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observed lignin distributions across the secondary wall were generally flat

with frequent peaks in the S3 layer. These higher lignin levels in the S3

layer may account for some of the nonuniformity in secondary wall sulfonation,

but certainly cannot account for the observed S2 sulfur gradients. Mathe-

matical modeling of sodium sulfite diffusion across the cell wall produced

secondary wall sulfur gradients similar to.those observed using STEM-EDS. The

diffusivities used for the modeling were derived from current knowledge of

cell wall structure and diffusion in porous solids.
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INTRODUCTION

In recent years, the pulp and paper industry has been actively evaluating

the use of chemical treatments in mechanical pulping. Pulps produced by

processes incorporating such treatments are called chemimechanical pulps (CMP)

or, if produced in pressurized refiners, chemithermomechanical pulps (CTMP).

Their non-treated counterparts are refiner mechanical pulps (RMP) and thermo-

mechanical pulps (TMP), respectively. CMP and CTMP are high yield pulps with

properties which lie between those of mechanical and chemical pulps. These

unique properties make the pulp a suitable replacement for kraft pulp in a

number of paper grades, including newsprint and other printing papers. In

addition to enhancing other properties, CMP and CTMP can often provide adequate

strength properties while the higher yields reduce wood requirements.

The chemical treatment in CMP and CTMP production can be performed at

several different stages in a number of different forms. The treatment can be

applied to the refined fibers, the chips, or the fiberized chips between

refining stages. The choices for chemical treatment cover the entire pH scale

and include alkaline peroxide, kraft liquor, cold soda, ozone, sodium chlorite,

sodium bisulfite, and sodium sulfite. Among the choices for timing and type of

chemical treatment, pretreatment of chips with neutral to alkaline sodium

sulfite is the most popular.

The effectiveness of sulfite pretreatment does not depend on its ability

to delignify the wood, but rather on the manner in which it modifies the lignin

that remains in the fiber walls. During sulfite treatment, the lignin is

sulfonated, resulting in the formation of lignosulfonic acid groups and in some

lignin fragmentation. The sulfonated lignin is more hydrophilic and the lignin

structure is looser, so the fibers swell and conform more readily than in
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refiner mechanical pulps (RMP). The fibers are also less damaged than those

in RMP.

These effects on pulp properties can be controlled by varying the degree

of sulfonation, or sulfur content, of the pulp. Numerous studies have investi-

gated the effects of sulfur content and the process variables which influence

sulfur content on pulp properties. One intriguing question which has arisen

from this work is the possibility of manipulating pulp properties through

control of the bound sulfur (sulfite or sulfonic acid group) distribution

across the cell wall. The intent of this thesis has been to pursue this

question by evaluating the effects of various sulfonation. variables on cell

wall sulfur distribution.



-5-

BACKGROUND

The following discussion reviews current knowledge on sulfonation and

sulfur distribution. Although this thesis is primarily concerned with cell

wall sulfur distribution, an understanding of sulfonation in general can serve

as a foundation on which an understanding of the sources and effects of cell

wall sulfur distribution can be built. For the purposes of this work, the

term, sulfur distribution, will refer to the distribution of bound sulfite or

sulfonic acid groups across the cell walls or fiber walls in sulfonated wood or

pulp.

In addition to sulfonation and cell wall sulfur distribution, this

discussion reviews vapor-phase cooks, STEM-EDS operating principles, and the

determination of lignin distribution by UV microscopy.

SULFONATION REACTIONS

In sulfite pulping, the reactive species varies with pH. Under alkaline

conditions, the sulfite ion (S03=) predominates. Under mildly acidic

conditions, the bisulfite ion (HSO3-) predominates, and as the liquor becomes

extremely acidic, the bisulfite ion begins to take the form of dissolved SO2.

In sulfite pulping, two of these species are generally present at once. In

order to simplify the discussions in this thesis, these species will be

referred to as sulfite under alkaline conditions, bisulfite under acidic

conditions, and sulfite in a general context.

The reactions of sulfite with lignin have been reviewed by several

workers (1,2). The reactions that occur are numerous due to the variety of

linkages between lignin monomeric units. The linkages which are most important
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in pulping reactions and their relative occurrences are shown in Figure 1.

Among these, the a-aryl ether structures (A) are the most common.

In a-aryl ether structures, sulfonation at neutral and alkaline pH levels

involves cleavage of an a-hydroxyl or a-ether group to form a quinone methide.

This scheme is shown in Figure 2. The a-carbon then undergoes nucleophilic

attack by the sulfite or bisulfite ion to form an a-sulfonic acid group.

Because a quinone methide intermediate is required, sulfonation of most lignin

units under neutral conditions will only occur on phenolic units. At pH levels

below or equal pH 7, these a-sulfonic acids are the primary sulfonation

CH20H OCH3

HT-O- CC-CC

HC-O- '

I- Jh OCH 3
/O

50(62) A

0(t) C

CH20H OCH 3

HC -I O

HC-O-

I-, -OCH 3

2(2) E

CH2OHX

.%
HC 0

, 'C1 OCH3
-0

11 (5) B

CH2OHI
HC0- 

HC-O ' C-C-C

r OCH3
, ' 'OCH3

7(6) D

C

r~i *

CH30 O'o C-C-C

OCH3
4(7) F

Figure 1. Linkages important in pulping reactions and their
relative occurrences in the lignin. Numbers
outside ( ) are for spruce. Numbers inside ( )
are for birch. From reference (1).
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products obtained from a-aryl ether structures (3). At these pH levels, these

a-sulfonic acids undergo p-aryl ether cleavage at a very slow rate. This will

result in the formation of a-p-disulfonic acids. The mechanism for a-ether

cleavage is believed to be a sulfitolytic cleavage (SN2 mechanism) facilitated

by electron-withdrawal by the a-sulfonic acid (3); however, other mechanisms

may be involved since electron withdrawal is not believed to influence SN2

reactions (4). Once formed, the disulfonic acid can react further to form

other products including styrene-p-sulfonic acid structures.

In a-aryl ether structures, slight increases above pH 7 allow elimination

reactions to compete favorably with sulfonation. The elimination of

formaldehyde and, at even higher pH levels, water from the side chain leaves

conjugated structures which are readily sulfonated. This results in

CH20H

CHOAr

CHOR

CH3 0

CH2OH

CHOAr
I
CH

k-,

OH

+ ROH

0

CH 2OH

CHOAr

CH

CH30 0
0

CH2OH

CHOAr

CHSO3

+ SOJ + H+
-a

slow

CH 3 0O
OH

R = H, Alkyl or Aryl

Figure 2. a-carbon sulfonation under alkaline conditions.
Adapted from reference (5).
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acceleration of a-ether cleavage and disulfonic acid formation. Elimination of

water from the side chain will also result in sulfonation of 7 carbons and

subsequent trisulfonic acid formation. Under neutral to alkaline conditions,

structures B through E in Figure 1 undergo sulfonation at the a and 7 carbons

through a quinone methide or other conjugated intermediate (1,2). Many of the

pathways are similar to those observed in the a-aryl ether structures.

At neutral and alkaline pH levels, sulfonation also occurs in oxidized

side chains. These reactions are not necessarily restricted to phenolic

units (1). Sulfonation of a-non-phenolic phenylpropane unit with an a-carbonyl

and p-aryl ether is shown in Figure 3. The elimination reactions involved are

very similar to those leading to p-carbon sulfonation in phenolic units. In

the non-phenolic unit, the a-carbonyl is believed to facilitate sulfitolytic

cleavage at the p-carbon in the same manner as the a-sulfonic acid group in the

phenolic units (1).

CH20H O HC-S03

HC-O H2C-03- CH
C=O - C=O C=O

"Y ^OCH3 OCH 3 OCH3
OCH 3 OH

Figure 3. Sulfonation in a non-phenolic lignin with an a-carbonyl.
From reference (1).
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When the liquor pH is highly alkaline, the nature of the sulfonation

differs from that under milder conditions. As with neutral sulfite pulping,

the reactions of alkaline sulfite pulping involve nucleophilic displacement

leading to sulfonation and fragmentation. Unlike neutral sulfite, alkaline

sulfite conditions have two principle nucleophiles, hydroxyl and sulfite ions.

These conditions allow attack of non-phenolic as well as phenolic lignin

units (1). The exact nature of the sulfonation reactions is not as well

understood as those which occur under neutral conditions. In addition to

sulfonation, it is believed that ionization of lignin phenolates occurs (1,6).

This reduces the number of hydrogen bonds and loosens the lignin structure.

Below a pH of around 5, a different mechanism for a-sulfonic acid

formation prevails. As shown in Figure 4, a-carbon sulfonation occurs through

a resonance-stabilized benzylium ion, which can form in phenolic and non-

phenolic units (1,5). Lignin units containing carbonyls can also undergo

sulfonation via a benzylium ion intermediate. Above pH 5, the quinone methide

and other neutral pH mechanisms become more prevalent.

CHO2H CH 2OH CH2OH

I I I
CHOAr CHOAr CHOAr

CHOH CH+ CHS03CHSOC

^ i+H+ _H20 .l HSO, -- H 

slow fast
CH30 CH 3o0 CH30

OR OR OR

R = alkyl or aryl

Figure 4. a-carbon sulfonation under acidic conditions.
Adapted from reference (5).
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SULFONATION KINETICS

At pH 7, the mechanism for a-sulfonic acid formation agrees with the

following rate equation (7):

Rate of Sulfonation ={kjk 2 / (k_1 + k2[S03])} (Sp-S) [S03] 2 (1)

Sp is the maximum obtainable sulfur content and S is the sulfur content at

time, t. The rate constants, kl, k_l, and k2, are defined in Figure 2. This

reaction is first order in [S03 =] as long as k2[S0 3=] >> k_, which is the

case at pH 7 (7). If the rate of sulfonation is expressed as:

Rate of Sulfonation = f(S*) X [S03=]b (2)

where S* is the total sulfonate content, Beatson, et al. (5) found the

dependence on S03 = concentration to be to the 0.39 power for bisulfite liquor

at pH 4. At pH 7, the dependence was first order, which is in agreement with

the first rate equation (5).

EFFECTS OF SULFONATION ON PULP PROPERTIES

Below its glass transition temperature (Tg), lignin in the cell wall has a

considerable influence on the properties of high-yield pulps. Anything that

softens the lignin will soften the fiber walls and will influence wood and pulp

properties. Lignin softening during sulfonation represents two phenomena:

1. Fragmentation of the lignin due to lignin-lignin bond cleavage.

2. Increased hydrophilicity and swelling of the lignin due to the
formation of lignosulfonic acid groups.

The effects of sulfonation and the resulting softening on fiberization and

pulp properties are shown in Table 1.
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Table 1. Influence of sulfonation on fiberization and pulp properties.

FIBERIZATION

Wood elastic shear modulus 
Specific refining energy 4

(based on 5 km breaking length)
Shive content
Fiber damage 
Fines content

PULP PROPERTIES

Sheet density t
Tensile strength t
Tear strength t
Opacity t

It is important to understand the effects of sulfonation on wood

properties because they determine the ease of fiberization, which in turn

affects the condition of the liberated fibers. The degree of wood softening

can be expressed in terms of changes in elastic shear modulus of the wood. The

elastic shear modulus, as measured with a torsional pendulum, has been shown to

decrease with increased sulfur content (6,10). Since the wood is softer, less

energy is required to fiberize it (6,10). Both of these trends are shown in

Table 1. In addition to simply softening the lignin, sulfonation can also

lower the Tg of the lignin and reduce refining energy considerably at certain

temperatures (6).

The condition of the liberated fibers in sulfite CMP is improved over

that in RMP because the softer middle lamella lignin facilitates fiber

separation and the softer fiber walls are better able to dissipate the refining

load. As a result, the CMP fibers are generally more intact and less damaged.

Easier fiber separation and reduced fiber damage have been demonstrated by

increased long fiber fractions, lower shives contents, and reduced rejects with
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increased sulfur content (8,9,10,11). Microscopic studies have shown that

fibers liberated at higher sulfur contents have middle lamellae and outer

secondary wall layers which are more intact (12,13).

In addition to producing fibers which are more intact and less

damaged, sulfonation improves cell wall conformability, making the fibers more

prone to collapse and conform in the web. Increased sulfonation, therefore,

increases sheet density and fiber-fiber bonding. These, in turn, increase

handsheet breaking length. Tear strength is also improved as long as high

degrees of refining are avoided (14,15). An unfortunate consequence of the

improved fiber-fiber bonding with sulfur content is the reduced specific

scattering coefficient (14).

SULFONATION VARIABLES

As the previous discussion suggests, CMP properties can be controlled

through the degree of sulfonation of the pulp. This can be done by manipu-

lating the following independent sulfonation variables:

- Sodium sulfite concentration in the liquor

- Time at maximum temperature

- Temperature

- Liquor pH

In addition to affecting sulfur content, these variables may also influence

CMP properties through their effects on cell wall sulfur distributions, yield,

and reactions of other wood components. Most of the literature has focussed

on sulfur content and yield as these are well understood and easy to measure.

From the kinetics of the sulfonation reaction, the effects of sodium

sulfite concentration, time, and temperature on sulfur content are rather
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obvious; increasing any one of these variables when all other variables are

constant increases the sulfur content of the pulp. The curves in figure 5 show

these trends. The tendency of these curves to level off can be attributed to a

limit in the number of available sites for sulfonation on the lignin, or, at

low sodium sulfite concentrations, limited amounts of sulfite. Heitner,

Beatson, and Atack (7) have determined the maximum attainable sulfonate content

to be around 2.0% (0.8% sulfur) at 140°C. This maximum is dependent on the

presence of sufficient sulfite to sulfonate the available sites and on

temperature. Temperatures of 800C will give a maximum sulfonate content of

around 1.5% (7). At extremely long cooking times, yield reduction may also

reduce the maximum.

The influence of time, temperature, and sodium sulfite concentration on

pulp properties have been explained on the basis of sulfur content and yield.

Elevated sulfonate contents and lower yields obtained at increased times and

temperatures increase fiber conformability and have been shown to increase

sheet density and strength (8,15). Unlike time and temperature, sodium sulfite

concentration has little influence on yield, which suggests that liquor sulfite

concentration influences CMP properties primarily through its effect on chip

sulfur content.

The influence of liquor pH on sulfonation is much more complex than that

of the other variables. The rate of sulfonation is at a minimum in the weakly

acidic pH range and increases as the pH increases towards the alkaline range

and as it decreases towards strongly acidic levels (6). This is probably a

result of the greater tendency for the benzylium ion and quinone methide

intermediates to form in strongly acidic and alkaline pH levels. At weakly

acidic pH's, these intermediates form rather slowly, therefore reducing the

sulfonation rates (5).
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140°C

0 50 100 150

Treatment time (min)

0
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Figure 5. Influence of time, temperature, and sulfite concentration
on sulfonate content (2.5 X sulfur content) at pH 4;
a). effect of time and sulfite concentration; b). effect
of time and temperature. From reference (5).

When extremes in pH are avoided, the influence of pH on pulp properties

can be explained on the basis of sulfur content and yield. At extremes in pH,

pulp properties are influenced by side-reactions which occur during the cook.

Under strongly acidic conditions, condensation reactions compete with
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sulfonation at the benzylium ion, increasing the degree of cross-linking within

the lignin. As a result, the decline in glass transition temperature (Tg) is

not nearly as pronounced as that found at higher pH levels (6). Under highly

alkaline conditions, nucleophilic attack by hydroxide ions effectively competes

with sulfonation reactions (1), thus degrading the lignin by a means other than

sulfonation. As a result, pH levels above 13 give lignin degradation and

substantial yield loss at low levels of sulfonation (12).

VAPOR-PHASE COOKS

An interesting approach to sulfonating wood chips is through the use of

so-called vapor-phase cooks. These cooks involve three basic steps:

-impregnation of wood chips with liquor

-removal of impregnated chips from bulk liquor

-steaming of impregnated chips

Unlike liquid-phase cooks, which are performed at liquor-to-wood ratios of five

or more, vapor-phase cooks use only that liquor which remains in the chips

after impregnation and removal of the chips from the bulk liquor. Effectively,

the liquor-to-wood ratio is only in the range of 0.6 to 1.2, depending on wood

specific gravity.

A comparison of liquid-phase and vapor-phase cooks performed under almost

identical conditions revealed both cooks to yield comparable sulfur contents

and pulp properties (16). The only difference between the two were a higher

initial pH for the vapor-phase cooks and a lower chemical charge in the vapor-

phase cooks due to the lower liquor-to-wood ratio. The poorer buffer capacity

of the vapor-phase system made this higher pH necessary in order to maintain
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comparable pH levels. Use of chip impregnation for the vapor-phase cooks also

improved the uniformity of sulfonation along the length of the chip.

SULFUR DISTRIBUTION

Most of the literature on sulfonation and high yield sulfite pulping views

sulfonation as a wood chip or pulp property and has paid little attention to

sulfur distribution across the fiber or cell wall. On the fiber level, the

degree of sulfonation of the various cell wall layers influences pulp

properties. In the case of the middle lamella, wood chips in which the middle

lamella lignin is softened by extensive sulfonation will tend to fracture in

the middle lamella during fiberization. This results in fibers with a lignin-

rich surface (12,13). On the other hand, unsulfonated chips or chips with

lower degrees of sulfonation tend to fracture in the outer secondary wall

(12,13), leaving a carbohydrate-rich fiber surface with different bonding

characteristics. As discussed previously, increased sulfonation of the

secondary wall increases sheet density and strength through increased fiber

wall flexibility and conformability. The distribution of bound sulfite across

the secondary wall will also influence these properties. If the degree of

sulfonation of the individual wall layers could be manipulated, pulp properties

could be controlled to meet specific end use requirements.

Recent years have seen increased interest in the use of electron

microscopy to evaluate the distribution of bound sulfur across the cell wall.

Early work in this area attempted to use Auger electron spectroscopy, but was

able to do little more than detect the presence of sulfur in the cell wall

(17). A second study, which used scanning electron microscopy (SEM), with

energy dispersive spectrometry (EDS), found middle lamella sulfur levels to be
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higher than those in the secondary wall (18). However, the limited spatial

resolution of the SEM prevented a more detailed description.

To obtain improved spatial resolution, Beatson, et al. (19) used

transmission electron microscopy (TEM) with EDS to evaluate cell wall sulfur

distribution in sulfonated black spruce. Spruce chips were saturated with

water, soaked in sulfite liquor for 24 hours, and were then cooked at high

liquor-to-wood ratios under a variety of conditions. Once the samples were

prepared for the sulfur distribution work, the sulfur levels at closely spaced

points across the cell wall were measured with TEM-EDS. The improved spatial

resolution allowed isolation of the cell corner and the observation of the

sulfur distribution across the secondary wall. This work found a ratio of

cell corner to secondary wall sulfur counts of around 3.0 and a flat sulfur

distribution across the secondary wall. See figure 6. These results were

consistent for the tested combinations of liquor pH, temperature, time at

temperature, and liquor sulfite concentration.

From these results, Beatson and his co-workers reached several

conclusions concerning sulfonation and cell wall sulfur distribution. The

observed ratio of cell corner to secondary wall sulfur counts was compared to

a published lignin content ratio of 3.8 (20). From these values they

concluded that the secondary wall lignin was 31% more sulfonated than the

middle lamella lignin, which was in close agreement with other findings

(13,21). Since sulfonation is believed to occur on phenolic units and the

phenolic hydroxyl content of the secondary wall is believed to be twice that

of the middle lamella (22,23), the secondary wall would be expected to be twice

as reactive. Since the sulfur content of the secondary wall lignin was only

31% higher, they concluded that phenolic hydroxyl groups are rapidly formed in
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Figure 6. Cell wall sulfur distribution curve and accompanying
data for sulfonated spruce from Beatson, et al. (19).

the middle lamella during the early stages of the cook. From the consistency

of the cell corner to secondary wall sulfur levels at different times and pH

levels, they concluded that sulfonation occurred by the same mechanism in both

wall layers at pH 4 and pH 7. Finally, they concluded the consistency of the

cell corner to secondary wall sulfur count ratios at different temperatures

suggested the absence of diffusion limitations.

STEM-EDS OPERATING PRINCIPLES

Earlier studies of elemental distribution across wood cell walls have

used different forms of electron microscopy (SEM, TEM, STEM) in conjunction

with x-ray microanalysis (EDS). For the purpose of measuring elemental

Ratio of
Total SO, sulfur con-

Temper- concentra- Lignin losses Sullur con- -centrations.'
ature. lion. Time, based on tent of treated cell corner/

°C pH mol/L min wood, % wood. % cell wall

140 7 0.65 12 0.15 0.39 2.7 ± 0.2
140 7 0.65 30 1.02 0.56 2.8 ± 0.4
140 7 0.96 40 1.33 0.64 2.9 ± 0.2
80 7 0.91 1500 1.94 0.63 3.1 ± 0.4

140 4 1.00 15 1.70 0.29 2.9 ±0.3
Average of the ratio of sulfur concentrations 2.9

'Mean ± 95% confidence limit
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distributions, the electron microscope produces an electron beam which is

defined into a narrow probe by a series of condenser lenses and apertures. A

schematic of a scanning transmission electron microscope (STEM) with EDS is

shown in figure 7. For the purposes of discussion, STEM will refer to either

the process of scanning transmission electron microscopy, or the apparatus,

scanning transmission electron microscope, depending on the context in which

the term is used. The same will be done with the term SEM, which represents

scanning electron microscopy (microscope), and the term TEM, which represents

transmission electron microscopy (microscope).

--- electron gun

condenser lenses

denser aperture

tilted specimen

x-ray detector

Figure 7. Schematic of a STEM with EDS.
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Electron-Specimen Interactions

When the electron probe strikes the specimen, a number of interactions

occur. These include inelastic scattering of the incident electrons, resultir

in backscattered and secondary electrons, and elastic scattering of the

incident electrons. Backscattered and secondary electrons are used for imagir

in scanning electron microscopy (SEM). Those electrons which are transmitted

through thin sections are used for imaging in transmission electron microscope

(TEM) and scanning transmission electron microscopy (STEM). In addition to

these interactions, electrons impinging on a specimen will produce x-rays. Ir

EDS work, these x-rays are collected by an x-ray detector and their signals ay

then processed to obtain an x-ray spectrum such as that shown in Figure 8.

Figure 8. Typical x-ray spectrum from sulfonated wood with
characteristic peaks (red) superimposed onto the
continuum (light blue).
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This spectrum, which plots x-ray intensity vs. x-ray energy (keV), has

two principle features: the characteristic peaks (red), and the continuum

(light blue). The characteristic peaks, which are superimposed onto the

continuum, represent the different elements in the sample. An electron

bombarding the sample will eject an electron from an inner shell orbital of an

atom, thus elevating the atom to an excited state. The inner shell vacancy is

generally filled by an electron from an outer shell. During the transition

from the outer to inner shell, the electron loses a discrete amount of energy,

which is emitted as an x-ray photon. The energy of this x-ray photon depends

on the potential energy difference between the inner and outer electron

orbitals involved in the transfer (24).

The energy transitions involved in x-ray production vary from element to

element, thus allowing the identification of elements from the x-ray energies

or peak positions in the spectrum. The area under the peak is a function of

the concentration of that element in the sample. The energy level diagram in

figure 9 indicates possible transitions in sulfur atoms. The prevalent

transitions occurring in the electron microscope are those from the L-shell to

the K-shell (Ka transitions). For sulfur atoms, these energy transitions are

essentially the same, resulting in the fusion of the Ka sulfur peaks into a

single Ka peak. The Kp peak is much smaller than the Ka peak and is similar

enough in energy to be obscured by the larger peak.

The other kind of x-rays represented in the spectrum are the continuum, or

bremsstrahlung, x-rays. These x-rays comprise a background intensity across

the entire energy range of the x-ray spectrum. They are produced by the rapid

deceleration of electrons in the field surrounding the nucleus and inner shell

electrons (24). Since the characteristic peak is superimposed on the
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Schematic of an energy level diagram for sulfur.

continuum, it is necessary to subtract the contribution of the continuum, or in

this context, background, from the characteristic peak in order to quantify the

results.

Spatial Resolution in Electron Microscopy

In measuring cell wall sulfur distribution, the use of STEM has several

advantages over use of SEM or TEM. The SEM work is generally performed with

bulk samples which, as far as the electron beam is concerned, are infinitely

thick, while the samples in the TEM or STEM are thin sections. As shown in

figure 10, electron scattering in bulk samples yields a pear-shaped volume from

which x-rays are generated. This results in a spatial resolution comparable to

the diameter of the pear, which is 1 to 2 pm. In thin sections, the electrons

have little opportunity to scatter before exiting the bottom surface of the

Ionization
r I k0n, MUlt'--f tx I 'rl. ."A .7 WI 'MMU4
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-1-2 pm \ Bulk Specimen

Figure 10. Volumes of electron beam/specimen interactions in
bulk and thin samples (24).

sample. The volume from which x-rays are generated represents the narrow neck

in the pear-shaped volume observed in the bulk samples. As a result, thin

sections give improved spatial resolution.

The spatial resolution in thin sections represents the sum of the initial

electron beam diameter and beam broadening or electron scatter within the

sample. The effective beam broadening, b, is given by the relationship (23),

b = 6.25 X 105 (Z/Eo)(p/A)0. 5 (t).l 5 cm (3)

where Z is the atomic number, Eo is the electron energy in eV, p is the sample
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density, A is the atomic weight, and t is the sample thickness in cm. This

relationship is based on a formula derived by Rutherford for Coulomb deflection

by a point charge (25).

The inverse relationship between beam broadening and Eo reveals another

advantage of TEM or STEM. An SEM generally operates up to a 30-40 KV

accelerating potential, while a TEM or STEM will often operate at 100 KV or

higher. From equation 3, this higher accelerating potential should give less

beam broadening and better spatial resolution. A higher beam current and thus

higher count rate also accompanies the higher accelerating potential. This is

particularly important in detecting elements at low concentrations.

The basic difference between TEM and STEM is the manner in which beam

movement is controlled. In the conventional TEM, the beam is generally

stationary. In order to measure elemental distribution across the cell wall,

the sample must be moved between measurements at individual points across the

cell wall. In STEM, the operator can control the movement of the electron

beam while keeping the sample stationary. At the Institute of Paper Chemistry,

the STEM-EDS has the capability of performing what are called STEM-EDS

linescans. These are a series of equally-spaced point measurements oriented in

a straight line across the cell wall or other object of interest. The number

and spacing of points can be controlled by the operator. The STEM is also

generally capable of producing a finer electron probe, giving improved spatial

resolution.

STEM Control Parameters

With the STEM, the operator can manipulate x-ray count rate and spatial

resolution through several controls. These controls and their effects on beam
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intensity and diameter, x-ray counts, and spatial resolution are listed in

Table 2. The accelerating potential (KV) controls the energy of the incident

electrons and is also the primary control over beam current. Therefore, as the

KV and beam current increase, count rates increase. Higher KV's also result in

improved spatial resolutions due to a lower degree of scattering in the

specimen (24).

The first condenser lens (C1), as well as the other condenser lenses, are

electromagnetic lenses which control the convergence of the electron beam into

a probe. A lower current in the lens results in a wider probe. Once the

condenser lenses have established some control over the beam, it passes through

the condenser aperture, which prevents part of the beam and stray electrons

from passing to the sample. This helps give a narrower and more defined beam.

Table 2.

Control
Parameter

accelerating
potential (KV)

beam
current (pA)

Cl lens
current 1

condenser
aperture (/m)

specimen
tilt (degrees)

STEM control parameters and their effects on beam
intensity and diameter, x-ray counts, and spatial
resolution (26,27).

Range

0-100

0-110

Effects of increasing control parameter

Beam Beam X-ray Spatial
Intensity Diameter Counts Resolution

t

t

t t

t

2.8-4.6 t

20-400 t t

0-40 I

1 Units for lens current are not known.
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X-rays which are produced by electron beam/specimen interactions will not

reach the detector unless the specimen is tilted towards the detector, as

shown in figure 11. As the specimen tilt is increased, more x-rays reach the

detector. This is due to the geometry of x-ray emission and the increase of

the section's effective thickness by a factor of t/cos e, where t is the

section thickness and 0 is the tilt angle. As demonstrated by equation 3,

this increased effective thickness also yields a poorer spatial resolution.

Mass Loss

When performing EDS work with thin sections, the influence of beam-

induced mass loss on the results must be considered. Several studies have

investigated this phenomenon in biological samples irradiated in TEM

(28,29,30). Of particular interest is the work done by Mary, et al. (30) on

:ose

Figure 11. Schematic showing the relative positions of the
specimen and x-ray detector. Note the effect of
specimen tilt on effective sample thickness (t/cosO).
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mass loss in non-embedded wood samples. In samples irradiated at room

temperature, 58% of the original wood mass was lost when given electron doses

of 5 X 10-8 C/pm 2 or higher. These doses are comparable to those used in X-

ray microanalysis. The different wood components were subject to mass loss to

varying degrees with lignin (30% mass loss) being the most resistant and

cellulose (68% mass loss) being the least resistant. Cooling the samples with

liquid nitrogen or helium and embedding the samples should reduce mass loss,

but the extent is not known.

ULTRAVIOLET MICROSCOPY

Unlike other cell wall components, lignin absorbs strongly in the

ultraviolet range of the spectrum (31). A typical UV spectrum for lignin is

shown in Figure 12. This spectrum is characterized by a maximum at around 205

nm, from which absorbance decreases to a minimum at around 260 nm. A second

4540

(5

2.5 - -- --

200 250 300 350 400

Figure 12. UV spectrum from sulfonated lignin (31).
e is the extinction coefficient. e is
proportional to absorbance at constant
sample thickness and lignin concentration.
See equation (5).
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peak is found at 280 nm, from which absorbance declines as wavelengths

approach the visible range. Since no other cell wall components absorb

appreciable amounts of UV light, absorbance of incident UV light can serve as a

measure of lignin concentration. Differences in UV absorbance across the cell

wall could, therefore, represent the lignin distribution.

The use of ultraviolet microscopy in measuring cell wall lignin

distribution has been reviewed by several authors (32,33,34). In the UV

microscope, the sample is illuminated by a monochromatic UV light; a

wavelength of 280 nm is frequently used. Due to absorbance of the incident

light, its intensity, Io, is reduced to an intensity, Ix, after passing through

the sample. Assuming the embedding resin does not absorb at the wavelength of

the incident light, the intensity of light transmitted through the resin in the

lumen, IL, can serve as a measure of Io. For any cell wall layer, X, the UV

absorbance, A, can be defined as (32):

A = log (IL/Ix) (4)

The UV absorbance at any point in the cell wall is related to lignin

concentration by the Beer-Lambert Law (32),

A = (E)(d)(C) (5)

where e is the extinction coefficient (1 g-1 cm-1), d is the thickness of the

sample (cm), and C is the lignin concentration (g/cm-3). The relationship was

found by Scott, et al. (32) to be valid for thin wood sections.

If e and d are known, the absorbance data can be used to give a

quantitative determination of lignin concentration in the cell wall or any cell

wall layer. Although section thickness can be determined by interference
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methods, the extinction coefficient of lignin in situ has not been accurately

determined (34). Such uncertainty in the value of e makes the acquisition of

accurate cell wall lignin concentrations by UV microscopy difficult.

This uncertainty can be avoided with the use of a second quantitative

technique (33). In this technique, the absorbance of the S2 layer is used as

a baseline to which the absorbance in other cell wall regions are proportioned.

If the total lignin concentration, LToti, were determined by other techniques,

such as Klason lignin, the S2 lignin concentration (Ls2)can be represented by

the following equation:

1/Ls2 = [Vs2 + E(Ax/As2)(Vx)] / LTotai (6)

Vs2 and Vx are the volume fractions for the S2 layer and other cell wall

regions, respectively, and AS2 and Ax are the corresponding absorbances.

Although this technique does not require values for extinction coefficent or

sample thickness, they are assumed constant among the various cell wall layers.

Another sensitivity is the potential effect of non-uniform lignin concentration

among different fibers on the accuracy of the results. This could be a problem

in samples rich in compression wood, due to the higher lignin content of the

compression wood (35).

If only semi-quantitative results are needed, the Beer-Lambert Law can be

applied under the assumption of constant or known section thickness and

constant or known extinction coefficient. The assumptions concerning known

thickness and extinction coefficient have already been discussed and the

assumption concerning constant thickness can be tested with interference

methods. The assumption of constant extinction coefficient between wall layers

has been confirmed by Hardell and co-workers (22). Their experiments with
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secondary wall and middle lamella fractions from fractionated wood found lignin

concentrations obtained by UV methods to be comparable to those obtained by

methoxyl content determination after nitrobenzene oxidation. Since use of the

assumption of constant extinction coefficient yielded results comparable to

those obtained by another method, the assumption was determined to be correct.

Several methods are available for measuring UV absorbance in the UV

microscope. The more traditional method involves recording an image of the

UV-irradiated sample on film, and then measuring the density of colloidal

silver in the negative with a densitometer. Higher transmittance (lower

absorbance) of the incident monochromatic light by an area in the sample gives

higher densities of colloidal silver on the corresponding area in the film.

These areas are darker on the negative. In contrast, areas of low trans-

mittance (higher absorbance) give lower densities of colloidal silver, and

thus, lighter images on the negative. The densitometer has a narrow light

beam which is scanned across the image of the cell wall on the negative. The

density profile across the negative, represented by light transmitted through

the negative, is then recorded by the densitometer.

At short times of exposure, the density (D) of silver on the negative is

related to absorbance by the equation (32):

Ax = (DL - Dx)/7 (7)

where Ax = the absorbance in wall region, X,

DL = density of colloidal silver in the lumen on the negative,

Dx = density of colloidal silver in wall layer, X, on the negative,

7 = constant related to film light sensitivity.

Using the Beer-Lambert Law and the above equation,
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Ccc = (DL - Dcc) / [(e)(d)(7)]

Cs2 = (DL - Ds2 ) / [(e)(d)(7)] (8)

CCC/CS2 = Acc/AS2 = (DL - Dcc) / (DL - DS2 )

where CC represents the cell corner and S2 represents the secondary wall.

A more direct means of measuring lignin distribution through UV absorbance

is with a photometer attached to the microscope. In such a system, a narrow

beam of light is placed in the areas of interest or scanned across the cell

wall. The amount of transmitted light is recorded by the photometer. Since

absorbance is a function of the amount of transmitted light, differences in UV

absorbance, and hence, lignin concentration can be recorded. In the case of

scans, the transmitted light data will yield lignin distribution profiles.
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THESIS OBJECTIVES

The idea of selectively sulfonating one portion of the cell wall over

another offers some intriguing prospects for the development of sulfite CMP

properties. Current practice entails sulfonating wood chips to a desired level

with little regard for the distribution of bound sulfite across the cell wall.

Consideration of the effects of sulfonation at the cell-wall level reveals

the importance of cell wall sulfur distribution. The extent to which the middle

lamella is sulfonated influences the manner in which fibers separate. This

will affect fiber surface properties and the extent to which the fibers are

damaged. Sulfonation of the fiber secondary wall will influence the conforma-

bility of the fiber and the manner in which the fibers dissipate refining

energy. These will affect the density and strength of the paper product as

well as the extent to which the fibers are damaged. Control over the extent to

which the fiber wall and middle lamella are sulfonated could provide numerous

combinations of fiber mechanical and surface properties which could be applied

to specific end uses.

With this long-term goal in mind, the intent of this thesis has been to

evaluate the influence of sulfonation variables on cell wall sulfur distri-

bution in southern pine latewood. The sulfur distributions were measured

using STEM-EDS linescans. In addition to evaluating sulfonation variables and

their influence on cell wall sulfur distribution, this thesis also investigated

the origin of the observed distributions and any variation in sulfur

distribution. In particular, the investigation studied the role of lignin

distribution, lignin reactivity, and diffusion limitations.

The evaluation of cell wall sulfur distribution in this work differs from
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that of Beatson, et al. (19) and others in several ways. The primary

difference between the present work and others reflects the motivation behind

the studies. The principle concern of previous studies has been the topo-

chemistry of sulfonation, in general, and the manner in which it may vary

between several treatments. The present work is concerned with these matters,

but has gone one step further by aggressively seeking treatments which would

yield differences in cell wall sulfur distribution.

Several measures were taken to achieve this goal. The first measure was

the evaluation of a wider variety of treatments, including vapor-phase cooks.

The poorly buffered environment within the chips in the vapor-phase cooks had

the potential of yielding some interesting distributions, resulting from

diffusion limitations or variation in the chemical environment across the cell

wall. A second measure was avoiding long exposures of the chips to the liquor

prior to cooking. The longer impregnation times used by Beatson, et al. (19)

are more likely to result in some lignin degradation and increased swelling in

the chips. This may lift diffusion barriers which could otherwise influence

cell wall sulfur distribution. The present work used impregnation times of 30

minutes or less.

In addition to studying a wide variety of high-yield sulfite cooks, the

present work is unique in its rigorous statistical analysis of the sulfur

distribution data obtained from the cooks. The cooks were performed in a

series of factorial experiments which investigated such variables as sodium

sulfite concentration, temperature, time at temperature, and liquor pH.

Analysis of variance performed on each of the experiments tested for

significant effects of each of these variables over the effects of random

sources of variation within and between chips.
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The sulfur distributions obtained in the present work also provided a

more detailed picture of cell wall sulfur distribution than previous works.

Work performed with bulk samples in an SEM provided little detail of the

secondary wall sulfur distribution due to poor spatial resolution. Beatson's

work (19), which was done with TEM-EDS, provided reasonably good spatial

resolution, but only measured around 10 points across the secondary wall. The

present work performed the sulfur distribution evaluation with STEM-EDS

linescans, which gave, on the average, more than 20 measurement points across

each secondary wall. Through the use of a smaller beam diameter, the spatial

resolution in the the present work was improved over those in previous works.

The greater number of measuring points and the improved resolution at each

point provided a more detailed picture of the secondary wall sulfur

distribution, which is especially important when comparing S3 and inner S2

sulfur levels.

A final difference between this and previous work is the wood source.

While previous studies used spruce, this study used southern pine latewood.

Latewood was chosen for this study because the thicker cell walls provide the

the greatest opportunity to observe differences in sulfur distribution.

Southern pine provides a fairly abrupt transition between earlywood and

latewood, allowing easier separation of latewood chips with a fairly uniform

cell wall thickness. This species difference could also influence lignin

distribution and variations in lignin reactivity, which, in turn, could

influence cell wall sulfur distribution.
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EXPERIMENTAL

WOOD SOURCE

The wood source for this study was a 25 year-old southern pine log. The

log was cut into 2.5 cm thick disks, which were subsequently cut into small

wedges. A hand guillotine was used to cut latewood chips from these wedges.

These chips were 2.5 cm long, 1 to 2 mm thick in the radial direction and .5 to

1 cm wide in the tangential direction. Since the outer growth rings of the

wood source were very narrow, it was very difficult to separate earlywood and

latewood from these rings. Therefore, the latewood chips were obtained from

growth rings 7 to 13, which would classify these chips as juvenile wood. After

these chips were extracted in benzene-ethanol, ethanol, and hot water, they

were air dried.

SULFITE COOKS

The prepared chips were sulfonated in a number of high-yield sulfite

cooks which were divided into three factorial experiments, which are summarized

in Table 3. These experiments evaluated the following sulfonation variables:

- Sodium sulfite concentration in liquor

- Time at temperature

- Temperature

- Liquor pH

- Type of cook (liquor-to-wood ratio)

The last variable, type of cook, refers to vapor-phase cooks at a 0.65:1

liquor-to-wood ratio and liquid-phase cooks at a 10:1 liquor-to wood ratio. Of

the three factorial experiments, two studied vapor-phase (VP) cooks, and the

third studied liquid-phase (LP) cooks.
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Table 3. Experimental designs

Experiment

VP1

VP2

LP1

Type of cook

vapor-phase

vapor-phase

liquid-phase

Factorial

3X2

2X2

3X2

Variables

sulfite ion concentration;
time

time-temperature combinations;
sulfite ion concentration

liquor pH;
time

All cooks in each of the three experiments were performed in three steps.

These were:

-vacuum impregnation

-cooking

-excess liquor removal

Each of these steps and more details on the experimental designs are discussed

below.

Vacuum Impregnation

Two separate vacuum impregnation procedures were used. For the VP1 and

LP1 cooks, vacuum impregnation was performed in a vacuum desiccator. The

chips were placed in beakers containing liquor, which were subsequently placed

in the desiccator. Vacuum was applied to the desiccator for ten minutes,

relieved, and then reapplied and relieved for two more 10 minute intervals for

a total time of 30 minutes. The chips were then immediately cooked.

The VP2 chips were impregnated in a different apparatus which could

impregnate the chips faster and more efficiently. In the vacuum desiccator,

the chips were immersed in liquor before vacuum was applied. When vacuum was
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applied, the surface tension of the water within the chips may have prevented

some of the air from escaping. In this new impregnation apparatus, shown in

figure 13, the chips in the upper chamber were evacuated before the liquid was

introduced. Once the chips were fully evacuated, stopcock 1 was opened and

liquor filled the top chamber and entered the chips with less resistance.

Relief of the vacuum created a positive pressure differential which forced

liquor into the chips. This apparatus gave water uptakes of around 99% of

those obtained after soaking the chips for 24 hours. This compares to a value

of 90-95% for the vacuum desiccator. This high efficiency can also be achieved

after only one 5 minute cycle. The high efficiency of this apparatus provided

more thorough and uniform chip impregnation while shortening the impregnation

time.

/

--- chips

-iquor

M -- *liquor

Figure 13. Impregnation apparatus used for VP2 cooks.
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Cook Details

Table 4 summarizes the conditions under which all of the cooks were

performed. The times listed are only times at temperature; the heat-up and

exhaust times and other details for each experiment are discussed below.

The VP1 cooks constituted a 3X2 factorial experiment evaluating liquor

sodium sulfite concentration and time at temperature. The liquor consisted of

sodium sulfite solutions with enough sodium hydroxide added to obtain an

initial pH of 11.5. After impregnation in the vacuum desiccator the chips were

placed in Buchner funnels lined with glass beads. These funnels were covered

loosely with foil and placed in beakers. The beakers were then placed in an

autoclave where, after an 8 minute heat-up to 1340C, the chips were cooked for

the desired times. After a 2 minute exhaust, the chips were removed from the

autoclave, rinsed, and then soaked in distilled water to remove excess liquor.

The removal of excess liquor from the cooked chips entailed repeated 12

hour soakings of the chips in 200 ml of distilled water. These soakings were

continued until a potassium iodate titration detected no more sulfite in the

soaking water. The titration procedure used is based on Tappi Standard T-604.

The procedure was modified by adding larger aliquots of the sample in order to

detect lower sulfite levels.

The VP2 cooks constituted a 2X2 factorial experiment which evaluated

sulfite ion concentration and two time-temperature combinations. The liquors

were produced in the same manner as those used for the VP1 cooks. Since the

autoclave could not attain the higher temperatures needed for this experiment,

the cooks were performed in an oxygen bleaching vessel, where the chips sat in

baskets. This vessel required 2 minutes to reach 140°C and 6 minutes to reach
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Table 4. Summary of sulfite cooks.

Sulfite ion
Experiment conc., mole/l

VP1 0.48
0.48
1.03
1.03
1.59
1.59

VP2 0.48
0.48
1.03
1.03

LP1 1.03
1.03
1.03
1.03
1.03
1.03

Time,
min

20
40
20
40
20
40

5
20
5
20

0
0
0
60
60
60

Temp.,
oc

134
134
134
134
134
134

160
140
160
140

140
140
140
140
140
140

Initial
pH

11.5
11.5
11.5
11.5
11.5
11.5

11.5
11.5
11.5
11.6

3.3
10.0
12.5
3.3

10.0
12.5

L:W

0.65:1
0.65:1
0.65:1
0.65:1
0.65:1
0.65:1

0.65:1
0.65:1
0.65:1
0.65:1

10:1
10:1
10:1
10:1
10:1
10:1

Initial chip
moisture content,

%OD wood

6.3
6.3
6.3
6.3
6.3
6.3

29.0
29.0
29.0
29.0

6.3
6.3
6.3
6.3
6.3
6.3

1600C. The exhaust times were 5 minutes and 6 minutes, respectively. After

exhaust, the chips went through the same procedure as the VP1 chips.

The LP1 cooks were performed in a 3X2 factorial experiment which

evaluated the effects of liquor pH and time at temperature. The pH 10.0

liquor was a simple sodium sulfite solution. The pH 12.5 liquor was produced

by adding enough sodium hydroxide to a sulfite solution to obtain the 12.5 pH.

The acidic liquor (pH 3.3) was a sodium bisulfite liquor into which S02 had

been bubbled in order to obtain the lower pH. After impregnation, these chips

were cooked at a 10:1 liquor-to-wood ratio in 70 ml titanium bombs, which were

heated in an oil bath. The heat-up rate was 1.40C per minute and the cool-down

time was around 2 minutes. As with the vapor-phase cooks, excess liquor was

then removed from the chips through repeated soakings.
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SULFITE COOK DATA

The principle data obtained from the cooks were chip sulfur content, final

liquor pH, and yield. The sulfur content data were obtained by Schoniger flask

combustion - ion chromatography, the procedure for which was derived from

several sources (36,37). For each treatment, duplicate combustions were

performed in the Schoniger flasks on 40 mg of wood meal obtained from no fewer

than 5 chips. During the combustions, all sulfite in the samples was oxidized

to sulfate, which was then collected in a NaHCO3/Na2C03 buffer solution within

the flask. This solution was diluted and then injected into the ion chromato-

graph, from which a sulfate peak was obtained. The sulfur content of the

sample was then determined from the height of the sulfate peak and the

oven-dried weight of the original sample.

The final liquor pH's from the liquid-phase cooks were obtained from the

spent liquor of the cooks. Since the vapor-phase cooks produced no spent

cooking liquor, final pH was measured in the water from the first washing

(soaking) of the treated chips. Yield data were expressed on an oven-dried

treated wood basis.

SULFUR DISTRIBUTION

Sample Preparation

Sample preparation for STEM-EDS linescans involves embedding the wood

chips in epoxy resin, sectioning the embedded samples, and mounting the

sections on support grids. Air-dried treated chips were impregnated with Spurr

epoxy resin (38) through an acetone, 50/50 acetone/Spurr, 100% Spurr series.

Under vacuum, the chips were submerged in 100% Spurr resin for several days.
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The resin was changed every one or two days. Once the chips had been submerged

in the Spurr for several days, the resin was hardened at 70°C overnight.

The embedded samples were trimmed with a razor blade and smoothed with a

glass-knife in a Sorvall Porter-Blum MT2-B ultra-microtome. The samples were

trimmed such that the sections would be 1/4 mm wide and 3 mm long. Transverse

sections 1/4 Em thick were obtained from the samples using a diamond knife on

the MT2-B ultra-microtome. Sectioning was performed in the radial direction

with respect to the wood sample, and all sections came from the center of the

chip with respect to the chip's longitudinal axis. The sections were collected

on 200 mesh ultrahigh-transmission nickel grids. The bars of the grids were

coated with formvar in order to improve section adhesion to the grid.

The above procedures for sectioning are fairly standard for biological

materials. However, since wood is extremely hard when compared to other

biological materials, several precautions had to be followed when sectioning

the wood chips. Special care had to be taken while trimming and smoothing the

samples because any substantial pressure on the sample or sectioning of thick

sections would introduce minute cracks in the sample, making it difficult to

obtain good quality sections. The width of the section was also critical.

Most materials can be sectioned at a width of 1 mm, but the wood offers so much

resistance to sectioning that narrower sections (around 1/4 mm) were necessary.

In addition to precautions with the sample, care must also be taken in keeping

the diamond knife clean. With the samples as fragile as they are, small

amounts of dirt on the cutting edge give poor section quality.

STEM-EDS Linescans

The STEM-EDS linescans were performed with a Jeol-lOOCX scanning

transmission electron microscope with a Tracor Northern TN-2000 energy
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dispersive spectrometer (EDS). The 100CX was equipped with a liquid nitrogen-

cooled anticontamination trap to help reduce specimen damage under the electron

beam. Before each session with the STEM, the beam intensity was standardized

by adjusting the beam current to obtain a given number of counts from a copper

grid standard.

STEM operating conditions

Preliminary tests were performed in order to establish STEM-EDS operating

conditions. The STEM-EDS operating conditions chosen are as follows:

Accelerating potential: 100 KV

Beam current: 100 #A

Condenser aperture: 200 Em

Cl lens current reading: 2.800 (units unknown)

Specimen tilt: 330

Magnification: 5000-8000X

These conditions were the best compromise between high count rate, reasonable

collection time, minimal specimen damage, and good spatial resolution. The

conditions chosen gave adequate counts at 30 to 60 seconds per pixel,

depending on the sample sulfur content, and gave spatial resolutions below the

maximum acceptable value of 100 nm. The spatial resolutions obtained in the

100CX and the influence of some operating variables on spatial resolution are

discussed in the following section.

STEM beam diameter and spatial resolution

The primary advantage of using thin sections for the sulfur distribution

work was the marked improvement in spatial resolution over that in bulk

samples. Two factors influence spatial resolution: beam diameter, and beam

spreading in the sample. The beam diameter, which, at a constant KV, is
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controlled by the C1 lens current and the condenser aperture, consists of a

central probe and a halo of "spherically aberrated" electrons (24). The C1

lens current controls the size of the central probe, with higher currents

yielding finer probes. In theory, the condenser aperture does not influence

probe size, but at the probe sizes and apertures being used, it can influence

the presence and size of the halo of "spherically aberrated" electrons (24).

Since this halo can be responsible for a large proportion of the x-ray counts,

the diameter of this halo will represent the total beam diameter.

Beam spreading in the section is described in equation 3. In order to

account for the effect of tilting the specimen on beam spreading, the

thickness, t, can be replaced by the effective thickness, t/cos 0, which is

illustrated in Figure 11.

Although manufacturers data on probe diameter (27) and an equation to

describe beam broadening (25) were available, no information on the halo and,

hence, beam diameter was available. To meet this need, estimates of the beam

diameter were obtained by direct measurement. Generally, linescans were

performed in what is called Standard mode on the 100CX scanning unit. For the

purposes of measuring the electron beam diameter, it was necessary to use a

different mode, Ad diffraction mode, in order to image the electron beam at a

100,000 X magnification. Pictures of the probe image were taken at an

exposure of one-eighth that recommended by the 100CX exposure meter. The

diameters of the central probe and halo were measured directly off the

negatives. The results obtained at various settings are shown in Table 5.

On the negatives, the beam appeared as a dark central spot surrounded by a

dark gray halo, which was surrounded by a light gray halo. The central probe

is represented by the dark central spot, the measured diameters from which
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Table 5. Spatial resolution in the 100CX for 250 nm thick wood
cross-sections. Accelerating potential = 100 KV.

Jeol probe
dia., nm

5.0
10.5

.16.0

5.0
10.5
16.0

5.0
10.5
16.0

Meas. probe
dia., nm

5
9
16

6
10
17

6
10
18

Beam (halo)
dia., nm

20
24
28

21
26
41

25
46
63

Spatial
res., nm

0o 330

32.7 36.9
36.6 40.7
40.4 44.6

33.7 37.8
38.5 42.7
53.1 57.1

37.5 41.7
57.8 62.0
74.2 78.4

agree rather well with the manufacturer's (Jeol) data. The dark gray halo is

assumed to be that from the beam, while the light gray halo is believed to be

the result of horizontal photon scattering through the film during exposure.

In many cases, the boundary between the dark and light halos was not very

clear, so the estimate of the beam halo diameter, and hence, the beam diameter

itself, was subject to error. In those cases where the halo diameter was

unclear, the estimates were made such that the data in Table 5 are, most

likely, overestimates.

The spatial resolutions in Table 5 were obtained by adding the measured

beam diameters to the beam broadening value (b) obtained from equation 3. At a

0° tilt, the value of b was 13.9 nm. This value was based on a 100 KV beam;

and a 250 nm thick specimen with an average density of 1.36 g/cm3, an average

atomic number of 4.1, and an average atomic weight of 7.7. The density used

was based on a cell wall void volume fraction of 0.282, a cell wall substance

specific gravity of 1.46 (78), and a resin specific gravity of 1.1. The atomic

number and atomic weight were based on carbon: hydrogen: oxygen ratios of cell

Condenser
aperture,

Im

100
100
100

200
200
200

400
400
400

C1 lens
current

4.010
3.367
3.100

4.010
3.367
3.100

4.010
3.367
3.100
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wall components in a cell wall of 50% cellulose, 25% hemicellulose, and 25%

lignin. Replacing the thickness, t, with t/cosG at a 330 tilt yielded a value

of 18.2 for b and the corresponding values for spatial resolution.

The data in Table 5 demonstrate an influence of both C1 lens current and

condenser aperture on halo diameter. Only C1 lens current influenced the

diameter of the central probe, while both parameters influenced beam (halo)

diameter. All conditions gave a spatial resolution of less than 100 nm. This

testing evaluated lens currents in the 3.100 - 4.010 range as possible settings

for the linescan work. A final choice of 2.800, which was not in the range

tested, was ultimately chosen in order to improve count rates. The other

settings used for the linescan work were a 200 pm aperture and a 330 tilt

angle. Based on the data for these settings, the spatial resolution for the

2.800 lens current would probably be around 80 nm. A 400 pm condenser aper-

ture, which would yield higher count rates at an acceptable spatial resolution,

was not used due to a problem with sample damage under the electron beam.

Linescan collection

The collection of linescan data was controlled in the Tracor Northern

TN-2000 by the SECTION sub-routine (39) of a program called IPP (Image Pro-

cessing Program). The SECTION sub-routine, with the help of the SETX sub-

routine, has the following capabilities:

-Control of electron beam movement during a linescan.

-Simultaneous recording of linescan data for up to eight elements.

-Subtraction of background counts.

-Establishment of boundaries between cell wall layers in the
linescan histograms.

-Calculation of average counts from selected sections of cell wall.

-Writing and reading of linescan data to and from disk.

-Linescan data print-outs
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Although the TN-2000 is quite versatile in its linescan collection

capabilities, it has limited editing and data analysis capabilities. In order

to analyze the linescan data it had to be transferred to another computer. The

Data Transfer Program (DTP) was derived from part of the SECTION sub-program in

order to transfer the linescan data, one file at a time, from the TN-2000 to an

IBM-PC. DTP also has some linescan editing capabilities. The code for DTP is

shown in Appendix 1. On the IBM-PC the downloading was handled by Qmodem,

which read each linescan data file and created a corresponding ASCII file.

These files could then be edited on Lotus-123 and then undergo analysis on the

PC or be uploaded to the Burroughs B6900 for analysis.

A typical x-ray spectrum obtained from a sulfonated wood chip is shown in

figure 14. Among the peaks which project above the continuum (background) is

Figure 14. Typical spectrum from sulfonated wood showing
the sulfur peak and region for background
subtraction.
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the Ka sulfur peak, which is shaded red. This peak represents the x-ray

energy range of 2.180 to 2.440 keV. In order to obtain truly representative

sulfur count data, the continuum portion of the peak had to be removed. IPP

accomplished this by subtracting background counts from the total sulfur

counts. The resulting sulfur counts were termed net sulfur counts. The back-

ground counts of any peak are best represented by an adjacent region of the

continuum with the same width as the peak. For the sulfur peaks in this work,

the region to the left of the sulfur peak (shaded yellow in Figure 14) served

as the background region.

In anticipation of a large natural variation in sulfur distribution in

various regions of the wood chip, the experimental design for linescan data

collection was designed to quantify the hierarchy of variances in the data. For

the main experimental variables studied, this would allow rigorous stati-

stical testing of the significance of their effects. Separate experimental

designs were established for each of the three sets of cooks. The experimental

design for the VP1 cooks is shown in figure 15. As demonstrated in figure 15a,

two chips were evaluated per treatment, and within each chip, double walls at

three different locations were scanned. These were chosen to be at specific

points across the thickness of the chip (along the radial axis of the wood

source.): one at the chip center, one near an outside face, and one at an

intermediate point. See figure 15b. Compression wood was avoided. Duplicate

scans were made across each double wall (tangential wall), giving a total of 12

scans per treatment. In all but a few chips, a cell corner scan was performed

in an adjacent cell corner for each of the double-wall scans.

After the analysis of the VP1 cooks, some changes were made in the

linescan collection procedure for the VP2 and LP1 chips. The reasoning behind

making these changes is discussed in the results. The number of chips per
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VP1 EXPERIMENTAL DESIGN

Na2 SO3 CONC., g/L

20

40 -

Figure 15. Experimental design for VP1 linescan analysis;
a). Treatments evaluated, showing the division of
the scans between treatments, chips, and locations
(walls) within the chip; b). Locations of the scans
within the chip and across the tangentialwall.

TIME.
MIN. 60

a).

b).

CHIP1 CHIP 2

Location 1 - -

Location 2 =3 

Location 3 

130 200
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VP 2 EXPERIMENTAL DESIGN

CHIP 1
1 = =

LOCATION 2 = =

LP 1 EXPERIMENTAL DESIGN

CHIP 1
LOCATION 1 = =

LOCATION 2 = =

Figure 16. Experimental design for VP2 and LP1 cooks, showing
the division of the scans between the treatments,
chips, and locations within the chip; a). VP2 cooks;
b). LP1 cooks.

a).
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VP 2 and LP 1

Figure 17. Locations of scans within the chip and walls of
the VP2 and LP1 cooks.

treatment was kept at 2, but the number of cell walls evaluated within each

chip was increased from three to four. See Figure 16 and 17. Instead of three

locations, these four walls were divided between two locations within the chip;

two walls were near the center, and two were near an outside face. As with the

VP1 cooks, duplicate scans were performed across each cell wall, but as shown

in figure 17, these scans extended across a single wall from the lumen into the

cell corner and not across the double wall. Since the scans extended into the

cell corner, separate cell corner scans were not necessary.

MASS LOSS

Mass loss and loss of sulfur from the thin wood sections were measured in

order to understand the possible effects of mass loss on the sulfur distri-

bution data. Two types of tests for mass loss were performed. The first test
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used STEM-EDS linescans to measure mass loss over longer time intervals.

Linescans were performed across a cell wall at different times per pixel. Five

scans were performed per time. If mass loss were occurring, it was assumed the

x-ray count rates (a measure of average sample density) would be lower for

longer times.

Mass loss at shorter time intervals was measured with STEM-EDS timescans,

which measured changes in counts from a spot or area as a function of time.

Time increments ranging from 1X10-4 seconds to over 6 seconds were available,

but the longer time increments were generally necessary in order to obtain a

sufficient number of counts. Measurements were generally made by approaching

the area to be tested blindly and starting the timescan the moment this area

was first exposed to the beam. Unlike the linescan data, timescans could only

collect data for one element at a time.

The total mass loss can be represented by changes in the x-ray continuum

counts since mass per unit volume and continuum counts are proportional (28).

To represent the continuum, this work has concentrated on the regions from 4.2

to 7.2 keV and 0 to 7.2 keV in the x-ray spectrum. The wider of these two

regions contains the sulfur peak and a few other small peaks, which do not

necessarily undergo a decline in counts proportionately with the continuum

during mass loss. This may introduce some systematic error into the mass loss

results, but the higher number of counts from this region are helpful in

reducing random error.

The loss of sulfur was measured by monitoring changes in the Ka sulfur

peak (2.18 to 2.44 keV). Since the timescans can only collect one set of data

at a time, background counts could not be simultaneously collected and

subtracted from the total sulfur data to obtain net sulfur data. To obtain
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net sulfur mass loss data, total mass and total sulfur timescans were

collected from two adjacent areas, and a spectrum was then collected from one

of these areas to give total sulfur (TS), background (BG), and net sulfur (NS)

data for an area which had undergone mass loss. Since the background region

(1.92 to 2.18 keV) is part of the continuum, the percent loss of background

should be comparable to percent mass loss. The net sulfur loss can be

obtained from these data using the following relation,

[counts/(100-ML)]TS = [counts/(100-ML)]BG + [counts/(100-ML)]NS (9)

where ML is the percent mass loss of the element in question. The counts in

each term are the counts from the spectrum.

The mass loss experiments tested several different conditions. Since

samples were exposed to a broad TEM beam and a fine STEM beam during linescan

collection, total mass loss was measured in both modes. The TEM beam

intensity (dose per unit time) was estimated from the reading (in pA/cm 2) of

the TEM screen brightness indicator. The STEM beam had no intensity

indicator, but judging from the behavior of the sample under the beam, the

STEM beam was probably more intense. In TEM mode, the influence of beam

intensity on total mass loss was evaluated. Insufficient count rates

prevented any rigorous test of sulfur loss in TEM mode, but total mass loss

and sulfur loss data were collected in STEM mode.

LIGNIN DISTRIBUTION

Thin sections were prepared and mounted on grids for lignin distribution

studies to be performed with ultra-violet (UV) microscopy. This work was

designed to yield several types of information:
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1. Measurements of the secondary wall lignin distribution would
help determine whether the observed secondary wall sulfur
gradients can be attributed to lignin distribution.

2. Comparison of S2 (particularly outer S2) lignin levels with cell
corner lignin levels would help account for observed differences
in relative sulfur levels between these two areas of the cell
wall.

The samples used for this study are described in Table 6. The sample 1

sections, which were from non-treated wood, basically served as a control. The

nonembedded samples, which have not been treated nor embedded, were compared to

the embedded sample 1 sections to determine the effect of embedding on the UV

data.

Samples 3 and 4 were both from the factorial experiments and were from

cooks which demonstrated different sulfur distributions. Sample 3 represented

a cook which yielded a rather pronounced secondary wall sulfur gradient. Since

the yield loss was very low, sample 3 results were expected to be comparable to

Table 6. Samples for UV microscopy.

Sulfur Plane of
Sample Content(%) Chip Section Thickness(jm)

1 0 1 cross-section 1/4; 1/2
1 0 2 cross-section 1/4; 1/2
3 0.48 1 cross-section 1/4; 1/2
3 0.48 2 cross-section 1/4; 1/2

3-EM 0.48 1 cross-section 1/4; 1/2
4 0.78 1 cross-section 1/4; 1/2
4 0.78 2 cross-section 1/4; 1/2

Nonembedded 0 1 cross-section 1/2; 1.5

Sample 1: Nontreated extracted latewood embedded in Spurr resin
Sample 3: Vapor-phase cook; 1.03 molar Na2S03; 20 mins. at 1400C;

embedded in Spurr resin.
Sample 4: Liquid-phase cook; 1.03 molar Na2S03; 60 mins.

at 140°C; final pH = 10; embedded in Spurr resin.
Nonembedded: Nontreated extracted latewood; not embedded.
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those from sample 1. Some of the sample 3 sections were irradiated under the

electron beam of the STEM. These samples, designated 3-EM, were used for

determining the effects of electron beam irradiation on lignin distribution.

Sample 4 represented a cook which gave a relatively low yield (90%), a flatter

secondary wall sulfur gradient, and a low CC/B ratio. The lignin distribution

data were expected to yield some interesting results with regard to the above

sulfur distribution data.

The ultra-violet microscopy was performed on two separate pieces of

equipment: the UV microscope at the U.S. Forest Products Lab in Madison, and

a Zeiss UMSP-80 UV microscope at Zeiss, Inc. The work at the Forest Products

Lab involved taking photos of samples irradiated under a 300 nm UV light source

and then collecting densitometer tracings across the cell wall images on the

negatives. This is the same basic procedure used by Scott and coworkers (32).

The UV microscope at the Forest Products Lab was an old Zeiss microscope

equipped with a monochromater and a 35 mm camera. Mounted sections from chip 2

of sample 1 and sample 3-EM were placed between a quartz slide and cover slip

in an immersion-glycerin solution and examined under a 100X objective at a 300

nm wavelength. While UV absorbance work on lignin is generally done at 280 nm,

the choice of a 300 nm wavelength for this work was based on a previous finding

that Spurr resin absorbs significantly below 290 nm (31). Subsequent work in

this study confirmed this finding, but also found some absorbance above 290 nm.

Three areas of approximately 75 X 75 Im were photographed from each sample on

Kodak technical pan 2415 film. The exact magnification of the photos is not

known, but it was probably around 500X.

After the film was developed, two negatives, representing two areas in the

chip, were chosen for each sample. Densitometer traces were obtained from two
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walls in each of the negatives. This work was performed on a Joyce Loebl

double-beam microdensitometer which scanned a narrow beam of light across the

cell walls on the negatives and recorded density variations, representing

variations in lignin concentration, on a piece of graph paper. The settings

used on the microdensitometer could theoretically yield spatial resolutions in

the cell wall of 0.15 pm.

The Zeiss UMSP-80 is a state-of-the-art UV microscope which offers

several advantages over the other equipment available. These include the

ability to collect linescan and spectral data, and a low signal-to-noise

ratio. Data were collected from all of the samples in Table 6. These data

included scans across cell walls at 280 nm and spectral data from the lumen,

secondary wall, and cell corner. A special effort was made to obtain good data

from the S3 layer. The data from the non-embedded samples consisted of spectra

from the cell wall. All data were processed and smoothed by the Lambda-scan

program, which was developed by Zeiss for this purpose.
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RESULTS

SULFITE COOK DATA

Table 7 describes the final pH, yield, and sulfur content results

obtained from the vapor-phase and liquid-phase cooks. The liquor pH data

reveal one key difference between the liquid-phase and vapor-phase cooks.

The change in pH during the liquid-phase cooks was much less pronounced than

during the vapor-phase cooks. This is due to the greater buffer capacity in

the liquid-phase cooks provided by the bulk liquor. The bulk liquor serves as

a reservoir of cooking chemicals and as a sink for acidic by-products, such as

lignosulfonic acids. The chips in a vapor-phase cook, on the other hand, are

in a much more poorly buffered system. This makes a high initial pH necessary

in order to maintain neutral or alkaline pH levels. The final pH data for the

vapor-phase cooks also suggest that high sodium sulfite concentrations are

important in maintaining a more stable pH.

The yield data are all in the ultra-high yield pulping range, with all of

the vapor-phase and some of the liquid-phase cooks resulting in virtually no

yield loss. This implies that lignin dissolution should have little to no

effect on the sulfur distributions in most samples. Although the changes in

yield are minute in many cases, the yield data reveal a general decline in

yield as the value of any of the four listed treatment variables increases.

The sulfur content data demonstrate some interesting trends with respect

to treatment variables. The VP1 cooks gave increased sulfur contents with

increased sodium sulfite concentration, but extending the cooks from 20 to 40

minutes had little effect on these data. This lack of a time effect does not

agree with the STEM-EDS sulfur count data, which will be discussed in an

upcoming section. The VP2 cooks showed the same concentration effects, while
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Table 7. Final pH, yield, and sulfur
high-yield sulfite cooks.

content results from

Experiment

VP1
VP1
VP1
VP1
VP1
VP1

VP2
VP2
VP2
VP2

LP1
LP1
LP1
LP1
LP1
LP1

Time,
min

20
20
20
40
40
40

5
5
20
20

0
0
0
60
60
60

Temp.,
oc

134
134
134
134
134
134

160
160
140
140

140
140
140
140
140
140

Na2SO3
conc.,
mole/l

0.48
1.03
1.59
0.48
1.03
1.59

0.48
1.03
0.48
1.03

1.03
1.03
1.03
1.03
1.03
1.03

Initial
pH

11.5
11.5
11.5
11.5
11.5
11.5

11.5
11.5
11.5
11.5

3.3
10.0
12.5
3.3
10.0
12.5

Final
pH

6.80
7.50
7.95
6.71
7.26
8.21

6.12
7.01
6.75
6.98

4.26
8.39

10.52
4.87
8.46
10.00

Yield
%ODT wood

98.9
98.7
98.5
99.0
98.8
98.5

99.3
99.0
99.6
99.5

98.8
97.3
99.8
98.3
94.8
90.1

Sulfur
Content

%ODT wood

0.41
0.53
0.70
0.40
0.59
0.71

0.30
0.46
0.32
0.48

0.44
0.61
0.58
0.64
0.81
0.78

the two time-temperature combinations yielded practically the same sulfur

content. This will provide a good basis for comparing the two types of

treatments.

Unlike the VP1 cooks, the LP1 cooks yielded an increase in sulfur content

with time. It is likely that the lower liquor-to-wood ratio of the vapor-phase

cooks (0.65:1 vs. 10:1) and the proportionately smaller sodium sulfite charge

prevented further sulfonation beyond that obtained at the shorter times.

Although the bound sulfur (sulfur content data) accounts for less than half of

the applied sulfur in the vapor-phase cooks, the remaining sodium sulfite may

have been unavailable due to such processes as adsorption onto surfaces within

the fiber wall. In the liquid-phase cooks, the high liquor-to-wood ratio

provides a bulk liquor phase with an excess of sodium sulfite.
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As previously discussed, the bulk liquor in the liquid-phase cooks also

serves as a sink for acidic by-products, such as lignosulfonic acids. If the

accumulation of these acids and other by-products were limiting sulfonation in

the VP1 cooks, possibly through a decline in pH, their diffusion from the

chips into the bulk liquor during liquid-phase cooks would reduce such a

limitation and allow sulfonation to continue at a faster rate.

The observed effects of pH on sulfur content conforms to our current

understanding of the effects of pH on sulfonation rate (5,6,19,40,41). The

lower sulfur contents obtained at the acidic pH (bisulfite cook) agree with

the results obtained in other studies (6,19,41). All of these agree with the

rate data presented in the background section (5). The two alkaline pH's

yielded slight differences in sulfur content, but they probably are not

significant. This would agree with the findings of Wenneras (40), who found pH

to have no effect on sulfur content in the pH range of 7 to 9.5. Engstrand, et

al. (40), on the other hand, found a significant decrease in sulfur content as

pH increased from 8.0 to 9.5, which suggests that the trend observed in the

alkaline LP1 data may be real.

The repeatability of the Schoniger flask - ion chromatography sulfur

contents was good. For most of the samples tested, the duplicates yielded

sulfur contents which agreed to within .03%. Most of the results represented

averages from five or more chips. In order to test for chip-to-chip

variability, the sulfur contents of individual chips were determined for

several treatments. Single determinations on five chips from the VP2 cook

yielding .32% sulfur content gave a 95% confidence interval of .32 + .032%.

Another vapor-phase cook, not in Table 5, gave a 95% confidence interval of

.612 + .020%.
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SULFUR DISTRIBUTION DATA

The general shape of the cell wall sulfur distributions was basically the

same for all treatments. These distributions had two key components. As shown

in Figure 18, one component was a pronounced sulfur gradient across the

secondary wall with higher sulfur levels toward the lumen and lower levels

toward the middle lamella. The extent of this gradient varied from very sharp

to almost flat.

The second component was the markedly higher sulfur counts in the middle

lamella, presumably due to the higher lignin concentration there. Comparison

of the compound middle lamella data from the double-wall scan (Figure 18a) with

the cell corner data from the cell corner scan (Figure 18b) reveals a marked

difference between the two types of middle lamella data. This can be

attributed to poor resolution of the narrow compound middle lamella. The

compound middle lamella consists of a thin layer of true middle lamella

sandwiched between the primary walls of the adjacent cell walls. These primary

walls have a lower lignin concentration than the true middle lamella, and

hence, would be expected to have lower sulfur levels. Because of limitations

in spatial resolution, STEM-EDS data from the compound middle includes data

from the primary wall and, probably some data from the S1 layers, which have

even less lignin. This would give lower sulfur levels from the thin compound

middle lamella than from the thick cell corner, which is predominantly true

middle lamella. The resin-filled lumen produced no net sulfur counts, an

observation which validates the background subtraction technique employed.

In order to evaluate the effects of sulfonation variables on cell wall

sulfur distribution, it was necessary to quantitatively describe the

distribution or its components. A number of parameters were reviewed, but none
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Figure 18. Typical linescan histograms displaying the secondary
wall gradient and higher sulfur levels in the middle
lamella; a). double-wall scan; b). cell corner scan.
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b).



-61-

provided a totally satisfactory description of the secondary wall sulfur

gradient. The most meaningful and easily interpreted technique for describing

the components of the cell wall sulfur distribution involves defining key

points across the cell wall and calculating the ratios between the counts at

these points. These points, shown in Figure 18, are the maximum (A) in the

secondary wall near the lumen, the minimum (B) in the secondary wall near the

middle lamella, and the average cell corner counts (CC). Since the compound

middle lamella (CML) is poorly resolved in the double-wall scans, data from the

adjacent cell corners were used instead.

The distribution across the secondary wall can be partially described as

the ratio of point A to point B, and has been termed the A/B ratio. Given the

degree of scatter in the linescan histograms, such as those in Figure 18,

defining points A and B from the data in this form would be rather difficult.

To simplify this task, the secondary wall (S2 plus S3 only) data were smoothed

using the BMDP2R program for stepwise polynomial regression on the Burroughs

B6900. Most of the regression curves represented polynomials of order 3 or

less, such as those in Figure 19, while some represented higher order

polynomials.

The cell corner sulfur levels were described by taking the ratio of the

average cell corner counts (CC) to the value B in the adjacent secondary wall.

This ratio has been called the CC/B ratio. The ratio of CC to the average

secondary wall sulfur counts may also be an appropriate parameter to describe

cell corner sulfur counts. However, if the gradient across the secondary wall

is the result of some reactivity trend or diffusion limitations, comparison of

cell corner counts to those in the adjacent portion of the secondary wall may

be more appropriate.
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Figure 19. Linescan
stepwise
a). from
b). from

data for single secondary walls smoothed by
polynomial regression (program BMDP/2R);
the wall on the left in Figure 18a;
the wall in Figure 18b.
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VP1 Results

This and the upcoming sections discuss the linescan results for each of

the three experiments. The linescan results are summarized in the manner

shown in Table 8 for the VP1 data. Included in the table are the treatment

means for net sulfur counts at selected points in the cell wall (A, B, CC),

sulfur count ratio data (A/B, CC/B), and the average net sulfur counts per

pixel (S) for the secondary wall (S2+S3).

Table 8. VP1 treatment means for various parameters used to describe the
degree of sulfonation or relative degree of sulfonation of
different cell wall layers. Sulfur content data from Table 7
included. 95% C.I. = 95% confidence interval.

Na2S03
conc.,
mole/i

0.48

1.03

1.59

0.48

1.03

1.59

MEAN
+95% C.I.

A

288

393

585

270

433

913

B

188

262

402

185

277

640

CC

53

77

115

53

79

173

Parameter

A/B

30 1.65

13 1.49

34 1.45

37 1.59

39 1.68

3 1.42

1.55
+.15

CC/B

2.97

2.89

2.92

3.18

2.84

3.08

2.97
+.22

S

225

304

455

212

343

722

Sulfur
Content

0.41

0.53

0.70

0.40

0.59

0.71

Within each of the experimental designs, the influence of treatment

variables on the A/B and CC/B ratios was evaluated using an analysis of

variance (AOV). The design of the AOV was a mixed model which accounted for

all sources of variability in the data. These sources are illustrated in

Figures 15 to 17. AOV tables for the VP1 cooks are shown in Table 9. Using

Time,
min.

20

20

20

40

40

40
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Table 9a as an example, all treatment terms (Time, Na2SO3 concentration) and

their interaction (Time X Na2SO3) are fixed variables. Terms which account for

random wall-to-wall variability (Wall), chip-to-chip variability (Chip), and

variability between duplicate scans (Scan) are random variables nested within

the treatment terms. The term, Location, accounts for systematic variations

between walls near the edge of the chip and walls near the center of the chip.

The AOV results from the three experiments will be discussed with their

corresponding linescan results in each of the upcoming sections.

The A/B ratio and CC/B ratio data in Table 8 suggest no significant

effects of time or sodium sulfite concentration on these parameters. The AOV

results in Table 9a confirm the absence of these effects in the A/B ratio data.

The AOV results for the CC/B ratio data in Table 9b also demonstrate no

significant sodium sulfite concentration effect, but missing data prevented a

rigorous analysis of the time effect. The AOV tables for both the A/B and CC/B

ratio data demonstrated significant random wall-to-wall variability (Wall

term), but the low F-ratio for the Location term demonstrated no systematic

variability across the chip in the radial direction. There was also no

significant chip-to-chip variability (Chip term) beyond that which can be

attributed to variation between walls within the same chip.

All of the sulfur count data in Table 8 demonstrated an increase in net

sulfur counts with sodium sulfite concentration, and an increase in net sulfur

counts with time at only high liquor concentrations. These trends are con-

firmed by the analysis of variance table for S, the average net secondary wall

counts, in Table 9c. This table demonstrates significant effects due to time,

sodium sulfite concentration, and their interaction term (Time X Na2S03). As

with the A/B and CC/B ratio data, only random wall-to-wall variability (Wall)

was significant among the other terms.
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Table 9. AOV table for VP1 cooks; a). net A/B ratio;
b). net CC/B ratio; c). net secondary wall
sulfur counts (average net sulfur counts per
pixel)

a). Net A/B ratio

Error term
Sum of
squares

Mean
DF square

Tail
F prob.

Time
Na2S03 concen.
Time X Na2S03
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

0.03920
0.04516
0.66032
3.69049
0.40990
7.20003
1.16603

1 0.03920
2 0.02258
2 0.33016
6 0.61508
2 0.20495

22 0.32727
36 0.03239

b). Net CC/B ratio

Error term
Sum of
squares

Mean
DF square

Tail
F prob.

Na2S03 concen. Chip 0.30766
Chip Wall 2.14789
Location Wall 0.49476
Wall Scan 12.20325
Scan 6.95780

c). Net secondary wall sulfur counts (S)

Error term
Sum of
squares

Mean
DF square

Tail
F prob.

Time
Na2S03 concen.
Time X Na2S03
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

150655
1845894
227137
112504
10415

1119797
4358

1 150655
2 922947
2 113568
6 18751
2 5208

22 50900
36 121

Source

0.06
0.04
0.54
1.88
0.63
10.10

0.809
0.964
0.610
0.143
0.557
0.000

Source

2
6
2.
18
27

0.15383
0.35798
0.24738
0.76270
0.25770

0.43
0.47
0.32
2.96

0.669
0.843
0.734
0.006

Source

8.03
49.22
6.06
0.37
0.10

420.66

0.030
0.000
0.036
0.585
0.999
0.000
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The results for the mean net secondary wall sulfur counts are in close

agreement with the corresponding sulfur content results, except for the

presence of a time effect at higher sodium sulfite concentrations, which was

not observed in the sulfur content data. A plot of sulfur count data against

Schoniger flask sulfur content data is shown in Figure 20. The co$ined VP2

and LP1 data demonstrate a linear trend. The first five VP1 cooks (squares)

demonstrate a linear trend which deviates markedly from that of the other two

experiments. The sixth VP1 cook, which yielded mean secondary wall sulfur

counts of 722, deviates considerably from the other VP1 data and is actually

more in agreement with the VP2 and LP1 data.

These results suggest that the five VP1 cooks are actually deviating from

the norm. Unusual levels of mass loss or deviations in section thickness

would be likely sources for this deviation, but this is probably not the case.

Such differences would appear as comparable differences in linescan background

counts, which were not observed. A more likely source for this deviation may

be incomplete chip impregnation. Recall that the VP1 cooks were impregnated

using a procedure which gave only 90-95% impregnation. Assuming impregnation

in the longitudinal direction is limiting (8,16), improper chip impregnation

should yield lower sulfur contents in the center of the chip, where linescan

data were collected. Although the sulfur content in the center of the chip is

markedly affected, the effect on overall chip sulfur content is probably

minimal.

In the case of the sixth VP1 cook, which deviates from the other five, it

is likely that the longer time combined with the higher sodium sulfite concen-

tration allowed excess sodium sulfite to diffuse into the center of the chip,

resulting in more complete sulfonation there. This process may not occur at
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Figure 20. Plot comparing mean secondary wall net sulfur
count data with Schoniger flask/ion chromatography
sulfur contents.

lower liquor concentrations because of depletion of sulfite ions and, possibly,

a more rapid reduction in liquor pH. These phenomena may restrict sulfite

diffusion and consumption in the center of the chip during the later stages of

the cook, thus maintaining the lower sulfur levels there. This would account

for the interaction term in Table 9c.

VP2 Results

The analysis of the VP1 cooks revealed a great deal of variability which

could be attributed primarily to random variability between cell walls.

Systematic variability across the chip (Location) and random chip-to-chip

variability (Wall) were not significant. Given these findings, some changes

were made in the linescan collection procedure for the VP2 and LP1 cooks.

Since random wall-to-wall variability, and not chip-to chip variablilty, was
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the major source of random error, the number of chips evaluated was kept at two

and the number of walls per chip was increased from three to four. Since

systematic wall-to-wall variability did not seem to be too important, these

four walls were divided among only two locations within the chip instead of

three. These locations were near the edge (tangential face) of the chip and

near the center of the chip with respect to the radial axis.

The linescans for the VP2 and LP1 cooks were performed from the lumen to

cell corner instead of across the tangential double wall. This was done for

two reasons. First, the double wall scans provided little added information

over that from the single wall scans, and required more time to acquire.

Second, the compound middle lamella data from the double-wall scans were found

to be of little use. Single-wall scans into the cell corner provided all of

the required data in one scan.

The treatment means for the VP2 cooks are shown in Table 10. The

independent variable, effective Na2S03 concentration, accounts for cooking

liquor dilution in the chip by moisture which was in the chip prior to liquor

impregnation. At the time of liquor impregnation, the chips used for the VP2

cooks had a moisture content of 29% (based on OD wood) due to conditioning at

100% RH. The chips used for the VP1 and LP1 cooks were bone dry, so the

effective concentration would be that of the cooking liquor. These effective

concentrations are used in the regression analysis and computer modeling.

As with the VP1 cooks, the A/B ratio results for the VP2 results are very

consistent. These results imply that cooking to the same sulfur content at

different temperatures does not influence the secondary wall sulfur

distribution in vapor-phase cooks. This conclusion is confirmed by the AOV

results in Table 11a, which reveal no other sources of variation.
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Table 10. VP2 treatment means for various parameters used to describe the
degree of sulfonation or relative degree of sulfonation of
different cell wall layers. Sulfur content data from Table 7
included. 95% C.I. = 95% confidence interval.

Na2SO3 conc., Parameter
Time, Temp., mole/1 Sulfur
min. oc Liquor Effective* A B CC A/B CC/B S Content

5 160 0.48 0.26 418 252 808 1.66 3.21 278 0.30

5 160 1.03 0.55 698 448 1396 1.63 3.15 492 0.46

20 140 0.48 0.26 253 156 477 1.66 3.12 176 0.32

20 140 1.03 0.55 621 388 975 1.62 2.54 434 0.48

MEAN 1.64 3.01
+ 95% C.I. +.06 +.17

* The effective Na2S0 3 conc. accounts for liquor dilution by chip
moisture within the chip.

The CC/B ratio data in Table 10 suggest a difference between treatments,

but the AOV results in Table 11b cannot attribute this difference to the

treatment variables. The interaction term (Time X Na2S03) is also not

significant. Although no significant random chip-to-chip variability was

present, both random (Wall) and systematic (Location) wall-to-wall variability

were found. The CC/B ratio was found to be higher towards the edge of the chip

than it was towards the center.

The average sulfur count data for the secondary wall (S) in Table 10

demonstrated higher sulfur counts at higher sodium sulfite concentrations,

and, in the case of the cooks using 1.03 molar sodium sulfite, demonstrated

comparable sulfur counts at both time-temperature combinations. These results

agree with the corresponding sulfur content data. The one discrepancy between

the two sets of data is the relationship between the two cooks performed with
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Table 11. AOV table for VP2 cooks; a). net A/B ratio;
b). net CC/B ratio; c). net secondary wall
sulfur counts (average net sulfur counts per
pixel).

a). net A/B ratio

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

Time-temp.
Na2S03 conc.
Time X Na2S03
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

0.000594
0.025881
0.000193
0.239517
0.167383
1.387641
1.446042

1 .000594
1 .025881
1 .000193
4 .059879
1 .167383

23 .060332
32 .045189

b). net CC/B ratio

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

Time-temp.
Na2SO3 conc.
Time X Na2S03
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

1.927238
1.604022
1.075369
2.783253
1.768235
7.925922
1.764033

1 1.92724
1 1.60402
1 1.07537
4 0.69581
1 1.76824

23 0.34461
32 0.05513

c). net secondary wall sulfur counts (S)

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

Time-temp.
Na2SO3 conc.
Time X Na2S03
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

101841
892316

7332
42063
41057

428965
2183

1 101841
1 892316
1 7332
4 10516
1 41057

23 18651
32 68

SOURCE

0.01
0.43
0.00
0.99
2.77
1.34

0.925
0.547
0.958
0.445
0.116
0.229

SOURCE

2.77
2.31
1.55
2.02
5.11
6.25

0.171
0.204
0.282
0.134
0.030
0.000

SOURCE

9.68
84.85
0.70
0.56
2.20

274.28

0.036
0.001
0.451
0.832
0.500
0.000
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0.48 molar sodium sulfite. The two sulfur contents are comparable, while the

sulfur counts (S) for the 140 °C cook are much lower than those obtained from

the 1600C cook.

The AOV results in Table llc confirm the presence of the concentration

effect observed in both sets of data and a significant effect due to the time-

temperature combinations. The presence of this second effect can be attributed

to the two 0.48 molar sodium sulfite cooks. Table llc also reveals significant

wall-to-wall variability with no other sources of variation.

LP1 Results

The LP1 data differ from the vapor-phase cook data with regard to changes

in A/B ratio with treatment variables. The data in Table 12 show a marked

decline in the A/B ratio as the pH shifts from acidic to alkaline, but no

effect due to time. The AOV results in Table 13a confirm this observation.

The A/B ratio data demonstrated random wall-to-wall and chip-to-chip variation,

but no significant effect due to location within the chip.

The CC/B ratio data appear to be influenced by time and liquor pH.

Although the AOV results in Table 13b demonstrate a significant time trend, the

apparent trend due to pH is not significant, probably due to high chip-to-chip

variability. The contributions of the Wall and Location terms are as before.

The LP1 sulfur count data, in Table 12, are in close agreement with the

sulfur content data. Both types of data show a pronounced increase with

increased time and when the pH is shifted from the acidic to alkaline range.

The AOV results for the mean secondary wall sulfur count data in Table 13c

confirm the existence of these trends, as both the time and pH effects are

significant. Although there is no significant systematic variation across the
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Table 12. LP1 treatment means for various parameters used to describe
the degree of sulfonation or relative degree of sulfonation of
different cell wall layers. Sulfur content data from Table 7
included.

Parameter
Time, Liquor Sulfur
min. pH A B CC A/B CC/B S Content

0 4.3 608 345 1064 1.76 3.07 394 0.44

0 8.4 864 625 1796 1.36 2.88 672 0.61

0 10.5 1062 707 1826 1.50 2.57 781 0.58

60 4.3 1067 637 1724 1.69 2.77 714 0.64

60 8.4 1696 1140 2316 1.48 2.05 1234 0.81

60 10.5 1277 1021 2001 1.26 1.99 1087 0.78

MEAN 1.51 2.55

thickness of the chip, significant random wall-to wall variability and chip-

to-chip variability are present.

The observed changes in A/B and CC/B ratio with pH and time could be

attributed to the influence of these two treatment variables on diffusion

through the cell wall and reactivity differences across the cell wall. If

diffusion were a limiting factor in these cooks, pH could influence the A/B

ratio through its effects on cell wall diffusivity. Alkaline pH levels are

more likely to induce swelling in the cell wall, which will open the wall

structure and increase cell wall diffusivity. The higher diffusivities should

then yield flatter distributions. Yield loss during the 60 minute alkaline

cooks could have also increased diffusivity, resulting in flatter distri-

butions. In addition to these effects, condensation reactions during acidic or

bisulfite pulping will result in the formation of cross-links between lignin
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Table 13. AOV table for LP1 cooks; a). net A/B ratio;
b). net CC/B ratio; c). net secondary wall
sulfur counts (average net sulfur counts per
pixel).

a). net A/B ratio

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

0.097219
2.334710
0.510797
0.872090
0.090221
1.582616
0.470653

1 .09722
2 1.16736
2 0.25540
6 0.14535
1 0.09022

35 0.04522
48 0.00981

b). net CC/B ratio

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

7.773678
7.107676
1.105924
6.721078
0.143840
10.182418
0.564185

1 7.77368
2 3.55384
2 0.55296
6 1.12018
1 0.14384

35 0.29093
48 0.11754

c). net secondary wall sulfur counts (S)

ERROR TERM
SUM OF
SQUARES

MEAN
DF SQUARE

TAIL
F PROB.

1 3773887
2 1620314
2 165282
6 124536
1 6

35 28902
48 417

SOURCE

Time
pH
Time X pH
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

0.67
8.03
1.76
3.21
2.00
4.61

0.445
0.020
0.251
0.014
0.187
0.000

SOURCE

Time
pH
Time X pH
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

6.94
3.17
0.49
3.85
0.49

24.75

0.039
0.115
0.633
0.005
0.492
0.000

SOURCE

Time
pH
Time X pH
Chip
Location
Wall
Scan

Chip
Chip
Chip
Wall
Wall
Scan

3773887
3240628
330565
747216

6
1011578
20012

30.30
13.01
1.33
4.31
0.00

69.31

0.000
0.007
0.333
0.039
0.999
0.000
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units, inhibiting swelling even further. This could enhance diffusion 

limitations under bisulfite pulping conditions. In the case of the CC/B

ratio, the decrease in this parameter with time could be a result of selective

sulfonation of the outer S2 or selective delignification of the middle lamella

in the later stages of the cooks.

Analysis of the sulfur distribution data from the three factorial

experiments has yielded several important results.

1. Under vapor-phase cooking conditions, the parameters used to
describe the secondary wall sulfur distribution (A/B ratio) and
cell corner counts (CC/B ratio) were not influenced by time,
temperature, or sodium sulfite concentration. The CC/B ratios
obtained agree with the results of Beatson, et al. (17).

2. Under liquid-phase cooking conditions, alkaline pH levels yielded
flatter secondary wall sulfur distributions, as measured by the A/B
ratio, than acidic pH levels.

3. Under liquid-phase cooking conditions, longer cooking times gave
lower relative cell corner counts (CC/B ratio).

Of principle importance is the presence of the secondary wall sulfur gradients.

The existence of these gradients is confirmed by the 95% confidence intervals

for the mean A/B ratio data in Tables 8 and 10. These intervals were all well

above a value of 1.0, which represents a flat distribution. This demonstrates

that the secondary wall gradients exist beyond any reasonable doubt.

Other linescan data

Along with the samples from the above experiments, two other sets of

samples underwent linescan analysis. The first set of samples was latewood

chips which had undergone no sulfite treatment. The average sulfur content of

these chips was determined by Schoniger flask combustion - ion chromatography

to be 0.003%. Given the sensitivity of this test, this result could be

interpreted as a 0% sulfur content determination. This is confirmed by STEM-
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EDS spectral data which yielded average net sulfur counts of zero, and by

linescan data collected at 120 seconds per pixel which detected virtually no

sulfur in the cell wall.

The second set of samples was a set of chips which underwent vacuum

impregnation with the VP1 chips in 1.59 molar sodium sulfite. After the 30

minute impregnation, the chips underwent repeated soakings in distilled water

in the same manner as the cooked chips. Schoniger flask combustions with ion

chromatography yielded a sulfur content of 0.19% for these samples.

Linescans were performed on two of these chips using the experimental

design used for the VP2 and LP1 chips. Because of the low sulfur contents,

the linescans were collected at 90 seconds per pixel. The average A/B ratio

for these samples was 1.70, while the average CC/B ratio was 3.64. The

presence of the pronounced secondary wall sulfur gradient may be attributed to

slow penetration of the dry cell wall by the liquor during impregnation

(42,43,44) combined with rapid sulfonation at sulfur contents below 0.1% (38).

The higher CC/B ratio may be the result of different relative reactivities

between the secondary wall and middle lamella lignin at low levels of

sulfonation.

The CC/B ratio of 3.64 is higher than those obtained from the other

samples, which were cooked. This apparent drop in CC/B ratio between impreg-

nation and the end of the cook contradicts the results obtained from cell wall

tissue fractions by Whiting and Goring (21). At the early stages of 1400C

sulfite cooks (no impregnation or heat-up time), the sulfur contents of their

secondary wall and middle lamella fractions represented CC/B ratios of 2 or

less. As the cooks progressed, the data suggested an increase in CC/B ratio

to a value comparable to those obtained in the present study. The difference
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in these two sets of results may be a consequence of the difference in tempera-

ture at which at which the early stages of sulfonation occurred. Sulfonation

at room temperature may not exhibit the differences in relative reactivity

observed at higher temperatures, which suggests possible differences in the

sulfonation mechanism at these two temperatures. Species differences and the

nature of the samples (tissue fractions vs. chips) may also be factors.

Analysis of combined data

In order to detect general trends which may not have been detected in the

individual experiments, linear regression analyses were performed on the A/B

ratio data from all of the cooks against a variety of cook variables. Figures

21 and 22 show the linear regression results obtained when the A/B ratio is

plotted against liquor pH and chip sulfur content, respectively. Although the

correlation coefficients are rather low, these graphs suggest that the

secondary wall sulfur distribution becomes flatter as final pH and chip sulfur

content are increased.

Performance of a stepwise regression against a wide number of independent

variables yielded the results in figures 23 and 24. As with the simple linear

regressions, the multiple correlation coefficients are not overly high, but

Figure 23 suggests a decline in A/B ratio with increased pH and sulfur content.

The apparent influence of pH on the secondary wall sulfur distribution can

again be attributed to the greater tendency for the wood to swell at higher pH

levels, resulting in faster sulfite ion diffusion across the cell wall. The

influence of sodium sulfite concentration can also be explained in terms of

limited diffusion and will be discussed with the diffusion model results.

One problem with this particular analysis is the description of sulfur

distribution in terms of sulfur content, which is not an independent variable.
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A/B RATIO vs. LIQUOR pH
(MULTIPLE R-squared = 0.659)
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Figure 21. Simple linear regression of A/B
liquor pH.

A/B RATIO vs. Na2S03 CONCENTRATION
(MULTIPLE R-squared = 0.698)
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Figure 22. Simple
liquor

linear regression of A/B
Na2S03 concentration. VP

ratio vs.
cooks only.
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A/B RATIO vs. pH AND SULFUR CONTENT
(MULT. R-squared = 0.751)
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Figure 23. Multiple linear regression of
liquor pH (abscissa) and chip
(parallel lines).
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If the sulfur content were replaced with liquor sodium sulfite concentration,

the same general relationship is obtained, as shown in figure 24. The

similarity between the two figures can be attributed, in part, to a close

relationship between sulfur content and sodium sulfite concentration. See

figure 25. Sulfur content depends rather strongly on sodium sulfite concen-

tration in the vapor-phase cooks, but since the liquid-phase cooks were all

done at 1.03 mole/l, no such conclusion can be made for these cooks.

MASS LOSS

The test for mass loss at long exposures tested exposures of 20 to 60

seconds. The results from this test, which are shown in Table 14, revealed no
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Figure 25. Simple linear regression of A/B ratio vs.
liquor sodium sulfite (Na2S03) concentration.
Regression lines are for vapor-phase cooks only.
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Table 14. Comparison of net sulfur counts at various linescan
accumulation times. The consistency of the count rates
was initially interpreted as an absence of mass loss.

Accumulation Average Average
time, secs/pixel counts/pixel counts/sec

20 123.4 6.2

30 185.5 6.2

45 288.9 6.4

60 377.3 6.3

change in count rate with exposure time. This suggested that the mass per

unit volume did not change between 20 and 60 seconds exposure. Under the

assumption that mass loss was gradual, it was tentatively concluded that mass

loss was not occurring in the STEM.

The findings of Mary, Revol, and Goring (30), which were published

several months after the above test was done, cast much doubt on the

conclusion that mass loss was not occurring. Their data demonstrated mass

loss to occur very rapidly (within a few seconds) in wood samples under

conditions used for x-ray microanalysis. In the above test, mass loss may

have occurred within a few seconds, resulting in constant count rates beyond

that time. The higher counts during this short time interval probably did not

make a significant contribution to the total counts obtained after 20 or 60

seconds, so there was no apparent difference between these two times. Since

the test at longer times was unable to detect rapid mass loss, the mass loss

determinations using timescans at shorter times were performed.

On the average, mass loss in TEM was approximately 40%. Two mass loss

curves from timescans are shown in Figure 26. The curve in Figure 26a has a
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Figure 26. Mass loss curves for 250 nm thick sulfonated wood
cross-sections embedded in Spurr epoxy resin;
a). higher beam intensity giving 42.6% mass loss;
b). lower beam intensity giving 38.6% mass loss.
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much faster rate of mass loss due to a higher beam intensity (electron flux),

but the overall mass loss is comparable to that obtained at a lower beam

intensity (Figure 26b). This agrees with other studies which found increased

beam intensity to increase the rate of mass loss, but always yielded the same

final mass loss (30,45). If mass loss were plotted against electron dose,

which encompasses beam intensity and time, different beam intensities give very

similar mass loss curves (30).

During the course of linescan collection, the samples were exposed to

several types of electron beams of varying intensity. Initially, the sample

was examined under a TEM electron beam of moderate intensity in order to search

for a suitable wall to scan. Once the wall was found, the linescan was set up

in a STEM scanning mode, while the linescan itself was performed in what could

be called STEM dot mode. Dot mode refers to the situation where a very fine

and intense electron probe is stationary on the sample for a significant period

of time (10 - 60 seconds). It was suspected that exposing the sample to such a

probe, as opposed to the broader TEM beam, would induce added mass loss in the

irradiated area. To test this possibility, samples were exposed in TEM mode

for a sufficient amount of time to allow the mass loss curve to level off. The

100CX was then switched to STEM scanning mode for a few minutes and to STEM dot

mode. The results showed that after the initial mass loss in TEM mode, no

further mass loss occurred in STEM mode.

This observation could be the result of conformance with the observed

trends concerning the relationship between electron dose and mass loss, or to a

stabilization of the sample under the less intense TEM beam or STEM scanning

beam. Data generated in this work support the existence of a stabilization

effect in at least some cases. Linescans were performed in areas which had

been exposed to a STEM scanning beam for at least 5 minutes and adjacent areas
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which had never been exposed to the electron beam. In a number of cases, the

linescan across the area which had been previously exposed to the STEM scanning

beam gave higher counts than that across the adjacent previously unexposed

area. This suggests that the previously exposed area, or the resin in this

area, was in some way cured by the electron beam in a manner which increased

sample stability. In the case of a very intense beam irradiating a previously

unexposed area, extensive mass loss can occur before the curing effect can

occur.

Because of low count rates, it was difficult to collect good sulfur loss

data in TEM mode. Mass loss and total sulfur loss data obtained in scanning

STEM mode are shown for the secondary wall and cell corner in Tables 15 and 16.

The overall mass loss results for the secondary wall generally agree with those

obtained in TEM mode. The loss of net sulfur counts was much lower than the

overall mass loss. This is probably due to the greater resistance of the

sulfonated lignin to mass loss (30).

Table 15. Secondary wall mass loss data obtained from STEM
scanning mode.

Timescan loss data, %
Sample Wall Total-mass Net-sulfur

1 1 -41.5 -8.5
1 2 -53.2 -26.5
1 3 -47.3 -16.6
1 4 -44.4 -6.0
1 Mean -47.8 -14.4

2 1 -34.6 -20.8
2 2 -41.6 -7.7
2 3 -47.3 -5.3
2 4 -41.5 -12.1
2 Mean -41.3 -11.5

Overall Mean -44.6 -13.0
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Table 16. Cell corner mass loss data obtained from sample 1 in
Table 15 using STEM scanning mode. These data were not
obtained from the same walls as the secondary wall data.

Wall Total mass loss, %

A -21.1
B -38.3
C -26.7
D -11.6
E -24.0

Mean -24.3

Sample 2 in Table 15 also provided total mass loss data for the cell

corner. These data are shown in Table 16. No sulfur loss data were available

because the high magnifications required to obtain cell corner data caused

rapid mass loss. This required short time increments which prevented accumu-

lation of sufficient sulfur counts. As shown in Table 16, the cell corner mass

loss results are much lower than those from the secondary wall, probably as a

result of the higher lignin levels in the cell corner. Assuming the absence of

matrix effects, the sulfur loss levels are probably comparable to those in the

secondary wall.

As shown in Table 17, the relative amounts of total mass loss between the

secondary wall and cell corner in these experiments are comparable to those

derived from the results of Mary, et al.(30). These previous results supplied

mass loss results for individual cell wall components. To convert these

results to those in Table 17, a secondary wall with a 25:25:50% lignin : hemi-

cellulose : cellulose ratio and a cell corner of 100% lignin were assumed. As

shown in Table 17, their results demonstrated greater mass loss levels than

those obtained in this work. The difference is probably due to the presence of

resin in the samples used in this work. This helped stabilize the sections

against further mass loss.
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Table 17. Comparison of mass loss results with those of
Mary, et al.(30). The wall layer mass loss data
for Mary, et al. was estimated from mass loss data
for individual wall components and rough estimates of
their relative proportions within the wall layers.

Mass loss, %
Wall layer This work Mary, et al.

Secondary -41.3 -55.3

Cell corner -22.3 -30.0

Ratio (CC/20 wall) 0.54 0.54

The mass loss results presented here indicate that mass loss and sulfur

loss can have a pronounced effect on the detected sulfur levels within the

section. However, their influence on cell wall sulfur distribution is not as

clear. In order to measure differences in sulfur loss across the cell wall,

scanning STEM timescan data must be collected at high magnifications from

selected areas in the cell wall. As with the cell corner data, higher magni-

fications in scanning STEM mode result in higher mass loss rates. The shorter

time intervals required to detect the loss in counts yield sulfur counts which

are too low to give useful results. Therefore, the measurement of sulfur loss

across the cell wall was not possible.

POSSIBLE SOURCES OF THE OBSERVED SULFUR DISTRIBUTIONS

All sulfonation treatments tested resulted in cell wall sulfur

distributions possessing two key characteristics: a bound sulfur gradient

across the secondary wall, and a high bound sulfur concentration in the middle

lamella. The secondary wall gradients were characterized by a decline in bound

sulfur concentration from the S3 layer to a point in the S2 layer at or near

the S1 layer. The sulfur concentration then increased by a factor of two to
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three from the outer S2 layer to the middle lamella. Possible sources of the

observed secondary wall sulfur gradient have been investigated through the

literature, experiments, and mathematical modeling. The sources investigated

were lignin distribution and reactivity, and limitations on sulfite ion

diffusion into the cell wall from the lumen.

LIGNIN DISTRIBUTION

Previous Studies

Numerous studies have evaluated lignin distribution in a variety of

species, including southern pine. These studies have used a variety of

techniques, such as lignin skeletonizing (35,46), UV microscopy (32,47), and

x-ray analysis of brominated wood (33,34,48,49). All techniques found a fairly

uniform S2 lignin distribution in all species evaluated, but a number of

studies found higher lignin levels in the S3 layer. In black spruce

branchwood, Scott and Goring (47) found enhanced S3 lignin concentrations in

many, but not all, of the cells examined. Although many peaks appearing at the

lumen/S3 interface were artifacts, spectral data confirmed that many of the

observed absorbance peaks at the S3 layer were the result of higher lignin

concentrations and not an artifact.

Of primary concern are the lignin distribution studies performed on

loblolly (southern) pine. Studies based on lignin skeletonzing and X-ray

analysis of brominated wood have indicated a uniform lignin distribution across

the S2 layer and higher levels in the S3 layer (35,46,48,49). A schematic of

such a distribution is shown in Figure 27. In an effort to quantify this

difference, Saka and co-worker (48,49) found the ratio of S3 to S2 lignin

levels to be about 1.4. These findings were not confirmed by those of

Plouff (33), who with x-ray analysis of brominated latewood, found a uniform
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Figure 27. Schematic of the cell wall
loblolly pine (48,49).

lignin distribution in

lignin concentration across the entire secondary wall. It is likely that the

contradiction in results could be the result of the inconsistent presence of

the lignin-enriched S3 layer, such as that observed by Scott and Goring (47) in

spruce branchwood. As it now stands, both the accuracy of the skeletonizing

and bromination techniques are questionable due to the lack of a thorough

knowledge of the chemistry involved in the two techniques (34,35).

A higher lignin level in the S3 could account for much of the difference

in sulfur counts between the S3 and the minimum near the S1. However, the S3

includes only the first few pixels in the linescan and, as exemplified by the

data in Figure 18, a gradual decline that extended well beyond the S3 layer was

r-

I

I
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usually observed. If the sulfur distributions were entirely the result of the

lignin distributions recorded in the literature, there would be a sulfur peak

in the S3, an abrupt drop in counts at the S3-S2 interface, and a flat

distribution across the S2. In order to obtain a better understanding of cell

wall lignin distribution in the southern pine latewood used for this study,

lignin distribution was evaluated with UV microscopy.

UV Microscopy of Southern Pine latewood

The lignin distribution data obtained by UV microscopy took several

forms. Data obtained at the U.S. Forest Products Laboratory consisted of

photographs of the cell walls taken in a UV microscope and densitometer traces

across the cell walls obtained from the negatives of these photographs. Lignin

distribution profiles were also obtained with the help of Carl Zeiss, Inc.

using UV microspectrophotometry. This equipment also provided UV spectra from

various regions of the cell wall. Despite limitations, these data provided a

somewhat clearer picture of cell wall lignin distribution.

The UV photographs obtained from two of the samples provided a good

gualitative view of cell wall lignin distribution. A photo from a treated

wood chip is shown in Figure 28. The photo reveals a darker middle lamella due

to the higher lignin levels there. The S3 layer is also darker in some

places, suggesting a lignin-enhanced S3 layer.

The dashed line across the double wall indicates the path of a

densitometer trace, the profile from which is shown in Figure 29. This

profile represents the lignin distribution across the cell wall, which, in

this case, consists of a middle lamella peak, a flat distribution or gradient

across the S2 layer, and a peak in the S3 layer. Most of the distributions
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Figure 28. UV photograph of cell walls from sample 3JX-EM,
showing the path of the densitometer trace.
Photograph taken using a 300 nm light source.

::I "! 'L: - :L.'fl:II.T L;:I.:I ' .L2: A. I iYe 4 ' -
'

4 L' 'Ii 1i'!r; '. .;:: . ': ! ,J!i '. Ht _ _ LT .MH -;t c -qH M.: - :
.it h'i;tt tt V ,i t:l'- i :. t

,.i,---4 i -.. ' · . . 1, .. i -; -.4 -
¸

' » . . .. . . . .... ;

tt .. ... ..7T 7i-"- 4 4 1 4- i 

Figure 29. Densitometer trace from the above cell wall.

! CZ3

�!; o is; � -,h., Via; ;... � I ... 11:H.-1 iti : .l ':I .:.:-ittif"lit



-9o-

obtained had flat S2 layer distributions or slight gradients across the S2

layer. Many had peaks in the S3 layer. The other profiles are shown with

their corresponding UV photographs in Appendix 2.

These lignin distributions had many simularities to the observed sulfur

distributions, but these data should be interpreted with some caution. A lack

of familiarity with the densitometer prevented the establishment of a scale by

which to measure density variations. This problem was complicated by the

necessity of using different exposures to obtain the negatives; the negatives

for the non-treated samples were obtained at a higher exposure than those for

the treated samples. Because density and contrast in the UV negatives rely

heavily on exposure, particularly exposure time (47), comparisons between the

two samples should be done with caution.

Interpretation of the S2 distribution data also requires some caution. It

is generally assumed in this kind of work that the section thickness is uniform

across the cell wall. However, thickness variations across the S2 layer, such

as those arising from sectioning artifacts, could create what appear to be

lignin gradients across the S2 layer. This is probably the case with the two

gradients observed in Figure 29. Examination of the corresponding walls in

Figure 28 can detect the lighter regions (lower absorbance) in the outer

secondary wall which result in the observed gradients. Although it may not be

apparent in Figure 28, closer examination of the original photograph for Figure

28 reveals a strong orientation of these areas in the direction perpendicular

to the direction in which these samples were sectioned. These lighter areas

were sometimes observed extending into adjacent cells. These observations

strongly suggest that the observed S2 gradients in Figure 29 are sectioning

artifacts. Although the presence of artifacts is not obvious in the other

walls displaying an S2 lignin gradient, this finding does cast some doubt
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on their existence. In any case, the flat S2 lignin distribution predominated

and most of the observed gradients were not overly pronounced.

The spectra and distributions obtained from the UV microspectrophotometry

supplemented the data obtained from the densitometry work. The spectra,

examples of which are shown in Figure 30, reveal the relative absorbances of

the secondary wall (S2 layer), cell corner, and the resin in the lumen

throughout the UV spectrum. The spectrum in Figure 30a represents most of the

data obtained. In this spectrum, the more lignified cell corner absorbs more

UV radiation than the S2 layer. The resin had little absorbance above 272 nm.

After subtracting resin absorbance, the absorbance ratios obtained were

generally between 2.0 and 2.7 in the 280-300 nm range. This compares to a

value of 2.9 obtained by UV microscopy of southern pine (33), and a value of

3.8 by bromination/SEM-EDS of loblolly pine (49).
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Figures 30b and 30c demonstrate some inconsistencies in the spectral

data, which also appear in some of the distribution data. Both sets of spectra

reveal significant absorbance by the resin. Comparison of Figures 30a and 30b

suggests an influence of electron beam irradiation on UV absorbance by the

resin. These two sets of spectra were obtained from sections of the same chip

(sample 3; chip 1). All samples are described in Table 6. Those used to

acquire the data in Figure 30a were not irradiated with an electron beam

(sample 3), while those used to acquire Figure 30b were irradiated (sample 3-

EM). The resin in the sections which were irradiated had a much higher UV

absorbance. Chip 2 from sample 3 also gave sections which had extremely high

UV absorbances after irradiation under the STEM electron beam. This can be

seen in the UV photographs and densitometer traces in Appendix 2.

In some cases, the resin in samples which were not irradiated with an

electron beam demonstrated substantial UV absorbance. An example of this is

shown in shown in Figure 30c, where the resin absorbance at 260 nm is actually

higher than that of the S2 layer or cell corner. The occurrence of high resin

absorbance in some of the samples could reflect inconsistencies in the resin

supply or in resin preparation in the lab. Since there is an unknown amount of

resin in the cell walls, the contribution of the resin absorbance to the wall

absorbance is not known. This complicates any efforts to obtain quantitative

or semi-quantitative results from samples showing high UV absorbance by the

resin.

An example of lignin distribution data obtained at 280 nm by UV

microspectrophotometry is shown in Figure 31. This lignin distribution data

has most of the same features as those from the microdensitometry. The three

basic characteristics are the middle lamella peak, the generally flat S2

distribution, and a frequent S3 peak. There is some scatter in the data,
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Figure 31. Lignin distribution obtained by UV microspectro-
photometry. Sample 1, chip 1.

probably due to some imperfections in the section and, possibly, some noise in

the data. Wider beams give smoother profiles, but this obscures important

details in the distribution. Other scans are shown in Appendix 3. As with

the microdensitometer data, some of these data exhibit high levels of UV

absorbance by the resin.

The data from both experiments reveal some interesting results concerning

lignin distribution in southern pine latewood. As has been observed in other

studies (33,35,46,47,48), these experiments have demonstrated an S2 lignin

distribution which is usually flat. A significant number of cell walls

exhibited an S2 gradient, but at least some of these could be attributed to

artifacts, while many of the other gradients were not overly pronounced.
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The observation of a peak in the S3 layer also agreed with many of the

previous works (35,46,47,48). The findings of Scott and Goring (47), however,

suggest caution when studying lignification of the S3 layer with UV microscopy.

They found that separation of the resin and cell wall at the lumen/S3 interface

results in diffraction of the incident light in such a way as to form what

appears to be a pronounced absorbance peak at the interface. Careful examina-

tion of the UV photographs demonstrated that a number of the S3 layers, and not

the interface between the resin and S3, were indeed darker than the adjacent S2

layer. This observation confirms that lignin-enriched S3 layers were indeed

present.

The presence of this S3 lignin peak suggests that lignin distribution may

have some effect on the secondary wall sulfur distribution in southern pine

latewood, but the absence of a consistent or pronounced S2 lignin gradient

indicates other factors are involved. The inconsistent presence of these S3

lignin peaks may help account for the substantial wall-to-wall variability in

the sulfur distribution data.

LIGNIN REACTIVITY

Due to difficulties in assessing lignin reactivity differences across the

cell wall, this possible source of the observed sulfur distributions has

received less attention than lignin distribution. Much of what is known in

this area concerns reactivity differences between the secondary wall and middle

lamella. Differential reactivity across the secondary wall has been the

subject of much speculation, but little evidence is available to support its

presence or absence.

Several studies with spruce have provided evidence for secondary wall

phenolic hydroxyl contents which are twice those in the middle lamella (22,23).
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Under neutral and alkaline pH levels, the sulfonation of a-carbons requires a

phenolic hydroxyl in order to form the quinone methide intermediate (1,2). As

a result, a sulfite cook would initially be characterized by a higher lignin

reactivity in the secondary wall due to the higher phenolic hydroxyl content.

As the cook progresses in the ultra-high yield range, this difference narrows,

possibly the result of more rapid phenolic hydroxyl formation in the middle

lamella during the course of the cook (50). This change in relative

reactivity was observed by Whiting and Goring (21), who found the sulfur

content of the secondary wall lignin to be at least twice that of the middle

lamella lignin in the first few minutes of a high-yield sulfite cook. After

60 minutes at 1400C, the sulfur content ratio of the secondary to middle

lamella lignin had decreased to a value of around 1.3. These results suggest

that the CC/B ratios obtained from the STEM-EDS work were not only influenced

by lignin distribution, but by changes in relative reactivity of the lignin in

the two cell wall regions.

Possibly related to these differences in phenolic hydroxyl contents are

observed differences in the extent of cross-linking in the secondary wall and

middle lamella. Berry and Bolker (51), using gel degradation theory,

determined the degree of cross-linking in the middle lamella lignin to be

twice that in the secondary wall lignin. The agreement between this finding

and the observed differences in phenolic hydroxyl content suggest that these

added cross links in the middle lamella are mostly ether bonds which tie up

the phenolic hydroxyl groups.

In addition to phenolic ether bonds, evidence suggests that a higher

degree of cross-linking in the middle lamella can be attributed to a higher

degree of condensation in the middle lamella lignin. This was shown by

Westermark (52) in acidolysis experiments on whole wood and middle lamella
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fractions. Studies on cell wall formation have also revealed a more condensed

lignin structure in the middle lamella (53,54). These studies have found that

the middle lamella lignin (including cell corner) forms earlier and under

different environmental conditions than the secondary wall lignin. Some of the

environmental factors which have been related to lignin structure include type

of lignin unit (guaiacyl, p-hydroxyl phenyl), amount and type of carbohydrate

present, and the concentration of peroxidase enzyme (53,54).

It is likely that some of these environmental factors may also extend

their influence into the outer secondary wall, giving the lignin in this

region a more condensed structure. Some of the additional linkages involved

in these condensed structures tie up phenolic hydroxyl groups, effectively

reducing the phenolic hydroxyl content in the affected region of the cell

wall. Therefore, possible lignin structural differences across the secondary

wall could influence the secondary wall sulfur distribution.

In contrast to the above hypothesis, a number of studies which have found

uniform reacted sulfur, or bromine, distributions across the secondary wall

(19,48) have supplied indirect evidence for uniform S2 layer lignin reactivity.

Some of these studies found higher levels of these elements in the S3 layer.

These were attributed to higher lignin levels in the S3, but differences in

reactivity between the S3 and S2 may also be a factor.

One exception to the findings of S2 layer uniformity was the finding of

non-uniform secondary wall sulfur distributions in sulfonated aspen (55).

Lower sulfur levels were found toward the lumen and higher levels toward the

middle lamella. On the assumption of a uniform lignin distribution, this

observation was probably the result of differences in the distribution of

guaiacyl units, which are readily sulfonated, and syringyl units, which are
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not readily sulfonated (55). Since syringyl units are virtually absent in

softwoods, these findings cannot explain the observed sulfur gradients in

southern pine, but they do demonstrate the potential effects of reactivity

differences across the secondary wall.

At this time, there are no known lignin reactivity differences across the

secondary walls in southern pine. Given the known or suspected structural

differences between the secondary wall and middle lamella lignins, it is likely

that a broad transition between the two types of lignin could extend into or

completely across the secondary wall from the middle lamella. However, most

techniques for measuring such trends would involve subdividing the secondary

wall, procedures for which have not been developed.

LIMITED DIFFUSION ACROSS THE CELL WALL

Along with lignin distribution and reactivity, limited diffusion of sodium

sulfite from the lumen into the cell wall could also influence cell wall sulfur

distribution. In order to investigate this possibility, sulfite diffusion

across and reaction within the cell wall were modeled mathematically. A key

piece of information required for such modelling is the diffusivity within the

cell wall. Since there are no published data for sodium sulfite diffusivity

across the cell wall, this work had to rely on theory and data concerning cell

wall physical properties and diffusion in porous solids. This information,

when applied to the model, verifies the feasibility of a limited diffusion

mechanism, but does not supply enough insight into cell wall diffusion to yield

accurate quantitative results. Therefore, many of the results presented are

more qualitative in nature.
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While this work focused on the influence of limited diffusion on the

development of a secondary wall bound sulfur gradient, the model also provides

other information. With information on lignin distribution across the cell

wall, it can predict the combined effects of limited diffusion and lignin

distribution on cell wall sulfur distribution. In the case of the middle

lamella and CC/B ratio, the model can also evaluate the effects of differences

in lignin reactivity between the wall layers. It can also predict many of the

observed trends in cell wall sulfur distribution and chip sulfur content, but

a lack of a thorough knowledge of cell wall diffusion prevents an accurate

quantitative prediction.

In reviewing the model, the following discussion will describe model

development, factors affecting diffusivity in the cell wall, and the diffusion

modeling results. The actual diffusing species is sodium sulfite, which is in

the form of dissociated but electrostatically tied sodium and sulfite ions

(56). Since the presence of the sodium ions influences the diffusivity of the

sulfite ions, all calculations were based on sodium sulfite diffusion.

However, since the diffusion of sulfite is of primary concern in this work,

this discussion will focus on diffusion of the sulfite ions.

Model Development

The model is based on the system in figure 32. This system consists of a

section of cell wall spanning from the S3 the center-point of the middle

lamella and a portion of the adjacent lumen spanning from the center of the

lumen to the S3 layer. Vapor-phase cooking conditions are assumed, so that the

only liquor involved in the cook is that which has impregnated the walls and

occupies the lumen. With the exception of boundary conditions at X = L, the

depletion of sulfite ion in the lumen and wall and the accumulation of bound
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sulfite in the wall are considered independent of the surrounding walls and

lumen.

The model describes the development of profiles for sulfite ion

concentration (S) and bound sulfur concentration (S*) across the secondary wall

as the cook progresses and sulfite ions diffuse across the wall from the

lumen. It is based on nonsteady state diffusion (Fick's Second Law) with

reaction and is described by the equations:

6S/6t = Deff (62S/6x2) + R

R = (6S/6t)rxn = -(6S*/6t) = -k(S)(Sp-S*)

(10)

(11)

where R is the reaction term, k is the second order rate constant, Sp is the

maximum possible bound sulfite concentration, and Deff is the effective

diffusivity of sulfite ion in the cell wall. This last parameter can depend on

X=O X=L
I I

LUMEN 1s31 S2 IMLI

Figure 32. System used for diffusion modelling. Sodium ions, which
are diffusing with the sulfite ions, are not shown.

I
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a variety of factors which include the diffusivity of the sulfite ion in water,

the effects of sulfite ion hydration, porosity and tortuosity of the cell wall,

viscous drag, adsorption, and electrostatic effects.

In order to solve these equations, a number of initial and boundary

conditions have been established. Initially, the lumen contains a sodium

sulfite solution of known concentration (So). The wall is assumed to be

thoroughly impregnated with the liquor at the outset, and none of it has

reacted. In other words,

At t = 0, SL Swall = So

S* = (12)

where SL is the sulfite ion concentration in the lumen at any time, t, during

the course of the cook. The upcoming discussion reveals that diffusivity

across the lumen is much higher than that across the cell wall. As a

consequence, any sulfite ion gradients across the lumen are probably

negligible when compared to those across the cell wall, so the sulfite ion

distribution across the lumen is assumed to be uniform.

During the cook, the system is subject to the following boundary

conditions:

At x = 0, S = SL

dS*/dt = k(SL) (Sp -S*)

At x = L, dS/dx = 0

dS*/dx = 0 (13)

The boundary condition for S* at x = 0 is simply the solution of the reaction

term (equation 11) for S = SL. The boundary conditions for x = L are based on

the assumption of symmetry between the profiles of adjacent walls.
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All aspects of the diffusion modelling are controlled by a diffusion

modelling (DM) program. Within the DM program, equations 10 and 11 are solved

using the IMSL subroutine, DPDES, which transforms any set of partial

differential equations to a series of ordinary differential equations using the

method of lines (57). DPDES then solves these ordinary differential equations

using other IMSL subroutines. The DM program calls DPDES at designated time

intervals at which it solves the equations for S and S* simultaneously at

designated points across the wall.

At each time interval, the main program calculates a new value for SL

using the mass balance,

(V1 + P(Vw)) (SO) = Vl(SL) + P(Vw) (S + S*) (14)

where V1 and Vw are the volumes of the lumen and wall, respectively, and P is

the porosity of the cell wall. The term, P(Vw) (S + S*), is the sum of the

integrals for sulfite ion concentration and bound sulfite concentration across

the wall. They are obtained by way of a Taylor series. This procedure for

obtaining SL calculates S and S* at time, t+1, using the SL value obtained at

time, t. This could introduce some error in the results, but this error could

be minimized by using short time intervals, such that the change in SL between

time intervals is negligible.

The DM program has been designed to evaluate a wide variety of

diffusivities, times, temperatures, and sodium sulfite concentrations, which

are input by the user. In order to evaluate diffusion in cell walls with

different lignin distributions, two versions of the DM program have been

developed. Both are shown in Appendix 4. The first version, DMU1, assumes a

uniform lignin distribution across the secondary wall. The middle lamella is

given a lignin concentration or Sp which is four times that of the S2 and S3
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layers, but has a rate constant (k), which is lower than that of the S2 and S3

layers by a factor of 1.5 (58). The second version, DMS1, evaluates a

secondary wall with a lignin-enriched S3 layer. The S3:S2 lignin concentration

ratio or Sp ratio is given a value of 1.4 (49). The middle lamella is treated

in the same manner as in the DMU1 program.

Effective Diffusivity

Among the variables and constants utilized by the diffusion model, the

effective diffusivity, Deff, within the cell wall is probably the least

understood. In order to gain a better understanding of diffusion across the

cell wall, the literature concerning cell wall structure and diffusion in

membranes and porous solids has been reviewed. Consideration of all of the

factors affecting cell wall diffusivity should give a good approximation of its

value. Insertion of this value in the diffusion model should allow us to

conclude whether limited diffusion could indeed be a factor in the observed

sulfur distributions.

For the purpose of modelling diffusion across the cell wall, the wall is

being viewed as a porous solid. The sulfite ions are being viewed as spheres

diffusing through the pores, as shown in figure 33. The speed with which the

sulfite ions pass across the cell wall through the pores depends on a number of

factors, which can be divided into three categories:

1. Bulk diffusivity

2. Mechanical blocking

3. Hindered diffusion within the pores

These categories are subdivided into individual phenomena in Table 18. The

effective diffusivity, Deff, is obtained from the bulk diffusivity, DB, through
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a series of correction factors (CFn) which are based on these phenomena. This

relation is described in equation form as follows:

Deff = (iCFi) DB (15)
(=1

Limited knowledge of these phenomena makes only an approximation of Deff

possible.

Bulk diffusivity

The bulk diffusivity for sodium sulfite was determined at infinite

dilution from equivalent ionic conductivities (59) using the Nernst-Haskell

equation (60),

D = (RT/F 2) (1/n+ + 1/n_)/(1/l+ + 1/1_) (16)

where R is the gas constant, T is in degrees Kelvin, F is the Faraday constant,

n+ and n_ are the cationic and anionic valences, and 1+ and 1_ are the cationic

and anionic conductivities. At 250C, DB = 1.23 X 10-5 cm2/sec for sodium

sulfite (Na2S03).

_1 'P
2 rs

Figure 33. Sphericalsolute diffusing through a cell wall

Figure 33. Sphericalsolute diffusing through a cell wallpore.
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Table 18. Sources of diffusivity correction factors.

I. BULK DIFFUSION COEFFICIENT

A. Temperature effects

B. Concentration effects

II. MECHANICAL BLOCKING

A. Porosity (e)

B. Tortuosity (r)

C. Pore-size distribution

III. HINDERED DIFFUSION IN PORES

A. Water monolayer on pore wall

B. Steric effects

C. Hydrodynamic effects

D. Electrostatic effects

E. Enhanced solvent viscosity

F. Solute adsorption

The above equation reveals a dependence of DB on temperature. The effect

of temperature can be better illustrated by the Stokes-Einstein equation (56),

which is as follows:

DB = kgT/(6rrs) (17)

This equation demonstrates that the relationship not only reflects a direct

proportionality between DB and temperature, T, but also an indirect effect

through the influence of temperature on solvent viscosity, A. The other

components of the equation are Boltzmann's constant (kB), and the radius of the



-106-

diffusing species (rs). From the above equation, DB at temperature, T, can be

determined from the following relationship:

DBT = D298 (TT/T298) (#298/PT) (18)

The viscosity of the solvent, water, can be determined at any temperature by

the following equation (61):

100/#T = 2.260{(T-285.5)+[(T-285.5)2+9854]0.5}-142.2 (19)

where PT is in cp and T is in degrees Kelvin.

The diffusivity data discussed above were obtained at infinite dilution,

while these sulfonation studies were performed using sodium sulfite concen-

trations ranging from 0.30 to 1.59 moles/liter. The effect of these higher

concentrations on diffusivity is described by the following equation (62):

D = DB [1 + c(61n(y)/6c)] (20)

where c is the molarity of the solution and y is the molar activity coefficient

for the solute. In this case, no activity coefficients were available for

sodium sulfite (Na2S03); therefore, activity coefficients for sodium sulfate

(Na2S04) were used and should supply a reasonable approximation of the activity

coefficients for sodium sulfite. In the case of a 1.03 molar sodium sulfite

solution, DB would be reduced from 1.23 X 10- 5 cm2 /sec at infinite dilution to

0.70 X 10-5 cm2/sec.

Mechanical blocking

This series of corrections accounts for cell wall porosity and cell wall

pore structure. These effects have often been described by the equation,

Deff = DB (e/l), where e is the cell wall porosity and r is the tortuosity of
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the cell wall pores (63). The porosity, e, was determined from fiber saturation

point data to be 0.282 ml void volume/ml cell wall.

A value for cell wall tortuosity, r, is much more difficult to determine,

as it requires assumptions concerning cell wall structure. For the purposes of

determining Deff, the cell wall will have an ultrastructure such as that

described in figure 34. Here we have groups of three or four radially attached

cellulose protofibrils surrounded by a lignin-hemicellulose matrix (63). The

groups of cellulose protofibrils are arranged to form what appear to be split

lamellae.

The tortuosity of such a wall could be divided into three components. The

product of these components yields the total tortuosity, r = (nI ri). These

components are:

0% 1 1 I I CELLULOSE PROTOFIBRILS
0 I |^ IX B BONDED ON THEIR RADIAL
"' FACES

1 H B l I I$ \ 1 LIGNIN-HEMICELLULOSE
MATRIX

' 4q , I HEMICELLULOSE

Figure 34. Model for cell wall ultrastructure
from Kerr and Goring (63).



-108-

Tm, the tortuosity within the matrix
7rc, the effect of the protofibrils on tortuosity

rd, the effect of dead-ends or obstructed pores on tortuosity.

The determination of rm assumes the pores to be randomly aligned within the

cell wall. This would give the pores an equal probability of winding in the

radial, tangential, and longitudinal directions. In other words, the solute

molecules will probably migrate one step in each of the three directions in

order to move one step radially across the wall. This would give rm a value of

three.

For the determination of the second component, rc, we assume the

crystalline portion of the cellulose protofibrils are impenetrable; therefore,

the solute molecules must diffuse around the cellulose crystals. Assuming the

cellulose to be totally crystalline, Favis and Goring (64) determined a

tortuosity of two for diffusion around the cellulose. If we give the cellulose

a crystallinity of 67% and assume the tortuosity through the amorphous

cellulose is comparable to that in the matrix, this factor, 7c, is reduced to

1.67.

The final component, rd, accounts for dead-ends or impassable pores in the

porous passageways through the cell wall. Stamm (65) used the pore-size

distribution data in Table 19a tb make such a determination. He assumed the

pore walls to be lined with a monomolecular layer of firmly bound water (4 A

thick). This resulted in total blockage of any pores less than 8 A in

diameter. Such pores represented 92% of the pore length within the cell wall.

This, in turn, reduced the diffusion coefficient by a factor of 1/(1-0.92) or

12.5.

This treatment of pore blockage was applied to this work after making two

changes. First, although the presence of a firmly bound water monolayer is
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Pore-size distribution data; a). Stamm's
data obtained through sorption techniques (65).
Corrected data based on a 4 A monolayer of water
lining the pore wall; b). Stone and Scallan's data
obtained through a solute exclusion technique (68).
Corrected data based on a 2.8 A monolayer of water
lining the pore wall and a solute molecule diameter
of 7.8 A.

Pore radius
range (A)

0-2
2-4
4-6
6-8
8-10
10-12
12-20
20-30
30-40
40-140
140-1140

Avg. pore
radius(A)

1
3
5
7
9
11
16
25
35
90
640

Volume
(cm3)

.012

.012

.012

.012

.012

.012

.031

.022

.017

.071

.071

Correcteda
Volume(cm 3)

.00048

.00221

.00371

.00486

.01750

.01550

.01330

.06480

.07010

Pore Lengthb
(cm x 10-12)

38.217
4.240
1.529
.779
.472
.316
.386
.112
.044
.028
.001

b).

Pore radius
range (A)

2-5
5-7.5

7.5-10
10-12.5

Avg. pore
radius(A)

3.5
6.3
8.8

11.3

Volume
(cm3)

.14

.09

.08

.08

Correcteda
Volume(cm 3)

.010C

.037

.045

Pore Lengthb
(cm x 10-12)

3.638
.733
.333
.201

a corrected volume = volume X [(r - w)/r]2 , where
r is the pore radius and w is the diameter of
a water molecule (4 A for Stamm's data and
2.8 A for Stone and Scallan's data.

b pore length = volume/rr2.

c pores below 6.7 A in radius are considered impassable for
for Stone and Scallan's data due to the monolayer of
water along the pore wall and the size of the solute
molecule. The corrected volume for the 5-7.5 A
range represents that for those pores with radii
between 6.7 A and 7.5 A.

Table 19.

a).
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well accepted (66), the diameter of the water molecules have, more recently,

been determined to be 2.82 A (67). Second, this work is concerned with

diffusion of hydrated sulfite ions, so this analysis must account for the

diameter of these molecules (7.8 A). The determination of this diameter is

shown in Appendix 5. Combining these two corrections yields a minimum

effective pore diameter of 13.4 A. Applying this to Stamm's pore-size

distribution data yields a rd of 25.1.

Applying this same reasoning to Stone and Scallan's pore-size

distribution data from spruce (68) yields a rd of 6.9. See Table 19b. The

difference between these two values could be attributed to the higher

percentage of smaller pores in Stamm's data.

Combination of the three tortuosity components yields:

T = rmrcd (21)

= 125.8 (Stamm's data)

= 34.5 (Stone and Scallan's data).

The application of this technique to the determination of tortuosity in wood

cell walls has little theoretical basis, especially since we know very little

about cell wall structure. Because of this, the more conservative of the

estimates, that from Stone and Scallan's data, seems more suitable.

Hindered diffusion in pores

Within the narrow pores in the cell wall, a number of forces or

restrictions which hinder diffusion are acting on the diffusing sulfite ion.

These are listed in Table 18. The magnitude of a number of these restrictions

is influenced by the ratio of the solute radius (rs) to that of the pore (rp).

This ratio is often represented by (69). The best way to apply many of these

restrictions is through the various pore-size ranges provided by pore-size
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distribution data. Once correction values are calculated for each range of

pore sizes, they can be combined to give a single correction term.

The first restriction is the presence of a monomolecular layer of water on

the pore walls. In addition to making a number of pores inaccessible, this

layer will reduce the effective pore radius of the remaining pores. This layer

could be viewed as a rigidly bound layer of water through which no diffusion

occurs or a high viscosity layer through which the rate of diffusion is

drastically reduced. In the former case, diffusion through the pore is reduced

by a factor,

(rp - dw)2/rp2 (22)

where dw is the diameter of a water molecule and rp is the pore radius. If

water is viewed as a highly viscous layer, the correction takes the form of

1/(1 + XP) (23)

where P is a term incorporating X, dW, and the enhanced viscosity of the water

monolayer (69). Since the exact nature of this enhanced viscosity is not

known, it is often simpler to assume that no diffusion occurs through this

monolayer.

Steric or concentration effects arise from the inability of a solute

molecule to occupy the entire diameter of the pore (69). This occurs because

the center of the solute molecule cannot occupy the volume within a distance of

rs, the solute radius, from the pore wall. See figure 35. As a result, the

solute concentration in the pore is lower than that in the bulk solution. This

effect can be described by the relationship,

Deff a (1 - X)2 (24)
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As the ratio of solute radius to wall radius increases, the relative pore

concentration and Deff are reduced.

In narrow pores, hydrodynamic effects can cause substantial reductions in

solute diffusivity. A number of relationships which attempt to describe this

phenomenon have been developed (70). All describe these effects as a function

of X. For this work, the data of Wang and Shalak (71) will be used.

A number of studies have shown that electrostatic effects also influence

diffusion in porous media (70,72,73). Although these effects are generally

more pronounced at lower electrolyte concentrations, they can still be

significant at the concentrations used in this study, especially in narrow

pores (70,72). Studies using cellulose acetate and other synthetic membranes

S

Figure 35. The origin of steric effects within the pore
wall. The shaded region, of thickness rs,
is said to be unoccupied by the solute molecule
since the center of the solute cannot occupy this
area.
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have shown the presence of anionic groups in the membrane to reduce

diffusivity by a factor of around 25% at a concentration of 1 mole/liter

(72,73). Such work has also shown this effect to vary with electrolyte

concentration and surface charge (73).

In addition to the above factors, there are also other factors which

influence diffusion which, at this point, are difficult to quantify. The

first is enhanced viscosity within the pores. Studies using cellulose acetate

and biological membranes have indicated that water within narrow pores has a

viscosity which is as much as 39 times that in bulk solution (74). More

recent studies (66) have suggested that such high viscosities were the result

of contaminants and that any enhanced viscosity is only within one or two

molecular layers from the pore surface (75). This is probably the result of

bound water or counter-ions attracted to the pore wall. Since the above

studies concluded that much of the observed enhanced viscosity was due to

impurities and since wood chips are far from being pure, it is likely that the

viscosity of the sulfite solution in the cell wall pores is enhanced to some

extent. As the sulfonation reactions progress during the cooks, the

introduction of degraded polymers into the pores should enhance pore

viscosity, but the extent is not known.

Another factor affecting diffusion in the pores is adsorption of the

sulfite ion onto the pore walls. So far no data is available for sulfite

cooks, but studies using silica-alumina catalyst beads showed that diffusi-

vities for preferentially adsorbed solutes in organic solvents were, on the

average, reduced by a factor of four (76). Since this is a totally different

system, it is difficult to apply these results to sodium sulfite diffusion

through wood chips.
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Calculation of D(eff)

The application of correction factors for many of the above phenomena to

the bulk diffusivity will indicate the feasibility of attributing the observed

sulfur distributions to diffusion limitations. The corrections can be applied

through the following equation.

Deff = DB(CT)(C c)(e/r)(Cp)(CE) (25)

The meaning of these correction factors and their values are shown in Table

20. The value of Deff represents vapor-phase cooking conditions at 140°C using

1.03 molar sodium sulfite. Stone and Scallan's (68) data in Table 19b were

used to represent pore-size distribution. Combining all of these effects

yields a value of 2.2 X 10-10 cm2/sec for Deff. Some of the above correction

factors may be overestimates of their respective phenomena, but others, such as

electrostatic effects, are probably underestimates. Some phenomena, such as

adsorption and enhanced viscosity, are not included.

Model Results

The diffusion model was applied to a number of cooking conditions to

evaluate the effects of lignin distribution, effective diffusivity, time,

temperature, and sodium sulfite concentration. In addition to these variables,

sulfonation during inpregnation and heat-up to final temperature can have a

pronounced effect on the model results, especially sulfur content. During

impregnation under the conditions used in this study, chip sulfur contents were

estimated to reach-values as high as 0.15%, as shown in Table 21. These data

are based on data obtained by Engstrand, Hammer, and Htun (40), who found

sulfonation to be extremely rapid up to sulfur contents of around 0.10% at

temperatures as low as 800C. The same activation energies are assumed to be in
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Table 20. Correction factors for cell wall diffusion.

Definition

Bulk diffusion coefficient at 250C
and infinite dilution (cm2/sec)

Correction factor for temperature

Correction factor for sodium sulfite
concentration [1 + c(61n(y)/6c)]

Cell wall porosity

Cell wall tortuosity

Correction factor for electrostatic
effects

Product of CS, CH, and CM; these are
applied through the pore-size distri-
bution data. Calculated in Appendix 6.

Correction factor for steric hindr-
ances; (1 - X)2; = rsolute/rpore

Correction factor for hydrodynamic
effects

Correction factor for the presence of
a water monolayer

Value

1.23 X 10-5

6.3

0.57

0.282

34.5

0.75

0.000815

effect at room temperature and would thus result in rapid sulfonation during

impregnation. This assumption is supported by the bound sulfur contents of

0.19% obtained in this study after impregnation of latewood chips for 30

minutes followed by repeated soakings. Somewhere above 0.10%, the rate of

sulfonation declines. This was demonstrated by Engstrand, Hammer, and Htun

(40) at elevated temperatures and by Heitner, Beatson, and Atack (5) who

obtained sulfur contents of 0.24% after a 24 hour impregnation in neutral

sulfite liquor at room temperature.

Estimation of the degree of sulfonation during heat-up involved choosing

one or more temperature intervals during the course of the heat-up. For each

Factor

DB

CT

CC

e

T

CE

Cp

CS

CH

CM
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interval, a representative or average temperature was chosen and the degree of

sulfonation for each interval was calculated based on this temperature and the

length of time spent in that temperature interval. The total change in

sulfonation level during heat-up was added to that obtained after impregnation

to yield the sulfur content at time, t=0, in Table 21.

Table 21. Initial Sulfur content data derived from data by Engstrand,
et al. (40) after impregnation and impregnation plus heat-up
(time = 0). Na2S03 concentrations are those of the liquor.

Experiment

VP1
VP1
VP1
VP1
VP1
VP1

VP2
VP2
VP2
VP2

Na2S03
conc.,
mole/l

0.48
0.48
1.03
1.03
1.59
1.59

0.48
1.03
0.48
1.03

Time,
min.

20
40
20
40
20
40

5
5
20
20

Length of
Temp., impregnation
degrees C min.

134 30
134 30
134 30
134 30
134 30
134 30

160 7
160 7
140 7
140 7

Sulfur content
After

impregnation At time = 0

0.13 0.16
0.13 0.16
0.14 0.20
0.14 0.20
0.15 0.25
0.15 0.25

0.09 0.13
0.10 0.18
0.09 0.10
0.10 0.12

For each run, the model was started under the initial conditions of total

and uniform impregnation of the liquor into the wall and no bound sulfur. For

each set of conditions, a time of 0 minutes (t=0) was the time at which the

cell wall sulfur content equalled that in Table 21. Timing of the cook

started at this point. Under these circumstances, the cell wall would have a

sulfite ion and bound sulfur gradient at time, t=0, which is a realistic

situation given the sulfur gradients found in the chips which were impregnated

but not cooked.
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Such a gradient can be attributed to several factors. Several studies

(42,43,44) have found the penetration of dry cell walls or wood with liquid to

occur at rates which would require 2 to 5 minutes for the liquid to totally

penetrate a 10 pm thick cell wall. This, combined with the rapid sulfonation

which occurs during impregnation, may result in the formation of a bound sulfur

and sulfite ion gradient during impregnation. Sulfonation during heat-up would

enhance this gradient.

The DMU1 and DMS1 programs were used to evaluate the influence of time and

effective diffusivity on sulfur distribution and sulfur content data for two

different lignin distributions. These distributions were a uniform secondary

wall lignin distribution (DMU1) and a similar lignin distribution with S3

lignin concentrations 1.4 times greater than those in the S2 layer (DMS1). The

cooking conditions used to obtain the results were those of a 1340C vapor-phase

cook using 1.03 molar sodium sulfite. These results and a comparison of the

results from the two lignin distributions are summarized in Table 22.

The data in Table 22 may be more easily interpreted if some of the actual

distributions are seen first. Examples of some of the distributions obtained

from the DMU1 program are shown for a time of 20 minutes in Figure 36. This

figure demonstrates the influence of effective diffusivity on bound sulfite

distribution. Within the range of effective diffusivities tested, gradients

across the secondary wall vary in degree, with lower diffusivities giving more

pronounced gradients. Of particular interest is the diffusivity of 1 X 10-10

cm2/sec, which is very close to the estimated diffusivity and yields a fairly

pronounced gradient. With a reasonable margin of error for the estimated Deff,

these results demonstrate that diffusion limitations could indeed influence the

observed secondary wall sulfur gradients.
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Influence of diffusivity, time, and lignin distribution on sulfur
distribution and sulfur content for a vapor-phase cook at 1340C
using 1.03 molar Na2S03. S = sulfur content (%OD treated wood).

Uniform secondary
wall liqnin (DMU1)

Time,
min. A/B CC/B S

0 1.14 2.74 0.21
20 1.25 2.90 0.40
40 1.26 3.01 0.51

0 1.12 2.81 0.21
20 1.15 2.99 0.42
40 1.14 3.16 0.54

0 1.09 2.82 0.21
20 1.10 3.02 0.43
40 1.10 3.20 0.55

S3 lignin = 1.4 X
S2 lignin (DMS1)

A/B CC/B

1.60
1.75
1.76

1.57
1.61
1.59

1.53
1.55
1.54

2.73
2.89
3.01

2.79
2.99
3.16

2.82
3.02
3.20

Comparison of lig.
dists. (DMS1/DMU1)

S A/B CC/B S

0.21
0.40
0.51

0.21
0.42
0.54

0.22
0.43
0.55

1.40
1.40
1.40

1.40
1.40
1.39

1.40
1.41
1.40

1.00
1.00
1.00

0.99
1.00
1.00

1.00
1.00
1.00

1.00
1.00
1.00

1.00
1.00
1.00

1.05
1.00
1.00

DMU1 BOUND SULFITE GRADIENT

2 4 6 8 10

DISTANCE FROM LUMEN, microns

Figure 36. Bound sulfur distribution at different Deff values. Data
generated from program DMU1 for a 20-minute 134 0C vapor-
phase cook using 1.03 molar sodium sulfite. Deff in cm2/sec.

Table 22.

D ff
cm2/sec

1X10-10
1X10-10
1X10-10

5X10-10
5X10-10
5X10-10

1X10-9
1X10-9
1X10-9

1 X 10(-9)

5 X 10(-10)

"
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I X 10(-10)
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o
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The corresponding A/B ratio data in Table 22 (DMU1; 20 minutes) reveals

the same trends; the A/B ratio decreases as the diffusivity increases. The

CC/B ratio and sulfur content data, on the other hand, increase slightly with

increased diffusivity. This is due to the more rapid diffusion of sulfite ions

into the cell wall from the lumen and into the middle lamella from the

secondary wall.

When the lignin concentration in the S3 layer is higher than that in the

S2 layer by a factor of 1.4, the gradients are even more pronounced, as shown

in figure 37. These data, which were generated by program DMS1, are more

reminiscent of some of the linescans than those in figure 36. Comparison of

the DMS1 A/B ratio data in Table 22 with the corresponding DMU1 results

demonstrates that the higher S3 lignin content had little effect on diffusion

across the wall; the difference between the DMU1 and DMS1 generated A/B ratios

was a factor of 1.4, which is the difference between the S3 and S2 lignin

concentrations. Enhanced lignin levels in the S3 layer had no effect on the

CC/B ratio and caused only a minute increase in sulfur content, which is

proportional to the increase in overall lignin content or Sp.

In addition to effective diffusivity, the DMU1 and DMS1 data in Table 22

also demonstrates a pronounced effect of time on A/B ratio, CC/B ratio and

sulfur content. As the cook progresses, the A/B ratio increases to a maximum

and then remains constant or begins to decline. On the other hand, the CC/B

ratio and chip sulfur content continue to increase with time.

A scheme based on the kinetics of the sulfonation reactions can explain

the presence of the bound sulfur gradients as well as the effects of time on

the magnitude of the gradient. In the early stages of the cook, reactions of

the sulfite ions with the lignin will establish a concentration difference
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DMS1 BOUND SULFITE GRADIENT

- I I I I I I

0 2 4 6 8 10

DISTANCE FROM LUMEN, microns

Figure 37. Bound sulfur distribution at different Deff values. Data
generated from program DMS1 for a 20 minute 1340C vapor-
phase cook using 1.03 molar sodium sulfite. Deff in cm2/sec.

between wall and lumen, which initiates diffusion of sulfite ions into the

wall. If diffusion is slow enough or the diffusing species is reacting fast

enough as it diffuses across the wall, a sulfite ion gradient will form, as

shown in Figure 38, and intensify during the early stages of the cook. A bound

sulfur gradient will form and begin to mimic this gradient and the lignin

distribution, giving the observed increase in A/B ratio with time. At some

point during the course of the cook, the number of available sulfonation sites

on the lignin will become limiting, thus allowing sulfite ions to diffuse

further into the cell wall without reacting. This will halt or reverse the

increase in sulfite ion and bound sulfur gradients, as observed in the model

results. The extent to which the cell wall is uniformly impregnated at the

I X 1o(-9)
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SULFITE ION GRADIENT USING DMU1

0 2 4 6 8 10

DISTANCE FROM LUMEN, microns

Figure 38. Sulfite ion distribution at different Deff values. Data
generated from program DMU1 for a 20 minute, 1340C vapor-
phase cook using 1.03 molar sodium sulfite. Deff in cm2/sec.
These data correspond to the data in Figure 36.

beginning of the cook should not affect this general scheme, but should

influence the magnitude of the gradients obtained.

The vapor-phase conditions used in the VP1 and VP2 cooks were evaluated

using programs DMU1 and DMS1 at a diffusivity of 5 X 10-10. The results are

shown in Figures 39 to 44 with the corresponding results from the linescan or

sulfur content data. The data are shown in tabular form in Appendix 7. When

comparing the model results with the experimental results, the agreement

between the two sets of data should be viewed in two ways: agreement with

respect to the overall magnitude of the values in the two sets of data, and

agreement with respect to trends in the data.
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VP1: A/B RATIO
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Figure 39. Comparison of experimental and generated A/B ratios
for the VP1 cooks. Points represent experimental
data. Solid lines represent generated data.

VP2: A/B RATIO

O

n,

<[

2.4-

2.2-

2.0-

1.8-

1.6 

1.4

1.2-

1.C

I · ALL EXPERIMENTAL DATA

DMS1

D * 

DMU1

I I I I I I

0.0 0.1 0.2 0.3 0 .0.0 0.1 0.2 0.3 0.4 0.5

5 MIN - 160 DEGREES

20 MIN - 140 DEGREES

5 MIN - 160 DEGREES

20 MIN - 140 DEGREES

0.6 0.7 0.8 0.9 1.0

SODIUM SULFITE CONCENTRATION, MOLES/LITER

Figure 40. Comparison of experimental and generated A/B ratios
for the VP2 cooks. Points represent experimental
data. Solid lines represent generated data.
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VP1: CC/B RATIO
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Figure 41. Comparison of experimental and generated CC/B ratios
for the VP1 cooks. Points represent experimental
data. Solid lines represent generated data.
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Figure 42. Comparison of experimental and generated CC/B ratios
for the VP2 cooks. Points represent experimental
data. Solid lines represent generated data.
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VP1: SULFUR CONTENT
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Figure 43. Comparison of experimental and generated sulfur
contents (S) for the VP1 cooks. Points represent
experimental data. Solid lines represent generated
data.

VP2: SULFUR CONTENT

0.8

0.6-

0.4-

0.2-

u.u _ -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SODIUM SULFITE CONCENTRATION, MOLES/LITER

Figure 44. Comparison of experimental and generated sulfur
contents (S) for the VP2 cooks. Points represent
experimental data. Solid lines represent generated
data.
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Agreement with respect to the overall magnitudes of the experimental and

generated results could be considered quite good. In the case of the A/B ratio

data from both sets of cooks (Figures 39 and 40), the DMU1 program (S3/S2

lignin ratio = 1.0) gave A/B ratios which were consistently lower than those of

the experimental data, while the DMS1 program (S3/S2 lignin ratio = 1.4) gave

A/B ratios which were usually higher than those of the experimental data.

These displacements of the model results from the experimental results do not

represent an inherent flaw in the models, but simply reflect the choice of

S3/S2 lignin ratio. Figures 39 and 40 indicate that the proper choice for the

S3/S2 lignin ratio lies somewhere between the values of 1.0 and 1.4 used by the

two programs. The CC/B ratio data in Figures 41 and 42 exhibit generated CC/B

ratios which were comparable in magnitude to those obtained experimentally.

The generated sulfur content data in Figures 43 and 44 consistently gave

lower sulfur contents than those obtained experimentally. These lower sulfur

contents may be the result of an underestimation of the maximum attainable

sulfur content (Sp = 0.8%). Since the kinetics of sulfonation are second order

with respect to Sp and sodium sulfite concentration (5), a low Sp will give

lower sulfur contents for a given time. An increase in Sp from 0.8% to 1.0%

would probably compensate for much of the observed discrepancy.

Figures 39 to 44 also demonstrate that the agreement between the trends

observed in the experimental and generated data was good; although some

differences existed. In the case of the VP1 cooks, both the generated and

experimental A/B ratio data showed a decline with increased sodium sulfite

concentration. Although the analysis of variance results in Table 9a did not

find a significant trend in the VP1 data alone, the regression analysis in

Figure 24 did find such a trend when all of the cooks were combined. Neither

the experimental nor the generated data demonstrated a time effect.
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As demonstrated in Figure 40, the influence of sodium sulfite

concentration on the generated A/B ratio data in the VP2 cooks is the same as

that observed in the VP1 cooks, although the trend was not obvious in the

linescan results. Figure 40 also demonstrates no significant time effect for

both types of data at high sodium sulfite concentrations, but demonstrates a

pronounced effect at the lower sodium sulfite concentration.

The generated CC/B data in Figures 41 and 42 show slight increases with

sodium sulfite concentration. These trends are not obvious in the experimental

results, probably a result of the weakness of the trends.

The VP1 sulfur content data in Figure 43 demonstrated an increase with

increased sodium sulfite concentration in both the experimental and generated

data. On the other hand, while time had little effect in the experimental

data, it had a substantial effect in the generated results. One explanation is

the lower sulfur contents obtained with the model after 20 minutes. At these

lower sulfur contents, sulfite depletion was less limiting, allowing sulfur

contents to increase at the longer simulated cooking times. This time effect

in the generated data may also be attributed to phenomena which reduce the

sulfonation rate with time during the cooks, but are not accounted for by the

models. One such factor is a reduction in liquor pH during the course of the

cook. This has been discussed previously. The experimental and generated

sulfur content data from the VP2 cooks yielded comparable trends, as shown in

Figure 44.

This diffusion study has demonstrated that diffusion limitations in the

cell wall could very easily account for the observed secondary wall sulfur

gradients in the sulfonated southern pine latewood chips. The mathematical

model for diffusion across the cell wall predicted sulfur distributions which
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were very similar to those obtained through STEM-EDS analysis. Based on

current knowledge in the areas of diffusion in porous solids and cell wall

structure, the cell wall diffusivities used in the modelling were realistic.

Considering this study applied a relatively simple model to such an unstable

situation as a vapor-phase cook, the agreement between the experimental and

generated results was good. A greater understanding of sulfite pulping

chemistry would improve the predictability of the diffusion model.

An increased understanding of the effects of pH would be particularly

helpful. The effects of liquor pH on cell wall sulfur distribution were not

dealt with by the diffusion model. Higher pH levels are likely to increase

cell wall diffusivity by swelling the cell wall and otherwise softening its

structure. The flatter distributions obtained at higher pH levels could be

attributed to increased diffusivity.

While the observed pH effects in the liquid-phase cooks are real, those

observed in the vapor-phase cooks may be related to sodium sulfite concen-

tration. Those cooks using higher sodium sulfite concentrations are better

buffered against a drop in pH during the cook, so the higher sulfite ion

concentrations yield higher final pH levels. The model demonstrates that

sodium sulfite concentration can influence the A/B ratio independently, while

the corresponding effect on pH may or may not influence sulfonation and cell

wall sulfur distribution.
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CONCLUSIONS

The work presented in this thesis represents a significant contribution to

our understanding of cell wall sulfur distribution in sulfonated wood. This

work has provided unique findings concerning the nature of these distributions

and how they can be manipulated. A fundamental knowledge of the origins of the

observed distributions was also acquired.

The observed bound sulfur distributions across the cell wall were

characterized by a nonuniform secondary wall distribution and considerably

higher levels in the middle lamella. The secondary wall distribution

consisted of relatively high sulfur levels toward the lumen and a decline in

sulfur levels across the cell wall to a minimum near the S1 layer. Statistical

analysis established the existence of this gradient with a high degree of

confidence; although its extent varied from very pronounced to virtually flat,

depending on liquor pH and sodium sulfite concentration. The sulfur levels in

the cell corner were generally three times greater than those at the minimum in

the outer secondary wall, which is in agreement with the findings of Beatson,

et al. (19).

The influence of liquor pH and sodium sulfite concentration on the extent

of the secondary wall sulfur gradient was established by statistical analysis

of the linescan data. The results demonstrated that higher pH levels and

sodium sulfite concentrations yielded flatter secondary wall sulfur profiles.

These effects can be explained in terms of limited diffusion across the cell

wall.

The three most likely sources of the observed distributions are lignin

distribution, lignin reactivity differences, and diffusion limitations.
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Evaluation of these three phenomena has led to the conclusion that the

observed sulfur distributions are most likely the result of lignin distribution

and diffusion limitations. Lignin reactivity may also be a factor, but too

little is known about it to draw any conclusions. The observed lignin

distributions across the secondary wall were generally flat with frequent peaks

in the S3 layer. These higher lignin levels in the S3 layer may account for

some of the non-uniformity in cell wall sulfonation, but certainly cannot

account for the observed S2 sulfur gradients.

The presence of this gradient can be attributed to diffusion limitations.

From what is known about cell wall structure and diffusion in porous solids, it

appears that the diffusivity of the sodium sulfite in the cell wall is low

enough to inhibit diffusion from the lumen into the cell wall, resulting in a

gradient in bound sulfur. This was demonstrated by mathematical modelling of

sodium sulfite diffusion across the cell wall in vapor-phase cooks.

The observed secondary wall sulfur distributions are quite different from

flat distributions obtained by Beatson, et al (19). The difference can be

explained in terms of lignin distribution, possible differences in lignin

reactivity, and diffusion limitations. One primary difference between

Beatson's experiments and those presented here is the manner in which the chips

were impregnated. In this study, chips which had been air-dried were

impregnated for 7 to 30 minutes and then cooked. Beatson and co-workers soaked

their chips in water for 7 days, and then soaked them in liquor for 24 hours

before cooking. This treatment may be more effective in swelling the wood than

rapid impregnation of air-dried chips. In addition, the long exposure to the

liquor could result in some degradation of the wood components and induce added

swelling, resulting in the removal of some diffusion barriers.
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Another primary difference is the wood source; Beatson used spruce while

this study used southern pine juvenile wood. This difference could result in

lignin distribution differences, especially with regard to the S3 layer, and

possibly, lignin reactivity differences.
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RECOMMENDATIONS FOR FUTURE WORK

The work presented in this thesis has pursued an area where there are

still many unknowns, such as cell wall diffusivity, and x-ray microanalysis.

As would be expected from this type of work, many questions and ideas for

future work have arisen.

The sulfur distribution and modelling work have laid a broad foundation

on which future studies on sulfonation variables can be based. The evaluation

of a wider range of pH levels would contribute a better understanding of the

pH effect and its origin. The results from the sulfur distribution work and

modelling also suggest that sodium sulfite concentration and temperature

effects deserve further study. In order to obtain a more fundamental

understanding of these effects, the performance of these studies under more

highly buffered conditions is suggested. Once the fundamentals are better

understood, they can be applied to the less stable environment of the vapor-

phase cook, where this instability is likely to serve a purpose.

In terms of diffusion modelling, there are many unknowns. The most

prominent unknown is the cell wall diffusivity. Techniques for direct

measurement of cell wall diffusivity need to be tested. In order to study

possible diffusion limitations and other aspects of sulfonation further, more

information concerning sulfonation kinetics, especially in the early stages of

the cook or at room temperature, is needed.

The use of STEM-EDS for this kind of work also presents questions which

need to be addressed. Of primary concern is the matter of mass loss. This

study has measured mass loss and sulfur loss in the wood sections, but their

origin is not well understood. The sulfur loss is most likely from the
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lignin, but the percentage of mass loss from the lignin, carbohydrates, or

resin is not known.

By understanding mass loss, it may be possible to reduce its occurrence.

This study has shown that initial exposure to a moderate electron dose will

reduce overall mass loss, but other measures, such as use of a cryostage to

cool the sample, should also be tested. As with any work dealing with thin

sections, new procedures for embedding and sectioning latewood to improve

section quality would be helpful.
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SYMBOLS

A Atomic weight; or maximum sulfur counts near the lumen in a
secondary wall sulfur distribution

AOV Analysis of variance

Ax UV absorbance of a cell wall layer, x

A/B Ratio of points A and B in a secondary wall sulfur distribution

b Electron beam broadening within a sample in an electron
microscope. Also used as an exponent.

B Minimum sulfur counts near the middle lamella in a secondary
wall sulfur distribution

BG Background

C Lignin concentration

c Solution molarity

CC Cell corner; or STEM-EDS cell corner sulfur counts

CC/B Ratio of cell corner sulfur counts and point B from a cell wall
sulfur distribution

CFi Generic correction factor for cell wall diffusion

CML Compound middle lamella

C1 C1 lens (#1 condenser lens) in an a TEM or STEM

CMP Chemimechanical Pulp

CTMP Chemithermomechanical Pulp

d Section thickness

Deff Effective diffusion coefficient (in the cell wall)

dp Pore diameter in cell wall

dw Diameter of water molecule

Dx Density of colloidal silver on an area of film imaging cell
wall layer, x

Eo Electron energy in an electron microscope

EDS Energy Dispersive Spectrometry
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F

Io

Ix

k,kl,k-lk 2

kB

KV

Ka, Kp

L,1

LP1

Lx

1+, 1 

ML

Na2 S03

NS

n+,n_

R

RMP

rp

rs

S

SL

so

Sp

Swal 1

S1

S2

S3

Faraday constant

Initial UV light intensity used for UV microscopy

UV light intensity after passing through wall layer, x

Kinetic rate constants

Boltzmann's constant

Accelerating potential in an electron microscope

Transitions from the L and M-shell atomic orbitals to a
K-shell. These produce peaks in a STEM-EDS x-ray spectrum.

Lumen

Set of high-yield sulfite cooks; defined in Table 3

Lignin concentration in a wall layer, x

Cationic and anionic conductivities

Mass loss or middle lamella

Sodium sulfite

Net sulfur

Cationic and anionic valences

Gas constant

Refiner Mechanical Pulp

Pore radius

Solute molecule radius

Sulfite ion concentration; or net secondary wall sulfur counts

Sodium sulfite concentration in the lumen

Initial sodium sulfite concentration

Maximum possible bound sulfite concentration

Sodium sulfite concentration in the cell wall

Si wall layer of secondary wall

S2 wall layer of secondary wall

S3 wall layer of secondary wall
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S* Total bound sulfonate (sulfite) content of a substrate

SEM Scanning Electron Microscope (Microscopy)

S03= sulfite ion

STEM Scanning Transmission Electron Microscope (Microscopy)

t Thickness

Tg Glass transition temperature

TEM Transmission Electron Microscope (Microscopy)

TMP Thermomechanical Pulp

TS Total sulfur

UV Ultraviolet

V1 Volume of lumen used for diffusion modeling

Vw Volume of cell wall used for diffusion modeling

Vx Volume fraction of a wall layer, x

VP1 Set of high-yield sulfite cooks; defined in Table 3

VP2 Set of high-yield sulfite cooks; defined in Table 3

x Subscript designating a wall layer; S2, S3, S1, CC, CML, L

y Solute molar activity coefficient

e Extinction coefficient (1/(g cm)).

7 Film constant for UV microscopy

X .Ratio of solute to pore radius (rs/rp)

p# iViscosity

r Tortuosity

Tc The effect of cellulose protofibrils on tortuosity

rd The effect of obstructed pores or dead ends on tortuosity

Tm Tortuosity within the cell wall matrix material
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APPENDIX 1: DATA TRANSFER PROGRAM (DTP)

1,5 %% DATA TRANSFER PROGRAM (DTP)

2,5 %% READ AND DISPLAY DATA
2,10 >WT 4

5,1 M 15000;>+DV 0
5,5 A KQ(4351),IG:KQ,JR(7):KQ(1),NP:KQ(9),IX:KQ(10),LY:KQ(11),IN:KQ(12),
IM:KQ(13),AM(40):KQ(14),AB(50):KQ(35),AE(2,7):KQ(61),KR(7):KQ(73),
KP(4096):KQ(148),AK(8192):KP
5,7 A NS:KQ:(1172),JS(49):KQ(1173),MT:KQ(1223),ID,IF,M(@36-1):@@34,LC(

24 ),
Y,N,Q,QA,LS
5,10 L>AA(11) 0 10 1;>CD>(11);*O;$LI 0,17,10,42,38;$CC('4000');$CC('7200',
7,2,7,7,0,0,0);$CC('7209',255,0);$CC('7218',0,0,255,255);>OP 1
5,15 S ID=!"DISKETTE NO.="?;S IF=-1;S IF=!"FILE NO.="?;D 7,5
5,25 I IF>,[;P !"INVALID FILE NO.";G 5,15
5,30 I $UM(4,IF)>,[;P !!"FILE DOES NOT EXIST!"?;D 7,5
5,35 $UM(4,IF,1,1,KQ,1280);$YA(@36,KP,M,M);$CC('5300');S MT=KQ(1223);
11;G 10

7 5 *O;S AC ==IR=NR=SR=ER=RR=TR= R=DR=IR=SR=KR=ER=TR=TR=ER= R=&R= R=pR=
RRER=SR=SR= R=RR=UR=NRO;$VC(24,28,C512*10+18,AC);>WT 0;*11

10,10 S LS=1024/IG-1;S LC=1;S LC(NS)=NP+1;I NS<=1 [;D 10,15;F I=1,NS-1;
I SL=O S LC(I)=JS(I*2)-IX)/IN+2;I SL=O [;S PB=JS(I*2+1)+JS(I*2)/SL;S PX=
(PB-SI)/(SL+1/SL);S LC(I)=(PX-IX)IN+2
10,12 G 15
10,15 S SL=(JS(NS*2+1)-JS(1)))/(JS(NS*2)-JS);S SI=JS(1)-SL*JS

15,5 $VC(21);$VC(22);$VC(23);I NS=1 [;$CC('5421',IG*(NS-1),O);F I=O,IG-1;
F J=1,NS-1;$CC(1023,I*LS+LC(J)-1)
15,10 $CC('5622' IG);F I=O,IG-1;$CC(I*LS+NP+16,(AE(O,I)),(AE(1,I)))
15,15 $VC(23,20,C8197,AB)
15,20 >WT 0

19,1 %%; OPTION TO ALTER SECTION BOUNDARY MARKERS

20,5 S Y=1;S N=O;S QA=!!"CHANGE MARKERS (Y/N) "?;I QA=1 [;G 40
20,10 S L=!"MARKER NO.="?;I L<=NS-1 [;P !"INVALID MARKER NUMBER";D 20,10
20,15 P <F2>!"MARKER "L," IS AT PIXEL "LC(L),;S LC(L)=!"NEW POSITION FOR
MARKER IS"?
20,20 D 5,10;$YA(@36,KP,M,M);$CC('5300');*11;D 15
20,25 S Q=!"CHANGE ANOTHER MARKER? (Y/N)"?;I Q=1 GO 20,10

40,1 %%;PUSH RUN TO TRANSFER DATA

41,5 >WT O;>+DV 1;P <F4>!"DISKETTE: "ID;P <F4>!"FILE NO.: "IF;
$IO(!O,AB);$IC(!O,AM(10));P <F6,3>!"SECONDS/PIXEL= "MT/100;D 45,15
41,10 P <F3>!!" * COUNTS FOR"IG," ELEMENT(S)"!
"CHANNEL * ";F I=O,IG-1;$IO(" "0,AE(,I))
41,15 F I=O,NS-1;D 45,15;P <F3>!"SECTION"I+1," *";F J=LC(I),LC(I+1)-1;
P<F3>!" "J," * ";F K=O,IG-1;P <F6>KQ(147+J+K*LS)
41,20 D 45L,15
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45,5 P !!" NUMBER OF * SECTION AVERAGES"!"SECTION
* ";F I=0,IG-1;$IO(" "O,AE(,I))
45,10 D 45,15;F I=1,NS;P <F4>!I," "LC(I)-LC(I-1),"
IG-1;D 46;P <F6>SA/(LC(I)-LC(I-1))+.5
45,15 P <H18>!42,42,42,42
45,20 G 50

CHANNELS

* ";F J=0,

46,5 S SA=O;F K=LC(I-1),LC(I)-1;S SA SA+KQ(147+K+J*LS)

50,1 >+DV 0
50,5 S Y=1;S N=0;S Q=!"TRANSFER MORE DATA? (Y/N)"?;I Q=1 G 5,10;E

100,1 V NS,!NP,!JS(NS*2+1),!JS(1),!JS(0),!JS(SN*2),!PB,!PX,!SL,!SI
100,2 F I=0,19;V !JS(I)
100,3 F I=1,8;V !LC(I)

240,5 >OP 0;$LIB 40;>OP 1;$SA(14,DTP14,_)
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APPENDIX 2: RESULTS FROM UV MICROSCOPY/DENSITOMETRY

UV photographs of the cell walls evaluated and the resulting density

distributions are shown on the following pages. Comparison of the non-treated

and treated sample results, at first glance, indicates a more pronounced

gradient across the secondary walls for the treated samples. Since the two

samples were photographed at different exposures, the apparent differences in

distributions may simply reflect differences in contrast obtained at the two

exposures (32). Such differences in contrast are apparent when comparing the

cell corner peaks in figures Al and A2 with that in figure,A4. The samples

are described in Table 6.
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Figure A2. Sample 1. The two peaks surrounding the
cell corner (CC) are artifacts.
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APPENDIX 3:

0.25

0.20

U

z

m

co0

-)

0.15

0.10

0.05

0.00

-0.05

UV MICROSPECTROPHOTOMETER LIGNIN DISTRIBUTION DATA
(Figures A5 - A9)

SAMPLE 1

0 5 .10 15 20 25

DISTANCE, micrometers

SAMPLE 3-EM

0 5 10 15 20

DISTANCE, micrometers

0.8

0.7
LiU

z
m

0
cn
m
<

0.6

0.5

>

0.4

0.3



-151-

SAMPLE 4
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APPENDIX 4: DMU1 AND DMS1 PROGRAMS

DMU1

$RESET FREE
C MODEL FOR DIFFUSION WITH REACTION ACROSS THE CELL WALL DURING A
C VAPOR-PHASE SCMP COOK. DIFFERENCES IN LIGNIN CONTENT AND
C REACTIVITY BETWEEN THE S2 AND ML ARE ACCOUNTED FOR. S3 LAYER HAS
C SAME LIG CONTENT AS S2. ML WIDTH CAN BE UP TO 20% OF WALL.
C SECONDARY WALL ASSUMED TO HAVE 1.5 TIMES AS MANY PHENOLIC
C HYDROXYLS AS THE MIDDLE LAMELLA. ANY TEMPERATURE ABOVE 80 DEGREES
C CENTIGRADE CAN BE EVALUATED.
C
FILE 5(KIND=REMOTE)
FILE 6(KIND=REMOTE)
FILE 7(KIND=DISK,TITLE='MODELDAT',FILETYPE=8)
FILE 11(KIND=DISK,TITLE='U1/4B5EO',PROTECTION=SAVE,NEWFILE=TRUE,

1FILETYPE=O)
$INCLUDE "*IMSL/DPDES"
$INCLUDE "*IMSL/DGRCS"
$INCLUDE "*IMSL/DGRIN"
$INCLUDE "*IMSL/DPDET"
$INCLUDE "*IMSL/DPDEU"
$INCLUDE "*IMSL/DPDEV"
$INCLUDE "*IMSL/DPDEW"
$INCLUDE "*IMSL/DPDEX"
$INCLUDE "*IMSL/LEQTlB"
$INCLUDE "*IMSL/UERTST"
$INCLUDE "*IMSL/UGETIO"
$INCLUDE "*IMSL/USPKD"
$INCLUDE "*IMSL/VMULBF"
C
C
C SUBROUTINE SUPPLYING THE PARTIAL DIFFERENTIAL EQUATIONS AND THE VALUES
C FOR THE RATE CONSTANT (K) AND SP.
C

SUBROUTINE FCN(NPDES,X,T,U,UX,UXX,UT)
INTEGER NPDES
REAL X,T,U(2),UX(2),UXX(2),UT(2),W
COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
W=10000*X
IF(W.GE.SMX) GO TO 30

20 RK=SRK
SP=0.000685
GO TO 40

30 RK=0.67*SRK
SP=0.00274

40 CONTINUE
UT(1) = RK*SL*U(2)*(SP-U(1))
UT(2) = DC*UXX(2)-UT(1)/SL
RETURN
END
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C
C
C SUBROUTINE SUPPLYING THE BOUNDARY CONDITIONS.
C

SUBROUTINE BNDRY(NPDES,X,T,ALP,BET,GAMP)
INTEGER NPDES
REAL X,T,ALP(2),BET(2),GAMP(2)
COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
IF (X.GT..0005) GO TO 30
ALP(1) = 1.0
BET(1) = 0.0
GAMP(1) = RK*SL*EXP(-1*RK*SL*T+ALOG(SP))
ALP(2) = 1.0
BET(2) = 0.0
GAMP (2) = 0.0
RETURN

30 ALP(1) = 0.0
BET(1) = 1.0
GAMP(1) = 0.0
ALP(2) = 0.0
BET(2) = 1.0
GAMP(2) = 0.0
RETURN
END

C
C
C MAIN PROGRAM.
C

COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
DIMENSION Y(2,2,40),WK(7000),X(40),S(40)
EXTERNAL FCN,BNDRY
INTEGER IER,K,INDEX,I,J,NIN,NOUT,NPDES,NX,IY,SM,L
REAL H,TEND,TOL,T,WK,X,Y,RI,RN,TRA1,TRA2,TRB1,TRB2,TRC1,
* TRC2,WC1,WC2,SL,SO,U,UX,S,RK,SP,DC,WL,SMX,HL,TC,MT,
* TK,SRK,BS

C
C INPUT DATA.
C

DO 5 I=1,1
5 READ(7,100) DC,WL,SMX,SO,MT,TK

100 FORMAT(E8.1,F6.2,F5.1,E11.3,I5,I6)
WRITE(11,850) DC,WL,SMX,SO,MT,TK

850 FORMAT("DC = ",E9.2,/"WL = ",F6.2,/"SMX = ",F5.1,/"SO = ",E11.3,
*/"MT = ",I5,/"TEMP (TK) = ",I6)
NX = 31
SL=SO
NPDES = 2
SM = 21 + (SMX-8)*5
IY = 2
RN = NX-1
SRK = EXP(-3.348-7280*(1/TK-0.00283))

C
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C SET INITIAL CONDITIONS.
C

DO 10 1=1,6
RI = I-1
X(I) = RI*.00001

10 CONTINUE
DO 11 I=7,21
RI = I-1
X(I) = (RI-5)*.00005 + .00005

11 CONTINUE
DO 12 1=22,31
RI = I-1
X(I) = (RI-20)*.00002 + .0008

12 CONTINUE
DO 13 1=1,31
Y(1,1,I) = 0.0
Y(1,2,I) = 0.0
Y(2,1,I) = 1.0
Y(2,2,I) = 0.0

13 CONTINUE
H = .01
TOL = .001
T = 0.000
INDEX = 1
WRITE(11,1000)

1000 FORMAT (50H T (SEC) X (CM) S/SL SL S SB/)
DO 15 M=1,NX

15 WRITE(11,1100)T,X(M),Y(2,1,M),SO,SO,Y(1,1,M)
1100 FORMAT (F7.2,E9.2,F7.3,3E11.4)

WRITE(11,1200)
1200 FORMAT (/)

C
C BEGINNING OF CALCULATIONS AT SELECTED TIME INTERVALS.
C

TC = 18 + (MT-20)/2.5
DO 60 J=1,TC
IF(J .GT. 10) GO TO 20
TEND = J*30.000
GO TO 24

20 IF(J .GT. 18) GO TO 21
TEND = 120*(J-8)
GO TO 24

21 TEND = 150*(J-10)
24 CALL DPDES(NPDES,FCN,BNDRY,T,H,TEND,X,Y,IY,NX,TOL,INDEX,WK,IER)

TRA1=O
TRA2=0
TRB1=O
TRB2=0
TRC1=0
TRC2=O

C
C CALCULATION OF S AND S* INTEGRALS ACROSS THE WALL USING A TAYLOR SERIES.
C

DO 25 M=2,5
TRA1=TRA1+2*Y(1,1,M)
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25 TRA2=TRA2+2*Y(2,1,M)
WCA1=(.00005/(2*5))*(Y(1,1,1)+TRA1+Y(1,1,6)
WCA2=(.00005/(2*5))*(Y(2,1,1)+TRA2+Y(2,1,6)

C
DO 30 M=7,20
TRB1=TRB1+2*Y(1,1,M)

30 TRB2=TRB2+2*Y(2,1,M)
WCB1=(.00075/(2*15))*(Y(1,1,6)+TRB1+Y(1,1,21))
WCB2=(.00075/(2*15))*(Y(2,1,6)+TRB2+Y(2,1,21))

C
DO 35 M=22,30
TRC1=TRC1+2*Y(1,1,M)

35 TRC2=TRC2+2*Y(2,1,M)
WCC1=(.0002/(2*10))*(Y(1,1,21)+TRC1+Y(1,1,31))
WCC2=(.0002/(2*10))*(Y(2,1,21)+TRC2+Y(2,1,31))

C
WC1 = WCA1 + WCB1 + WCC1
WC2 = WCA2 = WCB2 + WCC2
BS = WC1*1000

C
C CALCULATION OF SL.
C

SL=((1.0+0.282*WL)*SO-282*WL*WC1)/(1.0+282*WL*WC2)
L = J/2
HL = (FLOAT(J)/2)

40 DO 50 M=1,NX
S(M) = Y(2,1,M)*SL

50 WRITE (11,1300)T,X(M),Y(2,1,M),SL,S(M),Y(1,1,M)
1300 FORMAT (F7.2,E9.2,F7.3,3E11.4)

WRITE (11,1400) BS,IER
1400 FORMAT (" BS = ",F10.7,/" IER = ",I3)

WRITE (11,1200)
60 CONTINUE

STOP
END
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DMS1

$RESET FREE
C MODEL FOR DIFFUSION WITH REACTION ACROSS THE CELL WALL DURING A
C VAPOR-PHASE SCMP COOK. DIFFERENCES IN LIGNIN CONTENT AND
C REACTIVITY BETWEEN THE S3, S2 AND ML ARE ACCOUNTED FOR.
C S3 WIDTH FIXED AT 0.5 MICRONS. ML WIDTH CAN BE UP TO 20% OF WALL.
C SECONDARY WALL ASSUMED TO HAVE 1.5 TIMES AS MANY PHENOLIC
C HYDROXYLS AS THE MIDDLE LAMELLA. ANY TEMPERATURE ABOVE 80 DEGREES
C CENTIGRADE CAN BE EVALUATED.
C
FILE 5(KIND=REMOTE)
FILE 6(KIND=REMOTE)
FILE 7(KIND=DISK,TITLE='MODELDAT',FILETYPE=8)
FILE 11(KIND=DISK,TITLE='S1/B1E9',PROTECTION=SAVE,NEWFILE=TRUE,

1FILETYPE=O)
$INCLUDE "*IMSL/DPDES"
$INCLUDE "*IMSL/DGRCS"
$INCLUDE "*IMSL/DGRIN"
$INCLUDE "*IMSL/DPDET"
$INCLUDE "*IMSL/DPDEU"
$INCLUDE "*IMSL/DPDEV"
$INCLUDE "*IMSL/DPDEW"
$INCLUDE "*IMSL/DPDEX"
$INCLUDE "*IMSL/LEQT1B"
$INCLUDE "*IMSL/UERTST"
$INCLUDE "*IMSL/UGETIO"
$INCLUDE "*IMSL/USPKD"
$INCLUDE "*IMSL/VMULBF"
C
C
C SUBROUTINE SUPPLYING THE PARTIAL DIFFERENTIAL EQUATIONS AND THE VALUES
C FOR THE RATE CONSTANT (K) AND SP.
C

SUBROUTINE FCN(NPDES,X,T,U,UX,UXX,UT)
INTEGER NPDES
REAL X,T,U(2),UX(2),UXX(2),UT(2),W
COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
W=10000*X
IF(W.GT.0.5 .AND. W.LT.SMX) GO TO 20
IF(W.GE.SMX) GO TO 30

10 RK=SRK
SP=0.000959
GO TO 40

20 RK=SRK
SP=0.000685
GO TO 40

30 RK=0.67*SRK
SP=0.00274

40 CONTINUE
UT(1) = RK*SL*U(2)*(SP-U(1))
UT(2) = DC*UXX(2)-UT(1)/SL
RETURN
END
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C
C
C SUBROUTINE SUPPLYING THE BOUNDARY CONDITIONS.
C

SUBROUTINE BNDRY(NPDES,X,T,ALP,BET,GAMP)
INTEGER NPDES
REAL X,T,ALP(2),BET(2),GAMP(2)
COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
IF (X.GT..0005) GO TO 30
ALP(1) = 1.0
BET(1) = 0.0
GAMP(1) = RK*SL*EXP(-1*RK*SL*T+ALOG(SP))
ALP(2) = 1.0
BET(2) = 0.0
GAMP (2) = 0.0
RETURN

30 ALP(1) = 0.0
BET(1) = 1.0
GAMP(1) = 0.0
ALP(2) = 0.0
BET(2) = 1.0
GAMP(2) = 0.0
RETURN
END

C
C
C MAIN PROGRAM.
C

COMMON /KINET/ SRK,RK
COMMON /LUMEN/ SL,RN,SP,DC,SMX
DIMENSION Y(2,2,40),WK(7000),X(40),S(40)
EXTERNAL FCN,BNDRY
INTEGER IER,K,INDEX,I,J,NIN,NOUT,NPDES,NX,IY,SM,L
REAL H,TEND,TOL,T,WK,X,Y,RI,RN,TRA1,TRA2,TRB1,TRB2,TRC1,
* TRC2,WC1,WC2,SL,SO,U,UX,S,RK,SP,DC,WL,SMX,HL,TC,MT,
* TK,SRK,BS

C
C INPUT DATA.
C

DO 5 I=1,1
5 READ(7,100) DC,WL,SMX,SO,MT,TK

100 FORMAT(E8.1,F6.2,F5.1,E11.3,I5,I6)
WRITE(11,850) DC,WL,SMX,SO,MT,TK

850 FORMAT("DC = ",E9.2,/"WL = ",F6.2,/"SMX = ",F5.1,/"SO = ",E11.3,
*/"MT = ",I5,/"TEMP (TK) = ",I6)
NX = 31
SL=SO
NPDES = 2
SM = 21 + (SMX-8)*5
IY = 2
RN = NX-1
SRK = EXP(-3.348-7280*(1/TK-0.00283))

C
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C SET INITIAL CONDITIONS.
C

DO 10 1=1,6
RI = I-1
X(I) = RI*.00001

10 CONTINUE
DO 11 I=7,21
RI = I-1
X(I) = (RI-5)*.00005 + .00005

11 CONTINUE
DO 12 1=22,31
RI = I-1
X(I) = (RI-20)*.00002 + .0008

12 CONTINUE
DO 13 1=1,31
Y(1,1,I) = 0.0
Y(1,2,I) = 0.0
Y(2,1,I) = 1.0
Y(2,2,I) = 0.0

13 CONTINUE
H = .01
TOL = .001
T = 0.000
INDEX = 1
WRITE(11,1000)

1000 FORMAT (50H T (SEC) X (CM) S/SL SL S SB/)
DO 15 M=1,NX

15 WRITE(11,1100)T,X(M),Y(2,1,M),SO,SO,Y(1,1,M)
1100 FORMAT (F7.2,E9.2,F7.3,3E11.4)

WRITE(11,1200)
1200 FORMAT (/)

C
C BEGINNING OF CALCULATIONS AT SELECTED TIME INTERVALS.
C

TC = 18 + (MT-20)/2.5
DO 60 J=1,TC
IF(J .GT. 10) GO TO 20
TEND = J*30.000
GO TO 24

20 IF(J .GT. 18) GO TO 21
TEND = 120*(J-8)
GO TO 24

21 TEND = 150*(J-10)
24 CALL DPDES(NPDES,FCN,BNDRY,T,H,TEND,X,Y,IY,NX,TOL,INDEX,WK,IER)

TRA1=O
TRA2=0
TRB1=0
TRB2=0
TRC1=O
TRC2=0

C
C CALCULATION OF S AND S* INTEGRALS ACROSS THE WALL USING A TAYLOR SERIES.
C

DO 25 M=2,5
TRA1=TRA1+2*Y(1,1,M)
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25 TRA2=TRA2+2*Y(2,1,M)
WCA1=(.00005/(2*5))*(Y(1,1,1)+TRAI+Y(1,1,6)
WCA2=(.00005/(2*5))*(Y(2,1,1)+TRA2+Y(2,1,6)

C
DO 30 M=7,20
TRB1=TRB1+2*Y(1,1,M)

30 TRB2=TRB2+2*Y(2,1,M)
WCB1=(.00075/(2*15))*(Y(1,1,6)+TRB1+Y(1,1,21))
WCB2=(.00075/(2*15))*(Y(2,1,6)+TRB2+Y(2,1,21))

C
DO 35 M=22,30
TRC1=TRC1+2*Y(1,1,M)

35 TRC2=TRC2+2*Y(2,1,M)
WCC1=(.0002/(2*10))*(Y(1,1,21)+TRC1+Y(1,1,31))
WCC2=(.0002/(2*10))*(Y(2,1,21)+TRC2+Y(2,1,31))

C
WC1 = WCA1 + WCB1 + WCC1
WC2 = WCA2 = WCB2 + WCC2
BS = WC1*1000

C
C CALCULATION OF SL.
C

SL=((1.0+0.282*WL)*SO-282*WL*WC1)/(1.0+282*WL*WC2)
L = J/2
HL = (FLOAT(J)/2)

40 DO 50 M=1,NX
S(M) = Y(2,1,M)*SL

50 WRITE (11,1300)T,X(M),Y(2,1,M),SL,S(M),Y(1,1,M)
1300 FORMAT (F7.2,E9.2,F7.3,3E11.4)

WRITE (11,1400) BS,IER
1400 FORMAT (" BS = ",F10.7,/" IER = ",I3)

WRITE (11,1200)
60 CONTINUE

STOP
END



-161-

APPENDIX 5: CALCULATION OF SULFITE ION RADIUS

The radii of diffusing species (r) are generally calculated using the

Stokes-Einstein equation,

DB XkBTDB = 6ir

However, this relationship does not hold when the solute radius is less than

five times that of the solvent (56). In this case, some authors have

suggested replacing 67 with 4r or 2 (56). An alternative is to use a

relationship which accounts for the solvent molecular radius. Such a

relationship is that proposed by Hayduk and Minhas (77).

DB = 6.916 X 10-10 [(T) 1' 7
*(R)

0 2

RB = radius of gyration of the solvent, water = 1.41 A

RA = radius of gyration of the sulfite ion

Solving for RA at 25°C yields a radius of 3.90 A. Based on molecular geometry,

the radius of a sulfite ion would be expected to be in the range of 2 to 2.5 A.

The difference can be attributed hydration of the sulfite ion, which dictates

the effective radius of the sulfite in diffusion processes (62). It is worth

noting that the result obtained from the Hayduk and Minhas equation is

comparable to that obtained from the Stokes-Einstein equation when 6r is

replaced with 3.6r.
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APPENDIX 6: CALCULATION OF Cp USING A RESISTORS-IN-SERIES ANALOGY

Cp is obtained by applying the effects of steric hinderances (Cs),

hydrodynamic forces (CH), and the monomolecular layer of water (CM) to each

size range of pore-size distribution data. The pore-size distribution data to

be used will be an expanded version of Stone and Scallan's data, shown below.

Here the 5 to 7.5 A range is divided into two components: that with a pore

radius below 6.7 A, and that with a pore radius above 6.7 A. This cut-off

point (6.7 A) is the sum of the radius of a hydrated sulfite ion (3.9 A) and

the diameter of a water molecule in the monolayer (2.8 A). Any pore with a

radius below 6.7 A cannot effectively transport the sulfite ion due to size

limitations.

Table Al. Expanded version of Stone and Scallan's
data (68) with and without corrections
for the water monolayer.

Original data Corrected data

r V XS L S r V XS L H

3.5 .14 .038 3.638 - - - --
5.95 .062 .111 .557 - - - - -
7.11 .028 .159 .176 .203 4.29 .010 .058 .176 434.8
8.75 .08 .241 .333 .303 5.93 .037 .110 .333 19.2

11.25 .08 .398 .201 .423 8.43 .045 .223 .201 5.0

TOTAL .39 4.905 .092 .710

r = average pore radius for the size range in question.
V = the incremental pore volume fraction; the total V for the

original data is the cell wall porosity; the total V for the
corrected data is the effective porosity for diffusion.

XS = pore cross-sectional area.
L = pore length (V/XS) in 1012 cm.
S = steric correction factor for the individual pore-size range,

(1 - X)2 .

H = hydrodynamic correction factor for the individual pore-size
range.
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The data in the above table is divided into sections: the original, and

corrected data. The original data includes steric correction factors based on

the original pore radius. The corrected data is that which is obtained after

the diameter of a water molecule (from the monolayer) is subtracted from each

pore radius. The correction for hydrodynamic effects (H) will be applied

through the corrected data, while the steric correction will be applied through

the original data. It is assumed that the sulfite ions can penetrate the

monolayer between bound water molecules, but cannot move along the length of

the pore within the monolayer.

Diffusion through pores of various sizes in the cell wall can be viewed as

several resistors in series, with each resistor representing a range of pore

radii. The total resistance (R) is given by

R = R1 +R2 + R3
R = rL/A = L/(cA)

where r is the resistivity, L is the length, A is the average cross-sectional

area, and c is the conductivity (= l/r). Since diffusivity can also be

expressed as a conductivity,

R = L/(DeffAc)

Ri = Li/[(l/Hi)(Ai)(Si)(D)(CM)]

where i represents a pore-size range and Li, Hi, and Ai can be obtained from

the right-hand side of Table Al for each pore-size range. Si can be obtained

from the left-hand side of Table Al for each pore-size range. L is the total

pore length for the corrected data and Ac is the average pore cross-sectional

area for the corrected data.
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Ac = V/L = .092/.71 = .130 (corrected data)

From the definition of R above,

where D' = Deff/CP

Deff = (L)(1/Ac)(D')/[6 l 12)(1)]y ]

Deff = (.710)(1/.130)[1/(6499+192+11)](D')

Deff = .000815 D'

Cp = .000815

~L =n L
Deff Ac T) [ i 1 Fl /-H-i)
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APPENDIX 7: EXPERIMENTAL AND GENERATED DATA USED FOR FIGURES 39 TO 44

Na2SO3 Experimental
Time, Temp., conc., results DMU1 DMS1
min. oc mole/ic A/B CC/B S A/B CC/B S A/B CC/B S

20a 134 0.48 1.65 2.97 0.41 1.22 2.83 0.27 1.71 2.83 0.28

20a 134 1.03 1.49 2.89 0.53 1.15 2.99 0.42 1.61 2.99 0.43

20a 134 1.59 1.45 2.92 0.70 1.11 3.14 0.53 1.55 3.14 0.54

40a 134 0.48 1.59 3.18 0.40 1.23 2.90 0.35 1.72 2.90 0.36

40a 134 1.03 1.68 2.84 0.59 1.14 3.16 0.54 1.60 3.16 0.55

40a 134 1.59 1.42 3.08 0.71 1.09 3.39 0.65 1.53 3.39 0.66

5b 160 0.26 1.66 3.21 0.30 1.46 2.71 0.19 2.04 2.71 0.19

5b 160 0.55 1.62 3.15 0.46 1.26 2.88 0.36 1.76 2.88 0.37

20b 140 0.26 1.66 3.12 0.32 1.31 2.76 0.19 1.83 2.76 0.19

20b 140 0.55 1.63 2.54 0.48 1.20 2.93 0.38 1.68 2.93 0.39

VP1 cooks
b VP2 cooks
c Effective Na2S03 concentration


