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SUMMARY

Finite element models, based on a complementary enerqgy
principle, for the analysis of flinite deformation (large
straln and rotation) problems of nonllnear compressible as
Wwell as Incompressible elastic sollds are developed. To this
end, general { Hu-Washizu type ) varlational prilncipless In
the total Lagrangean formulation, based on various measures
of stresses and their conjugate stralns are flrst studied.
With these general principles as the basls, varlous speclal
forms of varlational princlples are derlved, Especlally, the
possibillty of constructing a statlonary complementary energy
principlte for the flnite defermation problem of elastic
solids is examined. It is concluded, through this study,
that only the general princlple based on the Jaumann stress
measure can lead to rational and practical complementary
energy princlple which Involves, unilke In the |lnear theory,
both the unsymmetric Piola-Lagrange stress and the rotatlion
tensor as varlables. In such a compl ementary energy
principle, the rotational equll ibrlium condition is enforced
as an a posterjiorl conditlon through the stationarlty
condition of the functional corresponding to varlatlons In
the rotation tensor. Considerlng the feasibillty for the
practical application, the Incremental form of varliational
princlples jeading to plecewlse linear incremental solutlions

is derived, Further, Introducing the concept of hybrid



xi

finite element models, whlch aliow for the 3 priorl
refaxatlons of the tractlion recliproclty conditlon and the
displacement continulty condltlion at Inter-element
boundaries, Incremental hybrid type varliational principles
are derlved. Especlally, the Incremental hybrid
complementary energy principles both In the total Lagrangean
and updated Lagrangean formulations are proposed. These
proposed principles are employed In the context of the finite
element methody and Incremental hybrid stress finlte element
models are developed to solve plane-stress finlte defcocrmation
problems of compresslble elastlic sollds. On the other hand,
for the <case of Incompressible materials, the hydrostatic
pressure |s Introduced as a Lagrange multipller, and
Hu-Washlizu principles In wh lch the Incompressibility
condltlon Is relaxed a oprlorly, are conStructed. Then,
foliowing the same procedure as for compresslble materials, a
modi fied (hybrid) Lncremental complementary energy princliple
Is derived. Based on this varlational princliple, an
Incremental hybrid stress finite element model| for
plane-stress finite deformatlon analysls of Incompressible
elastic sollds |Is developed. Using these newly developed
finlte element modelsy example problems of finite straln
plane-stress deformations of compressiprle as well as
incompressible nonlinear elastlc sollds are solved. The
results obtalned by the present methods agree excellently
with those, In |lterature, whlch wWere obtained by the

compatlble displacement finite element model. Through the



x1ii

results of the example problems, it 1Is conflrmed that the
presently developed methods are powerful numericail tools to
solve finlte deformation problems of nonlinear etastlic
solids. Thoese methods are also more efficient than those In

the llterature based on potentlal energy principles.
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CHAPTER I

INTRODJCTION

In the last two decadesys the finlte etement method has
been recognized as a oowerful numerical solution techniqgue
tor linear elastlc probiems, and several different models
have been developed. Most of these finite element modelis are
nased on the well kKnown mlnimum potential energy princlple or
minimum complementary energy orinciple. These two minimum
princlpless, In the tinear theorys, provide upper and |ower
bounds for approximate numerical solutions. Alsos mlxed
models based on Helllnger-Reissner oprinciple are sometimes
used. These varlational princlples* are summarlzed 1In a
comprehensive work by Washizu (1]le. In hls works it IS sShown
that the above three variational principles can be
systematicalily derived from the general prlnciple, which |[s
refarred to as the "Hu=-Washizu Principle".

Meanwhile, demands for solution techniques fo analyze
nonl inear behavior of structures have increased, and great
efforts have been expended by many sclentists and englneers
to develop such numerical methods. The essential sources of

nonlinearitles are categorized In two parts. One ls material

*From the literal meanings It m3ay be proper to use
“varlatlonal theorem"™ Instead of *variatlonal principle".
Howevery, as often ftound I[In the literature, "principle" is

used as an equivaient word to "theorem™ In thils thesis.



nonlinearlty and the other Is geometrical nonilnearlty. The
material nonlinearity alone does not bring signlficant change
to the framework of the finite element scheme developed for
Ilinear elastlc problems. Howevery If large deformatlion 1Is
considered, the geometrical nontinearity brings several
features which do not appear in {lnear theory. First of all,
because of the tlarge deformationy deformed and undeformed
configurations must be clearly distinguished. Alsos In the
study of sotld mechanlcsy In which we are [nterested In each
material point in +the solld body (Lagrangean Descrilption)
rather than a point In Space (Eulerian Description), we need
to introduce a reference conflguration which will serve as a
materlal co=-ordinate system. The cholce of this reference
configuration Is ratner arbitrary. It can be an undeformed
configuration, or [t can be any intermediate Known
configuration. The first choice of the reference frame Is
often called Total or Stationary Lagrangean description.
The second <case [5 called Updated Lagrangean descriptlon,
especially when It Is used In Incremental formulations.
Another feature of flnlte deformatlon analyses is the
fact that several dlfferent stresses and thelr conjugate
strains can be deflned for finlte deformation problems,
namely, the unsymmetric Plola-Lagrange (First
Pilola-Kirchhoff) stresss symmatrlc Kirchhoff-Trefftz (Second
Plola-Kirchhoff) stress, and the symmetric Jaumann stress,
and thelr conjJugate strains ; displacement gradient,

Green-Lagrange straln, and right extenslonal straln tensor,



resnectlvely. These are dlscussed In chapter II,
Therafore, because of the choice of the reference
confliguration and the definifion of stress and straln
tensorss Quite a few different types of wvariational
formulations are posslble, Based on these variational
principless numerous numober of flnite element models hawve
been reported. Comprehensive surveys of wvarlious aspects of
the finlte element methods for finite deformation problems
we~e presented by Washlzu [11, Nemat-Nasser and his
co-workers [2s 31, Horrigmoe and Bergan [4]1, and Horrlgmoe
(51« Most of these flnlte element models are based on the
statlonary potential energy principle or Helllnger-Reissner
type princlples But hardly any stress model, strictly based
on the complementary energy principles can be found In the
literature, The reason for the lack of stress models In
literature |Is the controversy on the uniqueness of the
inverse stress=-strain relation, which Is assumed In the
complementary energy principle proposed by Levinson (61].

The main objective of fthe present thesis Is to develop
practical “stress finite el ement models”™ for flinlte
deformation probiems based on raticnal complementary energy
principles, and to demonstrafe thelr validlty through proper
numerical examples. The study of the complementary energy
princliple can be traced back to the work by Helllnger (71,
which is considered as a landmark. This fopic has attracted
attentions of many researcherss Especlallys In recent years,

significant progress has pbeen madey 35 seen from fthe recent



works of Zubov (8], Fraeljs de Veubeke [91, Kolter (10, 111,
Christoffersen [121, O111 (131 , and Atlurl and Murakawa
{itl. To begln withs TtThese works are reviewed and the
possibifity of constructing rational and practical
complementary energy principles ls discussed In chaoter I1II.
For thlis purpose, general variatlonal principles (Hu-dashizu
principles) based on alternate definltlons of stress and
straln measures in total Lagrangean formulation are
constructeds, Then, by 3 prlori satisfylng some of the fleld
eaquations and boundary condif lons, these general princlpfes
are shown to be reduced to statlonary potentlal eneragy
principlesy, Heltlinger-Reissner principlesy, or, If possible,
complementary energy principles. However, as polnted out by
Fracijs de Veubeke [91, If the Kirchhoff-Trefftz stress Is
used in the variatlonal formulations, the derlved
complementary energy oprinclipte Involves both stress and
disolacements, And alsos the a priori satisfaction of the
transtational egquifibrjium condition and the traction boundary
conditions which are nonlinear In stress and displacement, Is
nearly Ilmpossibles In general. Thus the complementary energy
principle based on the Kirchhoff-Trefftz stress falls to be a
practically useful princinle. On the other hand, 1f the
Plola-Lagrange stress ls used,y, the translational equifiibrium
condition and the ftraction boundary condlitlon become |linear
equatlions lInvolving stress alones It Is easy to satisfy
these conditions a priori« Thusy If the complementary energy

density In terms of the Plola-Lagrange stress exists,y A



complementary energy princlple Invciving stress alone can be
derived as Shown by Levinson [5]e« Howevery as polnted out by
Truesdell and Noll {153 and recentiy by ODlii!l [131y In
general, the inverse of the stress-strain relatlon In terms
of the Plola-Lagranje stress and the displacement gradient,
which Jleads to the complementary energy density, s
multi-vaiued, In the case of isotroplc ™“semi-iinear™

materlalss Zubov [8] attempts to establish unlque Inverse of

the stress-strain relation. Buty his arguments are refuted
by DIttt [13] and others who show that the Inverse relation
can be multi-valued, Meanwhl ley, Kolter, {111, proving the

existence of the multi-valued iInverse relation, proceeds *to
establish certain sufficlent conditions for the validlty of
the minimum complementary 2anergy principle using the
compliementary energy Involving the Plola-Lagrange stress
alone. Atlthoujhe it can be used to solve simple problems In
an analytlcal wWays such a complementary energy princlole
Involving the multi-valuad Inverse stress-stralin relation can
not be applied to a3 numerlical method such as the finlte
2lement method. Moreovers, there 1Is an ambligulty on the
satisfaction of the rotational equillbrlium condition, which
s nonllnear 1In Plola-Lagrange stra2ss and dlisplacement.
These difficulties and ambigulties pointed out In the
complementary energy principle based on the Kirchhoff-Trefftz
stress or Piola-Lagrange stress can be avolded if the Jaumann
stress is Jsed. First of alls, the Inverse stress-strain

relation in terms of the Jaumann stress and the right



extensional straln tensor (engineering straln) (s unlque.
Thus the complementary energy density function In terms of
the Jaumann stress alone can be achleved. The Jaumann stress
can be decomposed into fthe Pilola-Lagrange stress and the
rotation ftensore. Furthery, the ftranslational eqgullibrlum
condition and the traction boundary condition In terms of the
Plola-Lagrange stress can be satlsfled a priorl« Thuss as
discussed by Frael]s de Veubeke {9] and Christoffersen 1[121,
we can derive the most consistent and useful complementary
energy principle involving both Piola-Lagrange stress and
rotation tensor. In this type of complementary energy
princioley, the rotational equllibrium conditlon can be
retained as an a posteriori conditlon through the
stationarity condltion of the functional wWith respect to the
rotation. These complementary energy prilnclples as well as
other special wvariational orinciples derlivable from the
Hu-Washlzu principles based on alternate sfress and strain
measures In total Lagrangean formulation, are summarlzed In
chanter III.

The wvarlational principles presented In chapter III
can be applied to a finlte element model« Such a model l|eads
to 3 system of nonlinear algebraic equations In terms of
unknown parameters, whlch are usually solved by
Newton-Raphson method., However, dependlng on constitutlive
reflationsy the derived nonlinear equatlons, sometimess, become
extremely complicated. To avoid thls kind of algebraic

complexityy, Incrementail formulatlonss which lead to ||lnear



equatlons, are considered, For this ourposey Incremental
variational principies based on alternate stress and Iits
conjugate straln measures both In total Lagrangean and
updated Lagrangean formulationss are derived In chapter IV.
In all +these incremental variational prilnciples
Including the Incremental complementary energy princlples,
only functlons, which satisfy required continuity condltions
In the domain occupled by solld bodys are allowed as
admissible functionss For examples, displacements must be
continuous wlithin the solid and the ftractlon across any
surface within the solid must be continuous (tractlion
reciprocity). Howevery, In the finite element formulations,
the solld body ls divided into a finite number of subdomalns,
which are called elementsy, and fleld variables are assumed In
cach elements, In this sltuation, the required continulty
conditlions In the element can be easliy satisfled by simply
choosing continuous functions for these variables, But, in
additions these continulty condltlions must be satisfied on
intarelement boundarliese.s In some cases,y It is opracticaity
difficult to choose properly assumed functions whlch satisty
these interelement continuitiess To deal with this difficult
situatlion, the concept of "Hybrld Model" is introduced ({1i6l.
The hybrid flnite element model is deflned as a finite
element model based on 3 modiflied (or hybrld)l varlational
principle In which the constraints ot displacement contlnuity

and/or traction reclprocity condltion at the Interelement

boundaries are relaxed 3 priori by uslng Lagrange



multiplierse Thus, it leads to more versatillty In choosing
functions for displacement and/or stress In the element,

The requlired contlnuity condltions are enforced a posterlorl,

at least in 3 welghted residual sense, through the
statlonarity condition of the modified functional wlth
respect to Lagrange multiol lers. Thus, functionals

associated wlth varlious types of wvarliational oprinclples are
further modiflied, and modif ied (hybrid) Incremental
functlonals are constructed. Especlallys incremental hybrld
comoiementary energy principles which involve Incremental
Pliola-Lagrange stress and rotatlon tensors , both In total
Lagrangean and updated Lagrangean formulations, are proposed.

Based on the proposed varlatlonal principley, an Incremental

hybrid stress finite element model in total Lagrangean
formulation 1Ils developed. The detalled discusslion of the
finite element formulation for the analysis of finlte

deformatlon elastic probiem 1Is presented In chapter V.
Using the newly developed methody, an example problem of
blaxial stretching of a thin sheet made of Blatz-Ko type (171
nonl inear elastlc material 1s solvedy, and the numerical
results are dilscussed.

It 1s known thats among the engineerlng materials
which can deform In a large scaley, many of them, such as
rubbers, polymers, and solid-propelfant rocket grains, are
consldered to be nearly or preclsely Incompressible. In the
ciosed-form analysisys the incompressibllity conditlon makes

it easler to obtaln solutions for certain simple problems



[461. However, thils Is not the case for numerical methods
based dn eneray fype wvarlatlonal principles. An essentlal
dltference between compressible and Incompressible materlals
is the fact that the stress can be determlned by strain In
the former case, whereas, in the l1atter case, the stress can
not be fully determlned by straln atoney, and the hydrostatic
pressure remalns as an UNknNOWn. This Impliles that the
complete stress-strain relatlion of the Incompressible
material can not be characterized by the usual straln energy
densitys as that for compressible materlalss which Is a
function of strain alone.  Moreover, in the case of
Incompressible materials the strain field must satisfy the
incompressibillity conditlons which iss In general, nonlinear,
The 3 priorl satisfaction of this condition for the general
case Is practlcally impossibles Therefore, the varlatlional
principles derlved for compressible materlals are not wvallid
for the Incompressibie case.

Some aiternative approaches are suggested by Herrmann
(191 and Key (201 s for Iinear elastic small deformation
proolemss, and also by Oden [181 for the flnite deformatlion
oroblems. They Introduce the hydrostatic pressure as a
varlabl e, and construct potentlal eneragy type or
Hell inger-Relssner type wvariatlional oprinciples, which are
vaild for neartly or preclsely LIncompressible materlals. In
the present work, a complementary energy orinciplie Is used to
solve finlte elasticity problems of Incompressible materlals.

Firsty by Introducing the hydrostatlc pressure as a Lagrange
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multipliery functionals assoclated wlth Hu-Washizu princliples
in which the incompressibility condition is relaxed a priori
through the Lagrange multipller are constructed using
alternate stress and straln measures. Then, from the
Hu-Washizu principle based on the Jaumann stress, an
incremental complementary energy principle 3and alsc |Its
modifled (hybrid) version are derived, Speclficaliy, an
incremental hybrid complementary enerqy principfe is applled
to the finite element method and a Incremental hybrid stress
modal Is developed. This proposed method is applied to solve
finite straln plane stress problems for a nonlinear
incompressible material of Mooney-R1vI in type [211.
Numerlcal resuits for pilaxlal stretching of a plane square
sheat and a sguare sheet with centrally {ocated circular hole
are presented. The wvalidity of the oproposed method 1Is
demonstrated through comoarison wlth the numerical results
obtalined by the displacement finlite element model {Oden
{181) .

The concluslons drawn from this study and

recommendatlions for furtner study are glven In chapter VII,
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CHAPTER II

BASIC FORMULATIONS

Introduc tion

In the study of solid mechanlcss we are interested In
the state wvariables at material points of deformed soilds,

such as stress and straln. Thuss Lagrangean description 1is

adooted to describe the behavior of sollds. In this
descriptiony atl the state varliables are describad as
functions of material co-ordinatese. In the case of tinear

theorysy In which there IS no distinctlon between deformed and
undeformed configurations, usually, undeformed (equivalent to
deformed) conflguration |s taken as a reference. The
components of the position vector of the material point in
the refterence conflguration 3are used as materlal co-ordlnates
to identify each materlal point. Howaver, 1In +the case of
finite deformatlion problemy the wundeformed and deformed
configurations must be distingulished. Consequentiy, our
choice of the reference becomes arbltrary. It can be the
undaformed conflguration, also it <can be any IiIntermediate
Known deformed conflguration. If the undeformed
configuration Is chosen as a reference, it [Is called total or
statlonary Lagrangean description. If an intermediate
detormed confliguration is useds, It Is called wupdated

Lagrangean descriptions especlally when it ls wused 1In an
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incremental formulations On the other hand, for the finite
deformatlon problems, we can deflne stress and Its conlugate
straln iIin severai different waysy, so that the governing
equations wrltten in terms of these can be reduced to
convenient mathematical formse.

As it Is noticed, there are several dlfferent aspects
involved In finlte deformation problems. Also, notations are
quite different from one author to another. Therefore, to
avoid confusions due to notationsy, and to make the
definitlions consistent throughout the thesliss, the definlitions
of alternate stress and strain measures are presented In this
chapters In connection wlth the deflnitlions of these field
variables, constltutive relations and the governing equations
for flnite deformation oroblems In terms of alternate stress
and strain measures are also presented for both total and
updated Lagrangean descriptionse. Olrect tensor notatlon,
which is considered to be the most general way to describe
the problem of solld mechanics [Is used for thls purpose.
The detalls of the direct tensor notatlon used Iin this thesls

are given in the appendix A,

Total Lagrangean Description

Geometry of Deformed Solld

Conslider a solid body in three-dimensional Fuclidean
space » as Shown by Flgele The Inltlai (stress free)
conflguration is denoted by Co and its volume and surface are

denoted by Vo and Sje Similtarlyy the deformed (current)
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configuration 1is denoted by O, and V and S are its volume
and surface. Slnce the iniflal configuration ls taken as 3
reference , the material point P, which has a position B In
the inltlal conflguration 1is ldentifled by 1Ifts posltlon
vector x. The same materia! polnt moves to P In the deformed
configuration through deformation of the body. Its positlon
vector Is denoted by vector y. Thus, the dispiacement vector

u Is defined by,

U=y - x =y

|.— KL)EL (2.1)

where y; and x; are rectangular Carteslan components, and )
are unlt base vectors. If y{x) Is assumed to be
differentlable wlth respect to x s the deformation gradient f

is deflned by,

F o= (py) (2.2)
or In rectangular Carteslan components,
) (243

Ft'} B x;
where the symbol V denotes the gradient In the metric In C,

3 and iIn the present notatliony, vectors and second order

tensors are denoted by _. and ., under symbols, resvectlively.

Definltion of Straln Measures

The deformation gradient F Is not singular. It can be

uniquely decomposed Into right polar-decomposltlon,

E = a-(L +n) (244)
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wherea (£ + Q) Is a symmetric, positive definite tensor: L is
the identlty tensor; and a ls an orthogonal tensor, such

that,
T _ I _
2.2 = (245)

Physicallyy the above decomposition means the separation of
the deformation gradient into rigld body rotatlon and
streftching. Thus, tensor (£+Q) is called stretch tensor, and
tensor h Is called right extensional strain tensor which
provides one definition of strain. And ¢ is called rotation
tensor, Another strailn measure 1[5 glven by dlisplacement

gradient e which Is defined by,
T
Ag'=(rg) (2.6)
A deformation ftensor 5 Is defined by,
T

G = F+f = (h + I) (2.7)

Using deformatlon tensor E, the Green-Lagrange straln tensor

g Is deflped as,

g =172 (G = I) = 172 € Py + 74 + pu-pu’ 3 (2.8)
ThuSs we defined three straln measuresy namely, right
extensional strain tensor, 1lspl acement gradlient, and
Grean-Lagrange straln tensors These sftraln tensors are

related by,

g = 172 ( e + ET + gT-g ) (2.9)
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g = 1/2 t 2h + h.h) (2.10)

Definltlon of Stress Measures

Followlng Truesdell and Noll 151, and Fraell]s de
Vveubeke (9], unsymmetric Piola-Lagrange stress fensor 1, and
symmetric Xirchhoff-Trefftz stress tensor S are defined in
terms of Cauchy or true stress Z in the deformed body,

through the following relatlons,

T= (/9 F-t = (/D) F. s F (231D

-~
~

or Inversely,

£ =g FLE (2.12)
s = JF LT (2.13)
and,
:
t = S'f (2.14)

where J Is the determinant of ﬁ. Further, symmetric Jaumann

stress tensor r ls defined by,

il

r=1/2 ( tia +a"t") (2415)

i+

]

i/2 {Eo(£+gl ¥+ (I+h)-s)
It is worth noting here that tensors S 9 and h become
coaxlial for lIsotroplc materlale. Thus, EQ.(2.15) is

simpiified and reduced to,

r = t.a = s.(I+h) (2.16)

S d

It is noted that the Plola-Lagrange stress l defined by

EQel(2411) corresponds to the transpose of that defined by
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Truesdetl [1%51. Physical meanings of stress and strain

measures deflined in the above are presented In appendix B.

Constitutlve Relations

Only an elastic material Is considered in this
sections If material Is elasticy stralin energy denslty
function Wy per unit undeformedvolumcscan be expressed as a

function of Green-Lagrange straln g alone. Further, It is

~

assumed to be a symmeftric Ffunctlon of g, S0 that the

ot

rotational equlllibrium conditlon ls embedded,

W(g) = W(gT) ; —g—ﬂfg—w (2.17)

o)
LR

Also, uUsing Eg.(2.9)s W can be expressed as a function of e:

W(g) = Wlg(e)] (2.18)

At ™~

Nowsy conslder the varlation of straln energy (virtual work)

per unit undeformed volume, B5W, which is glven as.

sw=JZ:5F% (2.19)

-
x = == - . =1
where, 5‘5 95 gl 'gj { VS_!) (V)_‘ )

Using the deflinltlons of sftressesy Egqnse.(2.12) and (2.13), It

is reduced to,

SW = Jtpy™ T : (pey) = tise’ (2.20)

4/
il
L%
&

4

On the other hand, from Eadns«(2.17) and (2.18),
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SW = %"1353 = W .ce (2421)

By comparing Eans.(2.20) and (2.21)y the following relations

are obtralred.

oW o tT (2422)
_— = S — —
94 ~ > 2% ~ (2.23)
Further, using the relation,
§9 = 172 L (I + h).8h + Sh.{I + h) ] (24204)
~ bl A g ~F ~ ~F
Eqel(2+21) Is rewritten as,
(2.25)

SW =3{S (I+h)+(L+h) S}:8h

Thusy the Jaumann stress e is related to the strain energy

density W by,

aw (2.26)
am =L
In fact, Fraeljs de Veubeke (9] defined Jaumann stress
through the straln energy function as shown In the above.

For later usey wWe conslider the Inverse ot the
constitutive relations. As discussed by Frael]s de Veupeke
{4l, +the stress-straln relatlions glven by Egns.(2.22) and
(2.20) arey In generals lnvertible, and the followlng contact

transformatlons are achleved,

Sts) = E;g(gl - Wlg(s)1] (2.27)
R(E) = S:hlgl - w[hlsil (2.28)
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such that,

«29)

& _ 3 2R _ /7 (2.29

23 ~ 5 ar ~ (2.30)
However, as noted by Truesdell and Noll {151 and more
recently by OlIl {13}y unique Inverse for £Q.{2.23) does not
exlst for general cases, In the case of sami-llnear

matarlalss Zubov [8]1 attempts to establish such an inverse
relations However, his arguments are refuted by DIlII (131
and others who show that the Inverse can be multi-valued.
Following DI I [13]1y we closely investigate the Inverse
stress~-strain relation In fterms of L and e. We assume that
the material Is lsotropic and the Piola-Lagrange stress t |Is
given. Since materlal Is Isotropic, stress t can be
decomposed into the Jaumann stress r and the rotation a as

shoWwn by EQe(2.16).
L =}:-GT {(2.10) %

wher e r is symmetric and a ls orthogonals Using E3.(2.30),
the Jaumann stress & is unlquely related to the straln tensor
he Thus the strain S is calculated and we <can obtaln the

disofacement gradlent by,
8 = a:t I «+h) -1 (2. 31)

Howaver, unl lke In Eqe(2.4)s The decomposition In £3.12.16)*%

is not unlque because the tensor ¥ ls only requlred to be
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symmetric. Thls can be seen from a simple examples. HWe

conslder a seml-{inear material, the straln energy denslty

for which Is glven by,

Win) = 1/2 Aln :I¥  + pth: h) {(2e32)

“ L s

such that,

OW _r _ A(h:1)I + 2uh (2.33)

For simplicity, A Ls assumed to be zero. Then £EQe«{2+33) is

reduced 10,
r o= 2;13 (2.34)

Suppose stress i is given as,

{2.,25)
a 0 0
5 = 0 a 0
0 0 a

For the glven ty the following decomposltions are considered,

(2.36)
ra 0 0]f1 o0 o
t=x:aq’'=|0 a 0||0 1 O
0 0 ajl|l0o 0 1
[ a 0 0 1 0 0

t=1r,8 =|0 =a 0|0 -1 0 (2.37)
0 Q0 =z 0 0o -1
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The strain tensors corresponding to the above Jaumann

stresses are calculated to be,

(2.38)
; (2.39)
a 0 0 i ; 0 0
h .__1._ i
T o2 0 a 0 122 =W 0 -a 0
0 0 a s 0 0 -aJ
Thus, it is seen that +the Inverse of Eg.(2.223) is

multi~valued., Further, it [s Interesting to notice that the

two strain flelds obtalned above satlisfy the rotatlional

eqdiliprium condltions which requires the symmetry of Ef
1
(T==—F-t )
A J ~ ~
5 (2.40)
2—P._'+l 0]
ct=ae+I)t= al 0 3+ 0 = symmetric
0 &
0 2#+1
a
2“*-1 0 0
%'5:?,9'(§2+I°5= a 0 2—%—? 0 = symmetric
Qa
4 0 2z-1!

This example suggests that the rotational equlilibrium
condition alone is not enough to identify the straln field
for the 9glven stress T As mentioned by Kolter (111, by
conslidering the giopbal deformation, It may be possible fto
select proper wvalue among the multli values. However, it Is

practically Imposslble to select the correct inverse In the
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numerical solution process.

Field Equatlons and Boundary Condltlons

Futi mathematical daescrilption of the tfinite
deformation problem of Solld can be glven by a complete set
of field equatlons and proper boundary conditionss namely,

(3) transiational equillbrium condition

(1 lnear momentum balance)
{b) rotatlional equllibrium conditlon

(angular momentum balance)
(c) strain-displacement relation (kinematlc relatlons)
(d) stress-straln relations (constltutlve relations)
(e) dlisplacement boundary conditlons and/or tractlon

boundary conditlons and/or mixed boundary conditions,

The equillbrium conditions are essentlally described In the
deformed configuration in terms of +true stress 27. The
translational equllibrium condition iIs expressed by,

4 J (2e41)
et o+ 03 = o

d
where V< represents divergence with respect to the metric In
d
the deformed conflguration; A 1s the mass denslity in the
deformed conflgurationy and g Is body force per unlt mass.

The rotatlona!l equlllbrium condition ls glven as a symmetric

prooerty of tensor T,

2.: = :Z,-‘T {2.42)

Cad

By using the geometrical relations and definitlons of
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stresses, Egqns(2.t1i) and (2.4Z2) are rewritten In terms of

state varlables defined In the undeformed configuration.

translational equllibrium condltlions

7 ( §.§T) +pg =0 (2.43)

or V-t + Rg =0 (2a44)

where P, iS the mass density measured in the undeformed

configuration.

rotational equillbrium condlitlons

s'= s (2.45)
F.t = LT-ET (2.46)
(h+1)-t-@ = symmetric (2.47)

Kinematic retltations in terms of alternate straln measure are

given by the following equatlions,

kKin2matic relations

g = 172 ¢ f‘f - 1 (2.48)
T

e = (Pu) (2,49)

F=a-(I+h) (2.50)

Assuming the existence of the straln energy denslty functlion

W in terms of g, constitutive retltations are expressed as,

constitutive retfations

w g 2D (2.51)
o a% 2
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tr,-iﬂ- . oW (2.52)
=" 8e ~ ah (2.53)
Further,y, the [Inverse retations of Egns.{(2.51) and (2.53) can

be obtained through the complementary energy density
functions defined by Eqns. (2.27) and {2.28) as»
(2.54)

(2.55)

Howaver,y, unique lnverse of EQs(2+52) does not exist for

general cases,

boundary conditions

Stress boundary conditions and disnlacement boundary

condltions are given by the followlng 2quatlions,

ta) t =n.t =nAsF) ar Sy (2.56)

where n ls an unlt normal to the surface Sg where

tractions are prescribed to be E.

(b)

Icl

=u at Sy, (2.57)
where Sy IS the undeformed surface where dlsplacements

are prescribed to be u.

Updated Laarangean Description

The wupdated Lagrangean descriptlion Sseems somewhat
unusual compared to the ftotal Lagrangean description.
Howevery it Is wlidely employed In Incremental formulaticns

because of the fact that fthe formutations are greatly


Eqns.C2.21T
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simolifled by thelr use. In fact, sometimes, dependlng on
the nature of problems and the stress or straln measures
usedy It IS posslible to use simple finlte element computer
projrams devel oped for | Inear probiem Wwith minor
modiflicatlons. Therefore, the updated Laglangean formulatlon
will be discussed In the framevork of the Incrementai
formuiatione

In the incremental formuliation the external loady In
general sense, ls divided into a finlte number of Incremental
foadse For glven |lcad Incrementy, Incremental equatlions are
solved to obtain Tthe next equilibrated state. With this
equllibrated state as a current state, a new load increment
Is applied and the same procedure Is repeated until the total
load reaches the deslired value. Now, we consider deformed
confligurations Cy and Cy, s prlor to and after the addition of
the (N+1)th (oad Increment as shown in FiIgele The
configuration Cy IS consldered to be an equlllbrated known
configutation, and Cyy IS an unknown state to be found.
Thussy Cy Is wused as a reference Instead ot the Inltlal
conflguratlons to describe Cn+ states If the Cn+1 sState s
obtalned, the reference wli{ be updated and Cy4 Will be a new
references The name of wupdated Lagrangean descriptlion ls
glven from thls facte.

Sincey our present reference Is Cy statey, all the
state varlables both In Cy and Cys states are referred to Cy
configuration., The distinctlion between state variable In Cy

and Cn+i are made by usling superscripts N and N+i,
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respectively, Conslder a materlal point P which has
positions P, and P, In the (N)th and (N+1)th conflgurationsSe.
Posltion vectors of these points are denoted by yN and yN*.
Slncey, In the Lagrangean descriptlions materlal polints are
identitied by their posltion vectors Iin the reterence
configuratliony the components of vector .1” are taken as
material coordinates for the present case. Thus, all the

state varlables In Cy and Cuy states are consldered as

functions ot yN. Symbolicaily, this statement is written as,
Ca =Cx ¥" 1 (2.58)
Cn+l=cu+:(zd )

whera C represents state variables In general. The
displacement of a materlal point through the deformation from
Cny to Cy+; Is denoted by 4u. It is written In terms of

position vectors as,

au = y"MyMy - N (2.59)

If y (y iIs differentlable with respect to the reterence

co-ordlnate ny. deformation gradlent E‘N+ in CN+,ulth respect

to yM Is defined by the following relation,

N+|
N e e T Nt gVi
E“ -(Vl ) 2 Fij B ayjﬂ'

*
where V¥V represents the gradlent Iin the metric of Cy.

(2.60)

Deflnition of Straln Measures

N+I
The detftormation gradient F* is non-singular as is F in



26

the total Lagrangean descriptione. It can be decomposed into

polar-decompositions,
F¥ =a . (I + h* ) (2.61)

where (I + Q ) Is a symmetric, positive deflnlte tensor and

N+i

Ef is an orthogonal tensory, such that,

(2.62)

( g‘ N'H)T.( E# N'H) - I
and the superposed star Implies state variables referred to
Cy conflguration. The physical Interpretatlon of £qQ.(2.61})
is 3iven In the analogous way as In fthe total Lagrangean
N+ N+

description. The tensorse® and (£+Q* ) represent the rigid
body rotation and the pure stretch of the Iinfinltesimal
materlal element through the deformation from Cy to Cyuye

I
Thus, h‘”+ glves one strain measures, The dlsplacement

[
gradient gf”+ ls deflined by,

N+l » T
ex = (Fy"™- 1) =@au) (2.63)
N+I
Similarly, the deformation tensor Q* ? and the Green-
N+

Lagrange strailn tensor g* raferred to the Cy conflguration

can be deflned by the following equations,

N+ 7l

914 - Ejt”“.p;”” (2.64)
N+ N+

g* = 1/2 ( G* = I ) (2.65)

Nt N+i N+
Thusy, three straln measures h*, e*, and g* are deflned.
v A~ o~

These strain tensors are related to those defined in the
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total Lagrangean formulation through the followlng equations,

N+ N+ N .
e = e* --F ¢+ e (2.66)
N+ T Nt N

=f”'g‘ -E + gN (2.6?)

i

Nt
where e", "', e, and 9" are strain measures in Cu,, and C,,

AL

but these are referred to the Initial confliguration ; and

|
5" = 1171"fr. Further, fthe strains gf”*, g‘””, and h*"' are
~r L

related by the following equations.

T

1T ‘NH N+t

+1 N+l N+

q* = 172 ((e*® y+{e¥ ) *(E )'(3* )} (2.68)
N+! Nt N+i N+l

g* = 1/2 € 2h* + h* 'Qf } {(2.69)

~

Definition of Stress Measures

In the updated Lagrangean formulation stress tensors
are also referred fto Cy configurationy, Instead of the iniftial
conflguration. Analogous to the case of the total Lagrangean
descriptions, Plola-Lagrange stress L*N“ s+ Kilirchhoff=-Trefftz

N+

N+l
stress s* , and Jaumann sfress r* In the Cy,, state are

defined through the following relations,

Nty LTy N N+l N+ N+ T
S = rgMEr = Y T T e (2.70)
or inversely,
N+l N+i N¥l =1 N+
tx = gV (e . 7 (2.71)
N N+l - Nt N+l =T
s¥" = M0 e )T e (2.72)
N+i N#1 T
and t* = S!"”.(Fl .4 (2.73)
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N+i

where ¢ Is the true stress in the C,, state and JY and g™
are Jacoblans which are defined by,
o = detwy™ and "' = det (pyM) (2.74)

These stress tensors are related to those deflned In the

total Lagrangean descriptlion by the following equations,

N+l T
s* = 174" ( ﬁ"-s"*'-f” ) (2.75)
N+1
pr = st e Y. ity (2.76)
where 3”*' and f"*' are Klrchhoff-Trefftz stress and

Plola=-Lagrange sfress referred to the inltial conflgurations

N+I
Further, the Jaumann stress 5* Is defined by,

Nt AN =N+ T AN+ T
r* = asact - d @ )(ETT) (2.77)
N+i N N+! I
= (172)C s* AT + Ay & (1 + h¥ .M

Constitutlve Relatlions

We consider an elastlic materlal discussed in the
previous sectlon. The existence of the straln energy denslty
function We which Is measured Iin the undeformed configuratjon
ls assumed. We introduce straln energy density per unlt
volume in Cy configuratlon and denote It by W¥, It Is seen

that W¥ is related to W by,

N
Weeg® ) = (174%) Wigh"t' ) (2.783)

-~

with the additlonal conditionss thats
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a*
oW
Wx(0) = (173") Wig") =" (2.78bs <)

’ iﬁiiﬂ
s 0

The stress strain relations are shown to be derived through
W¥ In the followings. Firsty, we conslder the varlation of
the strain eneragy (virtual wWork expended by virtual

displacement) per unlt volume in Cy .
SWw* = (174" §w (2.79)

The substitutlion of eqgns.(2.21), (2.22), and (2.23) into

EQe(2a79) glves,

: T
g = (erat) s G = dasa¥y $™g( pa¥) (2.80)

Using the relations Eans.(2.866y 67y 75y and 76)y it Is

: N+l N+ N+l
rewritten In terms of s* , t* , g**', and e*

N+! N N+l T
gH* = 5% :gg¥ = gx i(5ex™) (2.81)

N+l
On the other hand, W¥ [Is considered as a function of g* or

N :
e, Theretore s OW* can also be written In the followling

~

formss,

A el _ D" Nt (2.82)

kS
OW = : : Se
g N 68 BE*N+I =

-~

By comparlison between Eqns. (2.81) and (2.82): the stress and

the straln are showWwn to be related by,

" (2.83)
‘Qﬂ%u o N aWE T
aerht ™ 2 * dexMH T L

(2.84)
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N+
Simltarly, consldering W* as a functlon of h* the
foltowing relation is derived,
(2.85)
W % N+
an*M T 2

—

Furthery we consider the Inverse of the above constitutive
relations. As dliscussed earller, the Inverse stress=-strailn

relation In terms of s and g Is uniquely defined, and g can

~

be expressed as a functlon of s. Also 3" and s"" are
| inearliy related to g‘NH and ;*"“ through £ans.(2.67) and
N+i N+I!
(2¢75) s Therefore, g¥ can be expressed in terms of g* .
N+I
Thussy the contact ftransformation of W*¥ In terms of a¥ ls
achleved,
N+I I N I N
s¥(s® ) = sa g s ™) o prgga™ sy (2.86)
such that,
(2.87)
38* _ _*H-H
as*u+z“ 5
N+1

Slmitarlyy the contact transformation of W* In terms of r*

which Is defined by the following equation, exlsts.

N+i N+l N+I N+i N+ N+l
R‘tz‘ ) = r* n* (r* ) = W*(h* (S* )1 {2.88)
such that,
JR* l*~+l (2.89)
) *NH o~
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Howavery, as already showns there [Is no wunligue I1lnverse

N+!
stress-straln relation in terms of t and s"”, whlch are

i

{inearly related to T‘~+ and gf”” through Eans.(2.66) and

(2,76)y respectively, Thereforey, there IS no unique Iinverse

of Zgq.(2.84). Thusse the contact transformatlon In terms of

4x NHI

Cad

can not be achleved.

Field Equatlons and Boundary Conditions

The field equations and the boundary conditions for
the ftinlite deformation elastic problems can be written In
terms of alternate stress and thelir conjugate straln measures
which are referred to Cy configuration. These equations are

summarized In the followings,

translatlonal equillbrium condi tlions

N+ T
pr.c s* <(F¥')y 2 e p "= 0 (2.90)

e

x

N+
peete’ v p gt = g (2491)
where Py Is the mass density per unit volume In Cye

rotatiornal equlllbrium conditlions

N+i
s¥'t o sT (2.92)
N+i N +1
or F* .t o= £¥~ sttt ¥ (2.933)
N+ N+
or (h* + I )-1xMa" = symmetric (2.94)

Kinematlic relations
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N+l * * T #* *
g* Y= rare Vau + Pau + (F4u)- (Faw)’ 1 (2.95)
~
*" = (vay VT (2.96)

> Nti N¥1
IV‘z“”IT = @ “(I+h* ) (2.97)

constitutive relatlons

s Nt aw* t*n+if_ AL (2.98)

;s = ’ = % N+
B L - % (2.99)
% (2.100)

*H'H _ aw

3 - ah-kﬂ'!-l'

-~

Further, through the complementary energy density functlions
defined by Eans.(2.86) and (2,88), the inverse relatlions of

Eans«. (2.98) and (2.100) are glven by,

(2.101)

* %
Ny _ 98T wN4l  _OR
E - asz’cN‘H E - ar-kN-H (2.102)

However, uUnlque inverse of Eq.{2.99) does not exist for

general cases.

bodndary conditlons

— N+I N+l N+1 ‘Nﬂ ""'

(a) o = n¥: T* = n*-( 2' (F } at S% (2.103)

where n* Is the unit normal to the boundary S% In Cy where

— N+l
the traction Is prescribed to be t* .

— Nti
(b) u = uW at Su, (2.104)
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where Su,is the boundary where displacements are prescribed

— N+1
to be u.
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CHAPTER III

VARIATIONAL PRINCIPLES FOR FINITE DEFORMATION PROBLEMS

(TOTAL LAGRANGEAN DESCRIPTION)

Introduction

As discussed in the preceding chapter the behavlor of
the deformed solld can be fully described by transliatlonal
equlliborium equatlionss rotatlional equilibrium equations,
klnematic relations, constitutlive relations, and proper
podndary condltions. In generals these equatlons are wrltten
In terms of displacement, straln, and stress. B8y eliminating
some of these fleld varlables, they are reduced to a set of
partlal differential equatlons and boundary conditions In
terms of displtacement ory If possible, stress alone,
Usually the derlved differentlial egquations are nonillinear.
Analytical solutlons of these nonllinear equatlons for
practically meaningful boundary conditions are very limited.
Even for the small deformatlon probiem In whilch governing
equations are llinear, an analytical solution Is avallable
only for ldeal boundary conditlons. Therefore, most of the
practical works In solld mechanlics are largely dependent on
approxlmate numerical solution technliques. Among such
numerical methos, filnite element method has been wldely used
as a versatile tool,

The signiflcant feature of fimite element methods Iis
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the fact that, in general, they have thelr strong theoretical
bases on varliatlonal principles, such as stationary potentlal
enerqgy principlie, stationary complementary energy princlple,
Hell lnger-Relssner princlipley eftce As It Is seen from the
Works by Washizu [1], Nemat-Nasser and his co-workers [2, 31,
Hor~ilgmoe and Bergan ([&4], and Horrlgmoe (5], varlational
principles have been polaying an important role In the
devalopment of flnite element models not only for smalt
deformation problems but also for tinite deformatlon
oroblems. This Implies that the development 0of 3 new finite
element model can be made posslbley, If the correspondling
variational formulation Is derived. Sincey the oprimary
objective of this thesls is to develop assumed stress finlte
element models for finlte deformation problemsy rational
complementary energy princlples which lead to such models are
sought. For thls puroosey baslc variliational princliptes iIn
total Lagrangean descriptlon are reviewed. Followlng Washlzu
[11, the general ( Hu=-Washlzu) orincipies In terms of
alternate stress and stralin measures are constructed. With
these general princlples as basesy, stationary potentlal
energy princlplesy, Hellinger-Relssner principless and, if
vpossiblesy stationary complementary energy principles are
showWwn to be obtalned as special cases. In this process the
posslipility of constructing a ratlonal complementary energy
principle is dlscussed in detall.

Hu-Washlzu Variatlional Principles

A general varlatlonal princliple was derived by Washlzu
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[1] and Hu [22) for I1lnear elastic problems. In this
prilncipley, the functional ls not sublected to any subsidlary
(a priori) condltionse Its stationarity condition leads to
all the field equations and boundary conditions, which fully
describe the deformation of elastic bodys. Analogous general
principles are constructed for the flinite deformation
problems In the following.

Based on S and 3

The Hu-Washizu functlonal In ferms of displacement u,
Kirchhoff- Trefftz stress S and Green-Lagrange straln D for
the finlte-deformation case 15 derived, irn 3 manner an3alogous
to the orlginal developments In [1], as,

(@ s 8, 8) =f{w(g) - pg-u (3.1)

-~ o -
e

+3s 1 [ru+ 00" + Gu) . gw"- 2] jadv

'fi"_l da: = fE-(t_l-ﬁ)ds
IS S e

% Uys

where 1 is the traction on the boundary per unit undeformed

areas which Is defined by,

t =n.s-(py)

and WI(g3) Is the straln energy density functlon (per unilt
initial volume) which is a symmetric function of g as defined
by £Eq.(2.17)3% s, and s, denote the porftlons of fthe boundary

surtace S , in the undeformed statey, where the tractlon and
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the displacement are prescribed to be E and E, respectively.
The tirst varlation of the above functlonal due to arpltrary

variatlons 54Uy §9» and 5S Is obtained as,

(3.2)
My ~ Lj[%g - s] 158+ s ET:(5pu) - £ & 8u

H{re e + w ow"f -] : s jav

- [Eeuds - [{or - @ + ey Jas

A Bilq

If the stress s and the displacement U are assumed to be
differentlabie wilth respect +fo x, by using Integratlion by

partsy My ls rewritten In the following form,

3.3)
sy = ({1 L - 2):es - [GeED +og]-du (

W v, 3%
] :5s }dv

) ds

]
109

+H—{Pg +put + o). W)

(J=y]

- [E-op-Byde - [orlu-

- S S
LA Ue

Thuss it Is readily seen that the statlonarity condltlon
leads to translatlonal equlilbrium condlition £Qq.(2.43),
kinematic relatlion Eqe (2o 8) ’ constltutive relation
£Ea(2.51)s and boundary conditions Eans.(2.56) and (2.57) as a
posteriori conditlons. In additlon to these, from the
symmetrlc oroperty of W(g), the rotational equliibr lum

~

condltlion £ge.{2.45) Is manl fested as the conditlon of
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symmetry of Se Therefore, It is shown that the statlonary
condition of EQe(3.1) |ISs reduced to the full descriptlon of
the finite deformation problems

Based on t and B

An analogous functlonal Is Aderived in terms of
disptacement u , Piola-Lagrange stress t, and disotfacement

gradlent 8.

(3.4)
T Y € t) =f{ W(e) + t7:(pu” - e ) -/gg-g}dv
» &
o
= fgl_l_ds - fg-(g-u)ds
Sr. Sue

where W 1s considered as a functlon of e through g, as

~

deflned by EQ.(2+18), Its first variation Is shown to be,

(3.5)

]
.ﬂh
~
T

t-n.t)duds - [55-(9-§)ds

- Su'

Thus, the statlonarity conditlon of EQes(3.4) leads to
Eans, (2.44), (2446), (2.49), (2.52)y (2.56)y and (2.57).
Again 1t Is5 notlced that the rotational eaqullibrlum condition
is enforced through the symmetric structure of W from the

following arguments. B8y the definltlion of We the
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constitutlve rulation can be expressed as,

t = = —a.F = S'FT (3.6,
nhere, STz % »

From the symmetry of s, which Is embedded in W, the stress ft,
which 15 derjived through Ege.(3.,6)y ldentically satisfles the
rotational equllibrium condltion glven by EQes (2.46).

Based on r and h

We conslder here that the strain energy denslty W 1Is

expressed as a symmetric function of right extenslonal strain

tensor he Then, the general principle is constructed based
on the Jaumann stress r and right extensional straln fensSor
hy 3as ,

(u, h, t) (3.7)

f f ) + ¢ Tz +pw)T

a,
v,
fs

1
iR
~
-
+
t4=x
S
—
]
o
19
=
T
ja i
<

u )ds

ber
m\
tet
~
U=
1
=1

Noting that the rotation tensor a Is subjected to the

orthogonallity condition,

5
a.a = .E (3.8)

the first varlatlion of the functlonal Ea(3.7) 1s shown to bes
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au , .
s~ (A3 ~Leras & D] 3.9
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,_r
i
=
i
S’
[o%]
=
o
@
i
UN
(7]
It
—~
1=
]
=
Ly
jaly
w

The constitutive relation EQ.(2.253)y klinematic relation
EqQe (2+450) transliatlonal equllibrium condition £q.(2.44L), and
the boundary condltions Egns.(2.56) and (2a57) are readliy
shown to be obtained from the stationarity condition of
EQs{3+47)s Wes now, conslider the stationarity condition wlith
respet to a . From the orthogonality ot a, the variation

must satisty,

(3.10)
a-82 + 8g-g = o

R

-
or a-5a = skewsymmetric

Thus, tha condition of wvanishing of the third term In
Ed«.(3.9) requires the symmetry of (£+Ql-113, which 1s the
exact statement of the rotational equilibrium condltion as
shoWn by EQ.(2.47). It Is obsereved, here, that rotational
equlllbrium condiftlion is separated from the constitutive
relationsy and It Is obtalned directly from the stationarity
condition of the functional as an a posterlori conditione
As It Wwill be dlscussed later, this feature holds the key to

constructing a rational complementary energy principle.
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Stationary Potential Energy Principles

Followlng HWashizu (11, by a priorl satlisfylng the
kinematic relatlions, constlitutlve relatlions, and the
displacement boundary condifions, the Hu-Washlizu functionals
glven by Eagnse(3.1)y (3.4)y and {3.7) are reduced to the
stationary potentlal energy princlples. Since the potentlal
ene~gy functlonal Involves only displacement U, the reduced
functlonals become ldentical, and this functional Is seen to

bey

7 (u) = f{W(g)-ﬂg.Egdv (3.11)
p Vo o
-f t-uds
50,..
or equlvalently
TMpCu)d =f (3.12)
’ Vo{ e 'ﬂ_%-‘l}dv
- [ Euas
So-'

Its stationarity condition 1leads to the translatlional
equitibrlium condition Ed.{2.43 or &44) and the tractlon
poundary condltlion £Eq.(2.56). Moreover, when Eq.(3.12) Iis
used, even though W 1Is expressed as a functlon of 2y the
rotationatl equillbrium condition is inherently embedded In
the structure of W as discussed earller, This type of
varliatlional principles is commonly applied to the finite

element method [181.



Principles of the "Hel linger-Reissner” Type

If the constitutive relatlon 1Is iInvertible, the
contact transformation of the sftrain energy density W exlstse
3y using this transformatlon (fo obtain the complementary
energy density)s strain tansor 1is eliminated from the
Hu-Washlzu functlonal and the Hellinger-Relssner functional
can be derived,

As discussed by Frael]js de Veubeke (9], the lnverses
0f EQe(222) and Eqe{2+.26) existy and the following contact

transformations are achleved.

S(El =s .glfl b H[g(g)l (3.13)
Rir) =1 hir) - H[h(:ll (3.14)
such that,
5, 9R _ 4 (34151, (3.16)
ds ~ ’ or ot

The substitution of these transformations Into the Hu-Washizu
functionalsy Ege(3.1) and £q.(3.7)y, lead to the following two
types of Hellinger-Reissner functionals.

Based on s and g

(3.17)

7ﬁm'fy,§ )

%r., [‘3’5) +28:lpurra +(pu) (o )] - R §-u fdv



43

“fs,-g'gds 'f% L-(u-q)ds

The transtiational and rotational equlllbrium conditions
Eans. (2443) and {(2.45) 4 compatliblility condition En.(2.48),
and the boundary condlitlons Egns.(2.56) and (2.57) follow
from the stationarity conditlon of the above functional.
This form of variatlonal principle Is attrlbuted to Hellinger
[71 and Relssner (231, Its appllications to the finite
element method are offten found In titerature (31,

Based on r and h
~F ~F

Likewise, based on Jaumann stress r, the followlng

functional Is derlived,

e (U, &, L) (3.18)

Its statlonarlty condlitlon leads to Eans.(2.44y 504 564 and
57)s and also rotational egqulillbrlum conditlon EQe (2+47)

Based on t and e
~F ~

As discussed by Novozhllov (241 Truesdell and Noll
(11, and Ditlt {131y Iin general the Inverse of fthe
stress-straln relation, £EQe (2.52), is mul tivalued,
Therefore, we can not derive practlcally useful

Hell ilnger-Relssner principle based on L and e for general
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Statlonary Complementary Energy Principles

In the tinear theory, the Hellinger-Relssner princliple
Ils reduced to the minimum complementary energy principle,
which Involves stress alonesy by a oprlori satlsfyling the
translatlional equllibrium condltlon and the traction boundary
condltion. Analogous approach Is adopted here to derive a
complementary energy prilncliple for finlite deformation
problems,.

Based on s and g
2 A

In the formuiatlon based on Kirchhotf-Trefftz stress
S the translatlonal equllibrium condlition and the tractlion
boundary conditlon are given by Eqns.(2.43) and (2.56), which
are nonllnear and coupled partlial defferentlal equations and
boundary conditions Ilnvolving both stress s and displacement
us. The exact satlisfaction of these nonlinear equations Is
considered to be Impossible, in general. Moreover, as
discussed by Fraeljs de Veubeke [9]1, even 1f they are

satisfled somehow, the derived functional invoives both S and

Je It Is formally shown by,

(3.13)

Melu s )= fv [ Sts)+3s:[vu-trayitdr

Jo,, £ Eds

Noting the constraint on s and us its stationarity condition

leads to the kinematic relatlon Eg.(2.48) and displacement
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boundary condlition EQq.(2.57) .

Based on i and €

The maJor obstacle for constructing complementary
energy princlipie involving 1 alone Is found In the fact that
there is no unique Inverse relation for ¢ In terms of t, In
general. However, assumling the existence of such a inverse
relation and, conseguently, the complementary energy denslty,
further investligation Is attempted heres The most atractive
advantage Ln the formulation pased on Piola-lLagrange stress 3
is that the translational equillibrlum condition and the
traction boundary condlition are Ilinear In 1t alone, and these
can be easlly satisfied a prlori by the chosen stress fleld
L. On the other hand, the rotatlonal equllibrium condlitlon
becomes nonllnear 1In I and 4 as shown by EQ.(2.%46). To
obtain a physically meaningful solution thls conditlon must
be satisfled elither a priori through the structure of the
complementary energy denslity or a posteriori through the
variational principle. Although,s its a priori satisfaction
appears to pe difficulty, the study on the structure of the
complementary energy denslity, which forces the rotational
equilibrlum condition, was made by Fraeijs de Veubeke (9]
Assumlng the existence of the inverse stress-strain relatlion
in terms of t and ey he derived a set of nonllinear partlal
differentlal equatlons which <characterlze the structure of
such complementary energy density so that it enforces the
rotatlional equillbrium condition. However, Dbecause of the

mathematlcal complexitys this approach does not appear
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worthwhlle for practical appllicatlons. As [t Is seen In the
abovey there are amblgultlies and difficulties [nvolved In the
formulation based on 1. Thusy the complementary energy
orinciple Invoiving 1 alone fails to be a rational and
practical variational principle for general finite

deformatlon problems.

Based on r and h

~

It was shown that the Helllnger-Reissner principles
based on Kirchhoff-Trefftz stress s or Plola-Lagrange stress
I do not lead to a3 successful compliementary energy
principles, e€elther because of the nonlinear equllibrlium
conditions or due to the multlvalued Inverse stress-strain
relatlions. Nows we turn to the most successful formutation
oased on the Jaumann stress r. In this formulatlion, the
transtatlional eaqullibrium condition and the traction boundary
condition are llnear In ft, and the constitutive relation In
terms of r and h is invertlible so that the complementary
energy density exists. Moreover, the rotatlonal equllilibrium
condition 1Is dlrectly satlisflied through the statlonarity
condition of the functional. Thus, the ambigulty on 1Its
satisfaction can be avolded,

Assuming the a priorl satisfactlion of fhe
translational equillbrium condition Eqe (2.4%4) and the
traction boundary condltlon Egs (2.56)y the Helllnger-Relssner
functional gliven by £qQ.(3,18) [Is reduced to a complementary

energy princlple involving stress L and rotation a .
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Welg, ;) =JnlRi)+tetg-1130r

Notlng the constraint condltlion on the variation of stress,

iecay

78t = in Vo (3.21)

L

o
§t = n-§t =o -

(3.22)

and the orthogonality of the rotation tensor, l.€.,

ANl = I | (3.23)

S -~

the flrst wvariation of the functlonal Eg.(3.20) 1Is obtained

A4Sy

6‘7%=/;;2r[§-§§+g —g]-'é‘gr (3.24)

From the definitlon of R,
R
a’r - ’é (3.25"

By introducing the followlng ldentical equation,
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f% (?E)T'CS\ETC!V =ﬁuo cffg ds (3.26)

Eqe(3.24) Ils rewritten as,
o M :ﬁ'z)r[z{'f{*ﬁ)‘(,{*VQ)T]"‘SET (3.27)
F(I+h)- Lo s (478 )T Fd7
*Jo,, §2-(u-@)ds

Furtnery noting that,
o4 8d
¢ 'YX = skewsymmetric

from the orthogonallty conditions the stationarlty condltlon

of the functional £gq.(3.20) {1eads to,

(I +pu) = &A1 + n In v, (3.28)
(I + h)-1.-d = symmetric in v, (3.29)
u=u at Sy, (3.30)
These equatlons are exact statements of the klnematlic
reiation, rotational equllibrium condition, and the
disolacement boundary condiftion. Thus, the complementary

energy princliple as stated through Ege(3.20) is the most
rigorouss consistent and the most practically aoplicable

version that has been derijived to date.
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CHAPTER IV

INCREMENTAL VARIATIONAL PRINCIPLES

Introduc tion

The wvarlous types of functionals summarised In the
preceding chapter can pe applled to the finlite efement
models. In general, the derlved finite element formulations
tead to hlghty nonlinear algebralc equations In terms of
undetermined parameters. Usuallys these nonllnear equatlons
are solved by using the Iimbedding ftechmlques such as the
Neaton-Raphson method. Moreover, in the case of
path-dependent Inelastic materlals, Ilke elastic-plastic
matarlals, the potentials W o~ iIts contact transtformatlons S
or R do not exlist. Therefara, the wvariational oprinclples
governing the total de formation are not wvallid for these
materials.

To deal wlth these dlfficulties, due to the algebralc
complexlity and the nature of the materials, Incremental
tormulationsy which Jlead to plecewise Ilinear incremental
solutions, are consldered. In the Incremental formulatlions,
the prescribed loads and/or displacements are consldered to
be appliied In small but finlte consecutive Increments. We
label the states (stress, straln, deformatlon, etc,) of the
solid prlor to and after the addltlon of the (N+i)th {oad
Increment as {Cy} and (Cy;}s respectively, Depending on

whe ther the metrlc In Co (undeformed or initlal
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conflqguration) or the metric in Cy 1S used to refer all the
incremental state variables descrilbing the transitlon from Cy
to Cn+i»  two types of incremental formulations are possible.
These are generally referred to as the "total Lagrangean® and
the ™updated Lagrangean"”™ formulatlons. The detalls are
discussed for both formutations. Further, modifled
incremental varlatlional princinlesy In whilch the continulty
conditions at Inter-element boundaries are relaxed a3 priorl,
dare also presented In this chapter.

Total Lajgrangean Formulation

Incremental Governlng Equatlons

In the total Lagrangean descriotion, the metric In C,
is used to refer all the state wvariables In each of the

Subsequent states. Let state Cy be defined by the variables,

€55 1ﬂ 5ﬂ gt gf 3 gﬂ gf etcs}y and a similar set of
variables In Cuny wWith the superscript (N+1). Let the

Incremental variables In passing from Cy to Cyy be {45y 471,
4T+ 49y 42+ 4Dy 402, AUy etcs}s These Incremental state
variables are symbolicaliy denofed by 4C. Thusy as a matter

of formal symbolicss Cyy=SCy+4Ce For later Use€, the

deflnitlons of all these Incremental varlables are |lsted as

belows,
a5 = P ¥ § at = gNTo 4N (4o1)
ar = ENH :N : Ag = gNﬂ_ gn
ag = g"- " 5 ap= g™ pf
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N+ N

+!
42 = g"- o u= -y

-t
B

The relations between the above Incremental variables are

Shown Dby,

NT N
At = g4s:-F° + s7 . Jad ¥ 45 .744 (4.2)
| i T
Ar =§(A§-g(” + tN. 4o +o™oat” +4§T-t” (4e3)
T
tdt-4d + 49" 4t )
49 = (172) CEV- 4o + ae”-EY 4 geT.4e ) (4ot)
de = 4d-C I + ') + o"an + 4d-4n (445)
T
de = (Pqu)d (4eB)

~

Noting that F  is still the gradient operator In the metric
Co» the following Incremental fleld eguatlons and the
poundary condltions governing the transltlon from Cyto Cy4
are derived.

translational equilibrium conditions

T
V€ sV (Zgu) + 45 (FY ¢ 7auw} + P43 = 0 (Le7)

or Vat + pgag =0 (4.8)

where the undertiined terms are nonlinear In the incremental
variables, and these are neglected In the Ilnearized
formulations.

rotational equlilbrlum condltions




4s’ = 4s
{ f“ + VAET)'Az * FZUT-l" = symmetric
an tho e zen®) gt e ) o+ (Rt D) st s
+ 4h (At-g“ + iﬁﬁf’ + 4h-4%-4¢ = symmetric
kinematic relatlons
49 = (1/2)C p4d + 7y + (pay) - pu'a’
+ CpuMy (a4 (Zau) - (AU Y
de = (pau)’
(ZAu) = 4d-(1 + h') + o' an +ad.an

constitutive relations

Assuming that the straln enargy density

symmetric function of g and that It can pe expanded
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(4.,93)

(4,10)

(Le11)

(4.12)

(4613)

(4elb)

W is a

in Taylor

series In terms of 49,y 48, or 4h, the Incremental potentlial
functlon AW [s deflined by,
2 N
AWady = L W ' 49 49 4+ yo.T -
Wiad ) 5 332 d 43 H. (4415)
Using rectangular Cartesian components, Eqs (4415) is

remwritten as,
2
awW

W) = 7 95,33,

!
3 4d;; 43xy + H.O.T.
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Simllarly,

| 2 (4416)
4€ = 5 L
92W N
AW(AH) = : 4}1 ak 4 MB T (6417)
such that,
(5418)
94W (43 ) _ ok QAW (48) _ 4’ QAW(Abz:Ar (4.19)
d49 ~ J4e < d4h ~
v e (4.20)
h AN a 27" th d order derivatl
whera2 332 L] 352! s 3n 9})" ar 2 e secon oraer eriva ves
of Wy which are evaluated at Cpy state,. As discussed In

chapter II, the contact transformations of W in terms of S
and r exlst, leading to complementary energay denslity
functions S and R, respectively. Thusy the Incremental

complementary energy density AS and AR can be defined by,

! (5421)
AS(A§):§Q§ 145 45 + H. 0. T
| R ¥ (4422)
AR(4r) = 555z |24l 4r + H.O. T
such that,
(4423)
d4s o 5 o4r ~ (4e24)

However, there ls no unique complementary energy density In

terms of 1.

At this pointy we {00k <closely the incremental
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stress-straln retlation In terms of 4t and 4e. Using the
relation between 43 and 4¢ glven by Eq.(4.4), the Incremental
straln energy denslty defined by Eg.(4.16) can be rewritten

in the followina auadratic form.

N 2 N
AW (4 ) ='£T Z?’ (agTag) + 3 ‘;g fr4d 43 (4.25)

T
wheres, 43 = (1/2}(5"- 48 + AeT-ful

The incremental stress 4% is obtained through Eq.(4.25) as,

w (N NT
4 = LA -Ag.r -+ (%g 148 )-F (4426)

Qe (%.26) can be rewritten by,

N T

It = whge’ @ 4s-F"

It is noticed that from the symmetry of 45, which ls embedded
in Wy stress increment at obtained by Eq.{4.26) satisfies the
linaarized Incremental rotational equilibrlumy, EqQel{%.10).
For convenience, we introduce rec fangular Cartesian

componentsy and rewrite Eqe. (L.26) a5,

(4.27)
£, = Y 4o, +EN B B
4 ji S‘]'n‘d in mnoj " io ©km 4€kn
= e [SN Srs + EN . pN gl ]
kn jn “ki mnoj “io ~ km
W
= depn Byskn
In the above, the followling notatlons are used,
2
N v " (4428)

moj 98,8, ;
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* - N N N (4429)
E = N + [ ]
ijkn Sjn Ski Emnoj io " km
It is noted that, from definltion, Efmj has the symmetry
properties,
. . (4 30)
mno j ojmn nmo j nm jo

*
Whereas, Eijkn has the only one symmetry propertys such that,

% ok
Eijkn = Exnij (4e31)

Thussy If EQe(£L,27) 'Is weitten In matrix notatlony

{at} = [E"] { ge) (4+32)

9x1 9x9 9x1

It is notlced thaty, In the first Increment of the present
plecewise 1lnear Iincremental process, if the Initlal
contiguration C, is unstrained, it foliows that s?n =@ 3
F20=:510: hence E:jk1==Egjkl s+ and hence the (9x9) matrix
in £0.(%.32) cannot be Iinverted due to the property as In
£Q.(&4.30)s Howevers In the second Increment, one can set
s' = 4t (of the first stress Increment), F' 1Is nonzero, and

hence the (9x9) matrix Iin EQe (4.32) mays In generals be

inverted. Assuming that Eq.(4.32) Is invertible, we obtain,

*"‘1

*-1
dej; = Ejgq Aty ot (se} = [E" " J{at} (4.433)

where, in general, E}ﬁﬂ_ - Eklij . Thuss usling
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Eoel{4e433), the contact transformation can be establlished to

tind 4T such that,

04T _ _ k=1 {4.34)
dac.. 4851 T Eijndta
1]
If the incremental rotational equltibrium condition 1is
inherently bullt Into the structure of 4T, then the

condition,

Ae. . t?k + Fij At.k = gymmetric

ij J (4435)

must be ldentically satisfled when ae 1s exprassed In terms
of at . Dolng S0, it is found that the rotational

equilibrium conditlon is exprassed by the neceassary conditlon

that,

E‘k_1 At N
jimn © mn "jk

+ Fijdtﬂc must be symmetric {4.36)
It Is easily seen that nelther of two terms In the above
expresslion is by I1tself symmetric. The other pesslble ways
in which the apove sum of two terms can be symmetric are (a)
Firstiy, one term is a franspose of the other; however, it is
2asy to see that this Is not the case. (b)) Secondly, the
first term <can be expressed as the sum of a symmetric ternm

-1
and the transpose of the second term. However, Ef, . (with
jimr

w=1
the onl symmetr ropert %=1 = e ) cannot be
y y Yy prop Ye Ejim Foun ji
analytically derlved. Thus ||t appears Impossible, at

present, to prove EQs (4:3E),

Even though the symmetry (or tack of 1t) of the term
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in €9« (4.36) can be declded computationally, for a specific
orobl em, it appears thats in generaly, we cannot expect the
symmetry of the sald term. Tnuss 1t appears that even though
the incremental contact transformation can be achieved to
find A4AY In terms of 4% 3 since the rotatlonal eaulllbrium
condlitions cannot be proved to be bullt into the structure of
AT, the attendant complementary energy orinclple has ({ittie
significance.

Filnally, to complete the statement of the boundary
value problem, we state the boundary conditions as foliows.

boundary condltlons

(30 n.Esh . (pau) ¢ 45 -(FM ¢ paw} = 4t =4t (4.37)
or  n.at =4t at  Sg (4,38)

where AE is the prescribed incremental tractlon aft S%.

at Sy, (4, 39)

1]
B
lc|

(b) 44

where 4U Is the prescrived Incremental displacement at Sy.

General Procedure

The above Iincremental governlng equations whilch
describe the transition from Cy to Cy; can be cast Into
equivalent varlatlonal statements based on the Incremental
Hu=-Washlizu type functionals. The general procedure to obtain
sucn functionals can be ldllustrated as follows. Flrst, we
construct general functlonails which govern the deformation of

the solld in Cyy state. Symbol lcally, it Is denoted by
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M(Cyyy) » The state variables {Cy,} in 7 can be replaced by
{Cyt4C}s Thus, the functional is considered as a functlon of
the incremental varliables (4C}, and it can be rearranged In

the followlng forme

T(Chyy) = m(Cy +4C) (4.60)
= m(Cy) + constant ¢ 7(4C) + 7aC) + m3(4C)
where
m(Cy) : the value of the functlonat for Cy state and

it is considered to be constant.

Y 4C) : first order ferms of 4C.
m2(4C) second order terms of 4C.
m(4cC) third and higher order terms of 4C.

It can be shown, In general, that the variatlion §n!' vanishes
if state Cy truly satisfles relevant fleld equatlons and
boundary conditlons. It can be also shown that §(n2en3)=0
teads to the tully nonlinear Incremental governing equatlons
presented by Eagns.(&4,7) through (4.39). However, 1f the
Increments are sufficlently smaliy the Ilncremental joverning
eguations can be 1linearized, and these, Iin general, can be
shown to follow from §n?=0 for a3 glven variatlonal principle.
In the subseguent discusslons 7 Is lIgnored so that the
Ilnearized functlonals are derlveds However, If the terms In
n? were omltted In all Increments prior to Cy, the state Cy
may not ftruly satlsfy the relevant fleld equatlons and
boundary conditlons. Thuse, &7 may not vanish. Thereforea,

In practicat appllicatlionss it Is necessary to retain =n' to
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generate |teratlve “correctlon procedures'"™ so that the path
of the plecewise linear Lncremental solutlons 1s kept from
straying away from the true solutlion as tittle as possible.
Depending on thelr respective physlcal Interpretations, these
iterative corrections c<an be called as “equltlibrlium
correctlon Iteratlon", "compatibillity mismatch lteration',
efc. Such {[teratlons, pased on physSical arguments as above,
are entirely analogous to the mathematical procedures used In
imbedding technliques for solving a system of nonllinear
algebralc equatlons 18],

Incremental Hu-Washizu Principles

Following the general procedure djiscussed In the
abovey |lnearized Incremental Hu-Washlzu functlonals, In
which n?° ls 1ignored, are constructed for aiftfernate
incremental stress and sfraln measures. At the same time,
the tunctionals n' whlich lead +to the Ilterative correction
procedures are derived In the followings

Based on 4s and 43 An  Incremental Hu-Washlzu

principle governing the transitlon from Cn to Cuti v

correspondling t0 EQe(3sl)s ISy
2
MWow (44, 43 | 45 ) (4e41)
=ﬁ5 {4w (43) - R43-4d + 4 $":[ (Pad) - (Pau) ]

-45:[43 - EI(VAQ +pau” + VUt pad” + vau 7u'")]

—L 4% 44 ds —fgua 4t - (44 - 44U ) ds
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where, Atzﬂ.(dg f"‘T + Vau)
and 2 N
iy - | aw]"
AW (48) = % 32/._4g4g
such that,
AW (43 )
———=/ = 4§
743 =

It is noted that the Incremenftal strain energy density A4 Is
aiso linearlized. The first varlation of EqQe.(4.i41) ls shown

to bey

24W(4§) .
§ Mo .L zf [ 34 348 - 43 ]:843 (Lot:2)
-[43 - 5 {rau + pau™ +Vu" 21" + pav - P 1848
_[V- {Aé.fu"’., ,‘SN'PAE) +/004§]-5\4_(,_1 }0/7-

‘f% (df =41 )-JJE ds -/;% 54}- (4u -4U0 )ds

Thuses the {inearized form of governing eaquatlons, Eqnse (4.7
9, 12, 184 374 and 39), are obtalned from the statlonarity
condition of EQe{b4.41). As mentioned before, the fleld
varlables that extremize the I1lnearlzed functlional do not
truly satisfy the governlng equations In noniinear form.
Therefore, the solution obtalned through {lnearized
functional Is considered as a first guess. The correction to

the first guess Tor the C, state ls provided through nt.



61

For the present functlonal, 7' Is shown to be,
U (4u,48 , 45 ) = /1'»; [[%/N— s” ]:4d (4463)
-[8" - 3 (vu" + yu" + Pt g )] 48
R 8" au + 3" F: (pau) fdv
_ﬁ% f“l.d_g ds -“/;u,, {;‘”-Ay *415‘(_6_‘”"_@”)}0’3
The variatlon of n' Is obtalned as,
U = f., {[ _g/”— §" ]:d4d (4o bi)
o+ [,@N— %(Vg" tru Ut punT )] 048
_ [V-(§”-f”r) +/<g_g”].d‘4g Fdr
‘fr,a {f" - L?-(s”-f”T)}-d"d_tf ds

"fsuo §4t- (y¥~3")ds

Thus, the <condition of vanlshing of &7’ ensures the
satisfaction of the governlng equatlions In their total form

at Cy state.

Based on 4% and 4e¢. Llkewise, the Incremental form of

the Hu-Washlzu functlonal corresponding to EqQs.(3.4) s,

2
Mo (44,42 | 4t ) (4o 5)
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where, N
AW (ag) = L 2T g ag

such that,

QAW (4a8) i
dde 4%

The stationarlity condition of the above functional leads to
the Incremental governlng equationss EQnse (4,8, 10, 13, 19,
38y and 391y In their linearized form. As discussed earller,
the rotational equilibrium condition Is also retained through
the functional EqQ.{%.45). For the functlonal EqQ.{4.u5), '
Is obtained as,
T (2,48, 4t ) (4e46)
N
oW NT . + "T_eN -JT
[ L -t Jrag [ (7ut) - €] eat
N N
-R§%au + t" vy fdv

—]s% £" ay ds _[s‘uo [t au + at-(u*-T")fds

Based on 4r and 4h. Similarly the incremental form of

the Hu-Washizu principle corresponding to Eq«(3.7) LS

Tiw (44, 2f , 29 , 43 ) (4 47)
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=ﬂ% (AW (4h) ~ Ra8-au +at"[ruu - ag- (5 +4")-&"4h]

wheres, n N
AW (4h ) IE’ gk‘f’} Y
such that, N
AW
34 =4l

Notlng ?héf the Incremental rotation tensor 1Is subjected to

the orthogonallty condition*, l.e.»

(" +ag)" (¢"+a9 ) = 1

(4.48)
and Its varlation satlsflies,
N of G 8
(of *”d~,)'34§ = skewsymmetric (4.49)
the first varlation of NMyw 1S obtained as,
- . AW 1 L A W 4T P NT Sah
&Wuw‘fr,{[a@ - glapg s phag + g at vl 1) ~ (4450)

t[7auT-a (1o ') - gMah J:d4t”

S [0D4") (2% at ) v 2] (o +00): [ s aet )T Gag ]

*¥pue to this nonlinear constraint conditiony the term
t:4a-(I+h"), which Is tlnear in 4g, Is retalned in the
Incremental functlonal given by EQe(&4447) .
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[rap +R43] -§au fdr
']\;% (4% - 4% )-0ad ds F/sa, 64t - (4U -47 )ds
It is readlly shown that the stationarlty condition of the
functioral EQs (Lad7) teads to the \linearized form of
Eanss. (4.8, 14, 20, 38, and 39}, However, because of fthe
nonltinear constralnt on 4as+ the rotatlonal equillbrlum
condltlion can not be noticed Iimmediately. We examine the
stationarlty conditlion wlth respect to 4a. It requires the

symmetry of the terms, such that,

[(g*bﬂ)'(gﬂ+d£4)*dﬁ'inj'(gu*4§) =symmetric (4e51)
°r (4452)
ap-t" o™+ (L4 h" ) (ap-g¥+ tNag )
+ L 0E *ﬁx)‘ﬁf *dﬁ'zﬂj‘d§=svmme1’rlc

If the higher order terms are lgnored, It Is seen that the
above equatlion Is reduced to the |Ilnearlzed form of
rotational equilibrium condition Eqe{4s11)s However, Lt the
copstralnt conditlon on 4a Is assumed to be satisfled up to

the {inear termy, the constralt cdndlfion is reduced to,

R

a".4a = - aa’. g” = skewsymmetric (4,53)
and In Its varlatlional forms
NT T N kS
2 - 54a =-§4a - a = skewsymmetric (4.54)

In this case the statlonarlty condltlon requlires that,

N

[(1+4")-ap +apt"]d

symmetric
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This equation ls dlfferent from ¢the (lnearlzed ftorm of

EQ.(4.11) by the term (I¢h*) . t".4a , because of the

~oa

linearization of the orthogonal lty conditlon. Even for this
casey wWe can show that the exact rotational equlilbrium
conditlon can be retained through n' & For the functional

glven by EQe (L 47), 7' is obtalned as,

' (4.55)
W' (4y, 4}, ad , 4f )

- Sl / (e g )]

-~

s [(1+vu) - o® (L +p")]:4LT

S Frauds [ [teu s st u-n)pes

o 0

Noting the constraint on Acz, its varlation 1s shown to be,

N
s f [[ 51 (2 'E’N r N E"T)J"S"fl (4.56)
FL(zepu ) - (1 h")]: 848

“[(L+p") 2" g T[4 Fag T

L A

[Pt" e R8N ] bau fo7

S, (3"-2")-§4u ds —fs% Jat-(u"-3")ds
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Thus, all the governlng equations Including the rotatlonal
equilibrium condition are retained from the vanlshing
condition ofén,

As shown In the aboves the incremental Hu-Washlzu
princliples based on alternate Incremental stress and straln
measures are constructed, From these general Incremental
functlonals, speclal types of Incremental functlonals and
correspondlng variational princlples are derived In the
followings

Incremental Potential Energy Principles

Based on 45 and 49. By a prlorl satlisfyilng the

a4

Incremental constitutive relations kinematlc relation and
displacement boundary condition, Eans.(4.12, 18, and 39), the

functional In Ege (4.41) 15 reduced to,

Wr (4u) =f% {Jwg) ~R43-4u + 5 5" [(rau)-(pau )] FdV (aa5T)

-fgfa 4t -4 ds

Its statlonarity conditlon leads to Incremental transliational
and rotatlonal equlilibrium conditlons and atso traction
podndary condition, l.e. EQnsSe (4.7)y (4.9), and (4.37).

Based on 4f and 4&. Analogous functlonals based on 4%

can be derived, as,

e (44) =j;:, [AW(AE) ~R4g-audr 4 58)

'ﬁ:,_ 41 -4y ds

-]
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However, from the relation between 4W{(d4e) and Awtagl given by
EQe (4.25), the above functional can be shown to be identical
to that given bY EQe (4e57)

Incremental Hellinger-Relissner Principles

Based on 45 and 493. By a prlorl satisfylng the

Incremental constitutlive relation Eqe(4.18) and Introducing
the Incremental complementary energy denslty 4S5 given by
EQe(4+21) the functional Eql4.%1) ls reduced to the

Hell inger-Relssner principle In its Incremental form.
2
,?rHR (A-g : ‘d§ )

=ﬁfo {~4Sag) - R48-au + L $*:[ (mau)-(rau )]

(4+59)

;
t348:[Pau +pau™ + vu™ pau™ + pau-yu ] Fr

'fs.,., A_f-d_é’afs ,/S;o 4L - (4U - 44 )ds

wherein,

NN
4Sag) =3 Ggz| 14

S48
such that,

_ais = 43

24S ~
Its statlonarlty conditlon |1eads to the transiational
equilibrium condition EQe (b7, rotatlional equillbrium
condlfion EQs(4e9)y kinematic relation Eqe (4all), and

bodndary conditlons Eanse (44 37) and (4,39),

Based on 4% and 4€. As shown earller, Lf unique

~r

inverse stress-strain retation In terms of Al and 4 is
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assumeds an Incremental contact transformation can be
achleved to exaress—AH{A§)+4iﬂds=4T in terms of 4t alone and
thus formalily derive an IiIncremental Hell Inger-Reissner
functlional from Eg.(4.45). However, as also shown earller,
since the Incremental rotational! equilibrium conditlons are
then not embedded In the structure of the thus derlived
incremental complementary energy density (in terms of 4%
alone), this formai Helllnger-Relssner Principle has no
practical use. The same argument applles to the incremental
complementary energy principle In terms of 4% alone, which
can be formally derived from £qQ.(&«45) by using the contact
transformation 4T and sat ls fying the transliatlonatl
equillbrium conditlon and the traction boundary condltlon a
priorle.

Based on 4r and 4h (4%, 42, and 4h)e The substifution

of AR, defined by Ege.{4.22)s into the functlonal EQe(&4.47)
leads to the Incremental form of Helllnger-Relssner

principle, the functlonal corresponding to whlch Is,
5 _
of (]
M (44, 4%, 4% ) (4.60)
-
‘-‘ﬁs [~aR(ar) -R4g-au ~ t": ag (144"

y At [pauT-ag - (1+h') Fdv

-f% 4% -4U ds -f;,uo AL - (44 -4U )ds

wherelin, i
- ™
Afﬂ’(dﬂ.':‘)-?- ay/..dﬂ"ff

such that,
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a_‘ﬁ? = Ah
o4r ~
.
and 4r = (1/20C t"4g + ay.a" + 4g" " s av. 4173

Its statlonarity condition teads to EgqnSs (4.8, 11, 164, 38,
and 39).

Incremental Complementary Energy Princlple

Based on 45 and 43. By a prilorl satisfying, 1f

-~

possibles the transiatlonal equllibrium condition EQe.(&4.7)
and the traction boundary condltion E£Eqe{&e37)s functlonal
deflned by EqQqs{(4.59) is reduced to the Incremental

complementary energy principle,

W (44,45 ) =ﬂro fds(.f;) +'2L§~.'[(VAH),{'P-AH)TJ}W (4e61)

" 4t -4U ds
Sug - T
Notlng that 4s and 4u are subjected to the constraint
conditionsy Eans.(4.7) and (4.37), Its stationarity condition
leads to Eans.(4.9, 12y and 39). However, as seen from
EQe(4+.7), the Incremental transiational equliibrilum conditlon
Is a set of nontinear and coupled partial differential
equations Involving both 45 and su. It Is Iimpossinie fo
choose admissible functlons 45 which exactily satisty
EQe(te7) . In the opractical applications, the constralnt

condition, Egqes(4s7)s may be {lnearized and it ls reduced to,
P-csh (Zay) + 45-EV 3 ¢ fag = 0 (4.7)%

Even In the above (lnearized equationy there Is a strong
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counl ing between s"

and 4u on the one hands and between 45
and FY on the other. We notice that s"(x) and E"(x) are, In
Jenarals numerlical solutions obtalned up to the current stage
and also they are functions of x. Thus, the admissible
stress fleld, to be used In a complementary energy principles
must represent a solution to the set of partlal differential
equatlionsy €a.(4.7)*, Wlth variable coefticlents. While, It
may be mathematically npossible to find such stress 4Sy 1t
defeats the very purpose of a variational principle formlng
the basis of a simple numerical method such as the finite
element method. Thusy there does dot exlst a practicatly
useful incremental complementary energy orinciple, In the
total Lagrangean forms when the Kirchhoff-Trefftz stress
measure Is used,

Even If 4S5 were chosen somehows; so that Eqes(4s7)* Is
satisfied a priori, the associated functlonal In Eq.(4.61)
Involves both 45 and 4u. Moreover, Eqel(4.7)* is a |lnear
approximation of the transiatlional equlilibrium condition.
The <correction to thils approximation need to be retained In
the iteratlve correction based on b A Including the
correction terms to account for the prlor llnearizatlion of

the translational equlilbrium conditlon, the functlonal m!

ls obtained asy
as " N 5. N
I (au, 45 ) =/,;[[3_§“I ‘:? J:4s tR 3% au (4.62)

- % F" (pau) fdv
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+ o EPauds 4 fo {2 au +at-cur- 57 ds

which Is ldentical to that for Iincremental Hell inger-Reissner
principle, For these two reasons, from a computational view
polnty, It may be preferable and consistent to use the
Hell inger-Relssner principle rather than a conplementary
energy princlpie based on 4S.

Based on 4r and 4h, The futlllty of deriving an

incremental complementary energy principie In terms of 4% has
already been dlscussed above. We thus turn to the third
alternative, a complementary energy principle based on ar and
4ahs as below.

The difficulties detected for the functlonal Eqe (4.61)
can be avolded |If the Incremental Hell Inger-Relssner
functional based on the Incremental Jaumann stress s used.
First of 3ally, +the Incremental translatlonal e3ulllbrlium
condltion EQqe(4e8) and the traction boundary conditlon
EQ.(4.38) are llnear equations, in 4% aloney which can be
easily satlsfled, By the a priorl satisfactlon of the above
equatlonsy the Incremental Helllinger-Reissner functional
Eqe(#eb0) 1Is reduced to the Incremental compliementary energy

functlonatl #n{s Involving only stress 4t and rotation 4g.
W (4%, ad ) =/;3[de4£) (2 443 Jiad (I +h")fdV (663

4144 ds

Sy,
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Moreover, as ls already discussed for the general functlonal
EQe(4e47), the rotational equil ibrlum condltlion Is shown to
be anforced through the statlionarity condltion of the above
functional with respect to the varlation in4a. Noting the
constraint condltions on 4% and 42, l.e. Eans.(4.8) and

(4.48)y Its first varlation ls obtalned as,

S f[[””')(t *”)*aﬁp t]CY"d (4464)
‘f‘[O{N gjﬁ +Ag,(£+bﬂ)]:é‘d£'r

’fsu, §'4t - 43 ds

Using an identical equation,
T - 4t a4 ds
/I;:, (V24 )":§48 dv = fg% 4t - 44 (4.65)

Ea.(4.64) Is rewritten as,

’f% [LCL+h' ) (2" sat )+ St ] 8ag™ 4%

- [ (Pau)" - " if ~J§-(£+h”)]:5‘4f }d?’

- §al-(dd -4u)ds
Su,

-

Thus, from an analogous argument as for Incremental
Hu=-Washizu functlonaly EqQe(4e47)s It Is readlly seen that the
Incremental kinematlc relatlon EqQq.(&4.14) 5, the dlisplacement

poundary conditlon EQs(4+39); and the rotatlonal equilibrium
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condition Eqsl{ts11)y in thelir §inear form, follow from the
stationarity of the functional In £Eqe(4+63)e AlSoy even If
the orthogonallty condition,s EqQ.{4.48), Is satisfied only up
to llnear terms, the exact rotational equlillbrium condltlion

can be retalned through n'y which Is shown t0 be,

' (ag At)—ﬁn,{[“'” (I+3 l) 1]’ (4467)

*[(I+ I)tjdo! Fdr

_JQH,AE'EENJS

It Is noted thaty, untike for the functlonal EQe(&.61), tThe
correction of the translational equlllbrium condltlonsy which

is exactly satisfled a prioriy [S not necessary.

Hybrid Type Incremental Variatlonal Princliples

Nows we turn to the appilcation of the Incremental
varlational principles discussed In the precedling sections to
a finite element assembly . Let the continuum Vo, be divided
Into a finite set of nonoverlapping subdomains Vo, (Mm=1y eeeM)
the boundarles ot whlch are 3W% e It ls easy to plcture that
In general, 9Vo, =Sg, +Sy, +FP, 3 where Sg_ and Sy, are portions
of am%, which colncide with the overall boundary of V,+ where
tractions and dlsplacements, respectlvely, are prescribed 3}
and %m ls the portion of an element boundary whlch IS common
to that of an adjoining element (Inter-element boundary).

It Is easy to see that for an element whlch 1s completely
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surrounded by other elements, 9V, =/ Further, let us
arbitrarlly denote one side of %m, as Py, is approached, by
the superscript (#) and the other side of Py ? Simitarly , by
a (-). Then it 1s seen that to obtaln a ophysically
meaningful solution certain continulty condltlons must be
satisfied at the Inter-element boundary Iln additlon to the
fleld equations and the boundary conditions required for the
continuum body. For the present casey, the folliowling
condltions are required,

(a) displacement continulty conditlon
44 = 4u at b, (.68 )
{b) tractlon reclprocilty

4t % 4t = (n:. 2t) + An.at) =0 at p (4469}

o i ~ (|

If the ordlnary incremental varlatlonal princlples such as
EQe(te41)y In which only continuous functions are allowed as
admissible functlonss Is directly applied to the finlte
element method, the assumed functlon definad In each element
must satisfy the continulty conditlons given by Eans, (4.68)
and (L.69). However, the cholce of such functions 1s very
Iimiteds In some cases 1t Ils nearly Impossibles Therefore,
to preserve the wlde cholce of the assumed functionss the
fupctionals are modiflied so that functionss which do not
satisfy the contlnuity at inter-eiement boundaries, are
allowed as admissible functlons. Such modiflcatlon can be

achleved by Introducing Lagrange multiptiers, through which
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the conftinuity conditlons are relaxed a priorl. Then, these
relaxed conditlons are enforcedy, at {east In the weighted
residual sensey, through the stationarlity condition of the
modified functlonal with respect to the Lagrangz multipllers.
These modifled functionals 1dead to the Incremental hybrld
finite element models analogous to that first developed for
linear problems by Plan [161].

There are two alternate ways to achieve such
modificatlonsy, as dlscussed by Atluri [25]). These two
versions of modified Incremental functlonals [n terms of
alternate stress and straln measures are derived in fthe
following.

Modifled Incremental Hu-Washlizu Princliples

Based on 45 and 43. The two verslons of the modiflied

functionals correspondlny to the functlonal Eq.l4,41) are
deriveds They are shown together with n,

i) tirst verslon

Tiiwwy (44, 49 | 45 4t, ) (4470)
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~t
where Aip is 3 Lagrange multipller (physically the traction
at the inter-element boundaryls Wwhose magnitude [s unlauely

deflned at the inter-element boundary but opposlte sians are

taken for two adjoinlg elements, such that,
it 4 =0 (4.71)
4_9 4 0 = LR
Alsoy m' corresponding to Eq.(4.70) Is obtained as,

W' (a4, 43 45, 4t,) (4472)
=2 o (L5 "-5" 148 - g g% s + $*F " )
~[8" -5 (ru"+ pu + put vu)] a3 Far
-%ﬁ%m t auds ~ %ﬁ% {2"au +4t-(u*- ")} ds
v

The first varliation of the functlonal E€g.(4,70) Is shown to

be,
2 94w . (4.73)
S,H‘me1 = %‘f"m {[adg “'A;E].CS‘JE
B [JE “’QL(PAQ +VAQT+;7E”.W1_;T+W_L!.ygu"")]:5’4§

~[P (45 F¥"+ §" pau ) tR 4§ -84y For
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Noting that the integral along the Inter-eiement boundary
is evaluated for element boundarles of two adjolning
elenentsy the vanishing condition of the last Integral in

EQe(ua73) requlres that,

44U = 4u at »p (4.74)
_— _— um
+ ~ 4 -
and 41 = 4t or 4t + 4t =0 at A, (4.75)

Thusy it Is seen that the stationarity condition of the
functional In EQ.(5.70) leads to the canflnultv condltions at
intar-etement bpoundaries and also all the fleld equatlions and
the bouncdary conditions given by Eans. (4.7 9, 12, 18, 37,
39,y 68, and E9).

1i}) second version

2 e ("'5176’
W%wﬂfu¥,4§,4§,d%a,d£ﬂ)

= {first three terms are the same as In EQ«ela.70)2}
5 [, 4t - (a4-ad,)as
m Pon

where Agp Is an incremental displacement vector unlquely

defined at the Iinter-element boundary, whereas, AIP is a

Lagrange multiplier (traction at P, of an element) deflined
m

independently for each of two adjoining elementss Also, 7'

corresponding to Eq.{&k.76) iIs obtalned as,
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W (a4, 49, a5, 44, , 41.) (4.77)

= {first three terms are the same 3S In EQq.(4.72)1}
-Zf {Z‘N-MU-A&" +4t - (y" - ur
S Lo (4u=aly) +at - (u¥- 04 ) fds

The first varlatlon of the functlonal Eg. (4.7E) Is obtalned

a5

2 (4.78)
§ Mrwmz

= (first three terms are the same as [In Eq«{(Lt,73)3}
-2, [ {sat - (au-a7 _at) fay -4t §48
4 ﬂ’m{ Ly ( _/o)'l'(.d_t/o at)-fay -4t, 44, § ds

From the analogous argument as In the first version the

vanishing condltion of the last Integral requlres that,

+
1]
4
i

44 dgp = 44 (L,79)
+ +
4t = 4t° (4+80)
A{E + 4t = 0
+ -
1t + t =
A_p d_p 0

Howevery as it is noticed, the Lagrange multliplier AIp ls

identifled as the tractlon on the element boundary, defined

Dy’

+ s”-Pzgl

~ ~t

Thus, by a3 prlorl choosing Lagrange multlpller as 41, the

variable 4tp In Eq.(4.7€6) can be ellminated, and fthe

functlonal 1s reduced to,
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2 e
Wiwmz (44,48 , 45, 4l,) (4e81)
= (flrst three terms are the same 3as In EQe(%,.,76)1}

-2 [, 4t (au-ai)ds

Based on 4% and 4e. Simitarlty, the modl fled

functionals corresponding to EQ.(4.45) are derived as,

i) first versilon

2 ~ (L,82)
Mwmy (44, 48 ,4L 4t , )

< Z oo [4708) - 48 -0 441" (-0 ) Bt

_Z} o A_E.AQJS —%fgu%d;-{dg—ﬁg)d,g

%m

*%‘ //;omdfﬁ ' AH ds

5 (4483)
(a4, 4¢ , 4t , 4, )
ow " YL T _N T
= vl B e NT_ eN T
Z Jou, {[5E 1~ 2" Joag +Liruy- ¥ J:ap
L 8%au +t":pau for -Z " auds

-%»/;u,m {t%au +at-(u¥-G*) ds

» il , g
%—’]/;om {d't/" &7+ g, Sds
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1i) second verslon

? B

= {flrst three terms are the same as In En.(4,82)}

“%//;,MAI- (44 -4 ,)ds

! ~ (4.,85)
W (au, 4€, 4 , 44, )

= {first three trems are the same 3S In Ed.(4+.83)1}
o ~ N
-3 [t au-ai,) +ap - (4~ ) Fds
m @m -

The statlonarity conditions of the functlonals glven by
Eanse (L.82) and (4.84) lead to EanSe (4.8, 10, 13, 19, 38, and
39) and also the continulty conditlon at the Iinter-element
boundarys glven by EanS.(4.68) and (L.69).

Based on 4r and 4h.

1) ftirst verslion

-~

WHQWMI (Ag’db."fg; AQ,A'_C,,) {(4.85)
B %ﬁam [AW%) ~048-4U +417:[pad’ -ad-(1+f") ~g"ah]
_Eﬂﬁdg'(l+kﬂ)"Ent(ﬁg-db)}dv

B2 fsa»,m"" {-adds -7, suZE (a4 =40 )ds -2, é 4L, 4 ds

T'(au, ah , 2y, at, 4%, ) (4487)

L ] -~
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~%A 2" au ds "A::—'v/;ao {lf”-dy +at-(u"- @")fds

= i . N NN-
% Jo, el "+ £ 3ds

I1i) second verslon
Wihama (24, 40, 44, 4t , 485 ) (4.88)

= {first three terms are the same as In £g3e¢{4486)1)

-%Lomdz.(dgﬁdgf ) ds

WI(JH,Ab,dg,dz,dﬁﬁ') (4489)

= (first three terms are the same 3s In Eq.(4.87)}

Z[O [t (au-ad,) +at- (4"~ 32)} ds

The statlionarity condltlons of the functional, Eans.(4.886)
and (4,88), lead to Eanse {48y 114 14, 20, 38, 394 €8, and
69) .

Modified Incremental Potential Energy Principles

As 1t Is showny, the Incremental potential energy

functionals based on 4s and at are identlical, THe

~


Eq.C4.86)%7d
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modiflcations of these functionals lead to the foliowing
modlfied Incremental potentlial energy orincipies.

1) first verslion

anj(di‘,df,a) = ‘;’:,:f;; {AW({S:) (4.90)
m

+3 § [ (pau) (vau)T] - Qa8 -auFdv

%), a1 auds -2, af o ds

or equivalentliy,

2 2~ it (4.91)
Mo (46, 48,) = . [, [aw(ae) - pag-au}dv

- %_L%JI'JEJS —,_i_,/ﬁ;mdf/o-dyds

i1) second version

9 ~ (4.92)
Tema (“"-QJA-{’-‘/J)

= {first twWwo fterms are the same as In EQe.(L,90)

or EqQef{&4e91}}

—%f/% 4t (au~-aly,)ds

The stationarlity conditions of the functionalss 3iven by
£anse. (4.90) and (L.91), lead to Egnse{%+75 9y 37, 68, and 69)
and (4.8, 10, 38, 68y and 59)y respectively.

Based on these modifled functionals so-called
Ilncremental hybrld displacement filnlte element models are
derived [261. Such ftinlte element models are convenient to

analyz2 plate bending or shell problems, far which the
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displacemant continulty at the Infter-element boundary Iis
difficult to be achleve by conventional compatible modeis.
Alsoy taking advantage of the freedom in chooslng assumed
functlionsy we can iIntroduce dominant part of the analytical
solution as assumed functions [27 1 Thus more accurate
solution can be obtalned wlth less degree of freedom. This
feature Is common In all the hybrid finlte element models.

Modifled Incremental Hell Inger-Relissner Princliples

Based on 45 and 49 The lncremental

b a~

Hell Inger-Relssner functional glven by EQ.(4«59) is modifled

and the following two versions of functionals are derlved.

1) first version

2 e
Truy (44,45 42, ) (4493)
- %‘ﬁ'o,,, {‘43(45) -R 4G4y +3 §" [ (rau)-(ypau)"]

]
+948 :[pad + (pau )" + Py (pau)” + Pay -(Vg")T}ol'V

'{;ﬁ%:fﬁ auds - §fguofz-(4y -44 )ds -z;_,f/%j_tﬂ-dgds

1I) second version

2 N (4+494)
Mhpma (44, 48, 40, )

= £{first three terms are the same as In Eq«(4.,93)}

5[, 4t (au-ai,)ds
R


Eq.ttf.93

The statlonarlity conditlons of the above functionals lead to
Eanse(«s7y 94 12y 374 39y €8y and 59}, The ftunctionals glven
by Zans. {4.93) and (&.9%) can be applled to the finlte
element method, and they lead to the Incremental hybrid milxed
model finlte element models (28],

Based on ar and 4he Similariy, the modiftied

functionals correspondlng to Eq.{4.60) are derived as,
i) first version

e

2
Mhrm1 (4U, 4%, 4%, 47, ) (4.95)
- %/;ﬂm {‘df?(d}f) “ L4 -au +4t " [pauT-ad (I +H")]
. Bl N Y
t"cag g o h O Far -3 [, 4F-auds

-5 ﬂ%fi-m ~ad)ds -Z. [, 4E,-auds

ii) second version

/U-HQRMQ (44, 49 , 4L, 4U,) (4496)

= (first three terms are the same as In £q.(4,95))}

- - ~Ald, )d&
%.]/‘%m 4t - (44 A_{'!'/O)

The stationarlty conditions of the functlonals glven by
cans. (4,95) and (4.98) lead to Zanse (koa8,s 11, 14, 38, 39, 68,
and 69} .

The application ot the above functionals to the finlte

element method is posslible. However, 3s [t Is seen, too many
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independent variables are Involved, In this aspect, (t is
not praferable to use such finite el2ement models for
practical puroposess

Modified Incremental Compliementary Energy Princlples

Based on 4s and 49, Assuming that the incremental

L4

transtiational equlilibrium conditlon Eqe(&4.7) and the tractlon
boundary condition E1.0(4.37) are satisftied wup to |Illnear
termsy the modlifled functionals given by EQns«(4.93) and
(.94) are reduced to the foiliowing functionais whilch
correspond to EQe.(4s.€1).

iy tirst version

2 ~
/WCMI (Ag,'dé,d.;/o) (Le937)

. %‘ﬁ [4S (s5) + 5 $*:[ (Pau)- (vau)T ] fdv

Upm

Since the transiational equl librium conditlion and the
traction poundary condltion are a orlori satisfied only
anproximately, the <correction to these conditions must be

retaineds Thus 7' corresponding to EQe(4.937) 1s obtalned as,

'?fffﬂg,dﬁ,df,) (4498)

AL .
- %/;:,,,, zf[?{l -3 (pu*+ pu +put punT )] a8
+R§"au - S F":(may) fdv

*Lf% {*ay ds *f?ﬁuo [t au +at-cu'-3")fds
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m ons

+Z"’[%,,, [d_f;-a” + _f‘;N-ALf}dS

ii) second version

2 ~ (4%.99)
Mema (44,48 , 44, )

= {first two terms are the same As In Eq.(L.97) )}
—L/ 4148, ds
m /Qm

From analogous argument as in the case of the flrst verslons

71 corresponding to Eq.(4,99) is obtalned as,

~ (4,100}
f)rt(dg’dé,dg/o)

= (first three terms are the same as in Eq.(4.98)1%

+%f/JD {_;""- (4U~-4Gp) +4L- (Y- Uy )FdsS

The statlonarity conditions of the above functionals 1ead to
Eans.(4.10y 12y 39y €68y and 69),

The functlonals given by Egns.(4.97) and (4.99) can be
Apolied to flinite element models (29]. Honever, 1f we
consider thelr failure to satisfy +the transiational
equillbrlum condition and the tractlion boundary condlition and
also the fact that the functionals Involve displacements as
variablesy no slignificant advantage is found In this type of
finite element models as compared to the hybrid mlxed model
based on EQe{4493) or Eqge(4+94) .,

Based on Ar and aN. Finally, the ILncremental

complementary energy principle in the most consistent form,
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which is glven by £Q.{4.63)y is modified following the same
procedure, After modlficatlionss two verslons of modifled

incremental complementary energy functlonals are derlved.

i) first version

2 e
Memy (ag, 4L, 4L, , 44, ) (4e101)
=3 Jp (4Rtar) + (g% at sy (e 3y

_%fsu%‘q.,@ds -gm“_,//.; (AE—AE/O)-AQ/QdS

Cardl

1
M (ad , 4t 47, , 44, ) (44102)

"% fo, [ at-a,0 82 w05~ )., Fds

where 4Ys is the dlsplacement vector at inter-element
vpodndar jes which Is Independently defined for the adjolnlng

elements.

1i) second version

2 ~ (4.103)
,ﬁEMQ (‘(g ,-4£, 49&9)

= {first two terms are the same as In EqQe(L,101)12

—*f,,—"f&mdf-dyf ds
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wi(4d , 41, 48,) (4.104)
= {first two terms are the same as In £Qe(4,102)1}
mig e T A

The statlonarlty condltions of the functlonals gliven by
£ans. (4.401) ana (4,103) t1ead to Eanse.(4eils 14, 39, 68, and
£9) .

It is emphaslized 3again that, in the above functionals,
the translatlonal equilibrium condition and the tractlion
boundary condltion are exactly satisfied a opriori and the
rotational equlllbrium condition is enforced through the
stationarlity condlitlons of ¢the respective functionalse
Morzover, the continulty conditions at inter-element
boundarlies are relaxed a priori so that arblftrary functions
which do not satlsfy thesa conditions are also allowed as
admlssible functionse Following the general procedure in the
derivatior of finite element models, these functlonals are
discretized and they 1ead to the incremental hybrid stress
finite element models, In wWhich the above advantageous
features are preserved in their discretized forms, Thus, the
derived 1Incremental hybrid stress ftinite element models are
consilered to be consistent and also versatile In opractical
applications.

Updated Lagrangean Formulation

Incremental Governing Equations

In the updated Lagrangean formulations state variables
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in both Cy state and Cn+ state are referred to the metric in
Cy states Alsoy the transition from Cy to Cys is described
using the same metrices ULet state variabies In Cy and Cy4 be

symbollcally denotad by cc; } and (C*

NH}. The superscript

star 1s used to distingulish variapbles referred to Cn from
those referred to the Inltial conflguration GCo . Let the
incremental state variables In passing from Cy to Cy+ be

denoted by {4C*}. Thus, In generals, It Is shown that,
(Cq{4 ¥ = (Cx 2+C 4C*2 (4,105)

Now we consider closely the state varlables both In Cy and
Cntj» The Cyy state Is descrived In terms of alternate stress
and straln measures referred to Cys namely 3 Plola-Lagrange

stress 1*"”, Kirchhoff=-Trefftz stress E}””, and Jaumann

stress E‘N+* and also their conjugate strains : disolacement
gradient E‘NH, Green-Lagrange sftraln E*NH, and stretch tftensor
Q*NH. The definitlions of these stresses and strains are
given by Eans.(2.61) through (2.77). On the other hand,
state varijavbles In Cy are also referrad to the metric of Cy.
It Is notlced that this way of describling the state varlables
is equivalent +to that of the Eulerian. Thus, the djfferences

among varlous deflnltlons of stresses disappear, and all the

stresses become ldentical with the frue stress g”ln Cne
ST = g = opes el (4.106)

Slmilarly, wvarlous definltions of sfrains 1In Cyqn become

identical, and they are shown t0 be zero from thelr
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definitions,

N N N
g = gr =h% =8 (4e107)

N
And alsos the deformatlon gradient ﬁ* and the rotation

N
b 1 anvd "= 1 (4.108)

Foliowling the general deflnitiony EQs(L.105), Incremental

state varlables are defined as follows,

4y = uNt'- yn (44109)
AE‘ = 5!"“-3—”

4t = 1;"“_ z"

A:m = Nu”“_ 3!\'

49% = 9"V = (/2 Phy + Wau) + Whu) - Fhu) )

de* = ng+|= (Pﬁyir

[

Ag" z ;*”“- 1

whera V represents the gradlient operator in the metric of
Cne Further 4, these Incremental variables are related

through the following equations,

* :
41* = 4s* + Npau + 4s*.p4u (4.110)
* T
ar* = (r2rearr + Thaa v ard’ 4 4" 2 (4.111)
T
+ 4t*. 40" v ga" a1y

|
-
*
1t

(172)Cde* + 4% + ge*. sex} (4.112)
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(1/2)C24h* + 4p*-4h*}

4e* = 45 + 4h* +4a . 4h*

91

(4.113)

In the above equatlons as well as the subsequent equatlions,

noni Lnear terms in incremental wvarliables are indicated by

underiiness And these are neglected in the

Diecewise linear incremental formuliation.

Using the lncremental varlables deflned In the

following

above,

the field equations and the boundary conditions given by

Egns.(2.90) through (2.104) are reduced to the Incremental

eaquations which govern the transition from Cy to Cy+i» 3S

shown in the following.

translational equllibrium conditlions

ph(4s* + 7Y phu + 45" pau ) +/343 = o

*
*
V-(at") + /343 =0
where A s the mass density per unlt voluma in Cye

rotational equllibrium condltions

A§4T - AE"
¥ T _ N t oy
or (F4U)- 7 + at* & (Pay)’. 4t* = symmetrlic

* #
Naa’ + 4n*.2t% & 4t%.4a
~ As ~s s il

* *
+£b*{§ﬁd§ + 4h*. 41%-42 = symmetric

kinematic relatlions

(4.114)

(4.115)

(4.116)

(L.117)

(4.118)
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49% = (1/2)CPau + (Fan) « (paw) - Zan) 3 (4.119)
* T
de* = (V4u) (4.120)
*
(7au)’ = 4a” + an* +4g" an* (4.121)

constitutlive relations

Assuming that the change In the field variables #ftrom
CN to Cu+ ls sufflciently small, the sfralin energy denslty W
defined by Eqe{2.78) Is expanded in Taylor series In terms of
AE‘! 4e¥, and 4h*, and the followina incremental strain

energy density functions are derived,
E

92 H.' i .

4y 43 + H.0 T (44122)

* /
AW (48%) = 5

W.|:ag'ag” + poT

* .
AW (4€°) = 7

g!z (Le123)
* N
* | ZW P o
such that,
(La125)
UW (8D _ ot UMW) _ 4T Wah)
943" 2, e’ ~ 2 T ap e (4.126)
(4.127)

Further, the contact transformation of N* in terms of 5* and
r* exists, as def Ined by Eans+.(2.86) and (2.88), and they are
denoted by S* and R*, respectively, Thusys the incremental

potential functlons 45* and AR* can be deflned by,

75"

* * l
45 (487) = = I ASAS +H.0.T. (4e128)

*

757
IRar) = L ZE )"




such that,

248"
34§'

¥
_ * 24K *
™ Ag , W = Aﬁ (4.130), (4.131)

boundary conditions

* —
(3) n¥. Cas* + TNPUu + 45* -Paud = 4t* =4t (i44132)

or N¥ .4t* = ft* at Sg  (4.133)
- h

nhere n* is a unit outward normal to the surtface In Cys» and
Sq‘ is a portlon of the surface of the body in Cy at which

the incremental tractlon IS prescribed to be AE*.

at Sy, (4.134)

=

(b} 44 = 4 h

where Sy is a portion of the surface in Cy af which the
incremental displacement is prescribed to be Au.

Hu=-Washlzu Princloles

Following the general procedure as In the Incremental
total Lagrangean description, the Iincremental governling
equations derjved in fthe above <c3an be cast Into the
variational princinles In the most general form.

Based on 4g* and ag%*. The Incremental Hu-Washlzu

-~

principle governing the transition from Cy to Cyy ls derived

ASy

)
Tow (44,49, 48%) (4.135)

- /v [4W (43" ) - 24340 +F T [(rhu)-(rhu)T]



9%
~a8": (43" - 3 {(vau) + (ng)'rj]}dl?'

-f AE*-AQJS - at”. (du—ﬁ.‘:‘:)ds
&% = Sy, ~ B

where, Zw-* N .
AW (48%) = 3 993,2‘ 1148 4§
sUch tThat, " "
uw'(43) "
oo A S S
743" 2

*
andy,  At* = n¥*.(4s5* + g”ﬂﬁhglm

Its statlonarity condition leads to the compliete set of

incremaental governing eguations in their tineartized form,
namelystranslational equilibrium condition Eqe(b.114),
rotational equlillbrium condltlon Eael4,116)y klnematic

relation £Eqg.(4.119), constitutive relatlon £q.(4,128 4, and
boundary condltions Eans.(4.132) and (4%.134)e The iteratlve
procedure to correct the Ilnearllzed solution obtalned
through the 3above functional is oprovlided by n'sy whlch Is

gliven as,

/ PP I AW (M e N )., g% (4.136)
W(Ay,dg,dﬁ)—f;;[[ag,/ _ gt ]iag

& N+

(E*"' )i (phu) } dv

— -~

‘,[5‘0',, E’ " 44 ol$ _f?a,, {-Z-*Nf'jdy +‘d.§-*' (U™~ .QMI)} ds

N+l + T
wheres Fr = (7 vy,

A —
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Based on 4t* and 4ae¥, Likewisey, the Incremental

Hu=Washizu functlona! In terms of 4%* and Jg* Is obtalned 3s,

*2
/Ier‘ (dg_adg*, JE’) “4.13?)

Jv:, [AW’(AQ*) R 4g-au +4t" (phyT_ 2e" ) fdv

. Affdga’s —j; A_t'-(dg—dg)ds
Up

Se,
wheres, * M
™ 2
AW (4€%) = 3 gevf; 1iae” g4e"
such that,
AW (2¢") T
= 4%
adgf- ~

Its stationarity conditlon fleads to Eans.(4.115, 117, 120,
126y 133, and 134) In thelr linearllized form. In additlons
the incremental rotational eaquil ibrlum condition is retained
through the structure of Aw*(dg*} from the analogous argument
as shown for the total Lagrangean description. !

correspondlny to FQ.(4.137) 15,

(L.133)
' (au,4€*, 2" )

* N+ +/ % NH 2 N+ . 1“'I‘
o LLEET g eag® e [rpg™ )T~ (€7 1)) 4

N+t

- A3

'AH + (E‘HH):V:!H}O{V

_j;r —z__fﬂ"'f- Ji{ dé. _[S‘un {I*Nf-.!dy f‘dff (-gﬂﬂ_gﬂﬂ)}ds

h
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Based on 4r* and 4h*. Simitarly the foltowing

incremental Hu-Washizu functlional in terms of 4r* and AD* is

derlived,
*2
Muw (a4, 4h" | ad” 4at™) (4.139)
— * ¥ iT L # })’F
=y (4W (ah) = /5 4§ -2y +at”: [pauT -2 ~4p ]
T
- TN adt - TNTiag Al AT
At 4u d at” 7]
— . S _ . —
g, 48 92 &y, % "(au-al )ds
where, 2 1N
* * | aw"[ r ¥
4h ) = — ..
sucn that,
* +
JAW (1) AP
i =
Close investigation [s made speclally for the present
functlionsal to obtaln its statlonarity condltion.

Considering the orthogonality condition on the rotation

tensors lecey
(I ¢+4a ) . (] + 42 ) = 1 (L.160)

and [ts varlatioconal form,

(1 +Ag*f: 845’ = skewsyametric (bolfl)

the first variation of the functional £Eq. (4.139) is shown to

besy
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#2 aAW'f f 2 N * *T *T T . *
& Tuw ”ﬁ; {[ Sapr ~ 5 (atT+ T ag" +att 48" T )] 64h o)

-

+ [ (Prau )T —ad* - ap"]: 84"
[ e 2+t ) (L vag?)]: [(1 +ag®)Tbad"]
-[P at" +.,43 ]-§2y oy
*fp% (Af*—ﬁ_t*)-d‘.dg ds - S0, dat™ (au-4a)ds

Thuss it is shown that the stationarlity condition of the
functional EQe.(4.139) leads to cans.(4.115, 118, 121, 127,
133, and 134), Howeverys In practical applications the
nonlinear constralnt condiftlons Egel(4.140)y can be satlsfied

only in the linear fashiony
da’ + 40 = o0 (4e143)

Even for this casey, exact rotational equllilbrlum condition |s

retained through nmn', which Is given by,

T'(ay, 4p" 49", at*) (4o144)
' *
ﬁfV}, {[ gg/"ﬂ— %[EFNTJE’*NH‘f'(,?f’NH)T'(E*Nﬂ)T}].‘Ab‘
# [P =gt (L T ) et

_ (I +h"~”}-l'*””“dd*r

-R§"au + " ruu) Fav
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_/‘;q f*lﬂ{ 4U ds wj*;u,, [;*Hﬂ,dy +A§*,(gﬂﬂwgﬂﬂ)}d‘5
In the I1terative correctlon processs the IiIncremental
orthogonality condition £Qs(4,143) IS replaced by,

#NHLT # Nt

¥ T
a )45 + 42" - a = 0 (La165)

and iIn Its varliatlonal form,

N+I\T
*)-84a" = skewsymmetric (4.146)

(@

Thusy from the analoqous argument as shown for the total
Lagrangean formulationy the vanishing condltion of §n' reduces
to the exact governing equatlons for Cys states

Incremental Potentlal Energy Princlples

By a opriorl satisfying the incremental constitutive
relation Eg.(4.12%) 4y kinematic relatlon EQe(Ls,119), and
displacement boundary condition Eg.s{(%.134), the ftunctional In
EQe (4413%) 5 reduced fo the following Ilncremental statlionary

potentlal energy functional.
*2 * +

+5 7% [(rau). (ru)7] fdr —f&r 4t*-2uds

Simitarlys by assumlng a prlorl saftlisfactlon of EQnS«(4.120,

126y and 134),s the functlon3l in EQs (4.137) 1S reduced to,

(4.148)

AN f,,h [4W (ag*) ~ 0,88 au Fdv
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—ﬁ 417 4u ds
0}’ —
Howevery the Incremental strain energy density functions

AW* (49%) and 4W*(4e*) are related by,

£ (4.149)
AW'(4€*) = 4w (43°) + 3 2" [(p'u ) (7u)"]

Thussy It 1Is seen that the tunctionals given by Eans.{4.147)
ard (4.148) are jidentical., The stationarlty condltlons of
these functionals 1lead to Eans.(4.11%, 116, and 132) and
(41154 117, and 133), respectlvelya.

Incremental Hetlinger-Reissner Principles

As discussed earlier, the contact transformatlions of 4W* In
terms of 45‘ and AE* exist. By iIntroducling these
transformations, functionals glven by EQnSe (4135) and
(+.139) <can be reduced +to Incremental Hell inger-Reissner

principles,.

Based on 4s* and 43%.

r2 . . (4,150)
Mg (44 ,48") zfﬁ {*43 (48") = Py 44 -4u

+ Ff T (Phu)- (Pau)™] + %Ag*.-[(ygg) +(V3_q)T]} dv

H~[90~ A_f’-A_éf ds _f%, A_f’- (4u -4y )ds

h

Where, ﬂQ*N
* .. *
ASf(A'E )= EL 93#2} "A,\S, A§
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such that,

248"

*
— =4
345“ ﬂ
The stationarity conditlon of the above functional leads to
Fanse.(4s114, 116, 119, 132, and 134).

Based on 45* and an* .

*2 (4.151)
Vs (a0, ag” | a3 ) = [y {-4R"(ar*) a8 au

B
+at*  [payT - ad”] - T4 4o * Py

_f% A_f’-zfg ds - ﬂ,% Af- (4U-4U)ds

h

Wheres

2% N
AR (ar") = ?z}' 9 E:/::Ar’d d

Such that,

R s
oart d!’,

Its statlonarity condltion 1eads to Eqnsa. (4.115, 118, 121,
133’ and 13“].

Based on 41¥ and 4e¥. Eventhough one can use a formal

contact transformation to exoress—zw‘+41*adg;5d7* In terms of
AL* alone and thus formally derive a Heltlnger-Reissner type
principle from Eqs (4.137) & The rotational equllibrlium
conditions can be seen, as in the total Lagrangean

incremental (rate) formulations to be not embedded In fthe
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structure of AT*, For thls reason, the above formatlly
derived Helllinger-Reissner (updated Lagrangean) I[ncremental
principle has no practical use. The same comment aoplies to
the Incremental complementary energy princlpie In terms of
41* aloney which can agaln be formally derived from
Ede (4.137)

Incremental Complementary Energy Princlple

Based on 4s5* and 49%s B3y a priorl satisfaction of the

translational equlilibrium condition Egs.(4.114) and the
tractlon boundary condlition Eqe (4,132), the functional glven
by Eq.(4¢150) is reduced to,
%*z(dy,dé‘) =A{AS*(4§) (4.152)
3 [1050) - (7 5u)T] Fdy - Js,, 4E" i ds
Howevery It Is notlced that the Incremental transliational
aquilibrium condition gliven by Eg.f(4.114) (s a set of
nonl inear and couﬁled partial differential eaquations
involving poth stress ss* and dlsplacement 4u. It Is
impossible to satisfy this condition In its nonlinear form.

In practical appllcations, Eqe{w.114) may be lIlnearlzed to,
+* “ #
Vetas* + T Pay) + P43 = 0 (4Lo1533)

The above Ilinearized equatlon [Is wused as a constralilnt
condition on 4s* instead of EQ.(&ell4), Unlike [n the total
Lagranjean formulatlion, the stress 4s* Is not coupled wlith

deformation gradlent In Eas,(4.153a),. Thusy, as shown by
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Atluri [14y 3214 It becomes somewhat easler to choose 4s*
which satisfies the Ilnearized ftransliational equillorium
conditiony, EQ.(k.153adlsy a3 priorls. By introducing the
symmeftrilc Maxwel | -Morera-Beltraml sacond order stress
function A, such stress for the general three dimenslonal

case can be assumed by,

As* = curt( curl A ) + 45+P (L.153b)

~

Using the rectangular Carteslian componentss Eg.(4.153b) Iis

rewritten as,
* - *P
4%15 7 ®imn ®jpq “nq,mp T 454 (4.153c)
where AE*F Is any symmetrlc particutar solution, such that,

prasst = - P49 - 7z Paw (44153d)

Thens the error due to the iinearization of the transiatlonal
equllibrium condition can be corrected through the Ilterative

correctlon pased on #'y whlch IS glven by,

U (a4, 48" ) ' (4.153e)

38 Nl a N+, T +i *
- S [ L 3sel = 40" (F* ") -1 }ras

+/CL gN-f-I. au = £fN'f{ (j:—;.ﬂﬂ)'r(f?zg)}dv

/\; Z‘*N“AUOI.S' +/ {z_ﬂvﬂ f( U"“)}ds

One simple way of satlisfying Ege(4.1533) may be to
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assume particuiar solutjion for the dlrect stress AS&P (no
sum on 1 s I=1, 24 3) oOnly. However, then, the questlion of
completeness remalns to be answered. Also, because ot the
term, V{(Z"-Vﬁgl, In £0e (4,153d), 1t Is still difficutt to
choose the particutar solution AE*P- Alternatlve way to

avoid the above difflculty may be to define the particutar

solution as.
V-as* = =p a9 (4.153f¢)
Such 4§¥P can be easlly founds Then, 4s* is expressed asy

;
4s* = curlC curt A ) = 2%paw + as*F (441539)

A

However, In this case the assumed stress 4s* ceases to be
symmetric, and It viotlates the rotational equlllorium
conditlons Thus, the rotational equillbrium conditlon must
be Introduced 3s a constraint conditlon Into the associated
complementary energy functlonal of the type 3iven in
EQe{&4152) through addltlonal Lagrange multipllers.

Considering the fact that the complementary energy
functionaly Eqe.f{&t.152), Iinvolves both stress 4s* anAd
disnlacement 4u as varlables and the difficulty assoclated
with chooslng symmetric 4s* which satisfies Eqel4e1533), It
appa2ars that a Incremental complementary energy porinciple
pased on 4s* does not provide a basis of a3 practically useful
finite element model.

Based on 4r* and 4h¥*. Incremental complementary

enerjy princlpley which 1s considered to be consistent 3nd
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sultaote for practlical applicationss can be derlved from the
functional glven by EqQe.(4.151) based on Incremental Jaumann
Stresse 3y 3 priorl satlsfying EcCans.{(4.115) and (4.,133),
which are linear and uncoupl ed in 4t* alone, the
Hell lnger-Reissner ftype functlonal 5 Eqe{&.151)y 15 reduced

to the incremental complementary eneragy functlonal n:ﬂ

which Involves stress 4t* and rotation 4a*.

*2 * +
Te (4¢ , 4L7) (4.154)

[ fape s e ik Jar
n

—ﬁ”h 414U ds

Following the same argument as for the incremental Hu-Washlzu
principle given by EQel(4,139)y the stationarity condition of
the above functlonal Is shown to lead to Eans.(4.115, 119,
and 134), in thelr l|llneartized form. The correction
procedure to the linearllzed soilutlon is derlved through n!

which is glven by,

U lag®, 4t”) (4.155)

. /;;’ {[E(fo'l (l . gf:fuﬂ) ) I];{E*T

+[(£ + QP‘IN"H).E#H-H]:AE,#T}OIV

=Jo 4t5 ut Js

Sy, 42 " 4
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Hybrid Type Incremental Varlational Principles

The incremental variatlional principles In the updated
Lagrangean formulation are summarized 1In the opreceding
sectionss These functionals can be directiy appiled to the
finite element method, provided that the iInterpolation {or
assumed) functlons are chosen so that the continulty
condiftlons at Inter-element boundarles are satisfled a
prioria Howevers as dlscussed in the total L(Lagrangean
formulation, such direct applications are timlted,
Theretfore, these functlonals are also modifled and hybrid
tyna functlonalss conslderaed to be more versatlie In thelr
apolications, are derived.

In the present wupdated Lagrangean formulatlon, the
contiguration In Cyx state ls taken as reference. Thus, the
deformed pbody Vy In Cy state Is divided Into a filnlte number
ot subdomalns U%l(m=1...M). The portion of the element
boundary which colncldes with that of the overall boundary of
the body Vys» where the disolacement or the traction |Is

prescribed, lIs denoted by Su,, or S%m. respectlvely. Also,

inter-2lement boundary ls denoted by %m. Than, the
disolacement contlnuity condition and the traction

reciproclty condltlion at %m s+ In thelr Incremental forms, are

jiven by,
+ oy
A B =0 at &m (4.156)
+ e
AU = 4u at p, (44157)
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Following the same procedure as discussed In detall for total
Lagrangean formulation, the warious functionals glven by
tans« (4.135y 137, etc.) are modlfied 4 and the following
hybrid type Incremental functionals are derived,

Modlfiad Incremental Hu-Washizu Principles

Based on 4s* and 29*. The two verslions of modified

functionats are derived from the Incremental Hu-Washlzu
functlonal given by Ege(4.135)

i) first verslon

+ 2 F3 * ~g
Muwme (44,49 | 4$ , 4t , ) (4.158)

=§/;,,,, (4w "4g") - 49 20 + % 2% [(w3u ) (u)"]
~a8*:[43" -3 [ (Fau )+ (Pau) 31 dv

At 4uds - f .o
“w e, T T %? SEmNAE-.(dg Al s

—Lf £*

wheray as In the total Lagrangean formulation, AI; is the
fractlon (per unlt 3rea In Cy) 3t the Inter-elament boundary,
whose magnltude 1Is wunlauely deflned at the inter-element
boundary but opposite sign Is taken for each of the two

adjolnlng elements, such that,

¥ =
P

(4e159)

[ow )

5 @ g
A—p 47

! corresponding to £93.(4.158) 1s shown to be,
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’U’(AQ,A,@*,A,\S,',AE;) (£.160)
B aw N+ S L PPPY
B %%vﬂ;m { 531 { o J g
_ Iﬂﬂ-%{(fﬂﬂﬂ iNH) 3 }] ok

N
~R 8y + TUETTT ) (vhu) fay

s Py E’m.‘ U ds };,f { M NI _pm
R s, Ecauds = % o [ au e st w5 fds

5 f, (40t ¢ 27 S
m

1i} second versiaon

2 " P (L.161)
Mawma (44,49", 48%  4U, )

= {first three terms are the same as in EQ.(4+158) )

t% (au-40)ds
PR

where Agﬂ Is an Incremental displacement vector uniquely

defined at the Inter-element boundary,

(4,162
T (a4, 43" as* 48 ,) serest

= (first three terms are the same as in Eads.(4.160) 3%

—_%Lh {E*Nﬁ‘ (Ag "Ag/o) ‘f"d-z:*.(gh'ﬂ_ Nﬂ)}ds

The statlonarlty conditlons of the functlionals, Eans.{4.158)

and (6e161), lead to Eans.{&.114, 116, 119, 12%, 132, and
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134) and 3lso the continuity conditions at inter-etement
poundaries 5 whlch Is given by Egns. (4.15€8) and (4.157),

B8ased on 4t* and 4e*. Simllartys the modifled

functionals corresponding to SQ«(4,137) are shown to be,

i) first verslon

2 5 i ~ g (4.163)
TWrwmz (44, 4E°, 4L 4, )
= {flrst three terms are the same as In Fqs{(L4.137)

except that the Integrals over the volume and the

surface are repiaced by the sum of those for each

element} Zm'.;f Af*-d_q ds
Py

W'(dﬂ,d‘fé*,df, 417 ) (a1 BLd

= {first three fterms are the same Aas In EQ.{L.138)
except that the Integrals over the volume and the

surface are replaced by the sum of those for each
N+

s lement) - f FE o Ne T

iiY second verslon

’Tr;;m (4u,4e”, 41" 44, ) (4.165)

= {first three terms are the same as In Ege.(L.163)1}
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* s
T'(au, 48, 4t", 44, ) (4.166)

= {first three terms are the same a3s In EQes(L.164)1}

- fo {8 au-ab,) gt (-3 Fds

The stationarity conditions of the functionals given by
Eans« (4.163 and 1€%) lead to EQqnse(%ell5y 117, 120, 126, 133,

134, 1564, and 157) as a posteriorl conditions.

Based on 4r* and an*. Likewlse, analogous

modifications can be done to Eq.(4.139). These Modifications

lead T0»

i) first version
t (a4, 4h" 4o 4tF 4F* (4.167)
Mhwmy (44,40, 43" 4L 41, ) )

= {first three terms are the same as In Eq.(L.139)
except that the Integrals over the volume and the
sur face are replaced by thea sum of those for each

etement} — 5, Af'-dg ds
m P

Nm

W' (au,4h", 49", 41", 4L, ) (4.168)

~s

= {first three terms are the same 3s In £q«{bts14b)
except that the Integrals over the volume and the

surface are replaced by the sum of those for each

-4y fds

N‘. N+l

element} - Z'_,f df"‘_uwr +
m /onm { —-/o - ...L:/c

I1i) second verslon
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*2 4 * ¥ ~ (4.169)
Muwma (44,48, 44° 4t ,4U,)

A

= {first three terms are the same as Iln Eq.(4.167)}

'%}f;nmﬁlf (4u -40, ) Js

¥
(U, ah” , 4d* | at*, 4l ) (4el70)

~

= {first three terms are the same as In Eqge.(Les158)1)}
—Z.\f Y (au-4u R [T e
E o (8" o) st (- G2)F ds

The incremental governing equationsy Eans.(4,115, 118, 121,
127, 133, and 134) and the continulty condlitions at
inter-element boundarles, Eqs. (4,156 and 157), follow from the
stationarity conditlons of the functionals glven by
Eans. (¢elo? and 169) .

Modified Incremental Potential Energy Principles

The two forms of Incremental potentlal enerqgy
orinciples glven by Eanse. (4.147 and 148), whlch are shown to
be identicaly tead to the following modlfled functlonals.

1Y tirst version

¢ 2 ~ ¥
(4171
Tems (44, 4L, )

= {first two terms are the same as In EqQe.{L,i147) or
Eqe (belb8), except that the integrals are replaced

by the sum of those for each element}

“%%‘J/%m ZfE/}“:iﬁ Gﬂg


Eq.Ct.168)%7d
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1il) second version

U (4e172)
Moy (AU, 44, )
= {(first two tarms are the same as In Eq.(4.171)}

ﬁ%/f“lmdft (ad - 4G ;)ds

The stationarlity conditions of the functionalis, EansS.(4.171
and 172), lead to Eans.(i+ei11u4, 116y 132, 156, and 157) and
(4,115, 117, 133, 156, and 157), respectively.

Based on the above functionals Incremental hybrid
disolacement finite element models are derived [301. This
type of finite element models are also practically as useful
as those in the total Lagrengean formulation.

Modified Incremental Hell inger-Relissner Principles

The functlonals given by Eans.(4.150 3and 151) are
modified, and the foltowling mod]fled incremental
Helllnger-Relissner functionals are derlved.

Based on 4s* and Ag*.

i) first verslon

* 2 * e -
Mupmy (44,45 415/0 ) (44173)

= {first three terms are the same as In Egs.{&4.150)

except that the Integrals are replaced by the sum

~
of those for each element} - 2, AT -auds
m ,/Onm -—{0

1l) second version
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*2 & o (4.174)
Thrma (44,45, 40, )

= {first three terms are the same 35 In EQeluel73)}

- AL 14l ~ 40 5 ) d8
Z Jo At 2

The stationarity condltions of the functlonals glven by

EanS. (#.173 and 174) lead to €ans.(4.114, 116, 119, 132, 134,

155, and 157) .

Based on the above modlified functlonals, Ilncremental
nypbrid mixed finlte element models analogous Yo those In the
updated Lagrangean formulation can be derlived (311,

Based on As* and 4h*.

Iy first verslon

x 2 P (44175)
Theme (44, 44", 45" 4L, )

= {flrst three terms are the same as In Eg.(4,151),
except that tha integrals are replaced py the

sum of those for each element?}

A
-%f@md;ﬂ 44 ds

il) second version

(4.176)

* 2 * * e
Tugma (44,44, 4L, A‘L"‘/")
= {first three terms are the same as In EqQqs(L,175)12}

_2;_1,[/0 4t (a4 -40,)ds

The stationarity condltions of the functlonalss Egnse (4,175
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and 176), lead to Eanse.(4.115,y 118, 121, 133, 134, 156, and
157} as 3 posteriori conditlons.,

Modified Incremental Complementary Eneragy Princlple

8ased on d4s* and 43‘. The Incremental complementary

energy princliple given by Eq.lu.152) 1Is modified and the
followlng modified functionals are obtalned. However, the
transtatlionat equlllbrium condition and the traction boundary
conditiony a oprilorl satisfied only 2pproximataly, are
retained in 7,
i) tirst version
£ 2 * g
“Wengs (44, d§ , d_'é'/o ) (L.177)
= {flrst two terms are the same aS In EqQe(4.152),
except that the IiIntegrals are replaced by

the sum of those for each elementl}

K f/"nm(d't "4y )ealdds

(a4, 45", J_a“;) (4.178)

= (first two terms are the same as In Ea.{(4.153),
except that the Integrals are replaced by

the sum of those for each elementl}
* N+I *
+Z;. {A - -+ :

1i) second version

*2 o~ {
Tema (44, 45%, 24, ) (4.179)
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= {flrst two terma are the same as In Eqe (41770 1}

- 40
%’ffnmdf U, ds

! ~ {4.180)
M (au,as”, 44, )

= (first two terms are the same 3as In Eq.{4,178)1}

N+ o - Ep—
-t-Zm;f/onm {E* - (44 —-A_l’-!/o)-fdf  futL i )}0(3

The stationarity conditions of the above functionals tead to
Eans. (4.116y 119, 134, 15&, and 157) as a posterlori
conditions.

The modified functionals glven by £anse (44177 and 178)
can be applied to finite element models 132]. However, as
discussed for fthe total Lagrangean formulations, no
signiticant advantage is founf In this tyoe of finite element
models as compared to the hybrid type mixed flnite 2lement
models based on £ans. (4.173 and 174) .

Based on 4r* and 4h¥, The functional 3lven by

Eg.(4.154)y whlch 1Is considered to be a basls for the most
consistent Incremental complementary ener3y princliple, as
Wwith the analojous orinciple in the fotal Lagrangean
formulations Is modifled further to yleld the followlng
modified functionals, which form the basis ot hybrid stress
finite element Incremental models,

i) first version

S
r 2 ¥ x* ¥ U
Mem1 {42{;4}2 ,“"fﬁ:‘d-"ﬁ) (4.181)
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” #* * N T *
‘%fnm [‘”? (4r)+ (" +at")" 49" fav

¥ T ~
- AU dS - ¥ Y.
2. [5,, 42" 40 ds - 2, f,o,,,,, (4t"~aL7) -4ty ds
/ L AL
T (ay", at", 4] au,) (4.182)
- Z’an “df“ﬂ 1+ —-——3 ") =1 Jragt”
m el e ~

85: N“)-;:*NH_}.'AP!*T_}O'T

& * = N+
% [y 42" E"ds

~ Nt ~x N+
3 o Dtaz ) a2 (570 £ 4t T o

Inter-element

+[ (I

-~

the dispiacement vector at

where u is
e
boundarles which 1s Independentiy deflned for the adloinling

elementse.

il) second verslion

* 2 ¥ + A (100183'
Mema (427,4%, 48, )

{flrst two terms are the same as In ZQe.(2.181)2

'Z’{/‘oh 47 -Ag/ods

i (4.184)
(49", 417, 44, )

{flrst two terms are the same as In Eqe. (L.182))

"L [ {8l + at™ M s
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The stationarlity conditions of the above functlionals lead to
fans.(L4.118, 121y 134, 156 and 157) as 3 posterliorl
'condifions. Based on these functionals, incremental hybrid
stress finite element models which involve undetermined
parameters for stress AL*, rotation 4a*, and inter-element
poundary tractlon and/or displacementes These types of finlte
element models also have the same advantageous features as
discussed for the analogous models in the total Lagrangran
formuiation. Thus, thay will prov ilde consistent and
versatilte numerical tools to analyze finite deformatlon

problems of sollds,



117

CHAPT=ZR V

FINITE DEFORMATION PROBLEMS OF

NONLINEZAR COMPRISSIBLE ELASTIC SOLID

Introduction

In this chapters an incremental hybrid stress finite
element model, based on the modifiad incremental
comolementary enargy orinciple ls derivad, and its
sppllication to the flnite detformation problems of nonlinear

comdressible elastlc sollds Is discussed.

Two verslons of a modlfied incremental compl2mentary

eneryy princloles, wusing both the total and updated
Lagrangean formulations, are proposea in th2 orsce1ing
chaotar., Consequent |y, four different types of assumed

stress finite e€element models can be aerlv=2d, The cholce
amon j tnese four models l(argely depends on the natura of the
proolems to be solved, For the present nonlin2ar 2lasticlty
problems, in which the strain energy density is dafined In
the initlal confliguration, th2 ftotal Lajgrengean formulation
in wnich the initial contiquration is used for refzrence |is
preferable. Alsos if the two versions of modlfled

functionals are comparzad, the second version, involvini only

intar-atement boundary displacement as an  additional
variable, apbpears more convenient than ths first version.
fhusy, b3ase1l on the functional givan by cl1.(54103)y an

incremantal hybrilid stress finite element modal using the

total Lagrangean formulation s derived. The detalled finlite
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element formulations ara presented for general
Three-dimansional problemss Further, the general formulation
is reduced for two-dimensional oroblems, 3nd the plane stress
four-noded quadrilateral element Is Adeveloped. Using thne
newly developed finite element model, the example proolem of
the prescrivbed stretching of a3 thin elastic sheet is solved,
In this example, the materlial is considered to be 3 8latz-Ko
typ2 nonlinear elastlic compressibie material [L71. The

numerical results for this example problem are discudssed.

Finite Element Formulation of

Incremental Hybrid Stress Model

A tinite element formulation is consiierad, In
generaly, as 3 discretized eqguivalent of the corresoonding
variational principle. For tne Incremental hybrid strass
model, the development of which 15 one of the objectives of
the present work, the modlfied Incremental ccmplementary
eneryy principle stated by £3+(+s103) is taken as [ts basis.
If the application of the functional F3.(%4.102) to the finite
element model Is considered, the traction boundary conditlion,
which is assumed to be satlisfied a priori in Fa.(%.103), is
difficult to be a3chieved by the assumead functlions.
Therefore, this conditlon s aiso relaxed a priorl In the
same manner Aas shown for the Hu-Washizu oprinclple. On  the
other hand, th2 displacement boundsry condition can beo
directly enforced by selecting element boundary dlsplacement

4G, such that,

P



119

AHF = AU or Sy, (241)
Sinces Agp is taken as Independent variabley, this condition
can be introduced at the stagza when the final 41 32bralr

equations for the whole system ara solved, Thuss In the
discretlzing process the displacement boundary coniditlion is
removed from the functionals and the functional EZ3.(4.103) is
rewritten in the following form,
n?..(4a, 4t, 4Q,)
HS2 4L 4o “45p
(E.2)

" ¥
mfvcmidﬂ(m + (g +ap) [ aa@™ D] fav

+ 3 fAE-Eipds - 4t.4l, ds
m Ys Nl

a2

#'om

The corresponding lterative correctlon procedure is obtalnad

by retalning the following functional,

IT‘(AE 3 AE, Agp)

(%.3)
ar "
{[a" ‘ +a¥ - 1] "
Om
+[q +28 el )t"]m}dv
L ~ TN ~
X £'.44, ds - 3 f {g".dﬁfp +4_§,§p"}ds
m SC" m av
In the functionsl gaiven by Ege(%.2)y the translatlonal

equllibrium condltlion fag¢(%.8) and constitutlive relation
EQe(&,20) are satisfied a3 orlorl. Keeping thls In mind,
cQ«({Ze2) and Eg.(5.3) are discretized In the following

MaAnNNers The flrst steop ls the discretizatlon of the
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variables in the t{tunctionals. The stress field, which

satisties the transliatlonal equilibrium conditions viz.s

Pt +pg =0 (5o4)
and In 1Its Incremental form;

V-at + pag = o (545)

can be assumed by introducing a first-order strass functlons

s+ such that,

~t

= A p { ol
L=Fxy+ ¢ (5.5)

or in its lncremental form,
45=V1‘dl/}+4£p (5.7)
where t7 Is a oarticular solutlon which satisflies,

P _
V‘E = -eg (Z.8)

For convenlence, vectors and tensors are decomposel inta thsa
rectangular Cartesian comoonents, and eguations are presented
by using Index notations In the subsequent developmant,

Then, c£a.(5.€) is rewritten In components 35,

‘17 = ®imn¥nj,m * t1; (543)
where 2, 1S the permutation symbol, and 3 comma followed by
subscript Implies the derlvative wlith respect *to the
corresponding Carteslan coordinate. Now, we assume that %U

are deflned by | inear combinations of 3 finlte number of
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|ingarly Indepaendent functions f3 (d=lssed) wlith undatarmined

parametres fBpg » such that,

!

Vnj = 4 Bijq (5.10)
The substitution of EQq.(5.10) Into 2g.(5.9) yialds,

t = e, f p
ij imn “q,m anq + tij (5.11)

Furthers, the matrlx notation Is Introduced, and £Fa.(5.11) is

reAaritten as,

P
{eimn fq,ﬁlﬁﬁdq ¥ tij}

{ti5) (5411)%

il

[A] {anq} . ‘tij}

9%a axl 9x1

wher g a (a=9xJ) Is +the number of undetermined strass
parametersy, and column and row vectors are denofted ny {1} and
tly respectively * and =atriceas are denoted by [1. Slnce
£1.(511)* is a linear equations the stress Iincrements Anj

are also defined In th2 same way.
i“ijf - [A];"anq§ + a4ty (5.12)

iising this asuumed functliony the tractions at thza =2lement

boundary t; can be expressed oy,
’tjg = {mitij} - [A*]{ anq} + {ij} (5.13)

And its Incremental form [sy
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{at,3 = [ &)apq} {475} (51

On the otfther hand, the rotatlon tensor Iin the

three-dimensional case is suo)jected to the orthogonallty
conditlions which Is nonllinear,

s'r.s = .i[. (5.15)

Therefore rotatlon can be Jdnlguely defined by threc

independent parameters 6: (i=1, Z2s I)y suUch 3s the tuler

anjles. In general, 2ach component of the rotation tensor is

a nonlinear function of 6;. Assuming the distribution of 6;

45 3 linear comblination of lin=sarly indevendent functlons wj

With undetermined rotation parametres Hij (i=i+ 24 I and

}=1aeeK) such that,

B, = w, K, (5.13)

the components .of the rotftation tensor can b2 exnressed as
nonl inear functlions of Hije Follonwing the definition

FdQs(+«1l)y thelr Increments are obtained by,

= MN¥ls , N#l _ N N
dag; =a;(upn) -ag Cugy) (5.17)
_ N+, N N N
Ak Boe A;xmn)‘ - aij( Hon)

Wwhich are nonlinear functions of 4i,.. Retaining up to the

second order terms* of 4H,., discretized incremental rotation

is defined by,

¥As It wlll be seen In £a3.(5,27)y the second oarder terms in
4Hmp  has contributlons to the discretized incremental
functional through the term, J% t¥ad . (N T ) dr.
m ~ e Bt -~
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{4a;b= [o){an ) + {4}

9x1 9xb bx1 9x1

(5.18)

whera [B1{4pu,,} represents the linear terms Iin 4y, » 3nd the
second order terms are symbolically denoted by (4K} 3 and b
(b=3XK) Is the number of undetermined rotation parameters,
The element bouncary displacements Gpg ara unlquely
interpolated wusing nodal disoclacements (displacements at

nodas of an element) as undetarmined parameters, such that,

~

ey = Ljay, (5419)

where Lj (]J=1..N5 N Is the number of nodes) are interpolation

functions and ajj (i=1s 2 3 and =1, « oN) are nodal

displacements. Ea.(5.19) Is rewritten in fthe matrix form,
{uﬁi} - [LJ{qij} (5.20)
3x1 3xc cxl

Where ¢ (c=3XN) Is the number of displacement parameters.

Sinitarlyy the dlsplacement Increments ares tefinea by,
= 3 : p—
{“‘“pi} [L]i‘dqij} 5«21

From the definitiony, S7e(4.3)y the iIncroementsl Jaumann

stress 4ar ls expressea in terms of 4% and 4a by,

1
4x = < (4t.a" + Maa+ a7 aTradh o7 (5.22)

At this pointy, it 1Is noted thiat the state varlables In the Cn
states, such as LN, g". and DH. are known Jquantitjies. Thus,
using the discretlzed variables defined by Etans.(5.12) and

(E.18), the Incremental Jauminn sStress ar is5 expressed in
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discretized form,
{Arij} = [Dl]{dﬁhnq} ¥ [Dz]{dﬁgq} +{ Jij (5.23)

Wwhere (AQ; } are the contributions from the oarticular
solutionss, and the definitions of [0, 1 and (D;1 1ln terms of
(A1, (81, ', and a" Immediately follow from £ans.(5.12, 18,
and 22)s  Also, for later use, the tnsor aa-(n'+I) is
rearitten In the maftrix form. Noting that 4a [nvolves the

second order terms in Apus it is expressed [n the following

for""ﬂ'
C 4@pn(hy; + Spj) 3} = (R, 144pY + € R, (4} (S.26)

where (R,(4K*)} is 3 vactor, the components of which are of
second order In alj.

Nows we consider the discretization of Ta.(5.2). For
sinmplicltyy the subscrilipts are omitted In the matrix notationr
in the followlng equations. As defined by Za.(«.22)+ the
complementary energy density 4R is a aqgusdratic function of

Are Usina matrix notation, It can be written 3s,
|
4R =-Elnr1[c]{dr} (5.25)

3y substituting zZagns.(5.23) and (5.2%)y the first term In

Eae(542) is reduced to the following dliscretized form.

N[ AR dv =-%‘£ lar) [ ¢ ){ar} av (5.28)
O Om


Eqns.C5.23
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" i{‘ﬁf b Hu] 4B) 43[40
2 ar ) Hyy Hyy g auf + 4“}{4Q2J

(1) = fo, (L €] (1) @
(%9 = (= = [, (gle)(ns) o
(%] = Jro (22 €] (2] @
B = Jooy (21)[ €)farF o
903 = Joom [23]( ) {7} v

where

similariys, other terms in Zg.(5.2) are discretized.

ﬂomE"T=I49'(EN+£)] av = vamLtNJ( (ri)fan} +{rycau*)} )av 5270
= [plfor} +4lapd (6] {op}
Lode'T:[ ag- (N + 1)) av (5.23)
- \ﬁ’om( 148 ( a] + LacP) (Ry){an § +{R,au®)}) av
= 148l 2){ap} +5lami(s){an} + | afao}
+ higher order terms
(5,29)

ety e = f Ll Lawl) (1) ac o
= IABJ[G]{Aq} +l4a) {20, }
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ﬁoomd_g.'dgpds = \/S‘o-om[dﬁt-" [L] {A q} ds = [4 qJ {‘4 QS}

The substitution of €£fans.{(5.25) through (%.34) into the

functionalsy Ege(5.2)y leacs to th2 discretized functioral:

2 ( {5.31’
Thgo (485 41, 29 )
-
o g il 481 | Hyy ( Hyy + P) 48
2
m 4k |t BTy, + B 5) || s
T T

i s 4B (4 4Bl ¢
= {44}

m 4K || 4Q, +40Q, m{4H) | o

+ X {-4Q +4Q:)T
m{ Q +4Qs5) {49}

where the term [4p1{Q¢3}s which corresoonds to the rotational
eqQullibrium check, IS removed, and it will be retalned in nft.
The stress parameters 43 and tha rotatlion paramaters 4p 3are
indapendent for each a2lementy, whereas nodal displacemants aq
are common to a set of adjoining elements. Thus, the
stationarity condition of g, (5.31) with respect to arbitrary

variation of 43 and A4Ap gives,

[H][jf, i} [z] {Aq} -[jzi +AQ3}

for Individual elements, whereay

(5.32)
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. e F (Hp +2) {5¢33)
[ ] - ( )T

g 8 Gnp tH + 8

As discussed by Fraeifs de Veubeke [331 for the linear
alastic case,s, the matrlx[un] cannot by [tseilf be inverted,
due to the fact +that certaln combinations of stress
narameters 4f3 produce zaro sStrass energy state; thus, theare
exists a non=-zero vector 48 for which tha stress anergy is
zeroshowever, the entire matrix [H] In Ta3.(5.32) can be
inverted, Therefore, £Q.(5.32) c3n pe <olved for (4B ,4K 1,

and we obtain,

{jfl s [H]-| [Z]ldq] ) {:Z;+4q3J (5434)

3y substituting back this equation into £a3.(%.31), the

tunctional is express=ed In terms of only 4Q.

mA,(4q) = ——;_- E[anm[Km] {ad}n + [49)m {40}, (2.35)

where

=4 G] S.35)
0

3
A N RO N D R PO e

AQz +4Q,

The statlonarlty condltion of the abov: functional with
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respect to 40 1ls obtalned 3s,
s [ &) {aaf, = = {4 Q}m (5,38)
m m

where [Kp]l are lncremental (or tangent) stiffness matrix of
efements, and (40}, are equivilent nodal forces. After the
summation over the elements (s properly carrijied outs, so that
the connectivity of nodes is malntained, t£73.(5.328) leads to 13
system of algebralc equatlons, from which the Incrementa!

nodal displacements are obtalned.
[KG]{AQG} = {49} (£.39)

where [Kgl is a global tangent stiffness wmatrixi (4dag} and
{434} are 3lobal nodal disolacements and nodal forces. This
a2quation can be solved numerically oy wusing the dligital
conputery and the Incremental nodal disnlacemants {404} are
thus datermined. Once (43¢} is known, {48} and (44} can be
calculated through Ea«{(5.34). From these values, 4t and 4a

can oe found by EqQnse.(5.12) and (5.18)., However, AE; 4Ty and

4a obtaln2d here are |inear approximationse. Thuss wvalues
Nt
g:f, s and gm”esfima?e1 DYe
! N
Nl _ N~ N+ _ N gL ot c
uy, = U, t4u, t™ =t 4L a a + da (5.40)
are also approximate wvilu=s. Th=e correction to these

aporoximatins can be carriad out by the ifterative orocedure
pas2d on m given by £3.(5.3). The ldea of such itaratlon IS

similar to that of the well=-kKnown Newton-Raphson iteration
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metnhnods In solving nonlinear 3l gebraic ejuations.

Following the same orocedure as shown for mk, » m!
3iven by £Q.(5.3) , whlch corresponds to the correction for
Cn state, can be discretizad, However, for convanience In
the later dlscussions m' for Cyy State Is considered. Its

discretized form 1S obtainad 35S,

BY (% (5.61)
m'( 4B, 4k, pq) = T{AK{Q
m
4% Q
Wwhere
48] {ou} :fvo [E"?%BF‘L’SN““ L]iat’ av (5.42)
m r
-J£V0m45- a5 ds
N+1
L4v] {o.] =fv°m[<£*a—l )t aa"av (5443

£ - MG d (54wt
I-A“ {Qt} - sL‘o- mE s ds éomE .44, ds

alQNH
The values a v and G in Sans.(E.42, L3, and 4e)

+ I ~ N+l
N . 1u+ S 2::
are considered as Aapproximate v3lues obtained =ither by
Eq.(5.33) or after some (terations. Thus, Ugs QAry and Ny are
irnterpreted as dlscretlzed errors in the compatibllity

condition (kinematic relatlon) , rotational equltibprlum

condltionsy And both the traction reclprocity at [nter-zlement
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boundsiry and traction boundary condltion, resnectively.
These errors sre added on the right hand side of £a.(5.339) 3s

residual forces In a 3eneral sense. Than wWwe obtain,

p [ k) {afn = ﬁ {%}in (5.45)

wher2 €ag} is 3 correction vector and (fch, is a3 residual

force vector whlch Is deflned by,

foct, = E] [H]-'{Zi} + [Qc]

Aftar the summation over the elements, £q.(5.4%) iIs reduced

TOQ

[KG]{ch} - {QCG} (5.47)

where Cace} and (Qcq} 3re gloval correction vector for nodsl
dlsolacements and global residual forces at nodes. 3y
solving EqQs(5.87) for f{a.,} » the correction vector |Is
obtained., The correction vectors for stress and rotaion 3re

calculated Dy,

(5.458)
NERtE NI RN
= q —
{ )
B 0 Qr
which Is analojous 10 E£3.(5.3&) . Using these correbtlon

vectors, new values of G:“, a'', and tM 4re calculatet.
— ~t e

Agaln these values are substituted into Ffq.(%.5%1), and tha

2r~ors are estlimated. If the errors are not smaller than
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desired values, the above corrections are repaated until they
are raduced to a prescribasd tolerence level., At this point,
it is noted that [Kgl In £Q.(5.,47) is a tangent stiftness
matrix at Cy state. If [Kgl 1S kept sam2 throujnout the
iterations 4y the manner of the converjence (s [llustrated by
Fige3 which corresponds to a modlfled Newton-Raphson method.

Howeavar, as showr by £ans.(£.22 through Z.-7)s matrices Kyl

and [H1, and eauivalently , [Kgl and {Qcg} involve t", a*,
and g:. It these matrlces are evaluated for the new

~ i v
spporoximate values t"', &™) anAd g:+, at each iteration, in
otner wWords, the tangent stiffness matrices are raolaca2d by
that for new aoproximate Cy, State, the convergance of the

iteration can be Iimpraved, as showrn by Fig.Lsy whilch

corresponds to the Newton-Raohson method.

Plane Stress Problem

The general theoretical developments presentad [n the
precedlng sectlon are npow speclalized to the case of
plane~-stress proolems, 3ni the I[ncremental hyorld stress
finite element modal using four-noded rectangular =21ement Iis
Jevelopeds. The oroblem of the prescrioed stra2tching of 3
thin elastic sheet made of Blatz-Xo typs [17]1 nontinear
elastic materlal [s solved 3s an example.

For the plane-stress case the stress flela i35 assumed

to be constralned by the conditions

ta =t, =t,, =t;, =t,; =0 (5.49)

23
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whare X, and X, are Inplane coordinataes and X is a
coordinate in the thickness diractions. Similarlys rotation

field [Is sublected to the conditions,

Q3= Ay, = Uy = Ayy =0, Qs =1 (5.50)

Using tThese Aassumptions, the Jaumann stress datined Doy

2qe(2+1%) 1S5 reduced ftos

rq4 Tgp O (5.51)
o 0 0

For simpliclty, the body forces are assumed to be Zéroe.
Then, followling the genaral procedure djiscusse’ In thne
preceding section, stress fleld (s assumed wuslng stress

functions ¢ and ¥, » ass

t2l = l'b]_’l s Eyg & o= L'/}2’]_ (S.52)

where ¢ and ¥, are chosen to be complete polynomials of

inplane coordinates x; and X,y les€ey

1 Pl 1 2 1

Vi =%y Br+ 3y By + X1 By + xyxp By + x; By 4ttt (5.53)
2 2 2,2 2 2 p2

‘ﬁz "XIBl + x2ﬂ2+x133 Tx1x234 + X, BS+

The incremental stress flald is also 3ssumed In  the same
manter. It Is noted that the special cass, when Bi= B2 and
other 6’5 are zZeros corresponds to a zero stress enargy state
irn the first increments This is responsible for the need fo

invert the matrix [H] 3s 3 whole in Ea.(5.32).
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Tha two dlmensional rotation field Is assumed 3c,
€ ayy Gy 3+ G, » Qay 1=[Cosf 4 SIinfs -Sin@s CosH] (5.54)

where the rotation parameter corresponds to the rotation
angdle around x; direction. It I1s readily shouwn that the
above rotation fleld satisfies the orthogonatity condition.
Theny ratalning the second order terms inaf o the lncremental

rotation field deflned by Zga.(s.1) Is 3ssumed 35S,

[ 4ayy 48y 5 4@y s 4821=20-5ing", Cos@", -Cos@¥, -sin§"146

L1

-5Cos 6", Sin g% -Sing"s Cos 6140 (5.455)

Nows we e€xamlne +the orthogonallty condition of ( g”+dgl

which [s 3iven by,

N T
(a"+4a)-(a"+4a) = 1
i ~

Ry substituting the incremental rotation tensor assumed as In

t3«{(545%) Into the above eauation, W2 0Dt 3in,

1, 0 1, 0 (5.55)
(a"+4a )" (a® +4a) = LY 46°
0, 1 410, i

Thusy th2 assumed incremental rotation tensor satisfies the
orthogonality condition J4p to the thirt order In 4f.
Mo~eover, It only ilnear opart in 4a 1is conslidered, th2
incremental rotatlon field can be shown to satisfy the

regqdired linearized orthgonality conditionsy viZ.,

a"'-4a = skewsymmatric (=, 52)
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Similarly, the varlatlon §4a satisfies,

y
a": 542 = skewsymmetric (5.58)

which is reqguired in the lteration process 3as shown by
EQ.(4.54). Thus » the rotational eaqullivrium condltion |Is
gjuaranteed by [teratlive corrections. The distribution of tnhe
rotation angle2 @ in the element IS also assumed by complete

polynomials,
6 = Byt Xy Byt X, Hyt cveee (5+53)

Similarty th=s Increment of the rotation angle 46 Is assumed

in the same manners.

For the present oroblem, four-nodad isoparametric
element is considered. The geometry of an element In the
undaformed state C, IS shown dy FigesS. For convenience, the
four nodes are numbered In the anticlockwise diraection, The
coordinates of node n  (n=1, . «.4) a3re denota2d by (X;y X3).
An 3rpjitrary shaped qQuadrllater3al geomatry of the elament can
be ftransformed Into 5 square in (ry s) plane by the

isoparametrlic mapping which [s 3iven by,

X; = (1/h)((1-r](1*§1x; +l1+Pl(l*Sixf (5.50)

+{1+r)(1+s)x§ +t1—r)(1+s)x; ¥ (i=1, 2)

Further, denoting the nodal displacements at node n by {(a},

a;), displacement flelds on the element boundary are 3assumed

DY

~

dpp = tl/b]{(i—r)(1~s)a} +(1+r){1-5)qf (5.61)
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+(1+r) (1+35) Q3 +(1-r)l1+sla{ 1 (i=1, 2}
L
where (1-r?2)(1-52)=0 and |r|., |s]|<1

Tha2 incremental displacements at ela2ment boundary AQP are
also assumed In the same way.

Nowy We consider the constitutlve relations, The
matarial Is Aassumed to oe Biatz-Ko type nonllnear elastic
materlal [171, Its mechanical oropertiss s3re characterized
by the straln energy density W per unit initlal volumes which
is given by,

W= (p,f/Z)[Jl-3+§(J;O’_1)]+ u_(zL-_f_l 3, _3+i @2-1)] (5.62)

where J, 4y J,» and J;, are defined by,

di = F ;0 J, o= 12/I3 ;  and J3 = /13

2 (Z.83)

Wwhere Ii are the oprincipal invariants of the d=2formation
tepsor Ga In EQ. (5.62)y U renresents the shear modulus, and

a js related to the Poisson’s ratjio v through,

a= 2v/(1 -2v) (5.64)

Also, f Is a material constant.
The lncremental constitutive relations can be obtainad
through the incremental straln energy denslty functlon AW

which is defined by,

4W(ah) = ::4h 4h (5.65)

SIES

_aiw_;"
Cl S
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where

LS
==
I
[N

iR

The derjivatlion of AW is rather |engthy put [t can b2 obtalned
in 3 stralghtforwara manner. Leat the Invariants of (h+I) De

denoted by hi « For tha present plane-stress case, In whichy

they are detinad by,

hy = hyy thy +hy, (

T
.

(o]}
o

= L
S
"

iy hap =Niz hy #hyp Ny, #hyy hyy

=
1

‘h-“ hz-z —h12 h ) h

1 33

From the relation between (G and ns FQelcs7)y it Is shown that

I{ 3nd h; are related by,

(5.87)
2
I1 = h1 = th
-
13 = h3

Jsing Eans. (5.2, 6t, and £7) 4y W can be expressad In terms of

he Simitarly, 1f we consider the strain tensor n""

~

In Cnni
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state, which can be written In terms of DN and 4h  3s,

A Rt 4 an (5.58)
e ~ -~
the strain energy density W In Cyy State can pe  expressed
45 3 function of tha Incremental straln AD. Then, the

incremental straln energy denslity 4W s ootained 3as the sum

of the second order terms of AE in H"H. It is shown tOo bey

(5.59)

I 2 2 % o N -1 2 1 \ - e |
S T - by 2 M+ oo () 2o
W=7 Ahl) 28y + 17 AJ5) Ahy + 5 aletl)(75) @ (ﬂh3> JJ

w(l ok {( 2 N 2 N 2 1
Ah ) + 2h,A"h, = 2h_pA%h, - 2ah
3
+ I2 < 1 {(&hB) + 2h§ﬁzh } + {2}1 Ah
(i ? (IN)J by
2 N N N
- _ h - —
2 3 3 12h,8h, Zhyah, 2h1ah3} bh.,
3

e 2 Nhya-1 2 VR N =2 \2*
a12\J3)  Ahy + 5 ale-l) J3)" "(ahy )]

where 4h; s Ah,s and 4h, are |inear parts of the princloal
invarlants h?'. whaereas, 42h, and 4’h, are second order trams

of 4an In hM* and h¥*', respectively. They are glven by,

Ahl = ghll + A, + Ah

22 33 (5.70)

ah, = (2 + h + h h - -

¥ Yy +
(240 +hygdahy, + 2 +h, + hyy)ahy
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Ahg = (1 +h,,)(1 + hy,)Ah (1 + h

33780y - 3300100,

= (1 + h, )t _
( 33):lzgh21 + [(1 + hll)(l + hzz) h12h21]ﬁh33

+ (1 + h )(1 + h Jf_\h22

A
Ay = AhyBhyy = Abyp8hyy + Ay Ahg g+ phy b,

I

h, = (1L + =
Ahg = (1 +h g ){ah, ah,, - Aby,Ab

21}

-+

Kt f L % B h,, +
33t 11740y + 1+ Bagltbyy - hyythy, - By18b123

. N
In the above, h;; are known guantitlies h at the Nth stage
and the super-script N has been omitted for convenlence.

Using the matrix notation, AW can be rewrjtten as,
“ l (5.71)
v = Ah} [ £]{an}

where

T
{an]’ = | an)), ahyy, dhy, ahyy, Ay

From the deflinition of 4Wsy the iPncremental Jaumann stress Is

obtained 23S,
{ar} - [E]{Ah} (5.72)

where

.
{ar} =lary, aryy, by, 4y, Aarqs]

Noting the symmetric properties of 4r and 4Ny ViZes
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Ar = Ar -
12 21 , ‘““12 Ah21

the above relation can be invertedy and we obtaln,
{ah}Y = [C1lC4r} (5.73)

Further, Incremental complementary enerqy density Is obtained

45y

4R =§'-ur~ftc1ur-} (5. 74)

Considering the fact that 4ry,; =3 for plane-stress c3se, 4R Is

finatly written Iin the followlng form.

r.. T T
11 4511 (5.75)
1

4R(4r) =5 1R [ c ] 4T19

l‘rzl Arzl

4Y 5o 41y,

whnhere
1 " N i N (5.76)
dr,, = 5 (typdap; vt a, + Ty day, T4 Cni )

(i,j,m=1,2)

Using the assumptlons Eans.(5.49 and 50) and the Incremental
complementary enerqgy density given by EQ.(5.78)s the

funztlonal derlved for three-dimensional casey Eade(5.2), is

reduced to,

2 t
Thign -4 pq> 4a,,» 4% ) (5.77)

= 4R € Bl
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N N
ttdag ( hlho+ 8 )} av

_540

HE. Atpe ds: & Jf W
14Ypy ds IE sa‘omdtidupi ds

( i,j,k,P,q = 1,2 )

m

The voilume |Integrals and the surface Integrais In thas abova
equation are reduced to Integrals over the area of the
element and Ilne Iintfegrals along [ts boundary., Further, by
using the |1soparametric transformation, these integrals
defined In the (X,9+ X3) plane are mapped into those In the
{ry s) plane. Thusy they aras reduced to area integrals over
the sqguare reglon (|r|, |Isl<l}) and line Integrals along the
{ina parallel to the coordinate 1 inesy which can be easlly
evaluated by numerical Jquadrature, such as Gausslan
integration.

8y substlituting the discretized assumed functions
deflned by Fans.(5.52, 54, and 6&61) into the functional,
EQe(5.77)y and carrylng out the integrationsy It ls reduced to
the discretized functional anal ogous to Ea«(Se31) s
Followlng the general procedures dlscussed for
three-dimensional cases incremental hybrid stress finlte
element model for plane-stress oroblems Is developed,

Before applylng +the newly developed finlte element
mod2| to boundary value problems, the properties of a slngle
element are studleds According to the assumptions EqQs(5.52
and 59}, the stress functlion and the rotation angle can be
Aassumed as complete polynomials of any order, However, as

shown by Fraeljs de Veubeke [33]1 for |Ilnear elastlc case,
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certain condltions must be satlisfied by the numbers of
undetermined parameters for stress field "a', rotatlon fleld
"b"y and dlsolacement fleld "c'"y so that the matrlx [H]
defined by EQe.{(%.32) can be Inverted, and further, the
alement stiffness matrix [(Ky]l defined by EQ.(5.36) does not
involve any kinematic deformation modes other than the three
rigid body modes, namely, fransliatlons In x;, and x, dlrectlon
and rigld body rotatlon. By 2 close investlgation of the
mathematical propertles of these matrices, we may possibly
obtain such condltions In an analytical way. But these
mathematlical arguments are left for future studiesy, and 3
numerical approach 1Is employed. The vbehavior of the =2lement
is characterized by the eigen-values and correaspondlng
eigen=-vectors of the stiffness matrix. Physicaily, the algen
valdes are proportlonal to the amount of strain energy stored
in the element through the deformations which have the same
pattern as the respectlve elgen vectors. Therefores, these
eigen-values must ba non-negativa for all materlals.
Further, as shown by Bathe [34] for assumed displacement
finite elements In linear theory, a properly formulated
element must have three zero elgen-values and these
correspond to the rigid body modes. Therefore, by checking
the elgen-values and elgen=-vectors of the stiffness matrix,
we can tell whether the pehavior of the element is physlcaliv
prooer or not. Slnce, the stiffness matrix Is changing with
the deformation In the finite deformation oproblem, It |is

impossible +to predict Its behavior In the arbitrary deformed
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state. But by examininy the stlffness matrix at the
undeformed state, the essential information can be obtained.
Thens the elgen-values and elgen-modes of the stiffness
matrix of the newly developed finite element are calculated
for varlous combinatlions of number of stress parameters "a"
and number of rotation parameters *'"b™ (number of dispiacement
parameters c=8). The geometry of the element Is square and
material constants fy, pu s and a are chosen so that they are
egqdlvalent to the case of c=1 psi and v=0.3 (E:Youn3y’s
modulus, v iPolsson’s ratiol). The calculated el3jen-values

are presented In Table 1y and the eigen-modes for the case

{(as by ¢)={10y 1y B) are shown by Figs7s It is obsarved from

these results that 1f number of stress parameters "a is 10
or morey the element behaves oroperlys However,y, It s
noticed that [f the number of rotation parameters, which are
considered to constraln the stress field through the
rotatlonal equllibrium conditions, is takemn large compared to
that of stress parameters, matrix [H] may become sSingular 3s

in the case of the comblnation (4, 35 8).

Numerlical Examples

Nows we turn to the numerical application of fthe
incremental hybrid stress finlte element model to 3 boundary
value problem. The example problem considered Iis the
prescrived stretching of a3 thin elastic sheet (8"X8"<,05").
The sheet Is clamped at the loading edges x, =t%. and (it Is

stretched to twice [1t5 orlginal length in x;, dlrectlon as
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shown by the Inset In Fig.8, Thus the boundary condltions

can be stated ase

t, =t, =0 at X, = th, (5.78)

u, =#u(A-1)y u,=0 at x, =+l (5.79)

where A [Is an extension ratlo (1< A <2). The material Is
assumed to be a Blatz-Ko type material [171 such as foamed
rubber, The speclfic material constants H gy fo and a |[n

ta.(5.62) are chosen t0 be,

1
oo
-

H = 40 psi s f a=1 (Vv=0.25)

Considering the éymmefrv of the problem, 3 quarter of the
sheet s analyzed uslng a ©X6 non=unlform mesh finlte element
assembly as shown by fthe inset In Fig.8. The four-noded
element which has 10 stress parameters (llnear dlstribution
of stress) and 3 rotation parameters (also |lnear
distribution), Is wused for the present example. The
considered total stretch ( A=2) prescribed on the edge X, =t&
is imposed In 20 increments (4A=0.05)., The Newton-Raphson
type Iteratlons Dbpased on tQ.(5.3) are carrled out at each
increment. During the 1iterations the tangent stiffness
matrix 1is kept unchanged as lilustrated by Flg.3. In
genarals the errors iInvolved In the sofution is estimated by
the residual l1oad {Qcg } In Eqs(5.44)a If the norm of the
residual {toad vector and the total load vector, denoted by
lacll andg |Qll » respectively, are calculated, the measure of

the errors ¢ Is estimated by,


flO.ll
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_ ladl .3
£ = /”Qﬂ (5.80)

The iterations are repeated until € becomes less than 1%.
For the present example the desired convergence s achleved
after 2 iterations, on AN 3averaje. Fig.8 shows the total
3axial ltoad necessary to achieve wvarious ratios of stretch
(1< X <2), For the purpose of comparison, the results
obtained by using finer Iincrements (4)X=0,02%) but without
lterations are also plotted Iin Fig.d. However, the results
wlthout lteratlons were not notlicesbly different from those
with twlce large Increments and with lterations. Hences no
distinction Is made between these in Fl3.8,. From these
resultss, [t appears that [f the increments are taken small
eno4dghy practically reasonable solutlons <can be obtalned
without lterations,. However [t Is recommended to check the
errors by ilteratlons at least every few increments, The
reduction ratio of the widfth of the sheet at the center |lne
(tateral cntractlon ratio) is plotted In Figs«9s The deformed
configurations of the sheet at A=1.5 and A=2.0s 3long wlth
the Initlal configuration are shown In Flg,10. The contours
of computed rotation angle § at the final stage ( A=2tﬁl are
plotted In Flgsils The rotation fleld shown by the flgure Is
consistent with the displacement pattern shown by Fig.10, and
the maximum rotation occurs at the corner of the loading
edge. The contours of the axlial (x, direction) component 7T,
of TtThe true or Cauchy stress at )A=2.0 are plotted on the

deformed configuratlion in Figel2., Simlilarly, the
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distributlons of 7,4 ¢, s and T at A=1.5 ars presented by
Filgs.13, 14, and 15. It 1Is noted here that all the stress
components are consldered In the rectangular Cartesian
coordinates, As shown by Fligsel13 and 1&, al though number of
data points 1Is not sufficiently large due to the coarse
finite element mesh, maxlimum values of T and G, also  appear
to be found at the corner of the loadlng edges From the
comparison between Flgs.12 and 13 , It Is observed that the
distributlion of <uw at A=2.0 is notably different from that
at A=L.5. This difference 1s explalned by the fact that the
material almost reaches the maximum strength after A=1.8,
and the stress distribution bacomes close to being uniform.
For comparisons, the axlal components ft, and s, of the
Plola-Lagrange siress and Kirchhoff-Trefftz Stress,
respectively, at A=1.5y are plotted on the undeformed
conflguration In Figs.i16 and 17 If the Figseidy, 16, and 17
are compared [t Is noticea that the stress ZL measured per
unlt deformed area, which is smaller than that of undeformed
state, has the largest value compared Yo others, whereas,
that of s,;, measured per unit undeformed area 3and decomposed
with respect to the base vectors in deformed configuration is
the smallest, This result Is conslstent with the
definitlions of stresses glven by Eans.(2.12 and 13).

Moraover, because of the fact that the Plola~Lagrsnge stress

1+

and true stress T are subjected to the same form of

~F

differentlal equationsy VIiZ.,
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” *
VT +Pg =0 (5.82)

where [ and F7.are gradient operators In the unaetormed and
current detormed configuratlons, respectively; f% and Kf are
mass denslty per wunlt undeformed and deformed volumey
respectively, very close distribution patterns of ft, and T}

are observed. On the other hand, s,, whlch Is subjected to,

V(sE) +Q g =0 (5.83)

has a signlficantly different distributions Simitar
comparison 1s made among t, s S, » and 7T, shown by FigsSs18,
19y and 14, Unllike in the case of the axial combonents, the
effect of the difference in the boundary condtlons along the
free edge is relatively large, also sinces, the Cauchy stress
is symmetrilcs, whereas the Pilola-Lagrange stress s
unsymmetrice Therefores, a3 stight difference [s observed
betneen Flgs.i4 and 18,

For incmpressible Mooney type materlals similar
problems are solved by 0Oden [1i81 and Becker [35]1 wusling
displacement finite elemnent model s Al though, direct
comparison 1Is not possibley, fthe results obtalned by the
prooosed method show go00d qualitative agreemant with those
obtained by Oden [18] and Becker [35], From the above
discusslionsy It Is seen that the numerical results obtained
by the proposed method are consistent from both the

mathematical and physical points of view.
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CHAPTER VI

FINITE DEFORMATION PROBLEMS OF

INCOMPRESSIBL ELASTIC SOLIDS

Introduct ion

Various types of Incremental variational principles
and their modlifled verslons both In the total Lagrangean and
updated Lagrangean formulations, based on alternate stress
and strain measures, are discussed in chapter IV.
Especlallys wusling the modiflied Incremental complementary
energy princlples incremental hybrid stress finite element
models for flnite deformatlon problems of a solld are
proposed. These varlational principles and finlte element
models are vaild for general compressible materlalse.
However, there are many engineering materlalss such as
rubber, solld propeliant rocket grainss and polymers, which
are effectively Incompressiblaes With the increasing use of
such materlals In practical englneerlng developments, the
demands for the theoretical analysls of their behavior have
lncreased In recent vyears. To analyze such probiemsS, an
incremental hybrld stress finite element model which Is vallid
for Incompressiple materlials ls developed In this chapter.

The klnematic constraint of preclse I1lncompressliblity

in finite deformation problems Is stated by,

I,=1 or h, = 1 (6e1)
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nhere I and h, are the third principal Invarlants of the
deformation tensor G and stretch tensor (I+h), respectively.
It Is notlced here that these conditlons are third order
nonl inear equations. The assumptlion of Incompressibillity
makes 1t easler to obtaln analytical (exact) solutlons to
certain problems In finlte elasticitys HOWwever, In general,
reverse Is the case with numerlcal solutlons such as
energy~based finite element methods.

In the case of tinear elastlic Infinitesimal
deformation probliems, the Incompressibility condltftlon |[s

reduced to,

- (6.2)

which Is Ilnear«. The staln energy density for lisotroplc

tinear elastic material can be expressed by,

W() = —;-A(g:};)’ PR e (643)
where,
(X '% (yu + pu’)
The stress Is obtained by,
(6.4)

-
tm =
i

AL+ 201g

(A+Zr) (DL + 20 g

where ¢ 1s the deviatric straln defined by,



149

1
€ =£ -?(S'L)L (6.5'

If the material Is Incompressiblie, A becomes Inflnite.
Consequently, the straln energy denslty becomes slngular,
thus the finlte element based on fthe straln energy 1ls not
vatlid for this case« AlSoy, as noticed from EQe.(b.4)y only
the devlatorlic part of stress can be determined from the
strain. Its hydrostatic part can not be determlned by
straine It can be determined from the boundary conditions.
At ternative approaches for analyzing nearly or
precisely Incompressibie |lnear elastic materials are
proposed by Herrmann [19) and Key [20). They construct mlxed
type varlational princlptes Involving both displacement and
hydrostatic pressure as variables. In thelr functlonals the
Incompressibliity condlitlon Is relaxed by Introducling the
hydrostatic pressure as a Lagrange multipller. The
incompressibliity condltlon Is then preserved a posterlorli
through the statlonarlity condltion of the functlonals. This
approach can be extended to the flnlte deformation problems.
Oden (181, based on a modifled (not hybrid) statlonary
potentlal energy principie, which Involves both displacement
and hydrostatic pressure, derived a finlte element model| for
finlte deformation probiems of Incompressible elastic solids.
If the problem ls a plane-stress problems, as discussed by
Oden [181s the hydrostatlic presure can be expressed In fterms
of displacements due to the assumption of +the vanishing

normal stress in the thickness dilrectione. Thus the
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functlonal can be expressed In terms of displacements alone.
Howevery, as shown by Oden (181, the reduced functional
becomes highly nonlinear. Consequentiy, it leads to a set of

nonilinear algebralc equatlons In the finlte element

formutation, which can be numerically solved by
Newton-Raphson method, An analogous functlonal ls
constructed by Becker {351, uslng simptified

incompressibliility condltlons The solutlion Is obtalned by
direct minimizatlon of the ftunctional, Instead of deriving
nonlinear equatlionss

In thls chapter, a modifled (hybrid type) Incremental
compiementary energy princlple for iIncompressible material Is
derlved startlong from the Hu-Washlzu prilnciple involving the
hydrostatic pressure as an addltlonal varlable. B8ased on the
derived Incremental wvarlatlonal principle, a Incremental
hybrid stress finlite element model for plane stress problem
is developed. Two types of plane-stress probilems of
Mooney-Riviin type materlal are solved as examples by uslng

the proposed method.

Hu-Washlzu Variatlonal Principles

As briefly mentloned for the linear elastic case, the
stress can not be fully determined by stralns (equivalently
strain energy denslty), and the mean pressure remains
undetermined for Incompressible nonllnear elastic materials.
The mean pressure (hydrostatlic pressure) can be determined

only by conslderlng the boundary conditions Imposed on the
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solide If the materlal 1is Isotropic, the straln energy
density 1s a function of threa principal Invariants of the

deformatlon tensor Ge In wvlew of Eqe(Bbal)y straln energy

denslty for an incompressible materlal 1s considered as a

function of only I, and I,,

W= W(I,, I,) (6.6)

By introducing the hydrostatic pressure p Into the straln
energy densitys we can define a modified straln energy
densitys whose derivative wlith respect to straln gives
stress. Depending on which straln measure ls useds there are
three alternative ways to express such a modifled strain
energy density ﬁ per unlt undef ormed volume.

based on g

1) (6.7)

W(g) = W (8), I,(8)) +% (1,-

where W Is a symmetric functlon of g.

based on &

ﬁ(s) = W(I;(e), I5(e)) +p(J - 1) (6.8)

where W 1s considered as a functlion of ey and J Is the third

invarlant of f.

based on h

H(h) = W(I; (), I,(h)) + p(hy- 1) (649)
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where W Is considered as a function of hy, and h, Is the third

Invariant of (h+I). From these strain energy density

~N A

functions, the stresses are obtalned as,

C_ oW _ aw )

.{.3, a;% ag + PI:,Q (6.10)
aw(e)

T s aw -1

t = ] + .
A )
aW(h aw =

T = an =55 tPhI+h) (6.12)

where, according to the deflnitlon presented In the appendix
Ay the Inverse of the unsymmetrlc ftensor F 1s deflined by
f'tf=§. Noting that 1I,=J =h,=1 for incompressible case, 1t
1s seen that the stress obtalned through EgQnse(6s10, 11, and
12) are conslstent with the deflnition of stress given by

Egnse«(2.11y 12, and 13).

By Introducling the straln energy density function W
and treating the hydrostatic pressure as a variables the
following Hu-Washizu principles In the total Lagrangean
formulatlon correspondlng to Eqgnse(3.1s 45 and 7) are

derived,

(6.13)

+

N

s:l v+ u+ vy - )T - 2]} av
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"Hw( H’ SJ E’ p ) (6.1‘4)
= j;{wg)+pcj-1)-,g54
T T
+[oul - elfav
_js‘ Egds —f t.(u - u)ds
% Sup ~
(6.15)

”Hw(- u, hsgs E, P )

- ﬂo{wap +p(he- 1) - pgu

teh [PV -a.x+ w]f av

~

- j; -u ds - f t.-(u - u )ds
i Su, - -

If, tor examples EQ.{H6.15) ls considered, its flrst varlation

[Kad]

can be shown ass

3 (6.16)

N aw h 1
Sy = fm{ s " Pan C 7 were Dl - [am-gliegT

W

+ 8p(hy-1) + 8 [(},‘F 7u) - a-(I+h)] -[?-E +40 g].&g} dv

) ﬂa(J(f'E)‘SEdS - ﬂu 5t-(u - d )ds

o

Thusy the statlonarity condition of Ege(8,15) vlelds to all
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the fleld equatlions and boundary conditlons and also the
incompressibl!ilty conditions

Since, the objective here 1Is to derive a3 modifled
incremental complementary energy princlpie for incompressible
materlialy the discusslion 1Is focused on the functlonal given

by Zq.(6.15).

Incremental Governing Equatlions

The incremental governing equatlons for Incompressibie
materials are the same as those for compressible materlials
except for the Incremental constitutive refatlon and the
additlional LIncompressibliity condltion. To der Lve the
incremental constlitutive relation, the constitutive retation,

glven by EQ.(6.9), for Cy, state is considered:

Nti o
r,“'l': ﬂ + N+’ah3+l (6.17‘
o anN? JhN+

Since the straln hyy can be expressed as,

+ 4h (6.18)

EQe(6.17) IS considered to be expressed In terms of AN

Thusy It can be expanded In the Taylor series,

W (N 2y (N h,N a2
- gt eap - g ¢ S un e oM eanlfp]s Tpfup ) (serer

+ higher order terms

Noting that for Cy state,

N L I“ + pN _a_.h.'-"”

r 3 - —
% oh oh (6.20)
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by lgnorlng the hlgher order terms In 4hy the Incremental

constltutive relation Is obtained as,

W N N gFhyN ah,|N {6.21)
ahz Ah P ahz ,dLl +Ap.éT}l-

dr =
Simitarly the Incompressibillty condition:

hy (") = hy @'+ 4n) = 1 (6422)

is also expanded In Taylor serlies. And lgnorlng the higher
order termss the Incremental Incompressibllility condition |is

obtalned as,

(6.23)

Wl
e e
x

-9
ti=n

I

o

Incremental Hu-Washlzu Princlple

Foltowlng the general procedure discussed in chapter
IV, the {inearlized Incremental functlonal and the
corresponding #' whilch provides the correction procedure are

obtalned ass

2 _ A dhyN, (6.24)
Mo (4Y, 4h, 4a , 4L, 4v ) ﬂO{AW(A}g) +4p53-] :4h

- fag.ay + 47 [PayT- sg-(H') - @an]- Viag-rn'+an) av

1/~ 45-4g ds - 4t-(4u - 4u )ds
Son Fiyy - -

A 32 N 9°hyN ..
where, AW(J}E) = ——2- _G_EZJ +p a}f )..AB AL[
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{6.25)

1( 44, Ah l"g.'s 4E: ap )
aw N 1 N N 7 G
o —] - = (t . i . EN § g Ny N, T N
ﬁo{[ab 7 &g tg -k )J-"i} (L+h")- t¥:4a™+ 4p (hy-1)

T T N T OF
-4t :[(£+PE") - E&(Efg)] + E":Pkg —e Eﬂqg-}dv

’” ds Ih[
i o 0 }
jS‘U - fu ( ) 5

The stationarlity condition of the functional Ege(6.24) leads
to all the Incremental governing equationsy le€ey EANSe (L8,
11, 14, 38, 39, and 6.21) and, In additlon, the Incremental

incompresslibliilty condltion glven by EQe(6,23).

Incremental Complementary Energy Principle

To construct the complementary energy principles, the
incremental strailn AD in £Eq. (6. 24) must be eliminated, Now,
we group the terms Involving sh In EQ.{(6.24), and deslignate

this group as A.

A
A = AW(4h) - (4t .gN + t* 4a - - (6.26)
4AW(4h) - (4t.gN + t".4a- ap {ﬁfl).db

By introducing the stress increment 45 defined by,

1 T h,(N
= = @t.a%+ thga+aV AT +4a N ) - 4 9

2 ~r A o~ ~ ~ ~ ~ o pag t6.2?’

iH >

4
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Ege(b26) can be rewrltten asy

A =4W(ah) - 4%:4h (6428)

Alsoy the Incremental constitutive relation, EQe.{(6.21) is

renrltten as,

A 21N + 32hyN
4r = (-%Tf +pb“'5—t"1, ):Jh (6.29)

Assuming the a prilorl satlisfactlon of Eqe (6+429) and taklng
Its lnverse, strain 4h can be expressed In terms of AE-

Thus the followlng contact transformation ls achleved,

A
4R(4%) = 4F:4n - 4W(4D) (6430)

such that
3 94§(4£) _
7 42

By Introducing Aﬁ deflined by Eg.(6.30) and assuming a
priorl satlsfaction of the transltatlonai equillbrilum
conditlon Eds (448) and the ftractlon boundary condltlion
£EQ.(5+38), the functional glven by EQ.(6.24) 1S reduced to a

Incremental complementary energy principle:

”cz(dg, 4t, 4p Y = ﬁ {4%(4%) (6+31)
0 -~

.
+ (4t + E“):dg-(x-m")}dv - ﬁ 4t-43 ds
-~ u — -
(]
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Alsos the correspondlng =n' Is given by,

(6432)
m(aa, 4L, 4P ) = ﬂ,o{dfz[g"«(y-g") - 1]

N
- (hy- 1l)ap + (I+h”).t":4a1}dv - J; at.iMds
A~ -~ -~ U’O T

Modified Incremental Compiementary Energy Princliple

Further, by relaxing the Inter-element boundary
continuity conditlions, glven by Egns.(4.68 and 869),s In the
sam@ manner as discussed in <chapter IV, two verslons of
modified Incremental complementary energy principles are

derived. For example, the second version is shown to be,

(6,33)
~ - A A
momp (49, dt,4p, 4Up) = %L%{AR(H)
+ 4t + )T:Ag-(I-i-h")}dv -3 4L .40 ds - Eﬁ; 4t- 41 ds
~ ~ ~ n Suo -~ oo it Orn = "p
m
And respective n' is glven bys
1 2 y L Ny e (6.34)
m'(42, 4t, 4p, dup) = X 4t :| a®.(1+h") - I -
e ~ - - Vom ~e -~ ~ A -~

N -N
~fhe~ 1Yhp + (.5+EN).EH:4ET}dv - h ,];UDAE'E ds
m m
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- 3 ﬁam (4T +4t-5%)as

m

The statlonarlty conditlon of the functlional In EqQe.(6.33)

ylelds to Eans.(4.11, 14, 39, 68, €9, and 6.23),

Finlte Element Formulation

The finite element formulation for the general
three-dimenslonal case is dlscussed In this section, In the
same manner as In chapter V. With a sltight modiflcations
Eg.(6.33) leads to the functlonal analogous to that given by
EQe(5e2) 3 Wwhilch has the suitable form for the finlte element

formulatione.

"iso (48, 4%, 4, 4T)) (6.35)
= Ef {Aﬁu;) + (e +at) 1ag (1" b av
- vOlTl ~ ~ ~ N M A }

+ Ef 4t-40 ds - f t.40,ds
i Scom -p 1 'Vomt‘__ ‘_p

m

and the corresponding n',
(42, AL, 4P, 4T)) = zﬂ {AE’:[gf‘.q + 5 - 1] (6.36)
m < "°m
N
- (hy- L)gp + (I+hN)-£"':AgT}dv

-N
+ Ef t.guds - % (4T +4t.3%ds
s -~ “= Vo, ‘= = =ri
m 7 %mn r - avoy I A
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We take the flrst wvarlatlion of Ede.(6.35) to show 1Its

stationarlity condlitlions

- ¥ N 94R

D4R h¥ A
= TNy (2 4t) + Z5 . Mesiq T4 903 94R

7 Efscr%(d_‘g - 4%)-54% ds

m

- 4t (a0 - 840
n>12 ja:"om{8 to( U, -4u) +4¢t Bdgﬂ ds

Thuss 1t Is shown that the statlonarlty condition of the
functional leads to Egans.(4.11, 14, 38, 68, 69, and 6.23) as
a posteriorl conditions.

If the functionaly 5Q.(b+35)s 1Is compared with the
corresponding functional for compressible materlals £Q.(5.2),
it 1s notlced that only one term 4R In EQe(5.2) is reptaced
by 4R In EQe(6.35). Simliarlys 7' given by EQe(6.36) has
only one additional term, (h; =1) 4ps compared to EQe(5:3).
Thereforey, most of the equations derlved In chapter V can be
used for the present case, and the detalled formulations are
timited to these two terms In the following discussins,

There are four fleld varlables involved in the
functional In EQ.(6.35). The stress, rotatlons, and the
element boundary displacement fleld are assumed In the same
way as for compressiblie materlals. Thus these varlables are

assumed as In Egnse (5.12, 18, and 21). The new variable,
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hydrostatic pressure py, IS assumed as a | Inear comblnation of
linearly Independent functlons M; with undetermined pressure

parameters p; as coefficlentssy such that,

p = HL Pl = l"[ ]{Di} (6.38)

Simitariys iIts Increment 1s assumed as,
4p = M 1Cap; } (6,39)

The incremental stress 4f. deflned by,

_ 4 N, N 7 QR T T 2hd" (6.40)
= g CAE- 2% £lag g a T ragdie) - S up |

tH>

4

can be expressed In terms of the undetermined parameters 43

4y and 4py usling Eans.{(5.12, 18, and 6.39),
C4r} = [0, 1€483+00, 1C4uI+{Ds 1C4pI+C4rF D (6401)

A
The Ilncremental complementary energy denslty 4R, defined by

EQe(6.30)s IS expressed In the matrix notation as,
A AT _ A A
AR = _;“5} [ € ]{er) (6e42)

Its Integration over the element after substituting Eq. (6.41)

ylelds toy
T A ~ ” 4 T N
4By [y, Hyps Hy37] 2R 4By (4% (6. 43)
A ]_ " A A i A
VomAR dv = e i Ak el Hyq, Hyps Hyg 4K +14 K4 A(iz
A A A A 4
APl Gy, g, Byl P P 4qe



Where,

A T A

)= fon [BTTEI(5 o

< Joow [(BITEIB)
- Joow (33T
(2] = oo (BT €] (5] @

* Jron (183 @
(3517 2)[Bs] ¢
[BTE) fur} o
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(6.404)

l_/.l azJ - Voo, [SZJT[ 6] {Arp} dv

. (2] ¢){ 4P} av

Simply by reptaclng the terms corresponding to JQ_APdF In
Om

EQe{5.31) by EQ.(Be&43)y the

functlonal for Incompressible

obtalned.

m2e, (4B, 4K, 4P, 49)

4B,\T 48
= % z{au} [ ﬁ]{au}-
m AP s

dlscretized

form of the

material, Eq.‘6¢35,| ls

(6e5)
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JBTddl
A A T
+ 394M 488, +40Q, b+ EI'AQ4+AQ5”A€1]
m A m
4P) \aqq

where Gy 4Q3s 4Qg9 and 40, are defined by Eans.(5.26y 28, 29,

A
and 30)3; and H is defined by,

{be.lb)
A A A
A A ' & W A
[B] = [+ p), Hypt H'+ S, Hy
A A A
By 3, 5 Hig

where [P], [s]» and [H*] are Implicitly defined by Ene(5.26
and 28) .

It Is noted here thats, uniike for the compressible
materiaty, the matrix [ﬁ] cannoft be Inverted as a whole for
general three-dimensional case. This Impiies that although
the parameters for stress, rotation , and hydrostatic
pressure are lndependently assumed In each element, they can
not be ellminated at the same time. Thus, the hydrostatlic
pressure, through which the incompressibility conditlon Is
Inposed, must be kept as unknowns, as discussed by Key [20]
and Herrmann [19] for linear case.

However, 1In the case of plane-stress problem, the
material area on the inplane surface, (x;,» Xx,) plane, can

change whlthout changing the volume, but It Is not the case
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for plane-straln case. This implies that in the plane-stress
casey the stlffness (or resistance) against the change of the
area is flnite, whereas, In the plane-straln case, 1t becomes
Infinites, Thus, the matrlx Iﬁ] can be inverted in the plane-
stress casey and we can obtain stiffness matrix (K,] with

finite values.

In the same manner as In the derivation of EQe(S,skl),
the discretized form of ms glven by EQ.(€.36), 1ls obtalned by

adding the contribution from the term (h; -1)4ap to EQs(S.41).

Thusy ' 1Is obtalned as,

(6.47)
4B\T 1 %
”1("83 Aﬂ-, 4P, Aq) = 44 'QI.'
4p Qp
4
(] o

where €Qx}s €Q. ¥y and (Q;} are defined by Eans.(5.42, 43, and

44); and (Qp} Is defined by,

[ApJ{Qp} & —/;o - 1) 4p av (6.48)
m

Plane Stfress Problenm

Nows we conslider the plane-stress problem as a speclial
case. Followlng the same procedure as shown In chapter V,
incremental hybrid stress finite element models wusing

four-noded and also elght-noded elements are derived based on
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the discretlzed functional glven by EQ.(6.45).
In the present plane-stress problem, the stress and
the rotation fleids are sub]ected to the same constraint

condltlons as for compressibie materlalss viZes

by Sty = Ny =ty B O, S0 (6e49)

R

@
1]
Q

“
L]

Qyq = A4, =0, Ay =1 (650)
Then the Jaumann stress deflned by EQe.(2.15) is reduced to,

o o ] (6+51)

However, the stress increment Af defined by EQqQ.(6.27) has

nonzero component Af‘;n .

h. N
4rqq -4p%§1|,4r12 > 0 (652)
¢ h, (N
HE] = | Aryy ATy,- Ap'b—h-nl, OM
gy 03
0 ] 0 3 Ap ah”

The Incremental stress and rotation are assumed by the
same functlons given by Egnse (5.52 and 55). The additional
hydrostat lc pressure Is aliso assumed In terms of complete

polynomialsy, as»

2

The Incremental element boundary dlisplacements AQ& and Aq%
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for four-noded element are assumed by Ege.(5.61). Simitarly,

those for eilght-noded element are assumed by,

(be54)

(l-r)(1l-s) (-r+s-l)4q;{ + -%- (1—r)(1—s’)4q§

v . ; 1 1 ;
4, = _i (1-r) (1-s) (-r-s-1)aq; +5 (1—r2)<1-s)aq§
1 3.1
+ -Z-(l+r)(1—s)( r-s-l)Aqi Fiowy (1+r)(1—s’)Aq?
1 i > 1
+ g (Lr) (1) ( r4s=1)40] + 5 (1-x%) (+s)gq°
Yy
4

where Aqf are the 1 th (i=1s, 2) component of the nodal
displacement at J th (J=1; ese8) node.

The material consldered here is a8 Mooney=-Rlvliin type
incompressinle materlals, whose mechanical propertles are

characterlzed by W.
W= Cy (I, -3) ¢+ C(], -3} (6.55)

where C, and C, are materlal constants; and I, and I, are the
filrst and the second Invarlants of deformatlon tensor g'
respectively. Then the Incremental straln energy density is

defined by,

N
A1V 25, ¥ 6456)
s =5 { L oy 2y (64
2 3: P 322 t:4h 4h
such that,
A
_:94_:_ = 41 (6457)

The first term In EQe(6.56) can be obtalned In tne same way
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as for 4W given by EQ.(5+:69), Thus, we obtain,

(6458)

—% %Z_Lil“: :4h 4h = Cl{(ﬂhl)z - ZﬁZ}

2 .
+ cy{@ny)? + 2ny £hy - 2(h) £hy +Ah14h3)}

where h, s hyy hyy 4h, 4 4dh, 5 ah; 4 4?h, » and g2h, are defined by
EQe(5.70) The second term in Eq. {6.56)y  whlch ls
Independent of the materlialy Is obtained for the plane-stress

case asSs

N
1 N h N _ N N 4+ N
5 P i ::4h 4T = 4hyq4h,, hyg + 4hy,ahgqahyy 4hyq4h) b, (6.59)
N N N

A
Theny AW In EQs(B+56) 1Is expressed in the matrix notation by,
£ 1 Tr a
s (6«50}
4= g fanf [ £]{ ]

where

{Ah}T o 4Ty 1,8 ,,4hy),ah,),4hy5 |

Following the same procedure as in obtaining AR In EQ.(5.,75),

the the contact ftransformation of 4W In terms of Af is

achleved.

AR = —%—{Jﬁ}T[é]{ﬁ} (6.61)
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where,
A T A A A A~ A
{Ar} :ldrll, Arlz, Arzl’ArZZ’ArBBJ

glven by

9>

It Is noted here that, from the definition of 4
Eqe.(6.27), ﬁ%s 1s not zeroy, and It has contributions to Aﬁ.

Notlng the <constraint condition for the ptane-stress
problems by substlituting the assumed functlons given by
Eans. (5.52, 55, and 6.53) and (5.61 or 6.54) and 4R given by
EQe(6461) Into EQe(6e35), we obtaln a discretized functlonal
in terms of g8y 4Ky 4aps and 4qy wich is the reduced form of
Eq.(6.45) for pilane-stress problemss Since the matrix [ﬁ] in
EQs(B.45) 1s Invertlble for plane-stress casey the parameters
for stress, rotatlony and hydrostatlic pressure are all
eliminated at the element level. Finaltly, we obtaln the
discretlzed functlonal analogous to EQe{5.35)y which Involves
the element boundary displacement alone. Based on thls
functional, Incremental hybrid stress flinite element models
Using four-noded and elght-noded lisoparametric elements are
derlved. Further, by Introducing the I[terative procedure
based on #m'y shown by EqQe(6e36),; compiete numerlical scheme fo
solve plane-stress problem of Incompresslbie sollds ls
devel oped.

Beftore applylng the newly developed finlte element
model! to specific problems, elgen-values and elgen-vectors of
an element stiffness matrix are calculated for various

combinations of numbers of stress parameters "a", rotation
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parameters *b*", hydrostaftic pressure parameters *“d“, and
element boundary displacement parameters “c"“s The element
considered for thls purpose Is a square element, and the
elastlic constants C, and C; In EqQ.(5.55) are Ehosen to be,
Ci =24e0 psl and C,=1.5 psle. The results for four-noded
element (c=8) and eight-noded element (c=16) are presented in
Table 2 and Table 3y respectlvely. The elgen-modes for the
case (a, by dy cdl= {10y 35 64 8) and (28y 3 10, 16) are
shown In Flgs«20 and 21.

It 1is Interesting to notlce that, if the number of
hydrostatic pressure parameter Is taken smalls such as in fthe
case of (ay bs dy ¢c)= (10, 1, 1, 8)y (10, 3, 1, 8)y or (18,
Jy 1, 8)y, the lowest elgen-values become unusualliy smail.
Even, they'becomenegaflve in the case of (ay by dy <c)= (18,
i, 1y 16)s (18, 1y 39 16)s or (28y 35 3 16)e. These results
imply that the number of hydrostatlc pressure parameters must
be taken suffliclently large, so that the Incompressiblililty
conditlion 1is Imposed on the element In a strong manner,
othermwmise the element does not behave properly. Moreover, It
Is notlced that these elgen-values caficulated for Initlal
state cannot tell the behavior of the element after large
detormatlon. In general, t he nonlinearlity of the
Incompressibliilty conditlon becomes much stronger under l(arge
deformations Therefores to ensure such highiy nonllnear
condltlon, at least one order higher hydrostatic pressure
field than that required from Tabtes 2 and 3 Is recommended

from the welghted reslidual point of view. Also 1t s
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observed from Table 3 that a smaller number of stress
parameters™a®, such as (18, 3, 6y 16), results In a stiffness
matrix which has more than three kinematic modes (zero
elgen-values), whereas a properly behaving stiffness matrix
has three kinematic modes corresponding to rigld body

motionse.

If the four-noded element and the eight-noded element
are compared, the lowest possible total degree of freedom of
elght-noded element Is 51, whereas, that for four-noded
element Is 20. Thereforey, four-noded element appears to be

more convenlient for practical applicatlons.

Numer lcal Examples

For comparison, two types of plane-stress problenms,
samn2 as those solved by Oden [18] using finlte etement model
based on the stationary potentlal energy prilnciple, are
chosen as example problems.

Prescribed Stretching of an Elastic Sheet

The first example problem consldered Is the probiem of
prescribed stretching of a thin elastic sheet (8"X 8"X 0.,05™)
to twice Its orlglnal length. Thus fthe boundary conditlons

imposed on the sheet are described by,

(6.62)

"
I+
P
[ ]
=

t =4, =0 on X,

Uy *e(A-1), 4, =0 on X, = #4.0

where A 1Is a extension ratlo (1< A <2), As noted In (181,

this problem corresponds to the blaxial strip test wused to
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characterize the ultlmate properties of synthetic rubber,
etfc.y and no exact solutlon Is avallable ftor thls problem.
The materlal of the sheet Is assumed to be a Mooney -Riviin
material of the type glven by EQ«.(6.55). The materlal
constants C, and C; In EQ.(6455) are C,=24.,0 psl and C; =1.5
pslis« This problem IS sol;ed by using the proposed four-noded
element with the combinatlion of numbers of parameters (a, Dy
dy c)=(104 3, B4 B8)e. From the symmetry of the problem, a
quarter of the sheet Is simulated by a 6X6 finite element mesh
shown by the Inset In Flgs22. The prescrlbed dlsplacements
at x,=*4.0 are applled In 20 steps with the Increment
4A\=0.05s At each Increment, lterations are carrled out so
that the error, defined by EQ.(5.80)y Is kept less than 1%,
The net horlzontal boundary force Fy, required to
produce varlous ratios of stretch, 1< A<2y are plotted In
Flgs22s However, because of the solutlon methods only the
value of F at A=2.0 for various finilte etement meshes, are
glven in [18)y where It Is found that F 1ls approximately 36.0
Ibse The present result for F at A=2.0y F=36s% Iby IS In
close agreement wlth ([181]. The computer-plotted deformed
profiles of a quarterof a sheet at varlous values of A are
presented In Flg.23. The contours of the components of the
true or Cauchy stress Z; » %12 4 and Ty, at A=2.0 are
hand-plotted on the deformed conflguration In Flgs.24, 25,
and 26. Also, the distrilbution of the axlal components of
Pliola-Lagrange and Kirchhoff-Trefftz stress, t, and s, o

respectively, at A =2.0 are presented In Figs.27 and 28. As
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discussed for the example problem of compressible material,
similartity between the distributions of Z, and ft,, is
observed. The contfour Ilnes of the rotation angle p and the
extension ratlo In the +thickness directlony (h, +1), at
A =2.0 are glven In F1gs.29 and 30, The dlstributions of 7T,
and 7, at A=1.5 are shown In Flgs.31 and 32, respectively,
These results of the distributions of stress or strain are
not glven in (18], hence, no further comparison Ils attempted.
However, Oden (181 glves the results ftor T, and G at
A =1.5, obtalned by Becker (351 for same type of
Mooney=-R1iviin materiats, but With dl fterent material
constants, Cy =8 psl and C;=1.0 psle Although the materlals
are different, there 1is an excellent qualltatlve agreement
between the present resulits and those of [35], ASs noted In
{181, the present results for stress distribution, as well as
those In (18], differ significantly from those predicted by
the Infinltesimal theory of Incompressible sollds ([361.
Furthery, 1t Is notlced that Becker’s results are obtalned by
using 400 four-noded elements, whereas the present results
are obtalned by using 37 four-noded elementse. Thls may
perhaps confirm the commoniy held notlon that an accurate
stress dlistributlon can be obfalneq more efficlently using a
stress finite eltement model based on complementary eneragy
principle as In the present works.

Unliaxlial Stretchlng of a Sheet with a Circular Hole

The second example problem [s that of the unliaxial

stretching of a square sheet (6.5"X 6.5"X 0.079") with a
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clrcutar hotle of 0.5" dlameter. The boundary condltions

Imposed on the sheet are,

e o F =0 on X, =+3425 (6463)

Uy =3.25C A=1) 5 U, =0 on x,=$3.25

where (1< A <3) Is the axlal extenslon ratios The material
Ils assumed to be a Mooney-RIviin materlal of the type given
by EQe«(6.55) wlth material constants, C,=27.02 psl and
C, =1.42 psl. Oden 1181 solved this problem Incrementally by
using three-noded ftrlangular displacement finlte element.
The number of elements used Iin his analysis Is 192 per guarfter
sheet. The same problem Is solved by wusing the presentiy
developed four-noded hybrid stress model flnite element, with
the combinatlon of numbers of parameters, (a, bs dy c)=(10,
3y by 8)s The finite element mesh used 1Is a 6X6 mesh as
shown by the Inset In Flg.33. The prescribed dlsplacements
are applled In 80 steps wWwith the Iincrement 4A=0,025.
Because of the sfress concenftration around the hole, the
increment Is taken smaller than In the first problem,

The present resulft for the required total edge force
as a function of A Is shown In FiIg«33 atong with comparison
result of (181, The two setsof resuilts shown In Fig.33 are
seen to correlate wells, Eventhough the rigorous mathematical
discusslion of the convergence of the numerlcal solution based
on varlatlionatl principle in the finite deformation problem IS
beyond the scope of the present work, It may be surmised from

Fige32 that the exact soiutlon may exist In the nelghbourhood
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of these two approximate solutions. The de formed
conflgurations at various extension ratlos are presented In
FIgedts Also the deformed profliles of the clrcular hole at
various values of A are shown [In Fig.25 along wlth a
comparlison result avallable from (181, which, however, glves
the deformed profile for the edge toad of 6L {by
corresponding to A=2a175. Once agalny the correlatlion Is
found to be excellent. The contours of the components of
true stress Ty T and 73 at A=3.0 are shown in Flgs.36,
37y and 38. As In the Infinitesimal deformation theory, the
maximum axlial stress ’ﬁrmx ls observed at the minor axis
location of the hole (x, =0, X,=0.25) . The stress
concentratlon factor, deflned as the ratio of the maximum
stress Tﬁwﬂx to the average Cauchy stress 2, at the edge of
the sheet (x,=4#3.25 ) is shown In Fi3+,39 as a functlon of
A e According to the Infinltesimal theory, the stress
concentration factor for the same problem, but for an
infinlte pltate Is 2.5 (371, Al though the finite element mesh
ls relatively coarse (the smailest element size is 2/5 of the
radius of the hole)ls the calcuiated stress concentration
factor In the range of small deformation is very close to
that predicted by Infiniteslmal theorvye. Further, [t |is
interesting to notice that, wunlike In the Infinitesimal
theorys, the stress concentration factor increases with the
stretching. The distribution of the rotation angle 6 and
the extension ratio In the thickness directlon Is presented

In Figs.40 and 41. The rotation field shown by Flg.40 Is
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conslstent with the deformatlon pattren shown by Flg.34.
For comparison, cotours of t, and s, 3t A=3.0 are plotted
on the undeformed confligurations In Flgs.42 and 43,

The results of the two examples dlscussed In the above
would appear to Indlicate that the proposed incremental hybrid
stress finlite element model based on the complementary energy
principle [s a viable numerical tool for the analysis of the
finite deformation problems of Incompressible sollids. Also,
it Is seen that the accurate solutlon for stresses can be
obtained relatively efficiently by the present method

compared with those based on the potential energy principle.
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CHAPTYZR VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In the present Dissertation, various types of modified
{(hybrid type) Incremental (rate) varlstional princlolas,
jovarning the finite deformation (lar3s strain and rotation)
probl emss based on alternate stress and [ts conjugate straln
measuras and In both total Lajrangean and updated Lagrangean
formulations are presanted, tspeacially, modlflzd Incremental
complementary enperagy princinl2s, Involving as variioles the
incramental Pliola-Lsgrange stress and the rotation tensors,
which are considered to be most ratioral and sulitanie for
applications through finite element mathods, are  oroposeds.
3ased on thesa varliational principles, an incremental hybrlAd
strass finlte element models in  the total Lagrangesn
formulation, iS derlvz1. The above dave|ocpments are extended
to the problem of finite deformation of Incomnressible
elastic solidsy Aand 3 hybrid tyoe Incre2mental complementary
ener3y principley In whlch the incompressiblility condlition Is
relaxed a priorl through the Introduction of the hydraostatic
pressure as a4 Lagrange mulftloliery, Is derived. This type of
variationil princlple 1s also appliel to the finlte element
m=thods, and th2 incremantal hybrid stress model is derived,

Tha above hybrid stress finite 2lement models are used

to solve flnite straln plane-stress problems of compr=ssible
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35 well 3S incompressible nonilnear el3astic sollds. Sevearal
exampl2s of such problems are solved, The vallidity and the
feasioviility of the proposed methods are demonstratad through
the numerical examples.

The conclusieons of the present work ire 2numzarated as

follows.

Din Vvariational Princiol2s and Flnite Zlement Formulatlions

1. A complementary eneragy principle can be formally derijived
uUsing the Plola-Lagrange stra2ss alone, How2ver, dJdues to
the multli-valued inverse stress-strain ralation and the
amblagulty on the satisfaction of the rotatlonal
squilibrium conditiony It can not pe soollied in the

solution ot practical problems,y in 3Jeneral.

2. 3ecause of the fact that tne translational 2auiliorium
condition and the traction boundary conditlon are
nonl inear eaquations In terms of Kirchhoff-Trefftz stress
and displacement, the exact satisfaction of which is
impossibley 3 compliementary energy orinciple basad on the
Kirchhoff-Trefftz stress does not |le3d to A successful

finite element modal.

2, Thne difficulties polnted out in (1) and (2) remain even in

the incremental formuliations.
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The complementary eneray princiole based on the Jaumann
stress, which Involves Piola-Lagrange stress and rotation,
is considersd to be the most rationa! and suitableas for
applicatlion to the finite el 2ment method. In such a
complementary eneryy principle, the Inverse stress-strain
relation s unjiquely definad, 2nd the transliational
a2quilibrlium condition and the traction boundary condition
are linear [n terms of the Ploia-Lagrang? stress.,
Moreover, the rotatlonal equil ibrium condition Is retained

unamblguousliy as an a posteriori condition.

The proposed incremant3al hybrld strass finite element
models are gssentlally based on the complemantary eneray
principlte described in («). Thus,s thsy 3re considered to
be the most consistent assumed stress finlte element
models, tor the analysis of oproblems Involvina geometrical

3s wWwell 3s material nonlinearlities, developed to date.

The hybrid formulation of the present moda2l 3llows for the
a prlorl ralaxation of the contlnuity conditlons at
inter-2lement boundaries. Thus, tha wid<s chalce of the
assumed functlions for stress and/or displacement (s

opraeserved,

The incremantal formulation leads T2 lincar alaehraic
equartlionsy which are much easler to solve compar=21 to

nonlinear equations. In Aadditlony In the praesent method,
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iterative corrections are empedded In the solutinn schime.
Thus, the piecewis2 linear solution can be kept from

straying away from the correct solution psth,

If the material is incompressible, the hydrostatic
oressure [s Infroduced as 3 Lagrani2 multipliers 3ni1 the
modifiad incremental complementary energy princlole is
lerjved, This variational principle |l2ais to &n
incremantal hybrid stress finlite element model wnhich 3150

fl

nas the same features as stated In () anfd (7).

Numerical Examples

From the study of the eigen-values ot the el 2ment
stiffness matrix 4 1t Is observed that if the number of
the stress oarameters is not sufficiently 1arge comnarad
to that of the boundary displacementy [t results In an
improper stiffness matrix which has more than three zero
2igen-values (klnematic modes)., In the incompressihle
c352y 3 small number of the nydrostatlic oressure
parameters results In an unusually small or aven negatjive

algenvslues, which 3re also physically improper,

The numerlcal results of the exampie problems for both
compressibla and Incompressible elastlc solids by the
present methods are qual ltatively consistent from both the

ohyslcal and mathematical points of view.
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3. The results for the finlte daformation problem of
incompressible elastic sheets obtsined by th2 oresent
method agrea excellently with those obtalned by 3
compatible displacement model (Oden [181): put tha number
of dearees ot frezdom used presently is substantially

smaller tharm that in [181].

-« Through example problems, thz validity of the prooesed

method Is establisheds

S

« As demonstrated by the numerical result for the stress
concentration factor In 3 sheet wifth a circular hole,
agccurate sofution for stress can be obfained by the
present stress modz2l more afficlently compared to &
disolacement model.

Recommendations

In the present Dissertation, only comprassible or
incompressible nonlinear elastic materlals are consldered,.
HOW2VEr, metals, such 3as mild steel, are also capable of
farje scale, but plastic, deformations, This property |is
used to form metals. In metal formina processess such as
m=tal extrusions, plsstic stralns of order unlity occur.
Depz=nding on the manufscturing condition, matal forming
processes cause the [ntern3al or surfac32 cracks or undesirahble

residual stresses., In order to assess the onset of thase

material forming defects, It is necessary to develop a method
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of analysis which is Ible to solve large strain
elastic-olastic deformation proplems.

The theoretical basis for larje strain elastic-nlastic
deformation oroblem [5 found {n work of Hill [33]. HIlIl nas
discussed the gen=ral framework for the classical
rate-constlitutive relatlors for elastic=-plastic solid with

smooth yieald surfaces 3t ftinite straln. A special form of

rate-constitutive rzlation using the corotational rata of
Kirchhoff stress is oroposed Dby Sudliansky 1[%9) as &
generallzatiorn of the Jz flow theory in the small deformation

orool em, 33ased on this rate constitutive relatlion, several

finlte =lement models have been developed. In generals these

models are categoriz<d In ftwo Ttypes. One [Is the total
Lagrangesn lncremental formulation and the other Is the
updated Lagrangean incremental formulation. Tha former

ipprosach (s adopted by Hutchinson [401, Needlman (411,  and
Tvergjasrd (521, The latter a3pproach is taskan by McMecgkinng
and Rice (431, Lees Mallz2tt and Yang (=41, and Ysamada [(&%].
All tnese methods 3re based on the virtuyal work theorem,
Althoughy In most of these finlte element modeis, the
rata-constitutive relatior in terms of the corotational rate
of Kirchhoft stress s wus2d, we may Introduce alternate
str2ss rates In the analojous manner 3s dlscussed In chapter
II. Such attempt [s made by Yamails [-51, HowWwevar, his
modals are based on the virtual work theorem. Thus, there ls
no significant difference betwean the use of stress rates of

differant deftinltions, = We further, considar
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Hell inger-Relssner or complementary 2neray type wvarlatlional
arinciples we may derive various finlte elemaent models based
on 3lternata stress rates.

As dlscussed In the presant thesls, the stress finite
alement modal, in which stress 1s airectly t3ken as an
indeoandent variablz2, Is more efflicient to abtalin an accurste
solution for stress compared 1o displacement models, In which
stress is Indirectly obtalined by taklny the derivatives of
lispl acemants. Therefore, the present Incremental hybrid
straess flnite 2lement model may be extanded, and 2 numerlcsl
solution technlaua for th=2 analysis of {arye strain
olastic-plastic deformatlon oproblems of solids can be

devalooed.
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APPZNDIX A

DIRECT TENSOR NOTATIONS

In the study of solid mechanics, index notation, in
whicn tensor 2auations are described In terms of components
referred to some co=-ordinate system, Is commonly uJsed.
Howevers dependlrng on the cholice of the refarence co-ordlinate
systamy, equations dascribing the same physical phenomenon
change their forms. This nature of ths index notation Is at
tim2s inconvenient when we are *trying to describe the
physical phenomenon In the general mathematical form. On fthe
othar hand, in the direct tensor notation, equations are
axoraessed In terms of vectors and tensors themselves instead
of their components. It is known that all the vectors and
tensors encountered In th= study of solid mechanlics, such as
the displacement vector and stress tensor, are physlcal
quantities which do not depend on the co-ordinate system
chosen as a references Thusy if the direct tensor notation
is amploy2dy, the mathematical representation of the problem
of solid mechanics in the jeneral form, which does not depend
on the co-ordlnate system, can be achleved. Also, by using
the direct tensor notations eaquations are largely slapllfiad,
and this offers convenlience In book-keeping.

In the mathematical daseription of solid mechanlcs,

Various tensors of differant order area Ilnvolved. For
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2x3mple, the strain enerjy density, complemantary enerjy
dencitys mass denslty, and also,s functionals corresponding to
various wvariational orirciples are zeroth order tensors f(or
scalarsle The displacemant vactory body force, and ftractlon
at oboundaries are first ordar tensors (or vectors). Anad the
various measures of stress and strain are second order
tensorss. Further, tha so-called elasticlty tensor and
compliance tensor, which characterlize the mechanical property
of the material, are consider=d to be fourth order tensors.
The governing equatlions and thz functionals are described In
terms of these tensors of different order. Maoreover, such
equdations themselves havs the property of tensors. Thus,
they are called 35  tensor equationsa In thes2 ftansor
eqdat ions, several tansor operations among different order
tensors are involveds The 3eneral discussions of the tensor
oparations are avallable in ftextbooks, such as (&71].
Howevery, tne tensor operstlons invoived In solid mechanlcs
are limited to certain typase For these tensor ooeratlons,
the details of definitions are presentad in the followinga

For convenience, a resctangular Cartesian co-ordinate
system (X, 9% s%X3) with unit base vactors (2,+2,9+2;) is
introduced to deflne the tensor operations wused in  thils
thesise. In the followln3 35 well as in the text, a sc3alar ls
regresentaed by a simole Roman or Greek lefter. A vector and
3 second order tensor are indlicated, respectively, by _ and

undar symbols.

Let a3 ana ¢ be 3 vector and a second order tensor,
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resnectively, They are decomposed Into tha Cartaesian
components a; and cjj .
a = 3 g4 (A.1)
= . ; 2
< Cij EiéJ (4,2)

The franspose, or conjugate tensor of the second order tensor

c is denoted by ¢’y and Its definifion is glven by,

~

T - . . 2

c, Cii 8 & (4.3)
If the second order tensor c has a propertys such that,

e’ = c (Aen)

it is sald to be self-conjuijate or symmastric. Further, a

dnit second order tensor (or identity ftensor) 5 is defined

hys

£ = &Jg.e- (A.3)

Wwharae,

NOwWsy we conslder certaln operatiors amonyg vectors and
tensors. The product of two vectors is defined In the usual

Ways SUCh that,
E'_b. = i‘_‘ii’ b£ (AeB)

Similarlyy the vector product of two vactors [s defined by,
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EXE = Quk ajbk_e_i (A.7)

where €iik is @ component of permutation tensor, such that
eijk S1 1t is],k take on values 1,2,3 in cyclic order, 2(jk =-1
if isjek take on 34251 In cyclic order, otherwise ek =0.
The oproduct between a vector and 3 second ord2r tensor is

deflned by,

| oy

»c = clea = 3jcy g (A.8)

Following the definitions, cans. (A% and 81, the operation
among twWo vectros and one second order tensor can ba defined

DYy

a-c-b =b.c.a = 3 iy bj (3.3)
The product of two second order tensors Is defined by,

¢ d = cjj 9k € Lk (4,10)

It E'S = I, tensor c Is sald to be an Inverse of the second
ordar tensor i. Denoting Inverse of ﬁ as g’k its definition

is wrtten as,
EREIE (4.11)

-1
It is notedy, herey, that 1- 4 %X I, unless g Is symmetrics.

~r

The trace of a second order tensor s defined by,
tracelg) = ¢ (4.12)

We daflne a tensor inner product, g:g, asS.e



187

d:ie = ?raceth-gi = dU QQ (A.13)

It is shown from the deflnitinn that,

~g:ie = e:d = GT:ST (A.14)

S

Alsos it Is shown for 3 symmetric tensor d that,
d:e = d:e’ (A415)

Combininyg the above operationsy more complicated onerations

can be described in a simpl2 mannsar,
—— T oan e o -
(c-d):e = fracellc-d) 21 = ¢k dkj & (A.15)

It Is notad that Ea.(A.18) can be rewritten In several wWways,

(c.di:e = (g:d"):ic = (cT-e:d (Aa17)

~ A el o~

This prooerty is very convenient in constructing variationsl
principles.

As shown by £« (2417)y the strain energy density Is
considered as a3 function of the straln tensor itself, and [ts
derivative wWwith respect fto the strain tensor glves stress
TENSor. Howevers for tha valldity of thls statement, the
concent of the derivative with resonect to tensor must be
clearly defined. Thls can be generarllilzed from the usual
mathematical concept of derivative, Let the straln energy
iensity W be a function of tha Cartesian components of the

Grean-Lagrange strain tensor, 3 * Then *the total darivative
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ot W can be expressed assy

v (A.18)
dW(g,.) = — dg. .
This can be equivalently rewritten by,
(A.19)
aw(g; ) = (00 ): (d )
gi3/ % Ej €.):(4g, 1 €&, &
Theny tha total derlvative dW can be expressed In tensor
forms
dw=‘—9—i :dg (QIZU)
5 ~
WhErE, W
_@_ = i gji g.
93 08ij i
and

dg = dg,, & &
Thusy the derijvative of scalar with respect to tensor is
deflned. Similarly, the derlvative of tansor s Wwlth respect

to tensor g [Is defined by,

P
35 951 (A.21)
== = —— g, e: £ €
ag 3Sk1 =i =j =k =1
W

we can detine a second order

Further, by replacing S by 23 °

derjvative ot W with respect to g as,

~

azw ) azw PN {A.22)
98* 98108 —1—i-k-=1

which Is a3 fourtn order tensor. Using the apove notations,

tha Taylor expansion of N(q"+ 49) in terms of 49 can be

-~
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exoressed by,

W(g"+4g) = W(g”) +-a—— :4g + L J Ti48 48 t+ 00
~ ~ ~ ag | ~ 2 3’%2 ~oA

where the derivatives are evaluatad for g“.

The gradient operator is also a tensor of first order,
which 1s definad by,
(Rs25)

Thuss, the gradlent of a scalar p and 3 vector a3 are deflned

bYs
ap
Ve = I & (A.25)
1
92j
Va= 7% &1 2 (A, 26)

Consivering the gradlent operator as a vector, the followlng
operations are deflned,

" (A.27)
V-a= a):l-= gzl
e i

7 9°i3 . (A, 28)

Al though it Is not presented here, the tensor
operatlons defined In the 3bove <c3an be deconposed into
components ot any convenlent co-ordirate systems Such as

polar co=-ordinates and cyllndrical co=-ordinates.
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APPENDIx 3

PHYSICAL MEANING OF STRESS AND

STRAIN MEASURES

Stress M=23sures

In this sectiony th2 hpysical mesnings of stress
measures in the total Lagrangean descrlption are explored.
To this endy, w2 start from g3eomefrical relations between
nud2formed and deformed configurations of a solld. For
simpticitysy 3 fixed rectanqular Cartesian co-ordinate system
with unit opase wvectors (e s2,+€,) IS ¢#mployed to descripe
bpoth undeformed and deformed states W2 consider a material
pointy the positions of which in undeformed and deformed

'

confligurations ars P and P 3s shown in Figu8-1.

Co-ordinates of P and P are X; and Yi o respectively. Then,

co-oralnates X represant material (or Lagrangean)
co-ordinates, and YE raepresent  spaciial {or culerian)
co=-ordinates. It is noted her e that the material

co-ordinates x; (Cartesian) in the undeformed configuration
b2come curvilinear co-ordinates X in the de formad
configuration. For later wuse, we Introaduce pase vectors gi
for the <convected co-ordinate system (X 3X34% ) in fthe

detormed confliguration, which are deflned as,

- 2%
£ T x, <5 (Re1)
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X3, Y3

UNDEFORMED
CONF IGURATION
DEFORMED
l CONF IGURAT ION
€3 ] e,
e s
X923 Y2
xl! yI.

Fig.B-1 Co=-ordinate System

Alsos we need to know the change of volume of a3 infiniftesimal
material element and the change of oriented area of a
mataerisl surface element through deformation of 3 body.

Let dVp and dav be volumes of 3 material a2temant In the
undeformed and deformed conflaurations, resoectively, These

volumes are related by

J dVo = dVv (B.2)
Ahere,
y-
J = det 971
0x;

Let dsg and ds pbe areas of a infinitesimal material
surface element in undetormed and deformed configuritions : n
Aand v pe unit outward normals fto ds, and ds, respectlively.

Then, oriented areas nds, and yds are relatsd by,
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nds = — (V‘y).[/ds (B. 3)

or in components,

1 4
ng ds = 5 __33}’ v, ds
a]{i J (BI“‘)
Using the above relations, the ohysical meaninas ot Cauchy
stress T , Plola-Lagrange stress t, ana Kirchhoff-Trafttz

strass s can be shown In the foliowing,

Fig.B-2 Physical Meaning of Cauchy Stress

Conslder an infinitasimal surface element ds In the
deformed state as shown in FigjeB-2. LUnit outward normal to
ds Is denoted by v. Let a force vector acting on 4s be df.
Theny stress vector T per wunit area In the detormed

confljuration can be deftined as,

I = 2 (R.5)
— s

or in components dF 4 .
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Further, Cartesian components of Cauchy sftress Ti,;' are

dafined through the followlngy relation.

| .
ATk (3.7)
[oT A )
df = (v Tyj ds) &
(3.8)
ThUsS s Tc}' is a stress par unit area in deformed

confiauratlion.,.

UNDEFORMED DEFORMED

Fig.B-3 Physical Meaning of Piola-Lagrange Stress
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On the other hands |t wWe wuse undeformed area to
measure stress vector, Piola-Lajgrange stress 1is defined In
the followlng manner. First we transliate the force vector df
a3cting on the deformed ares 4s to the undeformed arsa ds, aS
shown by Flg.B8=23, Then, the stress vector par unit
dyndetormed area t Is defined by,

dF{
L=t 8 " g, & (2.9)

Through the stress vector t, Cartesian components of the

Piolsa~Lagrange stress ?f are def lned by,

¢
_ e - 985
S e B Pos (3,101
where n; ara components of unit normal to the undeformed
surface dsg. The force wvector dF is expresssa In terms of
YlJ aSy
dFF = (n. t.. d .
- (7 T1j 9%0) £ (3.11)
Thas, f” is a stress per unit area in Undetormed
configuration.
Similarly, the physical maaning of the

Kirchhoff-Trefftz stress can pe shown. Unlike the case of
the Plols-Lagrange stress, the force vector dF is decomposed
with respect to the convected bpase wvector gi peforea

translation.
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(Be12)

e}
il
[=9
i

2 iBi
~
Then we define an alternatliva force vector dF whose Cartesian

A
components are dff » such that,

A
df = dF, &; (3.13)

This force vector is franslated to the undaformed area ds; as

shown in Filg«.B=4&.

r.y
dF = dF
= 1 &

.

dxl

DEFORMED

UNDEFORMED

Fig.B-4 Physical Meaning of Kirchhoff-Trefftz Stress

A
Thensy the stress vector 1t per unit area In The undeformed

conflguration is deflned.

A P

jrt >

A
Through stress vector t, Carteslan components of the
Kirchhoff-Tretftz stress sjj are daefined by the followling

relation.

=
'_I

1]
'-l
[

1}

>
(S

]
=¥ = P
w| =
Q .

(3.15)
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A

dF =dF. g. = (n; s, d '
df j &5 = (ng 854 dsglg, (8416)
Thus sgj is a3 stfress per unlt area In the undeformed
configuration, but stress vector is defined by £a.(3.1%),
The stress measures defled above <¢an be related

through the force vector df.

dF = (Vi‘[ij ds) £ (3.17)

I

(nj &5 dsy) €5

Using Eqnse(Bs1 and &), the above relations are reducad to,

P

"9y
Xk 0%

1
(A =3 ki (3.18)

1 97i "
J axk kj

(o %

j

which are used as deflnitions of stress measures in the text.

Strain Measures

Th2 detalls of the ohysical meaning of Green-Lagrange
straln are avallable In textbooks such as Novozhilov (241,
Tnerefore, dlscussion in This_ sectlon 1s focused on the
strain measure h.

We consider two infinitely close material points M and
N. Let dx and dy be vectors connecting the matarial polnts M
and N In undeformed and deformed confligurations. These are

ratated throuah deformatlion gradient F by,

dy = dx-py = F-d (3.19)

— —_— A ——
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Let 4sg and 1s be distances of the two points In undeformed

and adeformed conflgurations, respectively. Than, sjuares of

s, and ds are obtalned as,
2
(dso) = dx.dx (3.20)
2
(ds)” = dx-(py.py)-dx = dx.G-dx (A.21)
where g is a deformation tensor. Since g is reltated to

Green-Lagrange strain 3 and right extenslonal strain h

”~

through,
=gy D=+ +h) (8.22)
Zq.(8.21) can be rewritten In terms of 3 ani Q.
(ds)2 = dﬁ-(ﬁg + L)'4§ = dx (L + B){; + h).dx (3.22)

JUsing the above relations, the relative =slongation of the

infinitesimal segment MN, defined as,

E,y = (d8 - ds;)/ds, (3.24)
can be expressed in terms of g and n. For convenlence, w2
introduce 3 rectanjyular Cartesian co-ordinate system whose
co-ordinate lines are parallel to the princinal dlrectlion of
the deftormation tensor G. Denoting unit base vectors In this

co-oridinate system as é the daformatlion tensor G can be

i'

decomposed Into,

los

i (3.2%5)
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where G; are princlipal values of G. Since tensors 51 g, and
~ .

n are coaxlaly g and h can be also decomposed in the same
~ v

~

manner,
A A
g = By &5 &y {(3.26)
a ~
h=h; e; & (8427)
wher 2 3; and ni are oprincipal wvalues of 31 and Q.
resoectiveive
Nowy we choose material polnts locate2d on a line

parallal to §1 in undeformed configuration. Then vector dx

1S readced Yo,
_ A A
dx = dx; &) (8428)
From £ans.(B8.20 and 23), squares of the length of the

matarial line In undeformed and deformed conflgurations are

obtained as,

1,2 A 2
(dsg)” = (dxp) (8.29)
12 A 2 A
(@sh)® = (2g; + D(dxp? = A + h))"(@x))? (3.30)
Using cans.{B.29 2and 30)sy ralative elongation of the
infinlitesimal material lin2 can be exprassad [in terms of 3,

‘if‘d h1 .
1
(ds' - dsg)/ds] =V 2g; + 1 - 1=h (3.31)

As seen In the above enuations principal value of right
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extenslional strain h, corresponds to the relatlve elongation
of a materlial line which [s parallel to the principal
dlrection In the undeformed configuratlion. For this reason,

h is sometimes called as engineering stralin.
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APPENDTX C

ILLUSTRATIONS



Co STATE (UNDEFORMED)

C STATE (DEFORMED)

Fig. 1 Description of a Deformed Solid
(Total Lagrangean Description)

Co STATE

Cn STATE

Css STATE

Fig. 2 Description of a Deformed Solid
(Updated Lagrangean Description)
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GENERAUZED LOAD F

GENERALIZED LOAD F
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CN-H _ l
ERROR ( RESIDUAL )

N f

N CORRECT NONLINEAR RESPONSE

O

. AF 2 INCREMNTAL LOAD
) ¢

GENERALIZED RESPONSE

Fig. 3 Iterative Correction Procedure
(Modified Newton-Raphson)

(:N+l *

! ERROR ( RESIDUAL)
L

<

‘L'CN

}

N ' (:N+I

GENERALIZED RESPONSE

Fig. 4 Iterative Correction Procedure
(Newton-Raphson)
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|S=+1
4o | ?3
ks
r=-—1 r= -+
__r:‘_.-____.
| J

Fig., 5 TFour-Noded Isoparametric Element
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r~=-—‘|1' . o r [ r=+1

Fig, 6 Eight-Noded Isoparametric Element
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Fig.7 Eigen-Modes of the Stiffness Matrix of Four-Noded Element
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Fig. 8 Total Edge Force Versus Axial Extension Ratio
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Fig. 9 Lateral Contraction Ratio Versus Axial Extension Ratio
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(Initial Configuration)

Xz
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L1

X1

(Deformed Configuration at )= 1.5 )

Xz

X1

(Deformed Configuration at )= 2,0 )

Fig. 10 Deformed Configurations of a Square Sheet
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Fig. 11 Contours of Rotation Angle at Final Deformed Configuration
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Fig. 12 Contours of Axial Component of Cauchy Stress 1, at )= 2,0
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Fig. 13 Contours of Axial Component of Cauchy Stress 7, at )= 1.5
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Fig. 14 Contours of Shear Component of Cauchy Stress r, at ) = 1.5
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(Initial Configuration)
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(Deformed Configuration at )\ = 1.5)
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(Deformed Configuration at A = 2.0)

Fig.23 Deformed Configurations of a Square Sheet
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(Initial Configuration)
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(Deformed Configuration at A= 2.0)
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(Deformed Configuration at A= 3.0)

Fig,34 Deformed Configurations of a Square Sheet with a
Circular Hole
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Table 1, Eigen-Values of Stiffness Matrices of the Four-
Noded Plane-Stress Element (Compressible)

{ 34byC) A, Ag Ay A, As
( ~9148) 1 o 763 . ¥y LS
( L.S,%)- H bacomas sinjulan

(1041,59) « 724 e fcd Le 28 1.77 IS
(10,4 3,8) » T & PR b o729 s Te9 el 8
(Lds248) «7E9 759 1.28 Low 2T Sen Bl
(LBy343) 373 o . 709 wid 3 SR

(* 1t physically impropz2r 2lgen=-valuasg)

Table 2, Eigen-Values of Stiffness Matrices of the Four-
Noded Plane-Stress Element (Incompressible)

( 39Dy 15C) A A Ag A, Ag
(1ds2+43148) 15..5% L15.1* 10e 1l Sle
(13419 34%) 102 13¢ 272 27T Bl
(1dyisbsB) 10 1ad a72 i I
(17234143 12.% 1c.L% 1id 107 L
(L093+348) Shoab Euek 132 112 Ef &
(15 29548) Shoas S b g2 L0 LR o
(i3+19148) 1851% 1541% pRETd 1a2 3k
(L3s1934R) 13¢ 102 272 &% 31+#
(L3y149548) itz 142 72 T E ERER
(L39341473) 12.L% 12.u% 152 e 2l
(1343434 3) E4.L i 152 12 JiE
(184+348C4 8) EL,u R 102 L 0E Lt

(* & physicsally Improper =2igen-valus=s)



Table 3,

Noded Plane-Stress Element (Incompressible)

Eigen-Values of Stiffness Matrices of the Eight-

{ 3,0, ds €} A Ay Ay A, Ay Ay Ay An An Ay A Ay A
(LBsls 1sl8) [ 0%  =70.4* =-T70.4* TE.B 79.1 ~79,.6% 83.7 -140% 141 146 1uh 167
(1851, 34160 o0* o+ 76.8 79.1 -79.56* 83.7 103 103 =140+ 141 367 1257 1257
{1Byls BylB) o+ C* 642 bE.b 779 103 103 141 363 580 1257 1257 1722
(L3,3, 1,16) o+ ks TEeb 79.1 ~/9.0* -81.9% -81.9* 3.7 -140* 141 1ut 1ak 167
(18,3, 3,516} o+ o+ 50,0 60.0 ?6.6 79.1 -7TY,.E* 3.7 -140% L1 222 222 16T
(18435 €910) 0= 1R 50.0 0.6 bhel BB.6 T7.9 141 zee 22z 369 680 1722
(28414 1418) 0.33% 0.33% =-70.2% ~70.2% 7646 79.1 ~73.6% 83.7 -i.0* 141 146 146 H-14
(24414 34156) 0.33* 0.33* To.b 73.1 ~73.6% 83.7 103 103 ~1L0* Ll 367 1257 1257
(28,14 B418) De33% 0,33+ EBh.2 Eb. & 7749 103 103 141 3e9 540 1257 1257 1722
(2831410415} Bhe B5.56 7.9 102 102 141 309 309 3e9 680 1574 1574 tr22
(2d43+ 1418) 0.33* 0.33% 76.6 79.1 =79.6% =81.8 -81.8% 83.7 -14L0% 141 144 1l 367
(2843, 3,416} D.33% D33+ 50.0 cg.0 76.6 79.1 -79.6% 83.7 -140% 141 222 222 3167
(2843, 6416} 0.33% 0.33% 50.0 0.0 ohe2 EB.6 77.9 141 222 222 369 640 1raz
(28,43,10418) - 45.5 L5 .5 64,2 E6.E 7.4 141 166 166 362 Jee Je9 6&0 irez2

(* 1 physically Imoroper elgen-values)
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