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SUMMARY

This research focuses on estimating the shear wave velocity (Vs) profile based on the

dispersion curve obtained from SASW field test data (i.e., inversion of SASW data). It is

common for the person performing the inversion to assume the prior information required

to constrain the problem based on his/her own judgment. Additionally, the Vs profile is

usually shown as unique without giving a range of possible solutions. For these reasons,

this work focuses on: (i) studying the non-uniqueness of the solution to the inverse

problem; (ii) implementing an inversion procedure that presents the estimated model

parameters in a way that reflects their uncertainties; and (iii) evaluating tools that help

choose the appropriate prior information.

One global and one local search procedures were chosen to accomplish these purposes: a

pure Monte Carlo method and the maximum likelihood method, respectively. The pure

Monte Carlo method was chosen to study the non-uniqueness by looking at the range of

acceptable solutions (i.e., Vs profiles) obtained with as few constraints as possible. The

maximum likelihood method was chosen because it is a statistical approach, which

enables us to estimate the uncertainties of the resulting model parameters and to apply

tools such as the Bayesian criterion to help select the prior information objectively.

The above inversion methods were implemented for synthetic data, which was produced

with the same forward algorithm used during inversion. This implies that all uncertainties

were caused by the nature of the SASW inversion problem (i.e., there were no
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uncertainties added by experimental errors in data collection, analysis of the data to

create the dispersion curve, layered model to represent a real 3-D soil stratification, or

wave propagation theory). At the end of the research, the maximum likelihood method of

inversion and the tools for the selection of prior information were successfully used with

real experimental data obtained in Memphis, Tennessee.
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CHAPTER 1

INTRODUCTION

1.1 Brief Description of SASW Testing

The surface wave test commonly known as Spectral Analysis of Surface Waves (SASW)

is a non-intrusive field method that can be used to evaluate the shear wave velocity (Vs)

profile of near-surface soils. The Vs profile is commonly represented by a layered profile

with each layer having constant Vs and the last layer being a half-space also with constant

Vs (Figure 1.1).

Figure 1.1 Layered Vs profile

The test consists of measuring vertical ground motions at the surface created by an active

source (an impulsive or harmonic force at the surface) or by a passive source

(microtremors and/or cultural noise).  The sensors are commonly located in a linear array

Layer 1 – Vs1

Layer 2 – Vs2

Layer n-1 – Vs(n-1)

Layer n – Vs(n)

Half-Space – Vs(HS)
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with the source when using an active source (Figure 1.2) and in a two-dimensional array

when using passive sources (since the locations of these sources are often unknown).

Figure 1.2 Typical field test setup for active surface wave testing

From the SASW test measurements, the dispersion characteristics of the site are

calculated and represented with a dispersion curve in which one or more values of phase

velocity (Vr) are associated with each frequency (f) (Figure 1.3).

After obtaining the dispersion relation, an inversion algorithm is used to obtain the Vs

profile of the site (Figure 1.4). For more detail on the general characteristics of this

method see Stokoe et al. (1994), Tokimatsu (1997), and Rix et al. (2001). The focus of

this dissertation is the inversion of SASW data.

Source

Receivers
Vertical Particle Motion

Recording
Device

Field Test Setup
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Figure 1.3 Sample dispersion SASW data

Figure 1.4 SASW Inversion
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1.2 Statement of Problem

It is common to present the inverted Vs profile as a unique profile without showing a

range of possible solutions or some type of error bars, such as the standard deviation for

the Vs of each layer. Additionally, to constrain the problem and reduce the non-

uniqueness (i.e., the dispersion curve by itself is insufficient to obtain a unique Vs profile)

it is necessary to add some information (such as number of layers, depth to half-space,

and initial Vs values) a priori, and it is common for the person performing the inversion

to assume the required prior information based on his or her own judgment. For this

reason, surface wave inversion is subjective, and potential users of the Vs profiles often

have little confidence in its results. Thus, to make the approach as objective as possible, it

is important to estimate not only the Vs values but also their related uncertainties, and to

have tools to evaluate and choose the prior information that constraints the problem.

The main objectives of this research are:(i) to study the non-uniqueness of the solution to

the inverse problem; (ii) to examine and implement inversion procedures that present the

estimated model parameters in a way that reflects their uncertainties; and (iii) to evaluate

tools that help choose the most appropriate prior information. One global and one local

search procedures were chosen to accomplish these purposes: a pure Monte Carlo method

and the Maximum Likelihood Method, respectively. The pure Monte Carlo method was

chosen to study the non-uniqueness by looking at the range of acceptable solutions (i.e.,

Vs profiles) obtained with as few constraints as possible. The maximum likelihood
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method was chosen because it is a statistical approach, which enables us to estimate the

uncertainties of the resulting model parameters and to apply tools such as the Bayesian

criterion to help select the prior information objectively.

1.3 Dissertation Outline

Chapter 2 consists of a brief review of inversion methods, presenting a general overview

of the basic differences between empirical and theoretical methods and between two

types of theoretical methods: global and local search procedures. This chapter also

includes a comparison of various local search procedures that have been used for SASW

inversion.

Chapter 3 presents the implementation of a global search procedure for SASW inversion

using synthetic data. This procedure is a Monte Carlo type algorithm, which is based on

the random generation of Vs profiles. Chapter 4 shows the implementation of a local

search procedure for SASW inversion using synthetic data. The procedure used is the

Maximum Likelihood Method, which is based on the least squares criterion. This method

starts from some estimate of the Vs profile and with gradient methods iteratively

minimizes the error between theoretical and experimental dispersion curves.

Based on the inversion results obtained in Chapter 4, the influence of various factors on

these results is examined in Chapter 5. The factors considered are: (i) number and

distribution of points describing the experimental data, (ii) uncertainties of the
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experimental data, (iii) depths and thicknesses of the layers of the assumed profile, (iv)

depth to half-space, (v) initial estimates of the Vs values, (vi) standard deviations

assumed for the intial Vs values, and (vii) correlations assumed for the initial Vs values.

Chapter 6 presents the Bayesian criterion for model selection and its implementation for

SASW. This criterion helps rank the layered profiles favoring the one that fits the data

well enough with the simplest possible model.

Chapter 7 utilizes real data to evaluate the maximum likelihood inversion method

introduced in Chapter 4 and complemented with the Bayesian model selection described

in Chapter 6. Finally, Chapter 8 gives the conclusions of the present study and

recommendations for future research.
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CHAPTER 2

BRIEF REVIEW OF INVERSION METHODS

2.1 Introduction

In general terms, a forward problem involves predicting the results of measurements

(data) based on some general principle and a set of specific conditions (model

parameters), whereas the inverse problem addresses the reverse issue: estimating the

model parameters based on measured data and a general principle (Menke, 1989). More

specifically, as shown in Figure 2.1, for SASW testing the forward problem consists of

finding a dispersion curve (data) for a specified soil deposit (described by the model

parameters) using wave propagation theory (general principle). Conversely, the inverse

problem consists of estimating the model parameters that represent the soil deposit based

on an experimental dispersion curve (data).

This chapter gives a general overview of the various inversion procedures that can be

implemented to solve the non-linear inverse problem in SASW. One way to perform the

inversion of experimental SASW data is to empirically scale the dispersion curve going

from phase velocity versus wavelength to shear wave velocity versus depth (section 2.2).

Another way to perform the inversion is with a theoretical inversion method, which is

based on wave propagation theory and consequently produces better results for a broader

range of cases.
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Figure 2.1 SASW forward and inverse problems
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norm[vrth - vrex]/N0.5, where N is the number of points describing the dispersion curve)

and the purpose is to try to find the Vs profile that minimizes that error.
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procedures (section 2.3) and global search procedures (section 2.4). Local search

procedures are iterative procedures that start at some estimate of the model parameters

and with gradient methods minimize the error finding a local minimum in the vicinity of

0 50
0

50

100

150

200

250

300

350

Frequency (Hz)

P
ha

se
 V

el
oc

ity
 (m

/s
)

Dispersion Data

0 500

0

10

20

30

40

Shear wave velocity (m/s)

D
ep

th
 (m

)

Vs profile

FORWARD

INVERSE



9

the initial guess. Global search procedures are usually stochastic-based processes that

attempt to search over the entire solution space to find the global minimum for the error.

For nonlinear inversion problems such as SASW, finding the global minimum can be a

complex problem.

The author is familiar only with theoretical procedures that have been implemented for

SASW inversion based on local search procedures and is not informed of the use of

global search procedures implemented specifically for SASW inversion. Good references

for general inverse theory based on local search procedures are Tarantola (1987) and

Menke (1989). For global search procedures see Tarantola (1987) and Sen and Stoffa

(1995).

2.2 Overview of the Empirical Inversion Method

The simplest approach to derive the shear wave velocity (Vs) profile from the dispersion

curve is the empirical wavelength method. This method consists of ‘scaling’ the phase

velocity (Vr) versus wavelength (λ) curve to find the variation of shear wave velocity

with depth. The phase velocity is multiplied by a factor of 1.1 to obtain the shear wave

velocity (Tokimatsu, 1997). This is based on the fact that for a homogeneous half-space

the ratio Vs/Vr is between 1.05 and 1.15, depending on Poisson’s ratio. When the profile

is not a homogeneous half-space, it becomes necessary to find an equivalent depth (zeq) to

which each Vs can be assigned. This can be done for continuously inhomogeneous soil

profiles with gradually increasing stiffness with depth. These profiles are commonly
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known as normally dispersive because the phase velocity decreases with increasing

frequency. In this case, the fundamental mode of Rayleigh wave propagation is dominant

and the dispersion curve is assumed to represent this mode.

Vrettos (2000) considered profiles with shear modulus increasing with depth as:

G(z)=Go+(G∞ -Go)[1-exp(-αz)] (eq.2.1)

Where G(z) is the shear modulus at depth z, Go is the shear modulus at the surface, G∞ is

the shear modulus at infinite depth, and α is a parameter describing the rate of modulus

increase with depth. He obtained an average scaling factor of 1/3 (i.e., zeq/λ=1/3). A

scaling factor of 1/2 was considered more appropriate by Leung et al. (1991) for a linear

variation of the shear modulus with depth and by Gazetas (1982) for a shear modulus

variation with depth of the form:

G(z)=Go(1+βz)n    (eq. 2.2)

Where β and n are parameters describing the rate of modulus increase with depth. The

wavelength method may give a reasonable estimate of the shear wave velocity profile for

normally dispersive soil profiles without large discontinuities. However, theoretical

methods based on wave propagation theory give better results for a broader range of site

conditions.
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2.3 Overview of Theoretical Inversion Methods: Local Search Procedures

2.3.1 Generalities

Local search procedures are methods that attempt to minimize the error between

theoretical and experimental data. To accomplish this, they start at some estimate of the

model parameters and with gradient methods iteratively minimize the error. For SASW,

these iterative inversion procedures are based on the basic steps shown in Figure 2.2. The

first step is to have an initial estimate of the Vs profile. This estimate may be based on the

experimental dispersion curve or independently obtained information about the site

including penetration data, etc. Then, the theoretical dispersion curve related to the initial

profile is estimated and compared with the experimental dispersion curve. If the match

between the curves is considered acceptable the problem is solved. If the match is not

acceptable, the Vs profile is updated and the new Vs profile is used to find a new

theoretical dispersion curve. The iterations continue until an acceptable match is

obtained. However, in some cases the algorithm might not converge to an acceptable

match. In general, in those cases another initial model may be tried.

A number of methods have been employed to perform this iterative process for SASW

inversion (see Table 2.1) with different ways of calculating the theoretical dispersion

curve, comparing it with the experimental dispersion curve, deciding if the match is

satisfactory, and updating the shear wave velocity profile. The following sections
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describe various aspects relevant to these local search procedures and refer to different

approaches that have been used in SASW inversion.

Figure 2.2 Basic flowchart of a Local Search Procedure used for SASW inversion.

Initial estimate of
Vs profile (2.3.2)

Forward algorithm:
Find theoretical

dispersion curve (2.3.3)

Compare theoretical and experimental curves (2.3.4)
Acceptable match?

Experimental
dispersion curve

yes no

Done Update Vs profile (2.3.5)



13

Table 2.1 Summary of methods employed for SASW inversion

Xia, Miller, & Park
(1999)

Initial Vs profile (2.3.2) Model
Parameters

Initial Values

Vs

Not specified
Forward
Model

Knopoff’s method: reference to
Schwab and Knopoff, 1972

Type of
waves

Rayleigh

Forward algorithm
(2.3.3)

Modes
included

Fundamental Mode

Error function (2.3.4) Not specified
Method to
find change
in Vs profile
for next
iteration

Linear about  values in present
iteration (∆c=J∆p)(a)

To find ∆p:
Constrained Weighted least
squares using Levenberg-
Marquardt method & Singular
Value Decomposition

Update Vs profile
(2.3.5)

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Closed form expressions from
finite differences using
Ridder’s method of polynomial
extrapolation

Notes: (a) J: matrix of partial derivatives of the phase velocity with respect to the
medium parameters, ∆c: difference between observed and theoretical phase
velocities, and ∆p: change in model parameters to use in next iteration.

(b) c: Rayleigh phase velocity, f: frequency, k: wave number, λ: wavelength.

(c) N:number of frequencies in dispersion curve, W: diagonal matrix with
elements equal to the inverse of the standard deviations (σ) of the experimental
values (Wii=1/σi).
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Table 2.1 (cont’d)

Ganji, Gucunski, &
Nazarian

 (1998)

Lai & Rix
(1998)

Initial Vs profile
(2.3.2)

Model
Parameters

Initial Values

Vs or Vs &
Thicknesses

Wavelength Method

Vs

Not specified
Forward
Model

Test simulation: based
on linearized stiffness
matrix (Kausel), with
closed form
expressions for
displacements.

Effective Rayleigh
phase velocity (based
on harmonic source,
and using average
over range of
receiver offsets)

Type of
waves

Rayleigh and body Rayleigh

Forward
algorithm (2.3.3)

Modes
included

All Modes All Modes

Error function
(2.3.4)

e1=norm(∆c) w_eRMS = norm[W
∆c]/N0.5 (c)

Method to
find change
in Vs profile
for next
iteration

Linear about  values in
present iteration
(∆c=J∆p)(a)

To find ∆p:
Singular Value
Decomposition PLUS
Non-linear
optimization approach
(based on Davidon-
Fletcher-Powel
method) when linear
one fails

Linear about values
in present iteration
(∆c=J∆p)(a)

To find ∆p:
Constrained non-
linear least squares,
to find the smoothest
profile for Vs, for an
acceptable error

Update Vs profile
(2.3.5)

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Numerical
differentiation

Closed form
analytical
expressions based on
Rayleigh variational
principle
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Table 2.1 (cont’d)

Tokimatsu
(1997)

Active SW method Passive SW method
Initial Vs
profile
(2.3.2)

Model
Parameters

Initial Values

Vs or Vs & Thicknesses

Not specified

Vs or Vs & Thicknesses

Not specified

Forward
Model

Displacements calculated
with compound matrix
method (solution
separating Rayleigh and
body waves)
AND
Response factors related to
the contribution of
different modes
---------------------
Dispersion curve based on
cross-power spectrum like
for the displacements
measured at the field

Expression for apparent
phase velocity that includes
all modes;
based on simulated
dispersion curves like for
active method, and on
Aki’s 1957 study

Type of
waves

Rayleigh and could include
body

Rayleigh (and Love if
horizontal displacements
are measured)

Forward
algorith
m (2.3.3)

Modes
included

All Modes All Modes

Error
function
(2.3.4)

e2= norm(∆c)2 e2= norm(∆c)2

Method to
find change
in Vs profile
for next
iteration

Linear about  values in
present iteration
(∆c=J∆p)(a)

To find ∆p: reference to
Dorman and Ewing, 1962,
and Wiggins, 1972

Same as for active methodUpdate
Vs

profile
(2.3.5)

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Numerical is too time
consuming, use variational
technique as in Yuan &
Nazarian (1993)

Same as for active method
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Table 2.1 (cont’d)

Joh
(1996)

Yuan & Nazarian
(1993)

Initial Vs
profile (2.3.2)

Model
Parameters

Initial Values

Vs

Based on exper. disp.
curve

Vs or Vs & Thicknesses

Not specified

Forward
algorithm

(2.3.3)

Forward
Model

Test simulation: based on
dynamic stiffness matrix
(Kausel) with closed
form expressions for
displacements
---------------------
Dispersion curve based
on cross-power spectrum
like for the displacements
measured at the field
---------------------
global dispersion curve
(doesn’t account for real
test setup)
OR array dispersion
curves

Wave propagation
theory based on transfer
matrix (Thomson,
Haskell)
---------------------
Dispersion curve created
from wavenumber with
c=2πf/k and λ=2π/k(b)

Type of waves Rayleigh and body Rayleigh
Modes
included

All Modes Fundamental Mode

Error
function
(2.3.4)

Cost function, maximum
likelihood method: see
Chapter 4

eRMS = norm[∆c]/N0.5 (c)

Update Vs
profile (2.3.5)

Method to
find change in
Vs profile for
next iteration

Initial profile based on
dispersion curve. Refined
with depth resolution and
layer sensitivity analyses
Maximum likelihood
method using Newton-
Raphson to minimize
cost function (forward
problem linear around
maximum likelihood
point)

Linear about values in
present iteration
(∆c=J∆p)(a)

To find ∆p:
Singular Value
Decomposition
with Marquardt’s factor
to eliminate effect of
small singular values

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Numerical differentiation Expression found based
on energy integral
equation
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Table 2.1 (cont’d)

Roësset, Chang, & Stokoe
(1991)

2-D 3-D
Initial Vs profile

(2.3.2)
Model
Parameters

Initial Values

Vs or Vs &
Thicknesses

Wavelength Method

Vs or Vs &
Thicknesses

Wavelength Method
Forward

algorithm (2.3.3)
Forward
Model

Wave propagation
theory based on
transfer matrix
(Thomson, Haskell)
OR
dynamic stiffness
matrix (Kausel &
Roësset)
---------------------
Dispersion curve
created from
wavenumber with
c=2πf/k and
λ=2π/k(b)

Expressions for radial
and vertical
displacements with
cylindrical coordinates
AND
discrete formulation to
expand terms in
dynamic stiffness
matrix (Kausel &
Roësset)
---------------------
Dispersion curve
based on cross-power
spectrum like for the
displacements
measured at the field

Type of waves Rayleigh Rayleigh
Modes
included

Fundamental Mode All Modes

Error function
(2.3.4)

Not specified Not specified

Update Vs profile
(2.3.5)

Method to
find change in
Vs profile for
next iteration

Not specified Not specified

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Not specified Not specified



18

Table 2.1 (cont’d)

Gucunski & Woods (1991)

Initial Vs
profile (2.3.2)

Model
Parameters

Initial Values

Vs or Vs & Thicknesses

Not specified

Forward
algorithm

(2.3.3)

Forward
Model

Numerical simulation of test
based on stiffness matrix
OR
Weighted average phase
velocity, with weighting
factors based on modal
displacements

Type of waves Rayleigh (and body if
numerical simulation is used)

Modes
included

All Modes

Error
function
(2.3.4)

Not specified

Update Vs
profile (2.3.5)

Method to
find change in
Vs profile for
next iteration

Not specified

Partial
Derivatives
(∂∂Vr/∂∂Vs)

Not specified
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2.3.2 Initial Estimate of the Shear Wave Velocity Profile

For inversion methods employing local search procedures, convergence is guaranteed

only if the initial guess is sufficiently close to the solution. Furthermore, for SASW

inversion, having a good initial estimate of the shear wave velocities improves the

convergence of the inversion algorithm and also reduces the number of iterations

required. For this reason, Joh (1996) proposes a procedure to obtain the initial estimate of

the Vs profile based on the dispersion curve.

The first step to have an initial estimate of the parameters that describe the shear wave

velocity profile is to decide which parameters are going to be the unknowns found

through the inversion process and which are going to be assumed as known and fixed

during inversion. For example, the soil deposit is generally represented by a profile with

horizontal layers overlying a half-space with the model parameters including layer

thickness, density, P-wave velocity (Vp) and S-wave velocity (Vs). The effect of a change

in density and P-wave velocity on the dispersion curve is negligibly small (Tokimatsu et

al., 1991), and these parameters are normally assumed as known. Thus, the unknown

model parameters are reduced to layer thicknesses and shear wave velocities. However,

in many cases the layer thicknesses are assumed known to simplify the problem and the

shear wave velocities are viewed as the only unknown parameters.

Yuan and Nazarian (1993) suggested that more layers be used when the thicknesses are

fixed during inversion because having more layers gives more flexibility to the profile
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and reduces the chance of emphasizing false layer interfaces. Conversely, having too

many layers may result in thin layers that do not affect the resulting theoretical dispersion

curve enough for it to constrain their Vs values.

For some methods, such as the maximum likelihood method (see Chapter 4), the initial

guess also includes uncertainties related to the Vs profile, which reflect how much is

known about the initial estimates of the shear wave velocities. These uncertainties are

given by standard deviations and correlations assembled in a covariance matrix and

described in detail in Chapter 4.

2.3.3 Theoretical Dispersion Curve

Different techniques may be used to solve the forward problem and find the theoretical

dispersion curve for a given soil model. The most commonly used approach is the

Haskell-Thomson method (Thomson, 1950; Haskell, 1953), which describes wave

propagation in a layered medium. This approach is also known as the transfer matrix

method and is only applicable to profiles that can be represented as a stack of

homogeneous layers overlying a homogeneous half–space (see Figure 2.3). Other

methods commonly used for wave propagation that are likewise only applicable in

layered profiles include: (i) the dynamic stiffness matrix method derived by Kausel and

Roësset (1981), and (ii) the method of reflection and transmission coefficients derived by

Kennett (1983).
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From the results obtained from wave propagation theory in layered media, it can be noted

that Rayleigh waves contain several modes of propagation where each mode travels with

a different phase velocity (Figure 2.4). This implies that for an assumed shear wave

velocity profile the resulting theoretical dispersion data may include several dispersion

curves, one for each propagation mode considered. On the other hand, experimental data

usually represents the combined effect of all modes, resulting in a single curve of phase

velocity varying with frequency. This phase velocity can then be viewed as an apparent

phase velocity since it includes all modes of propagation and could include the effect

from body waves.

Many iterative inversion methods like the one presented by Yuan and Nazarian (1993)

consider only the fundamental mode of Rayleigh wave propagation. These procedures are

useful for soil profiles in which the shear wave velocity generally increases with depth

(i.e., normally dispersive) because for these profiles the fundamental mode is the

dominant mode of propagation. For inversely dispersive soil profiles in which the

variation of shear wave velocity with depth is more irregular, the effect of higher modes

may be significant (Tokimatsu et al.,1992a; Gucunski and Woods, 1991). As noted by

Tokimatsu (1997), the participation of each mode varies depending on soil stratification

and frequency, and in some cases the observed dispersion characteristics may correspond

to a higher mode or multiple modes. Consequently, the estimated Vs profiles may have

significant errors if the effects of higher modes are neglected during the inversion

process.
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Figure 2.3 Layered Model

Figure 2.4 Sample wave propagation modes for Rayleigh waves

00 200200 40040000

55

1010

1515

2020

2525

3030

Shear wave velocity (m/s)Shear wave velocity (m/s)Shear wave velocity (m/s)

D
ep

th
 (m

)
D

ep
th

 (m
)

D
ep

th
 (m

)

000 202020 404040 606060
000

100100100

200200200

300300300

400400400

500500500

Frequency (Hz)Frequency (Hz)Frequency (Hz)

P
ha

se
 v

el
oc

ity
 (m

/s
)

P
ha

se
 v

el
oc

ity
 (m

/s
)

P
ha

se
 v

el
oc

ity
 (m

/s
)

fundamental modefundamental modefundamental mode
second mode     second mode     second mode     
third mode      third mode      third mode      
fourth mode     fourth mode     fourth mode     

Layer 1

Layer 2

Layer n-1

Layer n

Half-Space



23

Recent inversion methods (Lai and Rix, 1998; Tokimatsu, 1997) compare the

experimental dispersion curve to an apparent dispersion curve, which includes the effect

of higher modes. Lai and Rix (1998) calculate what they call the effective Rayleigh phase

velocity. They noted that for sources that are harmonic in time, Rayleigh modes are

superimposed, resulting in an effective phase velocity which is a function of frequency

and spatial position from the source. The effective phase velocity presents one dispersion

curve for each receiver position. These curves form a dispersion surface and they are

averaged over the range of receiver spacings to obtain a single “effective” dispersion

curve for comparison with the experimental dispersion curve.

Tokimatsu (1997) presents a method to calculate simulated dispersion curves for both

vertical and horizontal displacements that include the effect of higher modes. He suggests

that in addition to the dispersion data for the vertical motions, the dispersion curve for the

horizontal motions or the amplitude ratio of the particle motions (i.e., vertical/horizontal)

should be used to reduce the ambiguity of the inversion. Methods that include the effect

of higher modes have the capability of inverting normally and inversely dispersive soil

profiles more reliably.

The influence from body waves is usually neglected by assuming that the receivers are

sufficiently far away from the source because body waves attenuate with distance more

quickly than Rayleigh waves. Tokimatsu (1997) studies the effect of body waves on

layered profiles. He demonstrates that Rayleigh waves generally dominate over the

frequency range of interest for SASW method and he determines under what conditions
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the effect of body waves is negligible. By considering different types of layerings, he

shows that for some layered media, the effects of body waves may be neglected if the

distance from the source exceeds ¼ of the wavelength measured. However, for a case

with a stiff surface layer overlying a soft layer, the effect of body waves is minimized

only if using f-k spectrum analysis to create the dispersion curve. The description and use

of f-k spectrum analysis can also be found in Zywicki (1999) and Rix et al (2002).

Some recent inversion methods include body waves by numerically simulating the field

test. This is done by using wave propagation theory to calculate the displacements for

each receiver for a source-receiver configuration the same as the one used during the field

test (Joh, 1996; Ganji et al., 1998). The theoretical dispersion curve is found based on the

calculated displacements in the same way that the experimental dispersion curve is

obtained from the displacements measured at the field. This theoretical curve, like the

experimental one, represents an apparent phase velocity that includes the effect of body

waves and all modes of Rayleigh wave propagation. It is beneficial to calculate the

theoretical and the experimental dispersion curves in the same way to eliminate any

differences caused by the method of obtaining these curves.

The methods using this approach have capabilities of inverting normally and inversely

dispersive soil profiles. The disadvantage of this approach is that in most cases the partial

derivatives must be obtained numerically (not analytically). The derivatives must be

calculated for each iteration (see section 2.3.4) and performing a numerical calculation of

these significantly increases the time of inversion compared to performing this
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calculation based on closed-form expressions (Yuan and Nazarian, 1993, and Tokimatsu,

1997).

2.3.4 Convergence Criteria and Constraints

Once the theoretical dispersion curve is obtained, it is necessary to compare it with the

experimental dispersion curve. Generally, the difference between the theoretical and the

experimental dispersion curves is measured using the Root Mean Squares (RMS) error:

eRMS = norm[∆∆c]/N0.5 (eq. 2.3)

where, ∆∆c is the vector of the differences between experimental and theoretical phase

velocities, and N is the number of elements in vector ∆∆c (i.e., the number of experimental

data points). In general, inversion methods attempt to minimize an error function such as

eRMS (Yuan and Nazarian, 1993), e1=norm(∆∆c) (Ganji et al., 1998), or e2= norm(∆∆c)2

(Tokimatsu, 1997). Note that minimizing e1 or e2 is equivalent to minimizing eRMS, but

the value of eRMS is often more useful because it does not depend on the number of data

points.

Additionally, Tokimatsu et al. (1991) recommended the use of either the dispersion data

of the horizontal motions or the amplitude ratio of particle motions to reduce the non-

uniqueness of the problem. Most field methods measure only the vertical displacements,
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but Tokimatsu (1997) recommends simultaneous measurement of vertical and horizontal

displacements to reduce ambiguity.

Lai and Rix (1998) minimize a weighted RMS error, which includes a weighting matrix

based on the uncertainties assigned to the experimental data:

w_eRMS = norm[W ∆∆c]/N0.5 (eq. 2.4)

Where W is a diagonal matrix with elements equal to the inverse of the standard

deviations (σ) of the experimental values (Wii=1/σi). Additionally, their inversion

algorithm chooses the smoothest profile within the trial profiles that meet the w_eRMS by

minimizing the roughness of the profile.

Joh (1996) employs the maximum likelihood method, which minimizes a cost function

that includes two terms: one for ∆∆c and one for the difference between the vector of

model parameters p and its initial guessed value. This cost function is described in detail

in Chapter 4.

2.3.5 Updating the Shear Wave Velocity Profile

When the match between the theoretical and the experimental dispersion curves is not

satisfactory, it is necessary to update the shear wave velocity profile (by updating the
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model parameters) to improve the match. The vector p of model parameters is updated

for the next iteration as:

p (iteration i+1) = p (iteration i) + ∆∆p (eq. 2.5)

In general, for local search procedures the equation to determine ∆∆p is based on a

linearization of the problem near the values in the present iteration, as shown in the

expression below:

∆∆c = J ∆∆p (eq. 2.6)

where, ∆∆c is the vector of the differences between experimental and theoretical phase

velocities and J is the matrix of partial derivatives (i.e., the element in row m and column

n of J is jmn = δcm/δpn).

The calculation of the partial derivatives of the phase velocity respect to the medium

parameters is a very important part of the inversion process and is usually calculated for

each iteration and each shear wave velocity profile. As mentioned previously, the use of

closed-form expressions for the partial derivatives is less time consuming than estimating

these numerically. These closed-form expressions can be derived based on energy

integral equation (or Rayleigh variational principle) as presented by Yuan and Nazarian

(1993), Tokimatsu (1997), and Lai and Rix (1998).
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After obtaining the partial derivatives, there are different ways of solving equation 2.6 to

estimate ∆∆p and use it in equation 2.5 to find the parameters (p) for the next iteration.

Yuan and Nazarian (1993) employ singular value decomposition of J

J=UΛΛVT (eq. 2.7)

Where U is a matrix whose columns are eigenvectors associated with the columns of J,

V is a matrix whose columns are eigenvectors associated with the rows of J, and

ΛΛ is a diagonal matrix with elements, which are the nonnegative square roots of

the symmetric matrix JTJ and are known as the singular values of J.

With the singular value decomposition, the solution for ∆∆p becomes:

∆∆p= (VΛΛ-1UT) ∆∆c (eq. 2.8)

In addition, Yuan and Nazarian (1993) employ Marquardt’s factor to eliminate the effect

of small singular values. Ganji et al. (1998) also apply singular value decomposition.

Furthermore, they implement a non-linear optimization approach based on Davidson-

Fletcher-Powel method when the linear one fails. Xia et al. (1999) use constrained

weighted least squares to search for a solution that minimizes the error and the change in

the model parameters to have a stable convergence procedure. They solve for ∆∆p with the

Levenberg-Marquardt method and singular value decomposition of J obtaining:
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∆∆p= [V(ΛΛ2 + ααI)-1ΛΛ UT L] ∆∆c (eq. 2.9)

where L comes from a weighting matrix W=LTL and αα is a damping factor.

Lai and Rix (1998) used the constrained non-linear least squares algorithm proposed by

Constable et al. (1987). This algorithm finds a solution that minimizes the roughness of

the Vs profile (i.e., maximizes the smoothness) subject to the constraint that the error be

equal to a value considered acceptable. Joh (1996) employs the maximum likelihood

method, which favors the shear wave velocity profile that maximizes the probability that

the corresponding dispersion curve is the experimental dispersion curve and is described

in more detail in Chapter 4.

2.3.6 Uncertainty

Most methods do not address the evaluation of the uncertainty of the inverted Vs profile.

This profile presented without error bars may give the interpreter a false sense of

certainty of the Vs values. Lai and Rix (1998) recognize that only approximate results can

be obtained for the variances of Vs due to the non-linearity of the forward problem. They

describe how to find an estimate of the covariance matrix (i.e., the diagonal terms of this

matrix are the variances of the estimated Vs values, see Chapter 4) when Occam’s

inversion algorithm is used to find Vs. The basic idea is to map the uncertainty of the

measurements into uncertainty of the estimated model parameters in a manner similar to

the mapping of the measurements into model parameters. Yuan and Nazarian (1993) and
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Ganji et al. (1998) also evaluate the uncertainty in the profile by mapping the statistics of

the data errors into a variance associated with each parameter. Yuan and Nazarian (1993)

found that the variances usually underestimate the real uncertainties because they only

include the effect from random data errors (i.e., errors in the assumed properties of the

profile) and systematic data errors are not included.

Joh (1996) gives a solution to calculate the covariance matrix related to the estimated

model parameters. He uses the results presented by Tarantola (1987) for the maximum

likelihood method, which are described in detail in Chapter 4. In this method, the

covariance matrix of the estimated parameters depends not only on the uncertainty of the

measurements but also on the uncertainties of the initial estimate of the model

parameters. The reason for this dependence is that the maximum likelihood method

attempts to minimize the differences between the model parameters and their initial

estimates in addition to minimizing the error between experimental and theoretical data.

2.4 Overview of Theoretical Inversion Methods: Global Search Procedures

2.4.1 Generalities

Global search procedures are processes that attempt to search the entire solution space

and find the global minimum by successive forward simulations. The advantage of a

global search procedure is that the problem can be solved in a fully non-linear form (i.e.
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without any type of linearization of the forward algorithm). The basic steps of a global

search procedure are given below:

(i) Assume values for the model parameters;

(ii) Find the related theoretical data;

(iii) Calculate the error between theoretical and experimental data;

(iv) Save the values of the model parameters if the error is considered

satisfactory, and repeat steps (i) to (iv) until the model space has

been fully explored;

(v) Present the range of values for the model parameters

corresponding to satisfactory errors (e.g., by calculating the mean

and the standard deviation or some other measures considered

appropriate);

The main difference among global search procedures is the way of choosing the

parameter values in step (i). Enumerative or grid search methods of inversion find the

best fit models from a complete search over each point of a predefined model space (Sen

and Stoffa, 1995). For a model space with a large number of parameters this might

become an unbearable task requiring unreasonable amounts of time and computer

resources. In this case, it is more economical to randomly select points in the model space

than to define a grid dense enough to ensure that at least one point will be in the best

possible area (Tarantola, 1987). Inversion methods that employ a random or pseudo-

random generator are called Monte Carlo methods.
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2.4.2 Pure Monte Carlo Methods

For any Monte Carlo method it is necessary to constrain the values of the model

parameters that will be randomly generated. For a pure Monte Carlo method the

constraint is done by choosing the value of each model parameter from an interval

determined a priori, where all values within the interval are equally probable (Sen and

Stoffa, 1995). Thus, for each model parameter pi the only condition is:

pi
min≤pi≤pi

max (eq. 2.10)

Another way of constraining the values of the randomly generated model parameters and

reduce the solution space is to use prior information to define a probability distribution to

sample the models from. For instance a Gaussian distribution could be assumed and

described by a mean and a standard deviation for each parameter. If the limits of the

predefined interval or the standard deviations defining the probability distribution are too

wide, the number of forward simulations necessary to explore the model space might be

extremely large and require an unreasonable amount of time and computer resources. On

the other hand, if the limits or the standard deviations are chosen too small they may

control the results obtained (Tarantola, 1987).

Sen and Stoffa (1995) note that if no prior information is available, the search can be

performed within a discrete solution space using relatively large increments and
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accepting low resolution results. For example for each model parameter pi an increment

∆pi is defined and the possible values for pi will be limited to:

pi = pi
min + integer*∆pi (eq. 2.11)

Where the integer is a random number between 1 and (pi
max-pi

min)/ ∆pi. For small values

of ∆pi the resolution is better but the computer time might be too large, whereas for large

values of ∆pi the resolution is poor but it may be easier to reach a solution near the global

minimum. Another important issue with Monte Carlo methods is that it is difficult to

determine whether the model space has been adequately explored to consider that the

range of satisfactory models represents the solution. It is common to stop the

computations based on the total number of models with an acceptable error (Tarantola,

1987, Sen and Stoffa, 1995). Sen and Stoffa (1995) describe how to estimate the

resolution matrix for a Monte Carlo inversion method and how this matrix helps decide if

enough acceptable models have been found to stop the search.

2.4.3 Directed Monte Carlo Methods

Another type of procedure that employs random generation of the model parameters is

called directed Monte Carlo methods. Two procedures that fall into this category are

simulated annealing and genetic algorithms and are described by Sen and Stoffa (1995).

These methods use random generation of the model parameters but they guide their

search using a transition probability rule. The idea is that these methods should not bias
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the results, and for this reason they need to keep a large degree of randomness. However,

at the same time these methods should direct the search toward sampling the better

models (Sen and Stoffa, 1995). Other good references that address these methods are

Tarantola (1987) for simulated annealing and Santamarina and Fratta (1998) for genetic

algorithms.

2.4.4 Uncertainty

When the model space has been conveniently explored and the number of acceptable

models found using the global search procedure is considered satisfactory, the values and

uncertainties of the model parameters can be estimated within a statistical framework.

Tarantola (1987) and Sen and Stoffa (1995) describe the calculation of the mathematical

expectation and covariance matrix for Monte Carlo methods. The covariance matrix

presents the uncertainties of the model parameters and the correlations between them.
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CHAPTER 3

SASW INVERSION BASED ON RANDOM GENERATION OF VS PROFILES

3.1 Introduction

In this chapter, a Monte Carlo algorithm is described and implemented for SASW

inversion. The purpose of this is to look at the range of Vs values that fit the dispersion

curve and obtain an estimate of their uncertainties using a minimum number of

constraints. The forward algorithm used to obtain the simulated experimental data is the

same one used to find the theoretical dispersion curves in the Monte Carlo inversion

process. Thus, in this case, the experimental data and the forward algorithm are ideal, i.e.,

without any errors added by: (i) noise from data measurement, (ii) analysis of the data to

create the dispersion curve, (iii) use of a simplified model attempting to represent the real

world, or (iv) wave propagation theory. Consequently, the uncertainties are the ones

caused by the nature of the SASW inversion problem alone.

Herein, a theoretical normally dispersive profile is used to obtain a synthetic dispersion

curve, which is treated as “experimental” data. To perform the inversion, Vs profiles are

randomly generated and tested to choose the ones with theoretical dispersion curves that

present a satisfactory match to the “experimental” curve. The generation of the Vs

profiles is done with a predefined number of layers and fixed thicknesses. The layers

chosen are thinner than the “real” layers with interfaces that match the “real” ones, so the
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assumed layering is able to match the “real” one with the appropriate V s values. The Vs

value for each layer is randomly chosen within an interval where all values are equally

probable. The interval of possible Vs values is based on an empirical estimate of the Vs

profile multiplied by a factor <1 to establish the lower limit and a factor >1 to establish

the upper limit.

3.2 Global Search Procedure applied to SASW

3.2.1 Pure Monte Carlo Inversion applied to SASW

In this section the main issues regarding the implementation of a pure Monte Carlo

inversion method for SASW inversion are discussed. As mentioned in Chapter 2, the soil

deposit is generally represented with horizontal layers overlying a half-space, and

described by layer thickness, density, P-wave velocity (Vp) and S-wave velocity (Vs).

Since the effects of density and P-wave velocity on the soil deposit are small (Tokimatsu

et al., 1991), these values are fixed and the unknown model parameters are reduced to

thickness and Vs. Herein, the density (ρ) and the Poisson ratio (υ) are assumed as known

for each layer and Vp is calculated as (Kramer, 1996):

í21
í22

VV sp −
−= (eq. 3.1)

In some cases the number of layers and their thicknesses may be fixed and the only

model parameters randomly generated are the shear wave velocities. Fixing the layer
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thicknesses reduces the number of unknown parameters and consequently the size of the

model space being searched.

The unknown model parameters are chosen for each randomly generated profile by

giving each parameter a value from a predefined interval, using a uniform distribution to

give the same probability to any value between (and including) the interval limits (Figure

3.1). The disadvantage of using a uniform distribution is that the lower and upper limits

for the model parameters need to be fixed and no values can be outside these limits. The

advantage is that within the limits all values are equally probable. If the limits are too

wide the process of exploring possible profiles might be excessively time consuming, but

if the limits are too narrow they could control the solution.

Another possibility for choosing the parameter values is to use a distribution such as the

normal distribution (Figure 3.1). In this case, the random generation of the profile would

favor values closer to the mean and there would be no absolute maximum and minimum

limits. For this project the purpose of using the random algorithm is to find a number of

Vs profiles that fit a set of experimental data without favoring any Vs values, thus a

uniform distribution was chosen.

For each randomly generated profile the theoretical dispersion curve is estimated using a

forward algorithm such as the one proposed by Lai and Rix (1998). This algorithm

provides separately the first ten modes of propagation and an apparent dispersion curve

that includes the effect of multiple surface wave modes. The fundamental mode may be
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used for normally dispersive profiles and the apparent dispersion curve for inversely

dispersive profiles (see Chapter 2).

Figure 3.1 Comparison of uniform and normal distributions to choose
the values of the parameters for the randomly generated Vs profile

The theoretical dispersion curve is compared with the experimental curve by calculating

the root mean square (rms) error as:
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W is the diagonal Nfreq by Nfreq matrix with elements Wi,i=1/σ_vri, and

σ_vri is the uncertainty in the ith experimental phase velocity.

Thus, the rms value is directly affected by the assumed uncertainties for the experimental

phase velocities: the more uncertain the experimental dispersion data the lower the rms

error, which results in a less constrained solution with a larger number of Vs profiles

satisfying a specified rms criterion. Constable et al. (1987) discuss the issue of

establishing an rms criterion, concluding that if the noise in the data can be represented

by a zero-mean Gaussian process with σ_vri representing the standard deviations, a

reasonable value for the rms is 1.0. Tuomi and Hiltunen (1997) presented two SASW

experimental cases showing that the phase angle data (which is directly related to the

phase velocity in the dispersion curve) seems to be normally distributed. Thus, using a

Gaussian model for the data uncertainties appears to be a reasonable assumption for

SASW.  Additionally, if there is little knowledge about the noise it is not appropriate or

justified to use more refined statistical models (Constable et al., 1987).

Tuomi and Hiltunen (1997) showed that there is a low uncertainty in the experimental

dispersion data. They presented values for the coefficient of variation (= standard

deviation / mean) of the phase angle data which were between 0.2 % and 6.4 %. Based on

this information, the dispersion data of the numerical simulation used herein is assumed

to have a standard deviation equal to 3% of the phase velocity.
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3.2.2 Mathematical Expectation and Covariance Matrix

Tarantola (1987) describes how to find the unbiased estimators of the mathematical

expectation and the covariance matrix for a set of NP satisfactory models found using a

Monte Carlo simulation. The equations given by Tarantola (1987) are adapted here in

terms appropriate for SASW inversion. The mathematical expectation of the shear wave

velocities is:

( )

( )∑

∑

=

=

⋅
= NP

i

i

NP

i

ii

L
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1

1

vs

vsα

α (eq. 3.3)

where

NP is the number of satisfactory Vs profiles,

αvs  is the α component of the vector <vs> (corresponding to Vs for layer α)

<vs> is the vector of the mathematical expectations of the Vs values and describes the

expected Vs profile),

ivsα  is the α component of the vector vsi,

vsi is a vector of Vs values that describe one satisfactory Vs profile, with i=1,2,...,NP, and

L(vsi) may be called the likelihood, and assuming a Gaussian error distribution for the

data it can be calculated as:
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where

vrth
i  is the theoretical phase velocity vector,

vrex  is the experimental phase velocity vector, and

C_vr is the covariance matrix of the phase velocity data.

The components of the covariance matrix of the shear wave velocity vector are calculated

as:

( )

( )
βα
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βα vsvs
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∑

=

=

1

1
,_

vs

vs
(eq. 3.5)

where

C_vsα,β is the component of the α row and the β column of the Vs covariance matrix

C_vsf. The subindex f is used to indicate that this is the matrix describing the

uncertainties and correlations on the final shear wave velocities found through the

inversion process (i.e., on the estimated mathematical expectation of the Vs values).

It can be noted that the mathematical expectation is a weighted average in which the

weights are given to each satisfactory Vs profile based on the likelihood (which is a

measure of how well the theoretical dispersion data of the Vs profile matches the

experimental data). If the user considers that all profiles that produce a dispersion curve

with an rms error under a certain criterion (for example rms<1) are equally satisfactory,

then it might be better to use the traditional average without weights (i.e., L(vsi)=1 in

equation 3.3). The reason is that in the case where the weights are used, the mathematical
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expectation will produce a Vs profile with values very close to the profile with lowest

rms, and might vary insignificantly when satisfactory profiles with a higher rms are

added.

If the expected Vs profile is calculated with the traditional average without weights (i.e.,

L(vsi)=1 in equation 3.3), the covariance matrix should also be calculated without the

weights given by the likelihood (i.e., L(vsi)=1 in equation 3.5). Additionally, if a normal

distribution is assumed for the Vs values the covariance matrix terms can be found as:

( )( )ββααβα vsvsvsvs
N

vsC i
N

i

i −−
−

= ∑
=1

, 1
1

_ (eq. 3.6)

The standard deviations are the square roots of the diagonal terms of the covariance

matrix, thus the standard deviation of Vs for layer α can be calculated as:
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2
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i vsvs
N

ó_vs ααα (eq. 3.7)

The assumption of a normal distribution for the Vs values used in equations 3.6 and 3.7

may be evaluated using a normal probability plot to verify that the Vs data for each layer

plot as a straight line.
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3.2.3 Satisfactory Number of Random Vs Profiles

After establishing an rms criterion, it is necessary to find a sufficient number of Vs

profiles to accurately show the range of Vs values and profile shapes that can be

associated with the experimental dispersion curve. The profiles that meet the rms

criterion are called satisfactory. In order to determine if the number of satisfactory

profiles can be considered sufficient, a methodology for Monte Carlo inversion proposed

by Kennet and Nolet (1978) and presented by Sen and Stoffa (1995) may be used. This

methodology is based on estimating the resolution matrix as new satisfactory models

(i.e., Vs profiles) are obtained, and stopping the algorithm when the estimate of this

matrix does not change with the use of additional models.

The first step is to find a matrix P defined as:

( )( )Ti
NP

i

i

NP
vsvsvsvsP −−= ∑

=1

1
(eq. 3.8)

where

NP is the number of satisfactory Vs profiles,

vsi is a vector of Vs values that describe one satisfactory Vs profile, with i=1,2,...,NP, and

vs is the vector of average Vs values that describe the average Vs profile and is calculated

as:
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After constructing matrix P, the eigenvectors (e1, e2, ..., eK,) of this matrix are used to

estimate the resolution matrix R as:

∑
=

=
K

k

T
kk

1

eeR (eq. 3.10)

where

K is the number of eigenvalues of P

The resolution matrix can be calculated based on more satisfactory profiles as they are

found and the algorithm can be stopped when the estimate of this matrix does not change

significantly  (Kennet and Nolet, 1978).

Another possible way of finding if more satisfactory profiles give additional information

is to check if the mean for the Vs values changes with additional trials. Additionally, it is

valuable to confirm that the range of profiles that meet the rms criterion is narrower than

the range of all randomly generated profiles, to make sure that the limits used to constrain

the Vs values do not control the solution. Lastly, the uncertainties of the final profile are

expected to be less than the uncertainties of the initial profile.
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3.3 Example based on numerical simulation

3.3.1 Theoretical Vs Profile and Related Dispersion Data

Synthetic data is used to evaluate the type of results that may be obtained with Monte

Carlo inversion. The Vs profile created to obtain the simulated experimental data has the

characteristics shown in Table 3.1. The shear wave velocity increases regularly with

depth, which results in a normally dispersive profile. The corresponding dispersion curve

was found using the forward algorithm implemented by Lai and Rix (1998). In this case

the synthetic dispersion curve used as the “experimental” data includes only the

fundamental mode because this is the dominant mode of propagation for a normally

dispersive profile like the one presented here.

The forward algorithm used to obtain the simulated experimental data is the same one

used to calculate theoretical dispersion curves in the Monte Carlo inversion process.

Thus, in this numerical simulation the uncertainties that will be observed are caused

solely by the nature of SASW inversion, since there are no errors caused by: (i) noise

from data measurement, (ii) analysis of the data to create the dispersion curve, (iii) model

attempting to represent the real world, or (iv) wave propagation theory. For a real

experimental case these sources of error would result in additional uncertainties.
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Table 3.1  Normally dispersive profile ND1

Layer No. Layer
Thickness

(m)

Mass
Density
(g/cm3)

Shear
Wave

Velocity
(m/s)

Poisson’s
Ratio

1 5 1.8 100 0.2
2 5 1.8 200 0.45
3 10 1.8 300 0.45
 - 1.8 400 0.45
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Figure 3.2 Simulated dispersion curve for profile ND1
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The fundamental mode “experimental” dispersion curve is described by 50 points as

presented in Figure 3.2. The data points are distributed in frequency in such a way that

there are more points in the lower frequency range. This is done because lower

frequencies correspond to longer wavelengths, which test deeper soils (i.e., surface waves

do not have significant particle motion at depths greater than approximately one

wavelength (Tokimatsu, 1997)).

3.3.2 Layered Profile Used to Perform the Inversion

The layered profile used to perform the inversion has ten, 2.5-meter layers on top of a

half-space. This configuration has more layers than the real profile used to obtain the

synthetic data and a larger depth to the half-space. The layers chosen are thinner than the

real layers, but have interfaces that match the real ones. This assures that the assumed

layering is able to match the real one if the appropriate Vs values are found. Of course

there are many other possible configurations, but only one was chosen due to the time

constraints associated with the Monte Carlo algorithm. With this single configuration the

main purpose is to determine the expected Vs values that fit the dispersion curve and to

obtain an estimate of the uncertainties associated with these values.

3.3.3 Limits Established for Vs Values

An initial estimate of the shear wave velocity profile is used as the basis of randomly

generating Vs profiles for the Monte Carlo inversion. The initial estimate of the shear
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wave velocities is obtained with the wavelength method, which is used to scale the

dispersion curve as described in Chapter 2. The dispersion curve (Figure 3.2) formed by

experimental points that relate phase velocity (Vr) with frequency (f) can equivalently be

expressed as phase velocity (Vr) vs. wavelength λ (where λ=Vr/f). Herein, Vr is

multiplied by a factor of 1.1 to obtain Vs and λ is multiplied by a factor of 0.33 to obtain

the depth (z). For each layer, Vs is then obtained as an average of the scaled data points

falling within the layer (Figure 3.3). If no points fall within the layer, Vs is obtained from

the closest point to the top and/or the closest point to the bottom of the layer. The

empirical estimate obtained using ten, 2.5-meter layers is presented in Table 3.2.

Based on this empirical estimate of the Vs values (Vs_empirical), minimum and maximum

values are set for each layer as (min_vs_factor)* Vs_empirical and (max_vs_factor)*

Vs_empirical, respectively. The factors that define the limits are chosen with min_vs_factor

<1 and max_vs_factor >1. A Vs profile is formed by multiplying each empirical Vs value

by a random number between min_vs_factor and max_vs_factor. The random number is

generated using a uniform distribution so any number within (and including) the

established limits is equally probable. The factors used to establish the limits are

presented in Table 3.3. For the cases proposed, case 1 presents the widest interval and

case 3 the narrowest one.
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Figure 3.3 Calculation of Vs for layered profile based on Vs versus z points obtained
from scaling the dispersion curve.

Table 3.2  Empirical Estimate of the Vs Profile

Layer Thickness
(m)

Empirical Estimate of Vs
(m/s)

2.5 100.7
2.5 113.7
2.5 144.2
2.5 184.3
2.5 219.4
2.5 241.9
2.5 264.5
2.5 289.1
2.5 314.8
2.5 326.3

Half-Space 337.7

Vs1=Vsa

Vsa

Vsb

Vsc

Vsd

Vse

Vsf

Vsg

Vsh

Vs2=(Vsa+Vsb)/2

Vs3=(Vsc+Vsd+Vse)/3

Vs4=(Vsf+Vsg)/2

Vs5=Vsh

Vs6=VsHS=Vsh

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6
Half-Space

Vs

Depth
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Table 3.3  Factors Used to Establish Vs limits

 
min_vs_factor max _vs_factor

case 1 0.01 6
case 2 0.33 3
case 3 0.50 2

3.4 Results and Comments

3.4.1 Vs profiles obtained with Monte Carlo Inversion

The random algorithm is used to perform the inversion and find Vs profiles with

theoretical dispersion curves that match the “experimental” dispersion curve. The

theoretical dispersion curves are found using the forward algorithm implemented by Lai

and Rix (1998) and formed using only the fundamental mode. This is the same method

used to find the simulated dispersion curve (i.e., the “experimental” data) described in the

previous section. For different factors that establish the limits of Vs values, Table 3.4

shows the total number of trial profiles evaluated in the Monte Carlo inversion during the

time shown. This table also presents the number of the trial profiles with rms errors less

than 1.0, 1.5, 2.0, 2.5, and 3. This is done to give an idea of the amount of profiles that

had rms errors with relatively low values compared to how many profiles were tried. For

example the table shows that for case 1, only 2 of the 25,643 trial profiles had rms values

less than 3, and no profiles had rms values less than 2.
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Table 3.4 Number of satisfactory profiles obtained with Monte Carlo Inversion
for different Vs limits and different rms criteria

Number of profiles with rms below (1):Min & max
factors for
Vs limits

Trial
profiles

Min
rms 1.0 1.5 2 2.5 3

Time
(hours)

0.01 & 6 25,643 2.36 0 0 0 1 2 388

0.33 & 3 44,014 0.94 1 10 25 50 108 376

0.5 & 2 92,053 0.68 14 85 301 658 1154 602

   

(1) rms values calculated using
σ_vr=3%*Vr  

To obtain a large number of profiles with low rms the number of trial profiles and the

time required are considerable. A 500 MHz, Pentium II computer was used to perform

the Monte Carlo inversion and in the best case scenario it took twenty five, 24-hour days

to generate only 14 profiles with rms<1 (Table 3.4). These 14 profiles were obtained out

of 92,053 trial profiles. Thus, on average for Vs limits based on factors of 0.50 and 2, it

would take 43 hours to run 6,575 profiles and obtain only one profile with rms<1. For the

case with Vs limits based on factors of 0.33 and 3, it took 376 hours to run 44,014

profiles and obtain only one profile with rms<1.  For the least constraining Vs limits

(based on factors of 0.01 and 6) no profiles with rms < 1 were obtained out of 25,643 trial

profiles, and the lowest rms found was 2.36.

By scaling the results for the different Vs limits to the same number of trial profiles

(Table 3.5) it can be noted that as the limits imposed on Vs are narrowed the, number of

profiles with low rms increases and the running time decreases. For wider Vs limits the

model space is enlarged increasing the possible Vs values for each layer, and
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consequently increasing the number of possible combinations of these values. Thus, more

profiles are needed in order to adequately explore the model space, resulting in a smaller

ratio of satisfactory profiles per trial profiles. Additionally, the wider limits result in the

production of profiles with higher contrasts between layers (i.e., rougher profiles), which

increases the computer time needed to run the forward algorithm, and therefore the time

to run the Monte Carlo inversion increases significantly.

Table 3.5 Number of satisfactory profiles for different Vs limits
scaled to the same number of trial profiles

Estimated number of profiles
with rms below (1):

Min & max
factors for Vs

limits

Trial
profiles

1.0 1.5 2 2.5 3

estimated
time

(hours)
0.01 & 6 25,643 0.0 0.0 0.0 1.0 2.0 388

0.33 & 3 25,643 0.6 5.8 14.6 29.1 62.9 219

0.5 & 2 25,643 3.9 23.7 83.8 183.3 321.5 168

   

(1) rms values calculated using
σ_vr=3%*Vr  

Table 3.6 shows in more detail the number of profiles obtained for different rms criteria

(for Vs limits of 0.5&2*Vs_empirical). The profiles that meet the rms criterion selected (i.e.,

a reasonable value is 1.0 as discussed at the beginning of this chapter) can be used to

examine the type of profiles that fit the experimental data and the uncertainties that are

introduced by the inversion process itself (since no uncertainties are added herein by

experimental errors in data collection, analysis of the data to create the dispersion curve,

layered model to represent a real 3-D soil stratification, or wave propagation theory).
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Table 3.6 Number of profiles obtained with
Monte Carlo Inversion for different rms criteria.

rms < than # of profiles

0.75 1

0.8 2

0.85 4

0.9 6

0.95 11

1 14

1.05 19

1.1 26

1.15 31

1.2 38

1.25 45

total number of trial profiles=

92,053

min & max factors for Vs

limits=

0.5 & 2
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Figure 3.4 presents all the Vs profiles and the related dispersion curves with rms < 1. For

the narrower Vs limits (0.5&2 * Vs_empirical), the range of profiles with rms<1 covers most

of the range of trial profiles (shown by the Vs limits), especially for the layers with depths

between 5 and 25 meters. This implies that the limits might be constraining the solution,

i.e., that there might be profiles outside the limits that have a satisfactory rms value. For

the wider limits (0.33&3 * Vs_empirical) it can be noted that the one of the satisfactory

profiles falls outside the narrower limits, which confirms that it is possible to find profiles

with rms<1 that are outside the range given by the narrower limits. Unfortunately, due to

time constraints, it was not possible to generate a sufficient number of profiles with the

wider limits to obtain a good representative sample of profiles with rms<1.

Figure 3.5 shows separate plots for the 14 profiles with rms<1 obtained with the narrower

limits (0.5&2 * Vs_empirical). These plots illustrate that profiles with very different shapes

and very different Vs contrasts provide an equally satisfactory match (rms<1) to the

experimental dispersion curve. Thus, based on the dispersion curve alone it is not

possible to resolve specific velocity contrasts between layers.



55

Figure 3.4(a) Vs profiles with rms<1, for Vs limits = 0.5 & 2 * Vs_empirical
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Figure 3.4(b) Vs profiles with rms<1, for Vs limits = 0.33 & 3 * Vs_empirical
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Figure 3.5 Separate plots of Vs profiles with rms<1, for Vs limits=0.5&2*Vs_empirical
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Figure 3.5 (Cont’d)
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Figure 3.5 (Cont’d)
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Figure 3.6 Two best fitting profiles obtained for Vs limits=0.01&6*Vs_empirical
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Figure 3.6 presents the two best profiles for the widest Vs limits used (0.01&6 *

Vs_empirical), which have rms values of 2.4 and 2.9. These profiles were found out of

25,643 trial profiles that took sixteen, 24-hour days of running time. Profiles with lower

rms values (such as those found for narrower Vs limits) could potentially be found with

the wider limits, since these limits define a larger model space that includes these

profiles. Thus, in this case, the Vs limits of 0.01&6 * Vs_empirical gave too much flexibility

to the solution for the amount of time and computer resources that were available, and the

model space was not searched thoroughly enough to find a satisfactory number of trial

profiles.

3.4.2 Analysis of Results

Given that for the rms criterion of 1.0 there are very few satisfactory profiles, an rms

criterion of 1.5 is adopted in order to have a considerably larger number of profiles to

analyze the results of the Monte Carlo inversion. This new criterion is considered

appropriate, since it results in a reasonable match between theoretical and experimental

dispersion curves as shown in Figure 3.7. Figure 3.7 shows the plots of 85 Vs profiles

with rms<1.5 obtained for Vs limits of  0.5 & 2 * Vs_empirical and 10 profiles with rms<1.5

obtained for Vs limits of 0.33 & 3 * Vs_empirical. It is important to note that the rms value

also depends on the assumed uncertainties of Vr, and not only on the match between

experimental and theoretical dispersion curves. For instance if the assumed value for the

uncertainties of Vr is changed from (3%)vrex to (5%)vrex, the maximum rms value of the

85 profiles presented in Figure 3.7(a) changes from 1.5 to 0.9. Thus, a change in the
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uncertainties of Vr from (3%)vrex to (5%)vrex would actually make all 85 profiles meet

the rms criterion of 1.0.

The profiles presented in Figure 3.7 will be used as the basis for the figures that follow,

where normal probability plots, expected Vs values and variances are derived. The wide

range of profiles that meet the rms<1.5 criterion shows that the limits given to Vs are

constraining the range of Vs values obtained. Unfortunately, as discussed previously,

widening the Vs limits excessively increases the number of trial profiles needed to find

satisfactory profiles. In any event, the profiles observed here are still valuable, since they

were found using the fewest possible constraints to the solution space by starting from a

large range of possible Vs values for each layer that were all equally probable and

independent.

Figure 3.8 presents the normal probability plots for each layer of the 85 profiles with

rms<1.5 that were found for Vs limits of 0.5&2*Vs_empirical. Normal probability plots can

be interpreted as follows: for a specified shear wave velocity (call it Vs1) on the

horizontal axis, the “probability” given by the vertical axis means the probability that the

shear wave velocity will be less than Vs1. For example, the Vs value that corresponds to a

cumulative probability of 0.5 (i.e., 50%) is commonly called the mean value. The log

normal distribution was also considered in order to have a distribution that

mathematically restricts Vs to non-negative values. However, the normal distribution

resulted in a better representation for the distribution of the available data, and

consequently normal probability plots are presented here.
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Figure 3.7(a) Vs profiles with rms<1.5, for Vs limits = 0.5 & 2 * Vs_empirical
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Figure 3.7(b) Vs profiles with rms<1.5, for Vs limits = 0.33 & 3 * Vs_empirical
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Figure 3.8(a) Normal probability plots for layers 1 to 4, for Vs
limits=0.5&2*Vs_empirical and rms<1.5

90 95 100 105
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997

Vs (m/s)

P
ro

ba
bi

lit
y

Normal Probability Plot

layer 1

90 100 110 120
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997

Vs (m/s)
P

ro
ba

bi
lit

y

 RMS < 1.5

layer 2

100 150 200 250
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997

Vs (m/s)

P
ro

ba
bi

lit
y

layer 3

100 200 300
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997

Vs (m/s)

P
ro

ba
bi

lit
y

layer 4



66

Figure 3.8(b) Normal probability plots for layers 5 to 8, for Vs
limits=0.5&2*Vs_empirical and rms<1.5
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Figure 3.8(c) Normal probability plots for layers 9 to 12, for Vs
limits=0.5&2*Vs_empirical and rms<1.5
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The normal probability plots in Figure 3.8 show that for a wide interval around the mean,

the distribution of the data closely follows a straight line corresponding to a normal

distribution. The main difference between the actual distribution of the Vs values

obtained and the normal distribution is that the actual distribution has shorter tails. This is

most likely caused by the Vs limits constraining the solution and not allowing for very

large or very low Vs values. Thus, the plots show that the normal distribution is a

reasonable statistical representation for the Vs values obtained, and using the mean and

covariance matrix as described by equations 3.6 and 3.9 is justified.

Figure 3.9 shows the mean and standard deviation for the Vs profiles with rms<1.5. The

standard deviations are calculated using equation 3.7, which is equivalent to calculating

the square roots of the diagonal terms of the covariance matrix described by equation 3.6.

Comparing Figures 3.9(a) and 3.9(b), it is clear that both mean and standard deviation

vary significantly depending on the Vs limits assumed. For the limits of 0.5&2* Vs_empirical

the mean more closely approximates the real profile than for the limits of 0.33&3*

Vs_empirical, Furthermore, the standard deviation is significantly higher for the latter. Figure

3.9 shows that for the narrower limits the rms error related to the mean profile is 2.21,

and for the wider limits, the rms error related to the mean profile is 2.33. Thus, both mean

Vs profiles produce dispersion curves with higher rms errors than the maximum rms error

of 1.5 of the profiles used to calculate them.

Another option to find a representative profile and its related uncertainties to summarize

all the satisfactory Vs profiles is to calculate the mathematical expectation and the
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covariance matrix as suggested by Tarantola (1987) and described in equations 3.3 and

3.5. The standard deviations are equal to the square roots of the diagonal terms of the

covariance matrix. Figure 3.10 shows the mathematical expectation found using this

approach compared to the mean previously presented in Figure 3.9.

As described earlier in this chapter, the mathematical expectation used herein is a

weighted average with the weights given by the likelihood, which like the rms error is a

measure of the fit between theoretical and experimental data. In this case, the resulting

“expected” profile is very close to the profile with the highest likelihood, i.e., lowest rms

error (shown in Figure 3.5 for the limits of 0.5&2* Vs_empirical and in Figure 3.4b for the

limits of 0.33&3* Vs_empirical). This result is highly dependent on the number of

satisfactory profiles found since it is very close to the profile with the lowest rms error.

As shown in Figure 3.5 the best fitting profiles have different shapes with different Vs

contrasts, and following a specific shape with Vs contrasts unnecessary to fit the

experimental data may mislead the user of the Vs profile to believe in those contrasts.

This also means that if more trial profiles are evaluated and a lower rms error is found,

the shape of the “expected” V s profile may change significantly.  On the other hand, a

new profile with a lower rms error would not significantly affect the mean presented in

Figure 3.9 since this mean is already based on a reasonable number of profiles (see

discussion below for Figure 3.11). Thus, in this case the mean of the Vs profile is

considered a better alternative to summarize the results than the expectation, because it

gives all the profiles with satisfactory rms error the same weight, producing a profile with

no large Vs contrasts.
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Figure 3.9(a) Vs mean and standard deviations for profiles with rms<1.5, for Vs
limits = 0.5 & 2 * Vs_empirical

0 10 20 30 40 50 60 70
50

100

150

200

250

300

350

Frequency (Hz)

P
ha

se
 V

el
oc

ity
 (m

/s
)

experimental          
theoretical, rms= 2.21

0 200 400 600 800

0

5

10

15

20

25

30

Shear Wave Velocity (m/s)

D
ep

th
 (m

)

"real" profile       
mean of 85 profiles  
with rms < 1.5       
Vs standard deviation
Vs limits            



71

Figure 3.9(b) Vs mean and standard deviations for profiles with rms<1.5, for Vs
limits = 0.33 & 3 * Vs_empirical
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Figure 3.10(a) Comparison of Vs mean, mathematical expectation, and their
respective uncertainties, for Vs limits = 0.5 & 2 * Vs_empirical

00 200200 400400 600600 800800 10001000 1200120000

55

1010

1515

2020

2525

3030

Shear Wave Velocity (m/s)Shear Wave Velocity (m/s)
D

ep
th

 (m
)

D
ep

th
 (m

)

mean of 85 profs.       mean of 85 profs.       
w/ rms < 1.5 (eq. 3.9)  w/ rms < 1.5 (eq. 3.9)  
math. exp. of 85 profs. math. exp. of 85 profs. 
w/ rms < 1.5 (eq. 3.3)  w/ rms < 1.5 (eq. 3.3)  
Vs limits               Vs limits               

00 2020 4040 606000

55

1010

1515

2020

2525

3030

Coefficient of Variability(%)Coefficient of Variability(%)

D
ep

th
 (m

)
D

ep
th

 (m
)

for mean                   for mean                   
from cov. matrix in eq. 3.6from cov. matrix in eq. 3.6
for math.exp.              for math.exp.              
from cov. matrix in eq. 3.5from cov. matrix in eq. 3.5



73

Figure 3.10(b) Comparison of Vs mean, mathematical expectation, and their
respective uncertainties, for Vs limits = 0.33 & 3 * Vs_empirical
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Figure 3.10 also presents results for the uncertainties with plots of the coefficient of

variation versus depth. This coefficient is calculated as the standard deviation divided by

the value of the shear wave velocity:

Coefficient of Variation = σ_vs/ Vs (eq. 3.11)

The standard deviations calculated from the covariance matrix in equation 3.6 correspond

to the common “sample” standard deviations as given by equation 3.7, and are the

uncertainties related to the mean profile. The standard deviations from the covariance

matrix in equation 3.5 include some weighting given by the likelihood, and are the

uncertainties related to the “expected” profile (i.e. mathematical expectation). It is clear

that the uncertainties for the mean profile result in significantly higher coefficients of

variation than the uncertainties for the “expected” profile. The uncertainties for the mean

profile better reflect the wide range of profiles that meet the rms criterion (Figure 3.7).

Additionally, these uncertainties are based on a normal distribution for the Vs values,

which as discussed above is an appropriate distribution for the results obtained. Thus, the

mean with its related uncertainties will be used as the representative profile of all the

satisfactory Vs profiles that meet the rms error criterion imposed.

To check that the number of satisfactory Vs profiles is sufficient to be a representative

sample of the possible solutions, the mean of all of the satisfactory profiles is compared

with the mean of only 60% of the satisfactory profiles. The value of 60% was chosen

since it results in integer numbers for both 60% of 85 (=51) and 60% of 10 (=6). In this
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way, a relatively high number of profiles are removed and the percentage of profiles kept

is exactly the same for both cases. Figure 3.11 shows the two means for profiles with

rms<1.5, using 85 and 51 profiles for Vs limits of 0.5&2*Vs_empirical, and using 10 and 6

profiles for Vs limits of 0.33&3*Vs_empirical. Comparing the means, it is noted that the

number of profiles used was sufficient for the narrower Vs limits, since the mean does not

vary significantly with an important increase in the number of profiles (from 51 to 85

profiles). For the wider Vs limits, there are larger changes in the mean when increasing

the number of profiles (from 6 to 10 profiles), and more satisfactory profiles are needed

to improve confidence.

The issue of whether the number of profiles is sufficient to have confidence in the

solution obtained can be addressed in a more refined way with the resolution matrix

(equation 3.10). As mentioned earlier in this chapter, when the estimate of the resolution

matrix remains constant, the number of satisfactory profiles is considered sufficient. The

change of the resolution matrix was calculated after every other additional profile. For the

case with Vs limits of 0.5&2*Vs_empirical it was found that after 13 profiles the resolution

matrix does not vary (Table 3.7). For the case with Vs limits of 0.33&3*Vs_empirical there

were not enough profiles and the resolution matrix did not stabilize (Table 3.8).
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Figure 3.11(a) Changes to the Vs mean when the number of profiles is reduced, for
Vs limits = 0.5 & 2 * Vs_empirical
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Figure 3.11(b) Changes to the Vs mean when the number of profiles is reduced, for
Vs limits = 0.33 & 3 * Vs_empirical
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Table 3.7 Changes in resolution matrix for Vs limits of 0.5&2*Vs_empirical

from: to:

# of profiles # of profiles

Sum of absolute
differences in resolution

matrix
3 1 12.53
5 3 11.27
7 5 10.39
9 7 8.27
11 9 1.97
13 11 0.00
15 13 0.00
17 15 0.00
… … …
85 83 0.00

Vs limits = 0.5&2* Vs_empirical

Table 3.8 Changes in resolution matrix for Vs limits of 0.33&3*Vs_empirical

from: to:

# of profiles # of profiles

sum of absolute
differences in resolution

matrix
3 1 11.55
5 3 8.93
7 5 10.34
9 7 5.41
11 9 -

Vs limits = 0.33&3* Vs_empirical
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3.5 Conclusions

The Monte Carlo algorithm provides a valuable technique to examine possible solutions

to the inverse problem with minimal contraints. Although the thicknesses of the layers

describing the Vs profile were fixed and the depths of the layer interfaces were the same

as those of the real profile, the shapes of satisfactory Vs profiles vary significantly. Based

on the variety of shapes found it is clear that the dispersion curve does not constrain the

solution sufficiently to be able to find a unique Vs profile or to resolve specific velocity

contrasts between layers. Consequently, the final layered Vs profile should be interpreted

as a discrete model, which is one possible representation of the real Vs profile, and should

include uncertainties for the estimated Vs values.

The Vs profiles were found adding very few constraints to the solution space, by starting

from a large range of possible Vs values for each layer, which were all equally probable

and independent. When no Vs is favored, a good idea of the range and shapes of profiles

that fit the data is obtained. Herein, the limits established for Vs constrain the range of

results obtained, but it is difficult to explore enough possibilities if more flexibility is

given with larger limits. If the limits for Vs are too wide, the number of trials necessary to

explore the model space is extremely large, and consequently the inversion requires an

unreasonable amount of time and computer resources. In the best case scenario (i.e., most

constraining Vs limits) it took twenty five, 24-hour days to generate only 14 profiles with

rms<1 with a Pentium II 500MHz processor. For the wider Vs limits (i.e., 0.01&6 *

Vs_empirical) the model space could not be searched sufficiently to find any satisfactory
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profiles within a reasonable time frame. Due to the fast improvement in computers the

processing time could be highly reduced in the future and a thorough search of a large

model space could become feasible

The profiles meeting the criterion of rms<1.5 for the most constraining Vs limits were

used to examine the type of profiles that fit the experimental data and their related

uncertainties.  The estimated coefficients of variation were between 20% and 30%,

except for the very top layers, where the values are lower. These uncertainties are caused

by the nature of the SASW inversion problem alone since in this case no uncertainties are

added by experimental errors in data collection, analysis of the data to create the

dispersion curve, layered model to represent a real 3-D soil stratification, or wave

propagation theory.

The Vs profiles with a satisfactory rms error have variable shapes and reporting only the

best fitting Vs profile obtained may mislead the user to believe in large Vs contrasts that

are unnecessary to fit the experimental data. For this reason, normal probability plots

were used to show that the range of Vs values obtained could be reasonably represented

by the normal distribution, and consequently the mean and the standard deviation are

valid parameters to characterize all the satisfactory Vs profiles that meet a particular rms

error criterion.
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CHAPTER 4

SASW INVERSION BASED ON THE MAXIMUM LIKELIHOOD METHOD

4.1 Introduction

In this chapter, the maximum likelihood method is described and implemented for SASW

inversion assuming Gaussian distributions for the dispersion data and the a priori model

parameters (i.e., values given to the shear wave velocities as a starting point for the

inversion). These are reasonable assumptions for SASW inversion as discussed in

Chapter 3; if desired, other distributions may be used in conjunction with the maximum

likelihood method as noted by Menke (1989).

Two normally dispersive Vs profiles are used to obtain synthetic dispersion curves based

on the fundamental mode only, and these curves are treated as “experimental” data. The

forward algorithm used to obtain the simulated experimental data is the same one used to

find the theoretical dispersion curves during the inversion process. Thus, as in Chapter 3,

the experimental data and the forward algorithm are ideal, i.e., there is no noise from data

measurement errors or any errors induced by using a simplified model attempting to

represent the real world.

One of the main characteristics of a local search procedure like the maximum likelihood

method is that it needs some information a priori (i.e., before performing the inversion),
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which is fixed during inversion and may have an important influence on the solution.

These prior assumptions are:

(a) uncertainties of the experimental dispersion data,

(b) number of layers and their thicknesses,

(c) initial shear wave velocities,

(d) standard deviations of the initial shear wave velocities, and

(e) correlations between the initial shear wave velocities.

Prior information (b), (d), and (e) in the above list is varied in this chapter to study the

effect on the inversion results. The uncertainties of the experimental data (a) are fixed at

3% of the phase velocity values, which is an appropriate value as discussed in Chapter 3.

The effect of varying this value is examined in Chapter 5. The initial Vs values (c) are

found based on empirically scaling the dispersion curve because the convergence of the

algorithm is improved if the initial shear wave velocities are not too far from the final,

unknown values. This approach does not give fixed initial Vs values for all layered

profiles but it is a consistent means of calculating an initial estimate. The effect of using

other initial Vs values such as a constant Vs for the entire profile is studied in Chapter 5.

The results obtained from this theoretical inversion algorithm may not only be affected

by the prior information but also by the number and distribution of points used to

describe the dispersion curve. For this reason, these parameters are varied in one of the

synthetic examples presented here, creating three different sets of synthetic data to

represent the dispersion curve of the same Vs profile.
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In summary, the objective of this chapter is to present the maximum likelihood inversion

theory applied to SASW and to implement it with two synthetic examples. This chapter

introduces the sets of synthetic data, the prior information, and the resulting Vs profiles

that are used in Chapter 5 with some additional results to study the factors that influence

the inversion outcome.

4.2 Local Search Procedure applied to SASW

4.2.1 Maximum Likelihood Inversion applied to SASW

The following is a brief description of the maximum likelihood method that summarizes

the method as presented by Tarantola (1987). Herein, all equations are presented in terms

of variables appropriate for SASW inversion.

Maximum likelihood inversion is based on the least squares criterion, which is a good

option when there are no large errors associated with the data (i.e., because the criterion

is sensitive to even a small number of large errors). For SASW this appears to be a valid

assumption, since uncertainties associated with the experimental dispersion data have

been found to be low, with standard deviations typically less than 7% of the phase

velocity values (Tuomi and Hiltunen, 1997). Additionally, least squares methods are

justified when the errors can be modeled using Gaussian functions and, as discussed in

Chapter 3, using a Gaussian model for the data uncertainties is a reasonable assumption
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for SASW. The least squares criterion is popular due to the relatively straightforward

computations that are derived from it (Tarantola, 1987).

For a non-linear relationship between model parameters and data, the posterior

probability density function (pdf) can be be complicated and difficult to represent.

However, in this case where the model parameters are the shear wave velocities and the

data are the Rayleigh phase velocities, the posterior pdf can be assumed to be Gaussian.

This is based on the results obtained in Chapter 3, where normal probability plots showed

that the normal distribution is a reasonable statistical representation for the estimated

model parameters (vs). Thus, the model parameters obtained with the inversion may be

represented by central estimates and related covariances. The easiest central estimator to

compute is the maximum likelihood point (vs= vsf) where the posterior pdf is maximum

(Tarantola, 1987). As described by Tarantola (1987), the maximum likelihood point (vsf)

is found as the point that minimizes the cost function S(vs) defined  as:
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(eq. 4.1)

where vrth is the vector of theoretical data (obtained with the forward algorithm r(...)

applied to the model parameters vs),

vrex is the vector of experimental data,

C_vr is the covariance matrix of the data, which is defined to combine

experimental and theoretical uncertainties:
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C_vr=C_vrex+C_vrth

where C_vrex is the covariance matrix of the experimental data obtained

at the field and C_vrth is the covariance matrix of the data calculated

theoretically, since the forward model is only an approximation to reality,

vs is the vector of the model parameters for which the cost function is being

calculated,

vspr is the initial vector of model parameters (starting point for the iterative

inversion algorithm), and

C_vspr is the covariance matrix of vspr.

Gradient and Newton methods can be used for minimizing S if at any point vsn the partial

derivatives can be defined and computed (Tarantola, 1987). Jn is the matrix of partial

derivatives evaluated at vsn and has components Jn(i,α):
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r

iJ i
n , (eq. 4.2)

where r represents the forward algorithm (vrth = r(vs)),

subindex i =1,2,...,Nd where Nd is the total number of dispersion data points, and

subindex α=1,2,...,Np where Np is the total number of model parameters (=length

of vector vs).

The gradient of S will be zero at a minimum point, but not every point where the gradient

is zero is a minimum. Thus, it is necessary to verify that a point is in fact a minimum by
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checking that the sequence S(vs1), S(vs2),..., obtained with the iterative method decreases.

As described by Tarantola (1987), a common way of finding the minimum of a function

is the Newton method:
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where vsn is the model parameter vector at iteration n,

vsn+1 is the model parameter vector at iteration n+1,

∂2S/∂vs2 is called the Hessian of S, and

∂S/∂vs is the gradient of S.

The components of the Hessian of S are:
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(eq. 4.4)

A common approximation in least-squares is to neglect the second-order derivatives of

vrth, when calculating the Hessian of S. With this, Tarantola (1987) shows that the

minimum of S(vs) can be obtained with a Quasi-Newton algorithm:
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There are alternative forms of the above formula presented by Tarantola (1987, p.244).

The constant µn can be equal to one, as long as at each iteration  S(vsn+1)<S(vsn). Since it

cannot be assured that the algorithm will converge when this condition is not fulfilled, the

optimum value for µn has to be obtained by linear search with µn<1. This was

implemented by calculating vsn+1 and S(vsn+1) for µn values of 1.0, 0.95, 0.9, 0.85, …,

0.1, 0.05, 0.0, and the choosing vsn+1 that produced the lowest S(vsn+1).

Due to the nature of local search procedures such as the one described here, the only way

to determine if the point reached is the absolute minimum and not a secondary minimum

is to start the iterations at different points. Iterations are stopped when the change in vs is

insignificant or when the difference between theoretical and experimental dispersion data

is acceptable.

4.2.2 Posterior Covariance Matrix

The posterior pdf can be evaluated using a linear approximation if the non-linear relation

r(vs) is linearizable in the region near the maximum likelihood point (Tarantola, 1987).

This is possible for SASW inversion, because the posterior pdf of vs can be represented

with a normal distribution, especially near the mean values. This indicates that the non-
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linearity is not too strong, and the posterior covariance matrix of the model parameters

can be written as (Tarantola, 1987):

[ ] 111 −−− += prf
T

ff C_vsJC_vrJC_vs (eq. 4.6)

or
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where C_vsf is the posterior covariance matrix (the covariance matrix of vsf),

Jf is the matrix of partial derivatives evaluated at vsf,

C_vspr is the covariance matrix of vspr, and

C_vr is the covariance matrix of the data

The diagonal terms of C_vsf are the variances of the model parameters, and their square

roots are the standard deviations. The off-diagonal terms of C_vsf are the covariances and

are better interpreted by calculating the correlations between parameters as:
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where ρf(α,β)is the correlation between layer α and layer β,

C_vsf(α,β) is the covariance between layer α and layer β, i.e., the element in row

α and column β of matrix C_vsf, and
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C_vsf(α,α) is the variance of layer α, i.e., the element in row α and column α of

matrix C_vsf.

The correlations have values between -1 and 1 (included). The closer a value is to 1 (or -

1) the highest the correlation (or anticorrelation) of the uncertainties of the two

parameters. A strong correlation means that the two parameters are not independently

resolved.

4.2.3 Resolution of Model Parameters

The resolution operator relates the unknown true model parameters (vstrue) with the

calculated ones (vsf):

( )truef res vsvs = (eq.4.9)

where res(...) is a non-linear resolution operator. For the maximum likelihood method a

linearized version of res(…) can be writen as (Tarantola, 1987):

( )prtrueprf vsvsRvsvs −=− (eq.4.10)

where vspr contains the initial model parameters, and the linearized resolution operator R

can be calculated as
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1−−= prf C_vsC_vsIR (eq.4.11)

A perfectly resolved model would have a resolution matrix equal to the identity matrix

(I). One possible way to measure the goodness of the resolution is based on the spread of

the off-diagonal terms, sometimes called Dirichlet spread (Menke, 1989):

[ ]2
,,)(_ ∑∑ −=

i j
jiji IRspreadDirichlet R (eq.4.12)

In order to penalize nonzero elements according to their distance from the diagonal, a

weighting factor such as w(i,j)=(i-j)2 can be added. The new spread function is often

called the Backus-Gilbert spread (Menke, 1989)

[ ]2
,,),()(__ ∑∑ −=

i j
jiji IRjiwspreadGilbertBackus R (eq.4.13)

The spreads can be used to compare different parameterizations, but they need to be

normalized so that they do not depend on the size of the resolution matrix (e.g. on the

number of parameters). The Dirichlet spread is normalized by dividing it by the total

number of terms in R, and the Backus-Gilbert spread is normalized by dividing it by the

sum of all the weights used. Comparing the resolution matrix to the identity matrix can

help evaluate how different parameters are resolved by the data and can be useful to

change depths, thicknesses, and/or number of parameters.
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4.2.4 Forward Algorithm and Partial Derivatives

For each trial shear wave velocity profile in the iterative inversion process, the theoretical

dispersion curve is estimated using the forward algorithm proposed by Lai and Rix

(1998). The algorithm as implemented by Lai and Rix provides the first 10 individual

modes of propagation and an “effective” dispersion curve that reflects the superposition

of the modes. As mentioned in Chapter 2, Lai and Rix (1998) noted that Rayleigh modes

are superimposed for sources that are harmonic in time, resulting in an effective phase

velocity which is a function of frequency and spatial position from the source. Thus, the

effective phase velocity yields one dispersion curve for each receiver spacing and these

curves are averaged over the range of receiver spacings to form a unique effective

dispersion curve.

Additionally, the forward algorithm implemented by Lai and Rix provides closed form

expressions for both modal and “effective” partial derivatives of Rayleigh phase velocity

with respect to the shear wave velocity of each layer in the profile. Based on the

variational principle of Rayleigh waves, Lai and Rix (1998) derived the closed form

expressions for the partial derivatives of both modal and effective Rayleigh phase

velocities with respect to the body waves of the medium. The Rayleigh variational

principle was obtained by Lai and Rix (1998) from the application of Hamilton’s

principle to the solution of the Rayleigh eigenvalue problem.
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4.3 Example 1 based on numerical simulation

4.3.1 Theoretical Vs profile ND1 and Related Dispersion Data

Synthetic data is used to illustrate the results that may be obtained with the Maximum

Likelihood inversion method. The Vs profile created to obtain the simulated experimental

data has the characteristics shown in Table 4.1. This is the same profile used in Chapter 3

and presented in Table 3.1. As mentioned before, this is a normally dispersive profile,

and the corresponding synthetic dispersion curve used as the “experimental” data

includes only with the fundamental mode. This curve was found using the algorithm by

Lai and Rix (1998), which is the same algorithm used to find the theoretical dispersion

curves during the inversion process. Thus, as in Chapter 3, the numerical simulation does

not include errors caused by the use of simplified models to represent the real world. For

a real experimental case there would be more uncertainties, and the effective dispersion

curve that includes all modes of propagation may be a better choice.

The “experimental” dispersion curve is described by a specified number of points with a

certain frequency distribution. Figure 4.1 presents 3 possible sets of data that could be

employed as the experimental dispersion curve. Frequency distribution f1 presented in

Figure 3.1 consists of the same 50 data points used in Chapter 3  and is the primary

“experimental” dispersion curve used herein. Frequency distributions f2 and f3 are used

as alternative experimental dispersion curves where the frequency distribution was

changed in one case and the number of points was reduced in the other case. Distribution
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f2 contains 50 data points equally spaced in the frequency domain. Distribution f3

contains only 9 data points that attempt to describe the main characteristics of the

dispersion curve. These additional curves were employed for comparison purposes

because the data points used to represent a dispersion curve may have an effect on the

inversion results. Experimentally the distribution and number of points depends on the

location of the receivers and on the frequencies selected for measurement and analysis.

Table 4.1  Normally dispersive profile ND1

Layer No. Layer
Thickness

(m)

Mass
Density
(g/cm3)

Shear
Wave

Velocity
(m/s)

Poisson’s
Ratio

1 5 1.8 100 0.2
2 5 1.8 200 0.45
3 10 1.8 300 0.45
 - 1.8 400 0.45

The experimental dispersion curve is compared with a theoretical dispersion curve by

calculating the root mean square (rms) error as defined in Chapter 3 with equation 3.2. As

discussed in Chapter 3, it is reasonable to expect a value for the rms error of about 1.0.
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Figure 4.1 Simulated dispersion curves for profile ND1
- varying distribution and number of points.
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 4.3.2 Layered Profiles Used to Perform the Inversion

There are an infinite number of layered profiles that may be used in the inversion process.

In this study, trial profiles are formed by varying three parameters: depth to the half-

space, number of layers, and layer thicknesses. Some of the configurations implemented

have layers that coincide with the real layer interfaces because it is interesting to observe

if matching the real layer interfaces makes the inversion process more reliable by

improving the estimated Vs profile. However, note that using real layer interfaces would

not be possible for most real data. Resolving a specific thickness becomes more difficult

at large depths because the surface wave phase velocity is more sensitive to shallow

layers than deep layers (Joh, 1996). This is because the particle motion associated with

Rayleigh waves is small at depths greater than about one wavelength (Tokimatsu, 1997).

Consequently, a long wavelength that penetrates a deep layer also penetrates the layers

above it, and there is always a larger number of waves passing through the shallower

layers. Accordingly, increasing the thicknesses of the layers with depth agrees with the

nature of SASW tests, and the configurations presented below that do not have constant-

thickness layers have layer thicknesses that increase with depth. The following options

were examined:

• fixed 30-meter depth to half-space, dividing this depth in layers of equal

thickness, and varying the number of layers from 1 to 15 (e.g. profile 1 had one

30-m layer, profile 2 had two 15-m layers, ..., profile 15 had fifteen 2-m layers)

(Figure 4.2)



96
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Figure 4.2 Layered profiles 1 to 15, example 1

• fixed 20-meters depth to half-space, varying the number of layers and their

thicknesses, (thicknesses were limited to 1.25, 2.5, 5, 7.5, and 10 meters, with the

thinner layers closer to the surface) (Figure 4.3)

Profile # 21 22 23 24 25 26 27 28
1.25 1.25
1.25 1.25

2.5 2.5 2.5 2.5 2.5 2.5

2.5 2.5 2.5 2.5
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thicknesses 

in meters
5

10 10
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7.5
5 5

5 5 5 5

5

5

2.5 2.5 2.5
5

2.5
5

5 5

Figure 4.3 Layered profiles 21 to 28, example 1
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• fixed 50-meters depth to half-space, varying the number of layers and their

thicknesses, (thicknesses were limited to 2.5, 5, and 10 meters, with the thinner

layers closer to the surface) (Figure4.4)

Profile # 31 32 33 34 35 36 37 38
2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5
2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5
2 .5 2 .5 2 .5 2 .5 2 .5
2 .5 2 .5 2 .5 2 .5 2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
2 .5
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10 10 10
5

5
10 10 10

10 10
5 5

5 5
10 10 10

5 5 5 5
10

5

5 5 5

5 5 5

10 10

5 5 5 5

5 5 5

5

5 5 5

layer 
th icknesses 

in  m eters

5 5 5 5

Figure 4.4 Layered profiles 31 to 38, example 1

• all layers 2-meters thick, varying the number of layers, thus varying the depth to

the half space (Figure4.5)
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Profile # 46 47 48 49 50 51 52 53 54 55 56
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2

2 2 2 2
2 2 2

2 2
2

layer 
thicknesses 

in meters

Figure 4.5 Profiles number 46 to 56, example 1

4.3.3 Initial Vs Values and Uncertainties

A theoretical inversion algorithm such as the maximum likelihood method requires an

initial estimate of the solution that is not too far from the solution to assure convergence.

A good approach is to obtain an empirical estimate of the shear wave velocities

(Vs_empirical) versus depth from the dispersion curve, which relates phase velocity (Vr) with

frequency (f). Herein, Vr is multiplied by a factor of 1.1 to obtain Vs as suggested by

Tokimatsu (1997). The equivalent depth (z) is found from the wavelength (λ, where

λ=Vr/f). As discussed in Chapter 2, the best scaling factor to determine z depends on the

variation of the shear modulus with depth. Thus, the approach taken here is to find a

number of empirical estimates of z by multiplying λ  by different scaling factors: 0.2,

0.25, 0.3…, 0.8.
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For each scaling factor a different empirical Vs profile is obtained as described below and

used in the forward algorithm to calculate the theoretical dispersion curve. The best

scaling factor and the corresponding Vs profile are the those related to the theoretical

dispersion curve closer to the experimental one (i.e., the one with the lowest rms error).

As described in Chapter 3, Vs_empirical is obtained for each layer as an average of the

scaled data points falling within or close to the layer. The empirical estimate varies

depending on the data points that describe the dispersion curve (Figure 4.1) and the layers

that form the profile (Figures 4.2 thru 4.5).

The uncertainties of the initial Vs values are expressed with the prior covariance matrix

C_vspr. To create this matrix, it is necessary to assume standard deviation values σ_vspr

for each Vs. For the examples presented here, σ_vspr was assumed constant and four

different values were used: 30, 60, 120, and 240m/s. C_vspr is created based on the

assumed standard deviations as shown below:

jpriprjijipr vsvs __,,
σσρ ⋅⋅=C_vs (eq. 4.14)

Where ρi,j is a correlation coefficient. For the diagonal terms (i.e., i=j), ρi,i is equal to one

and the square of the standard deviation is the variance of each parameter. For the off-

diagonal terms it is assumed that there is some correlation between layer properties which

is higher for neighboring layers than for layers far from each other. Although it is

difficult to determine the correlation between the different layers, this is a means to
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impose some level of smoothing to the resulting shear wave velocity profile. This means

that a profile with layers that are highly correlated will tend to have smaller Vs contrasts

(i.e., be smoother) than a profile with uncorrelated layers. Assuming values for ρi,i

implies that if two profiles match the experimental data equally well, the profile with

correlations close to the initial assumed correlations is considered a better choice.

The correlation coefficient ρi,j was obtained with the methodology used by Joh (1996).

He assumed ρi,j to be inversely proportional to the exponential of the squared normalized

distance Zi,j, as defined below:

2
,2

1

,

jiZ

ji e
−

=ρ  (eq. 4.15)

band

ji
ji Z

dd
Z

−
⋅= 3, (eq. 4.16)

where di-dj is the distance between the midpoint of layers i and j, and

Zband is the distance over which the layer properties are assumed to be correlated

(for di-dj=Zband the correlation coefficient ρi,j is 0.0111).

Figure 4.6 presents the magnitude of ρi,j for layer i when using Zband=5. The Zband values

used for the examples presented here are 1, 5, 10, and 15m.
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The values used for σ_vspr and Zband were combined to form the prior covariance matrix

and a total of seven cases were observed as shown in Table 4.2.

Table 4.2 Seven cases of prior information used to form the prior covariance matrix

(1) σ_vspr =30m/s, Zband=5m

(2) σ_vspr =60m/s, Zband=5m

(3) σ_vspr =120m/s, Zband=5m

(4) σ_vspr =240m/s, Zband=5m

(5) σ_vspr =120m/s, Zband=1m

(6) σ_vspr =120m/s, Zband=10m

(7) σ_vspr =120m/s, Zband=15m
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Figure 4.6  Correlation coefficient (Joh, 1996)
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4.4 Example 2 based on numerical simulation

4.4.1 Theoretical Vs profile ND2 and Related Dispersion Data

A second set of synthetic data is used to illustrate the results that may be obtained with

the Maximum Likelihood inversion method. The Vs profile used to calculate the

simulated experimental data has characteristics that differ from the previous example as

presented in Table 4.3. This new profile (ND2) has a higher Vs contrast between the

second and the third layer than the previous profile (ND1) presented (i.e., a contrast of

200m/s compared to a contrast of 100m/s). Additionally, the thicknesses of the layers do

not increase with depth, with the second layer being 10 meters thick and the third being 5

meters thick. Profile ND2 is also a normally dispersive profile and produces additional

information to help study the diverse factors that affect the results obtained from the

inversion of SASW data.

The “experimental” dispersion curve is described by a 25 data points with the frequency

distribution shown in Figure 4.7. This synthetic dispersion curve used as the

“experimental” data contains only with the fundamental mode. This curve was found

using the algorithm by Lai and Rix (1998), which is the same algorithm used to find the

theoretical dispersion curves during the inversion process. Thus, as for example 1, the

numerical simulation does not include modeling errors.
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The frequency distribution shown in Figure 4.7 has half the number of points of

frequency distribution f1 shown in Figure 4.1. Fewer high-frequency points were used to

reduce the running time, because the data points for higher frequencies correspond to

shorter wavelengths and consequently give information only on the shallower layers.

Table 4.3  Normally dispersive profile ND2

Layer
No.

Layer
Thicknes

s (m)

Mass
Density
(g/cm3)

Shear
Wave

Velocity
(m/s)

Poisson’s
Ratio

1 5 1.8 100 0.2
2 10 1.8 200 0.45
3 5 1.8 400 0.45
 - 1.8 500 0.45

Figure 4.7 Simulated dispersion curve for profile ND2
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4.4.2 Layered Profiles Used to Perform the Inversion

As mentioned in section 4.3.2, an infinite number of trial profiles are possible. For Profile

ND2, trial profiles are formed by considering two different depths to the half-space and

varying the number of layers and their thicknesses. As for Profile ND1, some of the

configurations implemented have layers that match the real layer interfaces, and most

configurations have their layer thicknesses increasing with depth. This agrees with the

nature of SASW tests where layer resolution decreases with depth as discussed in section

4.3.2. The following options were examined:

• fixed 25-meters depth to half-space, varying the number of layers and their

thicknesses, (thicknesses were limited to 1.25, 2.5, 5, 7.5, and 10 meters)

(Figure4.8)

Figure 4.8 Profiles number 21 to 29, example 2
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• fixed 50-meters depth to half-space, varying the number of layers and their

thicknesses, (thicknesses were limited to 2.5, 5, 10, and 15 meters) (Figure4.9)

Figure 4.9 Profiles number 31 to 41, example 2

4.4.3 Initial Vs Values and Uncertainties

The initial Vs values and the covariance matrix for example 2 were obtained with the

same method used for example 1 and described in section 4.3.3.
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4.5 Results obtained with the Maximum Likelihood Method

4.5.1 Vs profiles obtained for Example 1

The maximum likelihood method was used to perform the inversion and find Vs profiles

with theoretical dispersion curves that matched the “experimental” dispersion curve of

profile ND1. Figure 4.10 shows 259 Vs profiles obtained for 259 different initial models,

which correspond to 37 layered configurations with 7 prior covariance matrices

(Although 42 configurations were presented in Figures 4.2 thru 4.5, profiles 1 to 4

resulted in large rms errors and are not included and profile 15 is actually the same as

profile 55). The experimental dispersion curve used for these cases corresponds to the

fundamental mode with frequency distribution f1. The standard deviations estimated for

each Vs value are not presented in this figure for clarity. The purpose of showing all the

final Vs profiles in the same plot is to have an overview of the range of Vs values due to a

variation of the initial model.

As described previously the initial models were varied by changing the number and

thicknesses of the layers, and the standard deviations and correlations of the initial Vs

profile. The maximum likelihood method converged to a different final Vs profile in each

case. Herein, it was considered that the algorithm had converged when the change in the

Vs profile was insignificant as defined by equation 4.17.
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where Np is the total number of layers (taking into account the half space), and

vsn(i) is the Vs value for layer i obtained after iteration n.

All the profiles shown in Figure 4.10 were found to have final rms errors of less than

0.75. Profiles based on configurations 1 thru 4 had rms values that were significantly

higher than for the profiles presented (rms>1.7 for configuration 4 and rms>5.0 for

profiles 1 thru 3). As described previously, the theoretical dispersion curves for all

profiles were found with the same forward algorithm used to simulate the “experimental”

data. Thus, the ambiguity of the solution is caused solely by the assumed prior

information, which has an important influence on the final result obtained from the

inversion as seen with the variety of profiles in Figure 4.10.

The range of Vs profiles in Figure 4.10 illustrates that many different Vs profiles can

match the experimental dispersion curve with a satisfactory rms, which means that many

different Vs profiles are solutions to the inversion problem. Thus, the solution to the

inversion problem is non-unique. Since the experimental dispersion data does not

constrain the solution to a unique answer, it can be said that the dispersion curve by itself

is insufficient to find a unique Vs profile, and it is the information added a priori that

constrains the problem to find one Vs profile.
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Figure 4.10 Shear wave velocity profiles obtained for example 1 (rms errors< 0.75)
(case ND1, frequency f1)
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Consequently, it is important to study how the variation of this information changes the

Vs profile obtained from the inversion and to find ways to choose this information

objectively. The first is addressed in Chapter 5, where the influence of various factors on

the inversion results is analysed based on the maximum likelihood results presented

herein. The latter is addressed in Chapter 6, where the use of a Bayesian criterion to

select the prior information is presented and utilized also with the maximum likelihood

results presented herein.

4.5.2 Vs profiles obtained for Example 2

The maximum likelihood method was used to perform the inversion and find Vs profiles

with theoretical dispersion curves that matched the “experimental” dispersion curve of

profile ND2. Figure 4.11 shows 126 Vs profiles obtained for 126 different initial models,

which correspond to 18 layered configurations with 7 prior covariance matrices

(Although 20 configurations were presented in Figures 4.8 and 4.9, profiles 39 and 41

resulted in higher rms errors than the others and are not included). The experimental

dispersion curve used for these cases corresponds to the fundamental mode with

frequency distribution f4. As before, the purpose of showing all the final Vs profiles in

the same plot is to have an overview of the range of Vs values caused by the variation of

the initial model. As noted for example 1, the maximum likelihood method converged to

a different Vs profile in each case.
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Even though the convergence criterion was the same as that used for example 1 (equation

4.17), for example 2 the algorithm converged to Vs profiles with higher rms errors. The

profiles presented in Figure 4.11 were found to have rms errors between 0.32 and 3.3.

Profiles with configurations 39 and 41 did not have enough layers to be able to represent

the real profile and resulted in higher rms errors (rms>3.7 for configuration 39 and

rms>9.5 for configuration 41). It is important to note that the rms values found for

example 2 cannot be directly compared with the values found for example 1 since the

frequency distributions used were not the same. Even the same theoretical Vs profile

would have different rms errors for different frequency distributions. For example, profile

29 has the same layers as the “real” profile ND2 and for σ_vspr =120m/s and Zband=5m

the inversion algorithm converged to Vs values that produce a dispersion curve with an

rms error of 1.93 (Figure 4.12). This rms value changes to 1.19 if it is calculated using

frequency distribution f1 instead of frequency distribution f4. This is caused by the

representation of the dispersion curve by discrete points, where the points chosen are

used to calculate the rms error and affect its value. This issue will be examined more

closely in Chapter 5.

For example 2, like for example 1, the prior information necessary to constrain the

solution was found to have a significant influence on the final result obtained from the

inversion. This can be observed in Figure 4.11, where a variety of Vs profiles were

obtained for different prior information. The maximum likelihood results obtained herein

are used in Chapter 5, with the results of example 1, to analyse the influence of various

factors on the inversion result
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Figure 4.11 Shear wave velocity profiles obtained for example 2 (0.32 < rms errors <
3.3) (case ND2, frequency f4)
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Figure 4.12 Inverted Vs profile for layered configuration 29 (σσ_vspr =120m/s,
Zband=5m)
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4.6 Conclusions

In this chapter, the application of the maximum likelihood method to SASW inversion

was described, and two synthetic examples were presented. The examples were

implemented for various frequency distributions of the dispersion curve and for different

initial models by varying the number and thicknesses of the layers, and the prior standard

deviations and correlations of the initial estimates of the shear wave velocities. An

overview of the results obtained showed that the inversion converged to different

estimates of the Vs profiles for different initial models, and that a close match to the

experimental dispersion curve can be obtained with a large number of Vs profiles. Thus, a

Vs profile estimated with this local search procedure is highly dependent on the prior

information added to constrain the solution. For this reason, it is important to recognize

that the dispersion curve by itself does not have the information to choose among layered

configurations that result in equally satisfactory rms errors. Consequently, the estimated

Vs profile should be seen as one possible discrete representation of the true Vs variation

with depth, with the Vs values including standard deviations or some type of error bar.

The details and analyses of the results obtained herein are presented in Chapter 5, where

the different factors that affect the inversion are studied.
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CHAPTER 5

 INFLUENCE OF VARIOUS FACTORS ON THE INVERSION RESULTS

5.1 Introduction

There are a number of assumptions required to perform the inversion that affect the shear

wave velocity profile obtained from the inversion process. This chapter utilizes results

obtained with the maximum likelihood method as presented in Chapter 4, to discuss the

effects that this prior information required to constrain the problem may have on the

solution (i.e., Vs values and related uncertainties).

From all the data presented in Chapter 4, it is important to clarify that the main example

presented is profile ND1 with frequency distribution f1, assuming: (i) standard deviations

for the phase velocities (σ_vr) of 3% of the phase velocities, (ii) initial Vs values based

on the empirical method for the corresponding layered profile, (iii) initial Vs standard

deviation (σ_vspr) of 120 m/s and (iv) correlations based on Zband of 5m. The variations in

frequency distribution, uncertainties of the phase velocities, initial Vs values, prior

uncertainties and correlations for the Vs values, were performed one at a time. Thus, for

example, when looking at the effect of σ_vspr, all other assumptions are fixed in their

main values.



116

5.2 Factors Related to the Experimental Dispersion Curve

5.2.1 Effect of Number and Distribution of Points Describing the Experimental

Data

The points describing the dispersion curve represent the frequencies measured at the

field, and give information on the wavelengths of the surface waves that sampled the

soils. As mentioned by Tokimatsu (1997): “ The particle velocities of Rayleigh waves in

either half or layered medium decay with depth, being negligibly small at depths greater

than their propagating wavelengths”. Thus, it can be considered that a layer was not

sampled by wavelengths shorter that the depth to the top of the layer. Figure 5.1 presents

the four frequency distributions used for the examples introduced in Chapter 4.

Frequency distributions f1, f2, and f3 were used for case ND1 and frequency distribution

f4 was used for case ND2. The wavelength distributions are also presented in Figure 5.1.

Note that for case ND1, frequency distribution f2 has 50 points linearly distributed in the

frequency domain and there are only 5 of these points that sampled soils between 10 and

80 meters depth based on their wavelengths. This indicates that there is a significant

difference in the information available for different depths. Even if a few points

satisfactorily describe a certain area of the curve, it is relevant to note that the rms error

weights more heavily areas where there are a lot of points. For instance, the rms for

frequency distribution f2 will weight more heavily the match between the experimental

and theoretical dispersion curves for the frequencies that tested the top 10 meters
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(represented by 45 points) than for the frequencies that tested between 10 and 80 meters

(represented by 5 points). The frequency distribution f4 utilized in case ND2 shows a

distribution in wavelength, which corresponds to an rms error that weights more similarly

different areas of the dispersion curve.

Since the weight that the rms gives to different areas of the dispersion curve depends on

the points used to represent it, for a specific Vs profile the resulting rms is different if the

number of dispersion points and/or their frequency distribution are varied. This can be

illustrated with a few profiles, like the ones shown in Figure 5.2, which were introduced

in Chapter 4. Profile 24 has the layers of the real profile of case ND1, profile 29 has the

layers of the real profile of case ND2, profile 31 has all layers with the same thickness,

and profile 37 has layers with thickness increasing with depth. The last two profiles

include appropriate layer interfaces to match the real interfaces of both ND1 and ND2.

The Vs values estimated for these profiles are presented in Figure 5.3.

To see the effect of the frequency distribution on the rms value for a specific Vs profile,

the inverted Vs profiles presented in figure 5.3 (a) for case ND1 with frequency

distribution f1 are used to calculate the rms value with frequency distributions f2, f3, and

f4. Equivalently, the inverted Vs profiles presented in figure 5.3 (b) for case ND2 with

frequency distribution f4 are used to calculate the rms value with frequency distributions

f1, f2, and f3. The different rms obtained are presented in tables 5.1 (a) and 5.1 (b).
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Figure 5.1 Frequency and wavelength distributions f1, f2, f3, and f4
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Figure 5.2 Layered profiles 24, 29, 31, and 37



120

Figure 5.3(a) Inversion results for case ND1 with frequency distribution f1,
for profiles 24, 31, and 37
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Figure 5.3(b) Inversion results for case ND2 with frequency distribution f4,
for profiles 29, 31, and 37

0 20 40 60
0

100

200

300

400

500
P

ha
se

 V
el

oc
ity

 (m
/s

) "exper." (freq. f4)
theor.(rms= 1.93)  

0 500

0

10

20

30

40

50

D
ep

th
 (m

)

prof 29
"real" 

0 20 40 60
0

100

200

300

400

500

P
ha

se
 V

el
oc

ity
 (m

/s
) "exper." (freq. f4)

theor.(rms= 0.468) 

0 500

0

20

40D
ep

th
 (m

)

prof 31
"real" 

0 20 40 60
0

100

200

300

400

500

P
ha

se
 V

el
oc

ity
 (m

/s
)

Frequency (Hz)

"exper." (freq. f4)
theor.(rms= 1.18)  

0 500

0

20

40D
ep

th
 (m

)

Shear Wave Vel (m/s)

prof 37
"real" 



122

Table 5.1(a) Direct effect of the frequency distribution on the rms error,
for case ND1

ND1 24 31 37

f1 0.34 0.30 0.35

f2 0.18 0.15 0.23

f3 0.36 0.42 0.47

f4 0.62 0.55 0.63

Rms values for the Vs profile estimated with the

maximum likelihood inversion using frequency

distribution f1

Table 5.1(b) Direct effect of the frequency distribution on the rms error,
for case ND2

ND2 29 31 37

f1 1.19 0.46 1.44

f2 0.71 0.47 2.09

f3 1.52 0.62 0.99

f4 1.93 0.47 1.18

Rms values for the Vs profile estimated with the

maximum likelihood inversion using frequency

distribution f4
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The results in tables 5.1 show that the dispersion points chosen may affect significantly

the value of the rms. Some of the results for ND2 show that the same Vs values might be

considered acceptable or not by a 1.0 rms criterion depending on the frequency

distribution used. For instance, the Vs values found for profile 29 produced an rms of

1.93 with frequency distribution f4 (the one used during the inversion process) and an

rms of 0.71 for frequency distribution f2. This example emphasizes the importance of the

frequency distribution, since the estimated rms error is used as a qualification on the

goodness of a profile.

In order to look at the amount of experimental information available for different depths,

it is illustrative to count and plot the number of waves that sampled the soil with depth.

To count how many waves sampled each layer it is necessary to specify the layers used

for the inversion. As an example, the profiles shown in Figure 5.2 are used for this

purpose. Figure 5.4 shows the number of waves that sampled each layer depending on the

frequency distribution and the profile. Figure 5.4 (a) shows case ND1 for frequency

distributions f1, f2 and f3, and for profiles 24, 31 and 37. Figure 5.4 (b) shows case ND2

for frequency distribution f4, and for profiles 29, 31, and 37.

Figure 5.4 emphasizes the difference in information between layers. Part of the difference

is inevitable due to the nature of the problem, since a long wavelength that tests a deep

layer also tests all layers above it. Thus, there is always more information on shallower

layers and less information on deeper layers. In Figure 5.4 (a), it can be noted that for

frequency distribution f2, 25 out of the 50 measured waves go only through the very top
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layer (top 2.5 meters) for profiles 31 and 37. Furthermore, only 11 out of 50 waves go

through layers below 5 meters. This shows that a lot of dispersion points do not

necessarily translate into a lot of information. Additionally, it does not seem reasonable

to have half of the dispersion data with information only on the very top layer.

In order to look at the effect of the number of waves that sampled a layer on the inversion

results a few layers were chosen. This was done because the effect of the number of

waves also depends on the depth of the layer as it can be seen in Figures 5.5 to 5.7. The

layers used were: (i) 0 to 2.5 m, (ii) 2.5 to 5 m, (iii) 5 to 10 m, (iv) 10 to 15 m, (v) 15 to

20 m, and the results for these layers were taken from the inversion results of all the

profiles that included them.

Figure 5.5 shows the ratio of the inverted Vs to the real Vs versus the number of waves

that sampled each layer. The range of values obtained for this ratio increases with depth,

but there is no clear trend with the number of waves. This shows that it may be possible

to reduce the number of points in the dispersion curve and still have enough data to

represent the curve and get a good estimate of Vs. For instance, it seems logical that when

too much data is accumulated in a single layer (for example as described above for the

top layer of profiles 31 and 37 with frequency distribution f2), some of this data may be

deleted without reducing the information available for the remaining layers. This can help

to have a better balance of information content.
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Figure 5.4(a) Number of waves per layer for case ND1 for profiles 24, 31, and 37
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Figure 5.4(b) Number of waves per layer for case ND2, for profiles 29, 31, and 37
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Figure 5.5 Effect of the number of waves sampling a layer on Vs accuracy,
for case ND1
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Figure 5.6 Effect of the number of waves sampling a layer on the coefficient of
variability,  for case ND1
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Figure 5.7 Effect of the number of waves sampling a layer on the ratio of final
standard deviation of Vs to prior standard deviation of Vs, for case ND1
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Additionally, representing the dispersion relation with fewer points can be very valuable

because it may reduce the time required by the inversion. On the other hand, when less

information is available the estimates for the uncertainties of Vs are higher as seen in

Figures 5.6 and 5.7.

Figure 5.6 shows the coefficient of variability (i.e., the ratio of σ_vs to the inverted Vs)

versus the number of waves that sampled each layer. It can be noted that for a specific

layer the value of the coefficient of variability increases as the number of waves sampling

the layer is reduced. Additionally, the coefficient also increases as the depth is increased.

Figure 5.7 shows the ratio of σ_vs (standard deviations of the inverted Vs) to σ_vspr

(values given prior to the inversion) versus the number of waves that sampled each layer.

For a specific layer the value of σ_vs increases as the number of waves sampling the

layer is reduced. Additionally, σ_vs also increases as the depth is increased. In summary,

the uncertainties of Vs increase for a reduced number of waves sampling the layer and for

deeper depths, which is reasonable since less information results in higher uncertainties.

Another way to study the effect of the frequency distribution is by estimating the

resolution matrix, which compares the final and prior covariance matrices, as described in

Chapter 4. The ideal resolution matrix would be the identity matrix (i.e., the diagonal

terms equal to 1.0 and the off-diagonal terms equal to 0.0). Figure 5.8 shows the diagonal

of the resolution matrix for profiles 24, 31, and 37 for frequency distributions f1, f2, and

f3. It can be noted that for the very top layers all frequency distributions result in a

resolution value very close to 1.0, and that the resolution for layers below 30 meters



131

depth is similar for all cases. In general, the plots show that the resolution of layers

between 5 and 30 meters depth is highest for frequency distribution f1. Comparing this

distribution with distribution f2, we see that f1 has more points for lower frequencies

(longer wavelengths) and less for larger frequencies (shorter wavelengths), which helped

improve the resolution for layers from 5 to 30 meters, and did not affect the resolution of

the remaining layers. Distribution f3 has fewer points and the resolution of the layers

between 10 and 30 meters is affected negatively. These results agree with the

observations about information content and its effect on the final uncertainties of Vs.

5.2.2 Effect of Uncertainties Related to the Experimental Data

The uncertainties related to the experimental data have a direct effect on the value of the

rms error, which compares the theoretical dispersion curve with the experimental curve

as described in Chapter 3 in equation 3.2. For a specific theoretical Vs profile, the value

of the rms error is smaller for larger uncertainties assigned to the phase velocity.

The Vs profiles shown in Figure 5.3 are used here to see this direct effect of the

uncertainties of the phase velocity on the rms value. Using those exact same Vs profiles

and varying only the values of the uncertainties of Vr, Tables 5.2 (a) and (b) show that the

rms may change significantly when these uncertainties vary from the 3% vrex used during

inversion to a 6% vrex. As mentioned in Chapter 3, the 3% factor is based on data

presented by Tuomi and Hiltunen (1997), which showed values between 0.2 and 6.4%.
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Figure 5.8 Effect of frequency distribution on the diagonal of the resolution matrix,
for case ND1
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Table 5.2(a) Direct effect of Vr uncertainties on the rms error, case ND1

ND1 24 31 37

σσ_vri= 3% (vrex i) 0.34 0.30 0.35

σσ_vri= 6% (vrex i) 0.17 0.15 0.18

rms values for the Vs profile estimated

with the maximum likelihood inversion

using frequency distribution f1

Table 5.2(b) Direct effect of Vr uncertainties on the rms error, case ND2

ND2 29 31 37

σσ_vri= 3% (vrex i) 1.93 0.47 1.18

σσ_vri= 6% (vrex i) 0.96 0.23 0.59

rms values for the Vs profile estimated

with the maximum likelihood inversion

using frequency distribution f4
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As shown in Table 5.2 (b), for case ND2 using profile 29 the rms of the estimated Vs

profile is 1.93, but for that exact same Vs profile the rms value is reduced to 0.96 if the

uncertainties are doubled (from 3 to 6% vrex). Since the experimental and the theoretical

dispersion curves are the same ones in both cases, this should not be interpreted as a

better match caused by a change in the uncertainties of Vr, but as an indication that the

rms criterion cannot be completely fixed, since values assumed prior to the inversion may

affect the rms value significantly.  

Other than this direct effect on the rms value, the uncertainties of Vr affect the resulting

Vs values and uncertainties obtained from the inversion. Figure 5.9 presents inversion

results for profile 37 case ND1 for two different levels of Vr uncertainties used during

inversion: 3 and 6% vrex. It can be noted that the final profile obtained with the inversion

had different Vs values and uncertainties due to the change in Vr uncertainties. Figure

5.10 shows the increase on the coefficient of variability (standard deviations of Vs / Vs)

caused by an increase of the Vr uncertainties. Figure 5.10 (a) compares the coefficient of

variability obtained for each layer of profile 24 when the uncertainties of Vr used during

inversion are 3 and 6% vrex. Equivalently, figure 5.10 (b) and figure 5.10 (c) compare

these coefficient for profiles 31 and 37, respectively.

In figure 5.10, it can be noted that the effect of increasing Vr uncertainties in the standard

deviations estimated for the final Vs profile is a relatively small increase for most layers.

This increase is explained because a dispersion curve with more uncertainty does not

constrain the solution as much, and consequently, there are a larger number of Vs profiles
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that satisfy a particular rms criterion (say rms<1.0). In conclusion, it is important to have

a realistic estimate of the uncertainties of the phase velocity, because if these are too large

the problem may not be sufficiently constrained by the dispersion curve and the range of

potential Vs profiles might be too large. On the other hand, if the uncertainties of Vr are

too small, they might constrain the problem too much, increasing the rms values and

making it hard to find a Vs profile with a satisfactory rms.

5.3 Factors Related to the Initial Shear Wave Velocity Profile

5.3.1 Effect of Depths and Thicknesses of the Layers

Depending on its thickness and depth, a layer is sampled differently by the surface waves

as noted on section 5.2.1, and consequently, a change in its Vs will have a different effect

on the dispersion curve. The more effect a change in the Vs of a layer has on the

dispersion curve, the more sensitive the dispersion curve is to that layer, and the better

that layer can be resolved. This sensitivity of the dispersion curve may be examined by

looking at the partial derivatives (i.e., ∂Vr/∂Vs as presented in Chapter 4) obtained for the

last iteration. Figures 5.11 (a) and (b) show the partial derivatives obtained for all

frequencies for each layer of profile 31 for cases ND1 and ND2 respectively. It is clear

for both cases that the top layers have higher sensitivities and affect a larger range of

frequencies.



136

Figure 5.9 Inversion results for profile 37, for standard deviations of Vr of 3 and 6%
Vr exp, for case ND1 with frequency distribution f1
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Figure 5.10 Change in coefficient of variability caused by varying
standard deviations of Vr, for case ND1 profiles 24, 31, and 37
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Figure 5.11(a) Partial derivatives for all layers of profile 31,
for case ND1 with frequency distribution f1
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Figure 5.11(b) Partial derivatives for all layers of profile 31,
for case ND2 with frequency distribution f4
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The sum of the partial derivatives over all frequencies is divided by the number of

frequencies to obtain a mean sensitivity for each layer. This sensitivity is plotted versus

the top-depth of the layers and presented for all profiles except profiles 1 to 4, in Figure

5.12. This plot shows a large decrease in the sensitivity between 0 and 10 meters, and

lower sensitivities for layers below 10m.

Evaluating how sensitive the dispersion curve is to a change in the Vs of a layer, can also

be done manually by changing the Vs value of the layer and observing the variation of the

dispersion curve, and its effect on the rms value. Figure 5.13 shows an example where the

Vs of the top layer (i.e. layer 1) of profile 31 for case ND1 was reduced by 20%. It can be

noted that the rms varied from 0.301 to 5.24 and the change in the dispersion curve is

clearly noticeable on the plot. Thus, the dispersion curve is very sensitive to the value of

this first layer. This makes sense since the dispersion curve has a lot of information on

the top layer as noted previously on section 5.2.1 (all waves travel through this top layer).

For comparison, this same Vs reduction by 20% is done to each layer of profile 31 and

Figure 5.14 presents the resulting percent change in Vr. Figure 5.14 (a) presents case

ND1 and figure 5.14 (b) presents case ND2. For each curve the layer specified was the

only one that had the Vs changed. These plots show the same trends presented by the

partial derivatives in Figure 5.11, where the top layers affect a larger range of frequencies

and have a more significant effect on the phase velocity values than the deeper layers. It

can be noted that for layers below the third one (i.e., below 7.5 meters depth) there is no

effect on dispersion data with frequencies larger than 10Hz.
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Figure 5.12 Sum over frequency of partial derivatives versus mid-depth for all
layers of all satisfactory profiles for case ND1
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Figure 5.13 Inversion results when reducing the Vs of the first layer of profile 31 by
20%, case ND1, frequency distribution f1
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Figure 5.14 (a) Percent change in Vr caused by reducing the Vs of each layer by 20%
for case ND1, frequency distribution f1, profile 31
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Figure 5.14 (b) Percent change in Vr caused by reducing the Vs of each layer by 20%
for case ND2, frequency distribution f4,  profile 31
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One way to summarize the effect that the Vs change has on the dispersion curve is to look

at the change on the rms which gives one number for the whole curve. Figure 5.15 shows

the new rms (after reducing the Vs by 20%) divided by the original rms, and plotted

versus the top-depth of each layer. Figure 5.15(a) presents case ND1 with profiles 24, 31

and 37, and figure 5.15 (b) presents case ND2 with profiles 29, 31 and 37. These plots

show that the sensitivity of the dispersion curve to a change in Vs reduces with depth,

which means that the deeper layers have a smaller effect on the dispersion data.

Additionally, when profiles 31 and 37 are compared, it is noted that increasing the

thickness with depth helps reduce the difference in sensitivities between deeper and

shallower layers.

However, the sensitivity of the dispersion curve to a specific layer depends on the

specific case. For example, Figure 5.15 shows that the changes in rms caused by the Vs

reduction of the first and second layers of profile 31 are very different for cases ND1 and

ND2. Comparing the plots for these layers in Figures 5.14(a) and 5.14(b), it can be noted

that the difference is the rms change is caused mainly by the different distribution of the

dispersion points. For profile ND1 there are significantly more points for frequencies

above 10Hz than for profile ND2. Consequently, for profile ND2 the Vr changes for the

higher frequencies (affected more by the Vs of first layer) have a smaller weight in the

rms error and the Vs of the second layer ends up having a higher effect on the rms.
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Figure 5.15(a) Change in rms caused by a reduction of Vs by 20% for case ND1,
for profiles 24, 31, and 37

Figure 5.15(b) Change in rms caused by a reduction of Vs by 20% for case ND2,
for profiles 29, 31, and 37
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Figure 5.16 shows the  Vs profiles obtained for profiles 24, 31 and 37 in case ND1, and

for profiles 29, 31 and 37 in case ND2, including the standard deviations corresponding

to the estimated Vs values. See that the standard deviations increase with depth markedly

for the upper layers, and are very similar for the deeper layers. This is consistent with the

reduction of sensitivity with depth that was discussed above, since there is a significant

reduction with depth for the upper layers and for the deeper layers the sensitivities are

similarly low.

The relationship between sensitivity and Vs uncertainties is observed in Figure 5.17,

which includes two plots of the coefficient of variability (i.e., σ_vs/vs) versus the mean

sensitivity (average of the partial derivatives for each layer). One plot includes most

layered profiles obtained (excluding the ones with very high rms errors), and the other

plot includes only the results for the layers used in section 5.2.1, and makes it clear that

the depth of the layer has a significant influence on the sensitivity and the coefficient of

variability obtained. Both plots show that the coefficient of variability increases for a

decreased sensitivity. This figure also presents the coefficient of variability versus the

top-depth of the layers and versus the thickness to depth ratio multiplied by the number

of waves sampling the layer. As expected based on the above results, this coefficient

increases with depth strongly for the shallower depths and varies slightly for the deeper

layers, which have similar standard deviations. Additionally, the coefficient of variability

decreases with the thickness to depth ratio multiplied by the number of waves, which

means that for a specific depth a thickness increase and/or an increase in the number of

waves may help lower the uncertainties of Vs.
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Figure 5.16(a) Inversion results for case ND1, for profiles 24, 31, and 37
(including standard deviations)
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Figure 5.16(b) Inversion results for case ND2, for profiles 29, 31, and 37
(including standard deviations)
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Figure 5.17(a) Coefficient of variability versus sensitivity, versus depth, and versus
thickness to depth ratio for case ND1, frequency distriubution f1
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Figure 5.17(b) Coefficient of variability versus sensitivity, versus depth, and versus
thickness to depth ratio for case ND2, frequency distriubution f4
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Comparing the final uncertainties to the prior uncertainties, gives a measure of how much

the data added with the inversion process improves the prior uncertainties, and gives a

measure of resolution for each layer. This is done with the resolution matrix, which is

based on comparing final and prior covariance matrices. As described in Chapter 4, two

possible measures that help compare the resolution matrix to the identity matrix (i.e., the

ideal resolution matrix) are the Dirichlet and the Backus-Gilbert spreads. The Backus-

Gilbert spread penalizes more the terms of the resolution matrix that are farther from the

diagonal, and the Dirichlet spread penalizes all terms equally. Figure 5.18 presents these

spreads for all layered profiles of cases ND1 and ND2. The profiles with the lowest

spreads are presented in Figure 5.19, except profiles 1, 2, and 39, which had low Backus-

Gilbert spreads but are related to high rms errors. This emphasizes the fact that the

resolution matrix does not give any weight to the fit between theoretical and experimental

dispersion curves. Thus, the spreads should be compared only among profiles that are

considered to produce dispersion data with a satisfactory fit.

The profile with the lowest normalized Dirichlet spread was profile 25 for both, ND1 and

ND2. The profiles with lowest normalized Backus-Gilbert spread were profiles 23 and 24

for case ND1, and profile 23 for case ND2. Note in Figure 5.19 that the only case in

which the profile with the lowest spread had the appropriate layer interfaces to match the

real ones was for the Backus Gilbert spread in case ND1. This is something that would

not be known for real experimental data, and shows that finding which layered profiles

have the appropriate layer interfaces is a complicated task.
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Figure 5.18(a) Spreads of the resolution matrix for case ND1, frequency distribution
f1
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Figure 5.18(b) Spreads of the resolution matrix for case ND2, frequency distribution
f4
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Figure 5.19  Layers of real profile and of profiles with low Normalized Dirichlet and
Backus-Gilbert Spreads
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The diagonal of the resolution matrix gives more information since each layer is related

to one value of resolution. The configurations in Figure 5.20. were selected to observe the

change in the diagonal of the resolution matrix caused by a change in the thicknesses of

the layers. Figure 5.21 shows the variation of the diagonal of the resolution matrix plotted

versus the top-depth of each layer. As expected the resolution values decrease with depth

(i.e., expected since there is a decrease in information content with depth, a decrease of

the sensitivity of the dispersion curve to a change in Vs with depth, and an increase in the

uncertainties of Vs with depth).

For case ND1 in Figure 5.21(a), it can be noted that increasing the thickness of the layers

with depth improves the relative resolution of the layers. The values of the diagonal

become closer to one as the deeper layers are assumed thicker. Thus, the reduction in

resolution may be reflected in having thicker layers with depth, which helps reduce the

difference in resolution among layers. The author suggests that it is better to have a

resolution decreasing with depth smoothly, as it would naturally occur due to the nature

of the test, than to have some higher resolutions with jumps (for case ND1 in figure

5.21(a) see profile 27 versus 22, and profile 38 versus 32). For case ND2 in Figure

5.21(b), note that having a layer that matches the real profiles produces a smooth

variation for the diagonal of the resolution, even though this configuration does not

present an increase of thickness with depth (profiles 29 and 40).
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Figure 5.20 Profiles selected to compare the diagonal of the resolution matrix:
21, 22, 27, 29, 31, 32, 38, and 40
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Figure 5.21(a) Diagonal of the resolution matrix for profiles 21, 22, 27, 31, 32, and
38, for case ND1.
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Figure 5.21(b) Diagonal of the resolution matrix for profiles 21, 22, 27, 29, 31, 32, 38,
and 40, for case ND2.
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Thus, the diagonal of the resolution matrix gives more information than the spreads of the

resolution matrix and helps compare diverse layered configurations. Since the diagonal

presents a comparison among layers of the same profile, it may help decide which

thicknesses should be decreased and which increased to improve the relative resolution of

the layers. Joh (1996) uses the diagonal of the resolution matrix to have a resolution value

for each layer and to implement a ‘layer sensitivity analysis’. He proposes that any layer

with a lower resolution than the half-space should be increased in thickness, and any

layer with a much higher resolution than the others should be reduced in thickness.

5.3.2 Effect of the Depth to Half-Space

Figure 5.21 may also be used to observe the effect of a deeper soil profile on top of the

half space.  Profiles 21, 22, 27 and 29 have the same layers for the top 20-meters than

profiles 31, 32, 38, and 40 respectively (see Figure 5.20). For the deeper profiles, it is

noted that the resolution decreases below 20 meters and the deeper layers have a

significantly lower resolution. This is not a bad characteristic when dealing with real data

because the half-space is unrealistic and the data should not be used to resolve it highly.

Thus, it is preferable that the resolution of the half-space is the lowest (not like for profile

21), because it is not reasonable to resolve this layer more than the layers on top of it. In

summary, a nice diagonal for a resolution matrix would show the resolution smoothly

decreasing with depth, with the half space having the lowest resolution of all layers.



161

The depths to half-space may also be compared using the half-space sensitivity to the

maximum wavelength (i.e., ∂Vr/∂Vs calculated for the Vs corresponding to the half-space

and Vr corresponding to the maximum wavelength). The values for these sensitivities for

all layered profiles introduced in Chapter 4 are presented in Figure 5.22. In order to

compare the sensitivities, it is best to ignore the values for profiles 1 to 4 for case ND1,

and the values for profiles 39 and 41 for case ND2, since they correspond to the highest

rms values, respectively. It can be noted that for shallower profiles the sensitivity varies

more with the type of layering than for deeper profiles. For example, for case ND1

compare profiles 21 thru 28 (twenty meters depth to half-space) with profiles 31 to 38

(fifty meters depth to half-space), and for case ND2 compare profiles 21 thru 29 (twenty

meters depth to half-space) with profiles 31 to 38 and 40 (fifty meters depth to half-

space). This is reasonable since the deepest the half-space the least sensitive the

dispersion curve is to it. The low sensitivities found for the 50-meters deep profiles are

preferred since the purpose is not to resolve this layer highly.

However, the half-space sensitivity to the maximum wavelength should not be too low

because it would mean that the half-space is not being defined by the experimental data.

Based on the fact that the sensitivity represents the change in Vr that would occur with a

change in Vs, Joh (1996) proposes to use a minimum value criterion of 1% (or another

value considered reasonable) for the half-space sensitivity to the maximum wavelength,

during the analysis of the data. Additionally, Joh (1996) proposes a minimum criterion of

10% (or another value considered reasonable) for the sensitivity to the maximum

wavelength of the deepest layer to be included in the final Vs profile reported.
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Figure 5.22(a) Half-space sensitivity to maximum wavelength for case ND1,
frequency distribution f1

Figure 5.22(b) Half-space sensitivity to maximum wavelength for case ND2,
frequency distribution f4
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5.3.3 Effect of the Initial Shear Wave Velocity

The initial shear wave velocity is important due to the nonlinear nature of the problem.

As mentioned previously, this nonlinear problem is solved with the maximum likelihood,

which is an iterative process based on gradient methods. Thus, the inversion algorithm

finds a solution by converging to a minimum close to the initial estimate of the solution.

Consequently, if the initial shear wave velocities are far from the real values the

algorithm may converge to a profile with a high rms.

As mentioned in Chapter 4, the initial Vs profile was based on an empirical method to get

initial values that are not too far from the solution. The maximum likelihood iterative

algorithm was tried with other initial estimates for the shear wave velocities. The initial

estimates assumed for comparison were 100m/s for all layers  (100m/s was the minimum

Vs value of the real profile) and 400 m/s for all layers (400m/s was the maximum Vs

value of the real profile). The change of the initial Vs values from the empirical estimates

to the constant Vs values resulted in the algorithm converging to profiles with

significantly higher rms errors.

As an example, for case ND1 using profiles 24, 31, and 37, Figure 5.23 presents the

difference in results from having these different initial estimates. The results show that

the dispersion curves for the estimated Vs profiles do not match the “experimental”

dispersion curve satisfactorily for the constant Vs initial estimates.
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Figure 5.23(a)  Inversion results for different initial Vs values for case ND1
profile 24
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Figure 5.23(b)  Inversion results for different initial Vs values for case ND1
profile 31
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Figure 5.23(c)  Inversion results for different initial Vs values for case ND1
profile 37
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Thus, the empirical initial shear wave velocities present a better initial estimate, which

helps the algorithm converge to a reasonable solution for the inversion problem. The

results show the importance of a good initial estimate for the maximum likelihood

method. This does not imply that other inversion methods that may be used for SASW

can not converge for these cases with the constant initial Vs estimates.

 5.3.4 Effect of Standard Deviations Related to the Initial Shear Wave Velocity

The complete set of profiles estimated for ND1 with the maximum likelihood method

were presented in Figure 4.10 on Chapter 4. In that figure it was shown that all profiles

had a good match to the experimental dispersion curve. Herein, figure 5.24 shows part of

those results in separate plots for prior Vs standard deviations (σ_vspr) of 30 and 240 m/s.

The dispersion curves are not presented since the differences among them are not

significant, and it is more illustrative to look at the Vs profiles. Figure 5.24 demonstrates

that the initial uncertainties of Vs have a significant influence on the range of final Vs

profiles obtained. The smaller standard deviation constrains the solution more, obtaining

a smaller range of Vs values, and the larger standard deviation gives more flexibility to

the solution, obtaining a larger range of Vs values.

The difference in the range of profiles observed in figure 5.24 is reflected also in the

estimated standard deviations for the Vs values obtained from the inversion as shown in

figure 5.25.
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Figure 5.24 Range of estimated Vs profiles obtained for
prior Vs standard deviations of 30 and 240m/s
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Figure 5.25 Inversion results for case ND1 profile 37,
with prior Vs standard deviations of 30 and 240m/s
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Figure 5.25 shows the inversion results obtained for profile 37 in case ND1, for two

different initial assumptions on Vs standard deviations (i.e., 30 and 240 m/s). It is clear

that the standard deviations obtained for the final Vs are significantly larger for the larger

prior standard deviations (i.e., 240m/s).

Figure 5.26 presents the coefficient of variability versus the top-depth of the layers for

profiles 24, 31 and 37 in case ND1, for the four different prior Vs standard deviations

presented in Chapter 4 (i.e., 30, 60, 120, and 240m/s). This figure clearly shows that the

prior standard deviation chosen for Vs has an important effect on the estimated

uncertainties, except for the very top layers. The higher the prior assumption the higher

the resulting estimate. The trends for the coefficient of variability that show a larger

increase with depth for the upper layers followed by a smoother variation for the deeper

layers are similar in all cases, but with more significant variations as the prior standard

deviations are higher.

Figure 5.27 confirms these observations with plots that include the results for all

satisfactory profiles for case ND1. This figure also presents the increase of the coefficient

of variability for a decrease in sensitivity, and for a decrease in thickness to depth ratio

multiplied by the number of waves sampling the layer.
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Figure 5.26 Change in coefficient of variability caused by varying the prior
standard deviations of Vs, for case ND1 profiles 24, 31, and 37
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Figure 5.27 Coefficient of variability versus sensitivity, versus depth, and versus
thickness to depth ratio for different prior standard deviations of Vs, for case ND1,

frequency f1
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Since the prior assumptions for the standard deviations of Vs (σ_vspr) have such a

significant influence on the estimated Vs uncertainties, Figure 5.28 shows the ratio of the

final standard deviation values to the values assumed prior to inversion. This figure

emphasizes that the deeper layers have uncertainties that approach the initial guess (i.e.,

ratio of 1.0). If a final estimated uncertainty was estimated to be the same as the prior

assumption, it would mean that there is no information added during the inversion

process that helps improve the prior uncertainties. Another way to compare final and

prior uncertainties is by looking at the effect on the diagonal of the resolution matrix. As

noted previously, the resolution matrix is based on comparing the final and prior

covariance matrices, which include final and prior uncertainties. Figure 5.29 presents the

diagonal of the resolution matrix for two of the profiles included in Figure 5.28, and for

the four cases of prior standard deviations of Vs.

Based on Figures 5.28 and 5.29, it can be noted that the top 5 meters have low standard

deviations and are well resolved independently of the prior assumption. From 5 to 20

meters a higher prior assumption of σ_vspr, which gives more flexibility to the problem,

results in lower standard deviation ratios and in better resolution values. For layers below

20 meters this trend continues but with very little difference between standard deviations

an resolutions as all cases approach the value of the prior assumption (i.e., corresponding

to σ_vs/σ_vspr=1.0, and diagonal of the resolution matrix=0.0).
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Figure 5.28 Change in the ratio of the final standard deviations of Vs to the prior
standard deviations of Vs caused by varying the latter ones, for case ND1 profiles 24,

31, and 37
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Figure 5.29 Diagonal of the resolution matrix for profiles 24 and 37, for different
prior standard deviations of Vs, for case ND1.
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The half-space sensitivity to the maximum wavelength is also affected by the prior

standard deviations of Vs as presented in Figure 5.30. For both cases ND1 and ND2, it

can be noted that higher σ_vspr values result in more variation of the sensitivity with the

type of layering, and lower σ_vspr result in more similar sensitivities for profiles with the

same depth to half-space. This is caused by the fact that higher σ_vspr gives more

flexibility to the solution, which results in a larger range of Vs profiles as seen in

Figure5.24, and a larger range of Vs profiles results in a larger range of partial derivative

values (i.e., sensitivities). However, comparing profiles 31 to 38 (50 meters depth to half-

space) with the rest (which vary between 12 and 32 meters depth to half-space), it is

noted that as the depth to half-space is increased, its sensitivity to the maximum

wavelength becomes more stable. This is due to the fact that the deeper the half space, the

lower the sensitivity of the dispersion curve to it, and consequently the lower the effect

that a change in the Vs profile has in the partial derivatives.

5.3.5 Effect of the Correlations Related to the Initial Shear Wave Velocity

Figure 5.31 presents part of the results shown in figure 4.10, with two separate plots that

show the range of Vs profiles obtained when using Zband of 1 and 15 m (see Chapter 4 for

a clear explanation of how the correlations are calculated based on Zband). In this case it

can be noted that the larger the Zband (i.e. the higher the correlations among layers) the

smaller the range of Vs values obtained. Since having higher correlations among layers

implies smoother profiles, it makes sense that the range of Vs values is narrower for a

larger Zband.
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Figure 5.30(a) Half-space sensitivity for different prior standard deviations of Vs,
for case ND1

Figure 5.30(b) Half-space sensitivity for different prior standard deviations of Vs,
for case ND2
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Figure 5.31 Range of estimated Vs profiles obtained for
initial Vs correlations based on Zband of 1 and 15m

0000 200200200200 400400400400 6006006006000000

5555

10101010

15151515

20202020

25252525

30303030

35353535

40404040

45454545

50505050

55555555

VVVVssss (m/s) for Z (m/s) for Z (m/s) for Z (m/s) for Zbbbbaaaannnndddd =1m =1m =1m =1m

D
ep

th
 (m

)
D

ep
th

 (m
)

D
ep

th
 (m

)
D

ep
th

 (m
)

0000 200200200200 400400400400 6006006006000000

5555

10101010

15151515

20202020

25252525

30303030

35353535

40404040

45454545

50505050

55555555

VVVVssss (m/s) for Z (m/s) for Z (m/s) for Z (m/s) for Zbbbbaaaannnndddd =15m =15m =15m =15m

D
ep

th
 (m

)
D

ep
th

 (m
)

D
ep

th
 (m

)
D

ep
th

 (m
)



179

Figure 5.32 presents the coefficient of variability versus the top-depth of the layers for

profiles 24, 31 and 37 in case ND1, for the four different prior Zband presented in Chapter

4 (i.e., 1, 5, 10, and 15m). This figure clearly shows that the prior correlations of Vs

(given by Zband) may have an effect on the estimated uncertainties. The effect is such that

for a smaller Zband value the resulting uncertainties for Vs are higher. The trends for the

coefficient of variability show larger variations with depth for the upper layers followed

by a smoother variation for the deeper layers. These variations are more significant as the

Zband values are lower, but below 30 meters depth the values for the coefficient of

variability are similar for the different cases of Zband.

These trends are confirmed in Figure 5.33, which presents plots for the coefficient of

variability that include the results for all satisfactory profiles for case ND1. This figure

also presents the increase of the coefficient of variability for a decrease in sensitivity, and

for a decrease in thickness to depth ratio multiplied by the number of waves sampling the

layer. These observations relate to the ones about the effects of the prior standard

deviations of Vs, noting that a smaller Zband constrains less the solution as a higher σ_vspr

does.

The half-space sensitivity to the maximum wavelength is also affected by the prior

correlations of Vs as presented in Figure 5.34. For both cases ND1 and ND2, it can be

noted that lower Zband values result in more variation of the sensitivity with the type of

layering, and higher Zband values result in more similar sensitivities for profiles with the

same depth to half-space.
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Figure 5.32 Change in the coefficient of variability for different prior correlations
(given by Zband), for case ND1 profiles 24, 31, and 37
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Figure 5.33 Coefficient of variability versus sensitivity, versus depth, and versus
thickness to depth ratio for different prior correlations (given by Zband),

for case ND1, frequency f1
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Figure 5.34(a) Half-space sensitivity for different prior correlations (given by Zband),
for case ND1

Figure 5.34(b) Half-space sensitivity for different prior correlations (given by Zband),
for case ND2
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As mentioned for the effects of σ_vspr, this is caused by the fact that a lower Zband gives

more flexibility to the solution, which results in a larger range of Vs profiles as seen in

Figure 5.31, and a larger range of Vs profiles results in larger differences among their

partial derivatives (i.e.,their sensitivities). Like for the variation in σ_vspr, comparing

profiles 31 to 38 (50 meters depth to half-space) with the rest (which varies between 12

and 32 meters depth to half-space), shows that as the depth to half-space is increased, its

sensitivity to the maximum wavelength becomes more stable. As mentioned before, this

is due to the fact that the deeper the half space, the lower the sensitivity of the dispersion

curve to it, and consequently the lower the effect that a change in the Vs profile has in the

partial derivatives. In summary, the half-space sensitivity to the maximum wavelength is

affected more by the layering for a higher σ_vspr, a lower Zband, and shallower profiles,

and as expected the value of the sensitivity tends to decrease with a depth increase.

5.4 Summary and Conclusions

The results obtained with a theoretical inversion method such as the maximum likelihood

are dependent on the characteristics of the experimental data and of the Vs profile

assumed a priori. This chapter studied the effect of the following factors on the inversion

results:
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(i) number and distribution of data points describing the experimental dispersion

curve

The points describing the dispersion curve represent the frequencies measured at the

field, and give information on the wavelengths of the surface waves that sampled the

soils. It can be considered that a layer was not sampled by wavelengths shorter that the

depth to the top of the layer. Counting the number of waves that sampled each layer gives

an idea of the amount of experimental information available for each layer and

emphasizes when there is a significant difference in the information among layers. Part of

the difference is inevitable due to the nature of the problem, since a long wavelength that

tests a deep layer also tests all layers above it. Thus, there is always more information on

shallower layers and less information on deeper layers.

The effect on the inversion results of the number of waves that sampled a layer was

studied. It was noted that the number of waves did not affect the accuracy of Vs (i.e., final

Vs /real Vs), thus, a few dispersion points may be enough to represent the dispersion

curve appropriately. This proves that a lot of dispersion points do not necessarily translate

into a lot of information. For instance, the experimental data may have a lot of dispersion

points which represent waves that tested only the top layer and very few data on the

following layers. Consequently, the author suggests that it is possible to delete some of

the dispersion points that present redundant data to reduce the difference in information

content among layers, and consequently reduce the difference in resolution. On the other

hand, the number of waves did affect σ_vs and the coefficient of variability (i.e., σ_vs /
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Vs). These values increase for a reduced number of waves sampling the layer, but they

increase more significantly for deeper depths. This is reasonable since it means that less

information results in higher uncertainties.

Additionally, since the weight that the rms gives to different areas of the dispersion curve

depends on the points used to represent it, it was noted that for a specific Vs profile the

resulting rms is different for different sets of points. The dispersion points chosen to

represent the curve may affect significantly the value of the rms, which emphasizes the

importance of the frequency distribution, since the estimated rms error is used as a

qualification on the goodness of a profile. Thus, it is suggested to look at the number of

waves that tested each layer and try to have a distribution that does not weight some

wavelength ranges excessively compared to others. The best option would be to produce

the dispersion curve during the field test, and to use it as a reference to get additional

experimental data if needed.

(ii) uncertainties of the experimental dispersion data

The uncertainties related to the experimental data have a direct effect on the value of the

rms error. The larger the uncertainties assigned to the phase velocity the smaller the value

of the rms error for a specific theoretical dispersion curve, which is generally interpreted

as a better match to the experimental curve. Additionally, the uncertainties given to the

experimental data also affect the results obtained from the inversion, since the larger the

uncertainties the less the dispersion curve constrains the solution. Thus, it is important to
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have a realistic estimate of the uncertainties of the phase velocity, because if these are too

large the problem may not be sufficiently constrained by the dispersion curve. On the

other hand, if the uncertainties of Vr are too small, they might constrain the problem too

much, increasing the rms values and making it hard to find a Vs profile with a satisfactory

rms. As discussed in Chapter 3, Vr uncertainties of 3% of the experimental phase

velocities are considered reasonable for SASW tests.

(iii) depths and thicknesses of the layers

Depending on its thickness and depth a layer will be sampled differently by the surface

waves measured during the field test. The deeper the layer the less information there is on

it, and consequently it is harder to resolve its value. The effect of a change in the Vs value

of a layer on the dispersion curve shows how sensitive the dispersion curve is to that

layer. A higher sensitivity means that the layer can be better resolved. Based on the data

presented, it was clear that the sensitivity of the dispersion curve to a change in Vs

reduces with depth, and that lower sensitivities are related to higher coefficients of

variability. It was also noted that the coefficient of variability decreases with the

thickness to depth ratio multiplied by the number of waves sampling the layer. Thus,

increasing the thickness of a layer at a specified depth or increasing the number of waves

sampling the layer may help resolve the layer better and reduce its uncertainty. For the

cases presented herein, the plots show that the coefficient of variability is limited to

below 25% for a thickness to depth ratio multiplied by the number of waves sampling the

layer of at least 8 (see figures 5.27 and 5.33)
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The diagonal of the resolution matrix may be used to compare the resolutions of the

layers and vary their thicknesses (i.e., increase the thickness to increase resolution, or

decrease the thickness to decrease resolution). It is suggested that the layers selected

result in a resolution decrease with depth that is as smooth as possible, trying to minimize

the difference in resolution among layers.

The number of waves that sample a layer depend on both its thickness and depth, and the

distribution and number of points that represent the dispersion curve. Thus, for a specific

set of experimental data the layers may be chosen in such a way that the difference in

information available for the different layers is reduced. For instance, if only 5 waves

tested soils between 10 and 80 meters (as for case ND1 with frequency distribution f2)

having sixteen 2.5-meter layers from 10 to 50 meters followed by a half-space (as in

layered configuration 31) gives the user of the Vs profile a false sense of resolution. To

prevent this type of false impression, the author suggests that the number of waves

sampling the layers should reduce with depth without having consecutive layers sampled

by the same number of waves. Additionally, since the information content necessarily

decreases with depth, and results in lower resolutions with depth, it is suggested that the

thickness of the layers increases with depth to reflect this decrease in resolution.
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(iv) Depth to half-space

As noted above, the diagonal of the resolution matrix helps compare the resolution of the

layers within a profile. Since the half-space continues to an infinite depth and the

information available is for a limited depth, this unrealistic layer should have the lowest

resolution of all. However, the half-space sensitivity to the maximum wavelength should

not be extremely low because it would mean that the half-space is not being defined by

the experimental data. Based on the fact that the sensitivity represents the change in Vr

that would occur with a change in Vs, Joh (1996) proposes to use a minimum value

criterion of 1% (or another value considered reasonable) for the half-space sensitivity to

the maximum wavelength, during the analysis of the data.

This criterion could be complemented by a maximum value such as 10% (or another

value considered reasonable), since this sensitivity should not be too high either, because

the half-space would be controlling the answer too much (i.e., a very shallow half-space

might affect significantly the phase velocities of the wavelengths that go thru the layers

adjacent to the half-space, and their shear wave velocities might not be resolved

properly). Depths to half-space that have lower sensitivity to the maximum wavelength

are affected less by the prior assumptions of layering, σ_vspr, and Zband, which is better to

have a more stable estimate of this sensitivity. For the cases presented, the best choice for

the depth to the half-space among the ones tried would be 50 meters (65% of the

maximum wavelength for case ND1 and 60% of the maximum wavelength for case

ND2).
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(v) initial shear wave velocities

The initial shear wave velocity is important due to the nonlinear nature of the problem,

and also to the inversion algorithm, which is an iterative process based on gradient

methods that converges to a minimum close to the initial estimate. Consequently, if the

initial shear wave velocities are far from the real values the algorithm may not converge

to a desirable solution. For the maximum likelihood method, simple initial guesses with

constant initial Vs values resulted in the algorithm converging to final Vs profiles with

high rms values for the cases presented. Thus it is suggested to employ initial Vs

estimates based on the empirical method, which helped the algorithm converge to

reasonable solutions to the inversion problem for the cases presented.

(vi) standard deviations of the shear wave velocities

It was shown that the prior standard deviations assigned to Vs (σ_vspr) have a significant

influence on the range of final Vs profiles obtained. A smaller σ_vspr constrains more the

solution, and results in a smaller range of Vs values for different layered profiles. A larger

σ_vspr gives more flexibility to the solution, and results in a larger range of Vs values.

This is reflected in the estimated standard deviations for the Vs values obtained from the

inversion. A smaller σ_vspr produces Vs profiles with smaller uncertainties, and a larger

σ_vspr produces Vs profiles with larger uncertainties.
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Additionally, the variation of the uncertainties of Vs could be divided in three main

zones. The top zone being for the upper layers (top 5 meters in this case), where the

estimated uncertainties are low, had high resolution values (i.,e, values close to 1.0), and

are not affected by σ_vspr. The second zone being for the middle layers (5 to 20 meters in

this case), where the uncertainties increase significantly with depth, the resolution

decreases significantly with depth, and both uncertainties and resolution are significantly

affected by σ_vspr. The third zone being for the bottom layers (below 20 meters), where

the variation of uncertainties and resolution with depth is slighter approaching the prior

assumption and a zero resolution value. These zones of variation for the uncertainties of

Vs agree with the variation of the sensitivities, which presents a steep decrease with depth

for the top layers and similarly low sensitivities for the bottom layers.

(vii) correlations of the shear wave velocities

The correlations among layers also affected the final range of Vs profiles obtained and the

uncertainties for the estimated Vs values. It was noted that the higher the correlations

(i.e., which favors smoother the profiles) the smaller the range of Vs values obtained, and

the smaller the estimated standard deviations of Vs. Again, three main zones could be

observed. The top layers where the uncertainties of Vs were low and not affected by the

prior correlations. The middle layers where there is a large increase in the uncertainties of

Vs and a significant variation caused by the prior correlations. The bottom layers where

the variation of the uncertainties of Vs is slighter.
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In summary, there are a number of prior assumptions that affect the resulting Vs profile

obtained from the inversion. Since these assumptions are required to perform the

inversion with a local search procedure such as the maximum likelihood, it is necessary

to find ways to select them objectively. For instance, among different layered profiles

that result in satisfactory inversion results, which one should be chosen? Or, among

different prior standard deviations and correlations for Vs, which ones should be selected?

For this reason, Chapter 6 presents the Bayesian approach to model selection, which

helps choose these prior assumptions by helping select the simplest model that is

complex enough to fit the data. This is based on the thought that the model used to

represent the Vs variation with depth should not include features that are not necessary to

fit the data. The application of this approach is described utilizing the same inversion

results obtained in Chapter 4 and studied in this chapter.
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CHAPTER 6

BAYESIAN MODEL SELECTION

6.1 Introduction

As shown in Chapter 5, the assumptions made a priori affect the inversion results, thus, it

is important to have tools to evaluate and choose this information. In this chapter,

simulated data from Chapter 4 is used to implement the Bayesian model selection to help

choose some of the prior information required for SASW inversion. This valuable tool for

model selection based on Bayes’ criterion is implemented as proposed by Malinverno

(2000). The criterion helps rank the different layered configurations, the prior standard

deviations of Vs (σ_vspr), and the prior correlations (given by Zband), favoring the case

that fits the data well enough with the simplest possible model.

6.2 Bayesian model selection applied to SASW

The application of Bayesian parameter estimation and model selection is described in

detail by Malinverno (2000) and the basic concepts used herein are summarized in this

section. The Bayesian approach recognizes that the solution to the inverse problem

involves uncertainty, which is quantified with a probability density function (pdf).

Additionally, choosing a specific parameterization (i.e., a specific layered configuration)

is like making an assumption a priori, and a probability for each parameterization can be
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calculated to assist on the model selection process. The probabilities related to the

solution and to the parameterizations depend on prior information P which is assumed

true.

In general, the inverse problem is of the form vrex=r(vs)+e, where vrex is the vector of

experimental data,  vs is the vector of model parameters which are unknown, e is the

vector of measurement errors, and r(…) is the forward relationship that theoretically

relates the parameters and the data.  For parameter estimation the basic formula is Bayes’

rule:

( ) ( ) ( )
( )Pp

PpPp
Pp

ex

ex
ex vr

vsvrvs
vrvs

,
, = (eq. 6.1)

where P denotes prior information,

p(vs  vrex, P) is the posterior pdf of vs (the distribution of vs given vrex and P),

p(vs P) is the prior pdf of vs (distribution of vs given P only), and

p(vrex  vs, P) is the likelihood function (the pdf of vrex when the parameter

vector equals vs).

The denominator in Bayes’rule is equivalent to the integral of the numerator, and

therefore it is just a normalizing factor.
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Bayes’ rule for parameter estimation is presented to introduce the Bayesian approach,

which was used in this study for model selection. The results for parameter estimation

presented and used in Chapter 4, were obtained using the formulation presented by

Tarantola (1987) and described as the maximum likelihood method. It is important to

note that this formulation could also be derived from Bayes' rule (Duijndam, 1988a and

b).

For model selection, a pdf is formed with the posterior probabilities of K

parameterization hypotheses H(k) and written using Bayes’ rule:

( ) ( ) ( )
( )Pp

PkHpPkHp
PkHp

ex

ex
ex vr

vr
vr

),()(
,)( = (eq. 6.2)

This equation shows that the posterior probability of the kth parameterization

p(H(k)vrex, P) is proportional to its prior probability p(H(k)P) times its evidence

p(vrexH(k), P), since the denominator is just a normalizing factor. The evidence gives

the probability of observing the data vrex when the parameterization is H(k), thus it plays

the same role in model selection as the likelihood function in parameter estimation.

Assuming that the parameterizations (e.g., different layered profiles) being compared are

all equally probable a priori, they can be ranked by computing their evidences.
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For a non-linear relationship between model parameters and data and where the prior and

posterior pdf’s are not Gaussian, the evidence used for model selection can be

approximated to the one for the linear Gaussian case (Malinverno, 2000):

( )[ ] ( ) ( )PkHkpPkHkpkkE fexff
N p ),(),(),()()(_2)( 2

1
vsvrvsvsC •= π

(eq. 6.3)

where for the kth parameterization

E(k) is the evidence,

Np is the total number of parameters,

C_vsf (k) is the posterior covariance matrix,

vsf (k) is the posterior mean (i.e., the value of vs obtained through the inversion

process),

p(vsf (k)H(k), P) is the prior pdf evaluated at the posterior mean (the prior pdf is

the distribution of vs based on prior information only, but here the

parameterization H(k) is explicitly shown as prior information),and

p(vrex vsf (k), H(k), P) is the likelihood function (the pdf of vrex when the

parameter vector equals the posterior mean).

As shown above, the evidence is composed of two terms: the Ockham factor and the

likelihood. The first term favors models with fewer free parameters and the latter favors

models that fit the data better. The Ockham factor will generally decrease as the

parameterization has more free parameters, the likelihood will increase as the data is

Ockham Factor Likelihood



196

better fitted, and the combination of the two, the evidence, will present a peak for the

simplest parameterization that is complex enough to fit the data appropriately. Thus, this

criterion evaluates which model is more appropriate to fit the data well enough with the

simplest possible parameterization. If the model was more complex than needed, the

solution could present elements that are not really supported by the data. To be able to

implement the Bayesian criterion for model selection, the inversion results have to be

obtained using a method such as the maximum likelihood, which includes prior

information on the uncertainties of the parameters and the data.

The evidence can be calculated with the equation above using the following expressions

for the prior pdf and the likelihood (see Appendix A Malinverno (2000) and p.30 Menke

(1989)):

( )
( )

( ) ( )



 −−−•= −

−

prfpr
T

prfN

pr
f kkPkHkp

p
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vsC
vs )(_)(

2
1
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2

_
),()( 1

2

2
1

π

(eq.6.4)

where vspr is the prior mean (i.e., the initial value of vs, before the inversion), and

C_vspr is the prior covariance matrix of vs.

( )
( )

( ) ( )



 −−−•= −

−

))((_))((
2
1

exp
2

_
),(),( 1

2

2
1

krkrPkHkp fex
T

fexNfex d
vsvrvrCvsvr

vrC
vsvr

π

(eq.6.5)
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where r(vsf (k)) is the predicted data vector (theoretically calculated at vsf),

C_vr is the prior covariance matrix of the measurement errors (e= vrex-r(vs)), and

Nd is the number of data points.

Thus the expression for the evidence can be written as:

LikelihoodFactorOckhamEvidence •= _ (eq. 6.6(a))

( ) ( )
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 −−−= −
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2
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2
1

2
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(eq. 6.6(b))
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2
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2π

(eq.6.6(c))

Note that the likelihood also compares theoretical and experimental dispersion curves

like the rms does. Since the differences between experimental and theoretical data are

used in the likelihood as a negative value for the exponential, the better the match, the

higher the likelihood. This is different to the rms error, which is lower for better matches.

This approach can also be used to rank other prior information. In this case the

parameterization used would be part of the prior information assumed to be true. For
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example, to rank the prior standard deviations of Vs (σ_vspr) with the evidence, H(k)

would represent the hypotheses for σ_vspr, and the parameterization would be considered

part of the prior information P. The evidence can be used to rank a number of σ_vspr, as

long as the assumption is that all the hypotheses are equally probable a priori.

As noted by Malinverno (2000), the evidence can be normalized by dividing it by a factor

equal to the sum of all evidences. Thus, to compare parameterizations (i.e., layered

configurations) the normalizing factor is the sum of evidences of all different

parameterizations for the same σ_vspr and same Zband. In the same way, to compare

σ_vspr the normalizing factor is the sum of evidences of all different σ_vspr for the same

parameterization (i.e., same layered profile) and same Zband. Equivalently, to compare

Zband the normalizing factor is the sum of evidences of all different Zband for the same

parameterization and same σ_vspr.

6. 3 Results and Comments

6.3.1 Selection of the layered profile

The Bayesian criterion was used to calculate the Ockham factor, the likelihood, and the

evidence for the results obtained in the synthetic cases ND1 and ND2, using frequency

distributions f1 and f4, respectively (see Figures 4.10 and 4.11 in Chapter 4). Figure 6.1

presents these results with the evidence for each profile normalized by dividing it by the

sum of all evidences for fixed prior assumptions of σ_vspr and Zband.
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Figure 6.1(a) Ockham factor, likelihood, and normalized evidence
to choose best layers for case ND1
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Figure 6.1(b) Ockham factor, likelihood, and normalized evidence
to choose best layers for case ND2
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Table 6.1(a) Profiles that present evidence peaks for the different initial conditions
in case ND1

Table 6.1(b) Profiles that present evidence peaks for the different initial conditions
in case ND2

σσ_vspr Zband 1st peak 2nd peak 3rd peak

30 5 24 27 26

60 5 24 27 6

120 5 27 24 5

240 5 24 27 38

120 1 24 27 5

120 10 24 27 6

120 15 27 24 6

profiles with evidence peaks (case ND1)                                           
for different initial conditions of σσ_vspr and Zband

σσ_vspr Zband 1st peak 2nd peak 3rd peak

30 5 21 25 22

60 5 22 21 25

120 5 22 25 31

240 5 28 25 -

120 1 28 25 -

120 10 21 31 22

120 15 28 26 37

profiles with evidence peaks (case ND2)                                           
for different initial conditions of σσ_vspr and Zband
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Figure 6.2(a) Layers of real profile and of profiles chosen based on evidence for case
ND1

Figure 6.2(b) Layers of real profile and of profiles chosen based on evidence for case
ND2
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Based on figure 6.1, table 6.1 shows which profiles present evidence peaks for the

different initial conditions of σ_vspr and Zband. To help interpret these results, figure 6.2

presents the layered configurations for the profiles that obtained the highest evidence

values. These configurations were introduced in Chapter 4 and are repeated here for

easier reference. All other profiles are presented in Chapter 4 in figures 4.2, 4.3, 4.4, 4.5,

4.8, and 4.9.

In table 6.1(a), the list of the peaks for case ND1 shows that the profile with the most top

peaks (“1 st peaks” in the table) is profile 24. Thus, for this synthetic case the evidence

helps choose the actual configuration of the real profile (Figure 6.2(a)). As discussed in

Chapter 5, for a real case it would be advised to choose a depth to half space of around 50

meters based on the half-space sensitivity to the maximum wavelength. This is because in

a real case the experimental data should not be used to resolve highly the half-space since

it is an unrealistic layer. However, for the synthetic example all layered configurations

introduced previously were evaluated and the evidence was highest for the simplest

configuration that presented a satisfactory fit to the data, which is the result wanted.

The second profile that presents high evidence values for case ND1 is number 27 as

noted in Table 6.1(a). This profile is the simplest one after profile 24, and also includes

layers appropriate to represent the real profile (Figure 6.2(a)). Additionally, among the

50-meters deep profiles (31 to 38) the profile with the highest evidence was profile 38,

which is the simplest one of these that could represent the true profile, and among the 30-

meters deep profiles (1 to 15) profile 6 had the highest-evidence, which is the most



204

appropriate of these to represent the true profile (Figure 6.2(a)). This example shows how

the model selection based on the Bayesian criterion is a valuable tool to analyze the

inversion results obtained for SASW. As described previously, the Ockham factor favors

hypotheses with fewer free parameters and the likelihood favors hypotheses that fit the

data better. The evidence combines the Ockham factor and the likelihood and is greatest

for the simplest model that produces a satisfactory fit to the data.

It can be noted that in Figure 6.1(a) the evidence peaks obtained for case ND1 are

basically the same peaks observed for the Ockham factor, consequently favoring simpler

profiles. Thus, the likelihood did not have an important influence in this case, which

makes sense because the matches between experimental and theoretical dispersion curves

were all satisfactory with low rms errors (all errors were under 0.75, for all cases except

for profiles 1 to 4)

In table 6.1(b), the list of the peaks for case ND2 shows that the profile with the most top

peaks (“1 st peaks” in the table) is profile 28, with 3 peaks. However, this profile is closely

followed by profiles 21 and 22 with 2 top peaks each. Also it is noted that profile 25 has

4 secondary peaks. Thus, for this synthetic case the evidence does not choose the actual

configuration of the real profile (Figure 6.2(b)).

It can be noted that in Figure 6.1(b) the evidence peaks obtained for case ND2 are

basically the same peaks observed for the likelihood. Thus, in this case, the profiles

favored by the evidence are not necessarily the simpler ones, but the ones with theoretical
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dispersion curves that present better matches to the experimental dispersion curve. It is

reasonable that the likelihood has an important influence in this case because the matches

between experimental and theoretical dispersion curves were variable, with rms errors

between 0.32 and 3.3 (for all cases except for profiles 39 and 41). This range of values is

significantly larger than the range of values for case ND1, which means that in case ND2

there is more difference in the goodness of the fit among different profiles.

The fact that the selection of the profile is influenced by the fit to the experimental data is

an important characteristic of the Bayesian approach. Note that other tools used to

compare different layered configurations in Chapter 5, such as the diagonal of the

resolution matrix and the partial derivatives, do not take into account the goodness of the

fit. Figure 6.3 presents the rms errors obtained for the profiles with high evidence values

in case ND2, and for the layered configuration of the real profile (i.e., profile 29). Note

that for profile 29 the rms is around 2.0 for all cases of σ_vspr and Zband, and that

considerably better rms values are obtained for the other profiles, since for each of the

other profiles at least three cases of σ_vspr and Zband result in rms values below 1.0. Thus,

profile 29 could not be chosen by the evidence due to the higher rms values that are

related to it. These results emphasize the difficulties in finding the actual profile, since

the configuration matching the layers of the real profile in this perfect synthetic example

converged to Vs values that resulted in higher rms errors.
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Figure 6.3 RMS errors for profiles with high evidence and for layered configuration
of the real profile, for case ND2
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6.3.2 Selection of the prior standard deviations of Vs

Other than evaluating which profile contains the best set of layers, the evidence can help

choose prior information such as the Vs standard deviations. Figure 6.4 presents how the

prior standard deviations (σ_vspr) affect the values of the Ockham factor, the likelihood,

and the evidence. In this case, the evidence is normalized by dividing it by the sum of all

evidences for a fixed set of layers and a fixed Zband (this was done for all layered

configurations introduced in Chapter 4). The number of top peaks obtained for each case

of σ_vspr is summarized in table 6.2.

For case ND1 in figure 6.4 (a), it can be noted that as σ_vspr increases the Ockham factor

decreases and the likelihood increases. The Ockham factor decreases because a larger

σ_vspr constrains less the solution, and results in final values that depart more from the

initial ones, which produces a lower Ockham factor. The reason is that if two profiles are

equally good to fit the data, the one that departs less from what is expected a priori is

preferred, and this is reflected with a higher Ockham factor for the profile with the

posterior pdf more similar to the prior pdf. Additionally, for case ND1, a larger σ_vspr

constrains less the solution and results in a better fit, which is reflected in a higher

likelihood.
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Figure 6.4(a) Ockham factor, likelihood, and normalized evidence
to choose best σσ_vspr for case ND1
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Figure 6.4(b) Ockham factor, likelihood, and normalized evidence
to choose best σσ_vspr for case ND2
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Table 6.2(a) Total number of evidence peaks for each case of σσ_vspr , case ND1

Table 6.2(b) Total number of evidence peaks for each case of σσ_vspr , case ND2

σσ_vspr total # of peaks

30 0
60 16

120 21
240 2

CASE ND1,  ΖΖband=5m

σσ_vspr total # of peaks

30 0
60 5

120 7
240 7

CASE ND2,  ΖΖband=5m
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The plot of the evidence in figure 6.4(a) shows that the highest evidence values are found

for σ_vspr values of 60 and 120m/s and that the evidence does not favor very low (30m/s)

or very high (240m/s) uncertainty values. As noted in Table 6.2(a), 60 m/s presented 16

peaks and 120 m/s presented 21 peaks. Thus, a σ_vspr of 120m/s is preferred in most

cases. Additionally, looking at the preferred layered configurations, 24 and 27, it is noted

that for these configurations the preferred value is 120m/s.

The trends observed in case ND1 for the Ockham factor and the likelihood do not occur

for case ND2. This is due to the inversion results varying significantly from case to case,

which is reflected in the larger range of rms errors obtained. This means that for this case

a lower σ_vspr does not necessarily result in a profile closer to what was expected a priori

and a larger σ_vspr does not necessarily result in a better fit. For example, in Figure 6.3, it

can be noted that for profiles 21 and 22 the rms errors are above 3.0 for the largest σ_vspr

(i.e., 240m/s), which is significantly higher than the rms for lower values of σ_vspr

utilized with the same Zband (i.e., 5m). However, for profile 28 the rms error found using

the largest σ_vspr is below 0.5 and very close to the lowest rms for that profile.

 Consequently, for case ND2 (figure 6.4(b)), there are no clear trends for the change in

Ockham factor and likelihood caused by a change in σ_vspr. Note that the values of

σ_vspr that present top values for the evidence are almost the same ones that present top

values for the likelihood. Thus, the fit has a more significant influence than the simplicity

of the profile and its closeness to the prior assumptions. As shown in table 6.2(b), most

peaks are obtained for the higher values of σ_vspr (i.e., 120 and 240m/s). This makes
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sense since for case ND2 the real profile has a higher Vs contrast among layers, and

consequently needs more flexibility to vary from the initial Vs values than for case ND1

(the initial Vs values come from a smooth initial Vs profile obtained with the empirical

estimated based on the dispersion curve).

The evidence peaks for the preferred layered configurations show that for profile 28 the

preferred value for σ_vspr is 240m/s, for profile 22 the preferred value is 120m/s, and for

profile 21 the preferred value is 60m/s. As mentioned before, this method helps choose

among values that are considered equally probable a priori. Thus, if there is data other

than the dispersion curve available to help constrain the problem, the prior standard

deviations of Vs should reflect the actual level of confidence in the prior Vs values.

6.3.3 Selection of the prior correlations of Vs

The evidence can also help choose prior information such as the Vs correlations given by

Zband (as described in Chapter 4). Figure 6.5 presents how the prior correlations (given by

Zband) affect the values of the Ockham factor, the likelihood, and the evidence. In this

case, the evidence is normalized by dividing it by the sum of all evidences for a fixed set

of layers and a fixed σ_vspr (this was done for all layered configurations introduced in

Chapter 4). The number of top peaks obtained for each case of Zband is summarized in

table 6.3.
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Figure 6.5(a) Ockham factor, likelihood, and normalized evidence
to choose best Zband for case ND1
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Figure 6.5(b) Ockham factor, likelihood, and normalized evidence
to choose best Zband for case ND2
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Table 6.3(a) Total number of evidence peaks for each case of Zband , case ND1

Table 6.3(b) Total number of evidence peaks for each case of Zband , case ND2

Zband total # of peaks

1 2
5 8
10 6
15 3

CASE ND2,  σσ_vspr=120m/s

Zband total # of peaks

1 1
5 2
10 4
15 32

CASE ND1,  σσ_vspr=120m/s
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For case ND1, in figure 6.5(a), it can be noted that as Zband increases the Ockham factor

increases and the likelihood decreases.  Thus, the tendencies are the opposite than for

σ_vspr (figure 6.4(a)), which makes sense because a higher correlation (higher Zband)

constrains more the solution as a lower σ_vspr does, and a lower correlation (lower Zband)

lets the solution vary more and thus go farther from what is expected a priori as a higher

σ_vspr does. The plot of the evidence in figure 6.5(a) shows that the highest evidence

values are found for a Zband value of 15m and that the evidence does not favor low

correlation values. As noted in Table 6.3(a), a Zband of 15m presented 32 peaks out of 39

cases. Thus, a Zband of 15m is preferred in most cases, including the preferred layered

configurations, 24 and 27.

The trends observed in case ND1 for the Ockham factor and the likelihood do not occur

for case ND2. As mentioned in the previous section, this is due to the inversion results

varying significantly from case to case. Thus for this case a higher correlation does not

necessarily result in a profile closer to what was expected a priori and a lower correlation

does not necessarily result in a better fit. For example, in Figure 6.3, it can be noted that

for profiles 21 and 22 the rms errors are above 2.5 for the lowest Zband (i.e., 1m), which is

significantly higher than the rms for higher values of Zband utilized with the same

σ_vspr(i.e., 120m/s). However, for profile 28 the rms error found using the lowest Zband is

below 0.5 and the lowest for that profile.

As shown in table 6.3(b), most peaks are obtained for the middle values, with 8 peaks for

a Zband of 5m and 6 peaks for a Zband of 10m. This makes sense since for case ND2 the
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real profile has a higher Vs contrast among layers, and needs more flexibility (i.e., given

by lower correlations among layers, which allow higher contrast among layers) to vary

from the initial Vs values than for case ND1.The evidence peaks for the preferred layered

configurations show that for profile 28 the preferred value for Zband is even lower

(i.e.,1m), and for profiles 21 and 22 the preferred value is 5m.

6.3.4 Selected models

Based on the results obtained for the evidence, the best model for case ND1 is profile 24

with prior standard deviations for Vs of 120m/s and prior correlations given by a Zband of

15m. The inversion results obtained for this case are presented in Figure 6.6(a).

Additionally, this figure presents the inversion results for the other model that obtained

high evidence values. This model corresponds to profile 27 with prior standard deviations

for Vs of 120m/s and prior correlations given by a Zband of 15m. The Vs values and

standard deviations shown in figure 6.6(a) correspond to coefficients of variability (i.e.,

σ_vs/vs) below 20%. These values are lower than the values estimated based on the

results obtained for case ND1 with the Monte Carlo algorithm as described in Chapter 3.

This is reasonable since a higher rms criterion results in a higher range of Vs profiles and

consequently in larger coefficients of variability (the values for the coefficients of

variability in Chapter 3 were based on 85 Vs profiles with rms errors between 0.68 and

1.5, which are higher values than the rms values of 0.342 and 0.357 shown in figure

6.6(a)).
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Figure 6.6(a) Inversion results for profiles 24 and 27 (σσ_vspr =120m/s, Zband=15m)
for case ND1
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Figure 6.6(b) Inversion results for profile 28 (σσ_vspr =240m/s, Zband=5m
and σσ_vspr =120m/s, Zband=1m) for case ND2
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Figure 6.6(c) Inversion results for profiles 21 (σσ_vspr =60m/s, Zband=5m)
and 22 (σσ_vspr =120m/s, Zband=5m) for case ND2
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For case ND2, the best model based on evidence is profile 28. The preferred prior

standard deviations of Vs for this profile were 240m/s, accompanied by a Zband of 5m.

The preferred prior correlations for this profile corresponded to a Zband of 1m,

accompanied by a σ_vspr of 120m/s. Among these two cases, the first one is selected

because it has a higher normalized evidence in Figure 6.1(b) than the second (i.e., highest

normalized evidence for the selection of the layered configuration). Additionally, a Zband

of 5m was selected for most cases in case ND2. The inversion results obtained for both of

these cases are presented in Figure 6.6(b).

Additionally, figure 6.6(c) presents the inversion results for the other models that

obtained high evidence values. These are profiles 21 and 22, the first with prior standard

deviations for Vs of 60m/s, the second with prior standard deviations for Vs of 120m/s,

and both with prior correlations given by a Zband of 5m. Note that the results obtained for

case ND1 in figure 6.6(a) are much closer to the real profile than the results obtained for

case ND2 in figures 6.6(b) and 6.6(c). This emphasizes that the inversion algorithm had a

harder time solving the Vs values for the case with a higher Vs contrast.

It is relevant to note that the case that combines the selected prior values of

σ_vspr=240m/s and Zband=1m for profile 28 in case ND2 was not evaluated when looking

at the evidence, and results in a higher rms error than the two combinations selected by

the evidence:

RMS error=1.27 for σ_vspr=240m/s and Zband=1m,

RMS error =0.39 for σ_vspr=240m/s and Zband=5m, and
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RMS error =0.32 for σ_vspr=120m/s and Zband=1m.

Thus, the selection of prior standard deviations and correlations for Vs is inevitably

related, and for a real case it is suggested that all combinations of the values assumed for

comparison are evaluated and ranked with the evidence.

6.4 Conclusions

The numerical examples presented in Chapter 4 were employed in this chapter to

implement the Bayesian criterion to compare different parameterizations (i.e., layered

configurations) and prior information (i.e., standard deviations and correlations of Vs),

and select among them. This is accomplished by calculating the evidence, which

combines the Ockham factor and the likelihood. The first favors simpler models, and the

second favors hypotheses that fit the data better. Thus, the evidence helps find the

simplest model that satisfactorily fits the data.

In case ND1, the Ockham factor had an important influence on the evidence and the

simplest profiles had the highest values. This was due to the fact that most inversion

results presented similarly good fits for the dispersion curves with rms values below 0.75.

Consequently, the selected profile for this case was the layered configuration with the

exact layers of the real profile. In case ND2, the likelihood controlled which profiles had

the highest evidence values and the profiles that presented dispersion curves with better

fits to the experimental data were preferred. This was due to the fact that the inversion
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results did not have similar fits to the data, with the range of rms values going from 0.32

to 3.3. Thus, the configuration chosen was one with low rms error.

Additionally, the evidence was used to evaluate the assumed prior standard deviations of

Vs. For ND1 the preferred values were in the middle of the range used (60 and 120m/s),

and for ND2 the preferred values were to the higher end of the range used (120 and 240

m/s). This is reasonable, since the profile with a higher Vs contrast (ND2) needs more

flexibility (i.e., given by higher initial uncertainties) to vary from the initial guess.

Equivalently, the evidence was used to evaluate the assumed prior correlations of Vs. For

ND1 the preferred value was for the highest correlations used (Zband=15 m), and for ND2

the preferred values were towards the middle of the range used (Zband=5 and 10 m).

Again, it is reasonable that the profile with a higher Vs contrast (ND2) needs more

flexibility (i.e., given by lower correlations) to vary from the initial guess.

The simplest way to compare the inversion results is by looking at the rms error.

However, when there are a large number of cases that fit the data satisfactorily under a

specified rms criterion (i.e., rms<1.0) the selection of the best case is not obvious.

Choosing the lowest rms of all may not be appropriate since it may imply choosing a

model that includes characteristics that are not necessary to fit the data. The two cases

presented showed the two significant sides of the Bayesian approach, since in one case

the selection was controlled by the Ockham factor choosing the simplest model among

similar fits and in the other case the selection was controlled by the goodness of the fit.

Based on these results, the Bayesian model selection was shown to be a valuable method,
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that has the ability to select the simplest profile that produces a good fit to the data. Other

tools that help compare the inversion results such as the resolution matrix and the partial

derivatives used in Chapter 5, do not take into account a good fit to the data.

Additionally, these tools help compare different layered configurations but do not help

compare among different assumptions of the prior standard deviations and correlations of

Vs.
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CHAPTER 7

EVALUATION OF INVERSION PROCEDURE WITH REAL DATA

7.1 Introduction

The methods employed with the simulated data in Chapters 4, 5, and 6 are applied in this

chapter to SASW real experimental data. The experimental data used was obtained at

Shelby Forest (Memphis, Tennessee) in July 2000, and more details about this site may

be found in Hebeler (2001). This site has the advantage that there is additional shear

wave velocity data available from other in situ tests. However, it is important to clarify

that this data is not used herein as additional data before performing the inversion, but as

data available to compare the type of results that may be obtained from SASW tests.

The steps of the inversion procedure for SASW based on the maximum likelihood

method and complemented with model selection tools are utilized for this real

experimental case. Thus, the inversion is a complete process that includes from the

preparation of the data necessary for the inversion algorithm to the final selection and

presentation of the Vs profile. The use of diverse tools to choose the information required

for the inversion is very valuable to decrease the subjectivity of this process.
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7.2 Experimental Dispersion Data

7.2.1 Number and Distribution of Points Describing the Experimental

Dispersion Data

The decisions made during the field test, such as sensor setup and source will affect the

information obtained in the experimental dispersion curve. Details on all the aspects

involved in obtaining an accurate and representative dispersion curve can be found in

Hebeler (2001), where the experimental results from 11 field tests performed in

Memphis, Tennessee, during the summer of 2000 are presented. One of these field tests

was performed in Shelby Forest and is the real experimental data employed here to

evaluate the inversion method and tools presented. There were 15 sensors used during the

field test, which were located at distances from the active source of: 8, 10, 12, 15, 18, 22,

28, 34, 42, 50, 60, 70, 80, 95, 110 ft (i.e., 2.4 3.0 3.7 4.6 5.5 6.7 8.5 10.4 12.8 15.2 18.3

21.3 24.4 29.0 33.5m). The active source was harmonic and the 60 individual frequencies

used were: 4.375, 5.000, 5.625, …, 15.000, 16.250, 17.500, …, 35.000, 37.500, 40.000,

…,60.000 Hz, and can be observed in Figure 7.1 together with the experimental

dispersion curve obtained for this field test.
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Figure 7.1 Experimental dispersion curve for Shelby Forest, Memphis, Tennessee
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From this dispersion curve the wavelength distribution is calculated (wavelength=phase

velocity/frequency) and also plotted in Figure 7.1. As discussed in Chapter 5, it can be

considered that a layer was not sampled by wavelengths shorter than the depth to the top

of the layer. Thus, based on the wavelengths obtained, it can be noted that out of 60

wavelengths only 20 sampled soils below 10 meters depth, only 10 sampled soils below

20 meters depth, and only 5 sampled soils below 30 meters depth. Thus, one would

expect the deeper layers to have a lower resolution since there is less experimental

information for them. Accordingly, it makes sense to have thicker layers with depth to

reflect the decrease in resolution, and to choose the layers of the profile based on the

wavelengths that sampled the soil as done in section 7.3.1.

Figure 7.2 shows a reduced experimental dispersion curve for Shelby Forest, with 36

instead of 60 dispersion points. As suggested in Chapter 5, some of the dispersion points

are deleted to reduce the difference in information content among layers. Note that the 24

points deleted correspond to high frequencies and short wavelengths (i.e., the lowest

frequency of the dispersion points deleted was 23.75 Hz and the longest wavelength was

7.13 meters). The dispersion curve represented by the 60 points obtained at the field is

still used here to obtain the main inversion results, and the reduced curve with 36 points

is used for comparison purposes only.
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Figure 7.2 Reduced dispersion curve for Shelby Forest (36 points instead of 60)
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7.2.2 Uncertainties Related to the Experimental Dispersion Data

As discussed in Chapter 5, the uncertainties related to the experimental data have an

effect on the value of the rms error, and on the results obtained from the inversion. A

dispersion curve with more uncertainty does not constrain the solution as much, and

consequently, there are a larger number of Vs profiles that satisfy a particular rms

criterion (say rms<1.0). In Chapter 3 it was noted that Vr uncertainties of 3% of the

experimental phase velocities are considered reasonable for SASW tests, and this is the

value used herein.

7.3 Prior Information

7.3.1 Depth and Thicknesses of the Layers

As suggested in Chapter 5, one way to evaluate a good relation between the thickness and

depth of the layers of a profile and the number and distribution of the dispersion points is

by counting the number of waves that sampled the soil with depth. In this case the number

and distribution of the dispersion points is given by the field test (Figure 7.1), and the

profiles chosen are presented in Figure 7.3. The depth to Half-Space was chosen such that

3 out of 60 waves sample soils in it (i.e., actually the number of waves is close to 2 waves

since one of them has a wavelength of 40.2m and the half-space starts at 40m). This depth

was chosen to have some data define the half-space but most data used for solving layers
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on top of the half-space. A depth to half-space of 40 meters corresponds to ¾ of the

maximum wavelength measured (52 meters), and is later evaluated by looking at the half-

space sensitivity to the maximum wavelength as discussed in Chapter 5.

In Figure 7.3, it can be noted that the thickness of the layers increases with depth. The

only exception is from the top layer to the next one in profile r2. This was done to have a

top layer with a thickness that is not less than the minimum wavelength (1.31 m in this

case) as recommended by Joh (1996). Additionally, this follows the recommendation

from Chapter 5, which suggests that the number of waves sampling a layer should reduce

with depth without having consecutive layers sampled by the same number of waves. The

second layer may be thinner than the first since there are a good number of waves that

sampled it.

Figure 7.4 shows the number of waves that sampled each layer for these profiles. In this

figure, it can be noted that the difference in the number of waves that sampled two

contiguous layers is at least two. This was done on purpose, choosing profiles with an

increase in thickness with depth that was enough to have at least a difference of two

waves from one layer to the next. It is inevitable to have more waves test the top layers

and consequently a better resolution for those. Thus, it is reasonable to have an increase in

thickness, which helps reduce the difference in information available for the diverse

layers.
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Figure 7.3 Layered profiles chosen to be used for the inversion analysis
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Figure 7.4  Number of surface waves that tested each layer

0000 10101010 20202020 30303030 40404040 50505050 606060600000

10101010

20202020

30303030

40404040

Total number of waves affecting layer, real caseTotal number of waves affecting layer, real caseTotal number of waves affecting layer, real caseTotal number of waves affecting layer, real case
D

ep
th

 o
f t

he
 to

p 
of

 th
e 

la
ye

r (
m

)
D

ep
th

 o
f t

he
 to

p 
of

 th
e 

la
ye

r (
m

)
D

ep
th

 o
f t

he
 to

p 
of

 th
e 

la
ye

r (
m

)
D

ep
th

 o
f t

he
 to

p 
of

 th
e 

la
ye

r (
m

)

profile r1profile r1profile r1profile r1

0000 10101010 20202020 30303030 40404040 50505050 606060600000

10101010

20202020

30303030

40404040

Total number of waves affecting layer, real caseTotal number of waves affecting layer, real caseTotal number of waves affecting layer, real caseTotal number of waves affecting layer, real case

D
ep

th
 o

f t
he

 to
p 

of
 th

e 
la

ye
r (

m
)

D
ep

th
 o

f t
he

 to
p 

of
 th

e 
la

ye
r (

m
)

D
ep

th
 o

f t
he

 to
p 

of
 th

e 
la

ye
r (

m
)

D
ep

th
 o

f t
he

 to
p 

of
 th

e 
la

ye
r (

m
)

profile r2profile r2profile r2profile r2



234

Figure 7.5  Number of surface waves that tested each layer when using the reduced
dispersion curve
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Figure 7.5 shows the number of waves that sampled each layer for the case of the reduced

experimental curve presented in Figure 7.2. This plot reflects that the number of waves

testing the layers varied only for the very top layers, reducing the difference in

information available for the top layers and for the bottom layers. For profile r2, some of

the top layers have now a difference of only one wave between contiguous layers, which

still agrees with the suggestion of not having consecutive layers sampled by the same

number of waves.

7.3.2 Initial Shear Wave Velocities

Since the maximum likelihood method requires a starting point that is not too far from

the solution to the problem to guarantee convergence, a good approach is to obtain an

empirical estimate of the shear wave velocities as discussed in Chapter 4. To obtain this

estimate, Vr is multiplied by a factor of 1.1 to obtain Vs and an equivalent depth (z) is

found by multiplying the wavelength (λ, where λ=Vr/f) by a scaling factor. Since the best

scaling factor to find z depends on the variation of the shear modulus with depth (see

Chapter 2), the approach proposed in Chapter 4 is to try a number of scaling factors (0.2,

0.25, 0.3…, 0.8) and choose the one that results in the V s profile with the theoretical

dispersion curve closest to the experimental dispersion curve (i.e., with the lowest rms).

The details on how this empirical estimate is done can be found in Chapter 4.
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For the profiles introduced in Figure 7.3, the initial Vs values found were based on a

scaling factor of 0.25, which was the one that resulted in the best fit of the dispersion

data. The empirical estimate of the variation of Vs with depth and the Vs profiles based on

this empirical estimate are presented in Figure 7.6. The Poisson’s ratio and the unit

weight of the soil used to describe the Vs profiles were 0.4 and 1.8 g/cm3, respectively,

assuming dense sands. As mentioned in previous chapters, these assumptions have an

insignificant effect on the inversion process and the derived shear wave velocity profile.

7.3.3 Uncertainties related to the Initial Shear Wave Velocities

The prior covariance matrix includes prior standard deviations (σ_vspr) and correlations

(given by Zband). In Chapter 4, it is described how the covariance matrix is obtained, and

the same steps are followed here. The prior standard deviation is taken as a constant value

(i.e., equal for all layers) and 5 different cases are looked at: 30, 60, 120, 180, and

240m/s. The correlations among layers are based on Zband values as described in Chapter

4. The Zband value is taken as constant for each case and also five cases are proposed: 1, 5,

10, 15, and 20m.

These suggested values are a starting point and are evaluated employing the Bayesian

approach as described in Chapter 5 and used in this chapter. If for the case at hand an

extreme value is preferred another value may be tried. For instance, if a standard

deviation of 240m/s is chosen it may be appropriate to try a higher value. Additionally, if
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the best prior standard deviations for Vs are 60 and 120m/s, a reasonable option is to run

the inversion for an intermediate value such as 90 m/s to compare the results.

7.4 Inversion and Evaluation of Results

7.4.1 Inversion Results

The maximum likelihood method as described in Chapter 4 was used to perform the

inversion of the experimental dispersion curve and obtain potential shear wave velocity

profiles with theoretical dispersion curves that match the Shelby Forest experimental

dispersion curve. The theoretical dispersion curves were found using the effective

dispersion curve given by the forward algorithm presented by Lai and Rix (1998). This

curve includes the effect of all modes of propagation. For the synthetic examples in

previous chapters only the fundamental mode was used. However, for a real case it is

more appropriate to take into account the effect of all modes on the dispersion curve,

since these may have an important influence in the dispersion data as discussed in

Chapter 2.

Figure 7.7 shows 50 Vs profiles obtained for 50 different initial models that correspond

to: (i) two different sets of layers (profiles r1 and r2); (ii) five different cases of prior

standard deviation (σ_vspr of 30, 60, 120, 180, and 240m/s); and (iii) five different cases

of prior correlation (Zband of 1, 5, 10, 15, and 20m).
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Figure 7.6  Empirical estimate of the Vs variation with depth  and initial Vs profiles
based on this estimate
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Figure 7.7  Fifty final shear wave velocity profiles obtained from inversion

00 2020 4040 6060 8080 100100

120120

140140

160160

180180

200200

220220

240240

Frequency (Hz)Frequency (Hz)

P
ha

se
 V

el
oc

ity
 (m

/s
)

P
ha

se
 V

el
oc

ity
 (m

/s
)

full "experimental" dispersion curve (60 points)full "experimental" dispersion curve (60 points)
theoretical dispersion curves                   theoretical dispersion curves                   

100100 200200 300300 400400 50050000

1010

2020

3030

4040

Shear Wave Velocity (m/s)Shear Wave Velocity (m/s)

D
ep

th
 (m

)
D

ep
th

 (m
)

50 theoretical profiles50 theoretical profiles



240

For profile r1 the average time to perform the inversion for each case of initial conditions

was 46 minutes in a Pentium II - 500 MHz processor. Thus, the 25 cases took around 19

hours to run. For profile r2 the average time to perform the inversion for each case of

initial conditions was 94 minutes and running the 25 cases took around 39 hours.

Like in Chapter 4, the purpose of showing all the final Vs profiles in the same plot is to

have an overview of the range of Vs values caused by the variation of the initial model,

noting that the maximum likelihood method converged to a different Vs profile for each

different initial model.  The rms values of all profiles shown in Figure 7.7 vary between

0.29 and 1.21, with most profiles having an rms value below 1. As noted in Chapter 4, the

range of Vs profiles illustrates that many different profiles can match the experimental

dispersion curve with a low rms. Thus, it is the information added a priori, that helps find

a single answer (i.e., a single answer is obtained for a specific set of values given to the

prior information).

In Chapter 5, it was shown that the prior standard deviations and correlations have an

influence on the standard deviatons (σ_vs) of the estimated Vs profiles. Figure 7.8

presents the inversion results obtained for profile r2 for 3 different cases of σ_vspr and

Zband as an example of the effect of these prior assumptions on the inversion results. This

figure shows that σ_vspr has a stronger influence on the final estimated standard

deviations than Zband. Figure 7.9 presents the ratio of the estimated standard deviations to

the prior assumption. This figure shows that Zband also has a significant effect.
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Figure 7.8  Example of the effect of prior standard deviations and correlations on
the standard deviations of the final Vs profile
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Figure 7.9  Example of the effect of prior standard deviations and correlations on
the standard deviation ratio σσ_vs/σσ_vspr
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In figure 7.9, note that for σ_vspr=30m/s the change of Zband from 1m to 20m (i.e., the

increase in the correlation values) results in a different trend for the change of

σ_vs/σ_vspr with depth. The top layer and the half-space have similar values, but the

variation of σ_vs/σ_vspr is smooth for the highly correlated layers, which makes these

values lower for most layers. Note also that for Zband=1m the change in σ_vspr from 30 to

240m/s results in a decrease of σ_vs/σ_vspr for all layers. In this case, the trend of the

change of σ_vs/σ_vspr with depth is similar, but presents lower values for the higher

σ_vspr. This shows that for the higher σ_vspr, which gives more flexibility to the profile,

the final standard deviation were significantly higher but represented a smaller ratio of the

prior assumed value. This example shows the importance of the prior assumptions which

would preferably be defined based on available data for the site. When no data is

available, the Bayesian criterion implemented in the next section helps choose the values

that present the simplest model with a satisfactory fit to the data.

Figure 7.10 presents the rms values for the profiles in Figure 7.7. This figure shows that

the rms varies with the prior standard deviation and with the prior correlation. The higher

the standard deviation the lower the rms, and the lower the correlation the lower the rms.

Thus, the initial conditions that gave more flexibility to the problem (with higher prior

standard deviation and lower correlation among layers) resulted in lower error values.

Another fact that can be observed in Figure 7.10 is that for profile r2 the rms values are

lower than for profile r1. This profile produced only rms values below 1, and only 7

values out of 25 above 0.6, whether for the profile r1 all rms values were above 0.6. Thus,

profile r2 converged to Vs configurations that produce better fits for the dispersion data.
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Figure 7.10  RMS error of the 50 profiles obtained from inversion
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7.4.2 Bayesian Model selection

As done in Chapter 6, the Bayesian criterion was used to calculate the Ockham factor, the

likelihood, and the evidence. Figure 7.11 presents these results with the evidence for each

profile normalized by dividing it by the sum of evidences for fixed prior assumptions of

σ_vspr and Zband. As described previously, the Ockham factor favors simplicity and the

likelihood favors better fits. The evidence combines the Ockham factor and the likelihood

and should be greatest when the data is fitted satisfactorily with the simplest profile.

Note that the Ockham factor is lower for higher σ_vspr (better seen in Figures 7.12 and

7.13), which agrees with the fact that in general the higher the σ_vspr the less simple the

profile. For Zband the trend of the Ockham factor is variable depending on the value of

σ_vspr (better seen in Figures 7.12 and 7.13). For this real experimental case, the

differences in the Ockham factor were not significant compared to the differences in

likelihood (Figure 7.11), due to the better fit in the dispersion curves produced for the Vs

profiles found with the layered configuration presented by profile r2. Consequently, the

profile with the highest evidence is profile r2 (Figure 7.11), which in this case is the one

that has more layers (i.e., 16 layers, compared to 10 layers for profile r1).
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Figure 7.11  Ockham factor, likelihood, and evidence to choose the best profile
The convention for initial conditions is:

the first letter is for sigma (σ_vspr) with a=30,b=60,c=120,d=180, and e=240 m/s
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Figure 7.12(a)  Ockham factor, likelihood, and evidence to choose the best Zband
(i.e., correlation) for profile r1
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Figure 7.12(b)  Ockham factor, likelihood, and evidence to choose the best Zband
(i.e., correlation) for profile r2
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Figure 7.13(a) Ockham factor, likelihood, and evidence to choose
the best prior standard deviation for profile r1
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Figure 7.13(b) Ockham factor, likelihood, and evidence to choose
the best prior standard deviation for profile r2
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Figure 7.12 shows the Ockham factor, the likelihood and the resulting normalized

evidence for each case to compare the values of Zband. In this case, the evidence is

normalized by dividing it by all evidences for a fixed profile and a fixed σ_vspr. For all

cases the lowest Zband value of 1 meter is preferred based on evidence. This value is the

one that gives the least correlation and practically no correlation at all, since a Zband of

1meter implies insignificant correlation for layers that have its centers distanced more

than 1 meter, which is the case for most layers of the profiles presented.

Figure 7.13 shows the Ockham factor, the likelihood and the resulting normalized

evidence for each case to compare the values of σ_vspr. In this case, the evidence is

normalized by dividing it by all evidences for a fixed profile and a fixed Zband. It can be

noted that the preferred σ_vspr varies with Zband, with a general trend of a higher σ_vspr

preferred for a higher Zband. This means that for a higher correlation, which constrains

more the solution, it is better to choose a higher uncertainty, which helps give more

flexibility to the solution. Table 7.1 summarizes the results of Figures 7.12 and 7.13.

Since the Zband chosen was clearly 1m, the best σ_vspr is chosen for this value. Thus, the

σ_vspr chosen is 60m/s for both profiles.

The Vs profile chosen for layered configuration r2 with Zband of 1m and σ_vspr of 60m/s is

one of the cases with very low rms but not the lowest (Figure 7.10). As said before, the

likelihood favors better fits and the Ockham factor favors simplicity, which makes the

Bayesian approach more complete to chose the best model than just looking at the rms

(i.e., the fit). The resulting Vs profiles for the initial conditions of σ_vspr and Zband chosen
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are presented in Figure 7.14. As concluded previously, from these two profiles the chosen

by the Bayesian model selection is r2.

For the reduced dispersion curve (Figure 7.2) the resulting Vs profiles for r1 and r2 with

the initial conditions of σ_vspr =60m/s and Zband =1m are shown in figure 7.15. The

differences in Vs between the resulting Vs profiles when using the reduced dispersion

curve and when using all the data are presented in Table 7.2. For profile r1, the

differences for all layers are below 8% of Vs. For profile r2, all layers present difference

of 2% of Vs or less except the second layer, which presents a difference of 6% of Vs. This

shows that deleting 24 points out of 60 may be feasible. Additionally, it may help in

speedness and a larger number of layered models and/or initial conditions may be tried.

7.4.3 Resolution of Model Parameters

In Chapter 5, the diagonal of the resolution matrix was shown to be a valuable tool to

look at the relative thicknesses of the layers of a profile. Figure 7.16 shows the diagonal

of the resolution matrix for the initial conditions of σ_vspr =60m/s and Zband =1m, chosen

with the Bayesian criterion in the previous section (profiles shown in Figure 7.14).  The

resolutions for most layers of profile r1 are higher and decrease with depth with fewer

jumps than for profile r2.
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Table 7.1(a) Evidence results to select σσ_vspr and Zband for profile r1

PROFILE R1
σσ_vspr Zband with highest

evidence
30 1
60 1
120 1
180 1
240 1

Zband σσ_vspr with highest
evidence

1 60
5 120

10 240
15 240
20 240

Table 7.1(b) Evidence results to select σσ_vspr and Zband for profile r2

PROFILE R2
σσ_vspr Zband with highest

evidence
30 1
60 1
120 1
180 1
240 1

Zband σσ_vspr with highest
evidence

1 60
5 60

10 120
15 240
20 180
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Figure 7.14 Shear wave velocity profiles obtained with chosen initial conditions
(σσ_vspr=60m/s, Zband=1m)
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Figure 7.15 Shear wave velocity profiles obtained with chosen initial conditions
(σσ_vspr=60m/s, Zband=1m), when using the reduced dispersion curve
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Table 7.2(a) Differences in Vs for profile r1, caused by a reduction in the number of
points representing the dispersion curve

Top-depth (m) 
PROFILE r1

Vs value for full 
dispersion 

curve

Vs value for 
reduced dispersion 

curve

(Vs(full curve)-Vs(reduced curve))/ 
Vs(full curve) *100%

0 150.8 152.4 -1%
2 268.3 251.5 6%
4 158.4 166.9 -5%
6 297.6 274.2 8%
9 312.6 305.8 2%
12 295.1 300.2 -2%
16 258.2 265.4 -3%
20 243.5 247.4 -2%
25 243.0 244.6 -1%
30 245.2 246.0 0%
40 251.3 251.2 0%
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Table 7.2(b) Differences in Vs for profile r2, caused by a reduction in the number of
points representing the dispersion curve

Top-depth (m) 
PROFILE r2

Vs value for full 
dispersion 

curve

Vs value for 
reduced dispersion 

curve

(Vs(full curve)-Vs(reduced curve))/ 
Vs(full curve) *100%

0 146.8 147.1 0%
1.5 251.5 237.6 6%
2 227.6 227.3 0%

2.5 200.0 204.1 -2%
3 189.3 193.4 -2%
4 197.6 194.1 2%
5 209.3 206.2 1%
6 231.9 230.2 1%
8 276.6 277.8 0%
10 295.7 293.5 1%
12 306.0 305.5 0%
15 286.2 286.5 0%
18 267.3 265.5 1%
21 255.7 256.0 0%
25 249.8 248.5 1%
31 249.3 248.4 0%
40 251.6 251.3 0%



258

Figure 7.16 Diagonal of the resolution matrix for the shear wave velocity profiles
obtained with the chosen initial conditions (σσ_vspr=30m/s, Zband=1m)

Figure 7.17 Diagonal of the resolution matrix for the shear wave velocity profiles
obtained with the chosen initial conditions when using the reduced dispersion curve
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As mentioned in Chapter 5 and suggested by Joh (1996), the most important

characteristics are to have relatively similar resolutions among layers and a half-space

with the lowest resolution value. Both profiles have these characteristics, except for the

top layers with significantly higher resolution values:

♦ For profile r2, except for the top layer which cannot be much thinner due to the

restriction of the minimum wavelength, the values of resolution are between 0.1 and

0.6.

♦ For profile r1 the top 3 layers have resolutions between 0.9 and 1.0 and the rest of the

layers have resolutions between 0.1 and 0.5. Thus, the top layers could be replaced by

thinner layers to decrease the difference in resolution among layers. However, since

r2 is the profile chosen by the Bayesian approach and has a significantly lower rms, in

this case it is not considered necessary to try a new profile based on modifying profile

r1.

Figure 7.17 presents the diagonal of the resolution matrix for the profiles shown in Figure

7.15, which were obtained with the reduced dispersion curve. Comparing this plot with

the plot in Figure 7.16, it is observed that the differences between the diagonal of the

resolution obtained for the case with the reduced dispersion curve and for the case with

the complete dispersion curve are not significant.
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7.4.4 Half-Space Sensitivity to Maximum Wavelength

In Chapter 5, the half-space sensitivity to the maximum wavelength was shown to be a

valuable tool to decide the appropriate depth to the half-space, as suggested by Joh

(1996). In this case, both profiles were chosen with the same depth to half-space and it is

important to check the values of the sensitivities. Figure 7.18 shows that the values of the

half-space sensitivity to maximum wavelength varies slightly with Zband except for the

highest value of Zband, which makes it vary significantly. It can also be noted that the

sensitivity decreases with an increase in σ_vspr. For the profiles chosen the values fall

within a reasonable range except for the highest value of Zband, meeting the “higher than

1%” criterion suggested by Joh (1996).

7.4.5 Final Vs profile obtained and comparison with results from other field tests

The final Vs profile obtained is presented in Figure 7.19. The half-space is not reported

since the surface waves have a limited depth of testing. The layers used are a

discretization of a continuum and are not intended to be defined layer interfaces. Note that

the standard deviation estimated for most layers is relatively high when compared with

the initial assumption of 60m/s.



261

Figure 7.18 Half-space sensitivity to maximum wavelength
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Figure 7.19 Selected final shear wave velocity profile r2
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Figure 7.20 presents the final Vs profile compared with Vs data obtained from other in-

situ tests. The data from these other field tests was taken from Hebeler (2001) and include

data from five SCPT soundings, one seismic refraction/reflection survey, and one

downhole measurement. The agreement of the SASW profile with the values from the

other tests is for the most part good. The most significant difference between the SASW

profile presented and the data from the other tests is the high velocity layer at around 20

meters depth. The chosen profile for SASW does not include such high velocities.

This is due to the reasoning that without data from other field tests or any previous

information on a site (which was the assumption here to estimate the Vs profile), it is not

appropriate to report a profile with high velocity contrasts, when these contrasts are not

required to fit the experimental data appropriately. For this reason the Bayesian criterion

is utilized to choose the Vs profile, because it chooses the simplest one that fits the data

satisfactorily. Thus, if there is data available the prior information could be based on these

data to constrain the problem, but if the SASW tests are performed to find new data, it

does not make sense to choose a profile with strong features that are not needed to fit the

data. Doing this might give the false impression that these features are defined by the

SASW experimental data when they are not.
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Figure 7.20 Selected final shear wave velocity profile r2 compared to
data from other in-situ tests
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Figure 7.21 Mean shear wave velocity profile r2 compared to data from other in-situ
tests, (mean based on results for 25 cases, corresponding to five σσ_vspr and five

Zband)
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As mentioned before, there are many profiles that may fit the dispersion data under a

specified rms criterion. Looking at the whole range of SASW profiles presented for the 50

initial models (Figure 7.7), there are Vs profiles with higher velocities than the chosen Vs

profile. This whole set of profiles gives the idea of a higher velocity zone between 10 and

20 meters, with some profiles having Vs values up to 400 and 450 m/s, which are

comparable to the velocities found with other tests. The mean profile of the 25 cases

presented for r2 is shown in Figure 7.21. Note that this mean profile goes to higher

velocities than the selected profile at around 15m depth, but it still does note include the

high velocities given by other tests at around 20m depth.

7.5 Conclusions

The methods for inversion and selection of prior information presented in previous

chapters were successfully used in this Chapter with real experimental data obtained in

Shelby Forest (Memphis, Tennessee).

Based on the synthetic examples from previous chapters and on the real example from

this chapter it is clear that trends and best values for prior information vary.

Consequently, it is not possible to have recommended values that work for all cases.

However, the tools that may be used to choose these values can be recommended. In this

way, the prior information is not selected in a purely empirical way, but with a

methodology such as the Bayesian approach, which helps choose appropriate values for
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each specific case. This approach becomes more practical as trying more cases of layered

profiles, standard deviations, and correlations becomes easier and less time consuming

day by day with the use of faster computers.

As noted in this chapter and in previous ones, a large number of Vs profiles may fit the

experimental data satisfactorily. For this reason, it is clear that SASW is not the

appropriate method to find specific velocity contrasts between layers. Localized features

of a velocity profile are better found with localized tests such as SCPT and Downhole

methods. However, SASW can give a fast estimate of the values of shear wave velocities

present at a site, and tests larger volumes of soils than localized methods.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

This research focused on the inversion of SASW dispersion curves to obtain shear wave

velocity profiles. It is common to present the inverted Vs profile as a unique profile

without showing a range of possible solutions or some type of error bars, such as the

standard deviations of the Vs values of each layer.  Additionally, the person performing

the inversion usually assumes the prior information required to constrain the problem

based on his or her own judgment. Implementing an inversion method that includes

estimates of the standard deviations of the Vs profile and finding tools to choose the prior

information objectively were the main purposes of this research.

To perform SASW inversion, one global and one local search procedures were presented

and employed with synthetic data: a pure Monte Carlo method and the maximum

likelihood method. The synthetic data was produced with the same forward algorithm

used during inversion. This implies that all uncertainties are caused by the nature of the

SASW inversion problem alone since there are no uncertainties added by experimental

errors in data collection, analysis of the data to create the dispersion curve, layered model

to represent a real 3-D soil stratification, or wave propagation theory.
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The pure Monte Carlo method was chosen to study the non-uniqueness of the problem by

looking at a range of acceptable solutions (i.e., Vs profiles) obtained with as few

constraints as possible. It is important to note that this method requires large amounts of

time to obtain Vs profiles with low rms error. Based on the variety of shapes found for Vs

profiles with satisfactory rms, the non-uniqueness of SASW inversion was evident,

concluding that the dispersion curve does not constrain the solution sufficiently to

determine a unique Vs profile or to resolve specific velocity contrasts between layers.

Consequently, if the best fitting profile is reported, it may mislead the user of the Vs

profile to believe in specific Vs contrasts that are unnecessary to fit the experimental data.

Thus, in examining the entire set of satisfactory profiles, it was of interest to determine if

the Vs values of each layer were normally distributed and if the mean and the standard

deviation were valid parameters to characterize all satisfactory Vs profiles that meet the

chosen rms error criterion. This was confirmed by plotting the data in normal probability

plots. For this reason, the mean and standard deviation were chosen to present the range

of solutions obtained with Monte Carlo inversion, and the use of a least-squares method

such as the maximum likelihood was considered appropriate.

The estimated coefficients of variation for the profiles with rms<1.5 for the most

constraining Vs limits  were between 20% and 30%, except for the very top layers, where

lower values were obtained. These uncertainties are the ones caused by the nature of the

SASW inversion problem alone.
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The maximum likelihood method was also chosen because it is a statistical approach,

which enables one to estimate the uncertainties of the resulting model parameters and to

apply the Bayesian criterion as a model selection tool. Two synthetic examples were

implemented for several frequency distributions of the dispersion data, different initial

models obtained by varying the number and thicknesses of the layers, and different

values of the standard deviations and correlations of the shear wave velocities. The

results obtained showed that the inversion converged to different estimates of the Vs

profile for different initial models, and that a close match to the experimental dispersion

curve can be obtained with a large number of Vs profiles. For this reason, it is important

to recognize that the dispersion curve does not have the information to resolve individual

layers and the solution is highly dependent on the prior information added to constrain it.

Consequently, it is of interest to identify objective techniques to choose this prior

information, and the final layered Vs profile should be interpreted as a discrete model,

which is one possible representation of the real Vs variation with depth and should

include uncertainties for the estimated Vs values.

Based on the results from the maximum likelihood method, the effect of a number of

factors that influence the resulting Vs profile obtained from the inversion of SASW data

was studied. These factors can be divided in two main types: (i) characteristics related to

the experimental dispersion curve and (ii) characteristics related to the initial shear wave

velocity profile. Since assigning these characteristics is required to perform the inversion,

it is necessary to find ways to select them objectively. A summary of the reasons for the
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effects of these factors and some guidance on how to most appropriately select their

values is presented below.

(i) Characteristics related to the experimental dispersion curve

♦ number and distribution of data points describing the experimental

dispersion curve

The points describing the dispersion curve represent the frequencies measured in

the field, and give information on the wavelengths of the surface waves that

sampled the soils. It can be considered that a layer was not sampled by

wavelengths shorter that the depth to the top of the layer. Counting the number of

waves that sampled each layer gives an idea of the amount of experimental

information available for each layer and emphasizes the difference in information

content among layers. Part of the difference is inevitable due to the nature of the

problem, since a long wavelength that penetrates a deep layer also has significant

particle motion in all layers above it.

It is recommended to examine the dispersion data in the wavelength domain and

to select a distribution that does not weight some wavelength ranges excessively

compared to others. The best option would be to calculate the dispersion curve

during the field test and use it as a reference to acquire additional experimental

data for the wavelengths needed. Having a distribution that weights more
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similarly different wavelengths ranges is important not only to have similar

amounts of information for different depths as noted above, but also because the

rms error weights equally all dispersion points used to represent the dispersion

curve. This means that wavelengths ranges represented by a large number of

dispersion points are weighted more heavily in the error calculation than

wavelength ranges represented by only a few points. This is an important issue

because the effect of the distribution of the points on the value of the rms error

may be significant and this error is a measure of the goodness of a Vs profile.

♦ uncertainties of the experimental dispersion data

The uncertainties assigned to the experimental data affect the results obtained

from the inversion because the larger the uncertainties, the less the dispersion

curve constrains the solution. Thus, it is important to have a realistic estimate of

the uncertainties of the phase velocity. Conversely, if the uncertainties of Vr are

too small, they might constrain the problem too much, increasing the rms error

values and making it difficult to find a Vs profile with a satisfactory rms error. As

discussed in Chapter 3, based on experimental data presented by Tuomi and

Hiltunen (1997), Vr uncertainties of 3% of the experimental phase velocities are

considered reasonable for SASW tests.
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(ii) Characteristics related to the initial shear wave velocity profile

First, it is important to clarify that the values related to the shear wave velocity

profile (i.e., thicknesses and depths of the layers, depth to half-space, initial Vs

values, and prior standard deviations and correlations for Vs) should be based as

much as possible on independent data available for the site. If there are different

values for the prior information that need to be compared, it is assumed that all

cases presented are equally probable, and the main purpose is to select the

simplest Vs profile that includes an estimate of the standard deviations of Vs, and

presents a satisfactory fit to the experimental data. Additionally, the suggestions

given below have the purpose of producing a Vs profile with characteristics that

reduce the difference in information content between layers and result in more

similar resolutions for all layers.

♦ depths and thicknesses of the layers

Depending on its thickness and depth, a layer will be sampled differently by the

surface waves measured during the field test. Thus, the number of waves that

sample a layer depend on both its thickness and depth and the distribution and

number of points that represent the dispersion curve. For a specific set of

experimental data the layers may be chosen in such a way that the difference in

information available for the different layers is reduced. It is recommended that
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the number of waves sampling the layers should reduce with depth without having

consecutive layers sampled by the same number of waves.

Since the information content necessarily decreases with depth, the deeper the

layer the less information there is on it and the more difficult it is to resolve its Vs

value. A lower resolution is reflected in a higher coefficient of variation. It was

noted that the coefficient of variation decreases with the thickness to depth ratio

multiplied by the number of waves sampling the layer. Thus, increasing the

thickness of a layer at a specified depth or increasing the number of waves

sampling the layer may help resolve the layer better and reduce its uncertainty.

For the cases presented, the plots show that the coefficient of variation is limited

to below 25% for thickness to depth ratio multiplied by the number of waves

sampling the layer of at least 8.

As suggested by Joh (1996), the diagonal of the resolution matrix may be used to

compare the resolution of the layers and vary their thicknesses (i.e., increase the

thickness to increase resolution, or decrease the thickness to decrease resolution).

He suggests that the thickness of the layers increases with depth to reflect the

decrease in resolution with depth and that the layers selected result in a resolution

variation with depth that minimizes the difference in resolution among layers as

much as possible.
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It is recommended that different profiles that comply with the above suggestions

be compared with the Bayesian criterion for model selection. The Bayesian

criterion is a valuable tool to compare and choose among different layered

configurations. This criterion ranks the configuration giving preference to the

simplest profile with a satisfactory match to the experimental dispersion data.

♦ Depth to half-space

The half-space should be sampled at least by one of the waves measured in the

field and contained in the experimental dispersion data. Thus the depth to half-

space should be less than than the maximum wavelength. Additionally, since the

half-space continues to an infinite depth and the information available is for a

limited depth, this unrealistic layer should have the lowest resolution of all and

should not be included in the reported Vs profile. Other than having the lowest

resolution, the half-space sensitivity to the maximum wavelength may be used to

check the appropriateness of the depth to the half-space. This sensitivity should

not be extremely low because this would mean that the half-space is not well

defined by the experimental data. Based on the fact that the sensitivity represents

the change in Vr that would occur with a change in Vs, Joh (1996) proposes to use

a minimum value criterion of 1% (or another value considered reasonable) for the

half-space sensitivity to the maximum wavelength. This criterion could be

complemented by a maximum value such as 10% (or another value considered

reasonable) The sensitivity should not be too high to avoid having the half-space
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control the solution (i.e., a very shallow half-space might affect significantly the

phase velocities of the wavelengths that penetrate the layers adjacent to the half-

space, and their shear wave velocities might not be resolved properly).

♦ initial shear wave velocities

The initial estimate of the shear wave velocity profile is important due to the

nonlinear nature of the problem because the inversion algorithm, which is an

iterative process based on gradient methods, requires a good intial estimate to

converge properly. Consequently, if the initial shear wave velocities are far from

the actual, (but unkown) values, the algorithm may not converge to a desirable

solution. For the maximum likelihood method, simple initial estimates with

constant initial Vs values resulted in the algorithm converging to final Vs profiles

with high rms values for the cases presented. Thus, it is suggested to employ

initial Vs estimates based on the empirical method, which help the algorithm

converge to reasonable solutions to the inversion.

♦ standard deviations and correlations of the shear wave velocities

It was shown that the prior standard deviations (σ_vspr) and correlations (given by

Zband) assigned to Vs have a significant influence on the range of final Vs profiles

obtained and on the standard deviations of the estimated Vs values. A lower

σ_vspr and a higher Zband (i.e., which favors smoother profiles) constrain more the
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solution, resulting in a smaller range of Vs values for different layered profiles and

in smaller estimated standard deviations for Vs. A higher σ_vspr and a lower Zband

give more flexibility to the solution, resulting in a larger range of Vs values, and

in larger estimated standard deviations for Vs. The estimated standard deviations

for shallow layers are not affected by their value prior to inversion, but for the

deeper layers the standard deviations of the solution approach this initial guess. It

is relevant to note that if the final estimated uncertainty is the same as the prior

assumption there was no information in the inversion process that helped reduce

the prior uncertainties.

Since this prior information required to constrain the solution to the inverse

problem affects the resulting Vs profile, it is important to have a tool that helps

choose this information. The Bayesian criterion is a valuable tool to compare and

choose among different values for the prior standard deviations and correlations

given to Vs. This criterion ranks the prior information giving preference to the

prior values that result in the simplest profile that presents a satisfactory fit to the

data. Thus, the Bayesian criterion should be implemented to compare different

parameterizations (i.e., layered configurations) and prior information (i.e.,

standard deviations and correlations of Vs), that are considered equally probable

and select among them. The model selection is accomplished by calculating the

evidence, which combines the Ockham factor and the likelihood. The first favors

simpler models, and the second favors hypotheses that fit the data better. Thus, the

evidence helps find the simplest model that satisfactorily fits the data.
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The Bayesian criterion was used for the synthetic results obtained with the maximum

likelihood method and was shown to be a valuable tool to compare different

parameterizations (i.e., layered configurations) and prior information (i.e., standard

deviations and correlations of Vs), and select among them. This was accomplished by

calculating the evidence, which combines the Ockham factor and the likelihood. The first

favors simpler models, and the second favors hypotheses that fit the data better.

The maximum likelihood method of inversion was also used with real experimental data

obtained in Shelby Forest (Memphis, Tennessee). Initially, the distribution of the

dispersion data was used to select two layered configurations for the real case by

examining the number of waves that sampled each layer. Then, the Bayesian criterion was

succesfully used to select the simplest profile that presented a satisfactory fit to the data

among 50 cases corresponding to two layered configurations, five values of prior Vs

standard deviations, and five values of prior correlations for Vs. This was complemented

with the comparison of the resolution of the layers, and the half space sensitivity to the

maximum wavelength, which were appropriate for the selected case.

Based on the synthetic and the real examples, it was clear that trends and best values for

prior information vary. Consequently, it is not possible to have recommended values that

work for all cases. However, the tools that may be used to choose these values can be

recommended. In this way, the prior information is not selected in a purely empirical way,

but is chosen with a methodology such as the Bayesian approach, which helps choose
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appropriate values for each specific case. This approach becomes more practical as trying

more cases of layered profiles, standard deviations, and correlations becomes easier and

less time consuming with the use of faster computers.

In summary, the common and simple way to compare the inversion results is by looking

at the rms error. However, when there are a large number of cases that fit the data

satisfactorily under a specified rms criterion (i.e., rms<1.0), the selection of the best

profile is not obvious. Choosing the lowest rms value may not be appropriate because it

may imply choosing a model that includes characteristics that are not necessary to fit the

data. The Bayesian model selection was shown to be a valuable method that has the

ability to select the simplest profile that produces a good fit to the data. This is based on

the concept that the model used to represent the Vs variation with depth should not

include features that are not necessary to fit the data. Other tools that help compare the

inversion results such as the resolution matrix and the partial derivatives do not take into

account the simplicity of the profile or the fit to the data. These tools are appropriate to

compare different layered configurations but do not help compare among different

assumptions of the prior standard deviations and correlations of Vs. Thus, the layered

configurations may be chosen using the criteria mentioned for information content, for

the resolution of the layers, and for the sensitivity of the half-space to the maximum

wavelength, and the configurations that meet these criteria may be compared with the

Bayesian approach. Additionally, this criterion will help compare among the prior

standard deviations and correlations for Vs.
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Finally, it is essential to remember that a large number of Vs profiles may fit the

experimental data satisfactorily. For this reason, it is clear that SASW is not the

appropriate method to find specific velocity contrasts between layers. However, SASW is

able to produce data that gives an estimate of the range of Vs values for the soils tested.

The advantage of surface wave test is that it can be performed in a short period of time

due to its non-invasive nature, tests larger volumes of soils than localized methods, and

gives reasonable estimates of the shear wave velocities. However, if localized features of

the Vs profiles are needed, localized tests such as SCPT and Downhole methods are more

suited for those tasks.

8.2 Recommendations

For the synthetic examples and the real case presented it was shown how the reduction in

the number of points that represent the dispersion curve is a viable option that does not

necessarily decrease the accuracy of the inversion results obtained. Representing the

dispersion relation with fewer points may reduce the time required by the inversion due to

the smaller matrix of partial derivatives to be calculated in each iteration. The time

savings can be significant especially when evaluating different parameterizations and

prior information. Thus, it is recommended that future work should study this issue in

more detail to implement a method that would help select the points used to represent the

dispersion curve in order to optimize their distribution with as few points as possible.
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The points that represent the dispersion characteristics of a site needs to be selected

carefully to have: (i) sufficient data to include all important features of the dispersion

curve, and (ii) a good balance of information content to resolve the Vs of the layers based

on similar amounts of information and have a fairly weighted rms error that gives a good

measure of the fit between theoretical and experimental data. The suggestion given here

to compare the information content of different layers was based on counting the number

of waves that sampled each layer. For future work, it is recommended to calculate the

dispersion curve in the field and compare the information content for different

wavelength ranges to determine if additional dispersion data should be obtained at the

field. This becomes feasible with the increasing speed of computers and the reduction in

processing times and would be an excellent way of adding dispersion data to assure a

better distribution of information content throughout the entire profile.

Based on the large amount of Vs profiles that were found to fit a dispersion curve

satisfactorily, the non-uniqueness of the solution was evident, which emphasizes the

importance of finding other ways to constrain the solution. It would be very valuable to

obtain data during the SASW field test to better constrain the problem. For instance,

Tokimatsu (1997) suggests the use of measurements for the horizontal displacements in

addition to the measurement of the vertical displacements.

For the Monte Carlo method implemented in this research, the limits established for Vs

constrain the range of results obtained. Unfortunately, it was very difficult to explore a

sufficient number of possibilities with the flexibility given by the widest limits due to
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time constraints. The wider the Vs limits the higher the number of trials required to

appropriately explore the model space and the longer the amount of time and computer

resources necessary. In the best case scenario (i.e., most constraining Vs limits) it took

twenty five 24-hour days to generate only 14 profiles with rms<1 with a Pentium II

500MHz processor. Due to the rapid improvement in computers, the processing time will

be reduced in the future. Consequently, it is recommended to use a Monte Carlo type

method as a viable inversion procedure, performing a thorough search of a sufficiently

large model space. The implementation and use of a global search procedure would be of

interest since the search for the minimum error would look for the global minimum and

not for a local one.

An important next step in this research is to implement a user-friendly program. This

program should include the entire inversion process from the initial estimate of the Vs

profile to the use of model selection tools to compare various values for the prior

information and select among them. The program should include options to help assume

and compare prior information. When the final Vs profile is reported, it is important to be

aware of the non-uniqueness of the solution by including error bars for the Vs values (i.e.,

such as the standard deviations presented here). It is also recommended to include the

Bayesian criterion to select the simplest profile that fits the data satisfactorily, since

reporting features that are not necessary to fit the data gives the false impression that

these features are determined by the experimental data when they are not. The Vs profile

reported is should be considered to be one possible representation of the real Vs variation

with depth.
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