) (3.6)

with d(yi, γ) = |yi − γ| the distance function in R and λ > 0 in the original case of a

regression task in R in the cartesian space.

The geometry of the objects varies with the space they lie in, thus the distance function

d(yi, γ) should also reflect the properties of the space. Since the distance d(yi, γ) is the

only term in the Deep Evidential loss Li that depends on yi, we can hope to extend the

Deep Evidential loss to other spaces by choosing a more appropriate distance function.

In this work, we decided to predict a 1D uncertainty parameterized by the evidential

parameters α, ν and β (see Equation 3.2) and we also made the assumption that dimensions

are independent. Even though this is a significant approximation, it leads to models that

are easier to implement, tune and reproduce. Moreover in our experiments, we noticed

that the loss was more stable than in a multivariate case described in the work by [27].

Even if we don’t know the precise direction of the uncertainty when dealing with multi-

dimension objects, we can still get a good approximation of the overall 1D uncertainty

on the prediction, with its epistimic and aleatoric components. This thesis is a first step

to extend Deep Evidential Regression to multiple spaces, and further work could be done

using multivariate loss inspired from [27].

3.2.1 Multidimensional case

The most direct extension of the 1D regression is the multidimensional case. Let n ∈ N be

the dimension of the cartesian space and m ∈ N be the number of samples.

11

Predicting an uncertainty measure by dimension

This section was done in collaboration with Richard Huang. In this case, yi ∈ Rn and

ω = [γ, α, β, ν] ∈ Rn×4. As a simplification with respect to the multivariate case [27], we

make the assumption that the dimensions are independent.

This way, we can consider that for each dimension j ∈ 1, ..., n, the inputs yij ∈ R follow

Gaussian distributions with unknown mean and variance (µj, σ
2
j). In short, we have the

following setting:

∀i ∈ J1,mK, yi ∈ Rn

∀j ∈ J1, nK, (y1j , ..., ymj
) ∼ N (µj, σ

2
j),

µj ∼ N (γj, σ
2
j ν

−1
j), σ2

j ∼ Γ−1(αj, βj)

(3.7)

where Γ(·) is the gamma function and αj > 1, βj > 0, νj > 0.

Since the dimensions are independent, we can compute the losses Lij independently for

each dimension j ∈ 1, .., n using Equation 3.6 with the distance function dR in R and sum

the losses to compute the Deep Evidential loss Li:

Li (yi, ω) =
n∑

j=1

Lij (dR(yi,j, γj), ωj)

dR
(
yij , γj

)
=
∣∣yij − γj

∣∣ (3.8)

where yi,j the j-th component of yi ∈ Rn and ωj = [γj, αj, βj, νj] ∈ R4 the corresponding

model output.

12

Predicting a single dimension of uncertainty

An alternative method is to predict a single dimension of uncertainty for the n dimen-

sions. This is the method that we used in other manifolds. In this case, yi ∈ Rn and

ω = [γ, α, β, ν] with γ ∈ Rn and (α, β, ν) ∈ R3 the evidential parameters.

This way, we can consider that the inputs yi ∈ R follow Gaussian distributions with un-

known mean and variance (µ, σ2). In short, we have the following setting:

∀i ∈ J1,mK, yi ∈ Rn

(y1, ..., ym) ∼ N (µ, σ2),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.9)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

In this case, we compute a single the Deep Evidential loss Li for each yi using Equation 3.6

with the distance function d1D in R:

d1D (yi, γ) = ∥yi − γ∥ (3.10)

with the L2 norm in Rn, yi ∈ Rn and ω = [γ, α, β, ν] ∈ R4 the corresponding model

output.

3.2.2 Predicting an angle

Let us consider that we want to predict an angle in R. Depending on the representation used,

this section can be applied to several groups that are closely related. Indeed, predicting an

angle yi ∈ R is equivalent to predicting points yi ∈ R2 on a 1-sphere S(1) such that

∥yi∥ = 1. A 2D rotation matrix in SO(2) is also parametrized by one rotation angle θ ∈ R.

An angle θ ∈ R is equivalent to (cos θ, sin θ) ∈ S(1) and [[cos θ,− sin θ], [sin θ, cos θ]] ∈

SO(2).

13

Let us assume yi ∈ R is an angle in R and ω = [γ, α, β, ν] ∈ R4. If yi is an angle, and we

don’t consider too high variances with respect to π (since we are handling angles), we can

use Gaussian distributions even though their use for angles remains an approximation. Let

m ∈ N be the number of samples. In this case, we have the following setting:

∀i ∈ J1,mK, yi ∈ R an angle

∀i ∈ J1,mK, (y1, ..., ym) ∼ N (µ, σ),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.11)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

We can compute the corresponding Deep Evidential loss Li with Equation 3.6 using two

alternative distance functions dgeo for angles or dS(1) for points in S(1), defined as:

dgeo(yi, γ) = |fmod (yi − γ + π, 2π)− π|

dS(1)(yi, γ) =

∣∣∣∣yi · γ∥yi∥
− 1

∣∣∣∣ (3.12)

with the 2D dot product and the L2 norm in R.

3.2.3 2D Special Euclidean Group SE(2) case

Let us now consider yi ∈ SE(2) such that yi = [ti, ri] ∈ R3 where ti ∈ R2 and ri ∈ R

respectively represent 2 independent translations and 1 independent rotation angle.

Predicting multiple uncertainty measures

In this case, we explore the case where we predict one uncertainty measure for each trans-

lation and one uncertainty measure for the rotation part. The model outputs ω = [ωt, ωr]

such that ωt = [γt, αt, βt, νt] ∈ R2×4 and ωr = [γr, αr, βr, νr] ∈ R1×4.

14

Let m ∈ N be the number of samples. We have the following setting:

∀i ∈ J1,mK, yi = [ti, ri] ∈ SE(2)

Translation part: ∀j ∈ J1, 2K, (t1j , ..., tmj) ∼ N (µtj , σtj),

with µtj ∼ N (γtj , σ
2
tj
ν−1
tj

), σ2
tj
∼ Γ−1(αti , βtj)

Rotation part: (r1, ..., rm) ∼ N (µr, σr),

with µr ∼ N (γr, σ
2
rν

−1
r), σ2

r ∼ Γ−1(αr, βr)

(3.13)

where Γ(·) is the gamma function and αtj > 1, βtj > 0, νtj > 0 and αr > 1, βr > 0, νr > 0.

Assuming the translations and rotation are independent, we compute the following loss Li:

Li (yi, ω) = Li (ti, ωt) + Li (ri, ωr)

=
2∑

j=1

Lij

(
dR(tij , γtj), ωtj

)
+ Li (dgeo(ri, γr), ωr) (3.14)

where the losses are computed using Equation 3.6.

Previous work [28] shows that we can set a weighting to regress translation and rotation

(for both SE(2) and SE(3)) for better results. We can either tune it as a hyperparameter or

learn an optimal weighting inside the model. Either way, adding this weighting parameter

will not be discussed here because it does not change the formalism of the loss Li.

Predicting a single dimension of uncertainty

An alternative method is to predict a single dimension of uncertainty for both the translation

and rotation part. Let us recall that yi ∈ SE(2) such that yi = [ti, ri] ∈ R3 where ti ∈ R2

and ri ∈ R. In this case, the model predicts ω = [γ, α, β, ν] with γ = [γt, γr] ∈ SE(2) and

(α, β, ν) ∈ R3 the evidential parameters.

This way, we can consider that the inputs yi ∈ SE(2) follow Gaussian distributions with

unknown mean and variance (µ, σ2).

15

In short, we have the following setting:

∀i ∈ J1,mK, yi ∈ SE(2)

(y1, ..., ym) ∼ N (µ, σ2),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.15)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

In this case, we compute a single the Deep Evidential loss Li for each yi using Equation 3.6

with the distance function dSE(2) in R:

dSE(2) (yi, γ) = ∥ti − γt∥+ λd dS(1)(ri, γr) (3.16)

with the L2 norm in R2, yi ∈ SE(2), γ = [γt, γr] ∈ SE(2) the corresponding model

prediction and λd > 0.

3.2.4 Points on a sphere: the S(2) case

Let us consider yi ∈ S(2). We have yi ∈ R3 such that ∥yi∥ = 1.

Predicting a single dimension of uncertainty

For this manifold, we only consider predicting a 1D uncertainty over all dimensions, such

that ω = [γ, α, β, ν] with γ ∈ R3 the mean vector in the unit-sphere predicted by the

model and α, β, ν ∈ R the evidential parameters describing an error in terms of geodesic

distance. As for the angle, the use of Gaussian distributions on the sphere is an approxi-

mation that will be acceptable as long as the uncertainties are small with respect to π. The

complete adaptation of the evidential regression to generic distributions formally defined

in manifolds is beyond the scope of this thesis.

16

Let m ∈ N be the number of samples. We have the following setting:

∀i ∈ J1,mK, yi ∈ S(2)

(y1, ..., ym) ∼ N (µ, σ2),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.17)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

We compute the loss Li in S(2) using Equation Equation 3.6 with the distance function

dS(2) defined as follows with the 3D dot product and the L2 norm in R3 :

dS(2) (yi, γ) =

∣∣∣∣yi · γ∥yi∥
− 1

∣∣∣∣ . (3.18)

3.2.5 3D Orthogonal Group SO(3) case

Let us now focus on the 3D Orthogonal Group SO(3) application. Rotations in SO(3)

can be represented using quaternions. Let us first review some information on quaternions.

This part was done in collaboration with Richard Huang, who focused on the definition of

the distance metric while I focused on the sampling of quaternions.

Overview of quaternions

Quaternions are a generalization of complex numbers with three imaginary parts (i, j and

k). A quaternion is a complex number in dimension 4 that can be used to represent the

orientation of a rigid body or the coordinates of a reference frame in a three-dimensional

space. The general definition of a quaternion q is given by:

q = a+ b.i+ c.j + d.k = [a b c d] (3.19)

where a, b, c, d ∈ R.

17

Since we are interested in predicting rotations in SO(3), we will focus on the manifold

of unit quaternions q such that ∥q∥ = 1. Indeed, these quaternions are of particular interest

to us for representing rotations as isometries. They are a continuous and smooth represen-

tation of rotations. They lie on the unit manifold, which is a simple constraint to enforce

through back-propagation. This way, quaternions are an attractive choice for deep learning

because they are easily formulated in a continuous and differentiable way.

There are several properties of quaternions that are important to remember as they are

used in later sections in this thesis, but let us first focus on the Deep Evidential Framework

definition for SO(3).

Distance Metric in SO(3)

In the SO(3) case, we will consider a quaternion as one object and assume that its dimen-

sions are not independent (see Equation 3.25 for more details), which is the most important

difference with the multidimensional case mentioned earlier in the thesis.

Let us consider yi the 3D rotation target represented as a unit quaternion qi such that

∥qi∥ = 1 (by definition of quaternions in SO(3) [29]). The model output is ω = [γ, α, β, ν]

with γ ∈ SO(3) the mean predicted quaternion and (α, β, ν) ∈ R3 the evidential parame-

ters.

Let us first focus on defining a distance function for the quaternions in SO(3). The

distance between two quaternions is the norm of the rotation transforming one into the

other. Let us introduce the distance function dquat such that:

dquat(yi, γ) =

∣∣∣∣1− ∣∣∣∣ yi · γ∥yi∥2

∣∣∣∣∣∣∣∣ (3.20)

with · being the group operator in SO(3) and the L2 norm in R4.

18

Let us denote S3 the set of unit quaternions where S3 = {q ∈ SO(3), | ∥q∥ = 1}. One

edge case with unit quaternions q ∈ S3, is that q and −q represent the same orientation -

even if the Euclidean distance between these two quaternions is 2. Thus, we would like the

distance function to ensure that dquat(q,−q) = 0 in that case.

Let us now prove that Equation 3.20 represents a distance function between two quaternions

while ensuring dquat(q,−q) = 0 . A commonly used distance function for unit quaternions

[30, 31] is the following distance d using arccos :

d(q1, q2) = arccos(2 |⟨q1, q2⟩| − 1) (3.21)

where ⟨ , ⟩ is the inner product in S3.

Let us first prove that dquat is a distance function for unit quaternions. Let us consider

q1, q2 ∈ S3 with respective real parts ℜ(q1) = yi
∥yi∥2 ∈ R4 and ℜ(q2) = γ ∈ R4. Let

θ ∈ [0, π] be the rotation angle between the orientations described by the unit quaternions

q1 ∈ S3 and q2 ∈ S3, ie. such that d(q1, q2) = θ. We have the following equations:

θ = arccos(2 |⟨q1, q2⟩| − 1) ⇔ 1− cos(θ)

2
= 1− |⟨q1, q2⟩| = 1−

∣∣∣∣ yi · γ∥yi∥2

∣∣∣∣ (3.22)

Equation 3.22 proves that dquat is a distance function, as it is equivalent to the commonly

used distance function d in S3.

Regarding the edge case q1 = −q2, if ℜ(q1) = yi
∥yi∥2 = −γ = ℜ(q2), then we have

dquat(q1, q2) = 0 from Equation 3.20.

However, we noticed that it is harder to use this distance function (Equation 3.20) in

practice with neural networks. Indeed, when minimizing the loss, thus the distance func-

tion dquat, it is difficult for the neural network to represent the whole 4D hyper-sphere while

ensuring dquat (q,−q) = 0. Thus, we chose to remove the absolute value on the dot product

of yi
∥yi∥2 and γ.

19

We also added restrictions on the generation of the quaternions in our dataset. The first

one is that we restrict the quaternions to be only on the positive side of the hyper-sphere S3,

meaning that ∀q ∈ S3 with q = a+ b.i+ c.j+ d.k, we have a ∈ R+
∗ and (b, c, d) ∈ R3 [32,

33]. When we sample q such that a = 0, we enforce that b ∈ R+. When q is sampled such

that a = b = 0, we enforce c ∈ R+. Finally, when q is sampled such that a = b = c = 0,

we enforce d ∈ R+.

Deep Evidential Loss and Model Architecture

Let us now resume the framing of the Deep Evidential Loss in SO(3). As mentioned

earlier, we consider that the dimensions of a quaternions are not independent, which is the

most important difference with the multidimensional case. Let m ∈ N be the number of

samples. We have the following setting:

∀i ∈ J1,mK, yi ∈ SO(3)

(y1, ..., ym) ∼ N (µ, σ2),

µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.23)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

We modified the structure of the last Linear Normal Gamma Layer (see Figure 3.2) so that

it predicts only one set of evidential parameters α, ν, β in R for each target quaternion qi.

20

Figure 3.2: Modified Deep Evidential NN to predict 1D uncertainty in SO(3)

To compute the loss Li, we can use Equation 3.6 with a geodesic distance dquat redefined

as:

dquat(yi, γ) =

∣∣∣∣1− yi · γ
∥yi∥2

∣∣∣∣ (3.24)

with · being the group operator in SO(3) and the L2 norm in R4.

Let us now introduce other important properties of quaternions and discuss how we

sampled quaternions in this work.

Quaternions and Euler angles

Another major property of quaternions is that they can be computed from Euler angles.

Euler angles are angles describing the orientation of a solid or a reference frame with

respect to a Cartesian trihedron of reference. Euler angles represent an orientation by a

succession of 3 rotations.

21

It is common to use the aerospace notations for the Euler angles, referring to the three

angles as the roll ϕ, pitch θ and yaw ψ angles (see Figure 3.3).

Figure 3.3: Euler angles using the roll, pitch, yaw representation [34]

More precisely, quaternions can be computed from Euler angles using the following:

q =



cos(ϕ/2)cos(θ/2)cos(ψ/2) + sin(ϕ/2)sin(θ/2)sin(ψ/2)

sin(ϕ/2)cos(θ/2)cos(ψ/2)− cos(ϕ/2)sin(θ/2)sin(ψ/2)

cos(ϕ/2)sin(θ/2)cos(ψ/2) + sin(ϕ/2)cos(θ/2)sin(ψ/2)

cos(ϕ/2)cos(θ/2)sin(ψ/2)− sin(ϕ/2)sin(θ/2)cos(ψ/2)


(3.25)

where ϕ, θ, ψ represent the roll, pitch and yaw angles. This method is used in section 4.6

to generate synthetic data.

Generating Noisy Quaternions

To add noise in the training data, we use the axis-angle representation in order to guarantee

that the distance between the raw and noisy quaternions is equal to the applied noise. To

do that, we iteratively sample an angle α ∼ N (µ, σ2) (where µ and σ are set by the user)

and compute the corresponding quaternion qnoise using:

qnoise =
[
cos
(α
2

)
, sin

(α
2

)
u
]

(3.26)

22

where u is a vector randomly sampled in [−1, 1]3 and u ̸= [0, 0, 0]. The resulting noisy

quaternion is obtained with qnew = qraw · qnoise where · is the group operator in SO(3).

This way, we can ensure that the distance between the noisy and raw quaternion is equal

to the noise we applied, that is:

dquat(qraw, qnew) = α. (3.27)

This is the method that we use in section 4.6.

3.2.6 3D Special Euclidean Group SE(3) case

Let us consider yi ∈ SE(3).

Predicting multiple uncertainty measures

This subsection was done in collaboration with Richard Huang, as we worked together on

the quaternion case. Let us denote yi = [ti, qi] where ti ∈ R3 and qi ∈ SO(3) such that

∥qi∥ = 1 respectively represent 3 independent translations and a 3D rotation. The model

output is ω = [ωt, ωr] with ωt = [γt, αt, βt, νt] ∈ R3×4 and ωr = [γr, αr, βr, νr] such that

γr ∈ R4 is the predicted quaternion and αr, βr, νr ∈ R are the evidential parameters of the

rotation part. Let m ∈ N be the number of samples. We have the following setting:

∀i ∈ J1,mK, yi = [ti, qi] ∈ SE(3)

Translation part: ∀j ∈ J1, 3K, (t1j , ..., tmj) ∼ N (µtj , σtj),

with µtj ∼ N (γtj , σ
2
tj
ν−1
tj

), σ2
tj
∼ Γ−1(αti , βtj)

Rotation part: (q1, ..., qm) ∼ N (µq, σq),

with µq ∼ N (γq, σ
2
qν

−1
q), σ2

q ∼ Γ−1(αq, βq)

(3.28)

where Γ(·) is the gamma function and αtj > 1, βtj > 0, νtj > 0 and αq > 1, βq > 0, νq > 0.

We assume for simplicity that both translations and rotations are independent, thus we can

23

compute loss Li in SE(3) using:

Li (yi, ω) = Li (ti, ωt) + Li (qi, ωr)

=
2∑

j=0

Li

(
dR(tij , γj), ωj

)
︸ ︷︷ ︸

translation

+Li (dquat(qi, γ), ω)︸ ︷︷ ︸
rotation

(3.29)

where the losses are computed using Equation Equation 3.6. As mentioned earlier in sec-

tion subsection 3.2.3, we could add a weighting for translation and rotation to get better

results as discussed in [28], but it does not change the formalism of our work.

Predicting a single dimension of uncertainty

An alternative method is to predict a single dimension of uncertainty for both the translation

and rotation parts. Let us denote yi = [ti, qi] where ti ∈ R3 and qi ∈ SO(3) such that

∥qi∥ = 1 respectively represent 3 translations and a 3D rotation. The model output is ω =

[γ, α, β, ν] with γ = [γt, γr] ∈ SE(3) and (α, β, ν) ∈ R3 are the evidential parameters. Let

m ∈ N be the number of samples. We have the following setting:

∀i ∈ J1,mK, yi = [ti, qi] ∈ SE(3)

(y1, ..., ym) ∼ N (µ, σ),

with µ ∼ N (γ, σ2ν−1), σ2 ∼ Γ−1(α, β)

(3.30)

where Γ(·) is the gamma function and α > 1, β > 0, ν > 0.

In this case, we compute a single the Deep Evidential loss Li for each yi using Equation 3.6

with the distance function dSE(3) in R:

dSE(3) (yi, γ) = ∥ti − γt∥+ λd dquat(ri, γr) (3.31)

with the L2 norm in R3, yi ∈ SE(3), γ = [γt, γr] ∈ SE(3) the corresponding model

prediction and λd > 0.

24

CHAPTER 4

EXPERIMENTS

In this section, we apply the modified Deep Evidential Li losses (defined in Methods)

on their respective lie algebra groups and manifolds and assess whether they successfully

estimate both the regression target and consistent uncertainties on synthetic toy examples.

4.1 Replicating the experiments of the base paper

Let us first replicate and investigate the experiments described in the base paper [1].

4.1.1 Same setting and hyperparameters as base paper

Let us first reproduce the Deep Evidential model and toy example in R described in [1].

We use the code from [1] available on Github as base. The code was originally developed

in Tensorflow, so the first step was to successfully convert it in PyTorch. In [1], they in-

troduced the following toy example y = t3 + σ where σ ∼ N (0, 3), ttrain ∼ U([−4, 4])

and ttest ∼ U([−7, 7]), and show that the method is working on this example. We repro-

duced the experiments and obtained the results shown in Figure 4.1 and Figure 4.2. The

model contains 3 Dense layers with ReLU activations and a final Linear Normal Gamma

Layer. The results were obtained with lr = 5e−4, λ = 0.01 (evidential regularizer) and

epochs = 500.

25

Figure 4.1: Reproducing the experiment on the toy example from the base paper [1]

The model seems to successfully regress the target and predict a consistent epistemic

uncertainty. Indeed, we can see on Figure 4.1 that the epistemic uncertainty (uncertainty

coming from the prediction), represented with the blue highlight, is increasing as we move

closer to test data out-of train data distribution. Let us now look at the Deep Evidential

Loss over iterations on Figure 4.2. The loss seems to successfully converge after 300

iterations. In fact, we realized that the method was not stable: depending on the training

hyperparameters, the model may predict values that are not consistent (e.g. decreasing

epistemic uncertainty for OOD samples). Moreover, when we reran several times the same

training, the results differed from one iteration to another.

Figure 4.2: Loss obtain on the toy example from the base paper [1]

26

Let us now assess the aleatoric uncertainty (the uncertainty coming from the noise in

the training input data). To do that, let us plot on Figure 4.3 the applied noise σ and both

uncertainties. We can see that the aleatoric uncertainty seems to be higher and biased

around when x is close to 0, while the noise is a constant.

Figure 4.3: Plotting Aleatoric and Epistemic Uncertainties along with the train Noise (con-
stant σ case)

4.1.2 Adding ”holes” in the data

Let us now modify the training setting of the base experiment. The idea we try here is to add

’holes’ in the data, ie. modifying the intervals from which we sample the training data so

that there is at least two disconnected intervals. This time, we will uniformly sample ttrain

from [−7,−2] U [2, 7] and ttest from [−7, 7]. The results on Figure 4.5 and Figure 4.4 are

obtained with lr = 5e−4, λ = 0.01 (evidential regularizer) and epochs = 1000.

27

Figure 4.4: Experiment with holes in the train set centered aroung 0

We can see that while the model seems to give consistent regression predictions, both

uncertainties do not behave as expected: the epistemic uncertainty is low on samples OOD,

while it should be high for those samples. There seems to be a bias for the data centered

around 0.

Figure 4.5: Plotting Aleatoric and Epistemic Uncertainties along with the train Noise with
holes

28

4.1.3 Applying Gaussian Noise

Let us now see how the model reacts to varying noise: we will add more important noise

at the center of the graph. To do that, we now consider y(t) = t3 + noise(t) where

noise(t) ∼ N (0, σn(t)) and σn follows a bell-shaped curve.

To implement the bell-shaped curve noise, we used the following method. We consider

that σn corresponds to the probability density function ϕ of a normal distribution centered

on 0 with an offset of 3. We used this method as it was easy to implement using the method

norm.pdf(t, µ, σ) from the package scipy.stats. In short, we have :

σn(t) = ϕµ,σ(t) + offset (4.1)

where ϕµ,σ is the probability density function of a normal distribution with µ = 0 and

σ = 3, and offset = 3. The corresponding results are on Figure 4.6. The epistemic

uncertainty is increasing for samples OOD and the aleatoric seems consistently to follow

the Gaussian distribution of the noise.

Figure 4.6: Plotting Aleatoric and Epistemic Uncertainties along with the train Noise (σ ∼
N(0, 3) + 3 case)

Let us now consider that σn follows the probability density function ϕµ,σ centered on

29

µ = 1 and σ = 3 with an offset of 3 (see Equation 4.1). When we offset the noise

distribution, the aleatoric uncertainty predicted by the model does not follow the known

noise distribution (see Figure Figure 4.7).

Figure 4.7: Plotting Aleatoric and Epistemic Uncertainties along with the train Noise (σ ∼
N(1, 3) + 3 case)

4.1.4 Conclusion

We were able to reproduce the experiment in R from the base paper [1]. Indeed, we get

similar results as those presented in their paper when we use the Deep Evidential method

on the exact same toy example, ie. with y = t3+σ where σ ∼ N (0, 3), ttrain ∼ U([−4, 4])

and ttest ∼ U([−7, 7]). Further experiments on their method showed that the method is not

robust to more complex noise and when data are not uniformly distributed. Indeed, even

if the model seems to correctly regress the objective function, the uncertainty estimation is

not consistent with the data sampling and noise applied. Besides, it seems that the method

has a bias for target functions centered around 0.

There may be some underlying assumptions on how to set the toy examples that were not

explicitly described by [1]. Nevertheless, this method that aims to predict both an aleatoric

and an epistemic uncertainties seems promising and that is why we will assess how well it

works on other manifolds.

30

4.2 Multidimensional case

Let us now apply the Deep Evidential loss Li defined for each manifold on toy examples.

For each manifold, we apply noise on the input data and evaluate the model on a test set

containing in- and out-of-distribution samples. We also apply varying noise on the training

data to assess how robust the method is to this parameter.

Regarding the definition of our toy problems, we mainly use odd target functions cen-

tered around 0 and apply Gaussian Noise, as it was done in previous work [1, 19, 35].

4.2.1 Predicting multiple uncertainty measures

Let us denote k ∈ N the dimension of a cartesian space and the targets as y ∈ Rk. As

mentioned in chapter 3, we make the assumption that the dimensions of y are independent

in this manifold. For each independent dimension i, we consider data such that yi =

fi(t)+ni where fi(·) is a function in R centered around 0 and ni represents Gaussian Noise.

We later describe in this section precisely the functions fi used and how we sampled the

noise ni.

Experimental Setup

Let us first define the architecture of the Neural Networks used for the multidimensional

case. The model is sequentially constituted of:

1. one Linear Layer (input dim=1, out dim=128) + ReLU activation

2. two Linear Layers (input dim=128, out dim=128) + ReLU activation

3. one Linear Normal Gamma Layer (input dim=128, out dim=k) (see section 3.1 for

details on this custom layer).

We use the Adam optimizer and the loss Li defined by Equation 3.8 for the multidimen-

sional case.

31

We work with k = 4 dimensions. The input data t is sampled such that ttrain ∼

U([−4, 4]) and ttest ∼ U([−7, 7]), as it was done in the base paper [1].

The toy examples we used in this section are the following:

y1(t) = t3 + n1(t) with n1(t) ∼ N(0, σ2
n1
(t)),

y2(t) = t2 + n2(t) with n2(t) ∼ N(0, σ2
n2
(t)),

y3(t) = −t3 + n3(t) with n3(t) ∼ N(0, σ2
n3
(t)),

y4(t) = t+ n4(t) with n4(t) ∼ N(0, σ2
n4
(t)).

(4.2)

For each dimension i, the σni
used to sample the noise ni is a bell-shaped curve. In our

code, σni
corresponds to the probability density function ϕµi,σi

of the normal distribution

with parameters µi and σi. More precisely, we have the following setting:

σn1(t) = ϕµ1,σ1(t) + 3 with µ1 = 0 and σ1 = 3,

σn2(t) = ϕµ2,σ2(t) + 3 with µ2 = 1 and σ2 = 3,

σn3(t) = ϕµ3,σ3(t) + 3 with µ3 = −1 and σ3 = 3,

σn4(t) = ϕµ4,σ4(t) + 1 with µ4 = 0 and σ4 = 3.

(4.3)

See on Figure 4.9 the variations of the noise parameters σni
defined in Equation 4.9.

We use λ = 0.01 for regularization, lr = 5e−4 and iterations = 1000. We can see

on Figure 4.8 the overall results of the training. On Figure 4.9, we can see the several σni

noise applied on the training set, the distance between the prediction and ground truth, and

the two uncertainties (aleatoric and epistemic).

32

Figure 4.8: Overall Results for Multidimensional Case with Gaussian Noise

We can see on those graphs that the model regress consistent target functions and that

it has more difficulty for OOD data. We can also notice that the epistemic uncertainty

grows as we are further away from in-distribution data. The aleatoric uncertainty seems

less consistent when the noise is not centered around 0 (see Figure 4.9).

Figure 4.9: Plotting Distance to Ground Truth, Applied Gaussian Noise and Epistemic and
Aleatoric Uncertainties for the Multidimensional Case

33

Conclusion

Under the assumption that the data is uniformly distributed and that there are no ”holes” in

the data (meaning that the OOD data is located at the edges of the in-distribution interval),

the Deep Evidential method seems to be extendable to the multidimensional case. We can

still notice that the aleatoric uncertainty does not seem to detect correctly the applied noise

when it is not centered around 0. We can also notice that the method seems to be working

better when the toy case is an odd function.

4.2.2 Predicting a single dimension of uncertainty

This time, we consider that the dimensions are not independent. Thus, we predict only

one set of evidential uncertainty parameters α, β, ν for each sample yi ∈ R4 and we also

apply the same noise on each dimension of yi. The input data t is sampled such that

ttrain ∼ U([−4, 4]) and ttest ∼ U([−7, 7]).

Experimental Setup

We use for this sections the Neural Network architecture presented in Figure 3.2, but the last

Linear Normal Gamma Layer has outdim = 4 as we predict a 1D-uncertainty parametrized

by α, β, ν ∈ R for each sample yi ∈ R4. We use the loss Li defined in Equation 3.6 using

the distance function d1D defined in Equation 3.10. We have the following toy examples:

y1(t) = t3 + n(t),

y2(t) = t2 + n(t),

y3(t) = −t3 + n(t),

y4(t) = t+ n(t),

with n(t) ∼ N(0, σ2
n(t)).

(4.4)

We used the same noise σn for each dimension i as we predict here a single dimension of

34

uncertainty. σn used to sample the noise n is a bell-shaped curve. In our code, σn corre-

sponds to the probability density function ϕµ,σ of the normal distribution with parameters

µ = 0 and σ = 3 and offset = 0. In short, we have the following setting for the noise:

σn(t) = ϕµ,σ(t) with µ = 0 and σ = 3. (4.5)

We use λ = 0.005 for regularization, lr = 5e−4 and iterations = 1000. We can see on

Figure 4.10 the overall results of the training. On Figure 4.11, we can see the overall σni

noise applied on the training set, the distance between the prediction and ground truth, and

the two uncertainties (aleatoric and epistemic).

Figure 4.10: Overall Results for Multidimensional Case with Gaussian Noise - 1D uncer-
tainty case

We can see on those graphs that the model does not regress consistent target functions.

It seems to overfit on data centered around 0. We can also notice that the epistemic and

aleatoric uncertainties are not consistent with neither the noise applied nor the data distri-

bution.

35

Figure 4.11: Plotting Distance to Ground Truth, Applied Gaussian Noise and Epistemic
and Aleatoric Uncertainties for the Multidimensional Case - 1D uncertainty case

Conclusion

It seems here that predicting one uncertainty for each dimensions leads to better results

in the multidimensional case. It is important to note that even if the results are better,

the model did not succeed to predict accurate epistemic and aleatoric uncertainties in the

multidimensional case, which was our original goal.

4.3 Predicting an angle

4.3.1 Predicting a single dimension of uncertainty

This time we consider a 1-dimension target y such that it represents an angle in R. To do

that, we can use trigonometric functions. The toy example we used here is y = sin(t)+k ∗

2π + n(t) where k ∈ U(J−6, 6K) and n(t) is Gaussian Noise such that n(t) ∼ N (0, σ2
n(t))

with σn(t) ∈ [0, 1]. We set σn(t) such that it is small compared to π. The input data t is

sampled such that ttrain ∼ U([−0.75π, 0.75π]) and ttest ∼ U([−π, π]) as we are handling

angles.

36

We use a similar architecture for the Neural Networks as described in section 4.2 but

the last Linear Normal Gamma Layer has outdim = 1 as we are predicting a 1-dimension.

The model uses the loss Li defined by Equation 3.6 using the distance function described

in Equation 3.12.

Experimental Setup

Once again, we sample the data such that y = sin(t)+k ∗2π+n(t) where k ∈ U(J−6, 6K)

and n(t) is Gaussian Noise such that n(t) ∼ N (0, σ2
n(t)) where σn is a bell-shaped func-

tion. In our experiments, σn corresponds to density probability function ϕµ,σ of a normal

distribution with parameters µ = 0 and σ = 1. That is, we have the following experimental

setup:

y(t) = sin(t) + k ∗ 2π + n(t) with n(t) ∼ N(0, σ2
n(t)) and k ∈ U(J−6, 6K),

σn(t) = ϕµ,σ(t) with µ = 0 and σ = 0.5.

(4.6)

As a remainder, the idea is to apply varying noise to assess whether the aleatoric uncertainty

detects and is adapted to this known variation.

We introduced two alternative distance functions dgeo and dS(1) in Equation 3.12 for

this S(1) case. Let us now compare them.

We first use λ = 0.1 for regularization, lr = 5e−4 and epochs = 1000 and the distance

function dS(1). The results are shown on Figure 4.12.

37

Figure 4.12: Plotting the Distance dS(1) to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the 1D-angle case

Now, we use the same set of hyper-parameters λ = 0.1 for regularization, lr = 5e−4

and epochs = 1000 and the distance function dgeo. The results are shown on Figure 4.13.

Figure 4.13: Plotting the Distance dgeo to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the 1D-angle case

Conclusion

We can see on Figure 4.12 that the aleatoric uncertainty is consistent with the noise applied

and that the distance between the ground truth and predicted output grows as we go further

in the OOD set. This time, the epistemic uncertainty does not follow the OOD data. Be-

sides, even when using distinct distance functions in S(1), the results are equivalent and,

38

in both cases, the Deep Evidential method fails to predict reliable uncertainty measure in

S(1).

4.4 Points on a sphere: the S(2) case

We know consider a 3-dimensional target yi in S(2).

4.4.1 Predicting a single dimension of uncertainty

This time, we consider that the dimensions are not independent. Thus, we predict only

one set of evidential uncertainty parameters α, β, ν for each sample yi and we also apply

the same noise on each dimension of yi. The input data t is sampled such that ttrain ∼

U([−0.75π, 0.75π]) and ttest ∼ U([−π, π]) as we use trigonometric functions to sample

the data points.

Experimental Setup

We use for this sections the Neural Network architecture presented in Figure 3.2, but the last

Linear Normal Gamma Layer has outdim = 3 as we predict a 1D-uncertainty parametrized

by α, β, ν ∈ R for each sample yi ∈ S(2). We use the loss Li defined in Equation 3.6

using the distance function in S(2) defined in Equation 3.18. We have the following toy

examples:

y1(t) = sin(t) + n(t),

y2(t) = cos(4t) + n(t),

y3(t) = sin(2t) + n(t),

where n(t) ∼ N(0, σ2
n(t)),

σn(t) = ϕµ,σ(t) with µ = 0 and σ = 1.

(4.7)

We normalize y before training y = y
∥y∥ so that it ensures ∥y∥ = 1 as it is a property of

points in S(2). We use λ = 0.5 for regularization, lr = 5e−4 and epochs = 500. The

39

results are shown on Figure 4.14.

Figure 4.14: Plotting Geodesic Distance to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the S(2) case

Conclusion

The model outputs the consistent regression outputs as the distance to ground truth sam-

ples is close to 0 in Figure 4.14. The aleatoric uncertainty predicted by the model is also

consistent with the known noise applied on the training data. Nonetheless, the epistemic

uncertainty mimics the aleatorics uncertainty and does not detect OOD samples.

4.5 2D Special Euclidean Group SE(2) case

4.5.1 Predicting multiple uncertainty measures

For this case, we consider a 3-dimension target y ∈ R3 such that y = [T,R] respectively

representing the translation T ∈ R2 and rotation R ∈ R parts. We use Ti = fi(t) + ni(t)

where fi(·) is an odd function in R centered around 0 and ni(t) is Gaussian Noise such that

ni ∼ N (0, σ2
ni
(t)). The input data t is sampled such that ttrain ∼ U([−0.75π, 0.75π]) and

ttest ∼ U([−π, π]).

40

Experimental Setup

We use an architecture for the Neural Networks similar to the one described in section 4.2

but the last Linear Normal Gamma Layer has outdim = 3 as we are predicting a 2 inde-

pendent translations and 1 rotation angle in SE(2). We use the corresponding loss Li in

SE(2) defined in Equation 3.14. The toy examples we use in this section are the following:

T1 = t3 + n1(t) with 1(t) ∼ N(0, σ2
n1
(t)),

T2 = −t3 + n2(t) with 2(t) ∼ N(0, σ2
n2
(t)),

R = sin(t) + k ∗ 2π + n3(t) with 3(t) ∼ N(0, σ2
n3
(t)) and k ∈ U(J−6, 6K).

(4.8)

As discussed in section 4.2, we sample σni
such that it is a bell-shaped function. We

chose to define σni
as the density probability function ϕµi,σi

of a normal distribution with

parameters µi and σi. We use the following noise parameters:

σn1(t) = ϕµ1,σ1(t) + 3 with µ1 = 0 and σ1 = 3,

σn2(t) = ϕµ2,σ2(t) with µ2 = 1 and σ2 = 3,

σn3(t) = 0.5ϕµ3,σ3(t) with µ3 = −1 and σ3 = 3.

(4.9)

We respectively set λt = 0.1 and λr = 0.6 for regularization on translation and rotation,

lr = 5e−4 and epochs = 2000. We can see on Figure 4.15 the visualization of the distance

between ground truth and predictions, the applied noise and the corresponding uncertainties

for both in- and out-of-distribution samples.

41

Figure 4.15: Plotting Distance to Ground Truth, Applied Gaussian Noise, Epistemic and
Aleatoric Uncertainties for the SE(2) case

The epistemic uncertainty grows as the model predicts data out of the training distribu-

tion for both translations and rotation. The aleatoric uncertainty seems more stable for the

rotation part: indeed, it detects and follows the distribution of the noise applied in the train-

ing data. On the other hand, the epistemic uncertainty is more consistent on the translation

part than the rotation part.

Conclusion

In short, the method outputs somewhat consistent regression predictions in SE(2) case:

indeed, the distance to ground truth is close to 0 for in-distribution samples and increases for

OOD samples. The epistemic uncertainty is more stable for translations while the aleatoric

uncertainty is better for the rotation part. Once again, the Deep Evidential framework does

not guarantee reliable uncertainty prediction in SE(2).

42

4.5.2 Predicting a single dimension of uncertainty

This time, we consider that the dimensions are not independent. Thus, we predict only

one set of evidential uncertainty parameters α, β, ν for each sample yi ∈ SE(2) and we

also apply the same noise on each dimension of yi. The input data t is sampled such that

ttrain ∼ U([−0.75π, 0.75π]) and ttest ∼ U([−π, π]) as we use trigonometric functions to

sample the data points for the rotation part.

Experimental Setup

We use for this sections the Neural Network architecture presented in Figure 3.2, but the last

Linear Normal Gamma Layer has outdim = 3 as we predict a 1D-uncertainty parametrized

by α, β, ν ∈ R for each sample yi ∈ SE(2). We use the loss Li defined in Equation 3.6

using the distance function in SE(2) defined in Equation 3.16. We have the following toy

examples:

y1(t) = t3 + n(t),

y2(t) = −t3 + n(t),

y3(t) = sin(2t) + k ∗ 2π + n(t) with k ∈ U(J−6, 6K),

where n(t) ∼ N(0, σ2
n(t)),

σn(t) = 0.5 ∗ ϕµ,σ(t) with µ = 0 and σ = 3.

(4.10)

We use λd = 0.1 to weigh rotation in Equation 3.16, λ = 0.1 for regularization, lr = 5e−4

and epochs = 2000. The results are shown on Figure 4.16.

43

Figure 4.16: Plotting Geodesic Distance to Ground Truth, Applied Gaussian Noise, Epis-
temic and Aleatoric Uncertainties for the S(2) case - 1D uncertainty case

Conclusion

Based on our results, it seems that predicting a 1D uncertainty in SE(2) does not enable

an reliable uncertainty predictions. Indeed, as we can see in Figure 4.16, the aleatoric

uncertainty is not consistent with the noise we applied, while the epistemic uncertainty

gives somewhat relevant results. The two methods (1D versus multiple uncertainties) for

Deep Evidential Regression do not guarantee a reliable uncertainty estimation in SE(2).

4.6 3D Orthogonal Group SO(3) case

4.6.1 Predicting a single dimension of uncertainty

We consider in this section a 4-dimension target y ∈ R4 representing quaternion q =

[qx, qy, qz, qw] in SO(3). Since we are dealing with rotations, we consider targets q such

that ∥q∥ = 1. The input data t is sampled such that ttrain ∼ U([−0.75π, 0.75π]) and

ttest ∼ U([−π, π]).

44

Experimental Setup

In this section, we used the architecture of the Neural Network described in Figure 3.2:

the main idea is that we predict one global 1-D uncertainty for each quaternion (instead

of one uncertainty measure for each dimension of the quaternion). The main assumption

behind that is that the dimensions of a quaternions are not independent as explained in

subsection 3.2.5. We implemented the loss Li defined in Equation 3.6 using the distance

function in SO(3) described in Equation 3.24.

This quaternion sampling method is the that one guarantees dquat(qraw, qnew) = n.

The method is described in subsection 3.2.5. The main idea is that, to add noise in the

training data, we use the axis-angle representation. In short, we iteratively sample an angle

α ∼ N(µ, σ2
α) and compute the corresponding quaternion qnoise using Equation 3.27. The

resulting noisy quaternion is obtained with qnew = qraw ·qnoise where · is the group operator

in SO(3).

Figure 4.17: Overall results with Gaussian Noise for the SO(3) case

45

To sample the quaternions using this method, we first computed the following Euler

angles :

roll(t) = sin(t),

pitch(t) = sin(3t),

yaw(t) = sin(5t).

(4.11)

Then, we use Equation 3.25 to compute the raw quaternion samples qraw(t). The next step

is to add noise in the data. To do that, we sample an angle α(t) such that α(t) ∼ N(0, σ2
α(t))

where σα is the density probability function ϕµ,σ of a normal distribution with parameters

µ = 0 and σ = 3. More precisely, we sample the following noise quaternion qnoise(t)

using:

qnoise(t) =

[
cos

(
α(t)

2

)
, sin

(
α(t)

2

)
u

]
,

where u is a vector randomly sampled in [1, 1]3 and u ̸= [0, 0, 0]

and α(t) ∼ N(0, σ2
α(t)),

σα(t) = ϕµ,σ(t) with µ = 0 and σ = 3.

(4.12)

The resulting noisy samples are obtained using:

qnoisy(t) = qraw(t) · qnoise(t) (4.13)

where · is the group operator in SO(3).

We used the following parameters for training the model λ = 0.03 for regularization,

lr = 5e−4 and epochs = 2000.

46

Figure 4.18: Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic and
Aleatoric Uncertainties for the SO(3)

We can see on Figure 4.17 that the model correctly regresses the target functions and

the epistemic uncertainty is consistent as it is higher for OOD samples that it is for in-

distribution samples. But on Figure 4.18, we can see that the aleatoric uncertainty does not

follow the distribution of the applied noise.

Conclusion

It seems that the model can be applied to the SO(3) case. But the method does not provide

consistent aleatoric uncertainty measures. It may be coming from the way we sampled

the data or the hyper-parameters tuning, or that the Deep Evidential loss Li is not robust

enough and should be used under stricter assumptions. In any case, the Deep Evidential

framework fails to predict reliable uncertainty measure in SO(3).

47

4.7 3D Special Euclidean Group SE(3)

4.7.1 Predicting multiple uncertainty measures

We consider a target output y ∈ SE(3) such that y = [T, q] where T ∈ R3 and q ∈ SO(3)

respectively represent the translation an rotation parts of a 3D transformation. The input

data t is sampled such that ttrain ∼ U([−0.75π, 0.75π]) and ttest ∼ U([−π, π]).

Figure 4.19: Modified Deep Evidential NN in SE(3)

Experimental Setup

We used the same method to sample q as used in the previous section about SO(3). More

precisely, we used Equation 4.11, Equation 4.12 and Equation 4.13 to sample the quater-

nions here. For the translation part, we used the following equations:

T1 = t2 + nt1 ,

T2 = −t2 + nt2 ,

T3 = t3 + nt3 ,

with nt1 , nt2 , nt3 ∼ N (0, σ2
t) and σt = 0.4.

(4.14)

48

To train the model, we respectively used λt = 0.01 and λq = 0.01 for regularization on

translation and rotation, lr = 5e−4 and epochs = 1500.

Figure 4.20: Overall results with Gaussian Noise for the SE(3) case : Rotation Part

Figure 4.21: Overall results with Gaussian Noise for the SE(3) case : Translation Part

We can see on Figure 4.21 and Figure 4.20 that the model predicts accurate results. It

seems that the model is more confident on the predicted orientation part than the predicted

translation part. On Figure 4.22, we can notice that the predicted epistemic uncertainty is

consistent as it is higher for OOD samples that it is for in-distribution samples. But the

aleatoric uncertainty does not follow the distribution of the applied noise.

49

Figure 4.22: Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic and
Aleatoric Uncertainties for the SE(3) case

Conclusion

The Deep Evidential Framework may seem promising as the model learns the trajectories

as we can see on Figure 4.20 and Figure 4.21, meaning that the model correctly regress the

target functions in SE(3). But the method only gives a consistent epistemic uncertainty

while the predicted aleatoric uncertainties are not reliable, as seen on Figure 4.22. This

may be coming from the toy examples we chose: there may some limitations due to how we

sampled the training data or added the noise. Another thing is that we made the assumption

that translation and rotation were independent, but it may be a strong assumption leading

to limitations in the results. Further work could be done on removing this assumption and

developing a multivariate framework as proposed by [27].

50

4.7.2 Predicting a single dimension of uncertainty

This time, we consider that the dimensions are not independent. Thus, we predict only

one set of evidential uncertainty parameters α, β, ν for each sample yi ∈ SE(3) and we

also apply the same noise on each dimension of yi. The input data t is sampled such that

ttrain ∼ U([−0.75π, 0.75π]) and ttest ∼ U([−π, π]) as we use trigonometric functions to

sample the data points for the rotation part.

Experimental Setup

We use for this sections the Neural Network architecture presented in Figure 3.2, but the last

Linear Normal Gamma Layer has outdim = 7 as we predict a 1D-uncertainty parametrized

by α, β, ν ∈ R for each sample yi ∈ SE(3). We use the loss Li defined in Equation 3.6

using the distance function in SE(3) defined in Equation 3.31. Since we are predicting a

single uncertainty over all dimensions, we applied the same noise to all the dimensions. We

used the same method to sample q as used in the previous section about SO(3). More pre-

cisely, we used Equation 4.11, Equation 4.12 and Equation 4.13 to sample the quaternions

here. For the translation part, we used the following equations:

T1 = t2 + nt,

T2 = −t2 + nt,

T3 = t3 + nt,

with nt ∼ N (0, σ2
t) and σt = 1.

(4.15)

We use the following set of hyper-parameters for training: λd = 0.1 to weigh rotation

in Equation 3.16, λ = 0.01 for regularization, lr = 5e−4 and epochs = 2000. The results

are shown on Figure 4.23.

51

Figure 4.23: Plotting Geodesic Distance to Ground Truth, Gaussian Noise, Epistemic and
Aleatoric Uncertainties for the SE(3) case - 1D uncertainty case

We decided to predict a 1D uncertainty over all dimensions with hopes that the model would

predict more reliable uncertainty measures than when it predicts multiple uncertainties. As

we can see on Figure 4.23, it seems that the Deep Evidential framework once again fails to

predict a reliable aleatoric uncertainty.

Conclusion

In short, the method outputs somewhat consistent regression predictions in SE(3) case:

indeed, the distance to ground truth is close to 0 for in-distribution samples and increases for

OOD samples. Regarding the 1D uncertainty measure, the epistemic also seems somewhat

consistent with the distribution of data, while the predicted aleatoric uncertainty is wrong.

But in any case, the Deep Evidential framework does not guarantee reliable uncertainty

prediction in SE(3).

52

CHAPTER 5

CONCLUSION AND FUTURE WORK

The goal of this work was to first reproduce the experiments from the base paper [1], and

second, build a general framework to extend the Deep Evidential method to higher dimen-

sion manifolds and groups of the Lie algebra.

We were able to reproduce the base experiments in R, but noticed that the Deep Evi-

dential method is unstable and heavily depends on both the hyper-parameters, as well as

the toy examples at hand. In particular, we noticed that the prediction of the aleatoric un-

certainty is the most problematic, as it does not give consistent result even when used in

the same parameters as the base paper.

We developed a general framework to extend the Deep Evidential Regression approach

introduced by [1] to multiple groups and manifolds of the Lie algebra. We showed that the

stability and success of the method on each manifolds highly depends on its structure and

the distance function used to compute the Deep Evidential Loss Li.

The method introduced by [1] seemed promising as it was presented as a way to pre-

dict two types of uncertainties (aleatoric and epistemic). This area of study is major and

could allow great advances in the field of robotics as the most challenging part of 6D Pose

Estimation in the field of robotics is that we often are in a safety-critical context. In this

context, it is crucial that the model not only predicts accurate poses, but gives a reliable

uncertainty measure over its predictions, resist to adversarial attacks to prevent malicious

hacking and detect In- and OOD samples [5] (as the model is less likely to perform well on

OOD data).

53

We used the Deep Evidential Framework in the context of 6D Pose Estimation in

SE(3), as well as other manifolds of the Lie algebra, but never got reliable results for

both the aleatoric and epistemic uncertainties. Once again, the different models had more

difficulty to predict an aleatoric uncertainty consistent with the way we applied noise on

data.

Future work could still be done on applying the framework introduced to real data and

state-of-the-art Deep Neural Networks for 6D Pose Estimation, such as [8, 7], and compare

the uncertainty performance with other similar methods (e.g. the Bingham Loss [10]).

In conclusion, we showed that the Deep Evidential method has several limitations as it

seems unstable, heavily depends on hyper-parameter tuning and does not predict reliable

uncertainty measures. The next steps would be to consider using the Multivariate Loss

introduced in [27]. Indeed, [27] is a continuation of the base paper [1] that also mentions

and proposes solution to have a more stable and robust uncertainty estimation. Moreover,

the fact that they predict multivariate uncertainties would enable to consider any set of

examples.

54

REFERENCES

[1] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep evidential regression,”
Advances in Neural Information Processing Systems, vol. 33, pp. 14 927–14 937,
2020.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirec-
tional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018.
arXiv: 1810.04805.

[3] M. Bakator and D. Radosav, “Deep learning and medical diagnosis: A review of
literature,” Multimodal Technologies and Interaction, vol. 2, no. 3, 2018.

[4] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learn-
ing techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3,
pp. 362–386, 2020. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.
21918.

[5] J. Gawlikowski et al., “A survey of uncertainty in deep neural networks,” CoRR,
vol. abs/2107.03342, 2021. arXiv: 2107.03342.

[6] Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, 2015.

[7] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, “Normal-
ized object coordinate space for category-level 6d object pose and size estimation,”
CoRR, vol. abs/1901.02970, 2019. arXiv: 1901.02970.

[8] C. Wang et al., “Densefusion: 6d object pose estimation by iterative dense fusion,”
CoRR, vol. abs/1901.04780, 2019. arXiv: 1901.04780.

[9] M. Abdar et al., “A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges,” Information Fusion, vol. 76, pp. 243–297,
2021.

[10] I. Gilitschenski, R. Sahoo, W. Schwarting, A. Amini, S. Karaman, and D. Rus, “Deep
orientation uncertainty learning based on a bingham loss,” in International Confer-
ence on Learning Representations, 2020.

[11] G. Shi et al., “Fast uncertainty quantification for deep object pose estimation,” CoRR,
vol. abs/2011.07748, 2020. arXiv: 2011.07748.

[12] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in Proceedings of The 33rd International Con-

55

https://arxiv.org/abs/1810.04805
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21918
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21918
https://arxiv.org/abs/2107.03342
https://arxiv.org/abs/1901.02970
https://arxiv.org/abs/1901.04780
https://arxiv.org/abs/2011.07748

ference on Machine Learning, M. F. Balcan and K. Q. Weinberger, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 48, New York, New York, USA: PMLR,
20–22 Jun 2016, pp. 1050–1059.

[13] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify clas-
sification uncertainty,” in Advances in Neural Information Processing Systems, S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31, Curran Associates, Inc., 2018.

[14] A. Subramanya, S. Srinivas, and R. V. Babu, “Confidence estimation in deep neural
networks via density modelling,” CoRR, vol. abs/1707.07013, 2017. arXiv: 1707.
07013.

[15] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the prob-
lem,” CoRR, vol. abs/1812.05720, 2018. arXiv: 1812.05720.

[16] A. Meinke and M. Hein, “Towards neural networks that provably know when they
don’t know,” CoRR, vol. abs/1909.12180, 2019. arXiv: 1909.12180.

[17] L. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990.

[18] T. G. Dietterich, “Ensemble methods in machine learning,” in International work-
shop on multiple classifier systems, Springer, 2000, pp. 1–15.

[19] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive
uncertainty estimation using deep ensembles,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[20] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-domain uncer-
tainty estimation and ensembling in deep learning,” arXiv preprint arXiv:2002.06470,
2020.

[21] J. Gawlikowski et al., “A survey of uncertainty in deep neural networks,” arXiv
preprint arXiv:2107.03342, 2021.

[22] Y. Gal et al., “Uncertainty in deep learning,”

[23] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning
for computer vision?” Advances in neural information processing systems, vol. 30,
2017.

[24] R. M. Neal, Bayesian learning for neural networks. Springer Science & Business
Media, 2012, vol. 118.

56

https://arxiv.org/abs/1707.07013
https://arxiv.org/abs/1707.07013
https://arxiv.org/abs/1812.05720
https://arxiv.org/abs/1909.12180

[25] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy, and J. Kelly, “A
smooth representation of belief over SO(3) for deep rotation learning with uncer-
tainty,” CoRR, vol. abs/2006.01031, 2020. arXiv: 2006.01031.

[26] H. Deng, M. Bui, N. Navab, L. J. Guibas, S. Ilic, and T. Birdal, “Deep bingham net-
works: Dealing with uncertainty and ambiguity in pose estimation,” CoRR, vol. abs/2012.11002,
2020. arXiv: 2012.11002.

[27] N. Meinert and A. Lavin, “Multivariate deep evidential regression,” CoRR, vol. abs/2104.06135,
2021. arXiv: 2104.06135.

[28] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression
with deep learning,” CoRR, vol. abs/1704.00390, 2017. arXiv: 1704.00390.

[29] T. D. Barfoot, State Estimation for Robotics, 1st. USA: Cambridge University Press,
2017, ISBN: 1107159393.

[30] J. J. Kuffner, “Effective sampling and distance metrics for 3d rigid body path plan-
ning,” in IEEE International Conference on Robotics and Automation, 2004. Pro-
ceedings. ICRA’04. 2004, IEEE, vol. 4, 2004, pp. 3993–3998.

[31] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal of Math-
ematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[32] M. D. Shuster et al., “A survey of attitude representations,” Navigation, vol. 8, no. 9,
pp. 439–517, 1993.

[33] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging quaternions,”
Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1193–1197, 2007.

[34] H. A. Ardakani and T. Bridges, “Review of the 3-2-1 euler angles: A yaw-pitch-roll
sequence,” Department of Mathematics, University of Surrey, Guildford GU2 7XH
UK, Tech. Rep, 2010.

[35] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation for scal-
able learning of bayesian neural networks,” in International conference on machine
learning, PMLR, 2015, pp. 1861–1869.

57

https://arxiv.org/abs/2006.01031
https://arxiv.org/abs/2012.11002
https://arxiv.org/abs/2104.06135
https://arxiv.org/abs/1704.00390

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	Background
	Motivation

	2 | Related Work
	3 | Methods
	Original Deep Evidential Approach
	General Framework

	4 | Experiments
	Replicating the experiments of the base paper
	Multidimensional case
	Predicting an angle
	Points on a sphere: the S(2) case
	2D Special Euclidean Group SE(2) case
	3D Orthogonal Group SO(3) case
	3D Special Euclidean Group SE(3)

	5 | Conclusion and Future Work
	References

