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SUMMARY 

Finite element models* based on a complementary energy 

principle* for the analysis of finite deformation (large 

strain and rotation) problems of nonlinear compressible as 

well as incompressible elastic solids are developed. To this 

end, general ( Hu-Washlzu type ) variational principles* in 

the total Lagrangean formulation* based on various measures 

of stresses and their conjugate strains are first studied. 

With these general principles as the basis, various special 

forms of variational principles are derived. Especially* the 

possibility of constructing a stationary complementary energy 

principle for the finite deformation problem of elastic 

solids is examined. It is concluded, through this study, 

that only the general principle based on the Jaumann stress 

measure can lead to rational and practical complementary 

energy principle which involves, unlike in the linear theory, 

both the unsymraetric Piola-Lagrange stress and the rotation 

tensor as variables* In such a complementary energy 

principle* the rotational equilibrium condition is enforced 

as an a posteriori condition through the stationarity 

condition of the functional corresponding to variations in 

the rotation tensor. Considering the feasibility for the 

practical application* the incremental form of variational 

principles leading to plecewise linear incremental solutions 

is derived. Further, introducing the concept of hybrid 



xi 

finite element models* which allow for the a priori 

relaxations of the traction reciprocity condition and the 

displacement continuity condition at inter-element 

boundaries, incremental hybrid type variational principles 

are derived. Especially, the incremental hybrid 

complementary energy principles both in the total lagrangean 

and updated Lagrangean formulations are proposed. These 

proposed principles are employed in the context of the finite 

element method, and incremental hybrid stress finite element 

models are developed to solve plane-stress finite deformation 

problems of compressible elastic solids. On the other hand, 

for the case of incompressible materials, the hydrostatic 

pressure is introduced as a Lagrange multiplier, and 

Hu-Washizu principles in which the incompressibiIity 

condition is relaxed a priori, are constructed. Then, 

following the same procedure as for compressible materials, a 

modified (hybrid) incremental complementary energy principle 

is derived. Based on this variational principle, an 

incremental hybrid stress finite element model for 

plane-stress finite deformation analysis of incompressible 

elastic solids is developed. Using these newly developed 

finite element models, example problems of finite strain 

plane-stress deformations of compressible as well as 

incompressible nonlinear elastic solids are solved. The 

results obtained by the present methods agree excellently 

with those, in literature, which were obtained by the 

compatible displacement finite element model. Through the 
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results of the example problems* it is confirmed that the 

presently developed methods are powerful numerical tools to 

solve finite deformation problems of nonlinear elastic 

solids. Thoese methods are also more efficient than those in 

the literature based on ootentlal energy principles. 
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CHAPTER I 

INTROOJCTION 

In the last two decades, the finite element method has 

been recognized as a powerful numerical solution technique 

for linear elastic problems, and several different models 

have been developed. Host of these finite element models are 

based on the well Known minimum potential energy principle or 

minimum complementary energy principle. These two minimum 

principles, in the linear theory, provide upper and lower 

bounds for approximate numerical solutions. Also, mixed 

models based on He IIinger-Reissner principle ar^ sometimes 

used. These variational principles* are summarized in a 

comprehensive work by Washizu Cll» In his work, it is shown 

that the above three variational principles can be 

systematically derived from the general principle, which is 

referred to as the "Hu-Washizu Principle'*. 

Meanwhile, demands for solution techniques to analyze 

nonlinear behavior of structures ha\/e increased, and great 

efforts have been expended by many scientists and engineers 

to develop such numerical methods. The essential sources of 

nonlinearitles are categorized In two parts. One Is material 

*From the literal meaning? it may be proper to use 
'•variational theorem" instead of "variational principle". 
However, as often found in the literature, "principle" is 
used as an equivalent word to "theorem" in this thesis. 
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nonlinearlty and the other is geometrical nonlinearlty. The 

material nonlinearlty alone does not bring significant change 

to the framework of the finite element scheme developed for 

linear elastic problems* However* if large deformation Is 

considered* the geometrical nonlinearlty brings several 

features which do not appear in linear theory. First of all* 

because of the large deformation* deformed and undeformed 

configurations must be clearly distinguished. Also, in the 

study of solid mechanicsi in which we are interested in each 

material point in the solid body (Lagrangean Description) 

rather than a point in soace tEulerian Description)* we need 

to introduce a reference configuration which will serve as a 

material co-ordinate system. The choice of this reference 

configuration is rather arbitrary. It can be an undeformed 

configuration* or It can be any intermediate known 

configuratlon« The first choice of the reference frame Is 

often called Total or Stationary Lagrangean description. 

The second case is called Updated Lagrangean description* 

especially when it is used in incremental formulations. 

Another feature of finite deformation analyses is the 

fact that several different stresses and their conjugate 

strains can be defined for finite deformation problems* 

namely, the unsymmetric Piola-Lagrange (First 

Piola-Kirchhoff) stress* symmetric Kirchhoff-Trefftz (Second 

PioIa-Kirchhoff) stress* and the symmetric Jaumann stress* 

and their conjugate strains * displacement gradient* 

Green-Lagrange strain* and right extensional strain tensor, 
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respectively. These are discussed in chapter II. 

Therefore* because of the choice of the reference 

configuration and the definition of stress and strain 

tensors* quite a few different types of variational 

formulations are possible. Based on these variational 

principles* numerous number of finite element models have 

been reported* Comprehensive surveys of various aspects of 

the finite element methods for finite deformation problems 

we^e presented by Washizu £1]* Nemat-Nasser and his 

co-workers [2* 31* Horrigmoe and Bergan [41* and Horrigmoe 

C51« Most of these finite element models are based on the 

stationary potential energy principle or HelIinger-Reissner 

type principle. But hardly any stress model* strictly based 

on the complementary energy principle* can be found in the 

literature* The reason for the lacK of stress models in 

literature is the controversy on the uniqueness of the 

inverse stress-strain relation* which is assumed in the 

complementary energy principle proposed by Levinson C61• 

The main objective of the present thesis is to develop 

practical "stress finite element models" for finite 

deformation problems based on rational complementary energy 

principles* and to demonstrate their validity through proper 

numerical examples. The study at the complementary energy 

principle can be traced back to the work by HelIinger C71* 

which is considered as a landmark. This topic has attracted 

attentions of many researchers^ Especially, in recent years* 

significant progress has been made* as seen from the recent 
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works of Zubov [8], Fraeijs de Veubeke t9], Koiter CIO, 113, 

Christoffersen £12], Dill C13J , and Atlurl and Hurakawa 

Ci^]. To begin with, these worns are reviewed and the 

possibility of constructing rational and practical 

complementary energy principles is discussed in chapter III. 

For this purpose* general variational principles (Hu-Washizu 

principles) based on alternate definitions of stress and 

strain measures in totaJ Lagrangean formulation are 

constructed. Then* by a priori satisfying some of the field 

eauations and boundary conditions, these general principles 

are shown to be reduced to stationary potential energy 

principles, He I Iinger-Relssner principles, or, if possible, 

complementary energy principles. However, as pointed out by 

Fraei]s de Veubeke C91, if the Kirchhoff-Trefftz stress is 

used in the variational formulations, the derived 

complementary energy principle involves both stress and 

displacement. And also, the a priori satisfaction of the 

translational equilibrium condition and the traction boundary 

condition, which are nonlinear in stress and displacement, is 

nearly Impossible, in general. Thus the complementary energy 

principle based on the Kirchhoff-Trefftz stress fails to be a 

practically useful principle. On the other hand, if the 

Piola-lagrange stress is used, the trans!atlonaI equilibrium 

condition and the traction boundary condition become linear 

equations involving stress alone. It is easy to satisfy 

these conditions a priori. Thus, if the complementary energy 

density in terms of the Pi ol a-Lagrange stress exists, a 
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complementary energy principle involving stress alone can be 

derived as shown by Levinson [&]* However, as pointed out by 

Truesdell and Noll £1E>] and recently by Dill C131» in 

general, the inverse of the stress-strain relation in terms 

of the Piola-Lagrange stress and the displacement gradient* 

which leads to the complementary energy density* is 

multi-valued. In the case of isotropic "semi-linear" 

materials, Zubov [8] attempts to establish unique inverse of 

the stress-strain relation* 3ut, his arguments are refuted 

by Dill [13] and others who show that the inverse relation 

can be multi-valued* Meanwhile, Koiter, [11], proving the 

existence of the multi-valued inverse relation, proceeds to 

establish certain sufficient conditions for the validity of 

the minimum complementary energy principle using the 

complementary energy involving the Piola-Lagrange stress 

alone. Although, it can be used to solve simple problems in 

an analytical way, such a complementary energy principle 

involving the multi-valued inverse stress-strain relation can 

not be applied to a numerical method such as the finite 

element method. Moreover, there is an ambiguity on the 

satisfaction of the rotational equilibrium condition, which 

is nonlinear in Piola-Lagrange stress and displacement. 

These difficulties and ambiguities pointed out in the 

complementary energy principle based on the Kirchhoff-Irefftz 

stress or Pio1a-Lagrange stress can be avoided if the Jaumann 

stress is used. First of all, the Inverse stress-strain 

relation in terms of the Jaumann stress and the right 
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extensional strain tensor (engineering strain) is unique, 

Thus the complementary energy density function in terms of 

the Jaumann stress alone can be achieved. The Jaumann stress 

can be decomposed into the Piola-Lagrange stress and the 

rotation tensor. Further, the transnational equilibrium 

condition and the traction boundary condition in terms of the 

Piola-Lagrange stress can be satisfied a priori. Thus, as 

discussed by Fraeijs de Veubeke (93 and Christoffersen £121, 

we can derive the most consistent and useful complementary 

energy principle involving both PioIa-Lagrange stress and 

rotation tensor. In this type of complementary energy 

principle, the rotational equilibrium condition can be 

retained as an a posteriori condition through the 

stationarity condition of the functional with respect to the 

rotation. These complementary energy principles as well as 

other special variational principles derivable from the 

Hu-Washizu principles based on alternate stress and strain 

measures in total Lagrangean formulation, are summarized in 

chapter III. 

The variational principles presented in chapter III 

can be applied to a finite element model. Such a model leads 

to a system of nonlinear algebraic equations in terms of 

unknown parameters, which are usually solved by 

Newton-Raphson method* However, depending on constitutive 

relations, the derived nonlinear equations, sometimes, become 

extremely complicated. To avoid this kind of algebraic 

complexity, incremental formulations, which lead to linear 
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equations, are considered. For this purpose, incremental 

variational principles based on alternate stress and its 

conjugate strain measure, both in total Lagrangean and 

updated Lagrangean formulations, are derived in chapter IV. 

In all these incremental variational principles 

including the incremental complementary energy principles, 

only functions, which satisfy required continuity conditions 

in the domain occupied by solid body, are allowed as 

admissible functions* For example, displacements must be 

continuous within the solid and the traction across any 

surface within the solid must be continuous (traction 

reciprocity). However, in the finite element formulations, 

the solid body is divided into a finite number of subdomalns, 

which are called elements, and field variables are assumed in 

each element. In this situation, the required continuity 

conditions in the element can be easily satisfied by simply 

choosing continuous functions tor these variables. But, in 

addition, these continuity conditions must be satisfied on 

interelement boundaries* In some cases, it is practically 

difficult to choose properly assumed functions which satisfy 

these interelement continuities* To deal with this difficult 

situation, the concept of "Hybrid Model" is introduced £161. 

The hybrid finite element model is defined as a finite 

element model based on a modified (or hybrid! variational 

principle in which the constraints of displacement continuity 

and/or traction reciprocity condition at the interelement 

boundaries are relaxed a priori by using Lagrange 
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multipliers. Thus* it leads to more versatility in choosing 

functions for displacement and/or stress in the element. 

The required continuity conditions are enforced a posteriori* 

at least in a weighted residual sense* through the 

stationarity condition of the modified functional with 

respect to Lagrange multipliers. Thus* functionals 

associated with various types of variational principles are 

further modified* and modified (hybrid) incremental 

functionals are constructed. Especially* incremental hybrid 

complementary energy principles which involve incremental 

Piola-Lagrange stress and rotation tensors * both in total 

Lagrangean and updated Lagrangean formulations* are proposed. 

Based on the proposed variational principle* an incremental 

hybrid stress finite element model in total Lagrangean 

formulation is developed. The detailed discussion of the 

finite element formulation for the analysis of finite 

deformation elastic problem is presented in chapter V. 

Using the newly developed method, an example problem of 

biaxial stretching of a thin sheet made of 8latz-Ko type 117] 

nonlinear elastic material is solved, and the numerical 

results are discussed. 

It is Known that* among the engineering materials 

which can deform in a large scale* many of them* such as 

rubbers* polymers* and so I id-propel I ant rocket grains, are 

considered to be nearly or precisely incompressible. In the 

closed-form analysis* the incompressioiIity condition makes 

it easier to obtain solutions for certain simple problems 
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[*•&]. However, this is not the case for numerical methods 

based on energy type variational principles. An essential 

difference between compressible and incompressible materials 

is the fact that the stress can be determined by strain in 

the former case, whereas, in the latter case* the stress can 

not be fully determined by strain alone, and the hydrostatic 

pressure remains as an unknown. This implies that the 

complete stress-strain relation of the incompressible 

material can nor be characterized by the usual strain energy 

density, as that for compressible materials, which is a 

function of strain alone. Moreover, in the case of 

incompressible materials the strain field must satisfy the 

incompressibiIity condition, which is, in general, nonlinear, 

The a priori satisfaction of this condition for the general 

case is practically impossible. Therefore, the variational 

principles derived for compressible materials are not valid 

for the incompressible case, 

Some alternative approaches are suggested by Herrmann 

C19] and Key t20] , for linear elastic small deformation 

proolems, and also by Oden £'181 for the finite deformation 

problems. They introduce the hydrostatic pressure as a 

variable, and construct potential energy type or 

Hellinger-Reissner tyoe variational principles, which are 

valid for nearly or precisely incompressible materials. In 

the present work, a complementary energy principle is used to 

solve finite elasticity problems of incompressible materials. 

First, by introducing the hydrostatic pressure as a Lagrange 
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multiplier, functionals associated with Hu-Washizu principles 

in which the incompressibi1ity condition is relaxed a priori 

through the Lagrange multiplier are constructed using 

alternate stress and strain measures. Then, from the 

Hu-Washizu principle based on the Jaumann stress, an 

incremental complementary energy principle and also its 

modified (hybrid) version are derived. Specifically, an 

incremental hybrid complementary energy principle is applied 

to the finite element method and a incremental hybrid stress 

model is developed. This proposed method is applied to solve 

finite strain plane stress problems for a nonlinear 

incompressible material of Mooney-RivI in type E213. 

Numerical results for oiaxial stretching of a plane square 

sheat and a square sheet with centrally located circular hole 

are presented. The validity of the proposed method is 

demonstrated through comoarison with the numerical results 

obtained by the displacement finite element model (Oden 

C181 ) . 

The conclusions drawn from this study and 

recommendations for furtner study are given in chapter VII. 
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CHAPTER II 

9ASIC FORMULATIONS 

Introduc tion 

In the study of solid mechanics, we are interested in 

the state variables at material points of deformed solids, 

such as stress and strain. Thjs, Lagrangean description is 

adoDted to describe the behavior of solids. In this 

description, all the state variables are described as 

functions of material co-ordinates. In the case of linear 

theory, in which there is no distinction between deformed and 

undeforraed configurations, usually, undeformed (equivalent to 

deformed) configuration is taken as a reference. The 

components of the position vector of the material point in 

the reference configuration are used as material co-ordinates 

to identify each material point. However, in the case of 

finite deformation problem, the undeformed and deformed 

configurations must be distinguished. Consequently, our 

choice of the reference becomes arbitrary. It can be the 

undaformed configuration, also it can be any intermediate 

Known deformed configuration. If the undeformed 

configuration is chosen as a reference, it is called total or 

stationary Lagrangean description. If an intermediate 

deformed configuration is used, it is called updated 

Lagrangean description, especially when it is used in an 
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incremental formulation* On the other hand* for the finite 

deformation problems* we can define stress and its conjugate 

strain in several different ways* so that the governing 

equations written in terms of these can be reduced to 

convenient mathematical forms. 

As it is noticed* there are several different aspects 

involved in finite deformation problems. Also* notations are 

quite different from one author to another* Therefore* to 

avoid confusions due to notations* and to make the 

definitions consistent throughout the thesis* the definitions 

of alternate stress and strain measures are presented in this 

chapter* In connection with the definitions of these field 

variables* constitutive relations and the governing equations 

for finite deformation oroblems in terms of alternate stress 

and strain measures are also presented for both total and 

updated Lagrangean descriptions* Direct tensor notation* 

which is considered to be the most general way to describe 

the problem of solid mechanics is used for this purpose. 

The details of the direct tensor notation used in this thesis 

are given in the appendix A. 

Total Lagrangean Description 

Geometry of Deformed Solid 

Consider a solid body in three-dimensional Euclidean 

space * as shown by Flg.l* The initial (stress free) 

configuration is denoted by C0 and its volume and surface are 

denoted by V0 and S0 . Similarly* the deformed (current) 
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configuration is denoted by C » and V and S are its volume 

and surface. Since the initial configuration is taken as a 

reference , the material point P, which has a position P0 in 

the initial configuration is identified by its position 

vector xm The same material point moves to P in the deformed 

configuration through deformation of the body. Its position 

vector is denoted by vector y. Thust the displacement vector 

u is defined by, 

u_ = _y - _x = (yL - xt- > e_£ (2.1) 

where ŷ  and x̂  are rectangular Cartesian components, and e_-

are unit base vectors. If .yf_x* is assumed to be 

differentiabIe with respect to x , the deformation gradient F 

is defined by, 

F = iyy) (2.2) 

or i n r e c t a n g u l a r C a r t e s i a n components , 

r- _ 1A (2*3) 

where the symbol V denotes the gradient in the metric in C0 

; and in the present notation, vectors and second order 

tensors are denoted by _. and ^ under symbols, respectively. 

Definition of Strain Measures 

The deformation gradient F is not singular. It can be 

uniquely decomposed into right po I ar-decomposition, 

F = a .(I 4- h) 
'V SV *w «v» 

(Z.k) 
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where ( I «• h) i s a s y m m e t r i c , o o s i t i v e d e f i n i t e t e n s o r ; I i s 
*\/ AT >*v 

the identity tensor; and a is an orthogonal tensor, such 
"v/ 

that, 

T T a >a = i (2.5) 

Physically, the above decomposition means the separation of 

the deformation gradient into rigid body rotation and 

stretching. Thus, tensor (I+h) is called stretch tensor, and 

tensor h is called riqht extensions! strain tensor which 

prDv/ides one definition of strain. And a is called rotation 
-%• 

tensor. Another strain measure is given by displacement 

gradient e, which is defined by, 

je = (jm) (2.6) 

A deformation tensor G is defined by, 

G = F V = (h + I)2 
,•>/ /V />» A/ /v 

(2.7) 

Using d e f o r m a t i o n t e n s o r G, the Green-Lagrange s t r a i n t e n s o r 
'V 

g i s d e f i n e d a s , 

g = 1 / 2 (G - I) = 1/2 C Pu * ~ u T + Pu - 7 U
T } 

^ >v ^ _ _ _ _ _ 
( 2 . 8 ) 

Thus, we d e f i n e d t h r e e s t r a i n measures , namely , r i g h t 

e x t e n s i o n a l s t r a i n t e n s o r , d i s p l a c e m e n t g r a d i e n t , and 

Green-Lag range s t r a i n t e n s o r * These s t r a i n t e n s o r s a re 

r e l a t e d b y , 

g = 1/2 ( e * eT + eT- e ) 
A/ •%/ A * /V 

( 2 . 9 ) 
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g = 1/2 ( 2h * h-h ) (2.10) 

Definition of Stress Measures 

Following TruesdelI ani Noli C15J, and Fraeijs de 

Veubeke 193, unsymmetric Piola -Lagrange stress tensor t, and 
/V 

symmetric Kirchhoff-Trefftz stress tensor s are defined in 

terms of Cauchy or true stress T in the deformed body, 

through the following relations, 

f = (1/J) F- t = <i/J> F . s • FT 

or inverse!y, 

t = J F*1- r 

s = j F'1.r. <F"1)T 

and, 

t = s-F 

(2.11) 

(2*12) 

(2.13) 

(2.1^) 

where J is the determinant of F. Further, symmetric Jaumann 
'%/ 

stress tensor r is defined by, 
/v 

r = 1/2 ( t.a «- aT- tT) (2.15) 
/%/ "* "• *• ** 

= 1/2 ts« (I+h) * (I + h) • s> 

It is worth noting here that tensors s, g» and h become 

coaxial for isotropic material. Thus, Eq.(2.15) is 

simplified and reduced to, 

r = t-a = s • (I + h) (2.16) 

It is noted that the Piola-Lagrange stress t defined by 

Eq.(2.11) corresponds to the transpose of that defined by 
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TruesdeM £151. Physical meanings of stress and strain 

measures defined in the above are presented in appendix B. 

Constitutive Relations 

Only an elastic material is considered in this 

section* If material is elastic* strain energy density 

function W, per unit undeformedvo lumctcan be expressed as a 

function of Green-Lagrange strain g alone. Further, it is 
• * * 

assumed to be a symmetric function of g, so that the 

rotational equilibrium condition is embedded, 

w<a» = W<9T> , - f i T
= - f (2-17' 

A l s o , u s i n g Eq .<2«9>, H can be exp ressed as a f u n c t i o n of e 
/v 

W(g) = W i g ( e ) ] ( 2 . 1 8 ) 

Now, c o n s i d e r t h e v a r i a t i o n o f s t r a i n energy ( v i r t u a l work) 

per u n i t undeformed vo lume , 5W, wh ich i s g i v e n as , 

* T 

5W = J Z'-SF ( 2 , 1 9 ) 

dm -1 . T QlO/i T 
w h e r e , 5F* = i^r e. e . = ( p5_y > • </y~1 ) 

Us ing t h e d e f i n i t i o n s of s t r e s s e s , E q n s . < 2 . 1 2 ) and ( 2 . 1 3 ) , i t 

i s r e d u c e d t o , 

SW = J<!7y~1>T-£ : (75V) = t : S e T = s ; 59 ( 2 . 2 0 ) 

On the other hand, from Eqns*(2.17> and (2.18), 
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SW = f[:S$ - M -i-e 
•v 

( 2 , 2 1 ) 

8y c o m p a r i n g E q n s . ( 2 . 2 0 > a n d ( 2 . 2 1 ) , t h e f o l l o w i n g r e l a t i o n s 

a r e o b t a i n e d , 

( 2 , 2 2 ) 

( 2 . 2 3 ) 

9W = Q 
35 -

dw = t 

F u r t h e r , u s i n g the r e l a t i o n , 

*g = 1/2 C (I + h).§h * 5h-(I + h) ] 
L ^ jy ,v n, /V /V /v-

Eq.(2.21) is rewritten as, 

Sw 'Us-iith) + ( l + 4 ) -£}^ i j 

(2,2**) 

(2.25) 

Thus, the Jaumann stress r is related to the strain energy 

density W by, 

dW 
dh = r 

(2.26) 

In fact, Fraeijs de Veubeke £93 defined Jaumann stress 

through the strain energy function as shown in the above. 

For later use, we consider the inverse of the 

constitutive relations. As discussed by Fraeijs de Veubeke 

[93, the stress-strain relations given by Eqns.(2.22) and 

(2.26) are, in general, invertible, and the following contact 

transformations are achieved. 

S(s) = s.g(s) - Wtg(s) I 

R(r) = r: h(r) - WCh(r) 3 

(2.27) 

(2.28) 
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such that, 

dS _ 
as 
-V 

= S 
2R_ 
dr = h 

(2.29) 

(2.30) 

However, as noted by TruesdeM and Noll (15] and more 

recently by Dill £13], unique inverse for Eq.(2.23) does not 

exist for general cases. In the case of semi-linear 

materials, Zubov E8] attempts to establish such an inverse 

relation. However, his arguments are refuted by Dill £13] 

and others who show that the inverse can be muIti-vaIued. 

Following Dill £13J» we closely investigate the inverse 

stress-strain relation in terms of t and e. We assume that 

the material is isotropic and the Pi ol a-Lagr ange stress t is 

given. Since material is isotropic, stress t can be 

decomposed into the Jaumann stress r and the rotation a as 

shown by Eq.(2.16)• 

t = r (2.16)* 

whe^e r i s symmet r i c and a i s o r t h o g o n a l . Us ing E q . ( 2 . 3 Q ) , 

the Jaumann s t r e s s r i s u n i q u e l y r e l a t e d to t h e s t r a i n t e n s o r 

h. Thus t h e s t r a i n h i s c a l c u f l a t e d and we can o b t a i n the 

d i s o l a c e m e n t g r a d i e n t by , 

e = a < I «• h ) - I 
/•v *s 

( 2 . 3 1 ) 

However, unlike in Eq.(2.(+)i the decomposition in Eq.(2.16)* 

is not unique because the tensor r is only required to be 
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s y m m e t r i c . T h i s can be seen from a s i m p l e example* We 

c o n s i d e r a s e m i - l i n e a r m a t e r i a l , the s t r a i n energy d e n s i t y 

f o r wh ich i s g i v e n b y , 

W(h) 
/v 

such t h a t , 

VW 
dh 

= 1/2 A (h : I )2 + / i (h : hi : I*2 

<V A* 

= r = X(k:i)i + 2uh 

( 2 . 3 2 ) 

( 2 , 3 3 ) 

For s i m p l i c i t y ! X i s assumed to be z e r o . Then t q . ( 2 » 3 3 ) i s 

reduced t o , 

r = 2 ii h ( 2 . 3 M 

Suppose stress t is given as 

(2.35) 
' a 0 0 

t = 0 a 0 

v 0 0 a , 

For the g i v e n t , t he f o l l o w i n g d e c o m p o s i t i o n s a r e c o n s i d e r e d , 
rv 

< 2 . 3 6 ) 
r a 0 0 " 

t = r, • a? = 0 a 0 

0 0 a 

1 0 ° l 
0 1 0 

0 0 1J 

t = r 2 -a 2 = 

a 0 0 

0 -a 0 

0 0 -a 

1 0 0] 

0 - 1 0 

0 0 -1J 

( 2 « 3 7 ) 
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The strain tensors corresponding to the above 

stresses are calculated to be* 

b ~ 2M 

a 0 0) 

0 a 0 

10 0 aj 

h„ = 
2V 

a 0 0 * 

0 -a 0 

0 0 -a 

Jaumann 

(2.381 

(2.39) 

Thus, it is seen that the inverse of Eq.(2.23) is 

nnu I t i-va I ued. Further, it is Interesting to notice that the 

two strain fields obtained above satisfy the rotational 

equilibrium condition, which requires the symmetry of ? 

i? = | - F . t ) ; 
~ j ~ ~ 

F, • t = 0 , . ^ + I ) , t - a 

f S + I ° 
a 

Jjl+I 0 

0 -5+JJ 

(2 .<*0 I 

= symmetric 

F > ' E = ^ + p - 5 = 

^ M o 

o -4-1 
2fi 

a 
2H ' 

symmetric 

Th is example sugges ts t h a t the r o t a t i o n a l e q u i l i b r i u m 

c o n d i t i o n a l o n e i s no t enough t o i d e n t i f y t he s t r a i n f i e l d 

f o r t he g i v e n s t r e s s t . As men t i oned by K o i t e r [ 1 1 ] , by 
/v 

considering the global deformation, it may be possible to 

select proper value among the multi values. However, it is 

practically impossible to select the correct inverse in the 
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numerical solution process. 

Field Equations and Boundary Conditions 

Full mathematical description of the finite 

deformation problem of solid can be given by a complete set 

of field equations and proper boundary conditions* namely* 

(3) translationaI equilibrium condition 

(linear momentum balance) 

(b) rotational equilibrium condition 

(angular momentum balance) 

(c) strain-displacement relation (Kinematic relations) 

(d) stress-strain relations (constitutive relations) 

(e) displacement boundary conditions and/or traction 

boundary conditions and/or mixed boundary conditions. 

The equilibrium conditions are essentially described in the 

deformed configuration in terms of true stress *£ • The 

trans I ational equilibrium condition is expressed by, 

(2.^1) 

V'? + /° I = ° 

where V' represents divergence with respect to the metric in 

the deformed configuration? ft is the mass density in the 

deformed configuration? and g is body force per unit mass. 

The rotational equilibrium condition is given as a symmetric 

prooerty of tensor ^ „ 
"V/ 

f = T T <2.^2) 

By using the geometrical relations and definitions of 
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s t r e s s e s , E q n s ( 2 « t l ) and (2.<+2) a r e r e w r i t t e n i n t e r m s o f 

s t a t e v a r i a b l e s d e f i n e d i n t h e u n d e f o r m e d c o n f i g u r a t i o n , 

t r a n s ! a t i o n a l e q u i l i b r i u m c o n d i t i o n s 

V-( s - F T ) + p a = 0 <2.<f3) 

o r F - t + p g = 0 ( 2 . * * ^ ) 

where P0 is the mass density measured in the undeformed 

con f i gurat i on • 

rotational equilibrium conditions 

sT= s (2,k5) 

F • t = tT- FT (2.^6) 

( h + I > - t £ = symmetric (2.^7) 
~ *S <w 

Kinematic relations in terms of alternate strain measure are 

given by the following equations, 

Kinematic relations 

g = i/2 ( FTF - I ) (2.<f8) 

e = ( J7u)T <2,£*9) 

F = a-( I + h > (2.501 
/v *v *v *>S 

Assuming the existence of the strain energy density function 

W in terms of g, constitutive relations are expressed as, 

constitutive relations 

c = 3H (2.5i) 
- " dg 
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3W gW (2.52) 
t' ̂  

^ ~ ^h (2.53) 

Further, the inverse relations of Eqns.(2.5i) and (2.53) can 

be obtained through the complementary energy density 

functions defined by Eqns.C2.21T) and «2«28) as, 

tZ.Sk) 

~ as S a r (2.55) 

However, un ique i n v e r s e of Eq»<2.52) does no t e x i s t f o r 

g e n e r a \ c a s e s • 

boundary c o n d i t i o n s 

S t r e s s boundary c o n d i t i o n s and d i s o l a c e m e n t boundary 

c o n d i t i o n s are g i v e n by t he f o l l o w i n g e q u a t i o n s , 

(a) t = n t = n - ( s - F T ) a t S f f ( 2 . 5 6 ) 

where n i s an u n i t normal t o t h e s u r f a c e Sn- where 
— uo 

tractions are prescribed to be Jf. 

(b) u = u at SUo (2.57) 

where Su is the undeformed surface where displacements 

are prescribed to be u. 

Updated Lagrangean Description 

The updated Lagrangean description seems somewhat 

unusual compared to the total Lagrangean description. 

However, it is widely employed in incremental formulations 

because of the fact that the formulations are greatly 

Eqns.C2.21T
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simplified by their use. In fact, sometimes, depending on 

the nature of problems and the stress or strain measures 

used, it is possible to use siaple finite element computer 

programs developed for linear problem with minor 

modifications. Therefore, the updated Laglangean formulation 

will be discussed in the framework of the incremental 

formuI at i on. 

In the incremental formulation the external load, in 

general sense, is divided Into a finite number of incremental 

loads. For given load increment, incremental equations are 

solved to obtain the next equilibrated state. With this 

equilibrated state as a current state, a new load increment 

is applied and the same procedure is repeated until the total 

load reaches the desired value* Now, we consider deformed 

configurations C^ and CN+J, prior to and after the addition of 

the (N-t-i)th load increment as shown in Fig»2. The 

configuration CN is considered to be an equilibrated Known 

con f igu lat ion, and CN+, is an unknown state to be found. 

Thus, CN is used as a reference instead of the initial 

configuration, to describe CN-M state. If the CN+I state is 

obtained, the reference will be updated and C^-H will be a new 

reference. The name of updated Lagrangean description is 

given from this fact. 

Since, our present reference is CN state, all the 

state variables both in CN and CN+r states are referred to C/y 

configuration. The distinction between state variable in Cw 

and CN+/ are made by using superscripts N and N+i, 
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respectively. Consider a material point P which has 

positions PN and PN in the (N) th and <N + i)th configurations, 

Position vectors of these points are denoted by _yN and v*1*1
 m 

Since, in the Lagrangean description* material points are 

identified by their position vectors in the reference 

configuration* the components of vector y" are taken as 

material coordinates for the present case. Thus, all the 

state variables in CN and CN+J states are considered as 

functions of yN. Symbolically, this statement is written as, 

CN =CN <y
N I (2.58) 

Cw+«=cw+;(y
A/ J 

where C represents state variables in general. The 

displacement of a material point through the deformation from 

CN to CH+I is denoted by ju_. It is written in terms of 

position vectors as, 

Au = yN+,(y*> - y* (2.59) 

[j+i fj 
I f _y (y I i s d i f f e r e n t l a b le w i t h r e s p e c t t o t h e r e f e r e n c e 

c o - o r d i n a t e y,- , d e f o r m a t i o n g r a d i e n t F* i n C^+/ w i t h r e s o e c t 
I 

N to y" is defined by the following relation, 

F* f = (vv" ) , 
**>_ dy±Ml 

XJ By}" 
* 

where P represents the gradient in the metric of CN. 

(2.60) 

Definition of Strain Measures 
ti+i 

The deformation gradient F* is non-singular as is F in 
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the total Lagrangean description* It can be decomposed into 

polar-decomposition* 

N-H «N+' N+I 
F* = a • (I + n* ) (2.61) 
•V 'V /v *V 

Mtl 
where (I + h* ) is a symmetric, positive definite tensor and 
^.N+J 

a i s an o r t h o g o n a l t e n s o r * such t h a t * 
SV 

4 f j f i T . . . . ( 2 • 6 2 ) 

( 2 ) - ( 2 ) = 1 

and the superposed star implies state variables referred to 

CN configuration. The physical interpretation of Eq.(2*611 

is given in the analogous way as in the total Lagrangean 

description* The tensorsa and (I+h* ) represent the rigid 

body rotation and the pure stretch of the infinitesimal 

material element through the deformation from CN to C^+/. 

H+l 

Thus. h* gives one strain measure. The displacement 
v̂ 

N+l 

gradient e* is defined by, 

e* = (7 V - I ) -(VA\* ) (2.63) 

N+1 

Similarly, the deformation tensor G* and the Green-

Lagrange strain tensor g* referred to the C^ configuration 

can be defined by the following equations, 
N + / M+|T N f l 

G* r F+ - F * ( 2 . 6 i f ) 
/ v /v /vi 

H+i N+J 

g* = 1/2 ( G* - I > ( 2 . 6 5 ) 

N+» |J+| W-M 

Thus, three strain measures h*, e*, and g* are defined. 

These strain tensors are related to those defined in the 
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t o t a l L a g r a n g e a n f o r m u l a t i o n t h r o u g h t h e f o l l o w i n g e q u a t i o n s , 

N-H jt*1
 _N N 

e = e * • F t e ( 2 . 6 6 ! 

g = F • g * • F + g N ( 2 . 6 7 ) 

w h e r e e » g » e » a n d g a r e s t r a i n m e a s u r e s I n CN+/ and 0N, 
~ / V ~ ~ 

but these are referred to the Initial configuration ; and 

FN = IWH)T * Further, the strains e**,+', g**1"", and h**+l are 
/ v *\r s^t 

/V 

r e l a t e d by t h e f o l l o w i n g e q u a t i o n s . 

N-H H*t n+i T * + l T tt+i 

g* = 1/2 C ( e * > + ( e * I «• ( e* ) - ( e * )> ( 2 , 6 3 ) 

rf-n H+l »+l Wtl 
g * = 1/2 C 2 h * * h * • h * > ( 2 . 6 9 ) 

• V "-V 

D e f i n i t i o n o f S t r e s s H e a s u r e s 

I n t h e u p d a t e d L a g r a n g e a n f o r m u l a t i o n s t r e s s t e n s o r s 

are a l s o r e f e r r e d t o CN c o n f i g u r a t i o n * I n s t e a d o f t h e i n i t i a l 

c o n f i g u r a t i o n . A n a l o g o u s t o t h e c a s e o f t h e t o t a l L a g r a n g e a n 

N-H 
d e s c r i p t i o n , P l o I a - L a g r a n g e s t r e s s t * * K l r c h h o f f - T r e f f t z 

s t r e s s s * , and Jaumann s t r e s s r * I n t h e C ^ j s t a t e a r e 

d e f i n e d t h r o u g h t h e f o l l o w i n g r e l a t i o n s , 

M+i T * *u N+ ' * H 
£ = J / J F* *t* 

o r i n v e r s e l y , 

M j . , fJ + l *l+l H + l T 
= J / j " + ' F* • s * ( F * ) ( 2 . 7 0 ) 

N-H 

t * 
»J+I - « *y+H-H 

S * 
'V 

N-H 

= J / j " ( F * > * £ 

J / J I F * ) • 2" ( F * ) 

( 2 . 7 1 ) 

( 2 . 7 2 ) 

and t * 
>%/ 

N-H 
S * ( F * ) ( 2 . 7 3 1 
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Nt/ 
where £^ i s the t r u e s t r e s s i n t h e C w + / s ta te and J and J 

are J a c o b i a n s wh ich a r e d e f i n e d b y , 

j " = d e t < r y ' J ) and J * + l = det (py " * ' I ( 2 . 7 i f ) 

These s t r e s s tensors a r e r e l a t e d to t hose d e f i n e d i n the 

t o t a l Lagrangean d e s c r i p t i o n oy the f o l l o w i n g e q u a t i o n s * 

N+l 
S* = i / J " ( F • s " T - F^ ) * . ^N+l r M ( 2 . 7 5 ) 

t*N_H= 1 / J * ( FN . t N + l ) ( 2 . 7 6 ) 

where s H-H and N+l are Ki r chho f f - T r e f f t z s t r e s s and 

P i o l a - L a g r a n g e s t r e s s r e f e r r e d t o the i n i t i a l c o n f i g u r a t i o n . 

F u r t h e r , t h e Jaumann s t r e s s r* i s d e f i n e d b y , 
-A* 

*i*-H xN+l 
r* = ( 1 / 2 ) C ^ *<£ • r^W, ( 2 . 7 7 ) 

H+» * + / H-M fj+l 
= ( 1 / 2 J C s * ( I + h * > *• ( I + h * ) . s * } 

*V / v <V A / *V^ / \ / 

Const i tut iv/e Relations 

We consider an elastic material discussed in the 

previous section* The existence of the strain energy density 

function W, which is measured in the undeformed configuration 

is assumed. We introduce strain energy density per unit 

volume in C^ configuration and denote it by W*. It is seen 

that W* is related to W by, 

W*(g» ) = (1/JN) W(gN+ (2.78a) 

with the additional conditions* that, 
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WM01 - (1/J ) W(g") ; 
dW 

*K-H 
?~N 

(2,78b, c) 

The stress strain relations are shown to be derived through 

W* in the followings. First, we consider the variation of 

the strain energy (virtual work expended by virtual 

displacement) per unit volume In G$ , 

5W* = (1/JN) SW (2.79) 

The substitution of eqns.(2.21), (2.22), and (2.23) into 

Eq.(2.79) gives, 

5W* = ( i / j " > s N + ' ;s9Ntl = ( l / J w ) t N + ' : ( 5 tt+t .1 o^N+l ) T 
( 2 , 8 0 ) 

Using the relations Eqns.(2.66, 67, 75, and 76), it is 

rewritten in terms of s* * t*N+l , g**+' , and e* *, 

§W* = s * : §g* = t * : (ge* J ( 2 . 8 1 ) 

H + l 
On t h e o t h e r h a n d , W* i s c o n s i d e r e d as a f u n c t i o n o f g * o r 

e * • T h e r e f o r e , <5W* c a n a l s o be w r i t t e n i n t h e f o l l o w i n g 

f o r m s , 

±ti+l ( 2 . 8 2 ) . * aw"V * N t l _9_W 
5 W = ~ ^ * N + I ; 5S 

£76 ~ 

By comparison between Eqns.(2.8l> and (2*82)t the stress and 

the strain are shown to be related by, 

( 2 . 8 3 ) 
.* 

-2jfcL *A/+I -£W* fc*W+|T 

= t ' d e * " + / ~ 

( 2 . 8 t f ) 
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M+l 

Similarly, considering W* as a function of h* , the 

following relation is derived, 

.*H+I " £ 

(2«85l 

ah-

F u r t h e r , we c o n s i d e r the i n v e r s e of the above c o n s t i t u t i v e 

r e l a t i o n s . As d i s c u s s e d e a r l i e r , the i n v e r s e s t r e s s - s t r a i n 

r e l a t i o n i n terms of s ana g i s u n i q u e l y d e f i n e d , and g can 

be exp ressed as a f u n c t i o n of s . A l so g and s are 

l i n e a r l y r e l a t e d t o g*^"*"' and s * N + l t h r o u g h E q n s . ( 2 . 6 7 ) and 

M + ' N+l 
(2.75). Therefore, g* can be expressed in terms of s* . 

/v ^ 

M+l 

Thus, the contact transformation of W* in terms of s* is 
A/ 

ach ieved. 

ri+f N+l H + U+\ M+l */+( 
S * ( s * ) = s* : g * <s* ) - W*£g* ( s * M ( 2 . 8 6 ) 

such t h a t , 

I s l **H 
( 2 . 8 7 ) 

N+i 
S i m i l a r l y , t h e c o n t a c t t r a n s f o r m a t i o n of W* i n te rms of r* , 

/ v 

which is defined by the following equation, exists. 

N+i n+i H+i " + i JH-J d+i 
R * ( r * ) = r* : h* ( r * ) - W*Ch* ( r * ) ] ( 2 . 8 8 ) 

• V /V / V / V *V ^ 

such t h a t , 

<?R* ,**/+! ( 2 . 8 9 ) 
= h 5r*A/+l 
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However* as a l r e a d y shown* t h e r e i s no un ique i n v e r s e 
ttti N + i 

s t r e s s - s t r a i n r e l a t i o n i n terms of t and e * which are 

l i n e a r l y r e l a t e d to t * ahd e* t h r o u g h E q n s . ( 2 . 6 6 ) and 

( 2 . 7 6 ) * r e s p e c t i v e l y * T h e r e f o r e * t h e r e i s no u n i q u e i n v e r s e 

of E q . ( 2 . 9 < t ) . Thus* the c o n t a c t t r a n s f o r m a t i o n i n te rms of 
fjfi 

t * can n o t be a c h i e v e d . 
•V 

Field Equations and Boundary Conditions 

The field equations and the boundary conditions for 

the finite deformation elastic problems can be written in 

terms of alternate stress and their conjugate strain measures 

which are referred to C^ configuration. These equations are 

summarized in the following* 

trans!ational equilibrium conditions 

V*-C s* • if* ) > • P, g = 0 

J7*.f*N*' • p g»+' = fl 
/̂ H — 

where PH is the mass density per unit volume in C^• 

rotational equilibrium conditions 

N + l >i + * T 

S* = ( S* ) 

or F* • t* = ( p* . f*N ' ) 

or (h* + I )-t» '.a = symmetric 

Kinematic relations 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

<2.9<*) 
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g * N t ' = ( 1 / 2 ) C VAU * V*AU* ( F j u ) • <J7Ju)T > ( 2 , 9 5 ) 

e* = ( 7 ^ u ) 
/ v 

*• Ki+. T * A , t ' H + l 

(J7 y* + l ) = a •( I + h* ) 
— ^ * y v •«* 

( 2 , 9 6 ) 

( 2 . 9 7 ) 

c o n s t i t u t i v e r e l a t i o n s 

, d+i aw* 
o * = . 

- J g * ^ 

*d+l _dK 

dh' *Al+l 

* i J + l T * * * * 
-» * tf+l de' 

( 2 . 9 8 ) 

( 2 . 9 9 ) 

( 2 . 1 0 0 ) 

F u r t h e r * t h r o u g h t h e complementa ry energy d e n s i t y f u n c t i o n s 

d e f i n e d by E q n s . ( 2 * 3 6 ) and ( 2 * 8 8 ) , the i n v e r s e r e l a t i o n s of 

E q n s . ( 2 . 9 8 ) and (2 .100 ) are g i v e n b y , 

( 2 . 1 0 1 ) 

JcH+l _ -I**- ^ + 1 - l ^ L ( 2 . 1 0 2 ) 
3 *M+I 
C7S 

^ r ' * H+l 

However, unique inverse of Eq.(2.99) does not exist for 

general cases. 

boJndary conditions 

(a) 
_ N + l 
t* 

N-H tf+| ti-H T 

= n*. t* = n » . c s* « (F» ) > at S (2.103) 

where n* is the unit normal to the boundary S^ in CN where 
- N-H 

the traction is prescribed to be t* 

(b) 
— N+l 
U 

H+l at Su„ (2.10**) 
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where SuhIs the boundary where disoJacements are prescribed 

- M + i 
to be u» 
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CHAPTER III 

VARIATIONAL PRINCIPLES FOR FINITE DEFORMATION PROBLEMS 

(TOTAL LAGRANGEAN DESCRIPTION! 

Introduction 

As discussed in the preceding chapter the behavior of 

the deformed solid can be fully described by trans I ationa1 

equilibrium equations* rotational equilibrium equations, 

Kinematic relations, constitutive relations, and proper 

Doundary conditions. In general, these equations are written 

in terms of displacement, strain, and stress. By eliminating 

some of these field variables, they are reduced to a set of 

partial ditferential equations and boundary conditions in 

terms of displacement or<, if possible, stress alone* 

Usually the derived differential equations are nonlinear, 

Analytical solutions of these nonlinear equations for 

practically meaningful boundary conditions are very limited, 

Even for the small deformation problem in which governing 

equations are linear, an analytical solution is available 

only for ideal boundary conditions. Therefore, most of the 

practical works in solid mechanics are largely dependent on 

approximate numerical solution techniques. Among such 

numerical methos, finite element method has been widely used 

as a versatile tool. 

The significant feature of fimite element methods is 
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the fact that* in general, they have their strong theoretical 

bases on variational principles, such as stationary potential 

energy principle, stationary complementary energy principle, 

He I Iinger-Reissner principle, etc. As it is seen from the 

works by Washizu [11, Neroat-Nasser and his co-workers C2, 33, 

Hor~igmoe and Bergan C**J, and Horrigmoe (5], variational 

principles have t^een playing an important role in the 

development of finite element models not only for small 

deformation problems but also for finite deformation 

problems. This implies that the development of a new finite 

element model can be made possible, if the corresponding 

variational formulation is derived. Since, the primary 

objective of this thesis is to develop assumed stress finite 

element models for finite deformation problems, rational 

complementary energy principles which lead to such models are 

sought. For this purpose, basic variational principles in 

total Lagrangean description are reviewed. Following Washizu 

[13, the general ( Hu-Washizu) principles in terms of 

alternate stress and strain measures are constructed. With 

these general principles as bases, stationary potential 

energy principles, He IIinger-Reissner principles, and, if 

possible, stationary complementary energy principles are 

shown to be obtained as special cases. In this process the 

possibility of constructing a rational complementary energy 

principle is discussed in detail. 

Hu-Washizu Variational Principles 

A general variational principle was derived by Washizu 
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[ 1 ] and Hu C223 f o r l i n e a r e l a s t i c p rob lems* In t h i s 

p r i n c i p l e * t h e f u n c t i o n a l i s n o t s u b j e c t e d t o any s u b s i d i a r y 

(a p r i o r i ) c o n d i t i o n s * I t s s t a t i o n a r i t y c o n d i t i o n leads to 

a l l the f i e l d e q u a t i o n s and boundary c o n d i t i o n s , which f u l l y 

d e s c r i b e the d e f o r m a t i o n of e l a s t i c body» Ana logous g e n e r a l 

p r i n c i p l e s a re c o n s t r u c t e d f o r the f i n i t e d e f o r m a t i o n 

p rob lems i n the f o l l o w i n g . 

Based on s and g 

The Hu-Washizu f u n c t i o n a l i n te rms o f d i s p l a c e m e n t u_, 

K i r c h h o f f - T r e f f t z s t r e s s s , and Green-Lagrange s t r a i n g f f o r 

the f i n i t e - d e f o r m a t i o n case i s d e r i v e d , i n a manner ana logous 

to the o r i g i n a l deve lopments if* C I ] , a s , 

"HW(^ > S> s) = f { w ( g ) - />g .u 

+ T~ : [ > u + (Pu)T + ( ru) . (Fu) T - 2gJ Jdv 

- / t -u ds - f t . ( u - u)ds 

( 3 . 1 ) 

where t is the traction on the boundary oer unit undeformed 

area, which is defined by, 

t = n . s • ( y y ) 

and W(g) is the strain energy density function (per unit 
/N/ 

initial volume) which is a symmetric function of g as defined 
/N/ 

by Eq.(2.17M s_ and su denote the portions of the boundary 

surface So, in the undeformed state, where the traction and 
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the displacement are prescribed to be Jh and u» respectively. 

The first variation of the above functional due to arbitrary 

variations §u, §g, and §s is obtained as* 

5TTm = fjt^g " ~J : 8g + a-2T!(«rs?) - /u-su 

+ [ - f f 7u + FuT + (7u) . ( F u) T / - g j : 5 s }dv 

- J t-5u ds - y ° {5c-(u - u) + t-5u |ds 

(3.2) 

If the stress s and the displacement u are assumed to be 
/ v 

d i f f e r e n t i a b I e w i t h r e s p e c t to x_» by u s i n g i n t e g r a t i o n by 

p a r t s , TT/zi^is r e w r i t t e n i n the f o l l o w i n g f o r m , 

6 n 
HW [{[jr " t) : §g - 1>'(£-EX) + P.g]'*i 

0 ~ 

+ [ - [ r u + FuT + (ri?)-(7u)T j - . g j :5s Jdv 

f (t - n-t)*£u ds - f § t . ( u - u ) ds 
»• c v R 

( 3 . 3 ) 

Thus, it is readily seen that the stationarity condition 

leads to trans I atlonal equilibrium condition Eq«(2.**3), 

kinematic relation Eq«(2«i+3) , constitutive relation 

Eq(2.51), and boundary conditions Eqns.(2.56) and (2.57) as a 

posteriori conditions. In addition to these, from the 

symmetric property of W(g), the rotational equilibrium 

condition Eq. (2.*5) Is manifested as the condition of 
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symmetry of s# Therefore, it is shown that the stationary 
/v 

c o n d i t i o n of E q . ( 3 . 1 ) i s r e d j c e d t o the f u l l d e s c r i p t i o n of 

the f i n i t e d e f o r m a t i o n prob lem* 

Based on t and e 

An ana logous f u n c t i o n a l i s d e r i v e d i n te rms of 

d i s p l a c e m e n t û  » P i o l a - L a g r a n g e s t r e s s t , and d i s p l a c e m e n t 

g r a d i e n t e . 

* H W ( -> ~> $> ) = f{ W(^) + £ T : ^H T - £ ) -/Jg-u }dv 

" f £"H d s ~ f t •( u- u ) ds 

(3 .<+) 

where W is considered as a function of e through g, as 

defined by Eq.(2«i8), Its first variation is shown to be* 

(3,5) 

" f^*£ + Po§]'5u fdv 

"/ ( £ ~ 5'£ )•<$" ds - /* 5£.( u - u ) 
S _ ./o .. 

ds 

Thus, the statior,3rity condition of Eq#(3#i+) leads to 

Eqns.(2.44), (2.^6), (2^91, (2,52), (2.56), and (2.57). 

Again it is noticed that the rotational equilibrium condition 

is enforced through the symmetric structure of W from the 

following arguments, 3y the definition of W, the 
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constitutive rulation can be expressed as, 

3W aw 
t = Jp. JLL.FT , S.FT (3.6) 

where* sT = s • 

From the symmetry of st which is embedded in W* the stress t, 

which is derived through Eq«(3,6)« identically satisfies the 

rotational equilibrium condition given by Eq#(2*kb)• 

Based on r and h 

We consider here that the strain energy density W is 

expressed as a symmetric function of right extensional strain 

tensor h. Then* the general principle is constructed based 

on the Jaumann stress r and right extensional strain tensor 

h, as , 

"HW( -> ~'2' £ } (3-7) 

= f \ W(h) + t T : [ ( I +7 i i ) T - 0 . ( I + h )] - p g.ufdv 
Jvl ~ ~ ~ ~ ~ ~ • - -> 

- /" t-u ds - | t . ( u - u )ds 

Noting that the rotation tensor a is subjected to the 

orthogonality condition* 

J?T"* = I (3.8) 

the first variation of the functional Eq(3.7) is shown to be* 
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8rr. 
\ ~ 

- [f.t + fig]. 5u - [ ( I + h ) . t -a\:(ar.da)' 

+ [( I + Vu ) T - a.( I + h ) ] :5tTfdv 

-f ( t - n-t )-5u ds - T 5t-( u - {i )ds 

(3.9) 

The constitutive relation Eq*<2.53), kinematic relation 

Eq.(2,50) trans! ational equilibrium condition Eq, (2.**M, and 

the boundary conditions Eqns.(2.56) and (2.57) are readily 

shown to be obtained from the stationarity condition of 

Eq.(3«7)« We, now, consider the stationarity condition with 

resoet to a • From the orthogonality of a, the variation 

must satisfy, 

o r 

a • 8a -j. 8a -a - 0 

g ' § s s skew symmetr ic 

(3.10) 

Thus, the condition of vanishing of the third term in 

Eq.(3.9) requires the symmetry of (I+h)-t.a, which is the 

exact statement of the rotational equilibrium condition as 

shown by Eq«(2«47)« It is obsereved, here, that rotational 

equilibrium condition is separated from the constitutive 

relation, and it is obtained directly from the stationarity 

condition of the functional as an a posteriori condition* 

As it will be discussed later, this feature holds the Key to 

constructing a rational complementary energy principle. 
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Stationary Potential Energy Principles 

Following Washizu £11* by a priori satisfying the 

Kinematic relations, constitutive relations, and the 

displacement boundary conditions, the Hu-Washizu functionals 

given by Eqns«(3«l)« (3.**), and (3.7) are reduced to the 

stationary potential energy principles.. Since the potential 

energy functional involves only displacement u, the reduced 

functionals become identical, and this functional is seen to 

be, 

1J ( u ) = f jw(g) - yOg.ujdv 
P ^v/ ~ 

(3,11) 

ds 

or equivalent Iy 

?7'n( H > = F I -> (3,12) 
dv 

P ( " > = f f 7 
Jv0 { W(e) - yog.u j 

- 1 £ • * ds 

Its stationarity condition leads to the trans I ationa1 

equilibrium condition Ea. (2,^3 or <Mt) and the traction 

boundary condition Eq.(2.56)« Moreover, when Eq.(3.i2) is 

used, even though W is expressed as a function of e, the 

rotational equilibrium condition is inherently embedded in 

the structure of W as discjssed earlier. This type of 

variational principles is commonly applied to the finite 

element method [181. 
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Principles of the "He«Unger-Reissner" Type 

If the constitutive relation is invertible, the 

contact transformation of the strain energy density W exists-

3y using this transformation (to obtain the complementary 

energy density), strain tensor is eliminated from the 

Hu-Washizu functional and the He I Iinger-Reissner functional 

car* be derived. 

As discussed by Fraeils de Veubeke C9], the inverses 

of Eq.(2.22) and Eq.(2.26) exist, and the following contact 

transformations are achieved. 

S(s) =s:g(s) - W(g (sH 
r* ** 

R<r) = r : h(r) - W[h(rH 

(3,13) 

(3.1^) 

such that, 

Is 
ds 

(3.15), (3.16) 

The substitution of these transformations into fhe Hu-Washizu 

functionals, Eq.(3,l) and Eq.(3.7), lead to the following two 

types of Hellingei—Reissner functionals. 

Based on s and g 

(3.17) 

%R (y9 s ) 

'Jr. {-Sr~>+ h--fe +r«T+(m • (PHH -/a-ajjhr 
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- £ i - H Js - J$u t> (a-u)Js 
JStr. - ° 

The trans I ational and rotational equilibrium conditions 

Eqns.(2*^3) and C2.45) , compatibility condition Eq.(2**+8), 

and the boundary conditions Eqns.(2.56) and (2.57) follow 

from tUe stationarity condition of the above functional, 

This form of variational principle is attributed to HelIinger 

[7] and Reissner C23]. Its applications to the finite 

element method are offten found in literature 131. 

Based on r and h 

Likewise* based on Jaumann stress r, the following 

functional is derived* 

^THR (y, si * & ) (3. i8) 

* L {-*<:> + trs[(l+r!l)T-&J-/>9.u}jr 

- f £- W Js - f t - ( U - u)dS 
JS1 - JSun -

Its stationarity condition leads to Eqns.(2.^z+, 50, 56, and 

57), and also rotational equilibrium condition Eq. (2.U7), 

Based on t and e /̂ /̂ 

As d i s c u s s e d by N o v o z h i l o v IZhl* T r u e s d e l l and N o l l 

[ 1 5 1 , and D i l l C 1 3 ] , i n g e n e r a l t h e i n v e r s e of t h e 

s t r e s s - s t r a i n r e l a t i o n , E q . ( 2 * 5 2 ) » i s m u l t i v a l u e d . 

T h e r e f o r e , we can n o t d e r i v e p r a c t i c a l l y u s e f u l 

H e l I i n g e r - R e i s s n e r p r i n c i p l e based on t and e f o r g e n e r a l 
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cases, 

Stationary Complementary Energy Principles 

In the linear theory, the He IIinger-Reissner principle 

is reduced to the minimum complementary energy principle, 

which involves stress alone, by a priori satisfying the 

translational equilibrium condition and the traction boundary 

condition. Analogous approach is adopted here to derive a 

coftip I emen tary energy principle for finite deformation 

probI ems. 

Based on s and g 

In the formulation based on Kirchhoff-Trefftz stress 

s, the trans I ational equilibrium condition and the traction 

boundary condition are given by Eqns«(2.43) and (2.56), which 

are nonlinear and coupled partial defferential equations and 

boundary conditions involving both stress s and displacement 

u. The exact satisfaction of these nonlinear equations is 

considered to be impossible-* in general. Moreover, as 

discussed by Fraeijs de Veubeke [91, even if they are 

satisfied somehow, the derived functional involves both s and 

u. It is formally shown by, 

p (3.19) 

^ (Id, £ ) = Jr. I Sfs) + Is :[ru • (FU)T]}dv 

-A. *•-'* 
Noting the constraint on s and u, its stationarity condition 

*** — 
leads to the Kinematic relation Eq.(2*48) and displacement 
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boundary condition Eq.(2»57>. 

Based on t and e 

The major obstacle for constructing complementary 

energy principle involving t alone is found in the fact that 

there is no unique inverse relation for e in terms of t» in 

general. However, assuming the existence of such a inverse 

relation and, consequently, the complementary energy density, 

further investigation is attempted here* The most atractive 

advantage in the formulation oased on PioIa-Lagrange stress t 

is that the translationaI equilibrium condition and the 

traction boundary condition ^re linear in t alone, and these 

can be easily satisfied a priori by the chosen stress field 

t. On the other hand, the rotational equilibrium condition 
/v 

becomes nonlinear in t and u as shown by Eq»(2«<*6)« To 

obtain a physically meaningful solution this condition must 

be satisfied either a priori through the structure of the 

complementary energy density or a posteriori through t^e 

variational principle. Although* its a priori satisfaction 

appears to be difficult, the study on the structure of the 

complementary energy density, which forces the rotational 

equilibrium condition, was made by Fraeijs de veubeke C91• 

Assuming the existence of the inverse stress-strain relation 

in terms of t and e, he derived a set of nonlinear partial 

differential equations which characterize the structure of 

such complementary energy density so that it enforces the 

rotational equilibrium condition* However, because of the 

mathematical complexity, this approach does not appear 
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worthwhile for practical applications. As it is seen in the 

above, there are ambiguities and difficulties involved in the 

formulation based on t. Thus* the complementary energy 

principle involving t alone fails to be a rational and 

practical variational principle for general finite 

deformation problems. 

Based on r and h 

It was shown that the Hellinger-Reissner principles 

based on Kirchhoff-Trefftz stress s or Piola-Lagrange stress 

t do not lead to a successful complementary energy 

principles, either because of the nonlinear equilibrium 

conditions or due to the multivalued inverse stress-strain 

relations. Now, we turn to the most successful formulation 

oased on the Jaumann stress r. In this formulation* the 

translat 1onal equilibrium condition and the traction boundary 

condition are linear in t, and the constitutive relation in 

terms of r and h is invertible so that the complementary 

energy density exists. Moreover, the rotational equilibrium 

condition is directly satisfied through the stationarity 

condition of the functional. Thus, the ambiguity on Its 

satisfaction can be avoided* 

Assuming the a priori satisfaction of the 

trans I ational equilibrium condition Eq.(2.V+) and the 

traction boundary condition Eq»(2*56), the HelIinger-Relssner 

functional given by Eq.(3.18) is reduced to a complementary 

energy principle involving stress t and rotation a. 
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TTcQ, t ) =JrAl?(r)+lT:[si-l]]dv 

- / c t> U els 

( 3 , 2 0 ) 

N o t i n g t h e c o n s t r a i n t c o n d i t i o n on the v a r i a t i o n of s t r e s s , 

i . e . , 

V-U = o 
'V 

st - n-St - o 

ih Vo 

at $ 

(3.21) 

(3.22) 

and the orthogonality of the rotation tensor, i.e., 

dT-<j = i (3.23) 

the first variation of the functional Eq.(3.20) is obtained 

as 

- Jsu £t-yds 

(3.2i*) 

From the definition of R, 

BR i 
dr. ' « (3.25) 

By introducing the following identical equation, 



L (ru)T.-StTdr = f St-uds 
J Vo ~ J su„ ~ ~ 
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( 3 . 2 6 1 

E q . ( 3 . 2 * * > i s r e w r i t t e n a s , 

(3.27) 

F u r t h e r , n o t i n g t h a t , 

cf ' 0OJ = sKew syame t r i c 

f r o m t h e o r t h o g o n a l i t y c o n d i t i o n , t h e s t a t i o n a r i t y c o n d i t i o n 

o f t h e f u n c t i o n a l E q . < 3 . 2 0 ) l e a d s t o , 

( I + J7u>T = of - ( I + hi 
/ ^ S\S 

( I * h ) - t - o ( = s y m m e t r i c 
/v/ / v /v /v» 

u = u 

i n \J„ 

i n V, 

a t SUr 

( 3 . 2 8 ) 

( 3 . 2 9 ) 

( 3 . 3 0 ) 

These e q u a t i o n s a r e e x a c t s t a t e m e n t s o f t h e K i n e m a t i c 

r e l a t i o n , r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n , and t h e 

d i s o l a c e m e n t b o u n d a r y c o n d i t i o n . T h u s , t h e c o m p l e m e n t a r y 

e n e r g y p r i n c i p l e as s t a t e d t h r o u g h E q * < 3 . 2 0 ) i s t h e mos t 

r i g o r o u s , c o n s i s t e n t and t h e most p r a c t i c a l l y a p p l i c a b l e 

v e r s i o n t h a t has been d e r i v e d t o d a t e . 



49 

CHAPTER IV 

INCREMENTAL VARIATIONAL PRINCIPLES 

Introduc tlon 

The various types of functionals summarised in the 

preceding chapter can oe applied to the finite element 

models. In general* the derived finite element formulations 

lead to highly nonlinear algebraic equations in terms of 

undetermined parameters. Usually, these nonlinear equations 

are solved by using the imbedding techniques such as the 

Newton-Raohson method. Moreover* in the case of 

path-dependent inelastic materials* like elastic-plastic 

materials, the potentials W or its contact transformations S 

or R do not exist* Therefore* the variational principles 

governing the total deformation are not valid for these 

materials. 

To deal with these difficulties, due to the algebraic 

complexity and the nature of the material* incremental 

formulations* which lead to piecewise linear incremental 

solutions, are considered. In the Incremental formulations* 

the prescribed loads and/or displacements are considered to 

be applied in small but finite consecutive increments. We 

label the states (stress, strain* deformation, etc.) of the 

solid prior to and after the addition of the (N+l)th load 

increment as HC^y and CCNt,>, respectively. Depending on 

whether the metric in C0 (undeformed or initial 
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configuration) or the metric In cN is used to refer all the 

incremental state variables describing the transition from C^ 

to CN+|, two types of incremental formulations are possible. 

These are generally referred to as the "total Lagrangean" and 

the "updated Lagrangean" formulations. The details are 

discussed for both formulations. Further, modified 

incremental variational principles, in which the continuity 

conditions at inter-element Doundaries are relaxed a oriori, 

are also presented in this chapter. 

Total Lagrangean Formulation 

Incremental Governing Equations 

In the total Lagrangean description, the metric in C0 

is used to refer all the state variables in each of the 

subsequent states. Let state CN be defined by the variables, 

Cs, t, r, g, e, h, a, u, etc.}, and a similar set of 
•^ ** ** £ -V J^J A/ 

variables In CN+I with the superscript (N+l). Let the 

incremental variables in passing from Cw to CN+I be C-dS, >dt, 

Ar, jg, ^e, ^h, ^a» ^u, etc.3» These incremental state 

variables are symbolically denoted by /\C. Thus, as a matter 

of formal symbolics, CN+| ~CH + AC • For later use, the 

definitions of all these incremental variables are listed as 

below, 

t N + l - t N ( 4 . 1 ) 
/V /V 

9 » « - g" 
**> iv 

h N H - h" 
/V tSt 

H + l HI 
J S = S - SN J t = 

r = r N f ' - r " ^9 = 

j e = e * + ' - eM ; Ah 
*v 
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Aa = <xN+l- a " 
/ V /•>/ 

^ u = uN + l - u N 

The relations between the above incremental variables are 

s h o w n b y , 

J t = J S • FN + S N • VAU + 4 S - F i l U 
- , S^/ S.J * V — - • / ' — 

^ r = 

+ jfr -Jo/ +• A^T-A\J ) 

( f c . 2 ) 

( ^ . 3 ) 

^ g = < i / 2 ) ( FN - 4 9 + a e T - F " + j e T - j e ) 
/ V ' V 

/f e 
•%• 

= J o f - ( I + hN ) • o / M - 4 h + ^Jof-^h 
/v/ /%/ *x» •*%/ 

^ e = ( VA y. J 

( i + . ^> 

(< f . 5> 

( « f . 6 ) 

Noting that ^ is still the gradient operator in the metric 

C0 t the following incremental field equations and the 

boundary conditions governing the transition from CN to CN+| 

are derived. 

translationa I equilibrium conditions 

V't s^ • (P4u) + js »<FNT • P J u>} + p Aq = 0 

or F^t + ^^g = 0 

(if.7) 

<*f.8) 

where the underlined terms are nonlinear in the incremental 

variables* and these are neglected in the linearized 

f ormuI at i ons. 

rotational equilibrium conditions 
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AST = AS U . 9 ) 

T ( F" + FAu'i'At • p 5 J u * t = s y m m e t r i c T. +« - U . 1 0 1 

^ h - t ^ o f " • ( I + hM) • ldt'itH+ tH-Ad) * (hN +1) -A t -4of ( ^ . 1 1 ) 

+ 4 h < J t - c / M <- t^.4of| + ^ h - , d t - ^ = s y m m e t r i c 
rv / v / v ^ v rv *V ** 

K i n e m a t i c r e l a t i o n s 

A iT ^ g = ( 1 / 2 ) t p^u + VAU + IFAU)-( V\L ) ( ^ • 1 2 ) 

+ ( F u N ) ' ( F 4 u l T + (P^du) • (Pfcu)1"} 

J e = ( VA u) T U . 1 3 ) 

(P2u) T = 4 ° ! - ( I + h" ) + o<%h +Ad-Ah 
^j v m e ' / ^ y 

t^.lk) 

constitutive relations 

Assuming that the strain energy density W is a 

symmetric function of g and that it can be expanded in Taylor 
/N/ 

series in terms of ^g, >ae* or Jh, the incremental potential 
yv/ <*• A/ 

f u n c t i o n ĴW i s d e f i n e d b y , 

, 2 ^ itf 

^W Î) = ± ^jr\::AlAl + H - ° - T 
( H . 1 5 ) 

Using rectangular Cartesian components, 

re*ri tten as, 

Eq.U.15) is 

AWiA^) - 1 4 m k t
 4k **» + H. 0. T. 
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S i m i I a r I y , 

AW (A) = 

i 9 2 n" 

92W 
? dh 

: :4 ill -r H.a. T. 

( 4 . 1 6 ) 

( 4 . 1 7 ) 

s u c h t h a t , 

( 4 . 1 8 ) 

d/lWfai) 
dn = 4S 

dAW(Ae) = T 2AW(4) _ , r (4.19) 

( 4 . 2 0 ) 

where S>V'N - 2 ^ ' N 

28-

^TTT- .N 

f " , 9 and - ^ — are the second order derivatives 
o^z \ dhz\ 

of W, which are evaluated at C^ state. As discussed in 

chapter II, the contact transformations of W in terms of s 
sv 

and r exist, leading to complementary energy density 

functions S and R, respectively. Thus, the incremental 

complementary energy density ^S and AR can be defined by, 

_ / g's \".. 

* Ret) =£-f£ 

:: 4$ JS + H. 0. x 

•'• AT Ar t H. 0. T. 

( 4 . 2 1 ) 

( * . 2 2 ) 

s u c h t h a t , 

d4S 
d*s 

= 43 9Jff 
34 r- - ^ 

( 4 , 2 3 ) 

( 4 . 2 4 ) 

However, there is no unique complementary energy density in 

terms of £. 

At this point, we Iook closely the incremental 
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stress-strain relation in terms of At and 4e. Using the 
/V XV 

relation between jg and Ae given by Eq» (<+•<*)* the incremental 

strain energy density defined by Eq.(<*.16) can be rewritten 

in the following quadratic torn* 

AW(*e) -|-|f|W^ + \%{-:^Al U.25) 

where, 4 g = (1/2)(FNT. je * Ĵ eT- F* ) 

The incremental stress 4t is obtained through Eq.(4.25) as, 

4 t = 
aw 
38 

T , ^ W I \ F ' !<•• 26) 

q . ( < * . 2 6 ) c a n be r e w r i t t e n b y , 

N T J t = s - 4 e ' *• 4 S - F H 

It is noticed that from the symmetry of AS* which is embedded 

in W, stress increment A^ obtained by Eq«<<t.26) satisfies the 

linearized incremental rotational equilibrium, Eq«(*t«lQ)« 

For convenience, we introduce rectangular Cartesian 

components, and rewrite Eq,(^«26) as, 

N A r,N N N 
^ji = sjn ̂ ein + Emnoj Fio Fkm <*ekn 

- ^ k » [ • ? * * * + CoJ^F^J 

" J e k n E i j k n 

( 4 . 2 7 ) 

I n t h e a b o v e , t h e f o l l o w i n g n o t a t i o n s a r e u s e d , 

E 
N 

''ranoj 
a2w 

IZ^dS^i mn o j 

N ( 4 . 2 8 1 
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E* = sN § + EN E N
Ff ^• 2 g> 

ljkn jn ki mnoj 10 km 

It is noted that, from definition, E . has the symmetry 
mnoj 

Droperties, 

EN = EN = EN = EN <V,30) 
mnoj ojmn nmoj nmjo 

* 
Whereas, E^^n has the only one symmetry property, such that, 

Eijkn = Eknij (<*.3i) 

Thus, if Eq.(**#27) is written In matrix notation, 

{4t} = [E*] {̂ e( ".321 

9x1 9x9 9x1 

It is noticed that* in the first increment of the present 

piecewise linear incremental process, if the initial 

configuration C0 is unstrained, it follows that s° = 0 ; 

F
i o

 = 5lo ; hence
 E--k1

 = Ejnkl * 3 n d n e n c e t n e <9x9> matrix 

in Eq.(^.32) cannot be inverted due to the property as in 

Eq.(^.30)« However, in the second increment, one can set 

s1 = At (of the first stress increment), F1 is nonzero, and 

hence the (9x9) matrix in Eq«(^«32) may. In general, be 

inverted. Assuming that Eq.(**.32) is invertible, we obtain, 

' e j i = EijkiJ tki o r M = [**"XJ{*t} f ^ 3 3 1 

F*"' » * H 

where, in general, ijkl "" klij * Thus, using 
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E q « ( 4 . 3 3 ) , t h e c o n t a c t t r a n s f o r m a t i o n can be e s t a b l i s h e d t o 

f i n d 4T such t h a t , 

- ^ - = J e . . = E * " 1 / I t , (<+.3<f) 
dAt.. Meji i j k l J kl 

i j 

If the incremental rotational equilibrium condition is 

inherently built into the structure of AT, then the 

condi t ion, 

N + FN 

i j Jk i j J* (4.35) 
**** tjk + F i i Zltjk = synmietric 

must be i d e n t i c a l l y s a t i s f i e d when 4e i s exp ressed i n terms 

of 4 t • Doing s o , i t i s found t h a t t he r o t a t i o n a l 
A/ 

equilibrium condition is exprassec by the necessary condition 

that, 

*"1 N N 
E At . t.. + F..jt*v must be symmetric (4.36! 
jimn mh jk ij JK 

It is easily seen that neither of two terms in the above 

expression is by itself symmetric. The other possible ways 

in which the above sum of two terms can be symmetric are (a) 

Firstly, one term is a transpose of the other; however, it is 

easy to see that this is not the case. (b) Secondly, the 

first term can be expressed as the sum of a symmetric term 

*-l and the transpose of the second term. However, E (with 
jimn 

the only symmetry property, E*. = EL,-*,- > cannot be 
j lmn "^ J x 

analytically derived. Thus it appears impossible, at 

present, to prove Eq« (H«36) „ 
Even though the symmetry {or lacK of it) of the term 
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in Eq.(4.36) can be decided computationally» for a specific 

problem* it appears that, in general, we cannot expect the 

symmetry of the said term. Thus, it appears that even though 

the incremental contact transformation can be achieved to 

find A\ in terms of /it ; since the rotational equilibrium 
/v' 

conditions cannot be proved to oe built into the structure of 

4T, the attendant complementary energy principle has little 

s igni f icance. 

Finally, to complete the statement of the boundary 

valje problem, we state the boundary conditions as follows. 

boundary conditions 

(a) n . d s " . iVAU) + AS - ( F N T * K»U> > r j f = At U . 3 7 ) 
—- Ay — *v /V —~- — — 

o r n.^»t = At a t So- ( ^ , 3 8 ) 
A/ U 0 

where jt is the prescribed incremental traction at S^* 
— "o 

(b) ^u = 4_u at SUo (<+.39) 

where J U is the prescribed incremental displacement at S 

General Procedure 

The above incremental governing equations which 

describe the transition from CM to C^ + i can be cast into 

equivalent variational statements based on the incremental 

Hu-Washizu type functionals. The general procedure to obtain 

sucn functionals can be illustrated as follows. First, we 

construct general functionals which govern the deformation of 

the solid in CN+, state. Symbolically, it is denoted by 
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7f(CNH) • The state variables CCN+,.> in n can be replaced by 

CCN+^C>* Thus, the functional is considered as a function of 

the incremental variables C ^ O , and it can be rearranged in 

the following form. 

"(C^,) = T M C U - M C J <<*.<»0) N+l 

= J T ( C N ) + c o n s t a n t + TTHAC) • TTHAC) * n3{4C) 

w h e r e 

T T { C H ) : the value of the functional for CN state and 

it is considered to be constant. 

TT\AC) : first order terms of 4C« 

n-2(4C) : second order terms of jC. 

tf3(4C) ; third and higher order terms of J C . 

It can be shown, in general, that the variation STT1 vanishes 

if state CN truly satisfies relevant field equations and 

boundary conditions. It can be also shown that §( ̂ 2+tf3)=0 

leads to the fully nonlinear incremental governing equations 

presented by Eqns. (*f.7> through (^.39) . However, if the 

increments are sufficiently small, the Incremental governing 

eqjations can be linearized, and these, in general, can be 

shown to follow from 5^2=0 for a given variational principle* 

In the subsequent discussions n3 is ignored so that the 

linearized functionals are derived* However, if the terms in 

n3 were omitted in all increments prior to C N, the state CN 

may not truly satisfy the relevant field equations and 

boundary conditions. Thus, §TT1 may not vanish. Therefore, 

in practical applications, it Is necessary to retain TT1 to 
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generate iterative "correction procedures" so that the path 

of the piecewise linear incremental solutions is Kept from 

straying away from the true solution as little as possible* 

Depending on their respective physical interpretations, these 

iterative corrections can He called as "equilibrium 

correction iteration", "compatibility mismatch iteration", 

etc. Such iterations, based on physical arguments as above, 

are entirely analogous to the »athematical procedures used in 

imbedding techniques for solving a system of nonlinear 

algebraic equations ti8], 

Incremental Hu-Washizu Principles 

Following the general procedure discussed in the 

above, linearized incremental Hu-Washizu functionals* in 

which n3 is ignored, are constructed for alternate 

incremental stress and strain measures. At the same time, 

the functionals n'1 which lead to the iterative correction 

procedures are derived in the following. 

Based on js and ^g* An incremental Hu-Washizu 

principle governing the transition from CN to Cutit 

corresponding to Eq.(3.1>, is, 

1THW(*U, A% ,A$ ) U.M) 

=Ir0 few(*£)-#Ji*M +i§":[(n(d)-(p*u)T] 

- 4S :[4% - ^ (pzu + fauT * ruH- j&if t &U<PMNT)] 

4t'*u Js -Jsu0 *t' fay -jyjds 
0 

Js^ 
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"T 

where, 4 t = n-(4s-FK + s^-F^u} 

AWVI) - i-$f::Ai4i 
such t h a t , 

M^k) - „s 
d<<9 

I t i s noted that the incremental s t r a i n energy densi ty JW i s 

also l i n e a r i z e d . The f i r s t v a r i a t i o n of Eq«<*»*41> is shown 

to be, 

sK-LfrW-Hm <fe.i»2> 

- / ^ | -jftou + nuT + J7w".#K/T + ftu•pu"Tj]:$4S 

- />. [A% •F"T * £». m ) + P, 4$]• fau } dr 

J (4 - Jt )• 8*u Js - jC S*t • (AU -Ju)ds 

Thus, the linearized form of governing eauations, Eqns. (**«7f 

9, 12, 18, 37, and 39), are obtained from the stationarity 

condition of Eq. l k * h l )• As mentioned before, the field 

variables that extremize the linearized functional do not 

truly satisfy the governing equations in nonlinear form* 

Therefore, the solution obtained through linearized 

functional is considered as a first guess* The correction to 

the first guess for the C N state is provided through n* • 
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For the present functional, ^ is shown to be, 

Yen.'%.'*) =frJliff-£M]:^ 

- [%" - J (ru* + Fu"T + Fg"- Fu"T)]^S 

-fi.%*-AH + S*-F* T:(&u)}clr 

The v a r i a t i o n of TT1 i s obta ined a s , 

. + If- i (ru* +Fuur + ra" • 7«"T; J - '^J§ 

~ [?•(£"• rr) +/°f]-$4U Jdr 

-Ljt"- n-(s»-rT)}-S^cis 

~Jsu. <f'j?" (u"-u")ds 

Thus, the c o n d i t i o n of vanishing of <5̂ 1 ensures the 

s a t i s f a c t i o n of the governing equat ions in t h e i r t o t a l form 

at CN s t a t e . 

Based on A% and j e * L i k e w i s e , the incrementa l form of 

the Hu-Washizu f u n c t i o n a l corresponding to Eq« (3«*t) i s , 

Iffm- fan,** ,4t ) <*f.^5! 
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= JK [AW (At) - P0*%>Au +4tr'-(F4ET-4e )}dT 

Jt-AUols - L *t > (ju-ju )cls 
Sff* — ~ 

0 

where* 

such t h a t , 

AWte)- ±% 
N 

/ v /v 

HEM) Ai 
d4* 

T 

The s t a t i o n a r i t y c o n d i t i o n of t h e above f u n c t i o n a l l e a d s to 

t h e i n c r e m e n t a l g o v e r n i n g e q u a t i o n s * E q n s . t * *»8 , 1 0 * 1 3 * 19* 

3 8 , and 3 9 1 , in t h e i r l i n e a r i z e d f o r m . As d i s c u s s e d e a r l i e r * 

t h e r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n i s a l s o r e t a i n e d t h r o u g h 

the f u n c t i o n a l E q . ( 4 . < + 5 ) . For t h e f u n c t i o n a l E q . ( ^ . ^ 5 ) , TT1 

i s o b t a i n e d a s * 

ir'(iu,js, *t) 

J t'-AuJ* - t {t"<AU +At'(UN-UH)jcls 

ik.kb) 

Based on AT and /fh» S i n i l a r l y t h e i n c r e m e n t a l f o r * of 
a. d_ 

the Hu-Washizu principle corresponding to Eq.(3.7) is, 

T2HW (M , 4 > ** - A t ) tk.kT) 



63 

= Jr. {4W(*h) - /34$ -AU +*tT:[ftuT-4cl'(I i-h*)-<*''• 4] 

-t/:H-(k+h*) -£>:*i**k }<& 
-fs Jt-jujs - fs*t> (JU-JU )& 

w h e r e * /j 

such t h a t , 

dJh 

Noting that the incremental rotation tensor is subjected to 

the orthogonality condition*, i.e., 

(ctH + jic()r. (<** + 4d ) - I „ ,al 

and i t s v a r i a t i o n s a t i s f i e s , 

(si +Ji)'8A$ - skewsyrametr ic ( i f . ^ 9 ! 

t h e f i r s t v a r i a t i o n of TTwr i s o b t a i n e d a s , 

*̂V =X ft ST - H**'*?"' *i*-*tT**?**h „.„, 
+ lrjuT-M-(itit) -*'-*k]'>Sjtr 

*Due to this nonlinear constraint condition, the term 
t"T:4a -Clfrh" > » which is linear In Aa , is retained in the 
incremental functional given by Eq»(V»^7)• 
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-Ir-dt +P0*%]-$4u}<ir 

- L fat -At)-8*U o/s - / $*t- fau-4u)ols JS<r0 ~ * J$u0
 y 

It is readily shown that the stationarity condition of the 

functional Eq. (**.̂ 7) leads to the linearized form of 

Eqns.(<+.8, 1<+, 20, 38, and 391* However, because of the 

nonlinear constraint on Aa « the rotational equilibrium 

condition can not be noticed immediately. We examine the 

stationarity condition with respect to 4a. It requires the 

symmetry of the terms, such that, 

[<l tkN)'(t*i'Ji ) + ^ '&*?' (*!*+'£•) =symmetric C<n51l 

or , a , (<*.52> 
Jt't 'i + (I f t )' (*£'*" + t '*& ) 

t [ ( I + h" )-4t +^A-?"7-^=sy«metric 

If the higher order terms are ignored, it is seen that the 

above equation is reduced to the linearized form of 

rotational equilibrium condition £q«(4«ll)9 However, if the 

constraint condition on A a is assumed to be satisfied up to 

the linear term, the constrait condition is reduced to, 

a" . Aa = - ACJ . a H = skewsymmetric U*53) 
-%/ 

and i n i t s v a r i a t i o n a l f o r m , 

aH • $/ia = -§^aT . a
N = skewsymmetr i c (**.5M 

I n t h i s case the s t a t i o n a r i t y c o n d i t i o n r e q u i r e s t h a t , 

[(l+hH)'*t +Jti>t ]'d = symmetric 
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This equation is different from the linearized form of 

Eq. U.ll) by the term < n V ) - tH.ja , because of the 

linearization of the orthogonality condition. Even for this 

caset we can show that the exact rotational equilibrium 

condition can be retained through TT1 • For the functional 

given by Eq# ik*k7) > 771 is obtained as» 

IT1 (JU fjh t Aol t At ) 

'[aw?-i"-d *b")]:'tT 

- (I+k* )•*"•• *iT -A$H-'X +t*:v*a Jchr 

- / I i"-** 4* -f ft*-4U-Ht-(U,4-U*)}Js Jsr0 - JSu, < * ~ ~ J 

Noting the c o n s t r a i n t on 4 a » I t s v a r i a t i o n i s shown to be . 

Sir' 'fr. /YIFf " i a V *i'T-?r)]:W 

-[(IH'H'-i'hW'S'tf 

-[r-f + AVl'Sm Jolr 

-fsrJt'-tV'S'UtlM ~L fat(u"-UH)Js 
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Thus, all the governing equations including the rotational 

equilibrium condition are retained from the vanishing 

condi t ion of 5^1 . 

As shown in the above* the incremental Hu-Washizu 

principles based on alternate Incremental stress and strain 

measures are constructed. From these general incremental 

functionals, special types of incremental functlonals and 

corresponding variational principles are derived in the 

foil owing. 

Incremental Potential Energy Principles 

Based on ^s and A$* By a priori satisfying the 
** * 

incremental constitutive relation* Kinematic relation and 

displacement boundary condition, Eqns.(4.I2, 18, and 39), the 

functional in Eq«<4.41) is reduced to, 

7rr(ju)=Jz {4WH)-fi*$'A± + 2§*:[(w4>(r4!if]}<tr 'c*.57> 

Its stationarity condition leads to incremental translatlonal 

and rotational equilibrium conditions and also traction 

boundary condition, i.e. Eqns. (4.7), (4.9), and C4.37). 

Based on 4t and je,« Analogous functionals based on At 

can be derived, as, 

V « v = kliW(4%) 'p°*-'A-Ur 

- L At-JUdS 
J Sir. ~~ 

(4.58) 

'Q 
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However, from the relation between JWCJe) and JW(jg) given by 
f* /%/ 

E q . ( < + . 2 5 ) , t h e above f u n c t i o n a l can be shown to be i d e n t i c a l 

to t h a t g i v e n by E q . < < * . 5 7 ) • 

I n c r e m e n t a l Hel I i n g e r - R e i s s n e r P r i n c i p l e s 

Based on ^s and ^ g . By a p r i o r i s a t i s f y i n g t h e 

i n c r e m e n t a l c o n s t i t u t i v e r e l a t i o n E q . ( * * . i 8 ) and i n t r o d u c i n g 

the i n c r e m e n t a l c o m p l e m e n t a r y e n e r g y d e n s i t y AS g i v e n by 

E q « ( < * . 2 1 ) « t h e f u n c t i o n a l E q ( ^ < * i > i s r e d u c e d t o t h e 

H e ! I i n g e r - R e i s s n e r p r i n c i p l e in i t s i n c r e m e n t a l f o r m , 

TTHR(^^S) C „ . 5 9 J 

f j ^ s :[rju + FdyT + pu*.f&uT + vju-ru^ljctr 

J Sff- JS{jn 

w h e r e i n , 

such t h a t , 

I d2S lH 

9JS 
dJS 

= A% 

I t s s t a t i o n a r i t y c o n d i t i o n l e a d s t o t h e t r a n s l a t l o n a I 

e q u i l i b r i u m c o n d i t i o n E q . ( ^ . 7 ) » r o t a t i o n a l e q u i l i b r i u m 

c o n d i t i o n Eq«<<+«9), K i n e m a t i c r e l a t i o n E q . < % . i 2 > , and 

b o j n d a r y c o n d i t i o n s Eqns#(<*«37) and ( 4 « 3 9 ) , 

Based on Jt, and ^ e . As shown e a r l i e r , i f u n i q u e 

i n v e r s e s t r e s s - s t r a i n r e l a t i o n I n t e r m s of J t and j e I s 
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assumed* an incremental contact transformation can be 

achieved to express-^W (Je) + 4tT;4e=4T in terms of At alone and 

thus formally derive an incremental HelIinger-Reissner 

functional from Eq.(**.**5>. However* as also shown earlier* 

since the incremental rotational equilibrium conditions are 

then not embedded in the structure of the thus derived 

incremental complementary energy density (in terms of iit 

alone)* this formal HeHinger-Reissner Principle has no 

practical use. The same argument applies to the incremental 

complementary energy principle in terms of At alone* which 

can be formally derived from £q*(4«<+5) by using the contact 

transformation AT and satisfying the trans!ationaI 

equilibrium condition and the traction boundary condition a 

priori, 

Based on AT and Jh (/it* A% f and jh) • The substitution 

of AR, defined by Eq.(**.22)* into the functional Eq. (k*k7) 

leads to the incremental form of Hel I ingei—Reissner 

principle* the functional corresponding to which is, 

irZR(*»>'i>'t) (,.60 , 
= fTo [-JR(4jr)~/QAg-AU -fr:4g-(l+hN) 

+ 4f:[?Ay.T -H • (1 +h")}clV 

-fSr ^t-JUc/S -fs At- (4y-4U)ciS 

wherein* 

*RW)' i -?izl*::4S<£ 

such that* 
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= A\[ d4r ~ 
BAR 
d4r 

/v 

and 4r = ( 1 / 2 ) C t N - ^a «- j f . a
H • ^ a r . t N ' «- a * ' . ^ t T } 

I t s s t a t i o n a r i t y c o n d i t i o n l e a d s to Eqns.(<*«8, 1 1 , 1** , 38 , 

and 3 9 ) • 

Incremental Complementary Energy Principle 

Based on ^s and jg. By a priori satisfying, If 

possible, the translational equilibrium condition Eq.(**.7) 

and the traction boundary condition £q«(V«37), functional 

defined by Eq.<<+,59) is reduced to the incremental 

cornplenentary energy principle, 

_ f At -JU dS 

Noting that /is and ju are subjected to the constraint 

conditions, Eqns. (̂ ,71 and (%*37!t its stationarity condition 

leads to Eqns.(i*«9, 12, and 39)« However, as seen from 

Eq.(4.7), the incremental trans Iational equilibrium condition 

is a set of nonlinear and coupled partial differential 

equations involving both ^s and ĵu. It is impossible to 

choose admissible functions ^s which exactly satisfy 

Eq,(<*.7). In the practical application, the constraint 

condition, Eq.<<*.7), may be linearized and it is reduced to, 

F-Cs"(^u) + Js-F"T> + fi4q = 0 { ( * • ? ) * 

Even in the above linearized equation, there is a strong 
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coupling between sN and JU on the one hand* and between ^s 

and FN on the other. We notice that sN(x) and F*(x) are, In 

general, numerical solutions obtained up to the current stage 

and also they are functions of ><• Thus, the admissible 

stress field, to be used in a complementary energy principle, 

must represent a solution to the set of partial differential 

equations, Eq.<4.7)*, with variable coefficients. While, it 

may be mathematically possible to find such stress js, it 

defeats the \jery purpose of a variational principle forming 

the basis of a simple numerical method such as the finite 

element method. Thus, there does dot exist a practically 

useful incremental complementary energy principle, in the 

total Lagrangean form, when the Kirchhoff-Trefftz stress 

measure is used, 

Even if JS were chosen somehow, so that Eq«<^,7)* is 

satisfied a priori, the associated functional in Eq.(4-61) 

involves both J S and îu. Moreover, Eq«<4-«7>* is a linear 

approximation of the trans I ational equilibrium condition, 

The correction to this approximation need to be retained in 

the iterative correction based on n* • Including the 

correction terms to account for the prior linearization of 

the translational equilibrium condition, the functional ^1 

is obtained as, 

-s".F"T.-(mu)}e/r 

file:///jery
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+fsr. i'-'y J* + fsa, ft'- '£ +*!•(&*- 5")} <k 

which is identical to that for incremental HelIinger-Reissner 

principle. For these two reasons, from a computational view 

point, it may be preferable and consistent to use the 

HelIinger-Reissner principle rather than a conplementary 

energy principle based on js« 

Based on ir and 4%. The futility of deriving an 

incremental complementary energy principle in terms of 4t has 

already been discussed above. We thus turn to the third 

alternative, a complementary energy principle based on Ar and 

4h, as below. 

The difficulties detected for the functional Eq.U.61) 

can be avoided if the incremental HelIinger-Reissner 

functional based on the incremental Jaumann stress is used, 

First of all* the incremental translational equilibrium 

condition Eq.(<+»8) and the traction boundary condition 

£q.(4.38) are linear equations, in jt alone, which can be 

easily satisfied. By the a priori satisfaction of the above 

equations, the incremental HelIinger-Reissner functional 

Eq.(4.601 is reduced to the incremental complementary energy 

functional TT£ , involving only stress --at and rotation Aa* 

7rc2(*t9j<t) =JY9{*R(4£) +(tH+«i)T^i'(i+hNfi<lr <*•"• 

r jt-Mois 
"JSu. 
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Moreover, as Is already discussed for the general functional 

Eq.(J+«*»7), the rotational equilibrium condition is shown to 

be enforced through the stationarity condition of the above 

functional with respect to the variation in Aa . Noting the 

constraint conditions on ^t and Aa , i.e. Eqns«(^.8) and 

(<+.^8), its first variation Is obtained as, 

(<*.6<*) 

Using an identical equation, 

f7o (F4U?:S4fJr -jSuJ<t-^^ (if.65) 

Eq.(^«6tf) is rewritten as 

U.66) nc
2=frJ[(i+kNnt«^t) + j§-tH]:s^T 

-[(r^f-$M-j§ -With*)]:**? }<*r 

- f $dt- (4M ~4U)d$ 
JSu. 

Thus, from an analogous argument as for Incremental 

Hu-washlzu functional, Eq« ({»«<*?>* it is readily seen that the 

incremental kinematic relation Eq.f^.l^) , the displacement 

boundary condition Eq»(^«39l, and the rotational equilibrium 
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condition Eq»<u.ii), in their linear form, follow from the 

stationarity of the functional in Eq»(^»63)« Also, even if 

the orthogonality condition, Eq.Ct.tt8), is satisfied only up 

to linear terms, the exact rotational equilibrium condition 

can be retained through TT\ which is shown to be, 

T'W,4j -£{[£"• (£*!&")-1 ]:'f u.w. 

It is noted that, unliKe for the functional Eq»(<t*61), the 

correction of the translations! equilibrium condition, which 

is exactly satisfied a priori, is not necessary. 

Hybrid Type Incremental Variational Principles 

Now, we turn to the application of the incremental 

variational principles discussed in the preceding sections to 

a finite element assembly • Let the continuum Vo be divided 

into a finite set of nonover I applng subdomains Vom (m=l, •••M) 

the boundaries of which are ̂ V- • It is easy to picture that 
m 

in g e n e r a l , 3V0m =5^ +S«0 + Pon * where S<r0 and Su0 a re por t ions 

of 3V0 » which c o i n c i d e wi th the o v e r a l l boundary of V0 , where 

t r a c t i o n s and d isp lacements , r e s p e c t i v e l y , a re p r e s c r i b e d ; 

and P0 i s the p o r t i o n of an element boundary which i s common 

to tha t of an a d j o i n i n g element ( i n t e r - e l e m e n t boundary)* 

I t i s easy to see t h a t fo r an element which i s complete ly 

Eq.Ct.tt8
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surrounded by other elements* 9^ = P0 • Further, let us 
W) in 

arbitrarily denote one side of P0 , as P0 is approached, by 
in m 

the superscript <+) and the other side of P0 , similarly , by 
w 

a (-). Then it is seen that to obtain a physically 

meaningful solution certain continuity conditions must be 

satisfied at the inter-element boundary in addition to the 

field equations and the boundary conditions required for the 

continuum body. For the present case* the following 

conditions are required, 
(a ) d i s p l a c e m e n t c o n t i n u i t y c o n d i t i o n 

^u = Ju~ a t Pft ( ^ . 6 8 ) 
— — u hi 

(b) traction reciprocity 

it+ + iit~ = < n . ^ t > + + < n . J t ! = 0 a! p„ U.69J 
— - — ~ — ~ om 

If the ordinary incremental variational principles such as 

Eq.(4.<fl), In which only continuous functions are allowed as 

admissible functionsf is directly applied to the finite 

element method, the assumed function defined in each eleaent 

must satisfy the continuity conditions given by Eqns. (**>.68) 

and (£*.69)- However, the choice of such functions is very 

limited. In some cases it is nearly impossible. Therefore, 

to preserve the wide choice of the assumed functions, the 

functionals are modified so that functions* which do not 

satisfy the continuity at Inter-eiement boundaries, are 

allowed as admissible functions. Such modification can be 

achieved by introducing Lagrange multipliers, through which 
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the continuity conditions are relaxed a priori* Then, these 

relaxed conditions are enforced, at least in the weighted 

residual sense, through the stat lonarity condition of the 

modified functional with respect to the Lagrange multipliers. 

These modified functionals lead to the incremental hybrid 

finite element models analogous to that first developed for 

linear problems by Plan C163. 

There are two alternate ways to achieve such 

modifications, as discussed by Atluri C25]. These two 

versions of modified incremental functionals in terms of 

alternate stress and strain Measures are derived in the 

foil owing* 

Modified Incremental Hu-Washizu Principles 

Based on -ds and jg. The two versions of the modified 

functionals corresponding to the functional Eq»(%#41) are 

derived. They are shown together with n\ 

i) first version 

TTHWMI (*y>*Z ,*£.*%) «^7fll 

= £ JT^ {AWM ) - Po J9 -4U +±S«: [(rju).(r4ujr] 

" *i •' t4i -i(pju+r4if+ FUN. VAUT + Fdu• puNT)]johr 

• ^ . L ^ k « * -%L«t.(ju-4g)js 
m Jotr - m J^U0H. 

* Jpo -V 
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where A^_ i s a Lagrange m u l t i p l i e r ( p h y s i c a l l y t he t r a c t i o n 

at the i n t e r - e l e m e n t b o u n d a r y ) * whose magn i tude i s u n i q u e l y 

d e f i n e d at t he i n t e r - e l e m e n t boundary b u t o p p o s i t e s i g n s a re 

taken f o r two a d ) o i n i g e lemen tS t such t h a t , 

^IP + *TP
 = ° c^.ri) 

A l s o , 771 c o r r e s p o n d i n g to Eq«(^ .7Q) i s o b t a i n e d as* 

1r'(4U,4$ AS At) ( 4 . 7 2 ) 

~[i" - Ur<JN + Vu"7 + Vu"-Va»T)]:*% }dr 

-LfSti V-AUdS -LfsuJt*>4U+At.(u»-uN)]cis 

" & £ lJta I*" * t"-JU}cls to JPO- C -/> — ~p •> 

The f i r s t v a r i a t i o n of the f u n c t i o n a l £ q « ( u , 7 0 ) i s shown t o 

be, 

* C -z<LiiW-'*W'l ( i t . 7 3 ) 

>tt tJ 

"/"•*! 'stftou +VAUT^ru"-v^^+VA\i-vu"T)]:SAS 

-[F-(^S-F"T
+S"-F,U) +/>'g]-8'!i}ctr 
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- L f (*l -*t) - < ^ ds - JL /o rfVt • r ^ ~4u)Js 
n JS<ro

 m % 

- £ j / > {S^lt-JU + (4t -*t).$4u]Js 

N o t i n g t h a t t h e i n t e g r a l a l o n g t h e i n t e r - e l e m e n t b o u n d a r y 

i s e v a l u a t e d f o r e l e m e n t b o u n d a r i e s o f two a d j o i n i n g 

e l e m e n t s , t h e v a n i s h i n g c o n d i t i o n o f t h e l a s t i n t e g r a l i n 

E q . ( * . 7 3 ) r e q u i r e s t h a t , 

A u + = 4 u " a t o (<+.7tO 
- - o m 

+ ~ t + 

and 4 t " = ^ t ^ o r ^ t + 4 t = 0 a t P0 (*+.75) 
- —p — — UM 

Thus* i t i s seen t h a t t h e s t a t i o n a r i t y c o n d i t i o n o f t h e 

f u n c t i o n a l i n E q . ( ^ . 7 0 > l e a d s t o t h e c o n t i n u i t y c o n d i t i o n s a t 

i n t e r - e l e m e n t b o u n d a r i e s and a l s o a l l t h e f i e l d e q u a t i o n s and 

t h e b o u n d a r y c o n d i t i o n s g i v e n by E q n s . ( ^ . 7 t 9» 1 2 , 1 8 , 3 7 , 

3 9 , 6 8 , and 6 9 » . 

i l l s e c o n d v e r s i o n 

_ 2 r „ U.76) 

1THWM2 (*" ,Al , * 3 B AUf % At^ ) 

= Cfirst three terms are the same as in Eq.(n.70)J 

-Z,L *$•('»-'5,.)* 
'P, 

where dUp *s ^n incremental displacement vector uniquely 

defined at the intei—element boundary, whereas, jt is a 

Lagrange multiplier (traction at P. of an element) defined 

independently for each of two adjoining elements. Also, TT1 

corresponding to Eq»f*».76> is obtained as, 
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- Cfirst three terms are the same as in Eq«(<*.72)> 

~%f/oJ -C • {4~ - ' & ; + % •(a"- fy )J<i* 
The first variation of the functional Eq. (J+.7&) is obtained 

as, 

n ^ ( * f . 7 8 ) 
0 IIHWM2 

- C f i r s t t h r e e terms a r e the same as i n Eq«f** .73)> 

" £ is* ̂ '-fi '(4M~4fy* ^4» ~4± )• te ~ ̂  • *Ah -?ds 

From t h e ana logous argument as i n t h e f i r s t v e r s i o n the 

v a n i s h i n g c o n d i t i o n o f the l a s t i n t e g r a l r e q u i r e s t h a t , 

4 j u + = A^p = -du" <<4.79» 

At' ' At1 x ( 4 , 8 0 ) 
- P 

<dt + 4 t = 0 
-P - p 

^ t + -f ^ft = O 

However, as it is noticed, the Lagrange multiplier Alp is 

identified as the traction on the element boundary, defined 

by, 

Atn = 4t = n.(Js.FHTf s^-Kdu) 
— K — — \, n, v — 

Thus, t>y a priori choosing Lagrange multiplier as ^ t , the 

variable Alp in Eq«(4.76) can be eliminated, and the 

functional is reduced to, 
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= Cfirst three terms are the same as in Eq«C4«76)> 

Based on 4t and /je, Similarly, the modified 

functionals corresponding to Eq.t^«**5) are derived as, 

i) first version 

- 3 ~ . ( 4 . 8 2 ) 

= %JYO lAW(4e~) ~PoAl -J2 +*tT:(nuT-4e)}0ir 
'm 

~Z>£ H'JUJIS -L>L 4t- (JU-JU )fc 
'w. "' wm 

- X , L *t -jujs 

^ m 

- z , £ fjt-W + t"-^a }d£ 

ĉ S 
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i i ) second v e r s i o n 

TTHWMS (^ >*Z * At >4*' ) " • " , 

= C f l r s t t h r e e te rms a r e the same as i n Eq , (<* ,82)> 

~^L At-(*U -4a )ds 
**m 

, U . 8 5 ) 

7T Uu,Jg,Jt 9AU^) 
= C f l r s t t h r e e t rems a re the same as i n Eq«(<t«83)> 

The s t a t i o n a r i t y c o n d i t i o n s of the f u n c t i o n a l s g i v e n by 

E q i s . < ^ 8 2 > and (*••&<•) l ead to E q n s « U . 8 , 1 0 , 1 3 , 19 , 3 8 , and 

39) and a l s o t h e c o n t i n u i t y c o n d i t i o n a t the i n t e r - e l e m e n t 

b o u n d a r y , g i v e n by E q n s * ( 4 # 6 8 ) and (**«69)< 

Based on Ar and ^ h . 

i ) f i r s t v e r s i o n 

IfhiWMl (4" ,*\l,H , At , dtp ) <**.85) 

-t^idi-a + tf) - tHr:(M^h)}dr 

-zfs,t 4-**** -&fsJ£-(^-^)Js-z.f4/^cis 
°m in ' Offl 

7r'(4U Ah Ad 4t At* ) (^.87) 
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+ [(li-rMK)T-4"-(i + $)]:*tT 

- (i +hli)-t":jotr'A %*-AH +t":(rju)}dr 

-2LJS t'-JUcIs -Z> JSil {t*-4U +Jt'(uN-aM)]ds 

-zfAmM,'e*+ !;•'*}& 
i i ) second ve rs ion 

TrtwMi ('*.'k.H.n. '$>) ( k « M ' 

= Cfirst three terms are the same as in Eq.C4.86)} 

-Z> L Jt'(*M-*£j. )ds 
m J/°om ~ r 

lrl (4u,4k > A « . H**£/>) u - 8 9 ) 

= Cfirst three terms are the same as in Eq.(4.87)> 

-Z>f { tN'(^u^u/0)±Jt.fu"-up}0is 
m 

The stationarity conditions of the functional* Eqns.<4*86) 

and (4.88), lead to Eqns.U#8, 11, 1*** 20, 38, 39, 68, and 

6 9) . 

Modified Incremental Potential Energy Principles 

As it is shown, the Incremental potential energy 

functionals based on ^s and At are identical. THe 

Eq.C4.86)%7d
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m o d i f i c a t i o n s of these f u n c t i o n a l s lead to t h e f o l l o w i n g 

m o d i f i e d i n c r e m e n t a l p o t e n t i a l energy p r i n c i p l e s * 

i ) f i r s t v e r s i o n 

M? 

•f j §"itl&a)*{W&)r] -/O^g^ujdv 

( 4 . 9 0 ) 

- L L 4t-4UJs ~I±LAt<4Ucls 
or e q u i v a ! e n t I y , 

m 7-V^ - M JyO - /> 

m J v°m 

( 4 . 9 1 ) 

_ y \ ^t-^Mds - 2 1 / dt-juds 

i i ) second v e r s i o n 

TpM2 fa£**U/>) 

= Cfirst two terms are the same as in EQ«(4,90) 

or Eq. <*.91)> 

-Ixf jt-(4U-4U/>)d$ 

The stationarity conditions of the functionals, given by 

Eqns.(4.9Q) and (4.91), lead to Eqns.(4.7, 9, 37, 68, and 69) 

and (u,8, 10, 38, 6&, and 69), respectively. 

Based on these modified functionals so-called 

incremental hybrid displacement finite element models are 

derived [26], Such finite element models are convenient to 

analyze plate bending or shell problems, for which the 
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disolacement continuity at the inter-element boundary is 

difficult to be achieve by conventional compatible models. 

Alsot taking advantage of the freedom in choosing assumed 

functions* we can introduce dominant part of the analytical 

solution as assumed functions [27J. Thus more accurate 

solution can be obtained with less degree of freedom. This 

feature is common in all the hybrid finite element models. 

Modified Incremental Hellingei—Reissner Principles 

Based on ^s and 4g. The incremental 

HelIinger-Relssner functional given by Eq.(^.59) is modified 

and the following two versions of functionals are derived. 

i) first version 

KHKMI (*£ ,*£ ,4 fo ) « • . 93) 

~ %jTomr4S(*s)-/0**Z'A* +2§N<'[(tou)'(&u)T] 

'Z±L 4t-4uJs - £ / 4t'(4u-4U)ds -£> \ At -juds 
m m ^ 

i i ) second v e r s i o n 

_ 2 „ (<*.9M 
ITHRMZ (J", 4S^ ^M/g ) 

- C f i r s t t h r e e te rms are t he same as i n E q . t t f . 9 3 > > 

to jP0m 

Eq.ttf.93
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The stationarity conditions of the above functionals lead to 

Eqns.(^.7, 9, 12» 37, 39, 68, and 69K The functionals given 

by Eqns.(i»«93) and (*+.9<*) cai be applied to the finite 

element method, and they lead to the incremental hybrid mixed 

model finite element models C2S]* 

Based on Ar and Jh» Similarly, the modified 

functionals corresponding to £q,<H.60) are derived as, 

i) first version 

ITHRMI (*M,4<i ,Attdi» ) /• 
(<*.95) 

- tNT:Ad.(i-th")]dY - Z > / 1 4t-4Uols 

-I* Lu *i-(*£-*§)Js -Z*L Jt-Juds 
i i ) second ve rs ion 

1THRM2 (*4,*i ,'t.'B/>) K.95 ) 

= tfirst three terms are the same as in Eq.(*+.95)> 

-L,f 4 t ' (4U -AU^ydS 
tn J A 

The stationarity conditions of the functionals given by 

fqns.U.95) and U.96) lead to Eqns. Ct.8, 11, 1^, 38, 39, 68, 

and 69). 

The application of the above functionals to the finite 

element method is possible. However, as it is seen, too many 
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i ndependen t v a r i a b l e s a re i n v o l v e d * I n t h i s a s p e c t , i t i s 

no t p r e f e r a b l e to use such f i n i t e e lement models f o r 

o r a c t i c a l p u r p o s e s . 

M o d i f i e d I n c r e m e n t a l Complementary Energy P r i n c i p l e s 

Based on As and ^ g . Assuming t h a t t h e i n c r e m e n t a l 

t r a n s l a t i ona I e q u i l i b r i u m c o n d i t i o n Eq«(<+«7) and t h e t r a c t i o n 

boundary c o n d i t i o n E i . ( 1 + . 3 7 ) a re s a t i s f i e d up t o l i n e a r 

t e r m s , the m o d i f i e d f u n c t l o n a l s g i v e n by E q n s . ( 4 . 9 3 ) and 

( k . 9 4 ) are r e d u c e d t o t h e f o l l o w i n g f u n c t i o n a l s wh ich 

c o r r e s p o n d t o Eq. <<*.6i) . 

i ) f i r s t v e r s i o n 

'TTCMI (4U,4£, <*L ) ( 4 « 9 7 ) 

= Lfr {*$(<*§) +jSN;[(F4U).(WU)T]}dr 
fft 

-I, 4t-4UclS - Z* L (4t -4tjQ)'4UdiS 
™ JSu0m ~ m JPom S 

Since the trans(ational equilibrium condition and the 

traction Doundary condition Bre a priori satisfied only 

approximateIy, the correction to these conditions must be 

retained. Thus rr1 corresponding to Eq«(4«97) is obtained asf 

It1 (*U 4S At* ) (4.98) 

yO Q Ql U 

ron if-ifl -k(ruH+vti«T + ru*.vu«r)]:AS 
+ /?£"•*" -5"-F"T:(nu)}dr 

, y C t*.4uds + Z, r f t"-4u + At • (uH-W)} ds 
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i i ) second v e r s i o n 

ffi {*fy#*+&•'*]<** 

lfcM2 (AU,4$ , ^ J 
U . 9 9 ) 

= t f i r s t two te rms a r e t h e same as i n Eq*<<*«97)> 

- L f At 'AU o/S 
» J/°o ' ^ 

From ana logous argument as i n t h e case of t h e f i r s t v e r s i o n * 

7T1 c o r r e s p o n d i n g to Eq.(J+«99) i s o b t a i n e d a s t 

^ i - . («f. 1001 

Or eu^s^u,,) 
= Cfirst three terms are the same as in Eq.(^.98)> 

+ z, f ft- (4u-<*S/*) + *t'(yM-2s )}^s 
n J/0°*L 

The stationarity conditions of the above functionals lead to 

Eqr>s.(^.10, 12, 39, 68, and 6 9). 

The functionals given by £qns.(^«97) and (<+.99) can be 

applied to finite element models C 29 3 • However, if we 

consider their failure to satisfy the translationaI 

equilibrium condition and the traction boundary condition and 

also the fact that the functionals involve displacements as 

variables, no significant advantage is found in this type of 

finite element models as compared to the hybrid mixed model 

based on Eq. (z*«93) or Eq»(^*9**l* 

Based on 4£ and Jh. Finally, the incremental 

complementary energy principle in the most consistent form, 



which is given by Eq.<4.63>, is modified following the same 

procedure. After modifications* two versions of modified 

incremental complementary energy functionals are derived, 

i) first version 

_ 2 ~ 
ifcMt (4sl, 4% , t t f J JU^ ) ( « f . 1 0 1 1 

/TJ 

-z^Lji-^ds ~z,f^ (n-4,)-^ds 

^ (*ol > < £ , *$/> , *M/» ) ( 4 .102) 

= Z>L Ir^'-frl* + **- I ]:AIT 

* Ul*j$\*H*]-<iT}*r -skis"'!* 

• £ J A W l^t-^hU* +(?-£* l-iMsJJs 

whe^e AUp is the displacement vector at inter-eIeraent 

oojndiries which is independently defined for the adjoining 

e1ements. 

i i ) second version 

^ 2 ~ ( 4 . 1 0 3 ) 

yCM2 (*i, *t B 4M/>) 

= Cfirst two terms are the same as in Eq. (4*101)3 

-$L n-*$,4s 
P*m 
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If' (4d , At , -rfjfj U . iOM 

= C f i r s t two terms are the same as in Eq.(^»102)> 

°m 

The s t a t i o n a r i t y condi t ions of the func t iona ls given by 

Eqns. <<+. 101) and (4#103) lead to Eqns. U . i l t i**, 39, 68, and 

69) . 

I t i s emphasized again t h a t , in the above func t iona ls , 

the t rans la t i ona I equ i l ib r ium cond i t ion and the t rac t i on 

boundary cond i t ion are exact ly s a t i s f i e d a p r i o r i and the 

r o t a t i o n a l equ i l ib r ium cond i t ion is enforced through the 

s t a t i o n a r i t y condi t ions of the respect ive func t iona ls . 

Moreover, the con t i nu i t y condi t ions at inter-element 

boundaries are relaxed a p r i o r i so that a r b i t r a r y funct ions 

which do not sa t i s f y these condi t ions are also allowed as 

admissible func t ions . Fol lowing the general procedure ir\ the 

de r i va t i o r of f i n i t e element models, these funct ionals are 

d isc re t i zed and they lead to the incremental hybr id stress 

f i n i t e element models, in which the above advantageous 

features are preserved in the i r d i sc re t i zed forms* Thus, the 

derived incremental hybr id stress f i n i t e element models are 

considered to be consistent and also v e r s a t i l e in p rac t i ca l 

app l ica t ions* 

Updated Lagrangean Formulation 

Incremental Governing Equations 

In the updated Lagrangean formulat ion, s tate var iab les 
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in both CN state and Ĉ +j state are referred to the metric in 

CN state. Also* the transition from Cji to CN+| is described 

using the same metric. Let state variables in Cn and Ĉ +i be 

symbolically denoted by CC* > and CC* t |>. The superscript 

star is used to distinguish variables referred to C N from 

those referred to the initial configuration Co* Let the 

incremental state variables in passing from CH to CN-n be 

denoted by T^JC*>. Thus, in general* it is shown that, 

CC*N + /> = CC*N > + C JC*> <<*.105) 

Now we c o n s i d e r c l o s e l y t h e s t a t e v a r i a b l e s b o t h i n C^ and 

C N f | , The CN+, s t a t e i s d e s c r i b e d i n t e r m s o f a l t e r n a t e s t r e s s 

and s t r a i n m e a s u r e s r e f e r r e d t o CN » n a m e l y * P i o l a - L a g r a n g e 

s t r e s s £ * , K i r c h h o f f - T r e f f t z s t r e s s sf , and Jaumann 

N + l s t r e s s r * and a l s o t h e i r c o n j u g a t e s t r a i n s ; d i s o l a c e m e n t 

N+i jg + i 

g r a d i e n t e* , Green-Lagrange s t r a i n g* , and s t r e t c h t e n s o r 
HH 

h* • The definitions of these stresses and strains are 
/v 

g i ven by Eqns.<2.61> t h r o u g h ( 2 * 7 7 1 . On t h e o t h e r h a n d , 

s t a t e v a r i a b l e s i n CM are a l s o r e f e r r e d t o t h e m e t r i c of CN . 

I t i s n o t i c e d t h a t t h i s way of d e s c r i b i n g t h e s t a t e v a r i a b l e s 

i s e q u i v a l e n t to t h a t of t h e E u l e r i a n . Thus , the d i f f e r e n c e s 

among v a r i o u s d e f i n i t i o n s of s t r e s s e s d i s a p p e a r , and a l l t he 

s t r e s s e s become i d e n t i c a l w i t h the t r u e s t r e s s TH i n CN. 

s* = t* = r* = ?-* (*+.106> 
*v -v nt y^> 

Similarly, various definitions of strains in C M become 

identical, and they ar^ shown to be zero from their 
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def in it i ons» 

N N H 
g* = e * = h* = 0 (<+.lQ7) 

N 
And also* the deformation gradient F* and the rotation 

•v 

tensor a are* 

F* = 1 and a = J (J*.108) 

Following the general definition* Eq«tk«105J» incremental 

state variables are defined as follows* 

AU = u " " - u " 

4 S * = s * - T 
*\/ SV / v 

J f * = f * N + 1 - 2*N 

• V ' V J V 

j r * = r * N + l - r N 

^ g * = g * N + l = t i / 2 1 C F 3 u + (7JU)1 + ( F 5 U ) - ( F 5 U ) T > 
A/ ' V • - - — — 

j e 4 = e * = ( F ^ u ) 

( i + « 1 0 9 ) 

4 h * = h 
N t l 

A „ * *N + l 
^2 = a - I 

w h e r e P7, r e p r e s e n t s t h e g r a d i e n t o p e r a t o r i n t h e m e t r i c o f 

CN» F u r t h e r * t h e s e i n c r e i e n t a l v a r i a b l e s are r e l a t e d 

t h r o u g h t h e f o l l o w i n g e q u a t i o n S i 

A\+ = 4 s * 4- TN.fau #• J S * . J ^ U 

J r * = ( l / 2 ) U t * + J ^ a * f -d t * T + ^ a * r - ^ 

(<**110) 

( ^ t . l l l ) 

f J t * ' ACL* ¥ Ad* • <d f * T > 

^ g * = ( l / 2 ) C 4 e * + 4 e * T + i l e * T ^ e ' } ( f t . 1 1 2 ) 
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= (l/2)C24h* + 4h*-4h*3 

je* = 4a* f jh* + 4a*.AW + (4.113) 

In the above equations as well as the subsequent equations! 

nonlinear terms in incremental variables are indicated by 

underlines* And these are neglected in the following 

oiecewise linear incremental formulation* 

Using the incremental variables defined in the above* 

the field equations and the boundary conditions given by 

Eqns.(2.90) through (2#1Q4I are reduced to the incremental 

equations which govern the transition from CN to CN+i, as 

shown in the following. 

translationaI equilibrium conditions 

(4.11**) v\ (is* + T"- ril+ f j j v**± ) + % 4 I = ° 

V*- (At*) + PN4% - 0 ( 4 .1151 

where P i s the mass d e n s i t y per u n i t volume i n CN . 

r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n s 

J s * T = As* ( 4 . 1 1 6 ) 

or (p2u)T?- ' / + At* * ( p 5 u * r - 4 t * = symmet r i c ( 4 . 1 1 7 ) 

o r 4 h * - ' 2 " N + 4 t * 4- ?H>Aa* + ^ h * - - d t * + J t * - ^ » a * 
/V ~ >V * * * » A- A/ ~ 2 1 

• j h * - T * 4 a * + j h * . j t * - i a * = symmet r i c ( 4 . 1 1 8 ) 
<v -^ •^ ^ ^ 21. 

Kinematic relations 
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^ g * = < i /2 )CJ7 ju + (V*Ju)T + ( r f u ) • < ^ u ) T } ( 4 . 1 1 9 ) 

Ae* = < F 2 U I ( 4 . 1 2 0 1 

( F ^ u ) T J a + 4 h * • A a*, j h * 
/V / V 'V A/ 

( 4 . 1 2 1 ) 

constitutive relations 

Assuming that the change in the field variables from 

CH to CN-H is sufficiently small* the strain energy density W 

defined by Eq.(2*78) is exoanded in Taylor series in terms of 

AV** je*, and Ah** and the followinq incremental strain 

energy density functions are derived. 

^PF ("S ; = o- -J5ri| : .^S ^3 + H.O. T. 
2 w 

tf 

' V 

: Ae*Ae* + H . 0. T. 
/V *V _ _ _ _ _ _ 

AW ^h)' j j&>\::44 + H- °- T' 

( 4 . 1 2 2 ) 

( 4 . 1 2 3 ) 

T 4 . 1 2 4 ) 

such t h a t * 

d/iw*(*l*) JS* dw*(A?) „^*T » W J = 
^ r " ~ ' ?*r - ' frk* 

( 4 . 1 2 5 ) 

( 4 . 1 2 6 ) 

( i f . 1 2 7 ) 

Further* the contact transformation of W in terms of s* and 

r* exists* as defined by Eqns.<2.86) and (2.88)* and they are 

denoted by S* and R*» respectively. Thus* the incremental 

potential functions AS* and 4R* can be defined bŷ » 

AS'(AS') = j -̂ fn| ••• 4s7j* tRoj (4.128) 

(4.129) 
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such t h a t , 
* 

d* S* 
» *i dJR 

a^r* = A' ( ^ . 1 3 0 ) , <<+.131> 

boundary c o n d i t i o n s 

(a) n * . C J s * + TH-P%u * As* - F ^ u * = At* =Af* ( ^ .1321 

at So- (* f .133) o r n* -*t* = 4 t 

where n* i s a u n i t ou twa rd n o m a l to the s u r f a c e i n C^t and 

S/r i s a p o r t i o n o f t he s u r f a c e o f the body i n CN a t wh ich 

the i n c r e m e n t a l t r a c t i o n Is p r e s c r i b e d t o be ^ t * . 

( b ) JU = ^U at SUfl <<*.13M 

where SMh is a portion of the surface in CN at which the 

incremental displacement is prescribed to be ,du* 

Hu-Washizu Principles 

FoMowing th€ general procedure as in the incremental 

total Lagrangean description* the incremental governing 

equations derived in the aoove can be cast into the 

variational principles in the most general form. 

Based on AS* and jg*. The incremental Hu-Washizu 

principle governing the transition from £N to CN+, is derived 

as, 

*2 
ITHW (M,43 ,4§*) <*.135) 

= Jvh hw*(Jf) ~/%*l'*!i + i ?":[(r5u)-(rt!t)T] 
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w h e r e * 

s u c h t h a t , 

-JS*:[*f-i{(V4U) • (7JU)T}]}dT 

- f 4t*-JUc/S - f 4t*- (AU -AUL )J$ 

J So: ~ JSnH 

<*w*e?)'i%f*\ : : 44 

1 AW* 1*1) AQ* 
- 4 6 3^3* 

a n d , At* = n * - U s * + 2 ~ * F J U > « 

I t s s t a t i o n a r i t y c o n d i t i o n l e a d s t o t h e c o m p l e t e s e t o f 

i n c r e m e n t a l g o v e r n i n g e q u a t i o n s i n t h e i r l i n e a r ! i z e d f o r m , 

n a r o e l y ; t r a n s I a t i o n a l e q u i l i b r i u m c o n d i t i o n E q . ( ^ * l l < + ) , 

r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n £ q » * ^ « 1 1 6 I » K i n e m a t i c 

r e l a t i o n E q . ( 4 . i i 9 ) , c o n s t i t u t i v e r e l a t i o n E q . ( 4 . 1 2 5 ) , and 

o o j n d a r y c o n d i t i o n s E q n s « < 4 » 1 3 2 ) a n d (k»lZ**)* The i t e r a t i v e 

p r o c e d u r e t o c o r r e c t t h e U n e a r l i z e d s o l u t i o n o b t a i n e d 

t h r o u g h t h e a b o v e f u n c t i o n a l i s p r o v i d e d by n1 * w h i c h i s 

q i \ / e n a s , 

Y'ea.**'.'§?) rfr, {LjfT- f-M f t . 1 3 6 ) 

*NH t r , ..tti+ijr , *N+I 

-n -i{(F'n-(f")-!}]:<§• 

~ nN+l r.*N + ' / r # w + ' V / * x ? , 

ds 

N + t * H¥l T 

w h e r e , F* = < r y I . 
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Based on 4 t * and j e * » L i k e w i s e , t he i n c r e m e n t a l 

Hu-Washizu f u n c t i o n a l i n te rms of At* and AS* i s o b t a i n e d as , 

*2 
nr** (^>4%*>J£*) ( H . 1 3 7 ) 

- 4t-4UclS - I At*-{AU-AU )dS 
JSr Jsu^ 

w h e r e * 

AW*U%*) - ±%£ :: Ae*je' 

such t h a t , 

/v 

dAW*(*Z*) _ ^ „ T 
^ e * 

I t s s t a t i o n a r i t y c o n d i t i o n l e a d s t o Eqns . <*f . 1 1 5 , 117, 120, 

12 6, 1 3 3 , and 13^1 i n t h e i r I i n e a r I i z e d f o r m . I n a d d i t i o n , 

the i n c r e m e n t a l r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n i s r e t a i n e d 

t h r o u g h the s t r u c t u r e of ^ W * ( ^ e * ) from t he ana logous argument 

as shown f o r t h e t o t a l Lagrangean d e s c r i p t i o n * n*1 

c o r r e s p o n d i n g t o Eq.(4«137> i s , 

^ , * v U . 1 3 8 1 

TT'fra.je'^f) 

JS^ JSuh 
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Based on AJT* and A\}** Similarly the following 

incremental Hu-Washizu functional in terms of AT* and jh* is 
/V ' V 

d e r i v e d . 

Ithw faidjJh* , 4cj*t 4t* ) U.139) 

I 4t*-4UolS - I 4t '(4U -A\A )ol$ 

whe^e, 

AW*I4) *i fJClW^ / v ~ 

sucn t n a t , 

Close investigation is made specially for the present 

functional to obtain its stationarity condition* 

Considering the orthogonality condition on the rotation 

tensor* i.e.* 

( I + Ja*> . ( i + j a * ) s i ( U . l ^ O ) 
<v ' v •** / v *v 

and i t s v a r i a t i o n a l f o r m , 

( j + ̂ a* ) • <5̂ Ja = skewsyime t r i e <<*.1<*1) 

the f i r s t v a r i a t i o n of the f u n c t i o n a l Eq. ( * t . l 39 ) i s shown t o 

be, 
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-[(Z' + 'ft" ^t)-(l+^*)]'-[(i^<iVT-W*]T 

-lV*4t* +&4$hm}dV 

-/C (ji*-4t*hfrgd& -L fat*- UU-JIU)js 

Thus, it is shown that the stationarity condition of the 

functional Eq.U.139) leads to Eqns.U.115, 118, 121, 127, 

133, and 13<+> • However, in practical applications the 

nonlinear constraint condition* Eq.<<+.140)» can be satisfied 

only in the linear fashion, 

Aa* + Aa*1 = 0 (<*.l*f3) 

Even for t h i s case, exact r o t a t i o n a l e q u i l i b r i u m c o n d i t i o n i s 

r e t a i n e d through rr1, which i s g iven by, 

T r 7 ^ , 4 f , Ai\ *t* ) U.1VO 

^JvJLjpl '2lt -i + (* r(i ) JJ.'h 
/ v 

-(l+^'j-V"*':^ 

-PHI*"-*H + £*"*': (riu)Jdr 
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~L r"" '* JS 'Lh If*"™ +*f- (M"U - UM*')}dS 
I) " 

In the iterative correction process, the incremental 

orthogonality condition Eq«(<+«lit3) is replaced by, 

(a W a + ̂ a • a = 0 (4.m5) 

and in its variational form, 

.JfW\T 

(~ /*o*2 = skewsymmetr i c U.l<f6) 

Thus, from the analogous argument as shown for the total 

Lagr^ngean formulation, the vanishing condition of STT1 reduces 

to the exact governing equations for C n+i state. 

Incremental Potential Energy Principles 

By a priori satisfying the incremental constitutive 

relation Eq. (4.125) * kinematic relation Eq«(<*.119), and 

disolacement boundary condition Eq.<**.134), the functional in 

Eq. (i**135) is reduced to the following Incremental stationary 

potential energy functional* 

m*2(4U) =frJjW*{4§*) -/°N4i'4« H+.1U7) 

JSrn -

Similarly, by assuming a priori satisfaction of Eqns.(4.i20, 

126, and 13 0 , the functional in £q# lk* l$7) is reduced to, 

%*'m) = f fdW(*f) -pH4i-*u}dr (<».1<*8> 
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- L 4t*-4U ds 

However, the incremental strain energy density functions 

4W*(jg*) and JWMie*) are related by, 

AW*(n*) - ^ f M 8 ' ) • i tH--[(riu)-(riu)T] 
U.i<*9) 

Thus, i t i s seen t h a t t he J u n c t i o n a l s g i v e n by Eqns. <**• 1**7) 

and ( i t , i 4 8 ) a re i d e n t i c a l * The s t a t i o n a r l t y c o n d i t i o n s of 

these f u n c t i o n a l s l e a d t o E q n s . ( * « 1 1 % , 116, and 132) and 

( < + « 1 1 5 , 1 1 7 , a n d 1 3 3 ) , r e s p e c t i v e l y . 

I n c r e m e n t a l H e l l i n g e r - R e i s s n e r P r i n c i p l e s 

As d i s c u s s e d e a r l i e r , t he c o n t a c t t r a n s f o r m a t i o n s of J W* i n 

terms of As* and j r * e x i s t . By i n t r o d u c i n g t hese 

t r a n s f o r m a t i o n s , f u n c t i o n a l s g iven by Eqns. (<*• 1 35) and 

(^ .139) can be reduced to i n c r e m e n t a l H e l l i n g e r - R e i s s n e r 

p r i n c i p I e s . 

Based on j s * and A3* • 
** A* 

TTH* I*",***) =fr {~*S*uf) ~/o„4 3'4u 
U . 1 5 0 ) 

» o^CV 
AQ*(JS*) = -1 ? A ;:^S*«fS 
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such that, 

dAf "I 
The stationarity condition of the above functional 

Eqns.U.li^, 116, 119, 132, and IZkY. 

8ased on ^r* and 4h*. 

YHR (4U3 Ad\ Jt* ) ^frJ-4R*(4r*)-/o^3'4u 

-L 4t*-4UJs - L At*' (4U-AU ) ols 

l e a d s t o 

U . 1 5 1 ) 

whe<~ e , 

s u c n t h a t , 

AR*(jr*)=± f£f::jrXr* 
2 dr 

djp' 
= 4k* d4r* 

Its stationarity condition leads to Eqns«(n.ll5, 118, 121, 

133, and 13<*> . 

Based on /it* and je*« Eventhough one can use a formal 

contact transformation to express -^W*+/it*; J e* = -dT* in terms of 

At* alone and thus formally derive a Hellinger-Reissner type 

principle from Eq«{4.137). The rotational equilibrium 

conditions can be seen, as in the total liagrangean 

incremental (rate) formulation, to be not embedded in the 
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structure of JT*. For this reason, the above formally 

derived Hellinger-Reissner (updated lagrangean) incremental 

principle has no practical use* The same comment applies to 

the incremental complementary energy principle in terms of 

At* alone, which can again be formally derived from 

Eq. U . 1 3 7 ) . 

Incremental Complementary Energy Principle 

3ased on AS* and A%* • 3y a priori satisfaction of the 

trans!ational equilibrium condition Eq,(H«ll^) and the 

traction boundary condition Eq. (**.132), the functional given 

by Eq.(<+.150) is reduced to, 

*-2 C r ^* (<f.l52) 

nrc f^y, JS ; = Jn {4$ vs) 

+ it*''[(vk)-(F**a}r]}dr -fsu/t**Mds 
However, it is noticed that the incremental translationaI 

equilibrium condition given by Eq.(^.li^) is a set of 

nonlinear and coupled partial differential equatipns 

involving Doth stress 45* and displacement ^u« It is 

impossible to satisfy this condition in its nonlinear form. 

In practical applications, Eq*t**ilfe) may be linearized to, 

V*(As* + £*'F-$U) *- PAq - 0 (£>.153a> 

The above linearized equation Is used as a constraint 

condition on ^ s * instead of Eq* (^ll*) • Unlike in the total 

Lagrangean formulation, the stress As* is not coupled with 

deformation gradient in Eq« (<t«153a) • Thus, as shown by 
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A t l u r i [ 1 4 , 3 2 ] , i t becomes somewhat e a s i e r t o choose As* 

which s a t i s f i e s the l i n e a r i z e d t r a n s I a t i o n a l e q u i l i b r i u m 

c o n d i t i o n * E q« <<* .153a) * a p r i o r i * By i n t r o d u c i n g the 

symmet r i c M a x w e I I - M o r e r a - 3 e l t r a m i second o r d e r s t r e s s 

f u n c t i o n A, such s t r e s s f o r t h e gene ra l t h r e e d i m e n s i o n a l 

case can be assumed b y , 

As* ~ c u r l ( c u r l A )T + <js*P U . i 5 3 b ) 

Us ing t he r e c t a n g u l a r C a r t e s i a n components* Eq . (4»153b) i s 

r e w r i t t e n a s , 

j S i j " eimn e jpq nq,mp + ^ S i j ( 4 . 1 5 3 c ) 

p 
where ^ s * i s any symmet r i c p a r t i c u l a r s o l u t i o n , such t h a t , 

7*AS*? - - pjg - V*C£M'FAU) ( 4 . 1 5 3 d ) 

Then, the error due to the linearization of the trans!ationaI 

equilibrium condition can be corrected through the Iterative 

correction based on rr1 , which is given by, 

T ' f ^ ^ ' j l <4.153e> 

- k ft §fr-m*Hr-(r"+') -ii^f 

One simple way of satisfying Eq.(4.153a) may be to 
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assume particular solution for the direct stress As* (no 

sum on i ! I=it 2, 3) only. However, then, the question of 

completeness remains to be answered. Also, because of the 

term, V*t ?"• VAU) , in Ecu U.l 53d) » it is still difficult to 

choose the particular solution js*^. Alternative way to 

avoid the above difficulty »ay be to define the particular 

solution as, 

V*-4s*? = - p„jg (tf.i53f) 

Such AS* can be easily found* Then, As* is expressed as, 
/V "-V 

As* = c u r l ( c u r l A )T - 2 -"<J7ju) • As*F C<t«153g) 
/v fit e* — >v 

However, in this case the assumed stress AS* ceases to be 

symmetric, and it violates the rotational equilibrium 

condition. Thus, the rotational equilibrium condition must 

be introduced as a constraint condition into the associated 

complementary energy functional of the type given in 

Eq«(**.152) through additional Lagrange multipliers. 

Considering the fact that the complementary energy 

functional, Eq.<^.152>, involves both stress As* and 

disolacement ^u as variables and the difficulty associated 

with choosing symmetric As* which satisfies Eq«(4,153a), it 

appears that a incremental complementary energy principle 

based on As* does not provide a basis of a practically useful 

finite element model. 

Based on Ar* and A§* * Incremental complementary 

energy principle, which is considered to be consistent and 
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s u i t a b l e f o r p r a c t i c a l a p p l i c a t i o n s * can be d e r i v e d from the 

f u n c t i o n a l g i v e n by E q . ( 4 , 1 5 1 ) based on i n c r e m e n t a l Jauitann 

s t r e s s . 3y a p r i o r i s a t i s f y i n g E q n s . ( 4 . 1 1 5 ) and (4*133) • 

wh ich a re l i n e a r and uncoup led in 4 t * a l o n e * the 
/ > • 

He I I i n g e r - R e i s s n e r t y p e f u n c t i o n a l « Eq. ( 4 . 1 5 1 ) , I s r e d u c e d 

t o the i n c r e m e n t a l complementary energy f u n c t i o n a l /r/2, 

wh ich i n v o l v e s s t r e s s 4 t * and r o t a t i o n ja* • 

He (Ji , J£ ) (i..154) 

= f fjR'W*) + VT:4** ^t*T:^*}Jr 
JTif c 

- /' 4t*4UclS JS„h - -

Following the same argument as for the incremental Hu-Washizu 

principle given by Eq.(4*139), the stationarity condition of 

the above functional is sho*n to lead to Eqns.(4.116, 119, 

and 134), in their linearlized form. The correction 

orocedure to the linearlized solution is derived through rr1 

which is given by, 

nr'fact*, At*) (4.155) 

is, 4f-UH"Js 
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Hybrid Type Incremental Variational Principles 

The incremental variational principles in the updated 

Lagrangean formulation are summarized in the preceding 

sections* These functionals can be directly applied to the 

finite element method, provided that the interpolation (or 

assumed) functions are chosen so that the continuity 

conditions at inter-element boundaries are satisfied a 

priori* However, as discussed in the total Lagrangean 

formulation, such direct applications are limited, 

Therefore, these functionals are also modified and hybrid 

tyoe functionals, considered to be more versatile in their 

apol icat ions, arfi derived. 

In the present updated Lagrangean formulation, the 

configuration in C^ state is taken as reference. Thus, the 

deformed body \/H in 0H state is divided into a finite number 

of subdomains V„ <m = i»..M). The portion of the element 

boundary which coincides with that of the overall boundary of 

the body VN , where the disolacement or the traction is 

prescribed, is denoted by Sun*, or S<r, , respectively. Also, 
m rim 

i n t e r - e l e m e n t boundary i s deno ted by Pn • Then, the 

d i s o l a c e m e n t c o n t i n u i t y c o n d i t i o n and the t r a c t i o n 

r e c i p r o c i t y c o n d i t i o n a t P. , i n t h e i r i n c r e m e n t a l f o r m s , a re 

g i ven b y , 

4 t * + 211* = 0 at p„ f ^ . 1 5 6 ) 

AU - AU at Pn ( ^ . 1 5 7 ) 
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Following the same procedure as discussed in detail for total 

Lagrangean formulation* the various functional giv/en by 

Eqns.U.135, 137, etc.J are modified , and the following 

hybrid tyoe incremental functionals are derived, 

Modified Incremental Hu-Washizj Principles 

Based on -as* and AQ*• The two versions of modified 

functionals are derived froa the incremental Hu-Washizu 

functional given by Eq«(<+.135l 

i) first version 

nrlwMi (<*#,<*£*,*£*>4t*) n*.i*%i 

^fr,m Uw*(*%*)~pH*l*u + 5?H:[(r5uy(riu)T] 

S(t»M " * » J s ^ 

-z, 
m 

! * * * % • ' * * 

where* as in the total Lagrangean formulation* Jt* is the 
-p 

t r a c t i o n (per u n i t area I n C^) at t he i n t e r - e l e m e n t bounda ry , 

whose magn i tude i s u n i q u e l y d e f i n e d at t he i n t e r - e l e m e n t 

boundary but o p p o s i t e s i g n i s taken f o r each of the two 

a d j o i n i n g e l e m e n t s , such t h a t , 

J t * " + 2|t*~ = 0 C<t«159) 
- fi ~ P 

nA c o r r e s p o n d i n g t o E a . ( ^ . 1 5 8 ) i s shown t o b e , 
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nr'(<*u,4§*,js*jt*) i^.ieo) 

si* 

- £ L £* "*' ̂  ds - £ L h^a - rt*(yr-»*")& 
"w J ""fin, 

m 'A* "̂  "~̂  ~ 
ill second version 

*2 * *, (^.161) 

= Cfirst three terms are the same as in Eq*(^»15a)> 

-£.£> n'-nu^)* 
' Mm 

w h e r e ^ u i s an incremental displacement vector uniquely 

defined at the inter-e lement boundary, 

nr' (JU,*?,*$*,4$,) 
= Cfirst three terms are the same as in Eg.(^•160)3 

-z.f {?*"-(4u-*g,)+jt*-(yh,-s?)}<jis 

The stationarity conditions of the functional, Eqns. (<•• 158) 

and (u.161), lead to fqns. I h. ii*+, 116, 119, 125, 132, and 
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I 3 M and a l s o the c o n t i n u i t y c o n d i t i o n s a t i n t e r - e l e m e n t 

b o u n d a r i e s , wh ich i s g i ven by Eqns. (**.15 6) and ( ^ . 1 5 7 ) , 

Based on 4 t * and j e * . S i m i l a r l y , t he m o d i f i e d 
<V A/ 

functionals corresponding to E<|«(4#137) are shown to bef 

i) first version 

*2 * (H.163) 

KHWMI (*H>*£> &t ,A$*fi) 

- Cfirst three terms are the same as in Eq.(i+«137) 

except that the integrals over the volume and the 

surface are replaced by the sum of those for each 

e,ement> -$L4:-4udS 

Tf'(J!l.*£*,*f , *t}) iw.iw 

= Cfirst three terms are the same as in Eq»(*+«138) 

except that the integrals over the volume and the 

surface are replaced by the sum of those for each 

nn -S/A [4:-^'+ir.^}js 
m 7° 

i i ) second v e r s i o n 

*2 / J,i AP* At* A7I \ ( ^ . 1 6 5 ) 

- C f i r s t t h r e e terms a r e t h e same as i n E q « ( ^ . i 6 3 ) > 

"Z> L 4t*-(4U-4U )ds 
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ir'du.js'jjt'.sq.) (f.1661 

= tfirst three terms are the same as in Eq. (̂ •16̂ )> 

-zL ft'^Ma-^^^t'-f^'-DM 

The stationarity conditions of the functionals given by 

Eqns.(4.163 and 165) lead to Eqns,<4.il5, 117, 120, 126, 133, 

134, 156, and 157) as a posteriori conditions. 

Based on Ar* and 4h*« Likewise, analogous 

modifications can be done to Eq.(4.139). These Modifications 

Iead to, 

i) first version 

iTHWMi (^>4*. *4',4%'.J& ) tk-ib7} 

- Cfirst three terms are the same as in Eq«(^.139) 

except that the integrals over the volume and the 

surface are replaced oy the sum of those for each 

element> - T f At* • AU dS 

= Cfirst three terms are the same as in Eq»(4.1^4) 

except that the integrals o\jer the volume and the 

surface are replaced by the sum of those for each 

element! - i f kf-ii**' + f* ̂ -AU } Js 

ii) second version 
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ntHWm(™,4$,H\At\4Z,) ('*•169, 

= Cfirst three terms are the same as in Eq* (4*167)'} 

-*tL*$*'i'*-rffi)is 

nr'(^U,A\l , Ad* } 4t*,^Mfi) U.17DJ 

= tfirst three terms are the same as in Eq.Ct.168)} 

The incremental governing equations* Eqns,(4.115, 118, 121, 

12 7f 13 3, and 134) and the continuity conditions at 

inter-element boundaries* Eq* (4.156 and 157), follow from the 

stationarity conditions of the functionals given by 

Eqns, (*.167 and 169). 

Modified Incremental Potential Energy Principles 

The two forms of incremental potential energy 

principles given by Eqns*(4.147 and 148), which are shown to 

be identical, lead to the following modified functionals. 

i) first version 

*2 /,„ A+*\ (4,171) 
7TPM1 (4H, *%>) 

- C f i r s t two te rms a re the same as i n E q . ( 4 , 1 4 7 ) or 

E q * ( 4 . 1 4 8 ) , excep t t h a t t he i n t e g r a l s a re r e p l a c e d 

by the sum of t h o s e fo r each e l e m e n t } 

m Jrntm ~ 

Eq.Ct.168)%7d


I l l 

i i ) second version 

Or*2 (All JUf ) ( 4 . 1 7 2 1 

= C f i r s t two t e r m s a r e t h e same as i n £ q * ( * t « 1 7 1 ) > 

- i L dt*> (4$ -JU )<ls 
»n JPnm ' r 

>m 

The stationarity conditions of the functionals, Eqns.(4«171 

and 172), lead to Eqns.(H.ll4, 116, 132, 156, and 157) and 

(4.115, 117, 133, 156, and 157), respect i vet y« 

Based on the above Junctionals incremental hybrid 

disolacement finite element models are derived [303. This 

type of finite element models are also practically as useful 

as those in the total Lagrengaan formulation* 

Modified Incremental He II inger-Reissner Principles 

The functionals given by Eons.(4.150 and 151) are 

modified, and the following modified incremental 

HelIinger-Reissner functionals are derived* 

Based on _ts* and _j-3*• 
^/ 

i) first version 

or*-2 (All AS* At*) (4.173) 

- Cfirst three terms are the same as in Eq.(4.150) 

except that the integrals are replaced by the sum 

of those for each element! - Zs I A t * • A M d$ 

ii) second version 
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O r * 2 / * ^ x (<*.17«») 

TfhRMl (JM,AS ,4^) 
- C f i r s t t h r e e terms a r e t he same as i n Eq«<**«173>> 

- Z > f Jt*> (JU ~JM/>)ds 

The s t a t i o n a r i t y c o n d i t i o n s o f the f u n c t i o n a l s g i v e n by 

E q n s . U . 1 7 3 and 17^) l ead t o E q n s . ( 4 , i H * . 116 , 119, 132, 13**, 

155, and 1 5 7 ) • 

Based on the above m o d i f i e d f u n c t i o n a l s , i n c r e m e n t a l 

h y b r i d mixed f i n i t e e lement models ana logous t o those I n the 

updated Lagrangean f o r m u l a t i o n can be d e r i v e d C3 l ]« 

Based on jr* and , dh * . 

i ) f i r s t v e r s i o n 

* 2 ,+ . t ^ + \ U . 1 7 5 ) 
ITIRMI (*!*> *£.*£, *£*) 

- Cfirst three terms are the same as in Eq«(*t*151)« 

except that the integrals are replaced by the 

sum of those for each element! 

-X* f At*'' *u dS 
m J/> -/> 

ii) second version 

= Cfirst three terms are the same as in Eq«(^»175>> 

~L j At*- (4M -AU^jdls 
"m 

The s t a t i o n a r i t y c o n d i t i o n s o f the f u n c t i o n a l s , Eqns,(<*.175 

•» J ft 
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and 176), lead to Eqns. (<+ .115, 118, 121, 133, 13^, 156, and 

157) as a posteriori conditions. 

Modified Incremental Complementary Energy Principle 

8ased on 4S* and ^g*» The incremental complementary 

energy principle given by EQ.CM-,152) is modified and the 

following modified functionals are obtained. However, the 

trans I ational equilibrium condition and the traction boundary 

condition, a priori satisfied only approximately, are 

retained in n\ 

i) f irst version 

nrcMi (^.H*.'?,*) lh'i77) 

- Cfirst two terms are the same as in Eq«<<+«152), 

except that the integrals are replaced by 

the sum of those for each element! 

-jr'fjU.JS'.Jt?) ik.irst 

- Cfirst two terms are the same as in Ea»(^«153), 

except that the integrals are replaced by 

the sum of those for each element! 

•*/, i-p-ir+i;'"-'*}* 
ii) second version 

Tern l^i.^t, A$/>) («».i79» 
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= C f i r s t two terma are the same as i n E q . ( 4 . 1 7 7 ) > 

- L f At*-A^fl ds 
vn J A ~ r 

/ v ' / *• "* N ( 4 . 1 8 0 ) 

9T (au^s*,^,) 

- Cfirst two terms are the same as in £q*(4,178)> 

+ i L f t*"+.' H« -jfy+Jt'fu'+L 5/')}^ 

The stationarity conditions of the above functionals lead to 

Eqns.(4.116, 119, 134, 156, and 157) as a posteriori 

condi tions. 

The modified functionals given by Eqns»(4.177 and 178) 

can be applied to finite element models £32]. However, as 

discussed for the total Lagrangean formulations, no 

significant advantage is founf in this tyoe of finite element 

models as compared to the hybrid type mixed finite element 

models based on Eqns.(%.l?3 and 174)* 

Based on Ar* and jh*. The functional given by 

Eq. (4.154), which is considered to be a basis for the most 

consistent incremental complementary energy principle, as 

with the analogous principle in the total Lagrangean 

formulation, is modified further to yield the following 

modified functionals, which form the basis of hybrid stress 

finite element incremental models* 

i) first version 

nr!„\M*,*f .'?,.*»,) v*. 
A (A \ 

(4.181) 
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-L L Jt'.JMels - Z^f {At*-At*)-A\X I 
m Jsuhm m J/%, ' - -/"' r v 

Tf'ui\*t .n;.'*,) , W 8 2 ' 

- i f , \\4**\H+&]*")-I ]:*t*T 

m JVnm I L X- l<r ^ r* ! ' ~ J ~ 
y v 

JS* 

- £ . / I ^t*-oH4'ols 

where ^u^ is the displacement vector at inter-elewent 

boundaries which is independently defined for the adjoining 

eIements. 

ii) second version 

+ 2 . , ¥• , * A, N 

ITCMI (*i >4i,<i$A) 
*2 ,,*•_,.* ~ s (<*.183) 

= Cfirst two terms are the same as in Eq«(<+*lftl)> 

7* m Jrhn 

I + L + ~ N (4*18**) 

= -Cf i rst two terms are the same as in Eq* (^•182)1 

-if te,m-'t,*'f-2r)i-
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The stationarity conditions of the above functionals lead to 

Eqas. (4. 118, 121* 13<*, 156, and 157) as a posteriori 

conditions* Based on these functionals, incremental hybrid 

stress finite element models which involve undetermined 

parameters for stress 4t*, rotation 4<**» and inter-element 

ooundary traction and/or displacement. These types of finite 

element models also have the same advantageous features as 

discussed for the analogous models Lr\ the total Lagrangran 

formulation* Thus, they will provide consistent and 

versatile numerical tools to analyze finite deformation 

problems of sol Ids. 
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CHAPTER V 

FINITE DEFORMATION PROBLEMS OF 

NONLINEAR COMPRESSIBLE ELASTIC SOLID 

Introduc ti on 

In this chapter, an incremental hybrid stress finite 

element model* based on the modified incremental 

comoIementary energy principle is derived, and its 

application to the finite deformation problems of nonlinear 

compressible elastic solids is discussed. 

Two versions of a modified incremental compIementary 

energy principles, using both the total and updated 

Lagrangean formulations, are proposed in the preceding 

chaoter, Consequently, four different types of assumed 

stress finite element models can be derived* The choice 

3mon3 tnese four models largely depends on the nature of the 

proolems to be solved. For the present nonlinear elasticity 

oroPlems, in which the strain energy density is defined in 

the initial configuration, the total Lagrangean formulation 

in which the initial configuration is used for reference is 

preferable* Also, if t^e two versions of modified 

functionals are compared, the second version, involving only 

inter-element boundary displacement as an additional 

variable, appears more convenient than the first version. 

Thjs» based on the functional given by Ed*<^.103), an 

incremental hybrid stress finite element model using the 

total Lagrangean formulation is derived. the detailed finite 
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element formulations are presented for general 

three-dimensional problems. Further, the general formulation 

is reduced for two-dimensional oroblems, and the Diane stress 

four-noded quadrilateral element is developed* Using tne 

newly developed finite element model, the example problem of 

the prescribed stretching of a thin elastic sheet is solved, 

In this example, the material is considered to be a 8latz-Ko 

typa nonlinear elastic compressible material [i?j, rhe 

numerical results for this exanple problem ar^ discussed. 

Finite Element Formulation of 

Incremental Hybrid Stress Model 

A finite element formulation is considered, in 

general, as a discretized equivalent of the corresoonding 

variational principle. For tne incremental hybrid stress 

model, the development of which is one of the objectives of 

the present work, the modified incremental ccmolementary 

energy principle stated by £a«i*,103) is taken as its basis* 

If the application of the functional Eq.(C.lG3) to the finite 

element model is considered, the traction boundary condition, 

which is assumed to be satisfied a priori in F.q. O.I03), is 

difficult to be achieved by the assumed functions. 

Therefore, this condition is also relaxed a priori in the 

same manner as shown for the Hu-Washizu principle. On the 

other hand, the displacement boundary condition can be 

directly enforced by selecting element boundary displacement 

JUp such that, 
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J u „ = A u 
~P -

o n SUOm ( 3 , 1 ) 

S h e e t 4 u n i s taken as independen t v a r i a b l e * t h i s c o n d i t i o n 

can be i n t r o d u c e d a t the s t a g e when t he f i n a l a l g e b r a i c 

e q u a t i o n s f o r the whole system are s o l v e d . Thus , i n the 

d i s c r e t i z i n g p rocess the d i so Iacement boundary c o n d i t i o n i s 

re-noved from the f u n c t i o n a l * and the f u n c t i o n a l Eq«(^« iQ3) i s 

r e w r i t t e n In the f o l l o w i n g f o m » 

nh2^' J£' J$p) 
(5 .2) 

«^jA(ir) + (t" +Jt)T:[ ̂ a.(h
N+ i)J f 

/ J t: .jup ds 

dv 

2 /" 4t • up ds 
m ^s^ m *iv 

(5.3) 

The corresponding Iterative correction procedure is obtained 

by retaining the following functional^ 

"'(4a , At, ju p) 

• ^ x { f ^ r + 2 M - i j ^ T 

m ^ v ^ v •*-' 
°m 

+ r <£+-)")• i-jvjdv 

s / r-̂ up ds -
«•* H i 

m s 
* / fi^ffp+^t^j ds 

In the functional given by Ea»(5.2)i the transMtional 

equilibrium condition Ea.(4*8) and constitutive relation 

£ q. (i~ • 2 0 ) are satisfied a priori. Keeping this in mind, 

t:q.(5.2) and Eq.(5.3> are discretized in the following 

manner. The first steo is the discretization of the 
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variables in the functionals. The stress field, which 

satisfies the trans I ationaI equilibrium condition, viz*, 

F- t +/) g = 0 (5.k) 

and i n i t s i n c r e m e n t a l f o r m , 

P'<t + />0Ag = o ( 5 . 5 1 

can be assumed by introducing a first-order stress functions 

\{J , such that, 
rJ 

or i n i t s i n c r e m e n t a l f o r m , 

d£ = r*4ij, + dg ( 5 . 7 ) 

p 
where t is a oartlcular solution which satisfies, 

* r = -/?8 (5.8) 

For convenience, vectors and tensors are decompose 1 into the 

rectangular Cartesian components, and equations are presented 

by using index notations in the subsequent development. 

Then, £q.(5.6) is rewritten in components as, 

fcij = eimn<Anj,m + t j j ( 5 . 9 ) 

where Q-im is the permutation symbol, and a comma followed by 

subscript implies the derivative with respect to the 

corresponding Cartesian coordinate. Now, we assume that i/>-

are defined by linear combinations of n finite number of 
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l i n e a r l y i n d e p e n d e n t f u n c t i o n s f« ( q = l « « * J J w i t h u n d e t e r m i n e d 

o a r ^ m e t r e s ftnjg * s u c h t h a t * 

^ n j = f q ^ n j q ( 5 . 1 0 1 

The s u b s t i t u t i o n of E q . ( 5 . 1 G ) i n t o b q » ( 5 . 9 ) y i e l d s , 

\ i ' eimn fq,m £ n j q + ^ . , 5 . 1 1 , 

F u r t h e r t t h e m a t r i x n o t a t i o n i s i n t r o d u c e d , and E q . ( 5 . 1 1 1 i s 

r e w r i t t e n a s f 

^ij) = ' eimn fq,m ^njq + fcij ' ( 5 . 1 1 ) * 

= [A] f/3njq} + ( t ^ ) 

9xa ax l 9x1 

whe~e a ( a = 9 X J ) i s t h e number o f u n d e t e r m i n e d s t r e s s 

p a r a m e t e r s * and c o l u m n and row v e c t o r s a r e d e n o t e d oy O and 

L j , r e s p e c t i v e l y 5 and m a t r i c e s are d e n o t e d by [ ] • S i n c e 

E l . ( 5 . 1 1 ) * i s a l i n e a r e q u a t i o n f t h e s t r e s s i n c r e m e n t s At^ 

are a l s o d e f i n e d i n t h e s a n e way. 

Kj( - MKjqf + Kji <5.12» 

Using this asuumed function* the tractions at the element 

bojndary tj. can be expressed oy, 

h i • { - i ' «J = K J { > W + {Tp
j<? 

( 5 . 1 3 ) 

And i t s i n c r e m e n t a l f o r m i s , 
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f.t.j - f A*J(^njqJ +{*?]} (S.lu, 

On the other hand, the rotation tensor in the 

three-dimensional case is suoj ected to the orthogonality 

condition* which is nonlinear* 

aT. a = i (5,15) 

Therefore rotation can be JniQuely defined by three 

independent parameters $i (i=l, 2, 3 ) , such as the Eu I er 

angles* In general, each component of the rotation tensor is 

a nonlinear function of (9£-. Assuming the distribution of 0( 

as a linear combination of linearly indeoendent functions w; 

with undetermined rotation oarametres ji^ (i=l, 2, 3 and 

j=l««*K) such that, 

h ' " j ^ (5.15) 

t h e c o m p o n e n t s . o f t h e r o t a t i o n t e n s o r can be e x p r e s s e d as 

n o n l i n e a r f u n c t i o n s o f fiy„ F o l l o w i n g t h e d e f i n i t i o n 

E q . ( + . l ) , t h e i r I n c r e m e n t s a r e o b t a i n e d b y , 

Aa-- = a»V(n"+l) - a!4 ( y.H ) 
a ij ij rmn' ijv *mny 

( 5 . 1 7 ) 

LJ nrn mn 
N N 

mn 

which are nonlinear functions of ̂ M„„,« Retaining U P to the 

second order terms* of ̂ m n » discretized incremental rotation 

is defined by, 

*As it will be seen in Eq«(5«27) f thQ second order terms in 
AV-n\n has contributions to the discretized incremental 
functional through the term, L. £"T;4o( . / y,* + I )Jy. 

** °m -* ** <v ~ 
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( 5 . I S ) {̂ 13} - l^U"J +U*°} 
9x1 9xb b x l 9x1 

w h e r e [ B ] C ^ m n > r e p r e s e n t s t h e l i n e a r t e r m s i n 4nm , and t h e 

s e c o n d o r d e r t e r m s a r e s y m b o l i c a l l y d e n o t e d by t ^ j x 2 } ; and b 

(b = 3x'K) i s t h e number o f u n d e t e r m i n e d r o t a t i o n param e t ^ r s . 

The e l e m e n t b o u n c a r y d i sp I a c e m e n t s u ^ a r e u n i q u e l y 

i n t e r p o l a t e d u s i n g n o d a l d i s o I a c e m e n t s ( d i s p l a c e m e n t s a t 

n o d e s o f an e l e m e n t ) as u n d e t e r m i n e d p a r a m e t e r s , s u c h t h a t , 

fii L j q i j 
(5.19) 

where Lj ( ] = 1 . . N ; N is the number of nodes) are interpolation 

functions and q-j (i = l, 2* 3 and j =i, • .N) are nodal 

displacements. Ea. (5.19) is rewritten in the matrix form, 

i*,j - l LJKJ} , 5 . 2 0 . 
3x1 3xc cxl 

where c (c=3XN) is the number of displacement parameters. 

Similarly, the displacement increments are defined by, 

{*%*} ' M K j (5.21) 

From the definition, Eq #(4.3), the incremental Jaumann 

tress *r is expressed in terms of At and ACL by, 

^r = — ( At.a" + t".4a + a**- A tT+AaT. t"T ) (5.22) 

At this point, it is noted that the state variables in the CN 

hi N M 

state, such as t , a , and h , are Known quantities. Thus, 

using the discretized variables defined by Eqns.(5.12) and 

(5.18), the incremental Jaumann stress Ar is expressed in 
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d i s c r e t i z e d f o r m . 

{^ij} " [ D J{^ m n q } + K H ^ j + { **l}} (5.231 

whe^e C^rT } a r e t h e c o n t r i b u t i o n s f r o m t h e p a r t i c u l a r 
(J 

s o l J t i o n s t and t h e d e f i n i t i o n s of C 0, J and [ D2 ] i n t e r m s o f 

[ A ] , £ 3 ] , tH , and a i m m e d i a t e l y f o l l o w f r o m E q n s . ( S , i 2 , 1 6 , 

and 2 2 ) . A l s o , f o r l a t e r u s e , t h e t n s o r ja-lh * I ) i s 

r e w r i t t e n i n t h e matrix f o r i . N o t i n g t h a t Aa i n v o l v e s t h e 

s e c o n d o r d e r t e r m s i n 4 ^ ( j , i t i s e x p r e s s e d in t h e f o l l o w i n g 

fo rm« 

C ^aim<hmj + <$m i)> = t R 1 3 € / l / x > + t R2 (<^ 2 ) > 
'">j 

(5 . 2<+) 

where € R2(idM
2)> is a vector, The components of which are of 

second order in Afin* 

Now, we consider the discretization of Eq,(6,2). For 

simplicity, the subscripts are omitted in the matrix notation 

in the following equations. As defined by Ecu (~.22), the 

complementary energy density AR is a quadratic function of 

jr. Using matrix notations it can be written as-, 

A R = T U r j [ C ] U r } ( 5 . 2 5 ) 

3y s u b s t i t u t i n g E q n s . C 5 . 2 3 ) and ( 5 . 2 5 ) , t h e f i r s t t e r m i n 

E q . ( 5 . 2 ) i s r e d u c e d t o t h e f o l l o w i n g d i s c r e t i z e d f o r m . 

f AR dv = j - f [4r)[ c j f j r } dv ( 5 . 2 6 ) 

Eqns.C5.23
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whe^e 

1_(*I3 
2
 \AV 

H I I H
1 2 ] / ^ | | ^ | 

L H21 H22J M + M 

7, 
aq. 

\*12. 

^ - /v0m(Dl)TC](N dv 

[H12J = [H21f= X^fD^fcJfDj dv 

(»22] - / v o m ( D 2 j T [ c j ( D 2 ] dv 

H = l0J»jl c]Ki " 
h i = /vcjvij; c)̂ rP;dv 

s i m i l a r l y , o t h e r t e r m s i n E q « ( 5 « 2 ) a r e d i s c r e t i z e d . 

JVo/
r ••I'S-^V) iv = /v0mLtNj( [ R l j ^ ^ + f R 2 ^» , J ) d v «5-Z" 

" IVJfcrJ +1M(K*) { )̂ 

h^fiwF + Z >] <* 
= Xom( l^J[A]T + 1<«PJ ><(Rl]£W +{R2(<1MJ)}) dv 

= Uajf p j f^ j +7l^J[sJ{4M} + I J / Z J ^ Q J 

C 5 . 2 a » 

-i- higher order terms 

i v 0 m ^ - i" , ds = X0m( U/3J f A*f + I J TPj ) ( LJ (^ q] 

" l ^ J N ^ q } +I4qj /JQ 4} 

( 5 . 2 9 ) 

ds 
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fso^i^** -jt^USjfLj^qjds =[4qJ^Q5) 
(?.30) 

The substitution of Eqns.(5.26> through (5,30) into the 

functional* £q«(5.2), leacs to the discretized functional: 

rr*(4p, *P, Aq ) 
HS2 

1 MT[ 
Z ~7' 
m 2 

l " ) . 

H l l ( H 1 2 4- P) 

(H 1 2 + P ) T (H 2 2 + H*+ S) 

+ 2 i 
m 

J/3 

4 ^ 

x T , 
4Qi 

zlQ2 + ^ Q 3 

j j q | 

( 5 . 3 1 ) 

+ 2 {- 4Q4 + 4 Q 5 } T { j q ) 

w h e r e t h e t e r m [ 4 f x ' ] £ Q r > v w h i c h c o r r e s o o n d s t o t h e r o t a t i o n a l 

e q u i l i b r i u m c h e c k , i s r e m o v e d , and i t n i l I be r e t a i n e d i n n\ 

The s t r e s s p a r a m e t e r s Aft a n d t h e r o t a t i o n p a r a m e t e r s A fi a r e 

i n d e p e n d e n t f o r each e l e m e n t , w h e r e a s n o d a l d i s p l a c e m e n t s AQ 

a r e common t o a s e t o f a d j o i n i n g e l e m e n t s . T h u s , t h e 

s t a t i o n a r i t y c o n d i t i o n of I q » ( 5 . 3 1 ) w i t h r e s p e c t t o a r b i t r a r y 

v a r i a t i o n o f A(3 and AIL g i v e s , 

4/3 

Mill -
G 

LOJ H-r 
[ * ^ -dQ2 + AQ3 

( 5 . 3 2 ) 

for individual elements, where* 



127 

[ H ] " 
H l l ( H12 + P ) 

(H12 + P)T (H22 + H* + S) 

( 3 . 3 3 ) 

As d i s c u s s e d by F r a a i j s de V e u b e k e [33.1 f o r t h e l i n e a r 

e l a s t i c c a s e * t h e m a t r i x [ H , , ] c a n n o t by i t s e l f be i n v e r t e d * 

due t o t h e f a c t t h a t c e r t a i n c o m b i n a t i o n s of s t r e s s 

p a r a m e t e r s Ap p r o d u c e z e r o s t r e s s e n e r g y s t a t e ? t h u s * t h e r e 

e x i s t s a n o n - z e r o v e c t o r A(3 f o r w h i c h t h e s t r e s s e n e r g y i s 

z e r o ? h o w e v e r , t h e e n t i r e m a t r i x [H ] i n L g . ( 5 . 3 E) can be 

i n v e r t e d ^ T h e r e f o r e , G q . ( 5 # 3 2 ) c a n oe s o l v e d f o r [ 4 / 3 , 4 / * ] , 

and we o b t a i n , 

401 , ,-' 
AA = [Hl ^q 

(5 .3 :+) 

3y s u b s t i t u t i n g bacK t h i s e q u a t i o n i n t o L q . ( £ . 3 i ) , t h e 

f u n c t i o n a l i s e x p r e s s e d i n t e r ras o f o n l y ^ q . 

"HS2 ( ' q> • " \ 2 14qJm ( Km] {j q}m + l « J , {4 Q?m 
m 

(5.15) 

w h e r e 

W 

4Q 
m 

, T 

o J 

G 

to . 

- I G 

Q2 + 4Q 3 

-4Q4 + <*Q5J 

( 5 . 3 6 ) 

( 5 . 3 7 ) 

The s t a t i o n a r l t y c o n d i t i o n o f t h e a b o v e f u n c t i o n a l w i t h 
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r e s p e c t t o ^ q i s o b t a i n e d a s i 

£ K] {«}. = £ { i Q ] m <5.^8) 
m m 

where [KM! are incremental (or tangent) stiffness matrix of 

elements, and t"*Q>m are equivalent nodal forces. After the 

summation over the elements is properly carried out, so that 

the connectivity of nodes is maintained, tq.(5*38) leads to a 

system of algebraic equations, from which the incremental 

nodal displacements are obtained. 

N I ^ G ) - {A^j (£•39) 

w h e r e £K$.l i s a g l o b a l t a n g e n t s t i f f n e s s m a t r i x ? CJq^> and 

t^Q<*> are g l o b a l n o d a l d i s o I a c e m e n t s and n o d a l f o r c e s * T h i s 

e q u a t i o n can be s o l v e d n u m e r i c a l l y oy u s i n g t h e d i g i t a l 

c o m p u t e r * and t h e i n c r e m e n t a l n o d a l d i s p l a c e m e n t s C4q?.> a r e 

t h u s d e t e r m i n e d . Once C j q ^ l i s K n o w n , 14(3* and C^/i} c a n be 

c a l c u l a t e d t h r o u g h E q . ( 5 . 3 ^ 1 . From t h e s e v a l u e s , At and Aa 

cary oe f o u n d by E q n s . ( 5 . 1 2 ) and ( 5 * 1 8 ) • H o w e v e r , ^ u , J t , and 

Aa o b t a i n e d h e r e a r e l i n e a r a p p r o x i m a t i o n s * T h u s , v a l u e s 

u £ \ t N + l , and a" + ' e s t i m a t e d o y , 

uW+l = u^ + ^ S , t " + l = t - + 4 t , a^laA
+Aa € 5 . ^ 0 ) 

a r e a l s o a p p r o x i m a t e v a l u e s . The c o r r e c t i o n t o t h e s e 

a p o r o x i m a t i o s c a n be c a r r i e d o u t by t h e i t e r a t i v e p r o c e d u r e 

b a s e d on 77, g i v e n by E q . ( 5 . 3 ) * The i d e a of s u c h i t e r a t i o n i s 

s i m i l a r t o t h a t o f t h e w e l l - k n o w n N e w t o n - R a p h s o n i t e r a t i o n 
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methods in solving nonlinear algebraic equations. 

Following the same procedure as shown for n*S2 , rr
1 

given by Eq«(5.3) , which corresponds to the correction for 

C^ state* can be discretized. However, for convenience in 

the later discussion-, n* for CN+i state is considered. Its 

discretized form is obtained as, 

n\ 4/3, AV-, 4q) 

iQt: 

( 5 . f c i ) 

whe^e 

\APi{\) --jvM'-fr+^'-ih?^ 
" m 0 r' 

-Jtvojt-Sp ds 

M M =xj<j+ifvi-T-

( 5 . ^ 2 ) 

( 5 . ^ 3 ) 

L4J {<*} • bj .aup as / i • A?L 
4 v o m 

ds ( 5 . ^ * ) 

The values aN" , t*+*, u^', and |2j in Eqns.<5.**2, V3, and <*u) 

are considered as approximate values obtained either by 

Eq.(5.39) or after some iterations. Thus, Qj<, Qr, and Qt are 

interpreted as discretized errors in the compatibility 

condition (Kinematic relation), rotational equilibrium 

condition, and both the traction reciprocity at inter-element 
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b o u n d a r y and t r a c t i o n b o u n d a r y c o n d i t i o n , r e s o e c t i v e I y . 

These e r r o r s a r e added on t h e r i g h t h a n d s i d e o f E q . ( S * 3 9 > as 

r e s i d u a l f o r c e s i n a g e n e r a l s e n s e . Then we o b t a i n ? 

* [Km] K U " * K ] 
m m 

m ( 5 . + 5 ) 

where C q r > i s a c o r r e c t i o n v e c t o r and CQc>m i s a r e s i d u a l 
" i n "• 

f c c e v e c t o r w h i c h i s d e f i n e d t>y f 

{Qc}m 

,T 

i"' g * u 
(5.u51 

After the summation over the elements, tq*(5,^5) is reduced 

to, 

Klkc} = KG] (5.*7) 

where CqCq.> and TQCq.> are global correction vector for nodal 

disoIacements and global residual forces at nodes. 3y 

solving £q.(5.^7) for TqCQ.> the correction vector is 

obtained. The correction vectors for stress and rotaion are 

calculated oy, 

ft K} - J 
(5^8) 

Qr 

which is analogous to hq«<5*3**)* Using these correction 

vectors, new values of uN+l , a N H t and tN+l are calculated. 
— p ~s A/ 

Again these values are substituted into Fq, <5«-i), and the 

errors are estimated. If the errors are not smaller than 
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desired values* the above corrections are repeated until they 

are reduced to a prescribed tolerence level. At this point, 

it is noted that [K^l in Eq.(5«^7) is a tangent stiffness 

matrix at CN state. If IK^] is Kept same througnout the 

iterations * the manner of the convergence is illustrated oy 

Fig,3 which corresponds to a modified Newton-Raphson method. 

However, as shown by Eqns.(5.22 through 5.^7) * matrices {Km1 

3nd IHJ, and equivalently , CK&J and CQcs-1 involve f , a N, 
— ~ /v /v 

and u . I f t h e s e m a t r i c e s a r e e v a l u a t e d f o r t h e new 
—/> 

a p p r o x i m a t e v a l u e s t K + « aN+ i and u , a t e a c h i t e r a t i o n , i n 

o t n e r w o r d s , t h e t a n g e n t s t i f f n e s s m a t r i c e s a r e r e o l a c e d by 

t h a t f o r new a p p r o x i m a t e CN+, s t a t e * t h e c o n v e r g e n c e o f t h e 

i t e r a t i o n can be i m p r x v e d * as shown by F i g . u , w h i c h 

c o r r e s p o n d s t o t h e N e w t o n - R a o h s o n m e t h o d . 

P l a n e S t r e s s p r o b l e m 

The g e n e r a l t h e o r e t i c a l d e v e l o p m e n t s p r e s e n t e d i n t h e 

p r e c e d i n g s e c t i o n are now s p e c i a l i z e d t o t h e c a s e o f 

p l a n e - s t r e s s p r o b l e m s * and t h e i n c r e m e n t a l h y b r i d s t r e s s 

f i n i t e e l e m e n t model u s i n g f o u r - n o d e d r e c t a n g u l a r e l e m e n t i s 

d e v e l o p e d . The p r o b l e m o f t h e p r e s c r i b e d s t r e t c h i n g o f a 

t h i n e l a s t i c s h e e t made o f 8 l a t z - K o t y p e LIT] n o n l i n e a r 

e l a s t i c m a t e r i a l i s s o l v e d as an e x a m p l e . 

F o r t h e p l a n e - s t r e s s c a s e t h e s t r e s s f i e l d i s assumed 

t o be c o n s t r a i n e d by t h e c o n d i t i o n , 

* « = t 3 t = t 2 3
 = t 3 2 = t 3 3 = 0 < 5 . < * 9 ) 
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where x, ana x2 are inplane coordinates and x3 is a 

coordinate in the thickness direction. Similarly, rotation 

field is subjected to the conditions, 

Q13 = G 31 = Q23 = Q 32 = 0 * Q33 = 1 ( 5 . 5 0 ) 

Using these assumptions, the Jaumann stress defined by 

Eq.(2.15> is reduced to, 

[*] 

r 
11 

r i 2 
0 

r 2 1 
r 2 2 0 

0 0 0 

(5.51) 

For simplicity, the body forces are assumed to be zero. 

Then, following the general procedure discussed in tne 

preceding section, stress field is assumed using stress 

functions 0j and ŷ2 , as, 

t = <A 
11 1,2 

t = «A 
12 2, '21 

- A 
l.l C22 " " ^2,1 (5.52) 

w h e r e i/r and <A2 a r e c h o s e n t o be c o m p l e t e p o l y n o m i a l s o f 

i n p l a n e c o o r d i n a t e s x, and x2 , i . e . , 

"Ai = x i Pi + x
2 ^2 + x l /33 + * x x 2 0 4 + x2 /Q5 + 

2 2 

5 

2 - 2 

( 5 . 5 3 ) 

^ : x l &1 + x2 ^2 + X l ^ 3 + x l x 2 # 4 + x2 &5 + 

The i n c r e m e n t a l s t r e s s f i e l d i s a l s o assumed i n t h e same 

m a n n e r . I t i s n o t e d t h a t t h e s p e c i a l c a s e , when (3] = @\ and 

o t h e r fts * r e z e r o , c o r r e s p o n d s t o a z e r o s t r e s s e n e r g y s t a t e 

i n t h e f i r s t i n c r e m e n t . T h i s i s r e s p o n s i b l e f o r t h e need t o 

i n v e r t t h e m a t r i x CH] as a w h o l e i n E q . ( 5 . 3 2 ) . 
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The two dimensional rotation field is assumed as, 

C a n , a12 , a21 , a22 ] = [ C o s 0 , Sin<9, -Sin<9* Costf] C 5 . 5 M 

where the rotation parameter corresponds to the rotation 

angle around x3 direction. It is readily shown that the 

above rotation field satisfies the orthogonality condition. 

Then* retaining the second order terms in^# t the Incremental 

rotation field defined by Eq.U.l) is assumed as, 

[ja11f Aa12 , 4S21 , 4a22] = [-Sin<9
N, Cos #\ -Costf", -Sin0*U0 

--£{Costf\ Sin<9\ -Sinfl"* Cosfl"]J6>2 (5.55) 

Now, we examine the orthogonality condition of ( o. + 4a ) 

which is given by, 

( a 4-4a).(a" + 4a) = 1 
* • w * * <•»> /%* 

Ry substituting the incremental rotation tensor assumed as in 

Fq.(5.55) into the above equation, we obtain, 

(a^-Jaf- (aA+4a) = 
1 , 0 1 

+ — 
I 0, 1J 4 

0 

0, 1 

<?.3S) 

^ 4 

Thus, the assumed incremental rotation tensor satisfies the 

orthogonality condition JP to the third order in AQ . 

Moreover, if only linear oart in Act is considered, the 
/v 

incremental rotation field can be shown to satisfy the 

reqjired linearized orthgonality condition, viz., 

a" • ACL - sKewsyms et ric (c.57) 
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S i m i l a r l y , the v a r i a t i o n S^a s a t i s f i e s , 
•v 

a*-8m = skewsymietric (5,58) 

which is required in the iteration process as shown by 

Eq.(^.54). Thus t the rotational equilibrium condition is 

guaranteed by iterative corrections. The distribution of the 

rotation angle $ in the element is also assumed by complete 

ooIynomiaIs, 

0 = Mi+ x, fi2 + x2 n3+ (5,59) 

Similarly the increment of the rotation angle Ad is assumed 

in the same manner* 

For the present problem, four-noded isoparametric 

element is considered. The geometry of an element in the 

undeformed state C0 is shown by Fig*5. ror convenience, the 

four nodes are numbered in the anticlockwise direction* The 

coordinates of node n (r> = i, . • .**) are denoted by (x" , xj ) . 

An arbitrary shaped quadrilateral geometry of the element C3n 

be transformed into a square in (r, s) plane by the 

isooarametric mapping which is given by, 

xf = <l/4)C(l-r) (i-s) x? 4- (l+r) (l-s) x? (5.50) 

MH-r)(l+s)x? Mi-r) (1+s) xj > <i=l, Z) 

Further, denoting the nodal displacements at node n by < q" , 

qj), displacement fields on the element boundary STR assumed 

by, 

ZPi = Cl/*OC(i-r) (l-s)q\ + ( i + r) {l-s) q? (5.61) 
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+ ( i + r ) (1+S)q3 + ( l - r ) ( i + s lq l > (1 = 1 , Z) 
I l 

where ( l~r 2 ) ( l - s 2 } = 0 and | r | , | s | < l 

The incremental d isplacements at element boundary AZa are 
—r 

also assumed in the same way. 

Now, we consider the constitutive relations* The 

material is assumed to oe 31atz-Ko type nonlinear elastic 

material C17], Its mechanical properties are characterized 

by the strain energy density W per unit initial volume* which 

is given by, 

W = (M,f/2)[J1-3+|(J3
Q?-l)]+ u(^"f) [J2 - 3 + ^ (j£- 1)J 

(5.62) 

where J, , J2 , and J3 are defined by, 

Ji = h '- J2 = hfh ; and J3 = Z1: (5.63) 

where I-t are the principal invariants of the deformation 

tensor G« In Eq*(5.63), \i represents the shear modulus, and 

a is related to the Poisson's ratio v through, 

= 2W(1 -2i/) (5.6*) 

Also, f is a material constant. 

The incremental constitutive relations can be obtained 

through the incremental strain energy density function AW 

which is defined by, 

(5.651 
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where 

# J W 

SET = ^ 

The d e r i v a t i o n o f JW i s r a t h e r l e n g t h y o u t i t c a n ba o b t a i n e d 

i n a s t r a i g h t f o r w a r d m a n n e r . L e t t h e i n v a r i a n t s o f ( h * I ) be 

d e n o t e d by h^ . Fo r t h e p r e s e n t p l a n e - s t r e s s c a s e , i n w h i c h , 

h 13 = h 3 1 =h>23 = h 3 2 = 0 

t h e y a r e d e f i n e d b y , 

\ = h „ + h22 +h3 3 (5 . 66 ) 

h2 = h „ h2 2 - h 1 2 h21 + h2 2 h33 + h3 3 hA 1 

h3 = ( h „ h2 2 - h 1 2 h21 ) h3 3 

From t h e r e l a t i o n b e t w e e n G and h , E q » ( 2 * 7 ) * i t i s shown t h a t 

I i and h ̂  a r e r e l a t e d b y , 

( 5 . 6 7 ) 

h = h l " 2h2 

I 2 = h2
2 - 2 h 3 h l 

X3 = h 3 

U s i n g E q n s . ( 5 , 6 3 , 6 6 , and 6 7 ) , W can be e x p r e s s e d i n t e r m s of 

fi+t 
h . S i m i l a r l y , i f we c o n s i d e r t h e s t r a i n t e n s o r h i n CN+I 
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state* which can be written In terms of h and ^h as 

h -n + An (5.58) 

N+l 

the strain energy density W in Ĉ +i state can DP expressed 

as a function of the incremental strain 4h» Then, the 

incremental strain energy density J W is obtained as the sum 

of the second order terms of Ah in WN . It is shown to be* 

( 5 . 6 9 ) 

AW = P i \ 2 2 '• ? 
{ • ^ " B " I ^ + f-W)(^(^} 

+ 

+ 

niizil l - f ) r 1 | 7 \ 2 N 2 N ? -i 
2 L ^N~ U A h 2 j + 2 h 2 A h2 " 2 V h

3 " 2Ah3Ah1j 

'* C' 7̂ " { W + ̂ M + ̂ 3 (2h d3) 

JL_ uN Co, N 

d 3 ) 
3 A h

3 ; 

d») 2
 h
3 l

2 h
2
A h2 " 2 h3 A hi " 2 h i A h

3 }
 Ah' 

N\Q'-1 2, 1 / N \ r v - ? / \ ?~ 

A h, + - u(a-iy(£y (Ah
3)7 3 2 

whe re <ah1 * 4 h 2 * and ^ h 3 a r e l i n e a r p a r t s o f t h e p r i n c i p a l 

i n v a r i a n t s h*+ l * w h e r e a s * ^ 2 h 2 and 42h3 a r e s e c o n d o r d e r t r a m s 

o f j h i n h2
N+' and h j + ' , r e s p e c t i v e l y . They are g i v e n by* 

A h j = Ah, + A h 9 9 + Ah, , , - , m 
1 lL 22 33 (r>.70) 

Ah2 « (2 + h 2 2 + h 3 3 ) A h u - h 2 l A h 1 2 - h 1 2 A h 2 1 

+ (2 + h u + h 3 3 ) A h 2 2 + (2 + h u + h )Ah 
2 2 y " 33 
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Ah3 = (1 + h 2 2 ) ( l + h 3 3 ) A h u - (1 + h 3 3 )h 2 1 Ah 
12 

" (1 + h
3 3 ) h 1 2 A h 2 1 + [ ( 1 + h u ) ( l + h 2 2 ) " h 1 2 h 2 1 ] A h 

+ ( l + h 3 3 ) ( l + h l l ) A h 2 2 

33 

A h = Ahl;LAh2 - Ah Ah + ^h^Ah + A h ?2 A h 33 

2 
A h 3 = (1 + h

3 3 ) { A h 1 1 A h 2 2 - Ah1 2Ah2 1} 

+ A h 3 3 { d + h u ) A h 2 2 + (1 + h 2 2 ) A h u . h ^ A h ^ . h ^ ^ 
2 ] 

In the above, hg arQ Known q u a n t i t i e s hj j a t t h e Nth s t age 

and the s u p e r - s c r i p t N has been o m i t t e d f o r conven ience * 

Us ing t h e m a t r i x n o t a t i o n * AW can be r e w r i t t e n as , 

JW = yf^h) [ E]{jh} ( 5 . 7 1 ) 

where 

{4hj = [ Ahn, 4h1 2 , i h 2 1 , 4h22 , Jh33J 

From the d e f i n i t i o n of 4W, the i n c r e m e n t a l Jaumann s t r e s s i s 

o b t a i n e d a s , 

{*r} . [E]{„hJ ( 5 . 72 ) 

where 

{ i r } = [ j r n , J r 1 2 , i r j | . , 4*21, J r ^ j 

N o t i n g the symmet r i c p r o p e r t i e s of Ar and j h , v i z . , 
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AT 12 AT 21 A \ l " ^ h 2 1 

the above r e l a t i o n can be i n v e r t e d , and we o b t a i n , 

€Jh3 = [ C l C ^ r J ( 5 . 7 3 ) 

Further, incremental complementary energy density is obtained 

as, 

AR = -jj--Ĉ r>T [CI O r } (5.7^) 

C o n s i d e r i n g the f a c t t h a t ^r33 =0 f o r p l a n e - s t r e s s case , 4R i s 

f i n a l l y w r i t t e n i n the f o l l o w i n g f o r m . 

where 

4 r 

"a T 

iR(-r)-i K l [ c ] 
21 

22 

.dr I I 

4 r 12 

4 r 21 

j r 22 

i j 

I N N M N 

2 v im mj a im %j T j m
 fl"mi jm mi ' 

( i , J > m = I , 2 ) 

( 5 .75 ) 

(5 ,761 

Us ing t h e assumpt ions E q n s . I 5 . k 9 and 50) and the i n c r e m e n t a l 

complementary energy d e n s i t y g i v e n by £ 1 . ( 5 . 7 5 ) , t he 

f u n c t i o n a l d e r i v e d f o r t h r e e - d i m e n s i o n a l c a s e , E q . ( 5 . 2 ) » i s 

reduced t o * 

"HS2UV^°W^P } 
( 5 . 7 7 ) 

m °m *• i j i J j k v k i u k i 



-lloJ^n** + S J C ' ^ I ds 
( i,j,k,p,q - 1,2 ) 
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The volume Integrals and the surface integrals in the above 

equation are reduced to integrals over the ar^a of the 

element and line integrals along its boundary. Further* by 

using the isoparametric transformation, these integrals 

defined in the (x, * x2 ) p I in e are mapped into those in the 

tr* s) plane. Thus* they are reduced to area integrals over 

the square region (|r|* |s|<l) and line integrals along the 

line parallel to the coordinate lines* which can be easily 

evaluated by numerical quadrature* such as Gaussian 

integrat ion, 

8y substituting the discretized assumed functions 

defined by Eqns.(5.52* 5̂ ., and 6i) into the functional* 

Eq,(5,77)* and carrying out the integration* it is reduced to 

the discretized functional analogous to Eq*(5«31), 

Following the general procedures discussed for 

three-dimensional case* incremental hybrid stress finite 

element model for pIane-st~ess problems is developed, 

Before applying the newly developed finite element 

model to boundary value problems* the properties of a single 

element are studied* According to the assumptions £q*(5*53 

and 59)* the stress function and the rotation angle can be 

assumed as complete polynomials of any order. However* as 

shown by Fraeljs de Veubeke [333 for linear elastic case, 
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certain conditions must be satisfied by the numbers of 

undetermined parameters for stress field "a", rotation field 

'•b'\ and dlsolacement field "cM, so that the matrix [HI 

defined by Eq.<5«32> can be inverted, and further, the 

element stiffness matrix [Km] defined by Eq.(5.36) does not 

involve any Kinematic deformation modes other than the three 

rigid body modes, namely, translations in x, and x2 direction 

and rigid body rotation. 3y a close investigation of the 

mathematical properties of these matrices, we may possibly 

obtain such conditions in an analytical way* But these 

mathematical arguments are left for future studies, and a 

numerical approach is employed. The oehavior of the element 

is characterized by the eigen-values and corresoonding 

eigen-vectors of the stiffness matrix* Physically, the eigen 

values are proportional to the amount of strain energy stored 

in the element through the deformations which have the same 

pattern as the respective eigen vectors. Therefore, these 

eigen-values must be non-negative for all materials. 

Further, as shown by Bathe C3<+] for assumed displacement 

finite elements in linear theory, a properly formulated 

element must have three zero eigen-values and these 

correspond to the rigid body modes. Therefore, by checking 

the eigen-values and eigen-vectors of the stiffness matrix, 

we can tell whether the behavior of the element is physically 

proDer or not« Since, the stiffness matrix is changing with 

the deformation in the finite deformation problem, it is 

impossible to predict its behavior in the arbitrary deformed 
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state. But by examining the stiffness matrix at the 

undeformed state* the essential information can be obtained. 

Then* the elgen-values and eigen-modes of the stiffness 

matrix of the newly developed finite element are calculated 

for various combinations of nuiber of stress parameters "a" 

and number of rotation parameters "b" (number of displacement 

parameters c=8). The geometry of the element is square and 

material constants f, ji * and a are chosen so that they are 

equivalent to the case of c=l psi and î  =0 * 3 (E'/oung's 

modulus* ^:Poisson's ratio). The calculated eigsn-va I ues 

are presented in Table 1* and the eigen-modes for the case 

(a* b, c)=<10* It 8) are shown by Fig.7* It is observed from 

these results that if number of stress parameters "a" is 10 

or more* the element behaves properly. However* it is 

noticed that if the number of rotation parameters* which are 

considered to constrain the stress field through the 

rotational equilibrium condition* is taKen large compared to 

that of stress parameters* matrix CH] may become singular as 

in the case of the combination (4* 3, 8). 

Numerical Examples 

Now* we turn to the numerical application of the 

incremental hybrid stress finite element model to 3 boundary 

value problem. The example problem considered is the 

prescribed stretching of a thin elastic sheet (8*\<8"< • 05 "I . 

The sheet is clamped at the loading edges x-i = + **• and it is 

stretched to twice its original length in xA direction as 
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shown by the i n s e t in F i g , a , Thus t he boundary c o n d i t i o n s 

can be s t a t e d a s , 

t1 =t2 =0 a t x2 = ±u a ( 5 .78 ) 

u, = + M A - i ) , u 2=0 a t X, = K . ( 5 . 79 ) 

where A is an extension ratio (1<A<2I* The material is 

assumed to be a Blatz-Ko type •aterial tlTJ such as foamed 

rubber* The specific material constants ^ » f, and a in 

Eq.(5.62) are chosen to be, 

^ = kti psi ; f = 0 ; a - 1 ( 1̂  = 0.25) 

C o n s i d e r i n g t h e symmetry of the p r o b l e m , a q u a r t e r of the 

sheet i s ana l yzed u s i n g a 6X6 n o n - u n i f o r m mesh f i n i t e e lement 

assembly as shown by t he i n s e t i n F i g . 8 . The f o u r - n o d e d 

e lement wh ich has 10 s t r e s s pa rame te rs ( l i n e a r d i s t r i b u t i o n 

of s t r e s s ) and 3 r o t a t i o n p a r a m e t e r s ( a l s o l i n e a r 

d i s t r i b u t i o n ) , i s used f o r t he p r e s e n t examp le . The 

c o n s i d e r e d t o t a l s t r e t c h ( A=2J p r e s c r i b e d on the edge xn =•<• 

i s imposed i n 20 i n c r e m e n t s <^A=0 .05 ) . The Newton-Raphson 

t ype i t e r a t i o n s based on Eq# (5 .3 ) are c a r r i e d ou t a t each 

i n c r e m e n t . D u r i n g the i t e r a t i o n s the t a n g e n t s t i f f n e s s 

m a t r i x i s Kept unchanged as i l l u s t r a t e d by Fig«3« I n 

g e n e r a l , the e r r o r s i n v o l v e d in the s o l u t i o n i s e s t i m a t e d by 

the r e s i d u a l l oad CQeer * i r> E Q « ( 5 « 4 ^ ) « I f t he norm of the 

r e s i d u a l load v e c t o r and the t o t a l l oad v e c t o r , denoted by 

II Qc II a n d flO.ll » r e s p e c t i v e l y , ar e c a l c u l a t e d , the measure of 

t he errors (f i s e s t i m a t e d b y , 

flO.ll
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€ = Q< 
Ql 

(5.301 

The iterations are repeated until 6 becomes less than IX. 

For the present example the desired convergence is achieved 

after 2 iterations* on an average* Fig.8 shows the total 

axial load necessary to achieve various ratios of stretch 

(1< A<2) • For the purpose of comparison* the results 

obtained by using finer increients MA=0»025) but without 

iterations are also plotted in Fig.8. However, the results 

without iterations were not noticeably different from those 

with twice large increments and with iterations. Hence* no 

distinction is made between these in Fig.8. From these 

results, it appears that if the increments are taken small 

enough, practically reasonable solutions can be obtained 

without iterations* However it is recommended to check the 

errors by iterations at least every few increments. The 

reduction ratio of the width of the sheet at the center line 

(lateral cntraction ratio) is plotted in Fig*9* The deformed 

configurations of the sheet at A =1.5 and A-2.0* along with 

the initial configuration are shown in Fig,10* The contours 

of computed rotation angle 0 at the final stage ( A=2.0) are 

plotted in Fig.ii. The rotation field shown by the figure is 

consistent with the displacement pattern shown by Fig.iO, and 

the maximum rotation occurs at the comer of the loading 

edge. The contours of the axial (x1 direction) component Tu 

of the true or Cauchy stress at A-2.0 are plotted on the 

deformed configuration in Fig.12. Similarly* the 



distributions of ZJ, § ^ 2 *
 anc* 2̂2 a* A = 1.5 are presented by 

Figs.13, 14, and 15. It is noted here that all the stress 

components are considered in the rectangular Cartesian 

coordinates. As shown by Figs. 13 and 14, although number of 

data points is not sufficiently large due to the coarse 

finite element mesh, maximum values of Tu and T12 also appear 

to be found at the corner of the loading edge. From the 

comparison between Figs.12 and 13 , it is observed that the 

distribution of T„ at A = 2.0 is notably different from that 

at A. = 1.5. This difference is explained by the fact that the 

material almost reaches the maximum strength after A=1.8, 

and the stress distribution becomes close to being uniform. 

For comparison, the axial components t„ and s^ of the 

Piola-Lagrange stress and Kirchhoff-Trefftz stress* 

resoectively, at A=i«5, are plotted on the undeformed 

configuration in Figs.16 and 17* If the Figs.13, 16, and 17 

are compared it is noticed that the stress ^ measured per 

unit deformed area, which is smaller than that of undeformed 

state, has the largest value compared to others, whereas, 

that of su measured per unit undeformed area and decomposed 

with respect to the base vectors in deformed configuration is 

the smallest. This result is consistent with tne 

definitions of stresses given by Eqns.(2.12 and 13). 

Moreover, because of the fact that the Plola-Lagrange stress 

jt and true stress X a r e subjected to the same form of 

differential equations, viz., 
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V-t +/0 g = 0 (5.81) 

V'X +/?*1 = ° (5,82) 

#• 
where V and V are gradient operators in the undetormed and 

* 
current deformed conf igura t ioi s, respectively; P0 and P are 

mass density per unit undetormed and deformed volume* 

respectively* very close distribution oatterns of t„ and Tu 

are observed. On the othe^ hand, sn which is subjected to* 

7-(s-FT) +/0 g = 0 (5*83) 

has a significantly different distribution. Similar 

comparison is made among t21 , s12 , and T12 shown by Figs»18, 

19, and 14. Unlike in the case of the axial components, the 

effect of the difference in the boundary condtions along the 

free edge is relatively large, also since, the Cauchy stress 

is symmetric, whereas the Pio1a-Lagrange stress is 

unsymmetric. Therefore, a slight difference is observed 

between Flgs.lA and 18. 

For incmpressible Mooney type material, similar 

problems are solved by Oden C18 3 and Becker [35] using 

displacement finite element model. Although, direct 

comparison is not possible, the results obtained by the 

prooosed method show good qualitative agreement with those 

obtained by Oden [18] and Seeker t353. From the above 

discussions, it is seen that the numerical results obtained 

by the proposed method ar^ consistent from both the 

mathematical and physical points of view. 



CHAPTER VI 

FINITE DEFORMATION PROBLEMS OF 

INCOMPRESSIBL ELASTIC SOLIOS 

Introducf ion 

Various types of incremental variational principles 

and their modified versions both in the total Lagrangean and 

updated Lagrangean tormulationst based on alternate stress 

and strain measures, are discussed in chapter IV, 

Esoecially, using the modified incremental complementary 

energy principle, incremental hybrid stress finite element 

models for finite deformation problems of a solid are 

proposed. These variational principles and finite element 

models are valid for general compressible materials. 

However, there are many engineering materials, such as 

rubber, solid propellant rocket grains, and polymers, which 

are effectively incompressible* With the increasing use of 

such materials in practical engineering developments, the 

demands for the theoretical analysis of their behavior have 

increased in recent years. To analyze such problems, an 

incremental hybrid stress finite element model which is valid 

for incompressible materials is developed in this chapter* 

The kinematic constraint of precise incompressibIity 

in finite deformation problems is stated by, 

I3 = 1 or h3 = i (6.1) 
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where I3 and h3 are the third principal invariants of the 

deformation tensor G and stretch tensor (I+h), respectively. 

It is noticed here that these conditions are third order 

nonlinear equations. The assumption of incompressibiIity 

makes it easier to obtain analytical (exact) solutions to 

certain problems in finite elasticity* However, in general, 

reverse is the case with numerical solutions such as 

energy-based finite element methods. 

In the case of linear elastic infinitesimal 

deformation problems, the incompressibiIity condition is 

reduced to, 

™ "° (6.2. 

which is linear. The stain energy density for isotropic 

linear elastic material can be expressed by, 

"<£-> " |A(',P ! +»V-i t6,3> 

where, 

£ * "7 <PH + P2r) 

The stress is obtained by, 

2 = "If = *(£:£>i+ 2^ 
= ( \+-%-ii){e :W + 2^£ 

J "V -V "•' 

(6.<*) 

where ( is the d e v i a t r i c s t r a i n def ined by, 
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If the material is incompressible, A becomes infinite. 

Coisequently, the strain energy density becomes singular* 

thus the finite element based on the strain energy is not 

valid for this case. Also* as noticed from Eq.(6.*+), only 

the devlatoric part of stress can be determined from the 

strain. Its hydrostatic part can not be determined by 

strain. It can be determined from the boundary conditions. 

Alternative approaches for analyzing nearly or 

precisely incompressible linear elastic materials are 

proposed by Herrmann (19) and Key 1201. They construct mixed 

tyoe variational principles involving both displacement and 

hydrostatic pressure as variables. In their functionals the 

incompressibiIity condition is relaxed by Introducing the 

hydrostatic pressure as a Lagrange multiplier. The 

incompressibiIity condition is then preserved a posteriori 

through the statlonarity condition of the functionals. This 

approach can be extended to the finite deformation problems. 

Oden C181, based on a modified (not hybrid) stationary 

potential energy principle* which involves both displacement 

and hydrostatic pressure, derived a finite element model for 

finite deformation problems of Incompressible elastic solids. 

If the problem is a plane-stress problem, as discussed by 

Oden 118], the hydrostatic presure can be expressed in terms 

of displacements due to the assumption of the vanishing 

normal stress in the thickness direction. Thus the 
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functional can be expressed in terms of displacements alone. 

However* as shown by Oden C18]f the reduced functional 

becomes highly nonlinear* Consequently, it leads to a set of 

nonlinear algebraic equations in the finite element 

formulation, which can be numerically solved by 

Newton-Raphson method. An analogous functional is 

constructed by Becker £35], using simplified 

incompressibiIity condition. The solution is obtained by 

direct minimization of the functional, Instead of deriving 

nonlinear equations* 

In this chapter, a modified (hybrid type) incremental 

complementary energy principle for incompressible material is 

derived startiong from the Hu-Washizu principle involving the 

hydrostatic pressure as an additional variable. Based ors the 

derived incremental variational principle, a incremental 

hybrid stress finite element model for plane stress problem 

is developed. Two types of plane-stress problems of 

Mooney-Rivlin type material are solved as examples by using 

the proposed method* 

Hu-Washlzu Variational Principles 

As briefly mentioned for the linear elastic case, the 

stress can not be fully determined by strains (equivaIentIy 

strain energy density), and the mean pressure remains 

undetermined for incompressible nonlinear elastic materials. 

The mean pressure (hydrostatic pressure) can be determined 

only by considering the boundary conditions imposed on the 
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solid. If the material is isotropic, the strain energy 

density is a function of three principal invariants of the 

deformation tensor G. In view of Eq*(6*l), strain energy 

density for an incompressible lateriat is considered as a 

function of only I1 and I2 , 

W = WCI,, I2) ( 6. 6, 

By introducing the hydrostatic pressure p into the strain 

energy density, we can define a modified strain energy 

density, whose derivative with respect to strain gives 

stress. Depending on which strain measure is used, there are 

three alternative ways to express such a modified strain 

A 

energy density W per unit undeformed volume. 

based on g 

w(g) = w d ^ g ) , i2(g)> +4L (i3-i) 

where W is a symmetric function of g« 

based on e 

( 6 . 7 ) 

W(e) = W ( I 1 ( e ) , I 2 ( e ) ) + p ( J - 1) ( 6 , 8 ) 

whe^e W i s c o n s i d e r e d as a func t ion of e , and J i s the t h i r d 

i n v a r i a n t of F. 

based on h 

W(h) = W d ^ h ) , I 2 ( h » + P ( h , - 1) ( 6 . 9 ) 
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where W is considered as a function of h, and h, is the third 

invariant of (h+I), From these strain energy density 

functions, the stresses are obtained as* 

3W(g) 
ag •"- + PI3G-1 

ag 3~ 
(6.10) 

T 3W(e) 
t = — 

aw _-, 
TT + PJF 

(6.11) 

aw(h) aw _] 
lh a TiT + ph3 (i + B > • 

(6.12) 

where* according to the definition presented in the appendix 

A, the inverse of the unsymmetrlc tensor F is defined by 

F~-F=I. Noting that I- =J =h3 =1 for incompressible case, it 

is seen that the stress obtained through Eqns,(6»10, II, and 

12) are consistent with the definition of stress given by 

Eqns.(2.11, 12, and 13)• 
A 

By i n t r o d u c i n g t he s t r a i n energy d e n s i t y f u n c t i o n W 

and t r e a t i n g t h e h y d r o s t a t i c p r e s s u r e as a v a r i a b l e , t he 

f o l l o w i n g Hu-Washizu p r i n c i p l e s i n t h e t o t a l Lagrangean 

f o r m u l a t i o n c o r r e s p o n d i n g to E q n s * ( 3 » l t **, and 7) a re 
d e r i v e d , 

r7HW( ", g , s , P ) 

= X0Ns> + f (i.- i) -igft-a 

+ •- s : [ ?u + ( p u ) T + 7 u • ( ru ) T - 2 g j j 

( 6 . 1 3 ) 

dv 
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- / , 
t >u ds 

Ob 
f £•( 2 - S 

>/su0 

)ds 

W H> £, t , p ) 

= X o ( w ( e ) + P(J - 1) - ^ g . u 

+ tT:[(Fu)T - e]}dv 

f t . u d s - £ t . ( u - u ) d s 

"HW( H> £, £ , t , p ) 

^ o { w ( h ) + p(h3- 1) - ^ . u 

+ £T;f< I + ^ )T" S'(I + £)j} dv 

/ t . u d s - / t . ( u - u )ds 

(6.1<*) 

( 6 , 1 5 ) 

I f , f o r example, E q . ( 6 * 1 5 ) i s cons idered , i t s f i r s t v a r i a t i o n 

can be shown as , 

8* HW LU^ +PW - 7 < ^ + 5T-£T)J :Sh - [(I-Hj).t]:S„T 

+ 5p(h3-l) + 5 t T
: [ ( i + ^ u ) T - a.(i+h)J -[y.t + /og].5u}dv 

~ L„ < I " £ )-5U d s " / 5fc '( u - u" )ds 

(6.16) 

Thus, the stationarity condition of Eq«(6»15) yields to aM 
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the field equations and boundary conditions and also the 

incompressibi1Ity condition, 

Since, the objective here is to derive a modified 

incremental complementary energy principle for incompressible 

material, the discussion is focused on the functional given 

by Eq.(6.15)• 

Incremental Governing Equations 

The incremental governing equations for incompressible 

materials are the same as those for compressible materials 

except for the incremental constitutive relation and the 

additional incompressibiIity condition. To derive the 

incremental constitutive relation, the constitutive relation, 

given by Eq.(6.9), for CN+, state is considered •' 

rN+l= <*J . DH*l£5 ( 6 . 1 7 ) 
0hN4' P 3h*+' 

-V / v 

Since the strain ĥ -n can be expressed as, 

h'*' « hN + Ah (6.18) 

Eq.(6.17) is considered to be expressed in terms of 4h. 

Thus, it can be expanded in the Taylor series, 

r N + , = r ^ + j r = 3 " 
N 

+&»*+<*+»*&['+ fir«£j <6-i9> 
ah | -jgj ~ " ,"f*is 

+ higher order terms 

Noting tha t fo r CN s t a t e , 

rN = _8W|N + pN_3h3|N 
8 i l 9h\ ( 6 . 2 0 ) 
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by ignoring the higher order terms in -dh» the incremental 

constitutive relation is obtained as, 

Jr 
0h3|N 

Ww«"'8\ 
(6.21) 

Similarly the incompressibiIity condition 

h3(h"'
f/) = h3(h

W+4h) = 1 (6,22> 

is also expanded in Taylor series* And ignoring the higher 

order terms, the incremental incompressibiIity condition is 

obtained as» 

3^ * 

is 
4h = 0 

(6.23) 

Incremental Hu-Washizu P r i n c i p l e 

Fo l lowing the general procedure discussed i n chapter 

IV» the l i n e a r i z e d incremental f u n c t i o n a l and the 

corresponding TT1 which prov ides the c o r r e c t i o n procedure are 

obta ined as , 

"£»<* u, Ah, 4a , J t , AV ) = JVo|4W(.dh) + 4 p jh\ U h 

- /O^g.^u + Atr :[?juT- ^ a - ( I + h " ) - aH.4h]- t* : J a -(I+h^+Jh)] dv 
' 0 _ —• *v L — <v N

/ v ^^ •*» tvJ *, * * * * * * *f J 

• Jt-4u ds - / 4t*(4u - 4u )ds 
J scr0 "" "" s/su^ 

(6.2**) 

where, JW(4h) = — ( - ^ J + P i 32h3|N v . h ^ h 
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(6.25) 

n\ ju, Ah,*", jt, AV ) 

= X0(fSf-T ̂ 2 H + ̂ 'Sty-S - <^)-":^ T^P^3-D 

- <*tT:[(l+ru«)
T- a'.q+h")] + t ^ r ^ - ^ j ^ j d v 

- ,£ j'-H ds - J {A „u + 4t.( u»- u"))ds 

The stationarity condition of the functional Eq.<6.2**> leads 

to all the incremental governing equations, i»e«, Eqns«(^«8, 

11, l̂ f 38, 39, and 6.21) and, in addition, the incremental 

incompresslbiIity condition given by Eq«(6«23)« 

Incremental Complementary Energy Principle 

To construct the complementary energy principle, the 

incremental strain Ah in £q.(6«2**) must be eliminated. Now, 
/V 

we group the terms involving jh in Eq.{6.2**)» and designate 

this group as A# 

A=^W(4h) - (it.fl"+ t V - i p -2&\H):4h (6.26) 

By introducing the stress increment jr defined by, 

/r = i.(jt.a«*+ t^^a+a«T. ̂ tT+^aT. t*T) - *p *̂ ?J ^ (6.27) 
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E q . ( 6 . 2 6 ) can be r e w r i t t e n as» 

A =4W(Jh) - j r : J h ( 6 . 2 8 ) 

Also* the incremental constitutive relation* Eq«C6«2i) is 

rewritten asi 

4=^"^»W^ 
Assuming the a priori satisfaction of Eq. (6*29) and taking 

its inverse* strain 4h can be expressed in terms of AT* 
Ai /V 

Thus the following contact transformation is achieved. 

A A 
r- Ah - AUtfh\ ( 6 . 30 ) ^JR(^r) a J r : j h - A\i(4h) 

such t h a t * _ A A 

^W^h 
a^t 

By introducing 4R defined by Eq»(6.30) and assuming a 

priori satisfaction of the translational equilibrium 

condition Eq*(«t«8) and the traction boundary condition 

Eq.(<*.38), the functional given by Eq.(6.2«*> is reduced to a 

Incremental complementary energy principle: 

"ZUg.At,*, ) - jCfiRUr) « 6 - 3 " 

+ (dt + tN)T:Ja-(I+hA')Jdv - / 4 t.Au d: 
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Also, the corresponding n-1 is given by, 

"'(^.Jt, 4P ) = /vJjt^[a^(I+h
M) - l] 

- (hj- l)jp + (I+hN)- t^^a^dv - L jt.uNd! 

(6,321 

Modified Incremental Complementary Energy Principle 

Further, by relaxing the inter-element boundary 

continuity conditions, given b^ Eqns.(<*.68 and 69), in the 

same manner as discussed in chapter IV, two versions of 

modified Incremental complementary energy principles are 

derived. For example, the second version is shown to be, 

ncm^4S> 4£>4P> *2p> = I Jv0 14R<*r) 
m m 

+ ( i t + tN)T :4£-(I+h*)}dv . ^ f 4 t . i u d 
IB J U 0 * . 

S -

( 6 « 3 3 > 

m J I \pn / J t . / i u ds 
'm 

And r e s p e c t i v e rr1 i s g iven by, 

" ' ( ^ 4 t , , P , i u p ) = I Lo{^tT:[a'.(I+hH) - i ] 

C At.u* 
J u o " -

- (h, - 1 ) i P + (I+hM ) -*" : j a T } d v - £ 
m 

ds 

(6 .31* ) 
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2 k (Alg +.4t.uM)dS Om 
m 

The stationarity condition of the functional in Eq.(6.33) 

yields to Eqns.(^.ll, 14, 39, 68, 69, and 6.23). 

Finite Element Formulation 

The finite element formulation for the general 

three-dimensional case is discussed in this section, in the 

same manner as in chapter V. With a slight modification, 

Eq.(6.33) leads to the functional analogous to that given by 

Eq.(5.2), which has the suitable form for the finite element 

f ormu I at 1 on. 

,rHS2(<4S» ^t, >!P,4up) (6.351 

= * JvoS**^ + (-"+4')T :^'^^>}dv 
m ^n 

+ I L ^ t . j u d s - X / i t .^u^ds 
m 7 s c r o m -+ nJrrom- ~ft 

and t h e c o r r e s p o n d i n g rr1, 

"'(4S, At, 4V, A%) = 2 f kT=[2"-(i + J* > " l) ^'^ 

- (h"3- 1 ) 4 P + ( l+h%t*:J«7dv 
w <v A* <v J 

+ 2 
m ^ ~^ni m 
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We take the first variation of Eq.(6.35) to show its 

stationarity conditions 

5"ffi2= 2/of[«2-(I+hf>+a".-gi - (V.uJ]:S4tr «.37> 
m J um OAT J ~ 

- [(l+t?).(t»+4t) + | 4 • t"]:5<la
T

+ l i f . « i . . . U I - - - - 34r ~ J ° ' ~ 9h / " 2ii 54Pjdv 

" ^ L~ (4t - 4 t ) -5jS ds m J S % - - ">• 

2 L W - ( J u - j u ) + 4 t . 5 ^ u j d s 

Thus, It is shown that the stationarity condition of the 

functional leads to Eqns.(4.1i, 14, 38, 68, 69, and 6.23) as 

a posteriori conditions* 

If the functional, Eq.(5*35), is compared with the 

corresponding functional for compressible materials Eq.<5.2), 

it is noticed that only one term 4R In Eq*(5«2) is replaced 

by AR in Eq.(6.35). Similarly, TT1 given by Eq.(6.36) has 

only one additional term, <h3-l)jp, compared to Eq.(5«3)« 

Therefore, most of the equations derived in chapter V can be 

used for the present case, and the detailed formulations are 

limited to these two terms in the following discussins. 

There are four field variables involved in the 

functional in Eq. (6.3514, The stress, rotation, and the 

element boundary displacement field are assumed in the same 

way as for compressible materials. Thus these variables are 

assumed as in Eqns«(5«12, 18, and 21). The new variable, 
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hydrostatic pressure p, is assumed as a linear combination of 

linearly independent functions M^ with undetermined pressure 

parameters p; as coefficients* such that* 

p = ML Pj s iHj JCpt3 (6,38) 

Similarly, its increment is assumed as, 

^p = IH^ j c^pi y (6.39) 

The incremental stress Jr, defined by, 

A r — (At- a" + t ^ a + a ^ . ^ ^ + ja 7:^) -
9^3 

ah 
^p 

(6,^0) 

can be exp ressed i n te rms of the u n d e t e r m i n e d pa rame te r s Afi<* 

AV-i and j p i u s i n g E q n s . < 5 » i 2 , 1 8 , and 6 . 3 9 ) , 

C^r> = tD1 3C^/3> + CD2 K^M>+ID 3 l €4p>*C^ r p > (6.<*i) 

The incremental complementary energy density JR, defined by 

Eq.(6.3fl), is expressed in the matrix notation as, 

T_ A (6,tf2) 

I t s i n t e g r a t i o n over t h e e lement a f t e r s u b s t i t u t i n g Eq . (6«* * l ) 

y i e l d s t o , 

mfr 
J R dv = ~ \ & 

H l l ' H 1 2 ' H13 

H 2 l 3
 H 2 2 ' H23 

L H 3 1 , H 3 2 , H 3 3 J 

f ^ l f4 / 8 l 
A 

f 4Q1\ 

{ J M + * 4 ^ < ^ Q 2 

UPJ >dp, ^ < V 

( 6 . 1 * 3 ) 
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[ » U ] = >o m [ D A l f [ C 1[ S l ] ^ 

[»12]= [«2l]T = >°m [ S l f t S JN dv 

[H13] = (%l]T > Jvom [Dl]T[£j[D3] dv 

[S22]= /Vom [S2]T[C][D2] dv 

[ H 2 3 ] = [ H 3 2 ] = / o m [ » 2 j r c £ K f c 3 ) d v 

[S33]= >om (°3]T[C][S3J dv 

L^lJ = >o m [°l]T[c] {^P} dv 

l ^ 2 J = j v ° m [D*2]T[c]f^P] "v 

i^6r f>om [^f[c]{^P}dv 

(6.<*M 

Simply by replacing the terms corresponding to \ A&AT in 
JT"m 

Eg.(5.31) by Eq.(6.<f3), the discretized form of the 

functional for incompressible material. Eg.(6.35), Is 

o b t a i n e d . 

HS2 (48, Ay- , JP» J q ) 

/J/3jT /^j8» 
l 
2 21 H 5 1 A Ml - x-

m Up/ 
J 

U 
It! 

( 6 . ^ 5 ) 

Pi 
rc 

o 

0 

^q 
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2{ J4y»Q2 +4Q3>+ S { - J Q 4 + ^Q5}{^q 

w h e r e G, -dQj?, /JQ4 t and 4Q5 a r e d e f i n e d by E q n s . ( 5 « 2 6 , 2 8 , 2 9 , 
A 

and 3 0 ) ; and H i s d e f i n e d b y , 

( 6 . 1 , 6 ) 

[» ] -

H 11 , H 1 2 + P L13 
A T A -k * 

(H , 9 + p) , H 9 9 + H + S, H 12 23 

a 31 l32 a 33 

where [ P ] , [s], and [H»] are implicitly defined by Eq«<5,26 

and 28)* 

It is noted here that, unlike for the compressible 

material, the matrix CHI cannot be inverted as a whole for 

general three-dimensional case* This implies that although 

the parameters for stress, rotation , and hydrostatic 

pressure are independently assumed in each element, they can 

not be eliminated at the same time. Thus, the hydrostatic 

pressure, through which the incompressibi1ity condition is 

inposed, must be kept as unknowns, as discussed by Key C20 1 

and Herrmann [193 for linear case* 

However, in the case of olane-stress problem, the 

material area on the inplane surface, (x^ , x2 ) plane, can 

change whithout changing the volume, but it is not the case 
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for p l a n e - s t r a i n case. This impl ies that in the p l a n e - s t r e s s 

case* the s t i f f n e s s (or r e s i s t a n c e ) aga inst the change of the 

area is f i n i t e , whereas, in the p l a n e - s t r a i n case, i t becomes 
A 

infinite. Thus, the matrix [HI can be inverted in the plane-

stress case, and we can obtain stiffness matrix [Kml with 

f iii te values, 

In the same manner as In the derivation of Eq«(5»**l), 

the discretized form of rr1 , git/en by Eq. (6.36), is obtained by 
N+- I 

adding the contribution from the term (h3 -IMp to £q,(5#*fl). 

Thus, rr1 is obtained as, 
<6.i*7) 

*1(<*£, -dM, JP, A<\) ' \ A V I I Q, 

where CQ^}, CQ r>, and CQt> are de f ined by Eqns.<5.<*2, <*3, and 

<*<*) ; and CQP} i s d e f i n e d by, 

L^pJ { Q p } = " L ( h 3 + " 1 ) j d P dv <6.<+Q> 

Plane St ress Problem 

Now, we consider the p l a n e - s t r e s s problem as a spec ia l 

case. Fo l lowing the same procedure as shown in chapter V, 

incremental hybr id s t r e s s f i n i t e element models using 

four-noded and a lso e ight -noded elements are de r ived based on 
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the discretized functional given by Eq«(6.^5). 

In the present plane-stress problem, the stress and 

the rotation fields are subjected to the same constraint 

conditions as for compressible materials, viz., 

*13 = '31 " ' * 2 3 = ^32 = * 3 3 " ^ (6 .< f9 ) 

a13 = a31 = a2 3 =: a32 = Q, a 3 3 = i ( 6 , 50 ) 

The^ the Jauraann s t r e s s d e f i n e d by E q * ( 2 « i 5 ) i s reduced t o , 

ui 
r r 

11 12 
r r 

21 22 

( 6 . 5 1 ) 

However, the stress increment Ac defined by £q.(6«27) has 

nonzero component An 33 

r A -i 

3h i" 4 r l l ~ApfhJ> J r i 2 » ° 
dh- N 

4 r 2 1 ^ r 2 2 - 4 p ^ , 0 

ft N 
0 • -^K 

C6.52) 

The I n c r e m e n t a l s t r e s s and r o t a t i o n a r e assumed by t he 

same f u n c t i o n s g i v e n by E q n s , ( 5 * 5 2 and 5 5 ) , The a d d i t i o n a l 

h y d r o s t a t i c p r e s s u r e i s a l s o assumed i n te rms o f c o m p l e t e 

p o l y n o m i a I s , as , 

2 
J P - API + x l i 4 p 2 + x2ijp3 + X ] j p 4 + x 1 x 2 j p 5 + (6*53) 

The incremental element boundary displacements A\jp^ and J U ^ 
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for four-noded element are assumed by E o . ( 5 * 6 1 ) . S i m i l a r l y , 

those fo r e ight -noded element are assumed by, 

v i 1 1 ? ( 6 • 5 ^ ) 
4uPi = " t ( l - r ) ( l - s ) ( - r - s - l ) j q i - h - ( l - r 2 ) ( l - s ) j q f 

+ T ( l + r ) ( l - s ) ( r - s - l ) ^ +± ( 1 + r ) ( 1 - s 2 ) j q * 

+ 1- ( l + r ) ( l + s ) ( r + s - 1 ) ^ + 1 ( l - r 2 ) ( l + s ) j q ! ? 

+ j ( l - r ) ( l - s ) ( - r + s - l ) ^ + i ( l - r ) ( l - s 2 ) j q ^ 

where AQ* a re the i th ( i = l t 2) component of the nodal 

displacement at J th ( J = i , « • • » ) node, 

The m a t e r i a l considered here is a Mooney-RivI in type 

incompress ib le m a t e r i a l * whose mechanical p r o p e r t i e s are 

c h a r a c t e r i z e d by W. 

W = Ci ( I , - 3 ) • C2 ( I 2 - 3 ) ( 6 , 5 5 ) 

where Ĉ  and C2 are material constants; and I1 and I2 are the 

first and the second Invariants of deformation tensor G, 
AJ 

respectively* Then the incremental strain energy density is 

defined by, 

^-4{f^.pN^J%4h,h 
h'lJ" 

such that, 

•&£ .*£ <6.57) 
9h 

The first term in Eq«(6.561 can be obtained in tne same way 
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as f o r 4W g i v e n by Eq .<5*69 )« Thus* we o b t a i n * 

( 6 . 5 8 ) 

4f£f!:'£'£ = ci{^hi>2 - 2^i) 
4*/ 

+ C2j"(Jh2)
2 + 2h24

2h2 - 2(h 1 ^h 3 + Ah^h^J 

where h1 * h2 , h3 * 4 hA * 4h2 * ^ h 3 * 42h2 * and ^ 2 h 3 a re d e f i n e d by 

E q . ( 5 . 7 0 ) « The second term i n E q . < 6 . 5 6 ) * which i s 

independen t o f t he m a t e r i a l * i s o b t a i n e d f o r the p l a n e - s t r e s s 

case as* 

- J 

T pN T P I : : i £ J 5 = ' h l l ' h 2 2 h33 + ^22^ h 33 h n + 4 h334 h l lh22 < 6 ' 5 9 ' 3h 
A/ 

N N N 
- ^ h 1 ? i h 2 1 h 3 3 - i h 2 1 d h 3 3 h i 2 - J h 3 3 4 h 1 2 h n 

Then* 4W in Eq. (6*56) is expressed in the matrix notation by, 

A*= Thfl*}{^} (6 *60 ) 

where 

{ 4 h j =[ J h 1 ] , ^ h 1 2 , J h 2 1 , j h 2 2 ^ h 3 3 J 

F o l l o w i n g t h e same p rocedu re as i n o b t a i n i n g AR i n E q . ( 5 « 7 5 ) * 
A A 

t he the c o n t a c t t r a n s f o r m a t i o n o f AW i n te rms of Ar i s 
AJ 

a c h i e v e d . 

^-iUfin^J ( 6 . 6 1 ) 
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where* 

-j" 

J4r j> = [ J r n , J r 1 2 , J r 2 1 , j r 2 2 , i r 3 3 J 

I t i s noted here t h a t * from the d e f i n i t i o n of j r given by 
/%• 

A A 

Eq.(6.27), 4 r̂3 is not zero, and it has contributions to iR» 

Noting the constraint condition for the plane-stress 

problem, by substituting the assumed functions given by 

Eqns.(5.52, 55, and 6.53) and (5.61 or 6.54) and AR given by 

Eq«(6«61) into Eq«(6.35>, we obtain a discretized functional 

in terras of A(3* AV-I /JPt and jq, wich is the reduced form of 

Eq.(6.45) for plane-stress problems. Since the matrix CHI in 

Eq.(6.45) is invertible for plane-stress case, the parameters 

for stress, rotation, and hydrostatic pressure are all 

eliminated at the element level. Finally, we obtain the 

discretized functional analogous to Eq*(5«35), which involves 

the element boundary displacement alone. Based on this 

functional, incremental hybrid stress finite element models 

using four-noded and eight-noded isopararaetric elements are 

derived. Further, by introducing the iterative procedure 

based on nU shown by Eq« (6*361, complete numerical scheme to 

solve plane-stress problem of incompressible solids is 

developed, 

Before applying the newly developed finite element 

model to specific problems, eigen-values and elgen-vectors of 

an element stiffness matrix are calculated for various 

combinations of numbers of stress parameters "a", rotation 
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parameters wbM* hydrostatic pressure parameters **dM* and 

element boundary displacement parameters Mc w. The element 

considered for this purpose is a square element* and the 

elastic constants d and C2 in Eq.(6.55) are chosen to be» 

d = 2<*«0 psi and C2=i#5 psi* The results for four-noded 

element (c = 8) and eight-noded element (c=16) are presented in 

Table 2 and Table 3* respectively. The eigen-modes for the 

case (a, b* d, cl= (10* 3* 6* 8) and (28, 3, 10 * 16) are 

shown in Figs.20 and 21. 

It is interesting to notice that* if the number of 

hydrostatic pressure parameter is taken small* such as in the 

case of (a* b* d* c M (10* 1* 1* 8)« (10* 3* 1* 8)* or (18* 

3* 1* 8)* the lowest eigen-values become unusually small* 

Even* they becomenegative in the case of (a, b* d* c)= (18* 

It 1» 16)* (18* 1* 3* 16)* or (28* 3, 3* 16). These results 

imply that the number of hydrostatic pressure parameters must 

be taken sufficiently large* so that the incorapressibility 

condition is imposed on the element in a strong manner* 

otherwise the element does not behave properly. Moreover* it 

is noticed that these eigen-values calculated for initial 

state cannot tell the behavior of the element after large 

deformation. In general* the nonllnearity of the 

incompressiblIity condition becomes much stronger under large 

deformation. Therefore* to ensure such highly nonlinear 

condition* at least one order higher hydrostatic pressure 

field than that required from Tables 2 and 3 is recommended 

from the weighted residual point of view. Also it is 
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observed from Table 3 that a smaller number of stress 

parameters"a"* such as CIS* 3* 6* 16)* results in a stiffness 

matrix which has more than three Kinematic modes (zero 

eigen-values)* whereas a properly behaving stiffness matrix 

has three Kinematic modes corresponding to rigid body 

motions. 

If the four-noded element and the eight-noded element 

are compared* the lowest possible total degree of freedom of 

eight-noded element is 51* whereas, that for four-noded 

element is 20. Therefore* four-noded element appears to be 

more convenient for practical applications. 

Numerical Examples 

For comparison* two types of plane-stress problems* 

sane as those solved by Oden (18] using finite element model 

based on the stationary potential energy principle* are 

chosen as example problems. 

Prescribed Stretching of an Elastic Sheet 

The first example problem considered is the problem of 

prescribed stretching of a thin elastic sheet <8"X 8MX 0.05") 

to twice its original length. Thus the boundary conditions 

imposed on the sheet are described by* 

t, = t2 =0 on x2 = ±**.0 (6.62) 

Hi = * M A - l ) i J2 =0 on x1 = ±*f.O 

whe~e \ is a extension ratio (1<A<2>• As noted in 118J* 

this problem corresponds to ihe biaxial strip test used to 
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characterize the ultimate properties of synthetic rubber* 

etc.* and no exact solution is available for this problem. 

The material of the sheet is assumed to be a Mooney -Rivlin 

material of the type given by Eq.(6.55). The material 

constants Ct and C2 in Eq.(6»55> are C.^24,0 psi and C2=1.5 

psi. This problem is solved by using the proposed four-noded 

element with the combination of numbers of parameters (a* b* 

d, c)=(10, 3, 6* 8), From the symmetry of the problem* a 

quarter of the sheet is simulated by a 6X6 finite element mesh 

shown by the inset in Fig,22. The prescribed displacements 

at x, = + ̂ .0 are applied in 20 steps with the increment 

dA=Q«G5« At each increment,iterations are carried out so 

that the error, defined by Eq.(5.8Q), is Kept less than !'/,» 

The net horizontal boundary force F, required to 

produce various ratios of stretch, 1< A<2* are plotted in 

Fig.22, However, because of the solution method* only the 

value of F at A = 2.»0 for various finite element meshes, are 

given in 118], where it is found that F is approximately 36.0 

lb. The present result for F at A=2«Q, F=36,«* lb, is in 

close agreement with C181. The computer-plotted deformed 

profiles of a quarter of a sheet at various values of A are 

presented in Fig.23. The contours of the components of the 

true or Cauchy stress Tu , 1̂2 , and T22 at A =2.0 are 

hand-plotted on the deformed configuration in Figs.2*** 25* 

and 26. Also, the distribution of the axial components of 

Piola-Lagrange and Kirchhof f-Tref ftz stress, tt1 and sn * 

reSDectivel y, at A=2.0 are presented in Figs.27 and 28. As 
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discussed for the example problem of compressible material* 

simi I ar I ity between the distributions of TM and t1T is 

observed. The contour lines of the rotation angle Q and the 

extension ratio in the thickness direction* (h33 +1)* at 

X =2.0 are given in Figs.29 and 30. The distributions of Tn 

and T22 at A =1.5 are shown in Figs.31 and 32* respectively. 

These results of the distributions of stress or strain are 

not given in C181* hence* no further comparison is attempted* 

However* Oden ti81 gives the results for 7^ and ^ 2 at 

A =1.5* obtained by Becker (351 for same type of 

Mooney-Rivlin material* but with different material 

constants* Ci =8 psi and C2=1«0 psi. Although the materials 

are different* there is an excellent qualitative agreement 

between the present results and those of C351. As noted in 

1181* the present results for stress distribution* as well as 

those in C181* differ significantly from those predicted by 

the infinitesimal theory of incompressible solids C36]. 

Further* it is noticed that Becker's results are obtained by 

using ^00 four-noded elements* whereas the present results 

are obtained by using 37 four-noded elements. This may 

perhaps confirm the commonly held notion that an accurate 

stress distribution can be obtained more efficiently using a 

stress finite element model based on complementary energy 

principle as in the present work. 

Uniaxial Stretching of a Sheet with a Circular Hole 

The second example proolem is that of the uniaxial 

stretching of a square sheet < 6. 5**X 6.5"X 0.079") with a 
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circular hole of 0.5" diameter. The boundary conditions 

Imposed on the sheet are, 

u2 =0 , % =0 on x2= + 3#25 (6«63) 

u, =3.25( A-l) , u2 =0 on x1=j:3«25 

where (i< A<3) is the axial extension ratio* The material 

is assumed to be a Hooney-Rlv11n material of the type given 

by Eq«(6.55I with material constants, Ci =27.02 psi and 

C2=1.^2 psi. Oden 118] solved This problem incrementally by 

using three-noded triangular displacement finite element. 

The number of elements used in his analysis is 192 per quarter 

sheet. The same problem is solved by using the presently 

developed four-noded hybrid stress model finite element, with 

the combination of numbers of parameters, (a, b, d, c)=<10, 

3, 6, 8 ) . The finite element «esh used is a 6X6 mesh as 

shown by the inset in Fig.33. The prescribed displacements 

are applied in 80 steps with the increment 4A=0«025« 

Because of the stress concentration around the hole, the 

increment is taken smaller than in the first problem. 

The present result for the required total edge force 

as a function of X is shown In Fig»33 along with comparison 

result of £183. The two setsof results shown in Fig.33 are 

seen to correlate well. Eventhough the rigorous mathematical 

discussion of the convergence of the numerical solution based 

on variational principle in the finite deformation problem is 

beyond the scope of the present work, it may be surmised from 

Fig.33 that the exact solution may exist In the neighbourhood 
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of these two approximate solutions. The deformed 

configurations at various extension ratios are presented in 

Fig.3*f. Also the deformed profiles of the circular hole at 

various values of \ are shown in Fig.35 along with a 

comparison result available from £18], which, however, gives 

the deformed profile for the edge load of 6k lb, 

corresponding to A=2.175. Once again, the correlation is 

found to be excellent* The contours of the components of 

true stress ^n > Tu, and ^ 2 at A. = 3.0 are shown in Figs«36, 

37, and 38. As in the Infinitesimal deformation theory, the 

maximum axial stress %**wx is observed at the minor axis 

location of the hole (x^O* x 2=0.25). The stress 

concentration factor, defined as the ratio of the maximum 

stress ^iiM/u to the average Cauchy stress T^ at the edge of 

the sheet (x^+3.25 ) is shown in Fig.39 as a function of 

X . According to the infinitesimal theory, the stress 

concentration factor for the same problem, but for an 

infinite plate is 2.5 C371. Although the finite element mesh 

is relatively coarse (the smallest element size is 2/5 of the 

radius of the hole), the calculated stress concentration 

factor in the range of small deformation is very close to 

that predicted by infinitesimal theory. Further, it is 

interesting to notice that, unlike in the infinitesimal 

theory, the stress concentration factor increases with the 

stretching. The distribution of the rotation angle 6 and 

the extension ratio in the thickness direction is presented 

In Figs.^0 and <+i. The rotation field shown by Flg.ifO is 
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consistent with the deformation pattren shown by Fig.3^« 

For comparison, cotours of tt1 and s„ at \=3»0 are plotted 

on the undeformed configurations in Figs«^2 and kZm 

The results of the two examples discussed in the above 

would appear to Indicate that the proposed incremental hybrid 

stress finite element model based on the complementary energy 

principle is a viable numerical tool for the analysis of the 

finite deformation problems of incompressible solids. Also, 

it is seen that the accurate solution for stresses can be 

obtained relatively efficiently by the present method 

compared with those based on the potential energy principle. 



176 

CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Cone I us ions 

In the present Dissertation* various tyoes of modified 

(hybrid type) incremental (rate* variational principles, 

governing the finite deformation (large strain and rotation) 

problems* based on alternate stress and its conjugate strain 

measures and in both total Lagrangean and updated Lagrangean 

formulations arc presented. Especially, modified incremental 

complementary energy principles, involving as variables the 

incremental PioIa-Lagrange stress and the rotation tensors, 

which are considered to be most rational and suitable for 

applications through finite element methods, ar^ oroposed. 

Based on these variational principles, an incremental hybril 

stress finite element model* in the total Lagrangean 

formulation, is derived. Tt\e aoove developments ^re extended 

to the problem of finite deformation of incompressible 

elastic solids, and a hybrid tyoe incremental complementary 

energy principle, in which the incompressibiIity condition is 

relaxed a priori through the Introduction of the hydrostatic 

pressure as a Lagrange multiplier, is derived. This type of 

variational principle is also applied to the finite element 

method, and the incremental hybrid stress model is derived, 

The above hybrid stress finite element models are used 

to solve finite strain plane-stress problems of compressible 
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is well as incompressible nonlinear elastic solids. Several 

examples of such problems are solved* The validity and the 

feasioiiity of the proposed methods are demonstrated through 

the numerical examples. 

The conclusions of the present work are enumerated as 

foilows. 

A. Variational Principles and Finite Element Formulations 

I. A complementary energy principle can be formally derived 

using the PioIa-Laqrange stress alone. However, due to 

the multi-valued inverse stress-strain relation and the 

ambiguity on the satisfaction of the rotational 

equilibrium condition, it can not be aoolied in the 

solution of practical problems, in general. 

d, Because of the fact that the translations! equilibrium 

condition and the traction boundary condition are 

nonlinear equations in terms of Kirchhoff-Trefftz stress 

and displacement, the exact satisfaction of which is 

impossible, a complementary energy principle based on the 

Kirchhoff-Trefftz stress does not lead to a successful 

finite element model. 

7. The difficulties pointed out in (i) and (2) remain even in 

the incremental formulations* 



178 

The complementary energy principle based on the Jaumann 

stress, which involves Pi o la-L arrange stress and rotation* 

is considered to be th& most rational and suitable for 

application to the finite element method. In such a 

complementary energy principle, the inverse stress-strain 

relation is uniquely detined, and the translations! 

equilibrium condition and the traction boundary condition 

are linear in terms of the P io I a-Lagrange stress., 

Moreover, the rotational equilibrium condition is retained 

unambiguously as an a posteriori condition* 

The proposed incremental hybrid stress finite element 

models are essentially based on the complementary energy 

principle described in (-)* Thus* they are considered to 

be the most consistent assumed stress finite element 

models, for the analysis of problems involving geometrical 

as well as material nonl inearities* developed to date. 

The hybrid formulation of the present model allows for the 

a priori relaxation of the continuity conditions at 

inter-element boundaries. Thus, the wide choice of the 

assumed functions for stress and/or displacement is 

preserved. 

The incremental formulation leads to linear algebraic 

equations, which are much easier to solve compared to 

nonlinear equations. In addition* in the present method, 
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iterative corrections are emoedded in the solution scheme-

Thus, the oieccwise linear solution can be kept from 

straying away from the correct solution path, 

. If the material is incompressible, the hydrostatic 

pressure is introduced as a Lagrange multiplier, and the 

modified incremental complementary energy principle is 

derived. This variational principle lea is to en 

incremental hybrid stress finite element model which also 

nas the same features as stated in It) anfd C 7 ) . 

Numerical Examples 

. From the study of the eigen-values of the element 

stiffness matrix » it is observed that if the number of 

the stress oarameters is not sufficiently large compared 

to that of the boundary displacement* it results in an 

improper stiffness matrix which has more than three zero 

eigen-values (kinematic modes). In the incompressible 

case, a small number of the hydrostatic pressure 

parameters results in an unusually small or even negative 

eigenvalues, which are also physically improper* 

. The numerical results of the example problems for both 

compressible and incompressible elastic solids by the 

present methods are qual itatively consistent from both the 

physical and mathematical points of vi^w, 
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3. The results for the finite deformation problem of 

incompressible elastic sheets obtained by the present 

method agree excellently with those obtained by a 

compatible displacement model (Oden [1 a H ; but the number 

of degrees of freedom used presently is substantially 

smaller than that in [18]. 

~. Through example problems* the validity of the proposed 

method is established, 

:" . As demonstrated by the numerical result for the stress 

concentration factor in a sheet with a circular nole, 

accurate solution for stress can be obtained by the 

present stress model more efficiently compared to a 

displacement model. 

Recommendations 

In the present Dissertation, only compressible or 

incompressible nonlinear elastic materials are considered, 

However, metals, such as mild steel, are also capable of 

larqe scale, but plastic, deformations. This property is 

used to form metals. In metal form inq processes, such as 

metal extrusion, plastic strains of order unity occur. 

Depending on the manufacturing condition, metal forming 

processes cause the internal or surface cracks or undesirable 

residual stresses. In order to assess the onset of these 

material forming defects, it is necessary to develop a method 
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of analysis which is able to solve large strain 

e I astic-o I astic deformation prop I ems* 

The theoretical basis for large strain eI astic-oI astic 

deformation oroblem is found in work of Hill [38], Hill has 

discussed the general framework for the classical 

rate-constitutive relatiors for elastic-plastic solid with 

smooth yield surfaces at finite strain. A special form of 

rate-constitutive relation using the coroTational rate of 

Kirchhoff stress is proposed by 3udiansky 1391 as a 

generalization of the J2 flow theory in the small deformation 

oroblem. Based on this rate constitutive relation, several 

finite element models have been developed. In general* these 

models are categorized in two types. One is the total 

Lagrangean incremental formulation and the other is the 

updated Lagrangean incremental formulation. The former 

approach is adopted by Hutchinson C*» 0 19 Needlman C^l!» and 

Tve^gaard lk21. The latter approach is taKen by McMeekinq 

and Rice [43], Lee* MaMett and Yang [<^~1, and Yamada C ** 5 3 • 

All tnese methods are based on the virtual work theorem. 

Although, in most of these finite element models, the 

rate-constitutive relation in terms of the corotational rate 

of Kirchhoff stress is used, we may introduce alternate 

stress rates in the analogous manner as discussed in chapter 

II. Such attempt is made by Yamada [-51* However* his 

models are based on the virtual work theorem. Thus, the^e is 

no significant difference between the use of stress rates of 

different deffinitions. If we, further, consider 
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He I I inger-Reissner or complementary energy type variational 

principles we may derive various finite element models based 

on alternate stress rates. 

As discussed in the present thesis, the stress finite 

element model, in which stress is directly taKen as an 

independent variable* is more efficient to obtain an accurate 

solution for stress compared To displacement models, in which 

stress is indirectly obtained by taKinq the derivatives of 

displacements* Therefore, the present incremental hybrid 

stress finite element model may be extended, and a numerical 

solution technique for the analysis of larqe strain 

elastic-plastic deformation problems of solids can be 

deveIooed. 
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APPENOIK A 

DIRECT TENSOR NOTATIONS 

In the study of solid mechanics, index notation* in 

which tensor equations sr^ described in terms of components 

referred to some co-ordinate system, is commonly used* 

However* depending on the choice of the reference co-ordinate 

system, equations describing the same physical phenomenon 

change their forms. This nature of the index notation is at 

tines inconvenient ^ihen we are trying to describe the 

physical phenomenon in the general mathematical form. On the 

other hand, in the direct tensor notation, equations are 

exoressed in terms of vectors and tensors themselves instead 

of their components. It is Known that all the vectors and 

tensors encountered in the study of solid mechanics, such as 

the displacement vector and stress tensor, are physical 

quantities which do not depend on the co-ordinate system 

chosen as a reference. Thus* if the direct tensor notation 

is employed, the mathematical representation of the problem 

of solid mechanics in the general form, which does not depend 

on the co-ordinate system, can be achieved. Also, by using 

the direct tensor notation, equations are largely simplified, 

and this offers convenience in book-keeping. 

In the mathematical description of solid mechanics, 

various tensors of different order are involved. For 
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example* the strain energy density, complementary energy 

deicity, mass density, and also, functionals corresponding to 

various variational principles are zeroth order tensors (or 

scalars). The displacement vector, body force, and traction 

at boundaries are first order tensors (or vectors)* And the 

various measures of stress and strain are second order 

tensors. Further, the so-called elasticity tensor and 

compliance tensor, which characterize the mechanical property 

of the material, are considered to be fourth order tensors* 

The governing equations and the functionals are described in 

terms of these tensors of different order, Moreover, such 

equations themselves has/f^ the property pf tensors. Thus, 

they are called as tensor equations. In these tensor 

equations, severs! tensor operations among different order 

tensors are involved. The general discussions of the tensor 

operations are available in textbooks, such as C^71. 

However, tne tensor operations involved in solid mechanics 

are limited to certain types. For these tensor operations, 

the details of definitions are presented in the following-

For convenience, a rectangular Cartesian co-ordinate 

system (x-,,x2,x3) with unit base vectors (e1 , e2 ,e3 ) is 

introduced to define the tensor operations used in this 

thesis. In the following as well as in The text, a scalar is 

reoresented by a simple Roman or Greek letter. A vector and 

a second order tensor are indicated, respectively, by and 

^ under symbols. 

Let a and c be a vector and a second order tensor, 
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r e s o e c t i v e I y . They a r e d e c o m p o s e d i n t o t h e C a r t e s i a n 

c o m p o n e n t s a-L and c^ . 

a = a [ « i ( A . l ) 

£ = CU 2i ^ ( A • 2 ) 

The transpose* or conjugate tensor of the second order tensor 

c is denoted by cT , and its definition is given by, 

cJ = ci\Hn (A.3) 

If the second order tensor c has a property, such that 

cT = c (A.*) 

it is said to be se I f -con j u ga te or symmetric. Further-, a 

unit second order tensor (or identity tensor) I is defined 
r*/ 

by, 

I = 5g 2i £j ( A . 5 ) 

where, 

8ir 1 if i = j 

5^ = 0 if i =̂  ) 

Now, we consider certain operations among vectors and 

tensors. The product of two vectors is defined in th^ usual 

Nay, such that, 

_a • _b = â  bi ( A . 6 ) 

Similarly, the vector product of two vectors is defined by* 
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a x b = e c j K a j b k e £ (A.7) 

where eiiK *s a component of permutation tensor, such that 

e ^ =1 if i, J ,k take on values 1, 2,3 in cyclic order, e^jk =-1 

if i,j»k taKe on 3,2,1 in cyclic order, otherwise e ^ =0. 

The product between a vector and a second order tensor is 

def i ned by, 

c = cT« a = f « -j (A.8) 

F o l l o w i n g t h e d e f i n i t i o n s , c q n s » ( A » 6 and 8 ) , t h e o p e r a t i o n 

gmong t w o v e c t r o s and one s e c o n d o r d e r t e n s o r can be d e f i n e d 

b y , 

a . c 
— rs/ 

b = b • c . a = 3 L C i j b i (a . 9 ) 

The product of two second order tensors is defined by, 

c • d = c;j djt, e,- e i| aJk^^f< (A.10) 

If c-d = I, tensor c is said to be an inverse of the second 
A/ t\J •v *V 

order tensor d. Oenotinq inverse of d as d , its definition 

is wrtten as, 

d'1- d = I 
/v/ />/ / ^ 

(A,11) 

-i 
It is noted, here, that d • d X 1% unless d is symmetric, 

/V A/ 

The trace of a second order tensor is defined by, 

trace (c) = c^ (A.12) 

We d e f i n e a t e n s o r i n n e r p r o d u c t , d : e , a s , 
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d : e = t r a c e < d T - e ) = d.-; en ( A . 1 3 ) 

I t i s shown f r o m t h e d e f i n i t i o n t h a t , 

d :e = e :d = d T : e T ( A. i*« ) 

A l s o , i t i s shown t o r a s y m m e t r i c t e n s o r d t h a t i 

d : e = d : e T < A • 15 ) 
/V/ /V / v ^V 

Combining the above operations, more complicated operations 

can be described in a simple manner, 

(c • d ) : e = t r a c e [ (c • d >T • e ] = c; k d u; e,-; (A.16) 

It is noted that Eq* (A.16) can be rewritten in several ways, 

(c.d):e = «e-dT):c = (cT-e):d (A. 17) 

This property is very convenient in constructing variational 

principles. 

As shown by £q«(2.17), the strain energy density is 

considered as a function of the strain tensor itself, and its 

derivative with respect to the strain tensor gives stress 

tensor. However, for the validity of this statement, the 

concept of the derivative with resoect to tensor must be 

clearly defined* This can be g enerar i I i ztd from the usual 

mathematical concept of derivative* Let the strain energy 

lensity W be a function of the Cartesian components of the 

Green-Lagrange strain tensor, g-; , Then the total derivative 
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o f w c ^ n be e x p r e s s e d a s f 

^i.^S/^ 
(A*18) 

This can be equivalently rewritten by, 

a w (A.19) 

d W ( 8 i J } = ( 9i~j S i § J ) : ( d S k l ^k -e-l) 

T h e n , t h e t o t a l d e r i v a t i v e dW c a n be e x p r e s s e d i n t e n s o r 

f o r m , 

dw = - i i , d R (A.20) 
3g ' -

w h e r e , 

and 

9W flw 
— = 7T-— e,- e . 

flg 9 s i j - 1 "J 

d £ = d g k i -ek «x 

T h j s , t h e d e r i v a t i v e o f s c a l a r w i t h r e s p e c t t o t e n s o r i s 

d e f i n e d . S i m i l a r l y , t h e d e r i v a t i v e o f t e n s o r s w i t h r e s p e c t 
/V 

to tensor g is defined by, 

21 - llll 
a§ ' 2§ki - i - J - k - 1 

(A.21) 

3P "̂ F u r t h e r , by r e p l a c i n g s by —— „ we c a n d e f i n e a s e c o n d orrHer 

d e r i v a t i v e of W w i t h r e s p e c t t o g as» 

~W 98ijagki - i - j - ^ i 

( A . 2 2 ) 

e . e . e, e 

which is a fourth order tensor* Using the above notations, 

N 

the Taylor expansion of W(g * 49) in terms of jg can be 
A/ /V >V 
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exo ressed by , 

d w l" 1 3 * w 1^ 
W(g^+^g) == W(g^) + — :^g + — - % - J ''A% J g + 

~ 0g I >v 2 <}g I /v ~ <v <v 

(A .23) 

where t he d e r i v a t i v e s a re e v a l u a t e d f o r g . 

The g r a d i e n t o p e r a t o r i s a l s o a t e n s o r of f i r s t o r d e r , 

wh ich i s d e f i n e d by , 

2 (A.2**) 
7 = e 

-iSxT 

Thjs, 

by, 

the gradient of a scalar p and a vector a are defined 

* " f e * 
2aj 

P * = "^xl 1± e. 

(A.25) 

(A.26) 

Considering the gradient operator as a vector, the following 

operations are defined, 

Jai (A.27) 
7' a = (75):I = ^Xi 

p. c = _̂  e_ (A,23) 

A l t h o u g h i t i s no t p r e s e n t e d r)eref t he t e n s o r 

o p e r a t i o n s d e f i n e d i n the above can be deconposed i n t o 

components of any c o n v e n i e n t c o - o r d i n a t e s y s t e m , such as 

o o l a r c o - o r d i n a t e s and c y l i n d r i c a l c o - o r d i n a t e s . 
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A P P E N O I A 3 

PHYSICAL MEANING OF STRESS ANO 

STRAIN MEASURES 

Stress Measures 

In this section* the hpysica! meanings of stress 

measures in the total Lagrangean description are explored. 

To this end, we start from geometrical relations between 

nudeformed and deformed configurations of a solid. For 

simplicity, a fixed rectangular Cartesian co-ordinate system 

with unit oase vectors ^*J§ S«§ 3' * s employed to describe 

both undeformed and deformed state. We consider a material 

point, the positions of which in undeformed and deformed 

configurations are P and P as shown in Fig.3-1. 

Co-ordinates of P and p' are JFJ and y: , respectively. Then, 

co-orainates x^ represent material (or Lagrangean) 

co-ordinates, and y- represent spacial {or Eulerian) 

co-orainates. It is noted here that the material 

co-ordinates x[ (Cartesian) in the undeformed configuration 

become curvilinear co-ordinates x̂  in the deformed 

configuration. For later use, we introduce oase vectors g. 
-I 

for the convected co-ordinate system (x̂  , x2 • x3 ) in the 

deformed configuration, which are defined as, 
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x3' ?3 

CONFIGURATION 

H 

x2> ?2 
1 

Fig.B-1 Co-ordinate System 

Also, *€ need to know the change of volume of a infinitesimal 

material element and the change of oriented area of a 

material surface element through deformation of a body, 

Let dv0 and dV be volumes of a material element in the 

undeformed and deformed configurations, respectively, These 

volumes are related by, 

J dVQ = dV (8.2) 

whe^e, 

dy± 
J » det — — 

3XJ 

Let ds0 and ds be areas of a infinitesimal material 

surface element in undeformed and deformed configurations * n_ 

and v be unit outward normals to ds0 and ds, respectively. 

Then, oriented areas nds0 and uds are related by, 



192 

£ d s o 

or i n components* 

n. ds 

~J (yy)-v ds 

1 3 y l , 
—r- •*—J K d s 

J a*i J 

(B. 3 ) 

( 3 . * ) 

Us ing the above r e l a t i o n s } t h e o h y s i c d l meanings of Cauchy 

s t r e s s T , P i o I a - L a g r a n g e s t r e s s t * and K i r c h h o f f - T r e f f t z 
" A, 

stress s can be shown in the foHowing. 

DEFORMED 

Fig.B-2 Physical Meaning of Cauchy Stress 

Consider an infinitesimal surface element is in the 

deformed state as shown in Fig»Q-2# Unit outward normal to 

is is denoted by v* Let a force vector acting on is be df. 

Then, stress vector T per unit ^rea in the deformed 

configuration can be defined as* 

or in components* 

dF 
1= "df 

Ti *± = 
dF-x 
"dT'-i 

(» .5 ) 

(3.o) 
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F u r t h e r , C a r t e s i a n components of Cauchv s t r e s s Xtl ^ re 

d e f i n e d t h r o u g h the f o l l o w l n j r e l a t i o n . 

dF 
i d i j j ds 

( B . 7 ) 

or , 

dF *F = ^±T±j ds) e.j 
(3 • a ) 

Thus, T / i i s a s t r e s s par u n i t a r c a i n deformed 

con f i q u r a t i o n . 

isJ 

dF - dF e 

UNDEFORMED DEFORMED 

Fig.B-3 Physical Meaning of Piola-Lagrange Stress 
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On the other hand-, if we use undeformed area to 

measure stress vector, Pi ol a-La grange stress is defined in 

the following manner. First we translate the force vector dF 

acting on the deformed area ds to the undeformed area ds0 as 

shown by Fig.B-3. Then, the stress vector oer unit 

undeformed area t is defined by, 

t = t. e. = 
— 1 — 1 

dF: 
ds, (3.9) 

T h r o u g h t h e s t r e s s v e c t o r t , C a r t e s i a n components of the 

P i o I a - L a g r a n g e s t r e s s t?: are d e f i n e d b y , 

t ' i j 
dFi 

J dSn ( 3 . 1 0 ) 

where nt are components of unit normal to the undeformed 

surface ds0 • The force vector d£ is expressed in terms of 

t^ as, 

dF = (n± ttj dsQ) e. 
(3.il) 

Thus, t:f is a stress per unit area in undeformed 

conf i gurati on . 

Similarly, the physical meaning of the 

Kirchhoff-Trefftz stress can be shown. Unlike the case of 

the Pio I a-Lagrange stress, the force vector 6F is decomposed 

with respect to the convected oase vector g- before 

trans I at i on. 
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df = &Y± g± (B.12) 

Then we define an alternative force vector d_F whose Cartesian 

A 

components are dF̂  * such that* 

A A 

dF = dF. e± (8.13) 

This force vector is translated to the undeformed area ds0 as 

shown in Fig,8-^. 

dF - dF g 

UNDEFORMED DEFORMED 

Fig .B-4 Phys ica l Meaning of Ki rchhoff -Tref f tz S t r e s s 

Thent the s t r e s s v e c t o r _t per u n i t a rea i n the undeformed 

c o n f i g u r a t i o n i s d e f i n e d . 

2 1 dFi 
L = t± e± = _ 

ds ( 

-Hi ( 3 . 1 U ) 

Through stress vector t, Cartesian components of the 

Kirchhoff-Trefttz stress s^ are defined by the following 

re I at ion. 

* dFi 
nJ s. . = t. = — J 
i XJ J ds0 

(3.15) 
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d_F = dF. g . = (n. s±. dsQ)g 
( 3 . 1 6 ) 

Thus s t<J i s a s t r e s s o e r u n i t a r e a i n t h e u n d e f o r m e d 

c o n f i g u r a t i o n , b u t s t r e s s v e c t o r i s d e f i n e d by c n » ( 3 * l < * ) « 

The s t r e s s m e a s u r e s d e f i e d a b o v e c a n be r e l a t e d 

t h r o u g h t h e f o r c e v e c t o r d f , 

il = ^i^ij d s ) -~j 

= (n i t ± . d s 0 ) e j 

= (n± s ± j dsQ) _gj 

( 8 . 1 7 ) 

U s i n g E q n s « ( B * l and * * ) , t h e aoos/e r e l a t i o n s a r e r e d u c e d t o , 

- .i«Zl t .1 Hi ill 8 
ij J 3*k kJ J 3xk Bx\ ( 3 . 1 8 ) 

which are used as definitions of stress measures in the text. 

Strain Measures 

The details of the Dhysical meaning of Green-Lagrange 

strain are available in textbooks such as Novozhilov [2^1. 

Therefore, discussion in this section is focused on the 

strain measure h« 
f» 

We c o n s i d e r two i n f i n i t e l y c l o s e m a t e r i a l p o i n t s M and 

N. L e t d_x and d_y be v e c t o r s c o n n e c t i n g t h e m a t e r i a l p o i n t s M 

and N i n u n d e f o r m e d and d e f o r m e d c o n f i g u r a t i o n s * These a r e 

r e l a t e d t h r o u g h d e f o r m a t i o n g r a d i e n t F b y , 

dy * dx*py = F- dx ( 3 . 1 3 ) 
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L e t ds 0 and 1s be d i s t a n c e s o f t h e t w o p o i n t s i n u n d e f o r m e d 

and d e f o r m e d c o n f i g u r a t i o n s , r e s p e c t i v e l y . Then* s q u a r e s o f 

ds0 and ds a r e o b t a i n e d a s , 

(ds n ) = dx-dx 

O 

(ds) = dx • (py .py) . dx = djS'S'*^ 

( 3 - 2 0 ) 

( B . 2 1 ) 

where G is a deformation tensor. Since G is related to 

Green-Lagrange strain g and right extensional strain h 

through, 

G- (2g +£>.(! + hMl + h) (B#22, 

E q . ( 3 . 2 1 ) c a n be r e w r i t t e n i n t e r m s o f g and h . 

(ds ) Z = dx . (2g + I ) . d x « dx ( I + h>(I + h ) .dx 
— «%» * w ~* •"*" ŵ ^s «* <v — 

( 3 . 2 3 ) 

U s i n g t h e a b o v e r e l a t i o n s , t h e r e l a t i v e e l o n g a t i o n o f t h e 

i n f i n i t e s i m a l segment MN, d e f i n e d a s , 

EMN = ( d s " d s o ) / d s o 
( B . 2i+) 

can be e x p r e s s e d i n t e r m s of g and h . F o r c o n v e n i e n c e , we 

i n t r o d u c e a r e c t a n g u l a r C a r t e s i a n c o - o r d i n a t e s y s t e m whose 

c o - o r d i n a t e l i n e s a r e p a r a l l e l t o t h e p r i n c i p a l d i r e c t i o n o f 

t h e d e f o r m a t i o n t e n s o r G. D e n o t i n g u n i t base v e c t o r s i n t h i s 

c o - o r d i n a t e s y s t e m as e ; , t h e d e f o r m a t i o n t e n s o r G car\ be 
— I /v 

decomposed into, 

G = G. e. e. 
<v 1 — 1 — X 

(3.25) 
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where G; are principal values of G. Since tensors G, g, and 

h are coaxial, g and h can be also decomposed in the same 

manner. 

% = Si «i §i 

h = h£ |. e± 

(3.26) 

(8,27) 

where g; and h.- ar^ principal values of i and h, 

resoectively. 

Now, we choose materia) points located on a line 

parallel to e1 in undeformed configuration. Tnen vector d_x 

is reauced to, 

A A 

dx - dx-̂  e^ ( 3 . 2 8 ) 

From E q n s . ( 3 . 2 0 and 2 3 ) , s q u a r e s o f t h e l e n g t h o f t h e 

m a t e r i a l l i n e i n u n d e f o r m e d a n d d e f o r m e d c o n f i g u r a t i o n s a r e 

o b t a i n e d a s , 

(d s* ) 2 = ( d X l )
2 

( d s 1 ) 2 = ( 2 8 i + D C d x ^ 2 = (1 + h 1 ) 2 ( d x 1 ) 2 

( 8 , 2 9 ) 

( 3 . 3 0 ) 

U s i n g E q n s . ( 8 . 2 9 and 3 0 ) , r e l a t i v e e l o n g a t i o n of t h e 

i n f i n i t e s i m a l m a t e r i a l l i n e c a n be e x p r e s s e d i n t e r m s o f g 

and h1 . 

(ds1 - d s ^ / d s * = f!J1 + 1 - 1 = hx (3 .31 ) 

As seen in the above equation, principal value of right 
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extensional strain h, corresponds to the relative elongation 

of a material line which is parallel to the principal 

direction in the undetormed configuration. For this reason* 

h is sometimes called as engineering strain. 
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APPENDIX C 

ILLUSTRATIONS 



201 

Co STATE (UNDEFORMED) 

C STATE (DEFORMED) 

Fig. 1 Description of a Deformed Solid 
(Total Lagrangean Description) 

Co STATE 

CN STATE 

CN+, STATE 

Fig. 2 Description of a Deformed Solid 
(Updated Lagrangean Description) 



ERROR ( RESIDUAL) 

CORRECT NONLINEAR RESPONSE 

A F : INCREMNTAL LOAD 

GENERALIZED RESPONSE 
Fig, 3 Iterative Correction Procedure 

(Modified Newton-Raphson) 

U. 

Q 
Ld 
N 
-J 
< 
CC 
LiJ 
2! 
UJ 
o 

ERROR (RESIDUAL) 

r 

GENERALIZED RESPONSE 

Fig, 4 Iterative Correction Procedure 
(Newton-Raphson) 



203 

r=-1 

o3 

r=+l 

i -H^ 2 

Fig. 5 Four-Noded Isoparametric Element 
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(Initial Configuration) 

(Deformed Configuration at. \= 1.5 ) 

(Deformed Configuration at \= 2.0 ) 

Fig. 10 Deformed Configurations of a Square Sheet 
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Fig. 12 Contours of Axial Component of Cauchy Stress r„ at \ = 2.0 
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Fig. 16 Contours of Axial Component of 
Piola-Lagrange Stress tu at \= 1.5 

Fig. 17 Contours of Axial Component of 
Kirchhoff-Trefftz Stress s„ 
at \= 1.5 
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Fig.20 Eigen-Modes of the Stiffness Matrix of Four-Noded 
Element (Incompressible, Plane-Stress) 
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Fig.21 Eigen-Modes of the Stiffness Matrix of Eight-
Noded Element (Incompressible, Plane-Stress) 
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Fig.27 Contours of Axial Component of 
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Fig.28 Contours of Axial Component of Kirchhoff-
Trefftz Stress S„ at \= 2.0 
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Fig.33 Total Edge Force Versus Axial Extension Ratio 
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Fig,34 Deformed Configurations of a Square Sheet with a 
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Fig.36 Contours of Axial Component of Cauchy Stress r„ at \ = 3,0 
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Fig.38 Contours of Lateral Component of Cauchy Stress r at \ = 3.0. 
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Fig.42 Contours of Axial Component of Piola-Lagrange Stress t^ at 

\ = 3.0 
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Fig.43 Contours of Axial Component of Kirchhoff-Treffts 
Stress S„ at X= 3.0 
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APPENDIX D 

TABLES 
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T a b l e 1 . E igen -Va lues of S t i f f n e s s M a t r i c e s of t h e Four-
Noded P l a n e - S t r e s s Element (Compress ib le ) 

( ^ , b , c) 

( - , i , 8 ) 

( s 3 , B ) 

( 1 C , 1 , 3 ) 

( 1 0 , 3 , 8 ) 

( 1 6 , x , 8) 

( 1 8 , 3 , 8 ) 

A« A. K 

( * i p h y s i c a l l y i m p r o p e r Q l g e n - v -i I ues ) 

A. 

0* 0* ,7 69 - 7 - 9 1 , c 8 

H b e c o m e s singular* 

.759 .769 1-28 1 . T 7 - • 3 ' 

.373 .3 "3 . 7o9 .70 9 1.28 

.769 .769 1.28 .1.37 1 > 37 

.3 73 .3^3 . 7o9 •7• 9 1,2" 

Table 2 , E i g e n - V a l u e s of S t i f f n e s s Mat r i ce s of the Four-
Noded P l a n e - S t r e s s Element ( I n c o m p r e s s i b l e ) 

( 3 , o , 1 , c) A4 A , A 7 

( 1 0 , 1 , 1 , 3 ) 

( 1 0 , 1 , 3 , * ) 

( 1 0 , 1 , b , 3 ) 

( 1 0 , 3 , 1 , 8 ) 

( 1 0 , 3 , 3 , 8 ) 

( 1 0 , 3 , 5 , 8 ) 

( 1 8 , 1 , 1 , 8 ) 

( 1 3 , 1 , 3 , * ) 

( 1 8 , 1 , 6 , 8 ) 

( 1 3 , 3 , 1 , 8 ) 

( . 3 , 3 , 3 , 3 ) 

( 1 8 , 3 , c , 8) 

(* : Dhy 

1 5 . 1 * l ^ . l 

10 2 

10 2 

1 2 . ^ * 

5U • k 

5<~.^ 

1 5 . 1 * 

10 2 

1.0 2 

1 0 2 

1 0 2 

1 2 . < - * 

10 . 1 * 

1 0 2 

102 

1 2 . u * 1 2 . u * 

£ H • k 0--r • -

5.^ . a 5 - . -

102 

2 72 

2 72 

102 

102 

102 

102 

171 

- T O 

102 

102 

102 

270: 

2 7 2 

1 0 2 

100 

102 

1 0 2 

2"c 

27 2 

102 

102 

100 

30 fc 

A j O 

3 J £ 

3 0 b 

3~'h 

3 0-

3u^ 

30^ 

s i c s l l y i m p r o p e r -u g e n - v 3 I ue s ) 



Table 3 . Eigen-Values of S t i f f n e s s Matrices of the Eight -
Noded Plane-Stress Element (Incompressible) 

( 3 , b , d , c ) K *. K V *. A . K *„ A« * u x„ *« A,. 

( 1 8 , I f 1 , 1 6 ) 0* d* - 7 0 . k* - 7 0 . i + * 7 6 . 6 7 9 . 1 - 7 9 . 6 * 8 3 . 7 - l « t 0 * l i + l l i + 6 1 H 6 3 6 7 

( 1 8 , 1 , 3 , 1 b ) o- o* 7 6 . 6 7 9 . 1 - 7 9 . 6 * 8 3 . 7 1 0 3 1 0 3 - l U O * l i * l 3 6 7 1 2 5 7 1 2 5 7 

( 1 8 , 1 , 6 , 1 6 ) 0* c* 6<+.2 b 6 . b 7 7 . 9 1 0 3 1 0 3 i<a 3 6 9 iso 1 2 5 7 1 2 5 7 1 7 2 2 

( i a , 3 , 1 , 1 6 ) 0 * 0 * 7 6 . 6 7 9 . 1 - 7 9 . 6 * - 8 1 . 9 * - 8 1 . 9 * B 3 . 7 - 1 « * 0 * 1<+1 iku !<•«• 3 6 7 

( 1 8 , 3 , 3 , 1 6 ) 0 * a* 5 0 . 0 5 0 . Q 7 6 . 6 7 9 . 1 - 7 9 . 6 * S 3 . 7 - 1 < * 0 * 1<U 2 2 2 2 2 2 3 6 7 

( 1 8 , 3 , 6 , 1 6 ) 0 * 0 ' 5 0 . 0 50 ; c b ^ . 2 6 6 . 6 7 7 . 9 1^1 2 2 2 2 2 2 3 6 9 6 8 0 1 7 2 2 

( 2 8 , 1 , 1 , 1 6 ) 0 . 3 3 * 0 . 3 3 * - 7 0 . 2 * - 7 0 . 2 * 7 6 . 6 7 9 . 1 - 7 9 . 6 * 8 3 . 7 - l < + 0 » 1 1 , 1 1*6 l i + 6 3 6 7 

( 2 8 , 1 , 3 , 1 b ) 0 . 3 3 * 0 . 3 3 * 7 6 . 6 7 9 . 1 - 7 9 . 6 * 8 3 . 7 1 0 3 1 0 3 - 1 1 , 0 * f * l 3 6 7 1 2 5 7 1 2 5 7 

( 2 8 , 1 , 6 , 1 6 ) 0 . 3 3 * 0 . 3 3 * 6 1 , . 2 6 6 . 6 7 7 . 9 1.0 3 1 0 3 I V * 3 6 9 5 8 0 1 2 5 7 1 2 5 7 1 7 2 2 

( 2 8 , 1 , 1 0 , 1 6 ) 6 V . 2 6 6 . 6 7 7 . 9 10 2 1 0 2 l i+ l 3 0 9 3 0 9 3 6 9 5 8 0 1 5 7 1 + 157i+ 1 7 2 2 

( 2 3 , 3 , 1 , 1 6 ) 0 . 3 3 * 0 . 3 3 * 7 6 . 6 7 9 . 1 - 7 9 . 6 * - 8 1 . 8 - 8 1 . 8 * 8 3 . 7 - l < + 0 * 1<+1 li+i+ li+1+ 3 6 7 

( 2 8 , 3 , 3 , 1 6 ) 0 . 3 3 * 0 . 3 3 * 5 0 . 0 5 0 . 0 7 6 . 6 7 9 . 1 - 7 9 . 6 * 8 3 . 7 - 1 W 0 * Iki 2 2 2 2 2 2 3 6 7 

( 2 8 , 3 , 6 , 1 6 ) 0 . 3 3 » 0 . 3 3 * 5 0 . 0 5 0 . 0 o<+.2 6 6 . 6 7 7 . 9 1<»1 2 2 2 2 2 2 3 6 9 6 8 0 1 7 2 2 

( 2 8 , 3 , 1 0 , 1 6 ) i * 5 . 5 1 . 5 . 5 6<+.2 6 6 . 6 7 7 . 9 1<+1 1 6 6 1 6 6 3 6 2 3 6 2 3 6 9 6 8 0 1 7 2 2 

( • 1 p h y s i c a l l y improper e lgen - v a l u e s ) 
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