
Global Optimization of Monotonic Programs:

Applications in Polynomial and Stochastic Programming

A Thesis
Presented to

The Academic Faculty

by

Myun-Seok Cheon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Industrial and Systems Engineering
Georgia Institute of Technology

May 2005

Global Optimization of Monotonic Programs:

Applications in Polynomial and Stochastic Programming

Approved by:

Professor Faiz Al-Khayyal, Co-Advisor

Professor Shabbir Ahmed, Co-Advisor

Professor Alex Shapiro

Professor Earl Barnes

Professor Matthew J. Realff
(School of Chemical & Biomolecular Engi-
neering, Georgia Institute of Technology)

Date Approved: May 2005

To my wife and family,

for their love and patience.

iii

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my two advisors, Dr. Faiz Al-Khayyal

and Dr. Shabbir Ahmed for their guidance and encouragements throughout the entire

course of my research. Without their excellent insights and invaluable suggestions, I could

not be able to complete this thesis.

I am grateful to Dr. Earl Barnes, Dr. Alex Shapiro and Dr. Matthew Realf for serving

as members of my committee and their valuable comments and suggestions.

Finally, I am deeply thankful to my parents, Bong-Nam Cheon and Sung-Hang Lee for

their support and encouragement. I owe special thanks to my wife, Jin-Ah Lim, and my

princess and prince, Esther and Ethan. Their support, patience, and love enabled me to

complete this thesis.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

CHAPTER I INTRODUCTION . 1

CHAPTER II MONOTONIC PROGRAMMING: STRUCTURE AND AL-

GORITHMS . 4

2.1 Introduction . 4

2.2 Characteristics of Monotonic Programs . 6

2.3 Polyblock Algorithm . 9

2.3.1 An illustrative example . 10

2.3.2 Enhancement . 11

2.3.3 Convergence analysis . 21

2.4 Branch-and-Bound Algorithm . 23

2.4.1 Selection and branching . 23

2.4.2 Domain reduction . 25

2.4.3 Bounding and optimality cuts . 28

2.4.4 Fathoming . 30

2.4.5 Convergence analysis . 30

2.5 Simplicial branching . 33

CHAPTER III COMPUTATIONAL RESULTS FOR SEPARABLE POLY-

NOMIAL PROGRAMMING PROBLEMS 36

3.1 Separable polynomial programming . 36

3.1.1 Problem transformation . 37

3.1.2 Convex relaxations . 38

3.2 Computational Experiments . 42

3.2.1 Test problems . 42

v

3.2.2 Bounding by variable fixing . 45

3.2.3 Computational Results . 46

CHAPTER IV PROBABILISTICALLY CONSTRAINED LINEAR PRO-

GRAMS . 53

4.1 Introduction . 53

4.2 Problem reformulation and structural properties 55

4.3 A Branch-Reduce-Cut algorithm . 60

4.3.1 Selection and branching . 63

4.3.2 Domain reduction . 64

4.3.3 Feasibility and optimality cuts . 65

4.3.4 Upper bounding and searching for feasible solutions 66

4.3.5 Fathoming . 67

4.4 Convergence analysis . 68

4.4.1 Discrete distribution . 68

4.4.2 Continuous distribution . 70

4.5 Computational results . 71

CHAPTER V CONCLUSION . 74

APPENDIX A — COMPUTATIONAL RESULTS 77

REFERENCES . 92

VITA . 95

vi

LIST OF TABLES

Table 1 The subsequence converging to the vertex (3, 1, 1) 18

Table 2 Average CPU seconds. 47

Table 3 Computational result summary . 51

Table 4 Distribution of (ξ1, ξ2) . 59

Table 5 Comparison of CPU seconds . 73

Table 6 (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.01 78

Table 7 (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.001 79

Table 8 (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.0001 79

Table 9 (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.01 80

Table 10 (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.001 80

Table 11 (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.0001 81

Table 12 (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.01 81

Table 13 (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.001 82

Table 14 (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.0001 82

Table 15 (Conical vs. Rectangular) m = 3 and ǫ = 0.01 83

Table 16 (Conical vs. Rectangular) m = 3 and ǫ = 0.001 84

Table 17 (Conical vs. Rectangular) m = 3 and ǫ = 0.0001 84

Table 18 (Conical vs. Rectangular) m = 5 and ǫ = 0.01 85

Table 19 (Conical vs. Rectangular) m = 5 and ǫ = 0.001 85

Table 20 (Conical vs. Rectangular) m = 5 and ǫ = 0.0001 86

Table 21 (Subdivisional bounding) m = 4 and ǫ = 0.01. 87

Table 22 (Subdivisional bounding) m = 4 and ǫ = 0.001. 87

Table 23 (Subdivisional bounding) m = 4 and ǫ = 0.0001. 88

Table 24 (Subdivisional bounding) m = 5 and ǫ = 0.01. 88

Table 25 (Subdivisional bounding) m = 5 and ǫ = 0.001. 89

Table 26 (Subdivisional bounding) m = 5 and ǫ = 0.0001. 89

Table 27 (Subdivisional bounding) m = 6 and ǫ = 0.01. 90

Table 28 (Subdivisional bounding) m = 6 and ǫ = 0.001. 90

Table 29 (Subdivisional bounding) m = 6 and ǫ = 0.0001. 91

vii

LIST OF FIGURES

Figure 1 Feasible region of Example 2.1 . 7

Figure 2 Procedures of the Polyblock Algorithm applied to the example (EX1) . . 12

Figure 3 An illustrative example of jamming . 17

Figure 4 CPU seconds of Polyblock Algorithm (PA, Algorithm 1) and modified Al-
gorithm (mPA, Algorithm 2). 20

Figure 5 An example of domain reduction . 26

Figure 6 An illustrative example of domain reductions 29

Figure 7 An illustrative example of simplex branching 34

Figure 8 Linear relaxation for univariate polynomial hij : (a) relaxation for h+
ij and

(b) relaxations for h−
ij . 40

Figure 9 Linear relaxations of hij of a generated problem: (a) xL
j ≥ −bij , (b) xU

j ≤

−bij , and (c)&(d) xL
j ≤ −bij ≤ xU

j . 44

Figure 10 Average CPU seconds in various cases . 48

Figure 11 CPU seconds with or without convex relaxations for (a) low dimensional
instances and (b) high dimensional instances. 49

Figure 12 Average CPU seconds comparison . 50

Figure 13 Average CPU seconds comparison of branch-and-bound, branch-and-bound
with linear relaxation, branch-and-bound with Polyblock bounding 52

Figure 14 (a) The feasible region in the x-space, (b) The feasible region in the y-space. 60

Figure 15 A Branch-Reduce-Cut algorithm for PCLP 62

Figure 16 (a) Feasibility cut corresponding to y = (1, 1.5)T and (b) Optimality cuts
corresponding to y = (−5, 5)T and y = (−2, 2)T 67

Figure 17 CPU seconds versus K (m = 5, n = 50). 72

viii

SUMMARY

Monotonic optimization consists of minimizing or maximizing a monotonic objec-

tive function over a set of constraints defined by monotonic functions. Many optimization

problems in economics and engineering often have monotonicity while lacking other useful

properties, such as convexity. This thesis is concerned with the development and application

of global optimization algorithms for monotonic optimization problems.

First, we propose enhancements to an existing outer-approximation algorithm — called

the Polyblock Algorithm — for monotonic optimization problems. The enhancements are

shown to significantly improve the computational performance of the algorithm while retain-

ing the convergence properties. Next, we develop a generic branch-and-bound algorithm for

monotonic optimization problems. A computational study is carried out for comparing the

performance of the Polyblock Algorithm and variants of the proposed branch-and-bound

scheme on a family of separable polynomial programming problems. Finally, we study an

important class of monotonic optimization problems — probabilistically constrained linear

programs. We develop a branch-and-bound algorithm that searches for a global solution

to the problem. The basic algorithm is enhanced by domain reduction and cutting plane

strategies to reduce the size of the partitions and hence tighten bounds. The proposed

branch-reduce-cut algorithm exploits the monotonicity properties inherent in the problem,

and requires the solution of only linear programming subproblems. We provide conver-

gence proofs for the algorithm. Some illustrative numerical results involving problems with

discrete distributions are presented.

ix

CHAPTER I

INTRODUCTION

The rapid growth of global optimization is observed in recent days for problems arising in

science and engineering. Such problems include finance, allocation and location problems,

operations research, statistics, structural optimization, engineering design, network and

transportation problems, chip design and database problems, nuclear and mechanical de-

sign, chemical engineering design and control, and molecular biology [16]. Many important

optimization problems contain nonconvexity due to either a nonconvex objective function

or a nonconvex feasible region or both. One may want or need to have a best (global opti-

mal) solution rather than a locally best (local optimal) solution for a nonconvex problem.

According to Neumaier [15], a global optimal solution needs to be found in applications like

hard feasibility problems, computer-assisted proofs, safety verification problems, problems

in chemistry and semi-infinite programming. Often, local optimization techniques for these

problems usually do not return any useful information; e.g., in robot arm design, a local

solution gets stuck in local minimizers of the merit function, and does not provide feasible

points. For another example, a local optimal solution, in safety verification problems, can

be, in the worst case, a severe underestimation of the true risk.

The methods for global optimization can be categorized into deterministic and stochas-

tic approaches [16]. In deterministic approaches, by exploiting the characteristics of any

mathematical structure, we generate a deterministic sequence of points that converge to a

global optimal solution. In stochastic approaches, the search is performed randomly and

ensures that a global optimal solution will be found with a high probability. Determinis-

tic approaches are suitable for d.c. optimization (differences of convex functions or sets),

monotonic programs (monotone objective over a feasible set defined by monotone functions

with inequalities), quadratic and polynomial programming and discrete problems. For sto-

chastic approaches, there are two-phase methods, multistart methods and their traditional

1

variants (e.g., random linkage and metaheuristics), simulated annealing, tabu search, and

genetic algorithms.

Monotonic programs consist of minimizing or maximizing a monotone objective func-

tion over a feasible set defined by monotone inequalities. Many mathematical programming

problems have monotonicity rather than convexity or concavity in either their objective or

constraints (e.g., multiplicative programming, fractional programming, indefinite quadratic

programming, polynomial programming, Lipschitz optimization, optimization under net-

work constraints, Fekete points problem and Lennard-Jones potential energy function [32].)

For monotonic programming problems, an outer approximation algorithm, called the Poly-

block Algorithm [32], and pth power convexification and concavification schemes [12] have

been developed. According to Tuy [32], monotonic programming approaches have been

demonstrated to be efficient for solving multiplicative programming problems while alterna-

tive methods hardly handle them. The efficiency of the monotonic programming approaches

has been reported with computational results on various classes of global optimization prob-

lems, such as linear or polynomial fractional programming [17, 37], and discrete nonlinear

programming [36].

In Chapter 2, we exploit rigorous properties of monotonic programs and review the

Polyblock algorithm proposed by Tuy [34]. We propose enhancements in order to improve the

efficiency of the algorithm. On some problems, we have observed jamming of the Polyblock

Algorithm (i.e., the algorithm requires many iterations to check certain regions or points).

By identifying properties of vertices defining polyblocks, we propose a more efficient way

to manage vertices. The efficiency of our modification is demonstrated by computational

experiments. Furthermore, we implement a branch-and-bound based algorithm. Because of

monotonicity, it is possible to make an efficient domain reduction scheme and to construct

optimality cuts. Similar ideas were independently developed by Tuy et al. [35] for the more

general difference of monotone case without implementation and computational testing.

In order to compare the performance of algorithms proposed in Chapter 2, we consider

a class of polynomial programming problems in Chapter 3. Polynomial programming prob-

lems are widely used in engineering and science applications. Polynomial programming

2

problems are either monotonic programming problems or difference of monotonic program-

ming problems. We show how to transform a general polynomial programming problem

into a monotonic programming problem. We enhance the algorithms developed in Chapter

2 by providing linear convex relaxations. We report extensive computational results on the

performance of these proposed enhanced algorithms.

Stochastic programming problems are optimization problems involving uncertainly. Prob-

abilistically constrained linear programming (PCLP) is an instance of a stochastic program

that deals with reliability or satisfaction of conditions (e.g., to satisfy demand or service

level) under uncertainty. The most well-known applications are in areas of finance, economic

planning, inventory control, reservoir management and telecommunication reliability.

In Chapter 4, we consider probabilistically constrained linear programs with general

distributions for the uncertain parameters. We develop a branch-and-bound algorithm that

searches for a global solution to this problem by successively partitioning the nonconvex

feasible region and by using bounds on the objective function to fathom inferior partitions.

This basic algorithm is enhanced by domain reduction and cutting plane strategies to re-

duce the size of the partitions and hence tighten bounds. The proposed branch-reduce-cut

algorithm exploits the monotonicity properties inherent in the problem, and requires solving

linear programming subproblems. We provide convergence proofs for the algorithm. Some

illustrative numerical results involving problems with discrete distributions are presented.

3

CHAPTER II

MONOTONIC PROGRAMMING: STRUCTURE AND

ALGORITHMS

2.1 Introduction

An optimization problem that consists of a monotone objective and the feasible set, defined

by monotone functions, is called a monotonic program. Many mathematical programming

functions that arise in economics and engineering applications either have monotonic prop-

erties or can be represented as the difference of monotonic functions [32].

Mathematical programs with monotonic properties have been studied in the litera-

ture. Li et al. [12] proposed convexification and concavification schemes that transform

a monotone function into either a concave or a convex function by using a pth power trans-

formation. It follows that a monotonic programming problem can be transformed into

either a convex minimization problem over a convex set or a d.c. programming prob-

lem. Consider a twice differentiable monotonic increasing function h : Rn 7→ R. For any

x = [x1, . . . , xn]T ∈ Rn
+ and p > 0, x1/p is defined as follows:

x1/p = [x
1/p
1 , . . . , x1/p

n]T .

The pth power concavification transformation of h is as follows:

φh(x) = −[h(x1/p)]−p.

They show that there exists p1 > 0 such that φh is a concave function for p > p1 under the

condition that there exist two positive numbers ǫ0 > 0 and ǫ1 > 0 such that

h(x) ≥ ǫ0, ∀ x ∈ X, (2.1.1)

∂h

∂xj
≥ ǫ1, ∀ x ∈ X and ∀j ∈ {1, . . . , n}. (2.1.2)

Similarly, we can transform a monotonic decreasing function into a convex function.

After these transformations, a monotonic programming problem can be reformulated as

4

a convex or a d.c. programming problem. Li et al. [12] also proposed a method that

transforms a non-convex general problem into a monotonic optimization problem. Consider

a twice differentiable function h on X satisfying h(x) ≥ ǫ0 > 0 for all x ∈ X. Let lj and

uj be the lower and upper bounds of a variable xj . The transformed monotonic function

w+
h (x) of h is as follows:

w+
h (x) = h(x) exp



q




n∑

j=1

xj − ρ







 ,

where q and ρ are parameters with q > 0 and
∑n

j=1 lj ≤ ρ ≤
∑n

j=1 uj . Then, there exists

a finite q1 > 0 such that w+
h (x) is a strictly increasing function on X1(ρ) = {x ∈ X :

∑n
j=1 xj ≥ ρ} for q ≥ q1. By using these two reformulation techniques, some non-convex

problems can be transformed into convex problems or d.c. problems.

Tuy [32] has studied the properties of monotonic programming problems and developed

a general framework for solving bounded monotonic programming problems to global opti-

mality. The algorithm is based upon successively outer approximating the feasible region

of a monotonic programming problem using a nested sequence of polyblocks, or unions of

hyperrectangles, and exploiting the fact that the minima of a non-decreasing function over

a polyblcok is at an extreme point of the polyblock. While the pth-power convexification

and concavification schemes [12] require continuity and twice differentiable properties of the

function, the Polyblock Algorithm does not require any other properties except monotonic-

ity of functions. The efficiency of the Polyblock Algorithm has been demonstrated in various

applications such as multiplicative programming, linear and polynomial fractional program-

ming [17, 37], and discrete nonlinear programming [36].

In this chapter, the characteristics of monotonic programs are exploited and the Poly-

block Algorithm [32] is revised with enhancements. The effectiveness of our enhancements

are demonstrated by computational experiments. We also propose a branch-and-bound

algorithm for monotonic programming problems. Because of monotonicity, it is easy to

reduce the range of the variables and to determine bounds for a given region.

In the original work, Tuy [32] mentioned that a branch-and-bound scheme using the

Polyblock Algorithm for bounding can be devised for monotonic programs but gave no

5

details. In this thesis, we developed and implemented such a scheme. Computational

experiments suggested the need for enhancements to improve the performance of the ap-

proach. Independently, Tuy et al. [35] describe a branch-and-bound method and propose

some enhancements; however, the algorithm was not implemented.

2.2 Characteristics of Monotonic Programs

The general statement of a bounded monotonic programming problem is as follows:

(MO): min f(x)

s.t. hj(x) ≥ 0 for j = 1, . . . , mH

gi(x) ≤ 0 for i = 1, . . . , mG

x ∈ [a, b] ⊂ Rn,

where [a, b] denotes a hyperrectangle with least element a and greatest element b, the

function f : Rn 7→ R is monotonic non-decreasing, and the functions gi : Rn 7→ R and

hj : Rn 7→ R are monotonic non-decreasing for i = 1, . . . , mG and j = 1, . . . , mH . In order

to ensure that the feasible set is closed, we assume that function gi is lower semi-continuous

for all i and function hj is upper semi-continuous for all j.

Consider the sets G := {x ∈ Rn : gi(x) ≤ 0 for i = 1, . . . , mG} and H := {x ∈ Rn :

hi(x) ≥ 0 for i = 1, . . . , mH}. The feasible region of (MO) is then G∩H. The sets G and

H have the following properties:

for any x, y ∈ Rn : x ∈ G and y ≤ x⇒ y ∈ G, (2.2.1)

for any x, y ∈ Rn : x ∈ H and y ≥ x⇒ y ∈ H. (2.2.2)

A set that satisfies property (2.2.1) is known as a normal set, and the set H is called a

reverse normal set.

6

Example 2.1. Consider the following monotonic programming problem in two dimensions:

min x1 + x2 (2.2.3)

s.t. (x1 − 3)3 + 9(x2 − 3) ≥ 0 (2.2.4)

5x1 + 6x2 − 36 ≤ 0 (2.2.5)

(x1, x2) ∈ [0, 6]2. (2.2.6)

The objective function in (2.2.3) and the functions in (2.2.4) through (2.2.6) that define

the feasible set are monotone continuous functions. The feasible region of Example 2.1 is

illustrated in Figure 1. The dark shaded area in Figure 1 is the feasible region of Example

2.1 and it is a nonconvex and disconnected set.

Figure 1: Feasible region of Example 2.1

In Example 2.1, the normal set of the problem is defined by the constraint (2.2.5), which

is represented by the region below the dashed line in Figure 1. The constraint (2.2.4) defines

the reverse set H given by the region above the dotted line in Figure 1.

We summarize the properties of (MO) from the general results in [32, 35]. For com-

pleteness of exposition, we also include a proof.

7

Proposition 2.1. For a given (MO) and xL, xU ∈ Rn such that xL ≤ xU ,

(i) if there exists x ∈ G ∩H ∩ [xL, xU], then xL ∈ G and xU ∈ H;

(ii) if xL ∈ H, then either xL is an optimal solution over G ∩H ∩ [xL, xU] or G ∩H ∩

[xL, xU] = ∅;

(iii) if x̂ ∈ [xL, xU] is on the relative boundary of H, then there cannot be a solution that

is better (i.e., feasible with a smaller objective value) in the set Q := {x : xL ≤ x < x̂}

and Q′ := {x : x̂ ≤ x ≤ xU};

(iv) if G∩H ∩ [xL, xU] 6= ∅, then there exists an optimal solution of (MO) that lies on the

relative boundary of H.

Proof. To prove part (i), we must show that if xL /∈ G or xU /∈ H, then G∩H∩[xL, xH] = ∅.

If xL /∈ G, there is no point such that x ∈ G because of the property of the normal set G in

(2.2.1) and xL ≤ x. The case xU /∈ H is analogous to the case xL /∈ G.

To prove part (ii), consider xL ∈ H \ G. By part (i), there is no feasible solution

in x ∈ [xL, xU]. Consider xL ∈ H ∩ G. By the monotonicity of the objective function,

f(xL) ≤ f(x) for x ∈ [xL, xU]. Thus, xL is an optimal solution.

To prove part (iii), consider the set Q. Let x̂ be a boundary point of H. Suppose that

there is x ∈ H ∩ Q. That is, x < x̂. Then, this contradicts that x̂ is a boundary point.

Therefore, G ∩H ∩ Q = ∅. For the set Q′, by part (ii), either G ∩H ∩ Q′ = ∅ or x̂ is an

optimal solution over G ∩H ∩Q′.

To prove part (iv), consider an optimal solution y ∈ ri(H). Since the objective function

f of (MO) is a monotonic non-decreasing function, i.e., f(x) ≤ f(y) if x ≤ y, for any

y ∈ ri(H) then there exists a point x ∈ H such that f(x) ≤ f(y) and x ≤ y. This implies

that an optimal solution of (MO) lies on the boundary of H.

By using the properties in Proposition 2.1, Tuy [32, 35] proposed the Polyblock Algorithm

for (MO).

8

2.3 Polyblock Algorithm

For a, b ∈ Rn and a < b, define [a, b] =
∏n

j=1[aj , bj]. Let T be a finite set of points in

[a, b]. The set P = ∪v∈T [v, b] is called a polyblock and the set T is called the vertex set of

P . A polyblock is clearly a reverse normal set, and the intersection of polyblocks is also a

polyblock [32, 35]. A vertex v ∈ T is proper if there is no v′ ∈ T such that v′ 6= v and v′ ≤ v,

and improper otherwise. Improper vertices can be deleted without changing the polyblock,

so a polyblock is completely determined by its proper vertices.

The Polyblock Algorithm inductively generates a nested sequence of polyblocks that

outer approximate the feasible set:

[a, b] := P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pk ⊃ · · · ⊃ G ∩H ∩ [a, b]

such that

min{f(x) : x ∈ Pk} ր min{f(x) : x ∈ G ∩H}.

It can be shown from Proposition 2.1 (ii) that

min{f(x) : x ∈ Pk} ⇔ min{f(x) : x ∈ Tk},

where Tk is the vertex set of Pk. The Polyblock Algorithm then proceeds as follows. At

each iteration, a vertex vk ∈ Tk ∩G is chosen such that f(vk) is minimal among all vertices

in Tk ∩G. If no such vertex exists, the algorithm terminates with the best known solution

so far being the optimal solution of (MO), or it is resolved that the problem is infeasible.

If vk ∈ H then it is a global optimal solution. Otherwise, a point xk ∈ ∂(H) is derived

such that the set {x : a ≤ x < xk} contains no feasible solution; hence, this set can be

removed from [vk, b] without losing any feasible solutions. In order to obtain a boundary

point xk ∈ ∂(H)∩ [vk, b] for vK ∈ G \H and b ∈ H, we solve the following problem (2.3.1):

πH(vk, b) = vk + µ∗(vk − b), where µ∗ = min{µ ∈ [0 1] : vk + µ(vk − b) ∈ H}. (2.3.1)

Since we assume that the reverse normal set H is defined by upper semi-continuous func-

tions, the reverse normal set H is closed. Thus, problem (2.3.1) for obtaining µ∗ has an

optimal solution. Problem (2.3.1) can be solved by using bisection search. If xk ∈ G then it

9

is a feasible solution and can be used to update the current best feasible solution. After re-

moving {x : a ≤ x < xk} from Pk, a new polyblock Pk+1 ⊂ Pk is constructed which excludes

vk but still contains all global solutions. Under mild conditions, it has been shown [32, 35]

that as k →∞, the sequence xk converges to a global optimal solution of the problem. The

detailed procedure of the Polyblock Algorithm [35] is shown in Algorithm 1.

Algorithm 1 Polyblock Algorithm proposed in [35]

initialization: Select ǫ ≥ 0 (tolerance). Let T1 be the proper vertex set of an initial
polyblock P1 ⊃ G ∩ H (for instance, T1 = {a}, with P1 = [a, b]). Assign every v ∈ T1

a number β(v) such that min{f(x) : x ∈ G ∩H ∩ [v, b]} ≥ β(v) ≥ f(v). Let x̄1 be the
best feasible solution available and CBV = f(x̄1) (if no feasible solution is available,
CBV =∞). Set k = 1.
step k.1: From Tk remove all v ∈ Tk \ G and all v such that β(v) ≥ CBV − ǫ. Denote
the set of remaining elements again by Tk.
step k.2: If Tk = ∅, terminate: if CBV = ∞, the problem is infeasible; if CBV < ∞,
the current best feasible solution x̄k is accepted as an ǫ-optimal solution.
step k.3: If Tk 6= ∅, select vk ∈ arg min{β(v)|v ∈ Tk}.
if convex relaxations are available then

Let wk be an optimal solution of convex relaxation. Reset β(vk)← max{f(wk), β(vk)}.
end if

let xk = πH(vk, b) to be the intersection of the boundary of H with the line segment
joining b with vk, where πH(vk, b) is defined in (2.3.1).
step k.4: Determine the new current best value CBV and the new current best feasible
solution x̄k+1.
if β(vk) ≥ CBV − ǫ then

reset Tk ← Tk \ {v
k}, and goto step k.2.

else

goto step k.5.
end if

step k.5: Let Tk,∗ = {v ∈ Tk| v < xk} ∪ vk. Compute

T ′
k = (Tk \ Tk,∗) ∪ {v

k,i|v ∈ Tk,∗, vi < xk
i , i = 1, . . . , n} (2.3.2)

where vk,i = v + (xk
i − vi)e

i. Let Tk+1 be the set obtained from T ′
k by removing improper

vertices. For every v ∈ Tk+1 \ Tk set β(v) = max{f(v), β(vk)} (vk is the father of v).
step k.6: k ← k + 1 and goto step k.1.

2.3.1 An illustrative example

Here, the steps of the Polyblock Algorithm for solving Example 2.1 are illustrated. An

application of the Polyblock Algorithm with a termination tolerance of ǫ = 0.1 requires

17 iterations with the maximum number of vertices considered in any iteration being 6.

10

Figure 2 shows iterations 1,2,3 and 17 of the Polyblock Algorithm. The algorithm starts out

with P1 = [(0, 0), (6, 6)] as the initial (poly)block. The minimal vertex chosen is v1 = (0, 0).

For this polyblock, we get x1
b = (3, 3) and the corresponding objective value is 6. The

current best feasible solution is found to be (3, 3). By removing [(0, 0), (3, 3)) from P1, a

new polyblock P2 = [(3, 0), (6, 6)] ∪ [(0, 3), (6, 6)] is generated. In iteration 2, the vertex

(0, 3) is chosen to be minimal, and x2
b = (1.2307, 3.6154) is the corresponding boundary

point of H. Polyblock P3 is constructed by removing [(0, 0), (1.2307, 3.6154)) from P2. A

new polyblock P3 = [(3, 0), (6, 6)]∪[(0, 3.6154), (6, 6)]∪[(1.2307, 3), (6, 6)] is generated. In P3

a vertex (3, 0) has a minimum lower bound among vertices. The line segment [(3, 0), (6, 6)]

intersects the boundary of the reverse normal set at the point (4.3602, 2.7204). After 17

iterations, the point (1.2307, 3.6154) is determined to be the ǫ-global optimal solution with

an objective value of 4.8461 for ǫ = 0.1. The line in Iteration 17 of Figure 2 depicts the

objective function contour crossing the best solution so far within our optimality tolerance.

All of the vertices that define a polyblock are above the line carrying the optimal solution.

This implies that we cannot find a better solution than the current best solution.

2.3.2 Enhancement

Based on our computational experiments, we found that a significant portion of the com-

putational effort of the Polyblock Algorithm is in finding proper vertices. Consider two

vertices v1 and v2 in the vertex set of the algorithm such that v1 ≤ v2. The block defined

by the vertex v1 contains the block defined by the vertex v2. For this case, we say that

vertex v1 dominates vertex v2 and that vertex v2 is improper because we can remove it

without changing the shape of the polyblock. In order to identify improper vertices in Al-

gorithm 1, all pairs of vertices in T ′
k should be compared to each other. Thus, the number

of comparisons is
|T ′

k
|×(|T ′

k
|−1)

2 . Through our enhancement, we identify a smaller vertex set

that includes all of the improper vertices and those improper vertices can be identified by

comparisons of all pairs within the smaller vertex set. That is, any vertex in this smaller

set dominates only members of this set and is not dominated by vertices outside the set.

Since the number of comparison is reduced, so is the computational effort.

11

Iteration 1 Iteration 2

Iteration 3 Iteration 17

Figure 2: Procedures of the Polyblock Algorithm applied to the example (EX1)

Another computational difficulty associated with the polyblock algoirthm is jamming

that occurs in the converging subsequence of vertices to a vertex having at least one jth

element equal to bj . That is, when one of the elements in the vertex is close to its upper

bound, then one of the successive vertices is almost the same as the previous vertex (i.e.,

for that element, the distance between the vertex and the corresponding successive vertex

is smaller than the gap between the element and its upper bound). To circumvent this

behavior, we propose a redefinition of the function πH(·).

12

2.3.2.1 Eliminating improper vertices

In Algorithm 1, vertices in Tk,∗ = {v ∈ Tk : v < xk} ∪ {vk} will be used in our proposed

refinement scheme, where xk is a boundary point of H. In order to eliminate improper

vertices, all of the vertices in T ′
k defined by (2.3.2) should be compared with each other. In

the worst case, this requires
|T ′

k
|(|T ′

k
|−1)

2 comparisons. In this section, a smaller vertex set

will be identified and it will be shown that the comparisons of all pairs in the new vertex

set are enough to identify improper vertices. That is, all improper vertices are in the new

vertex set and vertices that dominate improper vertices are also in the same vertex set.

An improper vertex (vimp ∈ T) can be defined as following. A vertex vimp is improper

if there exists a vertex v′ ∈ T such that v′ ≤ vimp. Thus, we can define the improper vertex

set (IMP (T)) and the proper vertex set (PS(T)) as follows

IMP (T) = {v ∈ T : ∃ v′ ∈ T, v ≥ v′}, (2.3.3)

PS(T) = T \ IMP (T). (2.3.4)

In order to specify a vertex set that contains improper vertices, we redefine sets of

vertices. Let T x
k be a vertex set such that T x

k = {v ∈ T |v ≤ xk} where xk is a boundary

point of H. Let T x=
k be a vertex set such that T x=

k = T x
k \Tk,∗. Let T new

k be a newly refined

vertex set obtained from Tk,∗ such that

T new
k = {vk,i|v ∈ Tk,∗, vi < xk

i , i = 1, . . . , n}, (2.3.5)

where vk,i = v + (xk
i − vi)e

i and ei denotes the ith unit vector.

Proposition 2.2. The proper vertex set has the following properties:

(i) PS(T ∪ T ′) ⊆ T ∪ PS(T ′);

(ii) if Tk = PS(Tk), then PS(Tk \ T x
k) = Tk \ T x

k ;

(iii) {Tk \ T x
k } ∩ {T

x=
k ∪ T new

k } = ∅;

(iv) Tk \ Tk,∗ = {Tk \ T x
k } ∪ T x=

k .

13

Proof. Part (i) is trivial;

T ∪ PS(T ′) ⊇ PS(T) ∪ PS(T ′)

⊇ PS(PS(T) ∪ PS(T ′))

= PS(T ∪ T ′).

To prove part (ii), Tk \T
x
k is a subset of Tk and Tk is a proper set. This implies that Tk \T

x
k

is also a proper set.

To prove part (iii), we know that v ≤ xk for all v ∈ T x=
k while v � xk and v � xk for

all v ∈ Tk \ T x
k because of the definitions of T x=

k and T x
k . We must show that v ≤ xk for

all v ∈ T new
k . According to equation (2.3.5), vertices in T new

k are generated from vertices

in Tk,∗ by replacing one element of a vertex with one element of xk. Thus, v ≤ xk for all

v ∈ T new
k . This implies that {Tk \ T x

k } ∩ {T
x=
k ∪ T new

k } = ∅.

To prove part (iv),

Tk \ Tk,∗ = Tk \ (T x
k \ T x=

k) by the definitions of T x=
k and Tk,∗ ⊆ T x

k

= Tk \ (T x
k ∩ (T x=

k)c)

= Tk ∩ (T x
k ∩ (T x=

k)c)c

= (Tk ∩ (T x
k)c) ∪ (Tk ∩ T x=

k)

= Tk \ T x
k ∪ T x=

k .

In Algorithm 1, the proper vertex set is obtained from T ′
k = (Tk \ Tk,∗) ∪ T new

k by

comparing each pair of two vertices in the set T ′
k. We will show that there do not exist

v ∈ T x=
k ∪ T new

k and v′ ∈ Tk \ T x
k such that either v ≤ v′ or v ≥ v′. Since the set Tk \ T x

k is

a proper set by Proposition 2.2 (ii), it follows that we only need to compare vertices in the

set T x=
k ∪ T new

k in order to obtain proper vertices.

Proposition 2.3. PS(T ′
k) = Tk \ T x

k ∪ PS(T x=
k ∪ T new

k)

Proof. By the procedure of the algorithm, we may assume that Tk is a proper vertex set.

14

We must show that

(i) PS(T ′
k) ⊆ Tk \ T x

k ∪ PS(T x=
k ∪ T new

k), and

(ii) PS(T ′
k) ⊇ Tk \ T x

k ∪ PS(T x=
k ∪ T new

k).

By Proposition 2.2 (iv), we can rewrite T ′
k as follows;

T ′
k = (Tk \ Tk,∗) ∪ T new

k = (Tk \ T x
k) ∪ (T x=

k ∪ T new
k).

Part (i) is trivial and is proven by Proposition 2.2 (iv).

To prove part (ii), suppose that there exists v such that v /∈ PS((Tk\T
x
k)∪(T x=

k ∪T new
k))

and v ∈ {(Tk \ T x
k) ∪ PS(T x=

k ∪ T new
k)}. By Proposition 2.2.(iii), v is an element of either

the set Tk \ T x
k or PS(T x=

k ∪ T new
k). If v is an element of Tk \ T x

k , then there exists v′ such

that v ≥ v′ ∈ (Tk \ T x
k) ∪ (T x=

k ∪ T new
k). But v′ cannot be an element of Tk \ T x

k because Tk

is a proper vertex set and Tk \ T x
k is also proper. If v′ is in T x=

k , then Tk is not a proper

vertex set because both v and v′ would be in Tk. This implies that v′ is in T new
k . Since v′ is

generated from some vertex z ∈ Tk,∗ ⊂ Tk, we know that v′ ≥ z. Furthermore, v ≥ v′ ≥ z

and v, z ∈ Tk. This contradicts the assumption that Tk is a proper set.

Consider the other case that v is an element of PS(T x=
k ∪ Tnew

k), then there exists v′

such that v ≥ v′ ∈ Tk\T
x
k because there is no vertex v′ such that v ≥ v′ ∈ T x=

k ∪Tnew
k by the

definition of PS(T x=
k ∪ Tnew

k). Since v ∈ PS(T x=
k ∪ Tnew

k), then v ≤ xk. This implies that

v′ ≤ v ≤ xk. By the definition of T x
k , the vertex v′ is an element of T x

k . This contradicts

v′ ∈ Tk \ T x
k .

In this way, we are able to reduce the size of a vertex set that contains improper vertices.

It follows that the computational effort in identifying improper vertices decreases. In order

to identify improper vertices from m vertices, we need at most m(m−1)
2 vector comparisons

and each comparison requires at most n scalar comparisons for an n-dimensional problem.

According to Proposition 2.3, we remove vertices belonging to the vertex set Tk \ T x
k from

our comparisons at iteration k. Thus, we avoid approximately
|Tk\T

x
k
|2

2 × n comparisons.

We make this procedure more efficient with the following Proposition 2.4.

Proposition 2.4. If v is an improper vertex and v ∈ T ′
k, then v ∈ T new

k and v /∈ T x=
k \T

new
k .

15

Proof. By Proposition 2.3, an improper vertex can only be an element of the set T x=
k ∪T new

k .

We may assume that Tk is a proper vertex set. Suppose that v ∈ T x=
k and v is an improper

vertex. Then, there exists a vertex v′ such that v ≥ v′ and v′ ∈ T x=
k ∪ T new

k . We consider

two cases; one is v′ ∈ T x=
k and the other is v′ ∈ T new

k . For the first case, since v, v′ ∈ Tk, it

contradicts the assumption that Tk is a proper vertex set. In the second case, there exists

the parent vertex v′p of the vertex v′ because v′ is an element of T new
k and v′p is also an

element of Tk. Thus, v′p ≤ v′ ≤ v and v′p, v ∈ Tk. This again contradicts the assumption

that Tk is a proper vertex set.

According to Proposition 2.4, an efficient procedure for finding improper vertices is as

follows: first, we identify and remove improper vertices from the vertex set T new
k , then

we compare each remaining vertex in T new
k with each vertex in T x=

k . By this proposed

procedure, we can save |T x=
k |

2 vector comparisons.

2.3.2.2 Preventing jamming

First, we illustrate the phenomenon of jamming with an example.

Example 2.2. We consider the following problem:

min 2x1 + 2x2 + x3

s.t. x1 + x2 + x3 ≥ 7

1 ≤ xj ≤ 3 ∀ j = 1, 2, 3.

We can depict the feasible region of Example 2.2 as Figure 3.

The optimal objective value of Example 2.2 is 11. We consider a sequence of vertices

that converges from the vertex (1, 1, 1) to the vertex (3, 1, 1). In the first iteration,

we have the boundary point (7
3 , 7

3 , 7
3) on the line segment [(1, 1, 1), (3, 3, 3)] and the

corresponding objective value is 35
3 . By removing [(1, 1, 1), (7

3 , 7
3 , 7

3)], we have the three new

vertices (7
3 , 1, 1), (1, 7

3 , 1) and (1, 1, 7
3), and the corresponding objective values are 23

3 , 23
3

and 19
3 , respectively. Since the current best objective value is 35

3 , we cannot fathom any

vertex in the vertex set. After a few iterations, we will refine the region corresponding

to the vertex (7
3 , 1, 1). The corresponding boundary point is (19

7 , 15
7 , 15

7). By removing

16

Figure 3: An illustrative example of jamming

[(7
3 , 1, 1), (19

7 , 15
7 , 15

7)], we have new vertices (19
7 , 1, 1), (7

3 , 15
7 , 1) and (7

3 , 1, 15
7). We consider

vertices that lie on the line segment [(1,1,1), (3,1,1)]. Since the optimal value is 11 and the

objective value corresponding to the vertex (3, 1, 1) is 9, no vertex on the line segment

[(1,1,1), (3,1,1)] is fathomed.

Table 1 summarizes an instance of jamming that occurs for a subsequence from the

vertex (1, 1, 1) to the vertex (3, 1, 1). In our implementation, we allow for numerical

errors. With a numerical error tolerance of 1E-6, twenty iterations are required. In the

case of a 1E-16 tolerance, fifty-two iterations are required. For the given problem, there are

three subsequences converging to points (3, 1, 1), (1, 3, 1) and (1, 1, 3). Any vertex in those

subsequences cannot be fathomed. That is, it requires 60(=20×3) iterations with tolerance

1E-6 or 156(= 52× 3) iterations with tolerance 1E-16. Thus, if the dimension of a problem

is increased, the number of iterations is exponentially increased. Suppose that the problem

is n-dimensional. It requires a lot of computational effort to converge from the initial vertex

a = (a1, · · · , an) to the vertex (a1, · · · , an−1, bn) and from the vertex (a1, · · · , an−1, an) to

17

Table 1: The subsequence converging to the vertex (3, 1, 1)

Sequence x1 x2 x3

1 2.3333 1 1
2 2.7143 1 1
3 2.8667 1 1
4 2.9355 1 1
5 2.9683 1 1
6 2.9843 1 1
7 2.9922 1 1
8 2.9961 1 1
...

...
...

...
20 3.0000 1 1

the vertex (a1, · · · , bn−1, bn) and so on. For high dimensional problems, these converging

subsequences require more memory storage to carry vertices and more computational effort.

We have noticed jamming due to the steepness of the angle between a vertex and a

point b. We might be able to avoid jamming by choosing a reasonable base point b. The

reason why a point b is needed is to find a boundary point of H within a rectangle [v, b].

We propose an alternate scheme for finding a boundary point of H in [v, b].

Consider an n-dimensional problem. Let v = (v1, v2, . . . , vn) be a vertex and let b =

(b1, b2, . . . , bn) be a point. Let d be a non-zero minimum distance between a point b and a

vertex v such as

d = min
{j:bj−vj>0}

bj − vj . (2.3.6)

We define a new point b′ as follows:

b′j =






vj + d when vj < bj

bj when vj = bj

(2.3.7)

for j = 1, . . . , n. If b′ is in the reverse normal set H, there exists a boundary point on a line

segment [v, b′]. If b′ is not in the reverse normal set H, we might find a boundary point

on a line segment [b′, b]. In either case, we can find a boundary point xk of H within a

hyperrectangle [v, b]. Therefore, we can refine a Polyblock by removing the region [v, xk).

With our modified rule, at the first iteration, we start with the vertex (1, 1, 1) and

find the boundary point (7
3 , 7

3 , 7
3). After refining vertex (1, 1, 1), we have the three new

18

vertices (7
3 , 1, 1), (1, 7

3 , 1) and (1, 1, 7
3). Consider the vertex (7

3 , 1, 1). According to equation

(2.3.7), the new point b′ is (3, 5
3 , 5

3) and it is clearly not in the set H. By the modified

rule, we should find a boundary point of H on the line segment [(3, 5
3 , 5

3), (3, 3, 3)]. The

corresponding boundary point is (3, 2, 2). Thus, we can refine the vertex (7
3 , 1, 1) with three

new vertices (3, 1, 1), (7
3 , 2, 1) and (7

3 , 1, 2). With the original method, we generate twenty

vertices having x2 = 1 and x3 = 1, while we only need two vertices having x2 = 1 and

x3 = 1 under our modification.

2.3.2.3 Modified Polyblock Algorithm

In order to include the two enhancement ideas discussed in the previous subsections, we

need to modify step k.3 and step k.5 in Algorithm 1.

Algorithm 2 Modification of Algorithm 1

step k.3: If Tk 6= ∅, select vk ∈ arg min{β(v)|v ∈ Tk}.
if convex relaxations are available then

Let wk be an optimal solution of convex relaxation. Reset β(vk)← max{f(wk), β(vk)}.
end if

Let d be a nonzero minimum distance between vk and b in equation (2.3.6). Let b′ be a
modified point defined by equation (2.3.7). Let xk be a boundary point H.
if b′ ∈ H then

xk = πH(vk, b)
else

xk = πH(b′, b)
end if

step k.5: Let Tk,∗ = {v ∈ Tk| v < xk} ∪ vk. Compute

T new
k = {vk,i|v ∈ Tk,∗, vi < xk

i , i = 1, . . . , n},

where vk,i = v + (xk
i − vi)e

i. set Tk+1 as follows;

Tk+1 = Tk \ T x
k ∪ PS(T x=

k ∪ T new
k)

For every v ∈ T new
k , set β(v) = max{f(v), β(vp)} (vp is the parent of v).

We compared the efficiency of the original and enhanced algorithms for solving separable

polynomial programming problems. We randomly generated 4-dimensional test problems

with various terminating tolerances (e.g., ǫ ∈ {0.01, 0.001, 0.0001}). In Figure 4, the stars

with dotted lines represent the computational time required by the Polyblock Algorithm

(labeled ‘PA’) and the circles with dashed lines represent the computational time required

19

Figure 4: CPU seconds of Polyblock Algorithm (PA, Algorithm 1) and modified Algorithm
(mPA, Algorithm 2).

20

by the modified Polyblock Algorithm (labeled ‘mPA’). The detailed data are reported in

the tables in Appendix A.1. Figure 4 shows that the modified Polyblock Algorithm is better

than the Polyblock Algorithm in terms of computational time.

2.3.3 Convergence analysis

Proposition 2.5. The modified Polyblock Algorithm in Algorithm 2 converges to an optimal

solution.

Proof. Let vk be a vertex defining a polyblock [vk, b]. Let xk be a boundary point of H

that is determined by the rule in step k.3 of Algorithm 2. We know that vk ∈ G and

xk ∈ H. We must show that {xk − vk} → 0 as k → ∞. Suppose there exists η > 0 such

that ‖xkν −vkν‖ ≥ n×η > 0 for some infinite subsequence vkν and for all ν > M . Suppose

that vkνi denotes the ith vertex which is defined by

vkνi = vkν + (xkν

i − vkν

i)ei,

for xkν

i − vkν

i > 0 and i = 1, . . . , n. This implies that for xkν

i − vkν

i > 0,

‖vkνi − vkν‖ = |xkν

i − vkν

i |
2. (2.3.8)

Since the subsequence vkν is infinite, for every vkν in the subsequence, there exists at least

one element i such that xkν

i − vkν

i > 0. Also, ‖xkν − vkν‖ can be written in terms of

max
{i:xkν

i −vkν
i >0}

|xkν

i − vkν

i |; that is,

‖xkν − vkν‖ =
∑

{i:xkν
i −vkν

i >0}

|xkν

i − vkν

i |
2

≤ n× max
{i:xkν

i −vkν
i >0}

|xkν

i − vkν

i |
2.

This implies that we can find some subsequence such that

n× η ≤ n× max
{i:xkν

i −vkν
i >0}

|xkν

i − vkν

i |
2

= n× max
{i:xkν

i −vkν
i >0}

‖vkνi − vkν‖.

Therefore, there exists a subsequence such that η ≤ max
{i:xkν

i −vkν
i >0}

‖vkνi − vkν‖. This

contradicts the boundness of the sequence {vkνi} ⊂ [a, b]. Thus, {vk − xk} → 0. We may

21

assume that vk → x and xk → x. Since vk ∈ G and xk ∈ H, then x ∈ G∩H. Furthermore,

f(vk) is always less than or equal to f(x) for all x ∈ G ∩ H ∩ [vk, b]. As k → ∞, the

sequence {vk} converges to x. By the selection rule for the vertex in step k.3 of Algorithm

2, we choose a vertex that has a minimal lower bound. This implies that f(vk) ≤ f(x) for

all x ∈ G ∩H. That is, f(x) ≤ f(x) for all x ∈ G ∩H. This implies that x is an optimal

solution of (MO).

22

2.4 Branch-and-Bound Algorithm

We have shown that monotonic programming problems are nonconvex problems. The

branch-and-bound algorithm is a traditional approach for finding global optimal solutions

of nonconvex problems. Initially proposed to handle non-convexities arising from discrete-

ness [10], the branch-and-bound scheme has subsequently been expanded to the continuous

case [7, 29] and has since evolved into a general purpose global optimization technique for

a wide class of non-convex problems [8, 9, 30]. The branch-and-bound algorithm implicitly

enumerates all possible solutions by partitioning the region into two or more subregions

recursively. For a given partition (sub-region), bounds on the optimal objective value and

the feasibility criteria are used to decide whether the given region will be further refined

or removed from further consideration. This procedure guarantees convergence to a global

solution, but may be very time-consuming.

In the following description,R denotes a hyperrectangular partition in Rn, i.e.,R = [a, b]

with a, b ∈ Rn and a ≤ b; LB(R) denotes the lower bound on the optimal value over

partition R; UB denotes an upper bound on the global optimal objective value; L is a list

of unfathomed hyperrectangles; βR denotes an optimal solution of a convex relaxation over

hyperrectangleR; S denotes a set of feasible solutions; k denotes the number of iterations; x∗

denotes the best candidate solution; and ǫ denotes a pre-specified optimality tolerance. An

algorithmic description of the proposed branch-reduce-cut scheme is presented in Algorithm

3. The key steps are highlighted in italics, and are described below.

The algorithm starts by considering the initial partition [a, b] given by the bounds on

the variables. We ensure a and b to be in G \ H and H, respectively. If this condition is

not satisfied, either the problem is infeasible (when a is not in the set G) or a is an optimal

solution of the problem (when a is in G ∩H).

2.4.1 Selection and branching

The first main step is to select a partition from the list L of unfathomed partitions. If the list

is empty, either we have an ǫ-optimal solution or we resolve that the problem is infeasible.

With a non-empty list, we select a partition having a least lower bound according to the

23

Algorithm 3 A Branch-Reduce-Cut algorithm for (MO)

initialization:

ensure: a ∈ G \H and b ∈ H
set R = [a, b], set ǫ > 0, L = {R}, LB(R) = f(a), UB = +∞, x∗ = ∅, k ← 1.

selection:

1: if L = ∅ then

2: Terminate.
3: else

4: select R = [xL xU] ∈ L such that LB(R) = minR′∈L{LB(R′)} and L ← L \ {R}
5: end if

partition:

1: branch R into R1 and R2

domain reduction:

1: for i = 1, 2 do

2: reduce the domain Ri using the set G and H
3: suppose Ri = [xLi xUi]
4: if xLi ∈ G \H and xUi ∈ H then

5: do bounding

6: else

7: if xLi ∈ G ∩H then

8: S ← xLi

9: end if

10: fathom Ri

11: end if

12: end for

update L:

1: for each R ∈ L do

2: if LB(R) > UB − ǫ then

3: fathom R, i.e., set L ← L \ {R}
4: end if

5: end for

6: k ← k + 1
7: goto selection

24

Algorithm 3 A Branch-Reduce-Cut algorithm for (MO)(Continued)

bounding LB(R):

1: if a convex relaxation is available over Ri then

2: Let βRi
be an optimal solution of the convex relaxation

3: if βRi
∈ G ∩H then

4: S ← βRi

5: fathom Ri

6: else

7: LB(Ri)← f(βRi
)

8: end if

9: else

10: LB(Ri)← f(βxLi)
11: end if

bounding UB:

1: select a finite set S ⊂ Ri (described in section 2.4.3)
2: for x ∈ S do

3: S ← S \ {x}
4: if x ∈ G ∩H and f(x) < UB then

5: x∗ ← x and UB ← f(x)
6: G← G ∩ f(x) ≤ UB − ǫ
7: end if

8: end for

rule in line 4 of selection in Algorithm 3. This guarantees that the bounding process is

bound improving [9].

After selecting a hyperrectangle R, we bisect the longest edge of R. That is, given

R = [xL xU] with the longest edge index ̂ ∈ arg maxj=1,...,n{x
U
i − xL

i }, R is partitioned

into

R1 = [xL, xU −

(
xUb − xLb

2

)
eb], and

R2 = [xL +

(
xUb − xLb

2

)
eb, xU],

where ej ∈ Rn is the jth unit vector. The longest-edge bisection rule guarantees that the

branching process is exhaustive [9].

2.4.2 Domain reduction

Given a partition R = [xL, xU] such that xL ∈ G \ H and xU ∈ H, the idea of domain

reduction [9, 30] is to find a hyperrectangle R′ ⊂ R such that R′ ⊇ R ∩ G ∩ H. This

25

reduction helps to obtain tighter lower bounds and reduces the size of the search region.

Figure 5 shows an example; the left figure in Figure 5 depicts the initial rectangle before

a branching step of the algorithm. After a branching step, appropriate domain reductions

reduce the search region to two relatively smaller hyper-rectangles (bold boxes in the right

figure) without losing feasible solutions. It follows that the bound obtained from refined

hyperrectangles might be closer (tighter) to an optimal objective value.

Figure 5: An example of domain reduction

The domain reduction on R = [xL, xU], with xL ∈ G \H and xU ∈ H, can be carried

out as follows. Let

λ∗
j = max{λ ∈ [0, 1] : xL + λ(xU

j − xL
j)ej ∈ G} for j = 1, . . . , n, (2.4.1)

µ∗
j = max{µ ∈ [0, 1] : xU − µ(xU

j − xL
j)ej ∈ H} for j = 1, . . . , n. (2.4.2)

Since G and H are closed sets, the above problems have optimal solutions. In general, each

optimal solution of (2.4.1) and (2.4.2) can be obtained by using bisection search. We reduce

the size of a given partition R to R′ = [xL′

, xU ′

], where

xL′

= xU −
n∑

j=1

µ∗
j (x

U
j − xL

j)ej , and (2.4.3)

xU ′

= xL +

n∑

j=1

λ∗
j (x

U
j − xL

j)ej . (2.4.4)

26

Proposition 2.6. [xL′

, xU ′

] ⊇ [xL, xU] ∩G ∩H.

Proof. Suppose there exists x ∈ [xL, xU]∩G∩H and x ∈ [xL′

, xU ′

]. Then, there exists an

index ̂ ∈ {1, . . . , n} such that either xLb ≤ xb < xL′b or xU ′b < xb ≤ xUb . Consider the first

case (the second case is analogous). Let y = x +
∑n

j=1,j 6=b(xU
j − xj)e

j ; i.e., yj = xU
j for all

j = 1, . . . , n, j 6= ̂ and yb = xb. Let µ̂b = (xUb − yb)/(xUb − xLb). Clearly µ̂ ∈ [0, 1], and we

can write y = xU − µ̂b(xUb − xLb)eb. Note that, by construction, y ≥ x, and since x ∈ H, we

have that y ∈ H (since H is a reverse normal set). Thus µ̂b is a feasible solution to problem

(2.4.2) corresponding to ̂. Then

xUb − µ̂b(xUb − xLb) = yb = xb < xL′b = xUb − µ∗b (xUb − xLb).

The above implies that µ̂b > µ∗b and we have a contradiction to the fact that µ∗b is an

optimal solution to problem (2.4.2) corresponding to ̂.

Proposition 2.6 shows that the domain reduction procedure is valid. That is, no feasible

solution is lost. The domain reduction procedure can be improved by exploiting a property

of (MO). By Proposition 2.1 (iii), once we find a feasible point xk, the region {x|xk < x ≤ b}

can be removed from further consideration. Based on this idea, we refine λ∗
j as follows:

λ∗
j = min{λG

j , λH
j }, (2.4.5)

where

λG
j = max{λ ∈ [0, 1] : xL + λ(xU

j − xL
j)ej ∈ G} for j = 1, . . . , n, and (2.4.6)

λH
j = min{λ ∈ [0, 1] : xL + λ(xU

j − xL
j)ej ∈ H}, (2.4.7)

for {j ∈ {1, . . . , n} : xL + (xU
j − xL

j)ej ∈ H} and λH
j = 1 for {j ∈ {1, . . . , n} : xL + (xU

j −

xL
j)ej /∈ H}. Recall that set S contains candidate feasible solutions. Since we may find a

feasible solution by solving (2.4.7), we should add it into the set S.

Proposition 2.7. By using a solution λ∗
j of (2.4.5), for any x ∈ [xL, xU] ∩G ∩H, there

exists x̄∗ ∈ [xL′

, xU ′

] ∩G ∩H such that f(x̄∗) ≤ f(x).

27

Proof. We need consider only the case that x ∈ [xL, xU]∩G∩H and x /∈ [xL′

, xU ′

]∩G∩H;

the other case is trivial. By Proposition 2.6, we have shown that [xL′

, xU ′

] is a valid reduced

domain for λ∗
j ’s obtained from (2.4.6) and for µ∗

j .

Assume that there exists x ∈ [xL, xU] ∩ G ∩ H such that f(x) ≤ f(x̄) for all x̄ ∈

[xL′

, xU ′

]∩G∩H. Then, there exists an index ̂ ∈ {1, . . . , n} such that xU ′b < xb ≤ xUb . By

Proposition 2.6, xU ′b is obtained from (2.4.7). That is, λHb ≤ λGb . Construct

x̄∗ = xL + λHb (xUb − xLb)eb. (2.4.8)

It is clear that xL
j ≤ xj for all j ∈ {1, . . . , n} and xU ′b < xb. It implies x̄∗ ≤ x. Because of

the definition of problem (2.4.7), x̄∗ is in the reverse normal set H. Furthermore, λHb ≤ λGb
implies that

xL + λHb (xUb − xLb)eb ≤ xL + λGb (xUb − xLb)eb ∈ G. (2.4.9)

Thus, x̄∗ ∈ G (by the monotonicity of the set G). We found the point x̄∗ ∈ G∩H∩ [xL′

, xU ′

]

having f(x̄∗) ≤ f(x). This contradicts our assumption.

According to equation (2.4.3) and equation (2.4.4), we tighten lower bounds with the

upper bound values and tighten upper bounds with the lower bound values. Once we update

bounds, we may re-tighten bounds with new bounds values. It follows that the domain

reduction for a given hyperrectangle can be performed several times. Figure 6 shows one

iteration of domain reductions. After one iteration, further reduction does not change the

size of the hyperrectangle in this example. It is time-consuming to get the tightest bound.

Hence, we can specify the number of domain reductions steps a priori. The termination

conditions for the procedure of domain reductions is either that there is no improvement

for bounds or that the number of iterations reaches the pre-defined limit.

2.4.3 Bounding and optimality cuts

In branch-and-bound schemes, a tighter bound plays a key role in reducing computational

effort. For a given hyperrectangle R = [xL, xU], a lower bound (LB(R)) is obtained

from the objective function value of xL. For a high dimensional problem, a lower bound

(LB(R) = f(xL)) is usually weak; especially, in early stages of the process, the gap between

28

Figure 6: An illustrative example of domain reductions

a lower bound (LB(R)) and an upper bound (UB) of the problem is wide. One way

to improve bounds is to use convex relaxations. To be effective for branch-and-bound

procedures, the relaxation needs to be solved easily and its optimal objective value needs

to be a tighter bound than the Polyblock Algorithm bound for a given partition; that is, an

optimal solution of the convex relaxed subproblem should be obtained without much effort

and the relaxations need to exclude as much of the infeasible regions as possible.

Whenever a feasible solution is found, the corresponding objective value is checked

against the upper bound (UB). In bounding UB of Algorithm 3, feasible solutions in the

set S are checked to update the upper bound UB. Whenever a better solution is found in

the previous steps, it is added to the set S. To search for more feasible solutions within an

unfathomed partition R = [xL, xU], the algorithm checks the set of n vertices of R adjacent

to xU . Adjacent vertices bj are defined as follows:

bj = xU − (xU
j − xL

j)ej for j = 1, . . . , n. (2.4.10)

Note that adjacent vertices of xL are considered in the steps of domain reduction.

Whenever the upper bound UB is updated, an optimality cut can be generated as

follows:

f(x) ≤ UB − ǫ for x ∈ [xL, xU]. (2.4.11)

Due to the monotonicity of objective function f , the set defined by equation (2.4.11) is

a normal set. In order to ensure that the set is closed, we assume that f is lower semi-

continuous. In line 6 of bounding UB, an optimality cut is added into the normal set. We

29

add a cut so that we have a tighter bound in domain reductions. Recall that in domain

reductions for xU in R = [xL, xU], we use the normal set and a point xL. It is obvious that

the smaller the normal set, the tighter the bound obtained.

2.4.4 Fathoming

A given partition R = [xL, xU] can be fathomed, or discarded from further consideration.

In Algorithm 3, there are three fathoming steps - (a) line 10 of domain reduction, (b) line

5 of bounding LB(R), and (c) line 3 of update L. We fathom a partition R = [xL, xU]

if one of the following conditions are satisfied.

Infeasibility: If xL /∈ G or xU /∈ H for the given partition R = [xL, xU], then it can be

fathomed since R contains no feasible solutions. Such a partition will be fathomed in

step (a).

Feasibility: For a given partition R = [xL, xU], if we found a feasible solution x̄ ∈ G ∩H

such that f(x̄) = LB(R), the given partition will be removed from further consider-

ation because it does not contain a better solution. Such partitions can be identified

in the following two cases: one is when xL is in the feasible set G ∩H, and the other

is when an optimal solution of a convex relaxation over partition R is in the feasible

region G ∩ H. Partitions belonging to the first case are fathomed in step (a), while

partitions in the other case are fathomed in step (b).

Inferiority: When LB(R) > UB − ǫ, we fathom such partition R since it contains no

better feasible solution.

2.4.5 Convergence analysis

Consider a nested sequence of successively refined partitions {Rjk} such that Rjk ⊂ Rj .

We consider two cases; one is that Algorithm 3 terminates with ǫ = 0 and the other is that

Algorithm 3 does not terminate with ǫ = 0. To prove the convergence of Algorithm 3, we

shall need the following concept.

Definition 2.1. [9] A bounding operation is called consistent if, at every step, any un-

fathomed partition element can be further refined, and if any infinitely decreasing sequence

30

{Rjk} of successively refined partition elements satisfies

lim
k→∞

UB − LB(Rjk) = 0. (2.4.12)

Lemma 2.1. In an infinite branch-and-bound procedure, suppose that the bounding op-

eration is consistent and the selection operation is bound improving. Then the procedure

converges to an optimal solution.

Proof. See Theorem IV.3. in [9].

Lemma 2.2. The bounding operation of Algorithm 3 is consistent.

Proof. Consider a subset Rjk = [xL
jk xU

jk] that is unfathomed. We know that xL
jk ∈ G and

xU
jk ∈ H. This implies that the branching step can further refine it. By the exhaustiveness

of the branching rule, the following limit holds

lim
k→∞

(xU
jk − xL

jk) = 0. (2.4.13)

Since the set G and H are closed, for any convergent subsequence, we must have limk→∞ xL
jk =

limk→∞ xU
jk = x∗ ∈ G ∩ H. This implies that x∗ is feasible solution of a bounded (MO)

and hence x∗ is an upper bound for Rjk . By Definition 2.1, the bounding operation of

Algorithm 3 is consistent.

Theorem 2.1. If Algorithm 3 with ǫ = 0 terminates, then it terminates either with a global

optimal solution or resolves that the problem is infeasible.

Proof. The selection operation of Algorithm 3 is bounding improving (cf. see section 2.4.1)

and the bounding operation of Algorithm 3 is consistent by Lemma 2.2. It follows that the

algorithm converges by Lemma 2.1.

We consider the first case that the algorithm terminates with a feasible solution x∗.

This implies that the given problem (MO) is nonempty, therefore (MO) has an optimal

solution. Suppose that x′ is an optimal solution such that f(x′) < f(x∗). We consider a

set of partitions Ri = [a′i b′i] that contains x′. Since x′ is a feasible solution (x′ ∈ G ∩H)

31

and a′i ≤ x′ ≤ b′i, we know that a′i is in the normal set G and b′i is in the reverse normal set

H by the definition of the normal and reverse normal set. This implies that the partitions

containing x′ cannot be fathomed due to infeasibility. Suppose a partition Ri is fathomed

due to feasibility; i.e., a′i is a feasible solution such that a′i ∈ G ∩ H. This implies that

f(a′i) ≤ f(x′) < f(x∗). By the rule of choosing an upper bound, f(a′i) should be selected

as an upper bound. This contradicts the assumption that x∗ is a solution of the problem.

Finally, since f(a′i) ≤ f(x′) < f(x∗), the algorithm cannot fathom the partition Ri due to

inferiority. Thus, Ri can be further refined. This implies that the algorithm should not

have terminated. Hence f(x′) = f(x∗).

Consider the second case that the algorithm terminated with no feasible solution. This

implies that the upper bound (UB) remains +∞ upon termination. Suppose we have a

feasible solution x′. Any partition Ri containing x′ cannot be fathomed by inferiority since

f(a′i) ≤ f(x′) <∞. Suppose we fathom a partition Ri = [a′i b′i] due to feasibility. It implies

that a′i belongs to G and H. This contradicts UB =∞. So, we cannot fathom a partition

Ri due to feasibility. Thus, Ri can be further refined, and the algorithm should not have

terminated. Hence, (MO) cannot have any feasible solutions.

Theorem 2.2. If Algorithm 3 with ǫ = 0 does not terminate, then the (MO) has an optimal

solution x∗ and there is a sequence of partitions Rkq
= [akq , bkq] such that

lim
q→∞

akq = x∗ = lim
q→∞

bkq (2.4.14)

Proof. By Lemma 2.2, there exists x∗ that satisfies the equation 2.4.14. We must show that

x∗ is an optimal solution for a given bounded (MO). Since the partition is not fathomed,

akq is in G and bkq is in H. This implies that x∗ ∈ G ∩H.

The least lower bound selection rule guarantees that f(akq) ≤ f(x) for all q and all

x ∈ G ∩ H. Thus, limq→∞ f(akq) = limq→∞ f(bkq) = f(x∗) ≤ f(x) for all x ∈ G ∩ H.

Therefore, x∗ is an optimal solution of (MO).

32

2.5 Simplicial branching

In Section 2.4, we discussed the rectangular branch-and-bound algorithm. In the rectangular

branch-and-bound algorithm, we branch on the longest edge in order to keep sub-partitions

in the shape of a rectangle. In this section, we discuss the conical branch-and-bound al-

gorithm. While we define regions under our consideration with rectangles in rectangular

branching schemes, we define the feasible region with cones in conical branching schemes.

The conical branching schemes for monotonic programming problems have also been con-

sidered by Tuy [34, 35]. Conical branching schemes have shown good performance in opti-

mization problems involving concave functions in the objective and constraints (cf. [9]).

In the conical algorithm, we start the algorithm with an initial cone in Rn
+ that con-

tains all feasible points of a given problem. The initial cone is partitioned into sub-cones

(partitions). We provide a valid bound for each cone (partition). According to the bound

information, we determine whether a cone is considered in further steps or not. We keep

refining cones until we do not have any cone left for our consideration. The major steps

of the conical algorithm are identical to the branch-and-bound algorithm. The only dif-

ferences for the conical algorithm are the way of partitioning the feasible region — conical

subdivision, the branching schemes, and the bounding schemes.

The conical subdivision can be represented by subdivision of the simplex Sb
0 := [s1, . . . , sn],

where si ∈ Rn
+ with an origin point b. Each simplex Sb

i := [s1, . . . , sn] defines a cone Ki with

n extreme rays such as ui = b−αis
i for αi ≥ 0 and i = 1, . . . , n. Without loss of generality,

we may set the initial simplex Sb
0 := [s1, . . . , sn], where si = ei and ei = [0 · · · 1 · · · 0]T is the

ith unit vector. That is, the initial cone K0 contains all points in [a b].

For each simplex Si, we are interested in the feasible region within a corresponding cone

Ki such as x ∈ Ki ∩G ∩H. Let ui be a boundary point of H such as

ui = b− λ∗
i s

i, (2.5.1)

where λi = max{λ ∈ R+ : b− λsi ∈ H}. For a bounded (MO), we define a hyperrectangle

33

R = [xL xU] for each cone Ki such that

xL
j = aj , ∀j = 1, . . . , n, (2.5.2)

xU
j = max

1≤i≤n
ui

j , ∀j = 1, . . . , n. (2.5.3)

Proposition 2.8. If x∗ is an optimal solution of min{f(x)|x ∈ G ∩H ∩Ki}, there exists

x′ such that x′ ∈ G ∩H ∩ [xL xU] and f(x∗) = f(x′).

Proof. See, [33, 35].

We have established a hyper-rectangle Ri = [xL xU] for a cone Ki. By the reduction

proposed in section 2.4.2, we might modify the lower bound xL and upper bound xU . After

domain reduction, the objective function value corresponding to xL is a valid lower bound

of the feasible region over a cone Ki.

In order to ensure that the process is bound improving [9], we select a partition (cone)

which achieves a least lower bound.

Figure 7: An illustrative example of simplex branching

Figure 7 shows an example of conical branchings. The first figure in Figure 7 (a) depicts

the initial simplex which is defined by the three unit vectors s1 = [1 0 0]T , s2 = [0 1 0]T and

s3 = [0 0 1]T . For our example, So
0 = [s1 s2 s3]. We should choose an edge for branching.

Suppose that we choose the edge between vector s1 and s2. The bisection point is s4. After

branching, we have two simplices such as So
1 := [s1 s3 s4] and So

2 := [s2 s3 s4] (see Figure 7

(b)). The last figure (c) in Figure 7 shows one further step.

34

In the branching scheme, we bisect the longest edge of a simplex in the following manner.

Suppose we choose a cone Ki with corresponding Si. First, we find a longest edge (̂ı, ̂)

between sbı and sb such that

(̂ı, ̂) ∈ arg max
i=1,...,n,j=i+1,...,n

{‖si − sj‖}. (2.5.4)

We create a vector s′ such that s′ = sı−s

2 . The simplex Si is partitioned into

S1
i = {Si \ sbı} ∪ s′, and (2.5.5)

S2
i = {Si \ sb} ∪ s′. (2.5.6)

The longest-edge bisection rule guarantees that the branching process is exhaustive [9].

Since we create a valid hyperrectangle for each cone, we may use the fathoming rules

proposed in section 2.4.4 and other improvements such as domain reduction schemes and

optimality cuts without modification of either the algorithm or the procedures. The com-

putational results will be provided in section 3.2.3.

35

CHAPTER III

COMPUTATIONAL RESULTS FOR SEPARABLE

POLYNOMIAL PROGRAMMING PROBLEMS

3.1 Separable polynomial programming

The main purpose of this chapter is to compare the performance of the Polyblock Algorithm,

the modified Polyblock Algorithm, and branch-and-bound for solving separable polynomial

problems. Separable polynomial programming is a class of polynomial programming in-

volving polynomials that do not have cross-product terms between variables. A separable

polynomial programming problem can be easily transformed into a class of monotonic pro-

gramming problems.

We consider a general separable polynomial programming problem of the form;

(SPP): min
n∑

j=1

fj(xj) (3.1.1)

s.t.
n∑

j=1

hij(xj) ≥ 0 for i = 1, . . . , m (3.1.2)

x ∈ [xL, xU], (3.1.3)

where x ∈ Rn is a vector of decision variables bounded by xL, xU ∈ Rn; fj : R 7→ R and

hij : R 7→ R are univariate polynomial functions; and m, n denote the number of constraints

and the dimension of decision variables, respectively. Univariate polynomial functions can

be redefined as follows:

fj(xj) = (αj
1)xj + (αj

2)x
2
j + · · ·+ (αj

r0
j

)x
rj

j , for j = 1, . . . , n (3.1.4)

where r0
j ∈ Z+ is the degree of the polynomial fj , and αj

k ∈ R is a constant for k = 1, . . . , r0
j .

Since the polynomial fj appears only in the objective function, we assume that the constant

term of the polynomial is zero. Similarly, the univariate polynomials that appear in the

36

constrains are of the form;

hij(xj) = (βij
0) + (βij

1)xj + (βij
2)x2

j + . . . + (βij

ri
j

)x
ri
j

j , for i = 1, . . . , m and j = 1, . . . , n

(3.1.5)

where ri
j ∈ Z+ is the degree of the polynomial hij , and βij

k ∈ R is a constant for k = 1, . . . , ri
j .

In general, the problem (SPP) is not a monotonic programming problem.

3.1.1 Problem transformation

Without loss of generality, we can assume that xL
j ≥ 0 for all j = 1, . . . , n. Indeed, if xL

j < 0,

we can replace xj with x+
j = xj − xL

j and the new variable +
j is in [0, xU

j − xL
j].

Under the assumption of xj ≥ 0, a problem (SPP) is of the form either a monotonic

programming problem or a difference of monotonic programming problem. Since the xj ’s

are positive variables, a term cxr
j in either (3.1.4) or (3.1.5) has a monotone property

where c is a real number and r is a positive integer, i.e., when c > 0, the term cxr
j is

monotone increasing and for c < 0, it is monotone decreasing. Let K+
ij be a set of indices

such that K+
ij := {k| βij

k > 0, k = 1, . . . , ri
j} and let K−

ij be a set of indices such that

K−
ij := {k| βij

k < 0, k = 1, . . . , ri
j} for a given i and j. We define two functions h+

ij and h−
ij

such as

h+
ij(xj) =

∑

k∈K+

ij

(βij
k)xk

j , and

h−
ij(xj) =

∑

k∈K−

ij

(βij
k)xk

j .

A polynomial in the constraints is divided into two polynomials h+
ij having positive coeffi-

cients and h−
ij having negative coefficients for each term; i.e.,

n∑

j=1

hij(xj) =
n∑

j=1

h+
ij(xj) +

n∑

j=1

h−
ij(xj). (3.1.6)

The right-hand side of the equality (3.1.6) is of the form difference of monotonic functions.

Adding an additional variable ti, for a given i, the equality (3.1.6) can be written as follows:

n∑

j=1

hij(xj) =
n∑

j=1

h+
ij(xj) + ti, (3.1.7)

0 = ti −
n∑

j=1

h−
ij(xj). (3.1.8)

37

The right-hand side of equality (3.1.7) is monotone non-decreasing. Since h−
ij is monotone

non-increasing, −h−
ij is monotone non-decreasing. Thus, the right-hand side of equality

(3.1.8) is also monotone non-decreasing. Therefore, we are able to transform a constraint

having separable polynomials into three monotone polynomial constraints; i.e., the inequal-

ity (3.1.2) can be replaced with the following three inequalities;

n∑

j=1

h+
ij(xj) + ti ≥ 0, (3.1.9)

ti −
n∑

j=1

h−
ij(xj) ≥ 0, (3.1.10)

ti −
n∑

j=1

h−
ij(xj) ≤ 0, (3.1.11)

for i = 1, . . . , m. The first two inequalities (3.1.9) and (3.1.10) define a reverse normal

set while the last inequality (3.1.11) defines a normal set. Next, we consider the objective

function of a problem (SPP). This term can be replaced with a linear monotone objective

by introducing an additional variable to. Consider the following problem:

min
x

to (3.1.12)

s.t.

n∑

j=1

fj(xj) ≤ to, (3.1.13)

x ∈ G ∩H, (3.1.14)

where G ∩ H denotes the feasible set defined by (3.1.2) and (3.1.3). The given problem

is equal to a problem (SPP) and the inequality (3.1.13) consists of difference of monotone

functions. After transforming the inequality (3.1.13) into monotonic constraints, we have a

monotonic programming problem.

3.1.2 Convex relaxations

Consider Example 2.1 presented in section 2.2. The example (EX1) is a polynomial pro-

gramming problem and shows that the feasible set defined by the polynomials is non-convex,

and even disconnected. For a given bounded problem, tight lower bounds are required in

order to improve the efficiency of various algorithms.

38

Two relaxation schemes - reformulation-linearization technique(RLT) [26, 27, 28] and

semidefinite programming(SDP) [11] have been proposed for constructing convex relaxations

of nonconvex polynomial programming problems.

Consider a separable polynomial program with monotone polynomials;

(SPMO): min cT x (3.1.15)

s.t.
n∑

j=1

hij(xj) ≥ 0, for i = 1, . . . , mH , (3.1.16)

n∑

j=1

gij(xj) ≤ 0, for i = 1, . . . , mG, (3.1.17)

x ∈ [xL, xU], (3.1.18)

where x ∈ Rn denotes a vector of decision variables; polynomial functions hij and gij are

monotone non-decreasing; mH and mG denote the number of constraints defining a reverse

normal set and a normal set, respectively; c ∈ R is a constant; and xL, xU ∈ Rn
+.

We propose a linear relaxation that is an outer approximation of a univariate polynomial.

The convex relaxations will then be linear programs, and it will be solved without much

effort. In section 3.1.1, we have transformed problem (SPP) to problem (SPMO) having a

linear objective. Therefore, we only consider convex relaxations of the constraints.

3.1.2.1 Linear relaxation of a reverse normal set

Consider a linear function h
Lp

ij : R 7→ R such that

h
Lp

ij (xj) ≥ hij(xj), ∀ xj ∈ [xL
j , xU

j]. (3.1.19)

We can construct a linear relaxation of the constraint (3.1.16) with these linear functions.

The proof of Proposition 3.1 is trivial and is omitted.

Proposition 3.1. For a given i, if linear functions h
Lp

ij : R 7→ R satisfy the inequality

(3.1.19) for all j = 1, . . . , n, then the linear inequality,

n∑

j=1

h
Lp

ij (xj) ≥ 0, (3.1.20)

is a valid outer approximation of a constraint (3.1.16).

39

The basic idea of constructing a linear relaxation h
Lp

ij is as follows: Recall that hij can be

divided into two parts h+
ij and h−

ij according to the definitions of K+
ij and K−

ij (see, section

3.1.1). Gradients of functions h+
ij and h−

ij are also strictly monotone. Thus, the functions

h+
ij and h−

ij are convex and concave, respectively. Owing to condition (3.1.19), for h+
ij , we

can construct a linear relaxation having the same function values as h+
ij at the lower and

upper bounds of variable xj , while two tangent lines crossing at the lower and upper bound

of xj is used as a linear relaxation of h−
ij . Figure 8 shows relaxations of h+

ij and h−
ij .

Figure 8: Linear relaxation for univariate polynomial hij : (a) relaxation for h+
ij and (b)

relaxations for h−
ij

More precisely, the linear relaxations of h+
ij and h−

ij are computed as follows: let u+
ij and

l+ij be the corresponding function values of h+
ij(x

U
j) and h+

ij(x
L
j), respectively, and let u−

ij

and l−ij be the corresponding function values of h−
ij(x

U
j) and h−

ij(x
L
j), respectively; let ∇hL−

ij

be the gradient at xj = xL
j such that ∇hL−

ij = ∇h−
ij(x

L
j); and let ∇hU−

ij be the gradient at

xj = xU
j such that ∇hU−

ij = ∇h−
ij(x

U
j).

• Let h
L+

1

ij be a linear relaxation of h+
ij such that

h
L+

1

ij (xj) =
u+

ij − l+ij

xU
j − xL

j

xj + u+
ij −

u+
ij − l+ij

xU
j − xL

j

xU
j . (3.1.21)

• Let h
L−

1

ij and h
L−

2

ij be linear relaxations of h−
ij such that

h
L−

1

ij (xj) = ∇hL−
ij xj + l−ij −∇hL−

ij xL
j , and (3.1.22)

h
L−

2

ij (xj) = ∇hU−
ij xj + u−

ij −∇hU−
ij xU

j . (3.1.23)

40

Thus, we have two possible linear relaxations of hij by combining functions either (3.1.21)

and (3.1.22), or (3.1.21) and (3.1.23) such as

hL1

ij = h
L+

1

ij (xj) + h
L−

1

ij (xj), and (3.1.24)

hL2

ij = h
L+

1

ij (xj) + h
L−

2

ij (xj). (3.1.25)

3.1.2.2 Linear relaxation for a normal set

For a normal set, we construct a linear function g
Lp

ij : R 7→ R such that

g
Lp

ij (xj) ≤ gij(xj), ∀ xj ∈ [xL
j , xU

j]. (3.1.26)

Proposition 3.2. For a given i, if linear functions g
Lp

ij : R 7→ R satisfy the inequality

(3.1.26) for all j = 1, . . . , n, then the linear inequality,

n∑

j=1

g
Lp

ij (xj) ≤ 0, (3.1.27)

is a valid outer approximation of a constraint (3.1.17).

Following the foregoing, we construct the linear relaxation of g+
ij and g−ij . The only

difference compared to previous is that, for g+
ij , two tangent lines corresponding to xL

j

and xU
j are used, and, for g−ij , we construct a line crossing two points (xL

j , g−ij(x
L
j)) and

(xU
j , g−ij(x

U
j)). Let u+

ij and l+ij be the corresponding function values of g+
ij(x

U
j) and g+

ij(x
L
j),

respectively, and let u−
ij and l−ij be the corresponding function values of g−ij(x

U
j) and g−ij(x

L
j),

respectively. Let ∇gL+
ij be the gradient at xj = xL

j such that ∇gL+
ij = ∇g+

ij(x
L
j) and ∇gU+

ij

be the gradient at xj = xU
j such that ∇gU+

ij = ∇g+
ij(x

U
j).

• Let g
L+

1

ij and g
L+

2

ij be linear relaxations of g+
ij such that

g
L+

1

ij (xj) = ∇gL+
ij xj + l+ij −∇gL+

ij xL
j , and (3.1.28)

g
L+

2

ij (xj) = ∇gU+
ij xj + u+

ij −∇gU+
ij xU

j . (3.1.29)

• Let g
L−

1

ij be a linear relaxation of h−
ij such that

g
L−

1

ij (xj) =
u−

ij − l−ij

xU
j − xL

j

xj + u−
ij −

u−
ij − l−ij

xU
j − xL

j

xU
j . (3.1.30)

41

Thus, two possible linear relaxations of gij are

gL1

ij = g
L+

1

ij (xj) + g
L−

1

ij (xj), and (3.1.31)

gL2

ij = g
L+

2

ij (xj) + g
L−

1

ij (xj). (3.1.32)

3.2 Computational Experiments

3.2.1 Test problems

For computational experiments, we consider test problems of the following form:

min cT x

s.t

n∑

j

aij(xj + bij)
kij ≥ qi, for i = 1, . . . , m,

x ∈ [0, xU],

where c ∈ Rn, aij , bij , qi ∈ R, and kij ∈ Z+ are randomly generated parameters. The test

problems are generated as follows:

1. Each component of c and each aij for i = 1, . . . , m and j = 1, . . . , n are independently

sampled from a uniform distribution U [0, 20].

2. Each bij for i = 1, . . . , m and j = 1, . . . , n is randomly generated with a uniform

distribution U [−30, 30].

3. Each kij for i = 1, . . . , m and j = 1, . . . , n is randomly chosen from the integer set

{0, 1, 3, 5, 7, 9}.

4. To avoid infeasible instances, we modify the RHS qi so that a test problem contains

one predefined feasible solution (i.e., a point x̄j = 10 for all j is feasible for any

generated problems). For example, if
∑n

j aij(x̄j + bij)
kij is greater than or equal to

zero, we set qi as 0. Otherwise, qi is set as
∑n

j aij(x̄j +bij)
kij +q′i, where q′i is randomly

chosen from a uniform distribution U [−10, 0].

5. For initial bounds of the xj variables, xU
j is set at 20 for j = 1, . . . , n.

In order to construct a linear relaxation of a generated problem according to the method

described in 3.1.2, we should expand each polynomial algebraically. Rather than following

42

the previous method, we construct its own linear relaxation. Let hij(xj) be the polynomial

corresponding to variable xj in the ith constraint such that hij(xj) = aij(xj + bij)
kij . By

the generation rule of each parameters, hij is a non-decreasing polynomial, but it has only

one inflection point at xj = −bij . (The gradient of hij is ∇hij(xj) = aijkij(xj + bij)
kij−1.

For aijkij > 0, the gradient ∇hij(xj) can be zero at xj = −bij because kij − 1 is an even

integer.) For the given xj ∈ [xL
j , xU

j], we consider three cases: (a) xL
j ≥ −bij , (b) xU

j ≤ −bij ,

and (c) xL
j ≤ −bij ≤ xU

j . Figure 9 depicts four possible linear relaxations.

Let uij and lij be the function values corresponding to xU
j and xL

j , respectively. Let

∇hU
ij and ∇hL

ij be the gradients at xU
j and xL

j , respectively. Consider the following cases.

(a) xL
j ≥ −bij .

In this case, only one linear relaxation is possible.(see, Figure 9 (a).) The linear relax-

ation hL1

ij is

hL1

ij (xj) =
uij − lij

xU
j − xL

j

xj + uij −
uij − lij

xU
j − xL

j

xU
j .

(b) xU
j ≤ −bij .

Two tangent lines hL2

ij and hL3

ij are constructed for linear relaxations

hL1

ij (xj) = ∇hL
ijxj + lij −∇hL

ijx
L
j and

hL2

ij (xj) = ∇hU
ijxj + uij −∇hU

ijx
U
j .

(c) xL
j ≤ −bij ≤ xU

j .

First, the tangent line hLt

ij at xj = xL
j is constructed as follows:

hLt

ij (xj) = ∇hL
ijxj + lij −∇hL

ijx
L
j .

If hLt

ij (xU
j) ≥ uij , then it is a valid relaxation (see, Figure 9 (c)). We set hL1

ij (xU
j) equal

to hLt

ij (xU
j). The line containing the two points (xL

j , 0) and (xU
j , uij) is used as the

second relaxation:

hL2

ij (xj) =
uij

xU
j − xL

j

xj + uij −
uij

xU
j − xL

j

xU
j .

43

Figure 9: Linear relaxations of hij of a generated problem: (a) xL
j ≥ −bij , (b) xU

j ≤ −bij ,

and (c)&(d) xL
j ≤ −bij ≤ xU

j .

Consider the second case that hLt

ij (xU
j) < uij (see, Figure 9 (d)). Then, hLt

ij (xj) is not

a valid relaxation. We construct a new relaxation hL1

ij (xj) as follows:

hL1

ij (xj) =
uij − lij

xU
j − xL

j

xj + uij −
uij − lij

xU
j − xL

j

xU
j .

We generate at most two linear relaxations of a polynomial for a variable in a constraint.

Suppose we have n variables. Then, All combinations of each linear relaxation of a variable

44

are linear relaxations of a constraint. Thus, we might have at most 2n linear constraints for

one original constraint.

3.2.2 Bounding by variable fixing

For separable polynomial programming problems, it is also possible to establish linear relax-

ations for a given partition. For some problems, we might not be able to establish reasonable

convex relaxations or we might have too weak relaxations. We are able to calculate a lower

bound for a given partition by subdividing the variables. For a given partition [xL, xU], we

can consider the following problem

(MO/H): min
x

f(x) (3.2.1)

s.t. hi(x) ≥ 0 for i = 1, . . . , mH , (3.2.2)

x ∈ [xL, xU]. (3.2.3)

Clearly, the problem (MO/H) is a valid relaxation of the problem (MO) because we relax

the normal set. We solve this problem for a certain number of iterations by one of the

algorithms proposed. If we have an optimal solution for the given partition, we can remove

the partition from further consideration after updating the feasible solution. If we fail to

get an optimal solution within a predetermined number of iterations or a time limit, we

can use the current best lower bound as the lower bound for the given partition. However,

branch-and-bound based algorithms do not show good performance on higher dimensional

problems. For separable problems, we can partition the decision vector into two disjoint sets

of variables. Some of the variables remain as free variables and we fix all other variables. We

fix most of the variables in the reverse normal constraints at their upper bounds and remove

them from the objective function. For example, we may take the first three variables (x1,

x2, x3) as our free variables. In the reverse normal constraints, we set the fixed variables

to their upper bounds (i.e., xj = xU
j for j = 4, . . . , n). We minimize an objective function

that includes only variables x1, x2 and x3. The subproblem can be written as follows:

45

(SPPK): min
{xi:i∈K}

∑

j∈K

fj(xj) (3.2.4)

s.t.
∑

j∈K

hij(xj) +
∑

j /∈K

hij(x
U
j) ≥ 0 for i = 1, . . . , m, (3.2.5)

x ∈ [xL, xU], (3.2.6)

where K is a set of indices corresponding to the free variables we consider.

Proposition 3.3. If K∗
j is an optimal value of (SPPKj

) and Ki ∩Kj = ∅ for i 6= j, then

∑
j K∗

j is a valid lower bound of (SPP).

Proof. Suppose that there exists an optimal solution x∗ such that f(x∗) <
∑

j K∗
j . It follows

that there exists
∑

k∈Kj
fk(x

∗
k) <

∑
k∈Kj

fk(x̂k) for some j, where x̂ is an optimal solution

of (SPPKj
). We consider the reverse normal constraints.

0 ≤
∑

k∈Kj

hik(x
∗
k) +

∑

k/∈Kj

hik(x
∗
k) (3.2.7)

≤
∑

k∈Kj

hik(x
∗
k) +

∑

k/∈Kj

hik(x
U
k) by the monotonicity of hi (3.2.8)

That is, x∗ ∈ Kj is also a feasible point in (SPPKj
). It contradicts that x̂ is an optimal

solution of Kj . Therefore, the proposed bound is valid.

In separable problems, we may easily apply this method. However, the tightness of the

bound obtained will depend on how we partition the variables. As we increase the number

of variables in a set K, we have tighter bounds at the expense of higher computational times

for solving subproblems. We compare the performance of this method in section 3.2.3.

3.2.3 Computational Results

In this section, we report on the computational performance of the Polyblock Algorithm,

the modified Polyblock Algorithm, and the branch-and-bound scheme (with and without

linear convex relaxations proposed previously) on randomly generated separable polynomial

programming problems.

46

The proposed algorithms were implemented in C++ and the linear relaxation was solved

using concert technology with CPLEX 8.0. All computations were on an UltraSparc-III-Cu

UNIX workstation 2x900 MHz CPUs with 2 GB RAM.

3.2.3.1 Polyblock versus branch-and-bound with or without convex relaxation

We considered 9 different experimental conditions by varying the number of problem vari-

ables equal to 3, 4, or 5, and the termination tolerance ǫ = 0.01, 0.001, 0.0001. We generated

10 random instances for each experimental condition1. Thus, 90 problems were solved. In

order to compare the performance of algorithms, we solve each instance by 3 algorithms

— Polyblock Algorithm (Algorithm 1), modified Polyblock Algorithm (Algorithm 2) and

branch-and-bound algorithm (Algorithm 3) with or without convex relaxation (i.e., the lin-

ear relaxation proposed in 3.1.2). A time limit of 300 CPU seconds is imposed on the runs.

The CPU times and optimal values are reported in Appendix A.1.

Table 2: Average CPU seconds.
(‘PA’, ‘mPA’ and ‘BNB’ denote Polyblock Algorithm (Algorithm 1), modified Polyblock Algorithm

(Algorithm 2) and branch-and-bound Algorithm (Algorithm 3).)

3 variables case 4 variables case 5 variables case

Alg. 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

PA 0.05 0.57 0.53 16.96 89.08 122.52 255.12 302.52 270.46
mPA 0.01 0.04 0.21 0.21 3.85 43.83 213.75 271.06 256.26
BNB 0.01 0.02 0.09 0.05 0.29 4.18 0.35 153.50 92.28

(a) Without convex relaxations.

3 variables case 4 variables case 5 variables case

Alg. 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001

PA 0.08 0.26 0.31 2.44 12.89 9.23 173.71 269.60 180.67
mPA 0.05 0.07 0.17 0.43 1.59 1.45 102.94 169.60 103.79
BNB 0.02 0.04 0.09 0.05 0.17 0.18 0.19 0.68 0.56

(b) With convex relaxations.

Table 2 reports the average CPU seconds over 10 instances for each problem condition

1For each condition, we generated 5 instances with 5 constraints and 5 instances with 7 constraints. We

noticed that the number of constraints did not have a key effect on the computational time. Thus, we

omitted that classification.

47

Figure 10: Average CPU seconds in various cases

and each algorithm. Notice that as the number of variables are increased and the termina-

tion tolerance is decreased, more computational time is required. Figure 10 clearly shows

that the branch-and-bound algorithm (Algorithm 3) shows better performance than the

others in terms of CPU seconds, and that the convex relaxations help to reduce the com-

putational time when problems are relatively harder. For the Polyblock Algorithm and the

modified Polyblock Algorithm, there exist overlapping areas among blocks. That is, there

exist several blocks that contain an ǫ-optimal solution. Even though we found an optimal

solution in the middle of the procedure, we should refine those blocks many times in order

to prove that one is an ǫ-optimal solution. In the branch-and-bound algorithm, there might

exist overlapping areas. However, those are relative small region. In higher dimensional

problems, these overlapping areas will grow exponentially. As the dimension of a problem

is increased, we may observe that the computational time required to solve a problem with

the Polyblock Algorithm or the modified Polyblock Algorithm grows faster than the time

required by the branch-and-bound algorithm.

Figure 11 compares CPU seconds of the branch-and-bound algorithm with and without

convex relaxations for lower dimensional instances and higher dimensional instances. We use

48

Figure 11: CPU seconds with or without convex relaxations for (a) low dimensional
instances and (b) high dimensional instances.

convex relaxations to get a tighter bound for the given block in the Polyblock and modified

Polyblock Algorithms and the given partition in the branch-and-bound algorithm. Tighter

bounds help us to identify some blocks or partitions that do not contain a better solution. It

follows that we can fathom those blocks or partitions. However, in order to obtain a tighter

bound, we should solve an additional optimization problem. That is, it requires additional

computational time while it decreases overall computational time by fathoming some blocks

or partitions in early stages. We observe that for easy problems (e.g., lower dimensional

problems (see, Figure 11 (a))), convex relaxations do not decrease computational time

dramatically, while they do decrease the computational time for relatively hard problems

(e.g. higher dimensional problems (see, Figure 11 (b))).

In terms of speed of algorithm, we cannot say that one is better than the other. The

performance of each algorithm varies with the problems. However, according to average

computational results, the branch-and-bound algorithm with convex relaxations shows bet-

ter performance than the others for separable polynomial programming problems.

49

3.2.3.2 Conical algorithm versus branch-and-bound algorithm

We described a conical algorithm in section 2.5. We generated 60 problems under 6 problem

conditions. The conditions are determined by the combinations of the number of variables

{5, 7} and termination tolerance {0.01, 0.001, 0.0001}. Each problem was solved by the

conical algorithm and the branch-and-bound algorithm. In Appendix A.1.2, we report

CPU seconds, required iterations and the maximum number of partitions considered.

Figure 12: Average CPU seconds comparison

In Figure 12, we plot the average CPU time required over 10 instances of each con-

dition. According to Figure 12 the rectangular branch-and-bound algorithm shows better

performance than the conical algorithm on separable polynomial programming problems.

Table 3 summarizes the comparative performance. The results show that the rectangular

algorithm is faster than the conical algorithm for 27 instances while the conical algorithm is

faster for 23 instances. However, the conical algorithm shows better performance for small

50

dimensional problems. In our implementation, we set a CPU second limit of 300 seconds.

In 18 instances, the conical algorithm failed to terminate at an optimal solution while the

rectangular algorithm failed for 6 instances.

Table 3: Computational result summary

Conical algorithm Rectangular algorithm

Fails 18 6
Faster than the others 23 27

According to our computational results, the conical algorithm shows better performance

than the rectangular algorithm on small dimensional problems while the branch-and-bound

algorithm does better on relatively high dimensional problems.

3.2.3.3 Bounding by variable fixing

In this section, we report the results of comparing the average CPU seconds required by

the branch-and-bound algorithm alone, the branch-and-bound with linear relaxation, and

the branch-and-bound with bounds provided by the Polyblock Algorithm2 for 90 instances.

The detailed results for these experiments is reported in Appendix A.1.3. We have seen

that the Polyblock Algorithm outperforms the others on small dimension problems (i.e.,

n ≤ 3). Thus, we separated variables into several sets Kj such that the cardinality of Kj is

less than or equal to 3.

Figure 13 shows the average computational time for each condition. In these instances,

the branch-and-bound algorithm with linear relaxation outperforms the others. As we

provide a tighter bound, we can eliminate some partitions earlier than regular branch-and-

bound does. It follows that we carry only a small number of partitions under consideration.

It helps us to reduce computational time for sorting the list of partitions and thus save

memory space. When we do not have reasonable relaxations for separable problems or

decomposable problems, we might use the subdivision bounding scheme proposed in section

2We set a time limit of 10 seconds. That is, if we fail to get an optimal solution for a given subregion,

we use a least lower bound of the list of blocks in the Polyblock Algorithm as a lower bound of a given

subregion.

51

Figure 13: Average CPU seconds comparison of branch-and-bound, branch-and-bound
with linear relaxation, branch-and-bound with Polyblock bounding

3.2.2.

52

CHAPTER IV

PROBABILISTICALLY CONSTRAINED LINEAR

PROGRAMS

4.1 Introduction

Various applications in reliability and risk management (cf.[20]) give rise to probabilistically-

constrained linear programs (PCLP) of the following form

min
x

cT x (4.1.1)

s.t. Ax = b (4.1.2)

P{Tx ≥ ξ(ω)} ≥ α (4.1.3)

x ≥ 0. (4.1.4)

In the above model, x ∈ Rn is a vector of decision variables; the parameters c ∈ Rn,

A ∈ Rp×n, b ∈ Rp and T ∈ Rm×n represent deterministic problem data; ω is a random

vector from the probability space (Ω, Σ,P) and ξ : Ω 7→ Rm represent stochastic right-hand-

side parameters; P{S} denotes the probability of the event S ∈ Σ under the probability

measure P; and α ∈ (0, 1) is a scalar. The probabilistic constraint (4.1.3) requires that the

inequalities Tx ≥ ξ(ω), involving random data, hold with a probability of at least α.

Beginning with the seminal work of Charnes and Cooper [4], many different solution

techniques have been proposed for different versions of PCLP. Most of the existing ap-

proaches rely on specific assumptions on the distribution of the stochastic parameters that

render convex the feasible region defined by the probabilistic constraints (4.1.3). For ex-

ample, if the stochastic parameters have a continuous log-concave distribution, then PCLP

is guaranteed to have a convex feasible set [18], and hence may be solvable with standard

convex programming techniques (see [20] for a comprehensive review). For general dis-

tributions, in particular for discrete distributions, the feasible region defined by (4.1.3) is

53

non-convex. This non-convexity is illustrated with the following simple example from [22]

(a similar example is presented in [25]).

Example 1: Consider the following PCLP:

min
x1,x2

c1x1 + c2x2

s.t. P
{ x1 + x2 ≥ ξ1

x1 + 3x2 ≥ ξ2

}
≥ 0.5

x1, x2 ≥ 0,

where ξ1 and ξ2 are random variables with the joint distribution P{ξ1 = 2, ξ2 = 4} = 0.5

and P{ξ1 = 3, ξ2 = 0} = 0.5. The feasible region is given by union of the polyhedra

P1 = {(x1, x2) ∈ R2
+ : x1 + x2 ≥ 2, x1 + 3x2 ≥ 4} and

P2 = {(x1, x2) ∈ R2
+ : x1 + x2 ≥ 3, x1 + 3x2 ≥ 0},

and is clearly non-convex.

For discrete distributions, a PCLP can be immediately reformulated as a mixed-integer

linear program (milp) (see [20]). Ruszczyński [21] has developed specialized cutting planes

for this milp reformulation, and embedded these within a branch-and-cut algorithm. Unless

the random variables are independent, the milp reformulation involves a huge number of

binary variables – one for every possible joint realization of the random parameters – and

may be computationally impractical in general. An improved milp formulation for the

PCLP can be constructed if the set of p-efficient points (PEPs) can be identified. A point

z ∈ Rm is said to be a PEP for the random variable ξ(ω) if P{z ≥ ξ(ω)} ≥ α and there is no

y such that y ≤ z, y 6= z and P{y ≥ ξ(ω)} ≥ α[19]. For discrete distributions with certain

concavity properties, Dentcheva et al. [5, 6] have developed efficient convex programming

relaxations for PEP-based milp formulations for PCLPs. Such relaxations have been used

within exact branch-and-bound algorithms for some classes of probabilistically constrained

milps [1, 2]. Sen [24] has suggested convex relaxations for PCLPs with general discrete

distributions using disjunctive programming techniques.

In this chapter, we develop an algorithm for obtaining global optimal solutions to PCLPs.

54

Unlike prior work, we do not make any concavity or continuity assumptions on the under-

lying distributions. The proposed algorithm is a branch-and-bound scheme that searches

for a global solution by successively partitioning the non-convex feasible region and by us-

ing bounds on the objective function to fathom inferior partitions. The basic scheme is

enhanced by domain reduction and cutting plane strategies to reduce the size of the par-

titions and hence tighten bounds. We refer to this strategy as branch-reduce-cut. The

proposed method exploits the monotonicity properties inherent in the problem, and re-

quires solving linear programming subproblems. Convergence analysis of the algorithm in

case of discrete and continuous distributions is provided. We also present numerical results

for PCLPs involving discrete distributions and demonstrate that the proposed algorithm is

significantly superior to a straight-forward milp approach.

The remainder of this chpater is organized as follows. In Section 4.2, we reformulate

PCLP to reveal the inherent monotonicity in the problem. The proposed branch-reduce-cut

algorithm is developed in Section 4.3, and its convergence analysis is presented in Section 4.4.

Finally, in Section 4.5 we present some numerical results with the proposed algorithm on

randomly generated PCLP instances involving discrete distributions.

4.2 Problem reformulation and structural properties

Consider the following problem:

min
y

f(y) (4.2.1)

s.t. y ∈ G ∩H, (4.2.2)

where y ∈ Rm is a vector of decision variables; f : Rm 7→ R ∪ {−∞, +∞} is the linear

programming value function

f(y) = min
x
{cT x : Ax = b, Tx ≥ y, x ≥ 0} (4.2.3)

(we let f(y) = −∞ and f(y) = +∞ when the linear program (4.2.3) is unbounded and

infeasible, respectively); the set G is the set of y’s for which the linear program (4.2.3) is

feasible, i.e.,

G = {y ∈ Rm : f(y) < +∞}; (4.2.4)

55

and the set H is defined as

H = {y ∈ Rm : F (y) ≥ α}, (4.2.5)

where F : Rm 7→ [0, 1] is the cumulative density function of the random vector ξ(ω), i.e.,

F (y) = P{y ≥ ξ(ω)}.

The following result establishes the equivalence between PCLP (4.1.1)-(4.1.4) and the

problem (4.2.1)-(4.2.2). The proof is straight-forward and is omitted.

Proposition 4.1.

(i) If x∗ is an optimal solution of the PCLP (4.1.1)-(4.1.4), then y∗ = Tx∗ is an optimal

solution of (4.2.1)-(4.2.2), and both problems have the same optimal objective function

value.

(ii) If y∗ is an optimal solution of (4.2.1)-(4.2.2), then x∗ ∈ argmin{cT x : Ax = b, Tx ≥

y∗, x ≥ 0} is an optimal solution of the PCLP (4.1.1)-(4.1.4), and both problems have

the same optimal objective function value.

Using Proposition 4.1, we consider solving the reformulated PCLP (4.2.1)-(4.2.2) through-

out the remainder of this paper. Henceforth, the acronym PCLP will refer to the refor-

mulation (4.2.1)-(4.2.2). The following assumptions are required to ensure that PCLP is

well-defined.

Assumption 4.1. The set of dual solutions to the linear program (4.2.3) is non-empty,

i.e.,

{(π, ρ) ∈ Rp+m : πA + ρT ≤ c, ρ ≥ 0} 6= ∅.

By weak duality, the above assumption guarantees that f(y) > −∞ for all y.

Assumption 4.2. The constraint (4.2.2) in PCLP can be replaced by

y ∈ G ∩H ∩ [yL, yU],

for some yL ≤ yU .

The above assumption is required to make the feasible region bounded.

56

Proposition 4.2 (see, e.g., [3]). Under Assumption 4.1,

(i) the set G is non-empty, closed and convex, and

(ii) the function f is continuous, piece-wise linear, convex, and non-decreasing over G.

Proposition 4.3. Under Assumptions 4.1 and 4.2, if the feasible region of the PCLP

(4.2.1)-(4.2.2) is non-empty, then there exists an optimal solution.

Proof. The set H is closed due to the upper semi-continuity of the cumulative density

function F . Thus the feasible region of PCLP is compact, and the objective function is

continuous. The result then follows from the Weirstrass Theorem.

Note that the set G satisfies the following property

x ≤ y and y ∈ G⇒ x ∈ G.

Such a set is called a normal set [32]. Owing to the non-decreasing property of F , the set

H satisfies

x ≥ y and y ∈ H ⇒ x ∈ H.

Such a set is called a reverse normal set [32]. Thus the problem (4.2.1)-(4.2.2) involves

minimizing a non-decreasing function over the intersection of a normal and a reverse normal

set. Such problems belong to the class of non-convex monotonic optimization problems

recently studied by Tuy [32], Li et al. [12] and Toh [31]. Following are some important

properties adapted to our setting (the proofs follow immediately from the general results in

[32]).

Proposition 4.4. Under Assumptions 4.1 and 4.2,

(i) if the problem is feasible then yL ∈ G and yU ∈ H;

(ii) if yL ∈ H, then either yL is an optimal solution or the problem is infeasible;

(iii) if yL 6∈ H and the problem is feasible, then there exists an optimal solution on the

relative boundary of H;

57

(iv) if ŷ ∈ [yL, yU] is on the relative boundary of H, then there cannot be a solution that is

better (i.e., feasible with a smaller objective value) in the sets QA := {y : yL ≤ y < ŷ}

and QB := {y : ŷ ≤ y ≤ yU}. Consequently, the sets QA and QB can be removed

from further consideration.

In the case of a (finite) discrete distribution of the random vector ξ(ω), PCLP has

some additional properties. Suppose ξ(ω) has K possible realizations {ξ1, . . . , ξK} with

probabilities {p1, . . . , pK}. Let

Ξj = ∪K
k=1{ξ

k
j } for j = 1, . . . , m and C =

m∏

j=1

Ξj . (4.2.6)

Note that the set C is finite.

Lemma 4.1. If ξ(ω) has a discrete distribution, then for any y ∈ Rm such that y ∈ H,

there exists ŷ such that

ŷ ≤ y, ŷ ∈ C and ŷ ∈ H.

Proof. Let K(y) = {k ∈ {1, . . . , K} : ξk ≤ y}, then y ∈ H ⇔
∑

k∈K(y) pk ≥ α. Let

ŷj = maxk∈K(y){ξ
k
j } for j = 1, . . . , m. Then ŷ ≤ y, ŷ ∈ C, and ŷ ≥ ξk for all k ∈ K(y), thus

ŷ ∈ H.

Proposition 4.5. If ξ(ω) has a discrete distribution and PCLP has an optimal solution,

then there exists an optimal solution y∗ ∈ C.

Proof. Let y′ ∈ H ∩G be any optimal solution of PCLP, then by Lemma 4.1, there exists

y∗ ∈ C such that y∗ ≤ y′ and y∗ ∈ H. Since G is a normal set, we have y∗ ∈ G, thus y∗ is

feasible. By the monotonicity of the objective function, f(y∗) ≤ f(y′), thus y∗ is also an

optimal solution.

By virtue of Proposition 4.5, in case of discrete distributions, we can restrict our search

of the optimal solution to the finite set C intersected with G ∩H.

In the following section, we develop a branch-and-bound algorithm for solving PCLP by

exploiting the properties outlined above. In addition to revealing the monotonicity proper-

ties, the reformulation (4.2.1)-(4.2.2) has the added advantage (over the original formulation

58

(4.1.1)-(4.1.4)) that the problem dimension is m rather than n, and often m < n. We con-

clude this section with an example to illustrate the properties of the reformulation.

Example 2: Consider the following PCLP:

min
x1,x2

−x1 − 2x2

s.t. P






−x1 − x2 ≥ ξ1

x1 + 1
2x2 ≥ ξ2





≥ 0.5

x1, x2 ≥ 0,

where ξ1 and ξ2 are random variables with a discrete distribution consisting of the 10 real-

izations given in Table 4.

Table 4: Distribution of (ξ1, ξ2)

k 1 2 3 4 5 6 7 8 9 10

ξk
1 -7 -6 -6 - 5.5 -5 -3 -3 -2 0 1

ξk
2 1.5 1 2 3 1 1 5.5 3 1 2

pk 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

It can be verified that the three p-efficient points of the distribution are (−5, 3), (−3, 2)

and (0, 1.5). The feasible region of PCLP is then give by the union of the polyhedra

P1 = {(x1, x2) ∈ R2
+ : −x1 − x2 ≥ −5, x1 +

1

2
x2 ≥ 3},

P2 = {(x1, x2) ∈ R2
+ : −x1 − x2 ≥ −3, x1 +

1

2
x2 ≥ 2} and

P3 = {(x1, x2) ∈ R2
+ : −x1 − x2 ≥ 0, x1 +

1

2
x2 ≥ 1.5},

and is illustrated in Figure 14 (a).

The reformulation of the problem is

min
y1,y2

f(y1, y2)

s.t. (y1, y2) ∈ G ∩H ∩ [yL, yU],

59

where f(y1, y2) = minx1,x2
{−x1 − 2x2 : − x1 − x2 ≥ y1, x1 + 1

2x2 ≥ y2, x1 ≥ 0, x2 ≥ 0},

G = {(y1, y2) : f(y1, y2) < +∞}, H = {(y1, y2) : F (y1, y2) ≥ α}, yL = (−7, 1.5)T ,

yU = (1, 5.5)T . The feasible region in the reformulated problem is shown in Figure 14 (b).

The points of intersection of the dotted grid constitute the finite set C.

Figure 14: (a) The feasible region in the x-space, (b) The feasible region in the y-space.

4.3 A Branch-Reduce-Cut algorithm

Owing to the non-convexity of the set H (recall that the normal set G and the function

f are convex), PCLP is a non-convex optimization problem. Initially proposed to deal

with non-convexities arising from discreteness [10], the branch-and-bound scheme has since

evolved into a general purpose global optimization technique for a wide class of non-convex

problems [8, 9, 30]. The scheme proceeds by recursively partitioning (branching) the fea-

sible region in search of a global optimal solution. For a given partition, bounds on the

optimal objective value, based on efficiently solvable relaxations of the problem, are used to

decide whether to examine the partition further or to fathom it, i.e., discard it from further

consideration (bounding). For example, in the case of milps, linear programming relax-

ation based bounding and integrality-based branching rules are used (cf. [14]). For general

non-convex non-linear problems, developing tight and tractable (convex) relaxations pose a

crucial challenge [30]. Furthermore, since the feasible region is typically (semi)continuous,

60

special care has to be taken to decide how a particular partition is to be further refined in

order to ensure convergence.

A variety of branch-and-bound schemes has been proposed for various classes of non-

convex optimization problems. These methods rely on exploiting the analytical form of the

objective and constraints of the problem in order to develop convex relaxations. Several

sophisticated global optimization software that automatically construct such relaxations

and use these within enhanced branch-and-bound search are also available [13, 23]. Unfor-

tunately, none of these existing global optimization methods can be used for PCLP since

neither the objective function f , nor the set G, and in some cases, the set H defining the

constraints is available in closed analytic form.

In this section, we exploit the monotonicity properties of PCLP outlined in the previous

section to develop a specialized branch-and-bound algorithm. The algorithm recursively

partitions the hyper-rectangle [yL, yU], that contains the feasible region, into smaller and

smaller hyper-rectangles. The monotonicity of the objective function f guarantees that

for any hyper-rectangular partition [a, b], f(a) is a valid lower bound and can be used for

fathoming. The monotonicity property of the set H is used for branching and to find feasible

solutionss. This basic branch-and-bound scheme is enhanced by cutting plane strategies to

successively approximate the set G and the set of optimal solutions contained in G. The

cutting planes along with the monotonicity of the set H is used within a domain reduction

step to reduce the size of the current hyper-rectangle. We refer to this algorithm as branch-

reduce-cut and provide its detailed description next.

In the following description, R denotes a hyper-rectangular partition in Rm, i.e. R =

[a, b] with a, b ∈ Rm and a ≤ b; v(R) = ||b − a||∞ is a measure of the size of R; LB(R)

denotes the lower bound on the optimal value over R; UB denotes a global upper bound on

the optimal value; L is a list of un-fathomed hyper-rectangles; y∗ denotes the best candidate

solution; G denotes a normal set approximation of the set of optimal solutions contained

in G (the algorithm will ensure that this approximation is a normal set); and ǫ denotes a

pre-specified tolerance. Recall that, given a vector y ∈ Rm, the function f(y) is evaluated

by solving the linear program (4.2.3), and if f(y) = +∞ then y 6∈ G. We assume that we

61

Initialization:

1: if f(yL) = +∞ or yU 6∈ H then

2: STOP the problem is infeasible
3: else {f(yL) < +∞ and yU ∈ H}
4: if yL ∈ H then

5: STOP yL is an optimal solution
6: else

7: set R = [yL, yU], L = {R}, LB(R) = f(yL), UB = +∞, y∗ = ∅, and G = Rm

8: end if

9: end if

Main loop:

1: while L 6= ∅ do

2: select R ∈ L such that LB(R) = minR′∈L{LB(R′)}
3: branch R into R1 and R2

4: for i = 1, 2 do

5: reduce the domain of Ri using H and G
6: suppose Ri = [a, b]
7: if f(a) = +∞ or b 6∈ H then

8: in case of f(a) = +∞, add a feasibility cut to refine G
9: fathom Ri (it contains no feasible solutions)

10: else {f(a) < +∞ and b ∈ H}
11: set LB(Ri) = f(a)
12: if a ∈ H then

13: a is a feasible solution, add an optimality cut to refine G
14: if f(a) < UB then

15: UB ← f(a) and y∗ ← a
16: end if

17: fathom Ri (a is the best feasible solution in Ri)
18: else {a 6∈ H}
19: set L ← L ∪ {Ri}
20: search for feasible solutions: select a finite set S ⊂ Ri

21: for each y ∈ S do

22: if f(y) = +∞ then

23: add a feasibility cut to refine G
24: else if f(y) < +∞ and y ∈ H then

25: y is a feasible solution, add an optimality cut to refine G
26: if f(y) < UB then

27: UB ← f(y) and y∗ ← y
28: end if

29: end if

30: end for

31: end if

32: end if

33: end for

34: for each R ∈ L do

35: if LB(R) > UB or v(R) ≤ ǫ then

36: fathom R, i.e, set L ← L \ {R}
37: end if

38: end for

39: end while

Figure 15: A Branch-Reduce-Cut algorithm for PCLP

62

have an oracle to check, given y ∈ Rm, whether y ∈ H, i.e., we can evaluate the cumulative

density function F of the random vector ξ(ω) and check if F (y) ≥ α. An algorithmic

description of the proposed branch-cut-reduce scheme is presented in Figure 15. The key

steps are highlighted in italics, and are described below.

The algorithm starts by considering the initial parition [yL, yU] given by the bounds on

the variables and checks the necessary feasibility condition in Proposition 4.4(i) and the

sufficient optimality condition in Proposition 4.4(ii). If neither of these two conditions are

satisfied, the algorithm starts its main loop.

4.3.1 Selection and branching

The first main step is to select a partition from the list L of unfathomed partitions. This

choice is based upon the least-lower bound rule (line 2 of the main loop in Figure 15). This

guarantees that the bounding process is bound improving [9].

After the selection step, the selected hyper-rectangle is partitioned into two hyper-

rectangles. In the case of a continuous distribution, the branching rule is to bisect the

longest edge. That is, given R = [a, b] of size v(R) > 0 with the longest edge index

̂ ∈ argmaxj=1,...,m{bj − aj}, R is partitioned into R1 = [a, b − ebv(R)/2] and R2 =

[a + ebv(R)/2, b], where ej ∈ Rm is the j-th unit vector. The longest-edge bisection rule

guarantees that the branching process is exhaustive [9].

Since, in the discrete case we can restrict our search to the set C (Proposition 4.5), our

branching rule is as follows. Given a hyper-rectangle R = [a, b] of size v(R) > 0 suppose

the longest edge has an index ̂ ∈ argmaxj=1,...,m{bj − aj}. Let Ξb = {σ1, σ2, . . . , σK}

with σk < σk+1 for all k. Choose {σp, σq} ∈ Ξb such that σp < (ab + bb)/2 ≤ σq, and let

b1 = b − (bb + σp)e
b and a2 = a + (ab + σq)e

b. Then R is partitioned into R1 = [a, b1] and

R2 = [a2, b]. Note that, if R = [a, b] is such that

a, b ∈ C (4.3.1)

then σp and σq always exist and the above branching rule is well-defined. Moreover, the

resulting partitions R1 and R2 also satisfy condition (4.3.1). We shall show that the domain

reduction step on any partition preserves condition (4.3.1). Thus, if the initial partition

63

[yL, yU] satisfies condition (4.3.1) (this can be ensured by domain reduction), then all sub-

sequent partitions produced by the algorithm will satisfy (4.3.1).

4.3.2 Domain reduction

Suppose we have a current normal set approximation G of the set of optimal solutions, then

the region of interest is G∩H. Given a partition R = [a, b] such that a ∈ G and b ∈ H, the

idea of domain reduction is to find a hyper-rectangle R′ ⊂ R such that R′ ⊇ R ∩ G ∩H.

This reduction helps to obtain improved bounds and reduces the size of the search tree.

The domain reduction on R = [a, b], with a ∈ G and b ∈ H, can be carried out as

follows. Let

λ∗
j = max{λ ∈ [0, 1] : a + λ(bj − aj)e

j ∈ G} for j = 1, . . . , m (4.3.2)

µ∗
j = max{µ ∈ [0, 1] : b− µ(bj − aj)e

j ∈ H} for j = 1, . . . , m. (4.3.3)

The above problems both have optimal solutions, since the sets G and H are closed. Con-

struct

a′ = b−
m∑

j=1

µ∗
j (bj − aj)e

j (4.3.4)

b′ = a +
m∑

j=1

λ∗
j (bj − aj)e

j . (4.3.5)

Proposition 4.6. [a′, b′] ⊇ [a, b] ∩G ∩H.

Proof. Consider y ∈ [a, b] ∩ G ∩ H, such that y 6∈ [a′, b′]. Then there exists an index

̂ ∈ {1, . . . , m}, such that either ab ≤ yb < a′b or b′b < yb ≤ bb. Consider the first case

(the second case is analogous). Let z = y +
∑m

j=1,j 6=b(bj − yj)e
j , i.e., zj = bj for all

j = 1, . . . , m, j 6= ̂ and zb = yb. Let µ̂b = (bb − zb)/(bb − ab). Clearly µ̂ ∈ [0, 1], and we can

write z = b − µ̂b(bb − ab)eb. Note that, by construction, z ≥ y, and since y ∈ H, we have

that z ∈ H (since H is a reverse normal set). Thus µ̂b is a feasible solution to the problem

(4.3.3) corresponding to ̂. Then

bb − µ̂b(bb − ab) = zb = yb < a′b = bb − µ∗b (bb − ab).
The above implies that µ̂b > µ∗b and we have a contradiction to the fact that µ∗b is an optimal

solution to the problem (4.3.3) corresponding to ̂.

64

Proposition 4.6 establishes that the domain reduction process is valid, i.e., no feasible

solutions are lost. In case of continuous distributions, the one-dimensional optimization

problems (4.3.2) and (4.3.3) can be solved by bisection. For discrete distributions, the

problems simplify to

λ∗
j = max{λ ∈ [0, 1] : a + λ(bj − aj)e

j ∈ G ∩ C} for j = 1, . . . , m

µ∗
j = max{µ ∈ [0, 1] : b− µ(bj − aj)e

j ∈ H ∩ C} for j = 1, . . . , m,

and can be solved by sorting the elements in Ξj for all j = 1, . . . , m. It is immediately seen

that, in this case, the resulting partition [a′, b′] will satisfy condition (4.3.1).

4.3.3 Feasibility and optimality cuts

Whenever a solution ŷ is found such that f(ŷ) = +∞, i.e., the linear program (4.2.3) is

infeasible, a feasibility cut is added to the description of the set G (see lines 8 and 22 of the

main loop in Figure 15). The cut is generated as follows. Recall that dual polyhedron for

the linear program (4.2.3) is

{(π, ρ) ∈ Rp+m : πA + ρT ≤ c, ρ ≥ 0}.

If f(ŷ) = +∞, then the dual to (4.2.3) is unbounded (since dual feasibility is assumed), i.e.,

there exists an extreme ray (π̂, ρ̂) of the above dual polyhedron such that

π̂b + ρ̂ŷ > 0.

Thus any y ∈ G should satisfy the feasibility cut

ρ̂y ≤ −π̂b. (4.3.6)

Whenever a solution ŷ ∈ H such that f(ŷ) < +∞, i.e., ŷ is feasible, an optimality

cut is added to the description of G (see lines 12 and 24 of the main loop in Figure 15).

The optimality cut is generated as follows. Let (π̂, ρ̂) be an optimal dual solution for the

linear program (4.2.3) defining f(ŷ). Then any y such that f(y) ≤ f(ŷ) should satisfy the

optimality cut

ρ̂y ≤ ρ̂ŷ. (4.3.7)

65

To see this, first note that (π̂, ρ̂) is a feasible dual solution for the linear program (4.2.3)

defining f(y), thus f(y) ≥ π̂b+ ρ̂y. Since f(ŷ) = π̂b+ ρ̂ŷ, the requirement f(y) ≤ f(ŷ) then

implies the optimality cut (4.3.7).

At any point in the algorithm, the set G is defined by a set of feasibility and optimality

cuts of the forms (4.3.6) and (4.3.7), respectively. Note that the cut-coefficients are always

non-negative. Thus the set G is always maintained to be a normal set.

Example 2 (contd.): Here, we illustrate the cutting plane and domain reduction steps using

Example 2. Figure 16(a) shows a feasibility cut. Consider the initial partition defined by

[(−5, 1.5), (1, 5.5)] (shown as the dashed rectangle). While searching for feasible solutions

(see the subsection 4.3.4), the algorithm considers the (1, 5.5) and its two adjacent vertices

(−5, 1.5) and (1, 1.5). All of these points are infeasible. The sloped dotted line in Fig-

ure 16(a) is the feasibility cut corresponding to the point (1, 1.5). Upon adding this cut, the

domain reduction step is able to reduce the partition [(−5, 1.5), (1, 5.5)] to [(−5, 2), (−2, 5)]

(shown as the solid rectangle).

Figure 16(b) shows two optimality cuts. Consider now the partition [(−5, 2), (2, 5)].

The vertices (−2, 2) and (−5, 5) both have finite optimal objective values, and consequently

the two optimality cuts shown as sloped dotted lines in Figure 16(b) are generated. The

optimality cut corresponding to (−5, 5) helps to reduce the partition [(−5, 2), (−2, 5)] to

[(−5, 2), (−3, 5)].

4.3.4 Upper bounding and searching for feasible solutions

Whenever a feasible solution is found, the corresponding objective value is checked against

the upper bound UB, i.e., the objective value of the best solution y∗ found thus far, and UB

and y∗ are updated appropriately. Also, as mentioned earlier, an optimality cut is added

to the description of G.

For a given partition R, the algorithm first checks if a is feasible, i.e., f(a) < +∞ and

a ∈ H. If it is, then this partition is fathomed, since it cannot contain any better feasible

solution.

66

Figure 16: (a) Feasibility cut corresponding to y = (1, 1.5)T and (b) Optimality cuts
corresponding to y = (−5, 5)T and y = (−2, 2)T

To search for feasible solutions within an unfathomed partition R = [a, b], the algorithm

(see lines 20-30 of the main loop in Figure 15) checks b and the set of m vertices of R

adjacent to b (this is the candidate set S). The adjacent vertices are checked since these

might have smaller objective value than b. We might also search for solution on the relative

boundary of H on the line segment joining a to b, however, this might be computationally

expensive.

Suppose we encounter a solution ŷ such that f(ŷ) < +∞ but ŷ 6∈ H. We may then

attempt to “lift” this solution to be feasible as follows. Let x̂ be an optimal solution to the

linear program (4.2.3) defining f(ŷ). Then, T x̂ ≥ ŷ. If some of these inequalities are strict,

we can consider the solution y′ = min{T x̂, b} (the min is taken component-wise). Clearly,

f(y′) = f(ŷ), and since y′ ≥ ŷ, it might be that y′ ∈ H, in which case, y′ is a feasible

solution.

4.3.5 Fathoming

A given partition R = [a, b] can be fathomed, or discarded from further consideration, if

one of the following conditions are satisfied.

Infeasibility: If the partition fails to satisfy the necessary feasibility condition a ∈ G

and b ∈ H, then it can fathomed since contains no feasible solutions.

67

Feasibility: If a or a solution obtained by “lifting” a is feasible, then the partition can

be fathomed since it contains no better solutions.

Inferiority: If LB(R) > UB, the partition does not contain any solution whose ob-

jective function value is smaller than that of the best solution already found. Hence

the partition can be fathomed.

Tolerance: If the v(R) ≤ ǫ and has not been fathomed according to the rules above,

then the partition is not considered further. In this case, we have f(a) < +∞, a 6∈ H

and b ∈ H. In this case, we choose a to be an “approximately feasible” solution and

compare it with the best candidate solution found so far. Note that, if ǫ = 0 (as in

the case of discrete distributions) this fathoming rule is never encountered.

4.4 Convergence analysis

4.4.1 Discrete distribution

We shall show that, in case of a discrete distribution of the random vector ξ, the proposed

branch-reduce-cut algorithm (with the tolerance ǫ = 0), either finds a global optimal solution

to PCLP or resolves that the problem is infeasible. We shall need the following concept.

Definition 4.1. [9] The bounding operation in a branch-and-bound algorithm is called fi-

nitely consistent if, (i) at every step, any unfathomed partition element can be further

refined, and if (ii) any nested sequence of successively refined partition elements is finite.

Lemma 4.2. The bounding operation in the Branch-reduce-cut algorithm is finitely consis-

tent.

Proof. Recall that the algorithm always generates partitions satisfying condition (4.3.1).

Consider, any unfathomed partition [a, b] satisfying (4.3.1). As mentioned earlier, since

{a, b} ∈ C, the branching rule is well-defined, and so [a, b] can be further refined. Also, the

branching rule guarantees that any nested sequence of unfathomed partitions will reduce

to a point after a finite number of steps, whence such a partition will have to be fathomed.

Thus any nested sequence of successively refined partition elements is finite.

68

Theorem 4.1. Given a PCLP with discrete distributions for the random parameters, the

Branch-reduce-cut algorithm with ǫ = 0 terminates after finitely many steps either with a

global optimal solution or by resolving that the problem is infeasible.

Proof. From Theorem IV.1 in [9], a branch-and-bound algorithm where the bounding

operation is finitely consistent terminates in a finite number of steps. Thus by Lemma 4.2,

the proposed Branch-reduce-cut algorithm terminates after finitely many steps.

Consider, first, the case that the algorithm found a feasible solution y∗. In this case,

the feasible region is non-empty, therefore PCLP has an optimal solution. Suppose y′ ∈ C

is an optimal solution to PCLP. We shall show that f(y∗) = f(y′), so that y∗ is an optimal

solution of PCLP. Suppose, for contradiction, that f(y′) < f(y∗). Let Ri = [ai, bi] for

i = 1, . . . , I be the set of partitions corresponding to the leaf nodes of the branch-and-

bound search tree upon termination. By the exhaustiveness of the branching rule and the

validity of the domain reduction rules, there exists i′ such that y′ ∈ Ri′ = [ai′ , bi′]. Then

ai′ ∈ G and bi′ ∈ H, therefore Ri′ cannot be fathomed due to infeasibility. Moreover, by

f(ai′) ≤ f(y′) ≤ f(bi′), we must have ai′ 6∈ H, since otherwise ai′ would be an optimal

solution, and the algorithm would have discovered it and set y∗ = ai′ . So Ri′ cannot be

fathomed by feasibility. Finally, since f(ai′) ≤ f(y′) < f(y∗) = UB, therefore Ri′ cannot

be fathomed by inferiority. Thus, Ri′ can be further refined, and the algorithm should not

have terminated. Hence f(y′) = f(y∗).

Consider now the second case, that the algorithm did not find any feasible solution. We

then claim that PCLP is infeasible. Suppose, for contradiction, that y′ is a feasible solution

to PCLP. As before, let Ri = [ai, bi] for i = 1, . . . , I be the set of partitions corresponding

to the leaf nodes of the branch-and-bound search tree upon termination, and let i′ be such

that y′ ∈ Ri′ = [ai′ , bi′]. Then ai′ ∈ G and bi′ ∈ H, therefore Ri′ cannot be fathomed due

to infeasibility. Moreover, ai′ 6∈ H, since otherwise ai′ would be a feasible solution, and the

algorithm would have discovered it. So Ri′ cannot be fathomed by feasibility. Finally, since

no feasible solution has been found, UB = +∞, and f(ai′) < UB, therefore Ri′ cannot

be fathomed by inferiority. Thus, Ri′ can be further refined, and the algorithm should not

have terminated. Hence, PCLP cannot have any feasible solution.

69

4.4.2 Continuous distribution

In the continuous distribution case, if ǫ = 0, then the algorithm may not terminate finitely

and can only be guaranteed to converge in the limit. To see this, suppose that the feasible

set is a singleton, then an infinite number of branching operations may be needed to attain

a partition [a, b] where the single feasible point coincides with a.

Theorem 4.2. Given a PCLP with continuous distributions for the random parameters,

if the Branch-reduce-cut algorithm with ǫ = 0 terminates, then it terminates with a global

optimal solution or by resolving that the problem is infeasible.

Proof. Analogous to the proof of Theorem 4.1.

Consider now the case when the algorithm does not terminate. Let k denote the index

for the iterations, UBk denote the upper bound at iteration k, and [ak, bk] be the partition

considered in iteration k.

Theorem 4.3. Given a PCLP with continuous distributions for the random parameters, if

the Branch-reduce-cut algorithm with ǫ = 0 does not terminate, then PCLP has an optimal

solution y∗, and

lim
q→∞

akq = y∗.

Proof. Note that ak ∈ G and bk ∈ H for all k. Also by the exhaustiveness of the branching

rule, we have limk→∞(bk − ak) = 0. Since the sets G and H are closed, for any convergent

subsequence limq→∞ bkq = limq→∞ akq = a∗ ∈ G ∩H ∩ [yL, yU]. Thus PCLP has a feasible

solution a∗, and hence an optimal solution y∗.

The least lower bound selection rule guarantees that f(akq) ≤ f(y∗) for all q. Thus

limq→∞ f(akq) = f(a∗) ≤ f(y∗), where the first equality follows from the continuity of f

over G. Therefore, a∗ is also an optimal solution.

To ensure finite termination, a positive tolerance (ǫ > 0) is required. The tolerance-

based fathoming rule then guarantees that the algorithm terminates. In this case, we might

end up with a δ-feasible solution y∗, i.e., α−F (y∗) ≤ δ for some δ > 0. For a PCLP with an

70

absolutely continuous cumulative density F : Rm 7→ [0, 1] for the random vector ξ(ω) with

fi : Rm 7→ R+ for i = 1, . . . , m as the corresponding marginal probability density functions,

ǫ and δ are related as δ ≤ ǫL, where L = maxi=1,...,m maxy∈[yL,yU]{fi(y)}.

4.5 Computational results

In this section we report on some computational experience in using the proposed Branch-

cut-reduce algorithm for randomly generated instances of PCLP with discrete distributions,

i.e., ξ(ω) has K possible realizations {ξ1, . . . , ξK} with probabilities {p1, . . . , pK}. Such a

problem can be immediately reformulated into the following milp (see, e.g., [20])

min
x,y,λ

cT x

s.t. Ax = b

Tx ≥ y
K∑

k=1

pkλk ≥ α

ξk
j λi ≤ yj for j = 1, . . . , m, k = 1, . . . , K

λk ∈ {0, 1} for k = 1, . . . , K

x ≥ 0, y ≥ 0.

The above milp formulation can be improved by adding the constraints

λk1
≥ λk2

if ξk1 ≤ ξk2 for k1 = 1, . . . , K and k2 = k1 + 1, . . . , K.

We compare the performance of the proposed algorithm with that of solving the above milp

formulation using CPLEX 8.0.

The proposed algorithm was implemented in C++ with CPLEX 8.0 as the linear

programming solver. All computations were on a UltraSparc-III-Cu UNIX workstation

2x900MHz CPUs and 2GB RAM.

For generating our test problems, we replaced the constraint Ax = b by simple bounds.

The number n of x-variables was fixed at n = 50, and the number m of y-variables was

varied in the set {3, 6, 9}. The number of scenarios K was varied in the set {100, 300, 500}.

71

The desired probability level α was set to 0.9. For each combination of m and K, five test

problems were randomly generated as follows:

1. K realizations of the ξ vector were randomly sampled from a uniform distribution

over [0, 100]m. Each realization was assigned a probability of 1/K.

2. Each component of c and T were independently randomly sampled from a uniform

distribution over [0, 20].

Table 5 compares, for each test problem, the CPU seconds required to solve the milp

reformulation using CPLEX 8.0 (under columns labelled “MIP”), the CPU seconds required

by a branch-and-reduce algorithm, i.e., the proposed scheme without the enhancements

offered by cutting planes (under the columns labelled “BR”), and the CPU seconds required

by the proposed branch-reduce-cut algorithm (under the columns labelled “BRC”). In the

majority of the test problems, the proposed branch-cut-reduce algorithm performed better

that the other two approaches. In particular, in only two out of 45 test problems, the milp

approach showed better performance.

Figure 17: CPU seconds versus K (m = 5, n = 50).

In Figure 17, we compare the growth of the CPU time required by the milp approach and

72

Table 5: Comparison of CPU seconds

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC

1 0.04 0.00 0.00 2.78 0.00 0.00 240.84 0.19 0.04
2 0.04 9.00 1.59 7.67 0.28 0.08 16.26 0.00 0.00
3 0.03 0.00 0.00 42.77 0.25 0.00 175.48 0.59 0.12
4 0.09 0.06 0.00 2.81 0.00 0.00 16.36 0.00 0.00
5 0.04 0.00 0.00 5.35 0.00 0.00 18.71 0.17 0.05

AVG 0.05 2.27 0.40 14.65 0.13 0.02 56.70 0.19 0.04
m = 3

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC

1 0.03 0.00 0.00 10.46 0.32 0.00 7.91 0.00 0.00
2 0.14 0.15 0.00 23.62 0.77 0.13 8.20 0.00 0.00
3 0.05 0.17 0.00 51.43 3.16 0.39 59.11 6.50 4.01
4 0.05 0.37 0.00 2.12 0.62 0.22 4.94 0.00 0.00
5 0.24 0.09 0.00 1.70 0.00 0.00 202.57 3.47 1.51

AVG 0.10 0.16 0.00 17.87 0.97 0.15 56.55 1.99 1.10
m = 6

K = 100 K = 300 K = 500
Test No. MIP BR BRC MIP BR BRC MIP BR BRC

1 2.21 1.04 0.00 1.91 0.00 0.00 445.89 9.61 5.09
2 0.65 0.46 0.00 82.90 3.18 0.63 307.91 3.94 0.16
3 5.34 29.13 8.61 3.94 0.32 0.00 2261.06 37.55 13.64
4 5.39 0.72 0.08 5.00 0.53 0.00 89.97 1.45 0.38
5 3.25 3.05 0.62 2.73 1.38 0.64 5216.37 21.54 16.75

AVG 3.37 6.88 1.86 19.30 1.08 0.25 1664.24 14.82 7.20
m = 9

that required by the proposed algorithm, with and without the cutting plane enhancements,

as the number K of realizations in the distribution of the uncertain parameters grows for

PCLPs with m = 5 and n = 50. Each data point in the graph corresponds to an average over

5 randomly generated instances. It is evident that the proposed algorithm offers significant

advantages over the milp approach as the the number of realizations increase.

73

CHAPTER V

CONCLUSION

This thesis addresses the development and application of global optimization algorithms for

monotonic optimization problems. In this chapter, we give a brief summary of the various

approaches discussed and their computational performance, and give directions for future

research.

In Chapter 2, we discussed the basic properties of monotonic programming and reviewed

an established outer approximation method called the Polyblock Algorithm. Based on our

computational experiments with this procedure, we observed that a considerable portion

of computation time was spent because of the inefficiency of procedures for removing im-

proper vertices. Moreover, the method is susceptible to jamming on some problems. We

proposed an efficient way of removing improper vertices by identifying a smaller set of ver-

tices that needed to be compared. In the other enhancement, we looked at the jamming

phenomenon which occurs when the chord connecting a vertex and a point b approaches

90◦ (Recall that a point b is the coordinate-wise biggest point of a bounded problem). Be-

cause of this steepness, we could generate a new vertex that is close to a refined vertex

(see, Table 1). Rather than using a static point b, we proposed a different method to find a

boundary point by constructing a dynamic point b′. The efficiency of this modification was

demonstrated by our computational results. The convergence of the modified algorithm

was proved. We reviewed two types of branch-and-bound algorithms — one is based on a

rectangular branching scheme and the other is based on a simplicial branching scheme. For

the rectangular branch-and-bound algorithm, we constructed a domain reduction scheme

that is enhanced by adding optimality cuts. By exploiting the properties of the feasible

set defined by monotone functions, we categorized various fathoming cases — infeasibility,

feasibility and inferiority. For the simplicial branch-and-bound algorithm, we discussed the

construction of upper and lower bounds for a given partition.

74

In Chapter 3, we considered polynomial programming problems in order to compare

the performance of various algorithms. We showed that a general polynomial program-

ming problem can be transformed into a class of monotonic programming problems. In an

algorithm based on a branch-and-bound scheme, a tighter bound for each partition plays

a key role in reducing computational effort. We provided two ways to obtain a tighter

bound — one is obtained from solving a linear relaxation problem and the other is obtained

from solving a subproblem after fixing some of the variables. We tested the performance of

variants of algorithms on instances of separable polynomial programming problems. Both

bounding schemes help in reducing the computational effort. However, the variant that

employs a linear relaxation scheme outperformed one that uses bounding by variable fixing.

According to the computational experiments, the branch-and-bound algorithm shows a bet-

ter performance than either the Polyblock Algorithm or the modified Polyblock Algorithm.

Interestingly, the rectangular branching scheme outperformed the conical branching scheme

on our test problems.

In Chapter 4, we considered probabilistically constrained linear programs with general

distributions for the uncertain parameters, and we proposed an efficient branch-and-bound

algorithm. This basic branch-and-bound algorithm was enhanced by domain reduction

and cutting plane strategies. The domain reduction scheme is inherent from the branch-

and-bound algorithm for a general monotonic programming problem. Two types of cuts,

Optimality Cuts and Feasibility Cuts, are constructed by using the weak duality theorem

and the existence of extreme rays for infeasible cases. A general approach for a discrete

random parameter case is to use mixed integer programming (MIP). In a MIP formulation,

we need one binary variable for each realization. That is, as the number of realizations is

increased, the number of binary variables is increased. Therefore, it is not easy to solve the

MIP formulation for a large number of realizations. This was confirmed by our computa-

tional results. We provided convergence proofs for the algorithm.

This research can be extended to two variants of probabilistically constrained linear

programs. First, we considered problems having random parameters only on the right-hand

75

side of a linear program. We may extend this research to problems having random para-

meters on the left-hand side of a linear program. If the supports of the random parameters

are positive and the coefficients of the random parameters are positive, then the extended

problem is also a monotonic program. The other possible variant of the problem is a prob-

lem having integer decision variables. In this case, we need to solve mixed integer programs

in order to evaluate bounds for a given box, which are given by optimal objective values of

the MIPs. This procedure is clearly expensive. Moreover, we do not have dual multipliers,

so we cannot construct feasibility and optimality cuts. Alternatively, we can branch on

the discrete decision variables and solve continuous subproblems at each node which are of

the form PCLP. This approach would need to be compared with the general mixed integer

programming formulation of the discrete decision variable model. Based on our reported

comparison between our method and the MIP formulation of PCLP, we believe that our

approach for the discrete decision variables extension will be very competitive.

76

APPENDIX A

COMPUTATIONAL RESULTS

A.1 Comparison of CPU time

In this appendix, we report computational results of various experiments comparing algo-

rithms on test problems with various conditions. In the following description, n denotes the

number of variables and ǫ denotes the termination tolerance.

A.1.1 Polyblock, modified Polyblock, and Branch-and-bound

In this section, we report computational results from applying the Polyblock Algorithm

(Algorithm 1), the modified Polyblock Algorithm (Algorithm 2) and the branch-and-bound

algorithm (Algorithm 3) to randomly generated separable polynomial programming prob-

lems with various conditions. Various experimental conditions were determined by the

combination of a number of variables in the set {3, 4, 5}, a number of constraints in the set

{5, 7}1 and a termination tolerance in the set {0.01, 0.001, 0.0001}.

Each randomly generated problem was solved by three algorithms — Polyblock Algo-

rithm (labeled ‘PA’), modified Polyblock Algorithm (labeled ‘mPA’) and branch-and-bound

algorithm (labeled ‘BNB’) — and the computational times (required CPU time) and an ǫ-

optimal objective value are reported under columns labelled “CTs” and “Opt”. The test

results are shown in Table 6 through Table 14.

1In each results table, the first five problems have 5 constraints and the last five problems have 7

constraints.

77

Table 6: (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.01

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
1 0.03 0.864 0.05 0.861 0.01 0.861 0.01 0.864 0.01 0.861 0.00 0.861
2 0.01 0.693 0.01 0.692 0.01 0.691 0.00 0.693 0.01 0.692 0.00 0.692
3 0.04 0.506 0.03 0.507 0.01 0.504 0.03 0.507 0.00 0.507 0.01 0.507
4 0.04 0.716 0.05 0.715 0.01 0.716 0.01 0.720 0.01 0.720 0.01 0.720
5 0.02 0.276 0.03 0.275 0.01 0.275 0.09 0.276 0.01 0.276 0.01 0.276
6 0.02 1.473 0.02 1.472 0.02 1.468 0.01 1.474 0.00 1.472 0.00 1.473
7 0.05 1.091 0.02 1.092 0.04 1.092 0.00 1.093 0.00 1.094 0.00 1.092
8 0.27 0.568 0.05 0.569 0.01 0.568 0.20 0.569 0.01 0.569 0.01 0.569
9 0.06 0.670 0.05 0.674 0.02 0.670 0.01 0.674 0.01 0.674 0.00 0.675

10 0.28 0.568 0.22 0.568 0.05 0.569 0.10 0.569 0.04 0.569 0.02 0.569

78

Table 7: (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
11 0.01 0.8094 0.02 0.8091 0.04 0.8088 0.01 0.8093 0.00 0.8096 0.01 0.8093
12 0.14 0.5069 0.08 0.5068 0.07 0.5073 0.06 0.5074 0.05 0.5074 0.03 0.5074
13 0.30 0.2764 0.10 0.2763 0.02 0.2763 0.38 0.2765 0.10 0.2765 0.06 0.2765
14 0.08 0.5921 0.11 0.5923 0.04 0.5924 0.02 0.5928 0.01 0.5928 0.00 0.5928
15 0.05 0.4289 0.07 0.4287 0.04 0.4288 0.02 0.4292 0.03 0.4292 0.01 0.4292
16 1.81 0.5687 0.10 0.5688 0.05 0.5685 5.12 0.5688 0.17 0.5688 0.08 0.5688
17 0.05 0.9484 0.05 0.9478 0.05 0.9482 0.03 0.9486 0.03 0.9486 0.02 0.9486
18 0.07 0.4737 0.14 0.4735 0.02 0.4737 0.02 0.4740 0.02 0.4741 0.01 0.4739
19 0.02 0.4670 0.03 0.4671 0.04 0.4670 0.01 0.4670 0.02 0.4673 0.01 0.4672
20 0.02 0.5225 0.01 0.5216 0.04 0.5216 0.00 0.5225 0.00 0.5224 0.00 0.5220

Table 8: (PA vs. mPA vs. BNB) m = 3 and ǫ = 0.0001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
21 0.31 0.27649 0.15 0.27650 0.07 0.27646 0.99 0.27654 0.67 0.27654 0.23 0.27654
22 0.94 0.86858 0.15 0.86855 0.09 0.86851 0.57 0.86858 0.05 0.86855 0.04 0.86857
23 0.18 1.50181 0.16 1.50179 0.12 1.50177 0.17 1.50186 0.09 1.50186 0.05 1.50186
24 0.20 0.46284 0.24 0.46285 0.10 0.46293 0.11 0.46291 0.11 0.46290 0.05 0.46294
25 0.56 0.89142 0.11 0.89142 0.11 0.89142 2.24 0.89151 0.20 0.89151 0.07 0.89150
26 0.17 0.47414 0.23 0.47412 0.08 0.47409 0.08 0.47416 0.10 0.47417 0.06 0.47416
27 0.06 0.46749 0.12 0.46748 0.08 0.46745 0.02 0.46747 0.03 0.46747 0.03 0.46749
28 0.06 1.11729 0.03 1.11737 0.06 1.11727 0.01 1.11733 0.01 1.11732 0.00 1.11735
29 0.23 0.72270 0.22 0.72271 0.12 0.72279 0.62 0.72279 0.59 0.72279 0.22 0.72280
30 0.42 0.77668 0.25 0.77668 0.11 0.77668 0.44 0.77675 0.26 0.77675 0.14 0.77675

79

Table 9: (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.01

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
31 0.34 0.497 0.22 0.498 0.05 0.500 0.41 0.501 0.19 0.501 0.03 0.502
32 6.20 2.193 0.70 2.194 0.06 2.195 60.97 2.201 0.27 2.200 0.04 2.200
33 3.35 0.855 0.19 0.857 0.02 0.859 0.85 0.860 0.02 0.859 0.00 0.860
34 0.73 0.645 0.82 0.643 0.09 0.643 1.28 0.646 0.49 0.646 0.05 0.646
35 0.45 1.337 0.11 1.338 0.04 1.335 0.42 1.337 0.02 1.337 0.00 1.339
36 2.68 0.756 0.21 0.759 0.05 0.756 49.70 0.759 0.31 0.760 0.04 0.761
37 0.43 0.631 0.16 0.630 0.06 0.628 0.70 0.632 0.19 0.632 0.04 0.632
38 2.09 0.705 0.23 0.706 0.06 0.702 20.41 0.709 0.25 0.709 0.06 0.709
39 7.50 0.929 1.44 0.930 0.08 0.928 27.61 0.931 0.28 0.931 0.24 0.931
40 0.66 1.016 0.23 1.013 0.03 1.014 7.27 1.020 0.12 1.019 0.01 1.020

Table 10: (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
41 9.32 0.7046 2.12 0.7045 0.18 0.7045 45.05 0.7049 6.61 0.7049 0.48 0.7049
42 8.70 1.7349 0.76 1.7356 0.10 1.7348 188.97 1.7358 1.05 1.7358 0.10 1.7357
43 1.74 0.6499 0.97 0.6501 0.11 0.6497 23.72 0.6506 8.65 0.6506 0.37 0.6506
44 6.96 0.9301 2.27 0.9301 0.41 0.9299 76.76 0.9304 10.99 0.9304 0.73 0.9304
45 72.84 1.3034 0.69 1.3030 0.08 1.3028 300.01+ 1.3026 0.55 1.3036 0.03 1.3033
46 10.17 1.8351 0.31 1.8343 0.07 1.8346 189.50 1.8352 0.08 1.8350 0.05 1.8352
47 8.38 0.8005 5.75 0.8007 0.29 0.8004 10.96 0.8009 1.94 0.8010 0.22 0.8010
48 6.90 0.8724 0.12 0.8722 0.07 0.8719 39.72 0.8724 0.01 0.8721 0.01 0.8722
49 1.74 0.5553 1.07 0.5554 0.17 0.5555 2.09 0.5560 0.83 0.5560 0.09 0.5560
50 2.17 1.2483 1.83 1.2486 0.22 1.2483 14.06 1.2492 7.75 1.2492 0.77 1.2491

80

Table 11: (PA vs. mPA vs. BNB) m = 4 and ǫ = 0.0001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
51 6.06 0.67959 1.10 0.67965 0.19 0.67958 300.02+ 0.67967 6.32 0.67967 0.73 0.67966
52 0.40 1.22587 0.17 1.22586 0.09 1.22587 0.25 1.22588 0.04 1.22588 0.00 1.22589
53 0.75 1.05537 0.71 1.05537 0.17 1.05538 0.96 1.05545 0.83 1.05543 0.12 1.05543
54 37.14 0.49927 4.46 0.49923 0.37 0.49925 300.01+ 0.49917 300.01+ 0.49925 35.90 0.49928
55 0.36 1.74496 0.32 1.74496 0.12 1.74495 0.31 1.74496 0.24 1.74497 0.04 1.74498
56 3.53 0.75945 3.66 0.75947 0.27 0.75944 105.24 0.75953 92.33 0.75953 2.66 0.75953
57 4.95 1.30172 1.71 1.30171 0.18 1.30167 83.07 1.30175 19.42 1.30176 1.18 1.30176
58 7.11 0.87331 0.64 0.87328 0.07 0.87329 122.61 0.87333 0.51 0.87333 0.09 0.87333
59 1.32 0.51714 1.21 0.51718 0.20 0.51712 12.69 0.51720 17.26 0.51719 0.91 0.51720
60 30.67 0.79323 0.53 0.79318 0.10 0.79314 300.02+ 0.79180 1.32 0.79321 0.14 0.79319

Table 12: (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.01

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
61 300.01+ 1.294 89.70 1.309 0.08 1.306 300.04+ 1.287 300.05+ 1.254 0.35 1.313
62 133.65 0.460 5.49 0.461 0.15 0.457 300.01+ 0.460 300.05+ 0.461 0.17 0.461
63 300.31+ 0.837 300.05+ 0.836 0.22 0.840 300.05+ 0.829 300.05+ 0.847 0.95 0.847
64 301.18+ 1.628 300.02+ 1.655 0.08 1.646 300.06+ 1.628 300.18+ 1.629 0.09 1.653
65 22.34 0.726 9.45 0.725 0.20 0.725 270.12 0.732 8.49 0.731 0.14 0.731
66 300.01+ 1.458 13.64 1.464 0.33 1.461 300.01+ 1.458 300.02+ 1.439 0.83 1.467
67 6.71 0.824 4.52 0.822 0.16 0.822 77.38 0.827 12.65 0.827 0.25 0.827
68 8.04 1.027 3.85 1.025 0.24 1.024 103.21 1.031 15.81 1.030 0.20 1.031
69 300.10+ 1.093 300.06+ 1.100 0.19 1.121 300.08+ 1.093 300.03+ 1.100 0.31 1.122
70 64.76 0.980 2.66 0.985 0.23 0.978 300.22+ 0.982 300.14+ 0.941 0.20 0.984

81

Table 13: (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
71 169.94 1.2737 6.89 1.2738 0.22 1.2736 300.13+ 1.2742 10.22 1.2743 0.18 1.2742
72 292.16 1.3698 205.08 1.3700 1.69 1.3697 300.06+ 1.3598 300.06+ 1.3680 300.01+ 1.3703
73 172.26 1.1307 122.44 1.1306 0.69 1.1302 300.02+ 1.1302 300.11+ 1.1307 300.01+ 1.1308
74 326.88+ 2.3104 14.49 2.3232 0.27 2.3224 300.02+ 2.3115 300.02+ 2.3232 0.35 2.3231
75 300.01+ 1.1210 125.11 1.1235 0.96 1.1229 300.03+ 1.1215 300.01+ 1.1182 300.01+ 1.1235
76 232.10 1.1327 21.87 1.1326 0.39 1.1327 300.04+ 1.1294 300.02+ 1.1313 27.20 1.1333
77 301.67+ 1.0420 300.01+ 1.0824 0.08 1.0827 300.07+ 1.0203 300.01+ 1.0627 0.14 1.0828
78 300.05+ 1.1614 300.11+ 1.1667 1.10 1.1768 300.06+ 1.1692 300.01+ 1.1625 300.01+ 1.1770
79 300.78+ 1.1155 300.03+ 1.1196 0.71 1.1219 300.01+ 1.1217 300.03+ 1.1115 300.01+ 1.1221
80 300.19+ 1.2117 300.01+ 1.1458 0.64 1.2124 324.74+ 1.2087 300.08+ 1.2097 7.06 1.2129

Table 14: (PA vs. mPA vs. BNB) m = 5 and ǫ = 0.0001

With Convex Relaxation Without Convex Relaxation
PA mPA BNB PA mPA BNB

No. CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt CTs Opt
81 303.31+ 0.90460 13.60 0.90497 0.34 0.90496 300.14+ 0.90349 251.86 0.90504 2.81 0.90502
82 125.67 1.75116 35.48 1.75112 0.99 1.75115 300.15+ 1.74487 300.03+ 1.75083 300.01+ 1.75120
83 308.39+ 1.40153 300.02+ 1.41121 0.21 1.41130 300.08+ 1.40251 300.17+ 1.40831 300.01+ 1.41136
84 132.74 1.23560 30.17 1.23557 0.39 1.23557 300.01+ 1.22005 300.04+ 1.23551 6.47 1.23565
85 300.07+ 1.49523 300.02+ 1.50620 1.73 1.51416 300.05+ 1.50812 300.01+ 1.49864 300.01+ 1.51416
86 13.85 0.81379 12.05 0.81384 0.41 0.81380 300.07+ 0.81384 300.04+ 0.81385 3.28 0.81387
87 7.64 0.88167 6.53 0.88169 0.30 0.88169 47.37 0.88174 32.58 0.88171 0.56 0.88173
88 15.04 0.85490 12.11 0.85486 0.43 0.85488 256.66 0.85492 177.61 0.85492 1.46 0.85492
89 300.01+ 1.24387 300.01+ 1.24344 0.37 1.24521 300.01+ 1.23422 300.18+ 1.24467 0.89 1.24528
90 300.01+ 1.23940 27.90 1.23952 0.47 1.23950 300.03+ 1.21914 300.03+ 1.23806 7.26 1.23955

82

A.1.2 conical branching and rectangle branching

In this subsection, we report CPU times of two algorithm — conical algorithm and rectangu-

lar branch-and-bound algorithm. In the following tables, columns ‘CTs’, ‘ITs’, ‘MNs’, and

‘Opt’ denote CPU seconds, iterations required, maximum number of vertices required, and

optimal solution, respectively. We generated 60 problems under 6 conditions determined by

combinations of number of variables {3, 5} and termination tolerances {0.01, 0.001, 0.0001}.

We solved each problem by two algorithms — one is the conical algorithm and the other

is the rectangular branch-and-bound algorithm. The test results are shown in Table 15

through Table 20.

Table 15: (Conical vs. Rectangular) m = 3 and ǫ = 0.01

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

1 0.03 183 45 0.79 0.05 100 30 0.79
2 0.05 247 83 0.59 0.10 167 54 0.59
3 0.02 66 25 0.93 0.01 30 13 0.93
4 0.01 33 16 0.60 0.01 22 8 0.60
5 0.03 116 27 1.88 0.03 66 19 1.88
6 0.02 112 30 0.95 0.03 54 14 0.96
7 0.06 364 106 0.78 0.11 207 55 0.78
8 0.01 89 29 1.52 0.02 37 12 1.52
9 0.01 59 15 1.24 0.02 45 9 1.24

10 0.02 153 45 0.75 0.04 104 27 0.75

A.1.3 Subdivisional bounding

In this subsection, we compare CPU times of three algorithms — branch-and-bound al-

gorithm, branch-and-bound with linear relaxation, and branch-and-bound with Polyblock

bounding. In the following tables, column ‘CTs’, ‘ITs’, ‘MNs’, and ‘Opt’ denote CPU

seconds, iterations required, maximum number of vertices required, and optimal solution,

respectively. We generated 90 problems under 9 conditions determined by combinations

of number of variables {3, 5, 6} and termination tolerances {0.01, 0.001, 0.0001}. The test

results are shown in Table 21 through Table 29

83

Table 16: (Conical vs. Rectangular) m = 3 and ǫ = 0.001

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

11 0.10 719 169 0.791 0.17 381 79 0.791
12 0.02 132 30 0.935 0.03 64 18 0.935
13 0.01 95 25 0.605 0.04 64 15 0.605
14 0.08 475 94 1.879 0.13 260 58 1.879
15 0.07 414 84 0.955 0.10 202 47 0.955
16 0.31 1754 374 0.781 0.46 915 209 0.781
17 0.04 207 36 1.243 0.07 173 30 1.243
18 0.32 1869 523 0.748 0.44 1132 281 0.748
19 0.98 6166 2057 1.753 1.68 4238 1216 1.753
20 0.19 1158 208 1.395 0.19 498 102 1.395

Table 17: (Conical vs. Rectangular) m = 3 and ǫ = 0.0001

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

21 1.35 5914 1106 0.7812 1.68 2858 466 0.7812
22 0.02 77 12 1.2463 0.02 45 8 1.2463
23 41.45 63411 21087 1.7533 39.39 47248 12917 1.7533
24 0.12 717 118 0.7288 0.19 362 79 0.7288
25 0.18 1139 227 1.2447 0.27 581 132 1.2447
26 0.08 487 110 0.9124 0.14 306 48 0.9124
27 0.01 95 14 1.2857 0.02 54 10 1.2857
28 0.06 365 87 0.6506 0.19 334 95 0.6506
29 0.48 3282 679 2.3944 0.83 1923 383 2.3944
30 20.18 43201 13205 0.8739 19.19 31284 8535 0.8739

84

Table 18: (Conical vs. Rectangular) m = 5 and ǫ = 0.01

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

31 2.52 9910 2624 1.05 1.42 1705 500 1.05
32 0.63 2594 538 2.46 0.39 415 106 2.47
33 300.00+ 79197 38313 1.45 10.24 10950 2809 1.45
34 300.00+ 63852 48641 1.26 25.06 24264 5873 1.26
35 300.00+ 78965 32630 2.45 4.05 4154 1118 2.45
36 300.01+ 70075 43533 1.50 20.25 24362 5026 1.50
37 11.94 27497 5576 1.40 1.31 1511 339 1.40
38 2.26 8763 2833 2.35 0.89 1050 277 2.35
39 118.72 82069 16771 0.71 3.41 4342 876 0.71
40 3.51 14304 2931 0.50 0.76 1030 276 0.50

Table 19: (Conical vs. Rectangular) m = 5 and ǫ = 0.001

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

41 5.60 20003 3511 1.537 1.09 1534 393 1.536
42 300.00+ 52391 52162 1.149 23.61 22476 5798 1.164
43 2.72 11505 2158 2.111 1.15 1327 331 2.110
44 19.17 37762 7365 0.988 4.20 4323 983 0.988
45 300.00+ 70844 44644 1.638 71.05 52031 14246 1.638
46 300.00+ 72916 44177 0.335 10.64 12997 3140 0.335
47 300.01+ 58284 49639 0.961 138.11 71935 18054 0.962
48 300.01+ 49770 49721 1.049 296.80 123893 25324 1.068
49 0.63 2621 827 0.572 0.36 362 98 0.572
50 16.85 34601 6858 2.072 2.98 3547 780 2.072

85

Table 20: (Conical vs. Rectangular) m = 5 and ǫ = 0.0001

Conical Branching Rectangular Branching

No. CTs ITs MNs Opt CTs ITs MNs Opt

51 300.00+ 74072 42245 0.4200 39.28 32105 7388 0.4201
52 4.15 17724 2490 1.2266 1.79 2034 430 1.2265
53 300.00+ 59972 51817 1.4813 300.00+ 73308 43470 1.4824
54 300.00+ 79507 40953 1.3685 44.63 38317 7874 1.3687
55 300.01+ 68610 45252 0.7871 130.64 70978 16836 0.7872
56 300.00+ 64310 49117 2.1565 300.00+ 71052 43370 2.1571
57 300.00+ 60594 50881 2.4455 300.00+ 61221 50052 2.4459
58 300.00+ 56871 54847 1.1416 300.01+ 55122 51297 1.1424
59 300.00+ 60027 51623 1.7572 300.00+ 60452 49867 1.7574
60 300.00+ 59622 57504 1.1846 300.00+ 57214 54006 1.1853

86

Table 21: (Subdivisional bounding) m = 4 and ǫ = 0.01.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

1 79 24 0.01 1.12 16 5 0.04 1.12 16 5 0.17 1.12
2 88 27 0.01 0.66 13 3 0.04 0.65 13 3 0.11 0.65
3 61 18 0.01 0.41 15 5 0.04 0.40 15 5 0.13 0.40
4 88 32 0.01 0.80 24 7 0.06 0.80 23 7 0.18 0.80
5 525 133 0.06 1.13 24 7 0.06 1.12 24 7 0.24 1.12
6 164 50 0.02 1.04 14 4 0.04 1.03 14 4 0.12 1.03
7 18 7 0.01 0.90 17 4 0.05 0.90 13 4 0.13 0.89
8 264 71 0.04 0.73 30 6 0.08 0.73 30 6 0.28 0.73
9 27 8 0.01 0.86 15 5 0.05 0.85 15 5 0.14 0.85

10 223 68 0.04 1.27 25 11 0.08 1.26 25 11 0.20 1.26

Table 22: (Subdivisional bounding) m = 4 and ǫ = 0.001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

11 13380 2742 1.71 0.669 168 67 0.44 0.668 168 67 1.48 0.668
12 874 191 0.11 1.238 32 21 0.09 1.238 22 13 0.30 1.238
13 258 62 0.03 0.586 21 4 0.06 0.585 21 4 0.25 0.585
14 287 49 0.03 0.752 37 5 0.1 0.751 37 5 0.37 0.751
15 3744 841 0.49 0.653 103 33 0.27 0.653 103 33 0.92 0.653
16 44 13 0.01 0.728 21 5 0.06 0.728 21 5 0.23 0.728
17 1006 211 0.17 1.271 53 16 0.16 1.270 53 16 0.61 1.270
18 160 32 0.02 0.522 26 7 0.08 0.522 26 7 0.26 0.522
19 721 165 0.13 0.735 22 6 0.07 0.734 22 6 0.30 0.734
20 1118 255 0.16 0.894 65 18 0.18 0.894 54 15 0.84 0.894

87

Table 23: (Subdivisional bounding) m = 4 and ǫ = 0.0001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

21 107 22 0.01 0.4047 39 8 0.1 0.4047 39 8 0.37 0.4047
22 1353 184 0.16 1.1522 54 9 0.14 1.1522 54 9 0.88 1.1522
23 187 27 0.02 0.6483 46 7 0.12 0.6483 46 7 0.51 0.6483
24 1521 313 0.18 1.2374 44 11 0.12 1.2374 43 9 2.24 1.2374
25 13126 2968 1.68 1.2420 66 18 0.18 1.2419 66 18 0.56 1.2419
26 4081 768 0.59 0.8942 97 25 0.27 0.8942 91 25 2.46 0.8942
27 192 35 0.02 1.0164 39 7 0.11 1.0163 39 7 0.44 1.0163
28 587 91 0.09 0.6926 38 10 0.11 0.6926 38 10 0.56 0.6926
29 245696 41491 222.88 1.0398 141 60 0.39 1.0398 141 60 1.67 1.0398
30 262 50 0.04 0.7239 30 6 0.09 0.7238 30 6 0.39 0.7238

Table 24: (Subdivisional bounding) m = 5 and ǫ = 0.01.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

31 1175 332 0.2 1.30 77 23 0.21 1.30 77 23 0.85 1.30
32 447 157 0.08 1.32 52 16 0.15 1.32 52 16 0.57 1.32
33 3831 1217 0.61 1.26 88 42 0.25 1.26 81 42 1.03 1.26
34 1891 516 0.3 1.80 136 48 0.4 1.80 105 41 2.02 1.80
35 5127 1224 0.84 1.66 84 36 0.23 1.65 84 36 0.73 1.65
36 561 178 0.14 1.10 26 10 0.08 1.09 26 10 0.4 1.09
37 1076 392 0.21 1.27 46 11 0.15 1.27 46 11 0.54 1.27
38 1300 359 0.31 0.92 45 17 0.15 0.91 43 17 0.48 0.91
39 161 37 0.04 0.91 19 5 0.06 0.91 18 5 0.2 0.91
40 669 241 0.15 1.46 46 17 0.15 1.45 46 17 0.59 1.45

88

Table 25: (Subdivisional bounding) m = 5 and ǫ = 0.001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

41 180 32 0.03 1.307 40 11 0.12 1.306 40 10 0.48 1.306
42 190011 50193 196.86 0.899 185 47 0.54 0.898 177 45 8.1 0.898
43 169 43 0.03 2.330 32 10 0.09 2.329 35 10 0.52 2.329
44 32607 7352 9.48 1.060 184 64 0.53 1.060 183 64 3.27 1.060
45 126 33 0.01 0.764 40 12 0.11 0.764 40 13 0.36 0.764
46 141045 26855 196.19 0.947 324 110 1.01 0.947 324 110 34.37 0.947
47 11298 2615 2.58 0.633 87 44 0.28 0.632 87 44 2.49 0.632
48 15797 3346 3.52 1.424 118 50 0.36 1.424 118 50 1.8 1.424
49 5243 1219 1.26 0.710 135 46 0.44 0.709 135 46 1.96 0.709
50 4714 1146 1.13 0.936 101 30 0.33 0.936 101 30 1.85 0.936

Table 26: (Subdivisional bounding) m = 5 and ǫ = 0.0001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

51 3929 822 0.62 1.4591 128 25 0.36 1.4590 159 25 2.47 1.4590
52 92372 81249 300.02+ 1.8391 695 109 1.89 1.8391 102 60 301.02+ 1.8388
53 98775 62933 300.01+ 1.1628 371 98 1.01 1.1628 358 99 66.76 1.1628
54 84450 73458 300.01+ 1.1898 815 264 2.3 1.1893 598 250 300.07+ 1.1893
55 4663 1022 0.85 1.2995 154 35 0.44 1.2994 190 35 6.88 1.2994
56 7513 1824 1.89 1.0804 78 26 0.24 1.0804 78 26 2.75 1.0804
57 2142 441 0.46 1.3914 72 20 0.23 1.3914 72 20 1.7 1.3914
58 13088 2535 3.37 1.2597 92 26 0.29 1.2596 92 26 5.45 1.2596
59 1470 278 0.37 1.1513 49 10 0.16 1.1513 49 10 0.91 1.1513
60 139710 35917 300.01+ 1.1702 363 128 1.09 1.1702 348 128 14.97 1.1702

89

Table 27: (Subdivisional bounding) m = 6 and ǫ = 0.01.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

61 34825 8793 14.61 1.99 173 86 0.54 1.98 168 87 2.66 1.98
62 1614 480 0.34 1.48 66 27 0.21 1.47 66 27 0.83 1.47
63 2450 698 0.57 1.54 99 35 0.31 1.54 99 34 1.15 1.54
64 53627 13229 28.74 1.70 255 65 0.8 1.70 255 65 3.49 1.70
65 1511 316 0.33 1.21 58 29 0.18 1.20 58 28 0.9 1.20
66 22000 6865 8.48 2.00 243 84 0.85 1.99 243 84 4.18 1.99
67 43140 12968 27.8 1.27 276 88 0.96 1.26 276 88 4.2 1.26
68 1404 471 0.41 1.36 54 26 0.19 1.36 54 26 0.66 1.36
69 1254 303 0.37 1.35 55 22 0.19 1.34 51 21 0.67 1.34
70 13420 2598 4.48 0.76 168 56 0.59 0.75 168 56 2.13 0.75

Table 28: (Subdivisional bounding) m = 6 and ǫ = 0.001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

71 59883 14515 33.62 1.333 174 50 0.54 1.332 174 50 4.08 1.332
72 83470 70144 300.01+ 2.334 867 245 2.68 2.334 867 245 17.36 2.334
73 77957 74204 300.01+ 1.758 1716 305 4.89 1.758 1714 304 171.45 1.758
74 46275 11483 21.95 1.137 301 97 0.93 1.136 301 97 4.75 1.136
75 124631 28887 141.85 1.122 407 140 1.24 1.122 407 140 17.01 1.122
76 110730 27008 122.37 1.935 221 99 0.77 1.934 221 99 5.8 1.934
77 98879 54891 300.01+ 1.919 256 102 0.85 1.919 256 102 10.19 1.919
78 88711 62296 300.01+ 1.464 1141 382 3.93 1.464 1138 381 35.17 1.464
79 13149 3181 3.74 1.235 188 59 0.61 1.234 188 59 3.64 1.234
80 85073 75245 300.01+ 1.025 794 184 2.72 1.025 791 185 22.71 1.025

90

Table 29: (Subdivisional bounding) m = 6 and ǫ = 0.0001.

BNB BNB with Relax BNB with Sb
No. ITs MNs CTs Opt ITs MNs CTs Opt ITs MNs CTs Opt

81 89659 62898 300.01+ 1.7685 557 153 1.68 1.7686 557 153 26.38 1.7686
82 95149 58807 300.01+ 2.4897 496 145 1.52 2.4897 496 145 6.26 2.4897
83 84145 72901 300.01+ 0.9923 2563 629 7.61 0.9923 2563 629 236.1 0.9923
84 14488 3294 4.11 1.2276 159 44 0.48 1.2275 159 44 5.79 1.2275
85 35940 7120 13.91 2.2990 164 42 0.51 2.2989 164 42 5.14 2.2989
86 77210 65907 300.02+ 0.9486 1123 508 3.72 0.9452 496 283 300.05+ 0.9452
87 89153 60281 300.01+ 1.6754 511 117 1.82 1.6754 511 117 119.27 1.6754
88 88063 68032 300.01+ 1.2184 601 138 2.15 1.2185 601 138 24.4 1.2185
89 63220 13205 39.5 1.4159 249 68 0.87 1.4158 249 68 4.69 1.4158
90 106371 54162 300.01+ 1.1215 777 229 2.63 1.1216 771 230 34.94 1.1216

91

REFERENCES

[1] Beraldi, P. and Ruszczyński, A., “A branch and bound method for stochastic
integer problems under probabilistic constraints,” Optimization Methods and Software,
vol. 17, pp. 359–382, 2002.

[2] Beraldi, P. and Ruszczyński, A., “The probabilistic set covering problem,” Oper-
ations Research, vol. 50, pp. 956–967, 2002.

[3] Bertsimas, D. and Tsitsiklis, J. N., Introduction to Linear Optimization. Belmont,
Massachusetts: Athena Scientific, 1997.

[4] Charnes, A. and Cooper, W. W., “Chance-constrained programming,” Manage-
ment Science, vol. 6, pp. 73–89, 1959.

[5] Dentcheva, D., Prékopa, A., and Ruszczyński, A., “Concavity and efficient
points of discrete distributions in probabilistic programming,” Mathematical Program-
ming, vol. 89, pp. 55–77, 2000.

[6] Dentcheva, D., Prékopa, A., and Ruszczyński, A., “On convex probabilistic
programming with discrete distributions,” Nonlinear Analysis, vol. 47, pp. 1997–2009,
2001.

[7] Falk, J. E. and Soland, R. M., “An algorithm for separable nonconvex programming
problems,” Management Science, vol. 15, no. 9, pp. 500–569, 1969.

[8] Horst, R., Pardalos, P. M., and Thoai, N. V., Introduction to Global Optimiza-
tion. Kluwer Academic Publishers, Dordrecht, 2001.

[9] Horst, R. and Tuy, H., Global Optimization: Deterministic Approaches. Berlin,
Germany: Springer-Verlag, 1996.

[10] Land, A. and Doig, A., “An automatic method for solving discrete programming
problems,” Econometrica, pp. 497–520, 1960.

[11] Lasserre, J. B., “Semidefinite programming vs. lp relaxations for polynomial pro-
gramming,” Mathematics of Operations Research, vol. 27, no. 2, pp. 347–360, 2002.

[12] Li, D., Sun, X. L., Biswal, M. P., and Gao, F., “Convexification, concavification
and monotonization in global optimization,” Annals of Operations Research, vol. 105,
pp. 213–226, 2001.

[13] LINDO Systems Inc., “LINDO API 2.0 and LINGO 8.0,” http://www.lindo.com/.

[14] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimization.
New York, USA: Wiley-Interscience, 1999.

[15] Neumaier, A., “Complete search in continuous global optimization and constraint
satisfaction,” to appear in: Acta Numerica 2004 (A. Iserles, ed.) Cambridge University
Press 2004; http://www.mat.univie.ac.at/∼neum/papers.html#glopt03.

92

[16] Pardalos, P. M., Romeijn, H. E., and Tuy, H., “Recent developments and trends
in global optimization,” Journal of Computational and Applied Mathematics, vol. 124,
pp. 209–228, 2000.

[17] Phuong, N. T. H. and Tuy, H., “A unified monotonic approach to generalized linear
fractional programming,” Journal of Global Optimization, vol. 26, pp. 229–259, 2004.

[18] Prékopa, A., “Contributions to the theory of stochastic programming,” Mathematical
Programming, vol. 4, pp. 202–221, 1973.

[19] Prékopa, A., “Sharp bounds on probabilities using linear programming,” Operations
Research, vol. 38, pp. 227–239, 1990.

[20] Prékopa, A., Stochastic Programming. Dordrecht, Ther Netherlands: Kluwer Acad-
emic Publishers, 1995.

[21] Ruszczyński, A., “Probabilistic programming with discrete distributions and prece-
dence constrained knapsack polyhedra,” Mathematical Programming, vol. Ser. A93,
pp. 195–215, 2002.

[22] Sahinidis, N. V., “Optimization under uncertainty: state-of-art and opportunities,”
Computers & Chemical Engineering, vol. 28, pp. 971–983, 2004.

[23] Sahinidis, N., “BARON: A global optimization software,” http://archimedes.scs.

uiuc.edu/baron/baron.html.

[24] Sen, S., “Relaxations for probabilistically constrained programs with discrete random
variables,” Operations Research Letters, pp. 81–86, 1992.

[25] Sen, S. and Higle, J. L., “An introductory tutorial on stochastic linear programming
models,” Interfaces, vol. 29, no. 2, pp. 31–61, 1999.

[26] Sherali, H. D., “Global optimization of nonconvex polynomial programming prob-
lems having rational exponents,” Journal of Global Optimization, vol. 12, pp. 267–283,
1998.

[27] Sherali, H. D. and Tuncbilek, C. H., “Comparison of two reformulation-
linearization technique based linear programming relaxations for polynomial program-
ming problems,” Journal of Global Optimization, vol. 10, pp. 381–390, 1997.

[28] Sherali, H. D. and Tuncbilek, C. H., “New reformulation lineariza-
tion/convexification relaxations for univariate and multivariate polynomial program-
ming problems,” Operations Research Letters, vol. 21, pp. 1–9, 1997.

[29] Soland, R. M., “An algorithm for separable nonconvex programming problems ii:
Nonconvex constraints,” Management Science, vol. 17, no. 11, pp. 759–773, 1971.

[30] Tawarmalani, M. and Sahinidis, N. V., Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software,
and Applications. Kluwer Academic Publishers, Dordrecht, 2002.

[31] Toh, K.-A., “Global optimization by monotonic transformation,” Computational Op-
timization and Applications, vol. 23, pp. 77–99, 2002.

93

[32] Tuy, H., “Monotonic optimization: Problems and solution approaches,” SIAM Jour-
nal of Optimization, vol. 11, no. 2, pp. 464–494, 2000.

[33] Tuy, H. and Al-Khayyal, F., “Monotonic optimization revisited,” 2004. http:

//www.math.ac.vn/library/download/e-print/03/pdf/htuy23.pdf.

[34] Tuy, H., Al-Khayyal, F., and Ahmed, S., “Polyblock algorithms revisited,” Work-
ing paper, 2003.

[35] Tuy, H., Al-Khayyal, F., and Thach, P. T., “Monotonic optimization: Branch
and cut methods,” Essays on Global Optimization, (C. Audet, B. Jaumard and P.
Hausen, Eds.), Springer-Verlag, to appear in 2005.

[36] Tuy, H., Minoux, M., and Hoai-Phuong, N. T., “Discrete monotonic optimization
with application to a discrete location problem,” http://www.math.ac.vn/library/

download/e-print/04/pdf/htuy0403.pdf.

[37] Tuy, H., Thach, P. T., and Konno, H., “Optimization of polynomial fractional
functions,” Journal of Global Optimization, vol. 29, pp. 19–44, 2004.

94

VITA

Myun-Seok Cheon was born in Ulsan, South Korea on August 20, 1973. In 1992, he entered

University of Ulsan and received a Bachelors degree in Industrial Engineering in 1999. He

left for Atlanta to continue his education at the Georgia Institute of Technology in the

School of Industrial and Systems Engineering. At Georgia Tech, he earned a Master of

Science in Industrial Engineering in December, 2000. In May, 2005, he was awarded the

Doctor of Philosophy in Industrial Engineering.

95

