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ṁ Mass Flow Rate

n Number Density of Molecules

Ma Marangoni Number

n Unit Normal Vector

Pe Thermal Peclet Number

Pem Mass Peclet Number

Pr Prandtl Number

p Pressure

pc Capillary Pressure

po Pressure Offset

pcr Critical Pressure

Qa Heat Flow Rate due to Advection

Qc Heat Flow Rate due to Thermal Conduction

Qp Heat Flow Rate due to Phase Change

Q̇ Volumetric Flow Rate

q Heat Flux

q̇ Heat Source

q (Complex) Wavenumber

R Universal Gas Constant

xiii



R̄ Specific Gas Constant

Ra Rayleigh Number

Re Reynolds Number

r11, r12, r21, r22 Dimensionless Resistivities used in the

Non-Equilibrium Thermodynamics (NET) Model

t Time

T Temperature

T0 Ambient Temperature

∆T Applied Temperature Difference

δT Temperature Variation about the Average Value

T Time Period of the Periodic Flow

τ Unit Tangent Vector

u Velocity

ut Thermal Velocity

V Volume

We Weber Number

x, y, z Coordinate Axes

Superscript

0 Reference Value

Subscript

L “Laboratory” Value

l Liquid Phase

g Gas Phase

d Dominant Component

r Dilute Component

xiv



v Vapor Component

a Air Component

i Liquid-Gas Interface

s Saturation

n Normal Component

c Cold End

h Hot End

min Minimum Value

max Maximum Value

xv



SUMMARY

Convection in a layer of fluid with a free surface due to a combination of thermo-

capillary stresses and buoyancy is a classic problem of fluid mechanics. It has attracted

increasing attentions recently due to its relevance for two-phase cooling. Many of the mod-

ern thermal management technologies exploit the large latent heats associated with phase

change at the interface of volatile liquids, allowing compact devices to handle very high

heat fluxes. To enhance phase change, such cooling devices usually employ a sealed cavity

from which almost all noncondensable gases, such as air, have been evacuated. Heating

one end of the cavity, and cooling the other, establishes a horizontal temperature gradient

that drives the flow of the coolant. Although such flows have been studied extensively at

atmospheric conditions, our fundamental understanding of the heat and mass transport for

volatile fluids at reduced pressures remains limited.

A comprehensive and quantitative numerical model of two-phase buoyancy-thermoca-

pillary convection of confined volatile fluids subject to a horizontal temperature gradient

has been developed, implemented, and validated against experiments as a part of this thesis

research. Unlike previous simplified models used in the field, this new model incorporates

a complete description of the momentum, mass, and heat transport in both the liquid and

the gas phase, as well as phase change across the entire liquid-gas interface.

Numerical simulations were used to improve our fundamental understanding of the im-

portance of various physical effects (buoyancy, thermocapillary stresses, wetting properties

of the liquid, etc.) on confined two-phase flows. In particular, the effect of noncondens-

ables (air) was investigated by varying their average concentration from that corresponding

to ambient conditions to zero, in which case the gas phase becomes a pure vapor. It was

found that the composition of the gas phase has a crucial impact on heat and mass transport

as well as on the flow stability.

A simplified theoretical description of the flow and its stability was developed and used

xvi



to explain many features of the numerical solutions and experimental observations that

were not well understood previously. In particular, an analytical solution for the base re-

turn flow in the liquid layer was extended to the gas phase, justifying the previous ad-hoc

assumption of the linear interfacial temperature profile. Linear stability analysis of this

two-layer solution was also performed. It was found that as the concentration of noncon-

densables decreases, the instability responsible for the emergence of a convective pattern is

delayed, which is mainly due to the enhancement of phase change.

Finally, a simplified transport model was developed for heat pipes with wicks or mi-

crochannels that gives a closed-form analytical prediction for the heat transfer coefficient

and the optimal size of the pores of the wick (or the width of the microchannels).
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Convection in a layer of fluid with a free surface due to an external horizontal tempera-

ture gradient is a classic problem of fluid mechanics. Much of the early interest in this

problem was driven by applications to crystal growth in microgravity environments, with

the focus on liquid metals (which have low Prandtl numbers, typically Prl < 0.05), where

evaporation is negligible, buoyancy plays no role, and the flow is driven primarily by ther-

mocapillarity.

More recently the motivation for further studies of this problem has shifted due to the

increased demands on various cooling technologies. Thermal management is a major issue

for a wide range of applications. Many of the modern cooling technologies exploit the large

latent heats associated with phase change at the free surface of volatile liquids, allowing

compact devices to handle very high heat fluxes. Such cooling devices typically use a

sealed cavity with inner walls coated by a liquid film coexisting with a mixture of its own

vapor and noncondensable gases, such as air. When one end of the cavity is heated, and

the other end is cooled, phase change is expected to occur across the interface, absorbing

the heat at the hot end and releasing the heat at the cold end. Although capillarity and

thermocapillary stresses always play a role, under terrestrial conditions, buoyancy also

becomes an important driving force. Hence, the focus of the studies has shifted to flows

driven by a combined action of capillary pressure, thermocapillary stresses, and buoyancy

with phase change playing an increasingly important role.

A fundamental understanding of heat and mass flow in confined two-phase buoyancy-

thermocapillary convection is therefore essential for improving two-phase cooling technol-

ogy. In general, a complete description of a two-phase cooling device involves four basic

components: (1) the fluid flow and the heat transport in the liquid phase, (2) the fluid flow
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and the heat transport in the gas phase, (3) the dynamics at the interface between the two

phases (e.g. the heat and mass transport across the interface), and (4) the heat conduction

within the solid walls of the device. These four transport problems are coupled with each

other and therefore should be solved simultaneously. For instance, the fluid flow and heat

transport in the liquid and in the gas are coupled through the boundary conditions at the

liquid-gas interface.

Noncondensable gases (such as air) are well known to degrade the thermal performance

of two-phase cooling devices, which rely primarily on latent heat associated with phase

change. This degradation is due to the noncondensable gases impeding phase change, and

condensation especially, as the vapor has to diffuse through the noncondensable gases. In

practice, completely removing the noncondensables from a sealed device is impractical,

since air tends to dissolve in liquids and be adsorbed into solids, hence the liquid film

almost always remains in contact with a mixture of its own vapor and some air.

However, the fundamental understanding of confined two-phase flows with varying lev-

els for noncondensable gases is currently incomplete. The majority of experimental studies

of buoyancy thermocapillary convection has been performed at ambient (atmospheric) pres-

sure in which case the gas phase is mostly air with a small admixture of vapor. There are

almost no experimental studies at reduced pressures when the vapor dominates. One ex-

ception is a recent experimental study by Li et al. [1] which showed that noncondensables

can play an important and nontrivial role and that the results in one limit (e.g. when the

gas phase is dominated by noncondensables) cannot be simply extrapolated to the opposite

limit (e.g., when the vapor dominates).

Theoretical studies, on the other hand, tend to use a lot of assumptions, often with

little justification, to simplify the problem. For example, most of them are based on one-

sided models, where only the liquid phase is described in detail, while the gas phase is

considered indirectly through the boundary conditions at the interface. Moreover, phase

change is typically treated in a rather crude manner. The fundamental studies of convection
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tend to ignore phase change entirely. The applied studies of two-phase cooling typically

divide a device into three sections: “evaporator”, “condenser,” and “adiabatic region” in

between [2, 3]. The evaporator and condenser are not modeled in detail; in the adiabatic

region phase change is ignored, and the vapor flux is simply related to the applied heat flux.

Although models based on such partitioning have been used extensively in the engineering

literature, few if any studies have been carried out to check whether it is justified or attempt

to correlate the transport processes in the three regions.

1.2 Previous Studies

In order to identify the key open questions and define the scope of the present thesis, below

we provide a review of the present state of knowledge in the field.

1.2.1 Buoyancy-Thermocapillary Convection

The first systematic study of nonvolatile free surface fluid flows driven by a horizontal

temperature gradient is likely due to Birikh [4] who derived an analytical solution for a

planar return flow in a laterally unbounded layer due to both buoyancy and thermocapil-

lary stresses. This solution also describes the flow away from the end walls in a laterally

bounded geometry: the fluid flows from the hot end towards the cold end near the free sur-

face and returns near the bottom. Kirdyashkin [5] repeated (not entirely correctly) Birikh’s

theoretical analysis and validated the analytical solutions experimentally.

Smith and Davis [6, 7] performed a linear stability analysis of such flows in the limit

of zero dynamic Bond number, BoD = 0 (i.e., ignoring buoyancy effects). They predicted

that, depending on the Prandtl number of the liquid, the base state characterized by a re-

turn flow would undergo an instability towards either surface waves (for Prl < 0.15, which

corresponds to liquid metals) or hydrothermal waves (for Prl > 0.15, which corresponds to

gases and nonconducting liquids) above a critical Marangoni number Ma, which charac-

terizes the magnitude of thermocapillary stresses. In particular, hydrothermal waves were
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predicted to form at an angle to the direction of the thermal gradient and travel in the di-

rection of thermal gradient. As Prl increases, the angle changes smoothly from nearly

transverse to nearly parallel to the thermal gradient. The predictions of Smith and Davis

[6,7] have since been thoroughly tested and verified both in microgravity and for thin films

in terrestrial conditions. A thorough overview of these experiments is presented in a review

paper by Schatz and Neitzel [8].

Various other instabilities have been observed at BoD = O(1) (when buoyancy is non-

negligible). Villers and Platten [9] studied buoyancy-thermocapillary convection in a rect-

angular cavity for acetone (Prl = 4.24) experimentally and numerically. Although acetone

is volatile, good agreement was found between the experimental observations at atmo-

spheric conditions and the predictions of a one-sided model that ignored heat and mass

transfer in the gas phase. For low Ma a featureless planar return flow was found, which is

well-described by Birikh’s solution. However, as Ma was increased, instead of hydrother-

mal waves a steady cellular pattern featuring multiple convection rolls emerged. The con-

vection rolls were found to rotate in the same direction, unlike the case of pure buoyancy

(or Rayleigh-Bénard) convection. Moreover, unlike the hydrothermal waves which form

at an angle to the direction of the thermal gradient, the convective pattern featured rolls

aligned in the transverse direction. At even higher Ma the steady state was found to be

replaced by an oscillatory pattern that was also unlike a hydrothermal wave: the convection

rolls were observed to travel in the direction opposite the thermal gradient. Similar results

were obtained later by De Saedeleer et al. [10] for decane (Prl = 15) and Garcimartin

et al. [11] for decane (Prl = 15) and 0.65 cSt and 2.0 cSt silicone oil (Prl = 10 and 30,

respectively) in rectangular cavities with strong confinement in the spanwise direction.

Riley and Neitzel [12] performed one of the most extensive and detailed experimental

studies of convection in a 1 cSt silicone oil with Prl = 13.9 in a rectangular cavity with

a spanwise dimension comparable to the streamwise dimension. They discovered that a

direct transitions from steady, unicellular flow to hydrothermal waves takes place for small
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values of the dynamic Bond number (BoD . 0.2), while for BoD & 0.2 the results are similar

to those of Refs. [9–11]: the featureless return flow first transitions to steady co-rotating

multicells and, upon further increase in Ma, to an oscillatory multicellular pattern. Riley

and Neitzel also determined the critical values of Ma and the wavelength λ of the convective

pattern as a function of BoD. Burguete et. al [13] performed experiments on convection

in a 0.65 cSt silicone oil with Prl = 10.3 in a rectangular cavity with different aspect

ratios where spanwise dimensions were greater than streamwise dimensions. Similarly,

they found that the base return flow destabilizes into either oblique traveling waves or

longitudinal stationary rolls, respectively, for small and large thickness of the liquid layer

(i.e., low and high BoD).

Since it does not account for buoyancy, the linear stability analysis of Smith and Davis

[6, 7] fails to predict the stationary patterns that emerge for BoD = O(1). However, most

of the linear stability analyses accounting for buoyancy also failed to predict the correct

pattern, i.e., stationary (transverse) multicells that were observed in the experiments [9–12].

Using adiabatic boundary conditions at the top and bottom of the liquid layer, Parmentier

et al. [14] predicted transition to traveling waves rather than steady multicellular pattern

for a range of Prl from 0.01 to 10, regardless of the value of BoD. Chan and Chen [15],

who used similar assumptions, also predicted transition to traveling waves for a Prl = 13.9

fluid. Moreover, the predicted critical Ma and wavelength λ do not match the experiment

[12]. In both cases the predicted traveling waves are oblique for smaller BoD and become

transverse for BoD greater than some critical O(1) value.

Mercier and Normand [16] showed that transition to a stationary convective pattern

can take place if the adiabatic boundary conditions are replaced with Newton’s cooling

law, although that requires an unrealistically large surface Biot number (Bi & 185/BoD).

Moreover, the predicted pattern corresponds to longitudinal convection rolls, while in the

experiments [9–12] transverse rolls were observed. In a subsequent paper Mercier and
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Normand [17] considered the effects of the end walls, which they described as spatial dis-

turbances superimposed on the uniform base flow. Their analysis predicted that, depending

upon the Prandtl number, recirculation rolls would develop near the hot end (for Prl > 4),

near the cold end (for Prl < 0.01) or at both end walls (for 0.01 < Prl < 4).

The study by Priede and Gerbeth [18] is the only one to date which correctly predicts

the formation of a stationary pattern at BoD = O(1). They argued that traveling waves run

into one of the lateral end walls and dissipate before they can be sufficiently amplified as a

result of linear instability. At the same time the lateral walls induce stationary disturbances

with relatively large amplitude, which will penetrate into the bulk of the liquid layer as the

zero-frequency mode becomes unstable. The predicted critical values of Ma are also in

reasonable agreement with the threshold values found by Riley and Neitzel [12].

Convective patterns above the threshold of the primary instability have also been stud-

ied using numerical simulations. To date the bulk of these studies [9,19–22] used one-sided

models which ignore the transport in the gas phase, assumed that the temperature gradient

is generated by imposing different temperatures on the two end walls, the free surface is

flat and non-deformable, the bottom wall and the interface are adiabatic, and phase change

is negligible. These numerical simulations were able to reproduce some features of the

experimental studies [9–12]. For example, Villers and Platten [9] found transitions from

the base return flow to steady multicells and to oscillatory multicells as Ma increases for

acetone (Prl = 4.24) when BoD = O(1). Shevtsova et al. [22,23] performed numerical sim-

ulations for decane (Prl = 14.8) in a rectangular layer at different BoD. They found that as

Ma number increases, the primary instability leads to hydrothermal waves for BoD ≤ 0.25,

while for Bo ≥ 0.32 the primary instability produces a steady multicellular flow, and the

secondary instability produces an oscillatory multicellular flow.

Li et al. [24] investigated non-adiabatic effects by using Newton’s cooling law with

a small Biot number. Their numerical simulations ignored phase change but were able to

reproduce many features of the experimental observations at atmospheric conditions. Ji et
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al. [25] considered phase change, but ignored buoyancy, so their analysis is only applicable

for thin films or under microgravity when BoD → 0.

Although buoyancy-thermocapillary convection has been studied extensively, very few

investigations considered the transport in the gas phase and the effect of noncondensables,

both of which could significantly affect the flow and its stability at reduced pressures. Most

of the experimental studies were performed at atmospheric conditions where air dominates.

Similarly, the vast majority of the theoretical studies used one-sided models which com-

pletely ignore the gas phase, and the validity of the other assumptions made in these studies

is questionable. As a result, they fail partially or completely in describing other features

of convective flows, most notably the structure of the boundary layers near the end walls

which defines both the temperature gradient in the bulk and controls the dynamics of oscil-

latory states at higher Ma. Description of these boundary layers requires a detailed model

of transport of heat (and mass) in both the liquid and the gas layer, as well as a proper

description of phase change at their interface.

1.2.2 Modeling of Two-Phase Cooling Devices

The main motivation for this work is provided by applications to thermal management.

Hence, some more applied studies of two-phase flows where phase change plays an im-

portant role are also relevant, and are discussed below. We group different modeling ap-

proaches into two broad classes: One-sided models which do not explicitly treat the bulk

transport of either heat, mass, or momentum in one of the two phases and instead incor-

porate (some or all of) the corresponding fluxes through effective boundary conditions.

Two-sided models, on the other hand, include an explicit description of bulk transport (of

at least one of the three quantities) in both phases.

1.2.2.1 One-Sided Transport Models

Nusselt [26] performed the first theoretical study of film condensation on a vertical plate.

This study is a classical example of one-sided description of a two-phase system (vapor
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and liquid condensate film), where transport in the gas phase is not modeled explicitly and

is incorporated implicitly through the boundary conditions at the interface. Specifically,

Nusselt described the phase change by incorporating the associated mass and heat flux at

the interface into the respective conservation laws inside a control volume. The gas phase

was assumed to be saturated and stagnant, which is not always a good approximation.

Numerous approximations were also made in describing the liquid phase, e.g., the heat was

assumed to be transported via conduction alone.

The Nusselt model was later modified to incorporate the effect of heat advection [27,28]

in the condensate film by empirical modifications of the latent heat. It was also extended

to incorporate the effect of the shear stress at the liquid-vapor interface [29], which could

be important for film condensation under forced convection. Butterworth [30] studied film

condensation in the limit when body forces are negligible compared with the interfacial

shear stresses, and proposed a simple asymptotic expression for the heat transfer coefficient

in the limits when either body forces of shear stresses dominate.

Using the boundary layer analysis, Sparrow and Gregg [31] derived similarity solutions

for the velocity and temperature field of the condensate film on a vertical plate, where both

the heat advection and the inertia were considered. However, the transport in the gas phase

was ignored. In particular, shear stress at the liquid-vapor interface was not considered.

The study was also extended to the film condensation subject to the forced convection [32],

but, the interfacial temperature and the flow speed were simply set to the values in the bulk

of the vapor flow. Koh et al. [33] studied the effect of the interfacial shear stress on laminar

film condensation on a vertical plate by solving the viscous boundary layer equations in

both the liquid and the gas phase. Again, heat and mass transport in the vapor phase were

not considered and the vapor was assumed saturated.

A few recent studies have focused on evaporation, as opposed to condensation. For

instance, Ranjan et al. [34] numerically investigated the evaporating liquid meniscus in

the pores of wicks. At the interface, the shear stresses induced by the vapor flow were
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neglected and phase change was described using Kinetic Theory of Gases. The vapor was

assumed saturated, similar to the studies of condensation, i.e., the heat and mass transport

in the gas phase where prescribed rather than computed.

Nusselt-like models were also applied to describe liquid films within various two-phase

devices. One example is a thermosyphon, which is essentially a gravity-assisted wickless

heat pipe where the flow of the condensate film back to the evaporator is driven primarily

by gravity (cf. Fig. 1). In such a closed system, the vapor flows in the opposite direction

to that of the liquid. Transport is almost universally described using a piecemeal approach,

where the device is partitioned into the “evaporator”, the “condenser” and the “adiabatic

section”. In the “adiabatic section” phase change is typically ignored, while the interfacial

shear stress is described using the friction factor for counterflow of a layer of liquid and

a layer of gas obtained from empirical correlations [36–39]. In the “evaporator” and the

“condenser”, phase change and the associated heat flux are incorporated the same way as in

the Nusselt model [26], while various empirical approaches are used to describe the effect

of phase change on the liquid film flow. Often the interfacial shear stress was computed

by adding the so-called “dynamic shear stress” to the that found in the “adiabatic section”

Figure 1: A schematic for a gravity-assisted wickless two-phase closed thermosyphon. [35]
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[40–43]. Another approach was to multiply the interfacial shear stress in the “adiabatic

section” by a modification factor [44–46]. None of these studies described heat and mass

transport in the gas phase or calculated the shear stress, or the phase change at the liquid-

vapor interface by a physically justified model (e.g., using vapor recoil [47]), which may

explain why the entrainment limit predicted by different studies varies by as much as a

factor of five [48]. Furthermore, even the validity of partitioning thermosyphons and heat

pipes into the three sections is itself highly questionable.

Kafeel and Turan [49] and Fadhl et al. [50] proposed and investigated crude models of

thermosyphons which treat the fluid as a mixture of the liquid and vapor phase, with phase

change occurring in the bulk rather than at a (non-existing) interface.

One-sided models were also used extensively for the studies of micro heat pipes [52]

(cf. Fig. 2), where the flow is driven primarily by the capillary force due to the inter-

face curvature variation between the heated and the cooled end [53–59], vs. gravity. In

order to predict the capillary limit, the critical heat input [60], or the dry-out length, the-

oretical studies typically relied on partitioning heat pipes into the same three regions as

Figure 2: A schematic diagram of a micro heat pipe of triangular cross-section, showing
three liquid saturation profiles at typical axial locations in the evaporator section, adiabatic
section and condenser section, respectively. [51]
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thermosyphons. The variation of the temperature in the direction normal to the interface

was typically ignored (in both phases), and phase change was directly related to the pre-

scribed heat flux through the substrate, typically assumed to be uniform in the “evaporator”

and the “condenser” and to vanish in the “adiabatic section.”

Suman and his colleagues conducted studies of micro heat pipes with various cross-

sectional geometries using 1D transport model. Besides the capillary pressure and the wall

shear stress [61], they have incorporated the effect of body force (gravity) [62–64], the iner-

tia in the liquid [62,63], heat conduction through the substrate [65], and the linear variation

of the surface tension [63] (e.g., due to an interfacial temperature gradient). However, their

treatment of transport in the gas phase was incomplete in all of these studies. In particular,

the shear stress at the liquid-vapor interface was completely ignored, while the interfacial

temperature was assumed (incorrectly, as shown below), rather than computed.

The effect of the gas phase was considered for the most part only in terms of the shear

stress that it exerts on the liquid layer [66–74]. The latter was typically incorporated by

modifying the friction factor or the Poiseuille number (the product of the friction factor

and the Reynolds number for the liquid flow), which was typically obtained from the solu-

tions of a fully developed duct flow of the vapor [75] or from relevant correlations [76,77].

Various studies were conducted to predict the friction factor and the Poiseuille number in

different geometries [60, 78–80]. Kim et. al. [81] developed an iterative method for cal-

culating the ratio of the effective pressure gradient in the liquid in the presence of vapor

counterflow to that in the absence of counterflow, for an open channel with an arbitrary

cross-section. It should be noted that with few exceptions [60], most of the studies ne-

glected the spatial variation of the interfacial shear stress.

Zhang et al. [82] performed an analytical investigation of a model of a sealed rect-

angular heat-pipe with an essentially flat interface. The model neglected advective fluxes

in the momentum and heat transport in the liquid and assumed a fully developed unidi-

rectional flow in the vapor. At the interface, the heat balance considered the latent heat

11



and conduction through the liquid layer, but not the gas layer. The model considered the

thermocapillary stresses but neglected shear stresses induced by the vapor flow.

One-sided models have also been used for modeling the vapor flow in a concentric an-

nular heat pipe (cf. Fig. 3), which consists of two concentric pipes of different diameters

that are attached and enclosed at the end, creating an annular vapor space between the

two pipes. In such a geometry, sonic limit and entrainment limit are of increased impor-

tance, and one-sided models for the vapor phase were commonly used for predicting these

operation limits [84–86]. The effect of phase change was incorporated into the boundary

condition for the velocity field of vapor, where a uniform blowing or suction velocity at

the inner and outer walls in the “evaporator” and “condenser” were calculated based on

the prescribed heat flux. The temperature at the liquid-vapor interface was assumed equal

to the saturation temperature based on the local vapor pressure. In the concentric annular

heat pipe, vapor speed could be large (e.g. near the sonic limit), and the variation in the

vapor pressure is not neglected in these studies. The pressure drop in the vapor could be

comparable to that in the liquid.

While one-sided models are easier to construct and solve, they involve assumptions

that are not always justified. For example, shear stress at the liquid vapor interface is

often ignored or estimated based on correlations rather than computed using the actual flow

fields. Most importantly, while various methods were developed to incorporate the effect

of the momentum transport in the gas phase, the phase change and the associated heat and

Figure 3: A schematic of a concentric annular heat pipe. [83]
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momentum flux are computed in a rather crude way. For instance, the relation between

the (externally imposed) heat flux and phase change used in the studies of condensation is

only valid in extremely simplified geometries (e.g., thin liquid films on essentially flat solid

surfaces) and cannot be applied to quantitative modeling of two-phase evaporative cooling

devices which usually have a more complicated geometry. Furthermore, this relation cannot

be used to model evaporation – an equally important process – since no liquid film forms on

heated surfaces. Finally, the heat flux in general cannot be specified/prescribed, but must

instead be computed based on the solutions to the transport equations.

1.2.2.2 Two-Sided Transport Models

In comparison with one-sided models, there have been relatively few studies that attempted

to model transport phenomena in both phases. Numerical models which account for the

momentum, heat, and mass transport in both phases were used to study the evaporation

from a concave meniscus [87], a heated groove [88], and a convex meniscus [89]. In these

models, mass transport of vapor through a vapor-air mixture was described using advection-

diffusion equation for the vapor concentration. Phase change was modeled using Kinetic

Theory of Gases, while latent heat and heat conduction in both phases were taken into

account in the heat balance at the interface. It should be noted that these studies focused on

evaporation under ambient conditions, vs. transport in a confined geometry which is more

relevant to two-phase evaporative cooling devices.

Sobhan et al. [74] developed a two-sided model of a micro heat pipe which consid-

ered the 1D heat and mass transport in the vapor phase and solved for the vapor temper-

ature. However, at the interface, only the latent heat was considered in the heat transport

across the interface, even though the predicted temperatures were different between the two

phases. Kuznetzov and Sitnikov [90] and Kaya and Goldak [91] proposed and numerically

investigated models of wicked heat pipes. The mass, momentum and heat transport were

considered in both the liquid and the vapor phase. The liquid phase was described using

Darcy’s law [90] or its modification which considered the viscous and inertial effects [91].
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At the interface, the tangential velocity was assumed to be zero, the mass balance coupled

phase change with the normal velocity in both phases, and the heat balance considered the

latent heat and the heat conduction in both phases.

1.2.3 Effect of Noncondensable Gases

It should be noted that most of the studies discussed in Section 1.2.2 assumed the gas phase

to be either pure vapor or a saturated air-vapor mixture at ambient pressure. Neither of these

limits describes a typical two-phase evaporative cooling device, where the gas phase is a

mixture of vapor and noncondensable gases dominated by the vapor. Furthermore, none

of the studies discussed in this Section investigated the effect of the noncondensable gases

on the fluid flow and heat or mass transport. In fact, it is well-known that noncondensable

gases suppress phase change (especially condensation) and degrade the overall thermal

performance. For instance, one of the earliest systematic experimental studies [92] on

condensation of steam on a horizontal cylinder predicted that even very small amounts

of noncondensables (air) – as small 0.5% (mass fraction) – could halve the condensation

rate, and the corresponding heat transfer coefficient. This adverse effect of noncondensable

gases was later verified experimentally for the condensation process in the presence of

various kinds of noncondensable gases and different orientations of the condensing surfaces

for both natural and forced convection [93–96].

The effect of noncondensable gases on condensation heat transfer is usually described

using empirical correlations for the average heat transfer coefficient or the Nusselt number.

One common metric is the “degradation factor” [97–99], which is defined as the ratio of the

heat transfer coefficient in the presence of noncondensables to that in the absence of non-

condensables predicted by the Nusselt model. The “degradation factor” is typically given

as a function of the Reynolds number and the mass fraction of the noncondensable gas. The

analogy between the heat and mass transfer has been used to predict the mass flux in the

presence of noncondensables based on to heat flux [100–106]. Specifically, the relation-

ship between the Sherwood number, the Reynolds (or Grashof) number, and the Schmidt
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number is assumed to be the same as that between the Nusselt number, the Reynolds (or

Grashof) number, and the Prandtl number, which are usually based on correlations.

Although the models based on empirical correlations are intuitive, they are typically

restricted to certain ranges of parameters, geometries, orientation of the flow, etc. Sparrow

and Eckert [107] performed one of the earliest theoretical studies of the effect of noncon-

densables on film condensation. They extended the two-sided boundary layer analysis for

film condensation of pure vapor [33] and included the boundary layer equation for the con-

servation of species in the gas phase, in terms of mass fraction of the air. The model was

further extended by considering the effect of buoyancy in the gas phase [108], and the in-

terfacial resistance for phase change [109,110] where the difference between the interfacial

temperature and the saturation temperature is considered. It was found that the decrease

of the heat transfer coefficient was mainly due to the diffusion of the vapor through a layer

of noncondensables that accumulate next to the condensate film. Even the presence of a

minute amount of noncondensable gases in the bulk could cause the buildup of a large

concentration gradient at the interface, which reduces the partial pressure of the vapor, the

saturation temperature at the interface, and therefore the temperature difference that drives

the heat transfer [108, 109].

Mori and Hijikata [111] studied the effect of noncondensables on film condensation on

a vertical plate subject to natural convection by performing boundary layer analysis for a

saturated “two-phase boundary layer”, which consists of small droplets generated by con-

densation, the vapor and noncondensables, between the liquid film, and the gas phase. The

liquid film was described using the Nusselt model, while transport in the gas phase was

neglected. The results showed that the heat transfer coefficient approached that for natu-

ral convection (without phase change) when noncondensables dominated, and approached

the solution of the Nusselt model [26] when vapor dominated. The effect of noncondens-

ables was found to be the most significant in the limiting cases (mass fraction of the vapor

approaching zero or unity).
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Denny et al. [112, 113] performed numerical studies of laminar film condensation on a

vertical plate in the presence of air and forced convection. The boundary layer equations

were used to describe the transport of momentum, heat, and mass in the gas phase, and the

Nusselt model was used for the liquid phase. Siow et al. studied laminar film condensa-

tion in the presence of noncondensables in different geometries [114–116] by numerically

solving the boundary layer equations in both phases. By introducing different turbulence

models [117, 118], Yuann et al. [119] and Groff et al. [120] studied turbulent film con-

densation in vertical tubes using numerical simulations. It was found that the presence

of noncondensables decreased the condensation rate and the film thickness, as well as the

heat transfer coefficient, especially near the inlet. It should be noted that numerical studies

[112–116, 119, 120] used a forward marching technique in the numerical implementation

and hence were limited to co-flow (of the liquid and gas) configurations.

The recent developments in computational fluid dynamics and increases in comput-

ing power enabled numerical simulations based on models incorporating the conserva-

tion equations for mass, momentum, energy, and species (vs. boundary layer equations)

[121–124]. Typical numerical implementations [121, 123, 124] only model transport in

the gas phase and incorporate phase change through boundary conditions. It should be

noted that except for a few studies [109, 110] the interfacial resistance for phase change

is usually neglected and the interfacial temperature is assumed to be equal to the (local)

saturation temperature. This is a reasonable approximation for the studies of condensation

where noncondensables accumulate near the interface. However, in confined geometries,

noncondensables can become depleted in certain regions (e.g., as a result of significant

evaporation), and the interfacial resistance can be important.

Most of the existing studies of the effects of noncondensables focus on simple geome-

tries and simple processes, most typically condensation. However, in sealed two-phase

cooling devices, noncondensable gases will have a significant effect not just on the con-

densation, but also on evaporation and phase equilibrium along the entire interface. Phase
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equilibrium is a function of the local composition of the gas, which is influenced by (i) the

diffusion of vapor through the gas phase and (ii) the flow in the gas phase. On the other

hand, the fluid flow in both phases itself depends on the thermocapillary stresses (i.e., the

interfacial temperature which is determined by the phase equilibrium). To better understand

the interdependence of these effects, fundamental studies are required which fully describe

the transport in both phases and phase change along the entire interface at varying levels

of noncondensables. However, such fundamental studies are exceedingly rare. In fact,

there is only one experimental study that considered the effect of noncondensables (air)

on the convection problem discussed in Sect. 1.2.1. Li et al. [1] investigated buoyancy-

thermocapillary convection in a layer of volatile silicone oil. A sealed cavity was used to

achieve air concentrations varying from 14% (lowest pressure) to 96% (atmospheric pres-

sure). It is found that as the noncondensable concentration decreases, the base flow speed

remains almost unchanged, while transition thresholds between different flow patterns in

the liquid layer are substantially delayed.

The effect of varying the amount of noncondensables was also investigated in the con-

text of pool boiling. In particular, it was found that even small amounts of noncondensables

could induce a temperature gradient along the bubble surface leading to thermocapillary

convection around the bubble [125]. Barthes et al. [126, 127] performed experiments on

the flow instability around a single bubble in the subcooled FC-72. For non-degassed liq-

uid, thermocapillary convection was observed in the liquid next to the bubble, transitioning

from steady vortex to oscillatory (time-periodic) motion; however, for degassed liquid, no

convective flow patterns were observed.

Chauvet et al. [128] studied the evaporation-driven Bénard-Marangoni instability in

films of volatile liquids experimentally and analytically. Their linear stability analysis

showed that transport in the gas phase can be represented via a wavenumber-dependent

generalization of the Biot coefficient which includes two terms, one of which describes the

heat conduction and the other – the vapor (mass) diffusion through the gas phase. Both
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terms depend on the gas phase composition, while the latter also depends on the volatility

of the liquid; increasing the volatility has the same effect as decreasing the amount of non-

condensables. Although the study did not investigate how the flow stability is affected by

varying the amount of noncondensables, experiments confirmed the theoretical prediction

that increasing the volatility of the liquid film increases the critical Marangoni number for

the instability.

1.2.4 Direct Numerical Simulation of Two-Phase Flows

In order to study two-phase flows with two-sided models, appropriate boundary conditions

are required across the liquid-gas interface. Moreover, in complex geometries or when

strong lateral confinement (by the wick, the walls of the microchannels, grooves, etc.) is

absent, the shape of the interface should be computed as part of the solution which takes

into account not just the contact angle, but also the effect of fluid flow, phase change, the

variation of surface tension along the interface. Analytical solutions are only available

in special geometries and do not account for any of the above effects. Direct numerical

simulations therefore become indispensable. The existing numerical methods for simulat-

ing free-surface flows can be classified into three broad categories: the surface capturing

method, the surface tracking method, and the moving mesh method.

Surface capturing method solves the governing equations on a stationary grid, where

an additional field, known as the indicator function, is introduced to define both the phase

which occupies a particular computational cell and the position of the interface. Different

techniques of capturing the interface include volume of fluid (VoF) [129–132], level set

method (LSM) [133–136], constrained interpolation profile (CIP) method [137], phase field

method [138], etc. The most commonly used method is VoF, where the volume fraction

occupied by, say, the liquid phase serves as the indicator function and LSM, where the

indicator function determines the (signed) distance to the interface. The major challenges

of this approach include maintaining a sharp interface and applying boundary conditions

such as calculating surface stresses and phase change. In particular, the velocity field is not
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divergence free after phase change is incorporated, which requires compressible Navier-

Stokes equations to be solved in both phases. The stiffness of the compressible equations

associated with the large density ratio between the liquid and the vapor phase requires

extremely small time step in the numerical simulations. Other drawbacks include spurious

forces which emerge in the neighborhood of the interface [139–141] and the requirement

of rather fine meshes.

The surface tracking method also uses a stationary grid to solve the governing equa-

tions, while the interface is tracked using a set of marker particles or a lower dimension

grid [140, 142–146]. Surface tracking maintains a sharp interface, which allows more ac-

curate evaluation of surface stresses without requiring very fine meshes, but has difficulties

with volume conservation and handling topological changes. The approach also makes

implementation of some types of boundary conditions nontrivial.

In the moving mesh method [147–155] separate computational meshes represent dif-

ferent phases, while the interface is represented by the mesh boundaries. As the interface

moves with the flow, computational meshes on both sides of the interface are continuously

distorted. This method therefore is not well-suited for complex geometries when interface

experiences large deformation or changes in topology. However, it provides the most ac-

curate description of the interface and makes the calculation of the surface stresses and

implementation of the boundary conditions at the interface simpler and more straightfor-

ward than in the other two approaches.

The pioneering work in developing the moving mesh method was done by Ryskin and

Leal [147] who used a structured orthogonal mesh to study the steady rise of an axisymmet-

ric bubble driven by buoyancy. Indeed, most of the early numerical studies based on this

method were limited to either the axisymmetric or 2D geometry [148–151]. Schmidt and

his colleagues [152–154] implemented the moving mesh method for 3D simulation using

finite volume method on a stagged tetrahedral mesh. Tukovic and Jasak [155] developed a

second order accurate moving mesh finite volume method for the bulk equations combined
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with finite area method on the mesh boundary representing the interface.

1.3 Objectives of This Work

The main motivation for this work is provided by applications to thermal management,

specifically, evaporative two-phase cooling devices which involve confined two-phase flow

of volatile fluids where both body forces and surface stresses could be important. As dis-

cussed previously, the existing models of evaporative two-phase cooling devices are mainly

one-sided and use numerous assumptions, few of which are well justified. In order to ver-

ify these assumptions and quantify the accuracy of the existing approximate models, it

is essential to understand the effect of the gas phase and its composition on the confined

two-phase flow.

The main focus of this thesis is therefore on developing a comprehensive two-sided

model of two-phase flow of volatile fluids, implementing it numerically, and using numer-

ical simulations of buoyancy-thermocapillary convection to improve our fundamental un-

derstanding of transport in both phases. Since the convection problem has been investigated

extensively, there is an abundance of results that can be used for validating the two-sided

model, at least under atmospheric conditions. Once validated, the two-sided model can be

used to investigate two-phase flow under reduced pressures, which are more relevant for the

operating conditions of evaporative cooling devices. The two-sided model can help answer

the following key open questions:

1. Can one-sided models provide an accurate descriptions of two-phase flow of volatile

fluids and under what conditions?

2. How do the noncondensable gases affect various transport phenomena and phase

change in confined geometries?

3. Under what conditions can the two-phase cooling devices be partitioned into the

evaporator, condenser, and adiabatic sections?
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4. Is it possible to construct a simple analytical model of transport in both phases based

on the improved fundamental understandings of the problem?

In order to answer these questions, a theoretical study was conducted with the following

specific objectives:

1. Formulate, implement numerically, and validate a comprehensive two-sided model

of two-phase flows of confined volatile fluids, which properly describes momentum,

mass, and heat transport in both the liquid and the gas phase, as opposed to the one-

sided models that have been used in most of the previous studies.

2. Improve the fundamental understanding of the two-phase buoyancy-thermocapillary

convection in confined and sealed geometries and quantify the importance of various

physical effects (buoyancy, themocapillary stresses, phase change, etc) in this prob-

lem. In particular, investigate the effects of noncondensable gases on the convection

patterns and heat transport.

3. Validate the various assumptions that have been used with minimal justification in

previous studies, in particular, the assumptions that neglect transport in the gas phase

and phase change in the “adiabatic section”. Whenever possible, derive analytical

estimates and/or formulate simpler, but still accurate, description of the problem valid

in various limits.

4. Leverage the improved fundamental understanding of the transport problem to con-

struct an analytical model of simple evaporative cooling devices, which can be used

to provide guidance for the design and evaluation of the thermal performance of such

devices. In particular, quantify the impact of noncondensables on the thermal perfor-

mance.

In order to validate the two-sided model against the existing results, a canonical prob-

lem was chosen, where a layer of liquid is confined, below a layer of gas, in a sealed
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rectangular cavity subject to a horizontal temperature gradient. The only (to the author’s

knowledge) systematic experimental study of two-phase buoyancy-thermocapillary con-

vection of volatile fluid driven by a horizontal temperature gradient with varying levels

of noncondensables is due to Li et al. [1]. Therefore the exact same working fluid and

geometry will be used in this study in order to facilitate direct comparison.

The test cell used in the study of Li et al. [1] is shown in Fig. 4. The inner cavity had

the following dimensions: length L = 48.5 mm, width W = 10 mm, and height H = 10

mm. The walls of the test cell were made of quartz (fused silica) with thermal conductivity

kw = 1.4 W/m-K and had a thickness hw = 1.25 mm. Above the layer of liquid was a layer

of gas – a mixture of vapor and air. The horizontal temperature gradient was generated

by imposing constant temperatures Tc and Th > Tc on the outside of the left and right end

wall, respectively, by using temperature controlled copper blocks. Although the liquid flow

in this geometry is at best qualitatively similar to that in evaporative cooling devices, the

transport in the gas phase as well as phase change at the liquid-vapor interface should be

quite similar, and hence this study should help improve the fundamental understanding of

two-phase transport also in the geometries relevant for thermal management devices.

The working fluid used in the study of Li et al. [1] was a volatile 0.65 cSt silicone oil,

x

z

L

H

W

y
cT hT

Figure 4: The test cell containing the liquid and air/vapor mixture. Gravity is pointing in
the negative z direction. The shape of the contact line reflects the curvature of the free
surface.
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hexamethyldisloxane (HDMS, NMR grade with purity ≥ 99.5%, Sigma Aldrich 326739-

100G). Although this working fluid is not a typical coolant for thermal management de-

vices, it has relatively high volatility and latent heat, which are the key properties for the

coolants. It should be mentioned that not all of the properties of the working fluid used in

the study of Li et al. [1], especially for the vapor phase, have been reported. Moreover,

different values for some material parameters have been reported in the literature. In this

study, two sets of properties for the liquid and vapor of the silicone oil have been used, and

will be specified clearly in the corresponding Chapters.

The thesis is organized as follows. Chapter 2 describes the mathematical model (gov-

erning equations and boundary conditions) of the two-phase confined buoyancy thermocap-

illary convection in the presence of noncondensable gases. Chapters 3, 4, and 5 present the

results at atmospheric conditions, under pure vapor, and under vapor with a small amount

of air, respectively. The linear stability analysis which describes the transition between

different convective regimes is presented in Chapter 6. The main conclusions and contribu-

tions of this work are presented in Chapter 7. A summary of the dimensionless parameters

and their values at atmospheric conditions and under pure vapor are presented in Appendix

A. The numerical methods used for simulating the two-phase flow are described in Ap-

pendix B. Finally, the procedure for setting up the numerical simulations with OpenFOAM

is described in Appendix C.
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CHAPTER 2

MATHEMATICAL MODEL

2.1 Introduction

The vast majority of theoretical and numerical studies of buoyancy-thermocapillary con-

vection use one-sided models [9, 19–22] that only consider the convection in the liquid

phase, while ignoring transport through the gas phase and the phase change across the

liquid-gas interface. The heat and mass transport in the gas phase are incorporated indi-

rectly through boundary conditions at the liquid-gas interface, and the interface is assumed

to be rigid (and, in most of the cases, flat). Such an approach might be justifiable for non-

volatile liquids, since air is a relatively poor conductor of heat, and for the volatile liquids

at ambient (atmospheric) conditions when phase change is strongly suppressed. Indeed,

the predictions of such models are for the most part consistent with experimental studies

of volatile and nonvolatile fluids at ambient (atmospheric) conditions [1, 9–12]. However,

for volatile liquids at reduced air pressure, phase change can lead to significant heat fluxes

in the liquid layer due to the latent heat released or absorbed at the interface, and the in-

terfacial mass flux (which defines the latent heat flux) cannot be computed reliably without

a proper model of bulk mass transport in the gas phase. Therefore a two-sided model is

required, where the heat and mass transport in both phases are modeled explicitly. Two-

sided models have been formulated previously [49,50,82,87–91]. These models, however,

assume rather than compute the shape of the liquid-gas interface, employ extremely restric-

tive assumptions and/or use a very crude description of one of the two phases.

This Chapter describes a comprehensive two-sided model of buoyancy-thermocapillary

convection in confined two-phase fluids with a sharp free interface. The model describes the

momentum, heat, and mass transport in both the liquid and the gas phase, with the motion

of the liquid-gas interface being calculated based on the flow conditions. Most importantly,

phase change across the entire liquid-gas interface is considered, which provides a detailed
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description of the momentum, heat, and mass transport between the two phases.

2.2 Fundamental Equations for Simple Fluid Flow

The characteristic length and time scales for this study are much larger than the mean free

path, therefore the continuum hypothesis can be applied. The governing equations for

single component fluid flow include the conservation of mass (continuity)

∂tρ + ∇ · (ρu) = 0, (1)

the conservation of momentum (Newton’s second law)

ρ (∂tu + u · ∇u) = ∇ · Σ + f, (2)

and the conservation of energy (first law of thermodynamics)

ρ (∂te + u · ∇e) = Σ : ∇u − ∇ · q + q̇, (3)

where:

ρ is the mass density,

k is the thermal conductivity,

f is the body force density,

u is the velocity field,

T is the temperature field,

e is the specific internal energy density,

q is the heat flux,

q̇ is the heat source density, and

Σ is the stress tensor, which can be written as a sum of an isotropic part (normal stress)

and a deviatoric part (shear stress)

Σ = −p1 + Σ′ (4)

and p is the pressure.
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The model described here uses a more common form of the conservation of energy,

based on the enthalpy he = e + p/ρ, which can be obtained from (3). Based on the conser-

vation of mass (1),

p∇ · u = −
p
ρ

Dtρ = ρDt

(
p
ρ

)
− Dt p, (5)

where Dt = ∂t + ∇ · u is the material derivative. Combing (4) and (5), the conservation of

energy (3) can be rewritten as

ρ (∂th + u · ∇h) = ∂t p + u · ∇p − ∇ · q + q̇ + Φ, (6)

where Φ = Σ′ : ∇u is the rate at which heat is generated due to viscous dissipation.

The conservation laws (1), (2), and (6) are fairly general and apply to any simple (i.e.,

single-component) fluid.

2.3 Fundamental Equations for Binary Fluid Flow

In this work the liquid phase is a simple liquid, however, the gas phase is in general a binary

mixture of vapor and air, where air is a noncondensable gas, which requires modifications

to the transport equations in the gas phase. The generalization of the transport equations

will be used for the mass, momentum, and energy of multi-component mixtures following

Chapman and Enskog [156]. Using the classic kinetic Boltzmann equation, a range of

transport equations could be obtained for various Knudsen numbers, including the Euler,

Navier-Stokes, and Burnett equations [157]. In particular, the transport equations (1), (2),

and (6) represent the first order of the Chapman-Enskog expansion for simple gases.

For the gas mixtures, the Chapman-Enskog expansion uses the locally Maxwellian dis-

tribution which corresponds to the average temperature of the mixture, and yields the trans-

port equations for the mass, momentum, and energy of the mixture that have the same form

as (1), (2) and (6). However, for the gas mixture, u and e correspond to the average values

for all components, while ρ is the sum of the densities of all components, and the body

force f and heat source term q̇ include the contributions from all components.
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The Chapman-Enskog expansion is valid when the differences between the tempera-

tures and velocities of of different components are negligible (e.g. for strongly collisional

gases). When there are large differences in the temperature and/or velocity, the Chapman-

Enskog expansion does not converge, and alternative approaches have been developed to

describe transport under such conditions. For example, Grad [158] applied an expansion

about the Maxwellian distribution which converges more rapidly. Hamel [159] showed

that when the molecular masses of components are substantially different, (for instance, for

hexamethyldisiloxane (HMDS) Mv ≈ 162 g/mol−1, while for air Ma ≈ 29 g/mol−1), a more

accurate description would require the introduction of different temperatures Tv , Ta and

separate momentum and energy transport equations for each of the components, coupled

through cross-collision terms.

The effect of cross-collision is characterized by a dimensionless parameter

Cr =
`ωav

u
, (7)

where ` and u are the characteristic length and velocity scales of the flow,

ωav = naκavµaµv (8)

is the dimensional cross-collision frequency, and µi = mi/m0 = mi/(ma + mv) is the re-

duced mass of the molecules of component i = (a, v), and ni is the corresponding num-

ber density. The collision parameter κav can be estimated based on the mass diffusivity

D = kBTa/(µanvκavm0), where kB is Boltzmann’s constant, yielding

ωav =
na

nv

kBTa

Dm0
µv. (9)

Hence (7) can be rewritten as

Cr =
`

u
na

nv

kBTaµv

Dm0
. (10)
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The temperature of the two components equilibrates, and the Hamel’s description re-

duces to the Chapman-Enskog description when Cr � 1, which indicates strong cross-

collision momentum and heat transport. This condition is equivalent to ca � c∗a, where

c∗a =

(
`

u
kBT0µv

Dm0
+ 1

)−1

. (11)

In this study the characteristic length, velocity, and temperature scales are ` = 10−2 m,

u = 10−2 m/s, and T0 = 293 K. The binary mass diffusivity D reaches the maximum value

at the total pressure equal to the saturation pressure of the vapor pv = 4.1 × 103 Pa, which

yields c∗a ≈ 1.4 × 10−8. Such low concentrations cannot be reached in practice (and below

this concentration the effect of air can be simply ignored, with gas treated as pure vapor).

Hence the Champan-Enskog description is valid in the entire range of concentrations for

which the model for the mixture has been used, and the transport equations (1), (2), and (6)

can be used to describe the mixture of HMDS vapor and air.

An additional transport equation is needed to describe the composition of the binary

mixture. The conservation of mass for the dilute component is used

∂tρr + ∇ · (ρru) = −∇ · jr, (12)

where ρr is the mass density and jr is the diffusive mass flux which arises when the com-

position varies spatially. Here and below the subscript denotes the components in the gas

mixtures (a for air, v for vapor of HMDS, d for the dominant component, and r for the

dilute component) or the phase (l for the liquid, g for the gas), and i denotes the liquid-gas

interface. In particular, in (12) r = a when the vapor is dominant and r = v when the air is

dominant.

2.4 Constitutive Relations

The transport equations determine the evolution of the velocity u, pressure p, temperature

T field, and the mass density ρr of the dilute component. However, they also involve a
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number of other variables and parameters, which are determined using the constitutive

relations introduced below.

2.4.1 Equations of State

For the temperature and pressure range of this study, the air can be assumed ideal [160].

The critical pressure of HMDS pcr = 1.9 × 106 Pa is much higher than its vapor pressure

pv ≈ 4.1 × 103 Pa [161, 162]. Hence, the vapor of HMDS can also be assumed ideal [160].

Therefore, in the gas phase,

ρg = ρa + ρv, (13)

and the partial pressures of the two components, considered to be ideal gases, are

pb = ρbR̄bT, (14)

where R̄b = R/Mb, R is the universal gas constant, and Mb is the molar mass of component

b = a or v. The total gas pressure is the sum of partial pressures

pg = pa + pv. (15)

The partial pressures define the concentrations

cb = pb/pg (16)

of the individual components of the mixture. For the binary mixture cv = 1 − ca.

The Boussinesq approximation is used following standard practice, where the variation

in the density ρ of the fluid (within a single phase) is ignored expect when it appears in

the body force term f = ρg, where g is the gravitational acceleration, which represents the

effect of buoyancy. In the liquid phase a linear relation

ρl = ρ0
l [1 − βl (T − T0)], (17)

is assumed, where ρ0
l is the reference density at the reference temperature T0 and βl =

−ρ−1
l ∂ρl/∂T is the coefficient of thermal expansion. In the gas phase the temperature depen-

dence of the density follows directly from the ideal gas law, βg = 1/T , and the dependence
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on the composition is also considered based on the ideal gas law (13). As found below,

the relative change in the density due to the temperature variation is quite small (less than

10% for the gas and less than 4% for the liquid in the examples considered in this study).

The relative change in the density due to the composition variation is also fairly small (less

than 12% for the gas in the examples considered in this study), so ignoring it in the other

terms has a minor effect on solutions. Both equations of state (17) and (14) can be easily

generalized as needed.

Since the density variation about the average is relatively small, local variations in

density are ignored on the right-hand-side of the momentum conservation equation (2),

and the spatially averaged density is used instead for each phase. As a result, the mass

conservation equation (1) reduces to the incompressibility constraint

∇ · u = 0. (18)

The equations of state also allows the enthalpy to be evaluated as a function of temper-

ature and pressure. In general

dhe = CpdT + (1 − βT )
dp
ρ
, (19)

where Cp is the heat capacity at constant pressure. For an ideal gas 1− βT = 0, so enthalpy

is independent of pressure. In the liquid phase the pressure is essentially constant. Hence,

in both phases

dhe = CpdT. (20)

2.4.2 Molecular Diffusion

Molecular diffusion restores local thermodynamic equilibrium by generating a flux of vari-

ous quantities in response to external gradients. In particular, a gradient in the temperature

∇T generates a heat flux q, which leads to Fourier’s law of heat conduction,

q = −k∇T, (21)

where k is the thermal conductivity of the fluid.
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The mass flux jb is caused by the gradients in the concentration, pressure, and temper-

ature [156, 163],

jb = −ρgD∇(ρb/ρg) − (ρg/T )DT∇T − (ρg/pg)Dp∇p, (22)

where D is the binary diffusion coefficient, DT is the coefficient for “thermodiffusion” (or

“Soret effect” in the liquid) [164], and Dp is the coefficient for “barodiffusion” [165]. In

this problem, the diffusion due to pressure gradient, i.e., barodiffusion, is negligible since

the gradient of the total pressure is much smaller than the gradient of the concentration.

The diffusion due to temperature is also negligible since DT is in general much smaller

than D, moreover, with the Boussinesq approximation, ρg is assumed to be constant. So

the diffusive mass flux simplifies to

jb = −D∇ρb. (23)

Similarly, the gradient in the velocity causes the flux of momentum. The fluids con-

sidered in this study are Newtonian, with a linear relation between the stress and the strain

rate. For Newtonian fluids the stress tensor can be written as

Σ = µ
[
∇u + (∇u)T

]
+ λc1∇ · u − p1, (24)

where µ is the dynamic viscosity, and λc is the coefficient of bulk viscosity. When the flow

is incompressible, the stress tensor simplifies to

Σ = µ
[
∇u + (∇u)T

]
− p1, (25)

2.4.3 Material Parameters

The material parameters representing various transport phenomena in simple and multi-

component fluids can be calculated from the kinetic theory of gases [156, 163, 166, 167],

and/or empirical formulas [160, 160, 168, 169]. Within the range of the pressure and tem-

perature variation of the present work, the variation in the fluid properties is relatively small
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[161, 162] and it is sufficient to consider only the dominant effect, i.e., the linear variation

of various material parameters with temperature,

ζm(T ) = ζm
0 [1 − βm (T − T0)], (26)

where ζm, for different m, represents the dynamic viscosity µ, thermal conductivity k, spe-

cific heat Cp for all components in both phases, the coefficient of thermal expansion for

the liquid, the latent heat L, the surface tension σ, and the temperature coefficient of the

surface tension γ, ζm
0 represents the reference values at the reference temperature T0, and

the coefficients βm = −(∂ζm/∂T )/ζm are obtained based on the linear fits of the tabulated

values found in Refs. [161, 162], with the exceptions for the dynamic viscosity and ther-

mal conductivity of the air, where the coefficients are computed using Sutherland’s law

[170, 171].

Most of the properties of the gas phase (when it is a binary mixture) can be determined

from a weighted average of the properties of the two components

ζm = caζ
m
a + (1 − ca)ζm

v . (27)

Exceptions are the mass density which, according to (13) and (14), is

ρg =

[
ca

1 − ca

R̄v

R̄a
+ 1

]
ρv. (28)

where ρv is the saturated vapor density, and the transport coefficients which obey Wilke’s

rule [169]. For instance, the dynamic viscosity is

µg =
∑

i

ciµi∑
j c jΦi j

(29)

and thermal conductivity is

kg =
∑

i

ciki∑
j c jΦi j

, (30)

where

Φi j =

[
1 +

(
µi
µ j

)1/2 (M j

Mi

)1/4
]2

√
8
[
1 + Mi

M j

]1/2 . (31)
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Based on these values, the kinematic viscosity νg = µg/ρg and the thermal diffusivity αg =

kg/(ρgCp) can be calculated. Finally, the binary mass diffusivity D is a function of both

pressure and temperature

D = D0
p0

g

pg

(
T
T0

)3/2

, (32)

where D0 is the diffusion coefficient at reference temperature T0 and pressure p0
g (taken to

be equal to the average temperature and atmospheric pressure below).

2.5 Simplified Form of the Governing Equations

Incorporating the constitutive relations into the transport equations (1), (2), (6) and (12)

four evolution equations are obtained for the four unknown fields, u, p, T , and ρr. In

particular, the mass conservation equation (1) reduces to the divergence-free condition (18)

for the velocity field.

With the help of (18), the constitutive relation for a Newtonian fluid (4), and the Boussi-

nesq approximation, the momentum conservation is reduced to the Navier-Stokes equation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρ(c,T )g, (33)

where the density dependence on the temperature and, for the gas phase, the composition,

is explicitly included in the buoyancy force term to illustrate that it is not constant. In

contrast, the density on the left-hand-side is considered constant for each phase (defined as

the spatial average of ρl or ρg).

In the problem considered here there are no internal heat sources or sinks, i.e., q̇ = 0, so

substituting the expressions for enthalpy (19) and heat flux (21), the energy conservation

(6) can be rewritten as

ρCp (∂tT + u · ∇T ) = βT (∂t p + u · ∇p) + k∇2T + Φ. (34)

The terms on the left-hand-side are of order ρu2
t /t
∗, where ut is the thermal velocity, which

is a few hundred m/s at ambient temperature and t∗ is the characteristic time scale for the
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flow. The terms on the right-hand-side which involve pressure are at most of order ρu∗2/t∗,

where the characteristic flow velocity u∗ is of order cm/s and hence can be safely ignored.

The viscous dissipation term Φ is of order ρu∗2ν/`∗2, where ν = µ/ρ is the kinematic

viscosity of the fluid and `∗ is the characteristic length scale of the flow. Since t∗ is at

most comparable to the viscous time scale `∗2/ν, this term can also be safely ignored [75].

Therefore, the transport of heat is described by an advection-diffusion equation

∂tT + u · ∇T = α∇2T, (35)

where α = k/ρCp is the thermal diffusivity

Finally, with the help of (23) the transport equation for the dilute component (12) can

also be cast in the form of an advection-diffusion equation

∂tρr + u · ∇ρr = D∇2ρr. (36)

This equation guarantees the mass conservation for the dilute component locally. As a

consequence, the mass of the dilute component is also conserved globally.

Mass conservation of the dominant component d requires a separate equation∫
gas
ρddV + mlδd,v = md (37)

where δd,v is the standard Kronecker delta,

ml =

∫
liquid

ρldV (38)

is the mass of the liquid phase, and md is its total mass of the dominant component. The

Navier-Stokes equation and the incompressibility conditions define the pressure field p up

to a constant po. The total pressure in the gas phase is

pg = p + po, (39)

where the pressure offset po can be computed from the mass conservation constraint (37)

using (13), (14), (15) and (39):

po =

[
md − mlδd,v −

∫
gas

p − ρrR̄rT
R̄dT

dV
]
/

[∫
gas

1
R̄dT

dV
]
. (40)
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When the gas is pure vapor, ca = 0, the fields u, p, and T can be found by solving the

governing equations (18), (33), and (35), subject to the constraint (40). When the gas phase

is a binary mixture, u, p, T , and ρr can be found using the governing equations (18), (33),

(35) and (40) for the mixture, and the equation (36) for the dilute component, with (16)

yielding the solution for the concentration field.

2.6 Boundary Conditions

As Fig. 4 illustrates, the fluid is assumed to be contained in a rectangular test cell with

inner dimensions L ×W × H, and thin walls of thickness hw. Hence, the system of coupled

evolution equations for the bulk fields has to be solved in a self-consistent manner, subject

to the boundary conditions describing the balance of momentum, heat, and mass fluxes at

the liquid-gas interface and at the inner surface of the walls of the cavity.

2.6.1 Liquid-Gas Interface

There are two kinds of boundary conditions at the liquid-gas interface. The first kind is a

direct consequence of conservation laws discussed above and can be obtained by integrating

(18), (33), (35) or (36) over a small “pillbox” control volume enclosing a portion of the

interface. The second type of boundary conditions is obtained using kinetic theory and

describes the flux of various quantities caused by deviations from local phase equilibrium

at the interface.

2.6.1.1 Local Phase Equilibrium

Local phase equilibrium between the vapor and the liquid phase is established when the

temperature of the vapor at the interface is equal to the saturation temperature (at a given

temperature) when the chemical potentials of the liquid and vapor phases are equal. This

leads to a relationship between saturation temperature and pressure known as the Clausius-

Clapeyron equation

ln
pv

p0
v

=
L

R̄v

(
1

T 0
s
−

1
Ts

)
, (41)
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where the subscript s denotes the saturation values and T 0
s is the saturation temperature

at the reference vapor pressure p0
v . Fluids with a higher vapor pressure are usually more

volatile, and the vapor pressure is more sensitive to the temperature for fluids with higher

latent heat. In the numerical model a generalization (valid over a wider range of tempera-

tures) of (41), known as the Antoine equation

lnpv = Av −
Bv

Cv + Ts
(42)

is used, where Av, Bv, and Cv are empirical coefficients.

The Clausius-Clapeyron equation (41) can be considered a “linearization” of the An-

toine equation valid over a small range of temperatures. It is easy to see that

p0
v = exp

(
Av −

Bv

Cv + T 0
s

)
(43)

and

L = BvR̄v

(
T 0

s

Cv + T 0
s

)2

. (44)

For the ranges of temperatures explored in this study, the variation in p0
v andL is negligible

and both parameters can be assumed constant. In principle, either (41) or (42) can be

used to determine the saturation pressure as a function of temperature. However, to ensure

logical consistency in the remainder of this work the Clausius-Clapeyron equation will be

used in all analytical calculations, while the Antoine equation will be used to compute the

equilibrium value of the vapor pressure p0
v and the latent heatL at the reference temperature

T0 using the relations (43) and (44).

2.6.1.2 Heat and Mass Flux Balance

The heat flux balance across the interface is given by

LJ = kg∂nTg − kl∂nTl, (45)

where ∂n = n · ∇ and n is the unit normal to the interface pointing towards vapor and J

is the vapor mass flux density due to phase change (positive for evaporation, negative for
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condensation). The mass flux balance on the liquid side of the interface gives

ul,n − ui,n =
J
ρl
, (46)

where the right-hand-side can be neglected, since ρl � ρg. Here and below the index after

the comma indicates the component of a vector. On the gas side of the interface, when

there is no air, the mass flux balance on the vapor side of the interface is described by a

similar relation

J = ρv(ug,n − ui,n). (47)

When the gas is a mixture of air and vapor,

J = −D∂nρv + ρv(ug,n − ui,n), (48)

where the first term on the right-hand-side represents the diffusion component, and the sec-

ond term represents the advection component (referred to as the “convection component”

by Wang et al. [88]). Since air is noncondensable, its mass flux across the interface is zero,

therefore

0 = −D∂nρa + ρa(ug,n − ui,n). (49)

For binary diffusion, the diffusion coefficient of vapor through air is the same as that of air

through vapor. The densities of vapor and air can be related through the mass conservation

and the ideal gas law
ρv

Mv
+
ρa

Ma
=

pg

RT
, (50)

and their normal gradients can be related by taking the normal gradients on both sides of

(50). Since the total pressure is essentially constant, this yields

∂nρv

Mv
+
∂nρa

Ma
= −

pg

RT 2
i

∂nTg. (51)

Together with (48) and (49) this relation can be used to express J directly in terms of ∂nρb

and ∂nTg, where b = a or v .
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2.6.1.3 Phase Change Models

Several theoretical models have been put forward to describe the mass flux across the

liquid-vapor interface due to phase change. By far the most commonly used and widely

accepted model is based on the Kinetic Theory of Gases (KTG) [172]. It assumes that the

chemical potential and the temperature are continuous across the liquid-vapor interface

Tl = Ti = Tv, (52)

and predicts that the mass flux across the interface is given by

J =
2χ

2 − χ

√
1

2πR̄v

 ps(Ti)

T 1/2
i

−
pv

T 1/2
v

 , (53)

where χ is the accommodation coefficient, which describes the fraction of vapor molecules

moving towards the interface that remain at the interface (as opposed to reflecting back into

the vapor phase). Unless stated otherwise, χ = 1 is used in this study, since for nonpolar

liquids, such as HMDS, the accommodation coefficient is found to be equal (or very close)

to unity [173, 174]. With the help of the Clausius-Clapeyron relation (41), (53) can be

approximated as [175]

J = Ω(Ti − Ts), (54)

where

Ω =
2χ

2 − χ

√
1

2πR̄v

psL

R̄vT
5/2
s

(55)

is referred as the interfacial resistance associated with phase change. In this thesis, unless

mentioned otherwise, phase change will be described by an alternative form [176] of the

expression (53)

J =
2χ

2 − χ
ρv

√
R̄vTi

2π

[
pl − pg

ρlR̄vTi
+
L

R̄vTi

Ti − Ts

Ts

]
, (56)

which explicitly incorporates the pressure jump (e.g., due to curvature or disjoining pres-

sure) across the interface. Expression (56) involves linearization of (53) and, while it is

consistent with the Clausius-Clapeyron relation (41), it is only consistent with the Antoine
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equation (42) over the range of temperatures for which the latent heat (44) can be consid-

ered constant.

The KTG model is applicable only for relatively small deviations from the state of

global thermodynamic equilibrium (i.e., small imposed temperature gradients) and breaks

down for larger deviations (larger gradients). Phase change under conditions far from equi-

librium can be described more accurately by models that, unlike KTG, allow for a jump in

the temperature and chemical potential at the liquid-vapor interface. In particular, the Non-

Equilibrium Thermodynamics (NET) model [177] was developed specifically to describe

phase change far from equilibrium, but has also been used to explain some nonintuitive

observations (e.g., inverted temperature profiles in liquids with large latent heats [178]) in

near-equilibrium systems. It predicts the following relations between the mass flux J and

the heat flux qv = kv∂nTv on the vapor side:

ps − pv√
2πR̄vTl

= r11J + r12
qv

R̄vTl
, (57)

ps√
2πR̄vTl

Tl − Tv

Tl
= r21J + r22

qv

R̄vTl
, (58)

where Tl and Tv are the interfacial temperatures on the liquid and vapor side, respectively,

and ps(Tl) is determined from (42). The dimensionless resistivities ri j are obtained from

the Onsager reciprocity relation. If the vapor behaves as an ideal gas with accommodation

(condensation) coefficient χ, their values can be obtained using kinetic theory of gases

[178]: r11 = χ−1 − 0.40044, r12 = r21 = 0.126, and r22 = 0.294.

Another phase change model was derived using Statistical Rate Theory (SRT) [179,

180] to explain measured temperature jumps at water-vapor interfaces during intensive

evaporation in the near-absence of noncondensables with and without external temperature

gradients [181,182]. The model is based on the transition probability concept, as defined in

quantum mechanics, and uses the Boltzmann definition of entropy to describe irreversible

processes far from global thermodynamic equilibrium. SRT predicts the following mass
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flux across the interface [182]:

J =
2ps√
2πR̄vTl

 pv − ps + 2κσ
ρlR̄vTl

+
ps

pv
− 1 − 2

(
Tv

Tl
− 1

)2 , (59)

where κ = ∇ · n is the interfacial curvature and ps(Tl) is again determined by (42). SRT,

however, does not give a prediction for the heat flux qv on the vapor side. To complete

the system, one additional expression is derived from NET following Bond and Struchtrup

[183]. Combining (57) and (58) yields

qv =
psR̄v (r11Tl − r21Tl − r11Tv) + r21 pvR̄vTl

(r11r22 − r12r21)
√

2πvR̄vTl

. (60)

The phase change model based on SRT assumes that all molecules from the vapor

phase that collide with the liquid-vapor interface are transferred to the liquid phase [180],

which is equivalent to setting χ = 1. Furthermore, the cross terms are ignored [183], i.e.,

r12 = r21 = 0. In order to facilitate comparison between the phase change models based on

KTG, NET and SRT, these values will be used for the accommodation coefficient and the

cross terms coefficients in the remainder of this study, unless noted otherwise.

2.6.1.4 Boundary Conditions for the Velocity

The boundary conditions for the normal components of the velocity have been discussed in

Section 2.6.1.2. The tangential components are considered to be continuous at the liquid-

gas interface

(1 − nn) · (ul − ug) = 0. (61)

The stress (or momentum flux) balance incorporates the viscous drag between the two

phases, thermocapillary effects, and the vapor recoil [47]

(Σl − Σg) · n = nκσ + ∇sσ + J2(ρ−1
l − ρ

−1
g )n, (62)

where Σl and Σg are the stress tensors on the liquid and gas side of the interface, and

∇s = (1 − nn) · ∇ (63)

40



is the surface gradient.

It is useful to consider the normal and tangential components of the stress balance (62)

separately. For the normal component, it is found from (4)

n · Σ · n = −p + 2µnn : ∇u. (64)

On the other hand, taking the trace of the identity

∇u = ∇su + nn · ∇u. (65)

yields

∇ · u = ∇s · u + nn : ∇u. (66)

Therefore, for incompressible flow

nn : ∇u = −∇s · u (67)

and the normal stress balance can rewritten as

pg − pl = σκ + 2(µl − µg)∇s · ui + J2(ρ−1
l − ρ

−1
g ). (68)

In the problem considered here the vapor recoil term is negligible compared with the cap-

illary pressure term and hence will not be included.

For the tangential components of the stress balance it is found

(1 − nn) · (Σl − Σg) · n = ∇sσ, (69)

or, introducing a tangent vector τ,

τ · (Σl − Σg) · n = ∂τσ. (70)

where ∂τ = τ · ∇. In this work, surface tension is assumed to be a linear function of

temperature, so

∇sσ = −γ∇sTi, (71)

where γ = −∂σ/∂T is the temperature coefficient of surface tension. Hence, the tangential

components of stress balance (70) can be rewritten as

µl[∂nul,τ + ∂τul,n] − µg[∂nug,τ + ∂τug,n] = −γ∂τTi. (72)
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2.6.2 Inner Surface of the Cavity

Since the thickness (in x extent) of the walls of the cavity is much smaller than that of the

liquid and gas layer, one-dimensional conduction through the walls is assumed, yielding an

analytical solution for the temperature inside the walls. Using this solution, the following

boundary conditions can be applied on the inside of the side walls:

T |x=0 = Tc +
k
kw

hw∂nT,

T |x=L = Th +
k
kw

hw∂nT,
(73)

where k = kg (k = kl) above (below) the contact line. For the other (the top, bottom, front

and back) walls, heat flux is ignored

∂nT = 0 (74)

since adiabatic boundary conditions are typical of most experiments.

Standard no-slip boundary conditions u = 0 for the velocity and, for a binary mixture,

no-flux boundary conditions

∂nρr = 0 (75)

for the density of the dilute component are imposed on all the walls.

2.6.3 Solution Procedure

The boundary conditions imposed at different boundaries are summarized in Table 1. In

order to find numerical solutions, the governing equations (33), (35) and (36) are solved

Table 1: Types of boundary conditions imposed on various boundaries in the numerical
implementation of the model.

Field Types of boundary conditions
Interface, Interface, Hot/Cold Other alone
vapor side liquid side walls walls

u Dirichlet Neumann Dirichlet Dirichlet
p Neumann Dirichlet Neumann Neumann
T Dirichlet Neumann Neumann Neumann
ρ Neumann – Neumann Neumann
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separately in the two phases. The solution requires that the boundary equations at the

liquid-gas interface be separated between the two sides of the interface, while there is some

freedom in which boundary conditions are applied on each side. The boundary conditions

chosen for these simulations were dictated by the numerical implementation. For instance,

temperature continuity (52) was imposed on the vapor side, while the heat flux balance (45)

was imposed on the liquid side of the interface.

The nonlinear equations representing the boundary conditions at the interface are cou-

pled and need to be solved simultaneously. During the simulations, the solution of this

system of equation is found using Newton iteration with the values of the field at the pre-

vious time step used as the initial condition. The boundary conditions and the fields solved

for depend on the model and the gas phase composition, which are discussed in detail in

the appendix B.2.3.2.
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CHAPTER 3

CONVECTION AT ATMOSPHERIC CONDITIONS

Most of the intuition on which the design of current two-phase thermal management de-

vices, such as heat pipes, is based on studies of convection at atmospheric conditions. The

strength of the two main forces driving convection, buoyancy and thermocapillarity, is most

commonly described in terms of the nondimensional parameters

RaL =
gβld4

l ∆T
νlαlL

(76)

and

MaL =
γd2

l ∆T
µlαlL

, (77)

which are known, respectively, as the “laboratory” Rayleigh and Marangoni number. Al-

though it is relatively easy to measure MaL in experiments, thermocapillary stress is de-

termined by the interfacial temperature gradient τ, which could be significantly different

from the imposed temperature gradient ∆T/L. Hence, more recent studies use instead the

“interfacial” Marangoni number

Mai =
γd2

l

µlαl
τ. (78)

One can similarly define the “interfacial” Rayleigh number

Ral =
gβld4

l τ

νlαl
. (79)

The ratio of the Rayleigh and Marangoni numbers

BoD =
RaL

MaL
=

Ral

Mai
=
ρlgβld2

l

γ
(80)

is independent of the applied thermal gradient. It quantifies the relative strength of buoy-

ancy and thermocapillarity and is known as the dynamic Bond number.

Essentially all available experimental evidence suggests that as Mai (or MaL) increases,

the initially steady and uniform flow becomes less stable, leading to the development of a
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series of localized convection rolls from the hot end. For small values of the dynamic Bond

number (BoD . 0.2) when thermocapillarity dominates, hydrothermal waves form at an

angle to the direction of the thermal gradient and travel from the cold end towards the hot

end [12]. For larger BoD, when buoyancy becomes important, a steady pattern develops in-

stead. It features multiple stationary co-rotating convection rolls that align in the transverse

direction (at least when the transverse aspect ratio Γy = W/dl is not very large). As Mai

increases further, an oscillatory multicellular state develops with convection rolls near the

cold end traveling in the direction opposite to hydrothermal waves and substantially more

complicated dynamics near the hot end [1, 9–12].

The problem has also been studied using various theoretical approaches. The majority

of numerical studies to date [9, 19–22] have also focused on convection under atmospheric

conditions. For the most part, the numerical simulations used a one-sided model that ig-

nored transport in the gas phase, assumed a liquid layer with a flat, non-deformable free

surface with adiabatic boundary conditions, and neglected phase change. Li et al. [24] have

investigated non-adiabatic effects by using Newton’s law of cooling at small Biot numbers.

While these numerical simulations were able to reproduce many features of the experi-

mental observations, their results have limited applicability. Most important, they fail to

account for the effects of volatility, which can be rather significant, especially at reduced

pressures.

Analytical solutions were derived for an unbounded uniform return flow [4,5,184], also

using a one-sided model. These solutions predict rather accurately the steady unicellular

flow observed in finite cavities away from the end walls under ambient conditions at low

temperature gradients. The transitions between the flow patterns have also been studied

using linear stability analysis. Most of the studies again assumed an adiabatic boundary

condition at the free surface and failed to predict the correct patterns, particularly, the tran-

sitions to steady multicells [14, 15]. It was found that if the adiabatic boundary condition

is replaced with Newton’s law of cooling [16], a transition to stationary rolls is found for
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a range of Bi and BoD. However the rolls are longitudinal, rather than transverse. Further-

more, it was shown that, depending on the Prandtl number

Prl =
νl

αl
(81)

of the liquid, stationary convection rolls tend to form near the hot (for normal liquids with

Prl > 1) or cold (for liquid metals with Prl < 1) end wall [17]. Finally, Priede and Gerbeth

[18] showed that stationary transverse convection rolls should arise in laterally bounded

layers naturally, since traveling waves run into one of the end walls and dissipate before

they can be sufficiently amplified as a result of linear instability.

Since none of the theoretical studies described above accounted for the shape of the free

surface, the proper thermal boundary conditions at the free surface, or the effect of trans-

port in the gas phase, this study investigated buoyancy-thermocapillary convection under

ambient conditions numerically and analytically using a two-sided model. This Chapter

describes the results which were originally reported in [185]. Hence, for consistency, we

use the material parameters from [185], which are summarized in Table 2. The objectives

of this investigation are two-fold: (i) to validate the two-sided model and its numerical im-

plementation and (ii) to determine the validity of the various assumptions made, explicitly

or implicitly, by the one-sided models.

3.1 Numerical Results

In all the numerical simulations reported in this work, the initial condition corresponds to

both layers at rest, with uniform temperature T0 = (Tc +Th)/2 (= 293 K in all cases), where

Th and Tc are the temperatures imposed, respectively, on the outer surfaces of the left and

the right side wall (cf. Fig. 4). The liquid layer is of uniform thickness (so the liquid-gas

interface is initially flat), and the gas layer is a uniform mixture of vapor and air. The

partial pressure of the vapor pv = ps(T0) is set equal to the vapor pressure at T0, calculated

from (42), and the partial pressure of air pa is such that the total pressure pg is equal to

the ambient pressure (1 atm). As the system evolves towards an asymptotic state, the flow
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develops in both phases, the interface distorts to accommodate the assigned contact angle

at the walls, and gradients in the temperature and vapor concentration are established. The

silicone oil (HMDS) wets quartz very well. However, in the numerical simulations the

contact angle θ ≡ 50◦ (unless noted otherwise) to avoid numerical instabilities.

The wetting of the cavity walls by the liquid leads to the distortion of the free surface

which depends on the value of the contact angle (cf. Fig. 5). The curvature of the free

surface is the highest near the walls, while away from the walls the interface becomes flat.

When the flow is sufficiently slow, the corresponding capillary rise is given by [186]

dc =
√

2 sin
(
π

4
−
θ

2

)
lc, (82)

where θ is the contact angle and lc is the capillary length

lc =

√
σ

ρlg
(83)

which, for HMDS, is equal to 1.45 mm. For θ = 50◦ we have dc ≈ 1 mm, which is

comparable to the thickness dl = 2.45 mm of the flat portion of the liquid layer in the

central portion of the cavity.

Since the initial transient state is of secondary interest, the simulation is initially per-

formed on a coarse hexahedral mesh (initially all cells are cubical with side 0.5 mm). In

Table 2: Material properties at the reference temperature T0 = 293 K and pressure pg = 1
atm. The coefficients Av, Bv, and Cv for the Antoine’s equation were taken from Ref. [168].

liquid air vapor
µ (kg/m-s) 4.95 × 10−4 1.82 × 10−5 5.84 × 10−6

ρ (kg/m3) 761.0 1.43 0.28
k (W/(m·K)) 0.10 0.03 0.01
β (1/K) 1.34 × 10−3 3.41 × 10−3 3.41 × 10−3

α (m2/s) 9.52 × 10−8 1.89 × 10−5 2.71 × 10−5

σ (N/m) 1.59 × 10−2

γ (N/m-K) 7 × 10−5

D (m2/s) 2.5 × 10−5

L (J/kg) 2.14 × 105

Av (Pa) 20.16
Bv (Pa·K) 2.58 × 103

Cv (K) −74.71
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order to resolve the fine structure of the various boundary layers, especially in the liquid

layer, mesh refinement, which is discussed in B.3.4, is applied when the solution has con-

verged on the current mesh, and the simulation is resumed on the refined mesh, until the

results become mesh independent. To ensure that an asymptotic (steady or time-periodic)

state is achieved, all the 2D simulations were carried out to a physical time of at least 600 s,

while the 3D simulations, which were much more computationally intensive, were carried

out to physical times of at least 100 s.

Most of the numerical results presented below were obtained using 2D simulations,

which correspond to the vertical mid-plane of the cavity, y = W/2, with the physical

boundary conditions on the side walls (front and back of the cavity) replaced with peri-

odic boundary conditions for all the fields. A series of simulations were carried out with

the same geometry and initial conditions, but with different temperature differences ∆T

imposed between the outer surface of the two end walls. As the focus is primarily on the

effect of the gas layer, the thickness dl of the liquid layer (away from the walls) is held

fixed. Previous studies show that, at the values of BoD = 0.85 and Prl = 6.8 describing this

setup, the primary instability is towards a stationary pattern of transverse convection rolls.

3.1.1 Steady Unicellular and Multicellular Flow

For sufficiently low ∆T , the flow reaches a steady state (after an initial transient). Fig. 6

shows the streamlines of this steady flow in both the liquid and the gas phases at several

values of ∆T . Closed streamlines near the bottom wall and the interface which extend over
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Figure 5: The schematic of the meniscus region near the hot end wall (dotted rectangle on
the right). The liquid (light gray) rises near the wall as result of wetting. The dark gray
denotes the thermal boundary layer in the liquid.
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the entire liquid layer indicate that return flow is observed in the liquid layer. In particular,

when ∆T = 4 K, a uniform return-flow basic state is observed in the core region of the flow.

The liquid flows from the hot (right) end of the test cell towards the cold (left) end along

the free surface, driven by a combination of buoyancy and thermocapillary stresses, with a

return flow near the bottom. In the gas layer, thermocapillarity opposes buoyancy, resulting

in a large clockwise convective roll in the core region. Buoyancy produces two smaller

counterclockwise recirculation rolls in the top corners. Following Riley and Neitzel’s ter-

minology, this is called a steady unicellular flow (SUF).

It should be mentioned, however, that a pair of convection rolls always exists near the

end walls, a stronger one near the hot end wall and a weaker one near the cold end wall.

These convection rolls are driven by buoyancy and are a characteristic feature of convection

due to a horizontal temperature gradient. In this case the end walls enhance the convective

motion, unlike the case of the vertical temperature gradient where the viscous boundary

layers near the end walls suppress convection.

As ∆T increases, additional convection rolls appear starting near the hot end wall. For

instance, at ∆T = 7 K four additional convection rolls can be distinguished in the liquid

layer near the hot wall. When the temperature difference is increased to ∆T = 10 K, the

convection rolls become more pronounced, especially near the hot wall, but the pattern still

does not extend across the entire cell. This convective motion starts to affect the tempera-

ture field, leading to undulations in the isotherms in the liquid phase (see Fig. 7) near the

hot wall reflecting the advection of heat by the convective motion of the fluid. Riley and

Neitzel named the pattern with multiple stationary convection rolls a steady multicellular

flow (SMC). Deviating from their naming convention and following instead Li et al. [1],

this flow pattern is defined as partial multicells (PMC) when the convection rolls do not

extend over the entire horizontal extent of the system. As ∆T is increased to 15 K, the

convective pattern spreads over the entire cell and the convective rolls are clearly distin-

guishable not only in the liquid, but also in the gas phase. This pattern will be referred to
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here as the “true” SMC state. As ∆T is increased further, to 20 K, convection in both layers

becomes more vigorous, but the pattern remains stationary.

The temperature field shown in Fig. 7 displays a pronounced asymmetry between the

liquid and the gas layer. In the liquid layer the temperature field is affected quite strongly

∆T = 4 K

∆T = 7 K

∆T = 10 K

∆T = 15 K

∆T = 20 K

Figure 6: Dependence of the flow field on the imposed temperature difference ∆T . Solid
lines represent the streamlines of the flow. Here and below, the gray (white) background
indicates the liquid (gas) phase; the hot end wall is on the right, and the cold end wall is on
the left.
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by the fluid flow. Advection of heat has a progressively stronger effect as ∆T increases,

which is expected given the high values of the thermal Péclet number

Pel =
dlui

αl
. (84)

At atmospheric conditions Pel ∼ 100 (cf. Appendix A). The high Pel also causes thin

∆T = 4 K, δT = 0.25 K

∆T = 7 K, δT = 0.5 K

∆T = 10 K, δT = 0.5 K

∆T = 15 K, δT = 1 K

∆T = 20 K, δT = 1 K

Figure 7: Dependence of the temperature field inside the cavity on the imposed temperature
difference ∆T . Solid lines represent the isotherms, with temperature difference δT between
them as indicated.
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thermal boundary layers to form near both end walls (dark gray in Fig. 5). On the other

hand, the temperature field in the gas layer remains qualitatively similar for all ∆T consid-

ered here. The temperature varies smoothly in both the horizontal and the vertical direction

and is essentially unaffected by the fluid flow, which is consistent with the relatively small

values of the thermal Péclet number

Peg =
lgug

αg
, (85)

where lg and ug are the characteristic length and velocity scales in the gas layer. At atmo-

spheric conditions ug = ui and lg = dg = H − dl, and Peg ∼ 1 (cf. Appendix A).

The wavelength of the convective pattern appears to grow monotonically with ∆T . The

number of convection rolls first increases, as the pattern expands from the hot to the cold

end wall, and after the multicellular pattern is established, the number of rolls steadily de-

creases, until the convection pattern becomes time-dependent at higher ∆T . This trend is

consistent with both the experiments of Riley and Neitzel [12] and the numerical simula-

tions of Shevtsova et al. [22].

3.1.2 Oscillatory Multicellular Flow

As ∆T is increased beyond 20 K, the stationary convection pattern is destabilized and the

flow becomes unsteady. In particular, for ∆T = 30 K, the flow is time-periodic, with

period T ≈ 3.2 s. Fig. 8 shows the stream function ψl in the liquid layer at different times

during one period. Multiple convection rolls are observed, as was the case for the stationary

convection rolls at smaller ∆T . However, these convection rolls no longer have a consistent

spacing or position over time.

Riley and Neitzel [12] refer to this flow as oscillatory multicells (OMC). The results

from these 2D simulations suggest, however, that this term may not be completely accurate,

at least over the entire extent of the flow. The flow near the hot end is indeed oscillatory.

The roll adjacent to the hot end wall (labeled A in Fig. 8) has both a larger size and greater

strength than all other rolls. Starting from the time t = 0, roll A grows, mostly in the x
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direction during the first half of the period. As it is elongated, a new roll (labeled B) forms

at the left edge of roll A around t = (3/8)T . During the second half of the period, roll

A starts to shrink, and the new roll B is “pinched off” around t = (5/8)T and recedes

from roll A. The strength or roll B gradually decreases and it then travels back towards

F  E   D       C           B     A 

t = (0/8)T

F     E        D      C        B     A 

t = (1/8)T

F   E      D     C         B    A 

t = (2/8)T

F E     D     C      B    A 

t = (3/8)T

F   E    D            C       B     A 

t = (4/8)T

F          D            C          B      A 

t = (5/8)T

F          D         C            B      A 

t = (6/8)T

F           D            C               B     A 

t = (7/8)T

F      D               C                B     A 

t = (8/8)T

Figure 8: Stream function in the liquid layer at different times during one period of oscilla-
tion for ∆T = 30 K. The shaded background represents the value of the stream function ψl,
with darker color indicating higher values. The time interval between consecutive images
is approximately 0.4 s. High-resolution movie showing the evolution of the flow field and
the temperature field can be found in the supplemental file of this thesis, and also online
at https://youtu.be/nRbag8ADOg0. The movie shows five periods (which corresponds
to about 16.4 s). The upper panel shows the temperature T , the middle panel – the stream
function ψ, and the lower panel – the magnitude of the velocity u. The standard jet color
map is used with blue corresponding to the minima and red – the maxima. The range of
variation for T is 289 to 297 K and for |u| is 0 to 15 mm/s.
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roll A, merging with A around t = (2/8)T . This is quite similar to what the numerical

simulations of Villers and Platten [9] showed for a liquid layer with a streamwise aspect

ratio Γx = L/dl = 9 substantially smaller than that studied here (Γx = 19.8).

Near the cold end, however, the dynamics are best described as a traveling wave. Sev-

eral convection rolls appear, two of which are labeled D and E in Fig. 8, traveling to the

left, i.e., in the direction opposite to that of hydrothermal waves. Both rolls D and E keep

moving towards the stationary roll F adjacent to the cold wall. Around t = (3/8)T roll

E starts to merge with roll F, disappearing around t = (5/8)T . Roll D keeps traveling to

the left, taking at t = (8/8)T the position of roll E at t = (0/8)T , after which the process

repeats. It should be noted that both the strength of the rolls and the speed at which they

travel towards the cold wall varies considerably during one period.

In the middle of the cell, it is harder to distinguish individual convection rolls. The

dynamics are dominated by a roll (labeled C) which nucleates at the right edge of the

central region around t = (4/8)T , just to the left of roll B, travels to the left edge of the

central region and disappears there around t = (3/8)T . Summing up, it is found that the

time-periodic flow is rather complicated, with oscillatory dynamics near the hot end wall,

a traveling wave near the cold end wall, and dynamics in the middle which appear to be

some sort of mixture of the regimes found near the two end walls.

The flow behavior found in the numerics is qualitatively consistent with the experimen-

tal observations of Li et al. [1]. Their velocity data also show oscillatory dynamics on one

side of the cavity (periodic modulation of the width of the roll nearest the hot wall) and

traveling waves on the opposite side (rolls moving towards the cold end wall).

3.2 Comparison with Experiments

In order to directly compare these numerical results with those of other experimental (as

well as numerical and analytical) studies, the Marangoni number (78) needs to be deter-

mined based on the average interfacial temperature gradient τ̄, which characterizes the
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magnitude of thermocapillary stresses. The values of ∆T are not directly comparable due

to the presence of the side walls of the cavity in the setup considered here (cf. Fig. 4). As

shown in Fig. 9, the interfacial temperature in the core region of the flow varies linearly

with position x at lower ∆T , while for higher ∆T there is significant modulation due to

convection in the liquid. Hence to calculate the interfacial Marangoni number, a spatially

averaged value of the gradient τ̄ is used which corresponds to a linear fit to the graph of

Ti(x) excluding a few-mm-wide regions next to the end walls.

As it has been pointed out in numerous previous studies, τ̄ is in many cases quite dif-

ferent from the imposed gradient ∆T/L. As a result, the interfacial Marangoni number Mai

(78) is often much less than the “laboratory” Marangoni number MaL (77) often used in

the earlier studies. In the range of ∆T where the flow is steady, ∆T/L is found to vary as a

rational function of τ̄

∆T
L

= τ̄
1 + aT τ̄

2

1 + bT τ̄2 , (86)

where aT = 1.1× 10−3 and bT = 1.4× 10−4 are the fitting parameters, as Fig. 10 shows. We

will denote the solution τ̄ = τ0(∆T/L). In the limit ∆T → 0 the fit (86) correctly reproduces
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Figure 9: Interfacial temperature for different imposed temperature difference ∆T . To am-
plify the variation of Ti in the central region of the cell, the variation δTi = Ti − 〈Ti〉x about
the average value is plotted with truncated y-axis.
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the analytical solution

∆T
L

∣∣∣∣∣
∆T→0

=

(
1 + 2

kl

kw

hw

L

)
τ = 1.00368τ, (87)

which describes a conductive profile in the liquid layer.

In terms of the interfacial Marangoni number, the numerical simulations predict the

transition from SUF to PMC to occurs at 342 < Mai < 460, the transition from PMC

to SMC at 546 < Mai < 682, and the transition from SMC to OMC at 804 < Mai <

1096. Although these values can be compared with experimental results, this comparison

is somewhat qualitative, since the actual flow studied in most of the experiments is not

strictly identical to that in the 2D simulations presented here. In most studies, the flow

cell is open to the surroundings and the liquid is in direct contact with the temperature-

controlled end walls, while the simulations assume that the fluid is contained in a sealed

thin-walled container (see Fig. 4). Furthermore, variations in the contact angle lead to

slight variations in the thickness of the liquid layer and the slope of the free surface near

the walls, which affect the relative importance of both buoyancy and thermocapillarity.

Riley and Neitzel [12] used a cavity with a flow Section of length L = 50 mm and

width W = 30 mm and liquid layers ranging in depths dl from 0.75 mm to 2.5 mm. These
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Δ
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) 

ΔT/L = (τ + 1.1×10-3τ3)/(1+1.4×10-4τ2) 

Figure 10: The relation between the gradient τ of the interfacial temperature in the core
region of the flow and the imposed temperature gradient ∆T/L. For steady flows (∆T = 4,
7, 10, 15, 20 K) the dependence can be fitted with extremely high accuracy (R2 = 0.9999)
by a low order rational function.
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dimensions correspond to the streamwise and spanwise aspect ratios of 12 ≤ Γx ≤ 40 and

20 ≤ Γy ≤ 66.7 (compared with Γx = 19.8 and Γy = ∞ used here), so the geometry of their

experiments is perhaps the closest to that represented by the 2D numerical simulations. The

working fluid in their experiments was 1 cSt Dow Corning silicone oil with Prl = 13.9,

while the simulation were performed for a substantially more volatile 0.65 cSt silicone oil

with Prl = 6.8.

Fig. 11 (adapted from Ref. [12]) compares the flow regimes observed in the experiment

with those found in the simulations. As Mai increases, the experimental flow goes through

the same sequence of transitions as in the numeric. The critical values of Mai for these

transitions are, however, different. In particular, in the numerics the transition from SUF to

PMC occurs at Mai which is noticeably lower than the critical value of about 540 extrap-

olated from the experimental data. This is consistent with the general trend of the critical

Mai increasing with Prl (for Prl & 1) [18] (also see Fig. 53). Unfortunately, Riley and

Neitzel do not report the critical Mai for the transition to SMC or OMC for BoD > 0.42.
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Figure 11: The flow regimes observed for different BoD and Mai. The lines show transitions
between different flow regimes in the experiments of Riley and Neitzel [12]. The labels de-
note steady unicellular flow (SUF), partial multicellular flow (PMC), steady multicellular
flow (SMC), oscillating multicellular flow (OMC) and hydrothermal waves (HTW). The
filled circles show the results of the numerical simulations. Blue denotes steady unicellu-
lar flow, orange – partial multicellular flow, green – steady multicellular flow, and red –
oscillating multicellular flow.
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Another useful reference is provided by the experiments of Villers and Platten [9] which

used a cavity with a flow Section of length L = 30 mm and width W = 10 mm and a

liquid layer thickness 1.70 mm ≤ dl ≤ 14.25 mm, corresponding to 2.1 ≤ Γx ≤ 17.6

and 0.7 ≤ Γy ≤ 5.9. The working fluid was acetone with Prl = 4.2. The experimental

observations are only classified as either stationary or oscillatory flow, so we can only

compare the critical Marangoni numbers for transition from SMC to OMC. Villers and

Platten only quote the laboratory Marangoni number (77), so the (BoD,MaL) plane is used

to present the results. As Fig. 12 shows, the transition to OMC occurs at comparable values

of MaL in the experiment and in the numerics, although, again, quantitative agreement is

not expected due to the difference in the values of Prl, lateral confinement, and the absence

of the containing walls of the test cell in the experiment.

The setup of the experiments of Li et al. [1] are the closest to the numerical simulations

presented here: the length and height of the cavity are the same, and the working liquid is

0.65 cSt silicone oil, although the properties are not exactly the same. In the experiment

the transition from SUF to SMC happens at 260 < Mai < 320, the transition from PMC

to SMC at 320 < Mai < 430, and the transition from SMC to OMC at 750 < Mai < 780.
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Figure 12: The flow regimes observed for different BoD and MaL. Filled triangles and open
squares represent, respectively, oscillatory and stationary flow patterns observed by Villers
and Platten [9]. The filled circles show the results of simulation, with the same notations
as in Fig. 11.
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All the experimental values are therefore slightly lower than the numerical predictions.

Furthermore, for the oscillatory flow, the dynamics of convection rolls in the experiment

are very similar to the numerical results. The temporal period of the experimental flow is

larger (T = 5.4 s) than what is found in the numerics (T = 3.2 s), which is not surprising

given the difference in Mai (990 in the experiment vs. 1096 in the numerics) and BoD (0.74

in the experiment vs. 0.85 in the numerics).

The uncertainty in the fluid properties used in the simulations is likely the main reason

for imperfect agreement with the experiments of Li et al. [1]. Various experimental studies

with 0.65 cSt silicone oil reported different values for the fluid properties. Most notably,

the value of the temperature coefficient of surface tension γ reported in the literature ranges

between 6.4 × 10−5 N/m-K [187], 8 × 10−5 N/m-K [13, 188], and 8.9 × 10−5 N/m-K [161,

162]. This is a variation of more than 30%, which changes both Ma and BoD by the same

amount. The more reliable source for the fluid properties [161,162] is used in later Chapters

and leads to better agreement.

The discrepancies may also be due to a number of other reasons. For instance, the ex-

periments have significant lateral confinement, while numerical simulations assume Γy =

∞. The finite width W = 10 mm of the experimental cell used in Ref. [1] (which corre-

sponds to Γy of only 4.1) causes a curvature of the free surface in the spanwise direction and

a deviation in the layer thickness at the side walls from the transversely flat profile assumed

by the numerical simulations. The experiments also show evidence of weak secondary flow

in the (y, z) plane which is not present in the numerics and could modify the temperature

distribution in the liquid layer. The effects of the contact angle and three-dimensionality of

the flow are addressed below in Sections 3.3 and 3.4.

3.3 The Effect of the Interfacial Curvature

Experimental studies of buoyancy-thermocapillary convection used setups that differed in

a number of ways. For instance, Villers and Platten [9] and Li et al. [1] used liquids that
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wetted the flat end (and side) walls, with relatively small contact angles, which produced

a curved free surface (cf. Figs. 4 and 5). On the other hand, in the experiments of Riley

and Neitzel [12] the interface was pinned to achieve a uniform liquid layer thickness over

the entire cavity, which corresponds to a contact angle of 90◦. The numerical simulations

[9, 19–22] also used a flat and non-deformable interface. In order to investigate how the

variation in the contact angle affects the flow, a series of 2D numerical simulations were

performed with θ varying between 30◦ and 90◦. The geometry was kept the same as in

the previous simulations to facilitate comparison. The temperature difference between the

outer surfaces of the two end walls was fixed at ∆T = 10 K for all the cases. This value

is reasonably close to the transition from PMC to SMC, making the structure of the flow

quite sensitive to variations in any parameters.

θ = 30◦, Mai ≈ 565

θ = 50◦, Mai ≈ 539

θ = 70◦, Mai ≈ 535

θ = 90◦, Mai ≈ 529

Figure 13: Streamlines of the steady flow for different values of the contact angle θ. ∆T =

10 K and the average thickness of the liquid layer is dl ≈ 2.5 mm.
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Not surprisingly, the flow is found to depend weakly on the value of θ, even in the core

region away from the end walls. For the four values of the contact angle investigated, the

flow patterns shown in Fig. 13 are qualitatively similar, although the values of Mai are

slightly different (due to the change in the thickness of the liquid layer with θ). In the liquid

layer, several weak convection rolls can be seen in the core region of the flow. There are

four additional rolls for θ = 50◦ and 70◦, three for θ = 90◦ and two for θ = 30◦. In the gas

layer, the flow patterns for the four different θ are almost indistinguishable. The temperature

field (not shown), is essentially the same in the range of θ considered. In summary, these

results suggest that the influence of the contact angle on the flow pattern, both near the end

walls and in the core region of the flow, is relatively weak and therefore presumably can

only partially account for the discrepancies between the experimental results and numerical

predictions.

3.4 Three-Dimensional Effects

The effect of the lateral walls (both the viscous damping of the flow due to the no-slip

boundary condition and the variation in the thickness of the liquid layer in the y direction

due to the interfacial curvature for θ , 90◦) can only be understood by performing a full

3D simulation. However, simulating the flow in a cell with the dimensions 48.5 mm ×

10 mm × 10 mm that was in Ref. [1] proved too time-consuming. Properly resolving the

thin boundary layers, despite the use of adaptive mesh refinement, produces more than 106

computational cells for 1/8 mm resolution. Matching the resolution of the 2D simulations

(which used a mesh with resolution of up to 1/16 mm) would have required over 107 com-

putational cells. Therefore, the comparison for the results between 2D and 3D simulations

is done for a cavity with inner dimensions of 15 mm × 5 mm × 5 mm (L × H ×W), which

has the additional benefit of enhancing the confinement effects. The thickness of the liquid

layer was set to dl = 1.5 mm, which corresponds to BoD = 0.322, Γx = 10, and Γy = 3.3.

Furthermore, to avoid confusing the effects of lateral confinement with the effects of contact
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angle, θ ≡ 90◦, which produces an essentially flat free surface.

Two different values of ∆T were considered, corresponding to values where the flow

will be in steady unicellular or the steady multicellular regimes. In particular, for ∆T = 4

K (which corresponds to Mai = 298), a steady unicellular flow is found. Fig. 14 shows

this flow in the vertical mid-plane of the 3D cavity which is almost indistinguishable from

(a)

(b)

Figure 14: The flow in the vertical plane for ∆T = 4 K. Streamlines of (a) the 2D flow and
(b) the 3D flow in the mid-plane (y = 2.5 mm) of the cavity are shown.

(a)

(b)

Figure 15: The temperature field in the vertical plane for ∆T = 4 K. Isotherms of (a) the
2D solution and (b) the 3D solution in the mid-plane (y = 2.5 mm) of the cavity are shown.
The temperature difference between two adjacent isotherms is δT = 0.4 K.
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the corresponding 2D flow. Similarly, the temperature field in the mid-plane of the cavity

is almost indistinguishable from the 2D solution (see Fig. 15).

In fact, both the flow field and the temperature field are very accurately represented by

the 2D solution over most of the cavity interior. As Fig. 16 shows, the 3D and the 2D

temperature fields in the liquid are essentially identical in the horizontal plane at z = 1

mm passing through the center of the two convection rolls. The vertical component of

velocity uz̃ in that horizontal plane is also essentially the same in 3D and in 2D (see Fig.

17) everywhere except near the side walls, where the 3D velocity vanishes due to no-slip

boundary conditions.

For ∆T = 20 K (which corresponds to Mai = 602), a steady multicellular flow is found.

Fig. 18 shows that the flow in the vertical mid-plane of the 3D cavity is again almost

indistinguishable from the corresponding 2D flow. The slight difference in the position of

convection rolls is due to the weak time dependence of the 3D solution which very slowly

approaches a steady flow; the 3D flow structure becomes more similar to the 2D solution

at longer times. Similarly, the temperature field in the mid-plane of the cavity is essentially

indistinguishable from the 2D solution (see Fig. 19).
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Figure 16: The temperature of the liquid in the horizontal plane z = 1 mm for ∆T = 4 K.
Shown are (a) the 2D solution and (b) the 3D solution.
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However, there are significant differences between the 3D and the 2D solution on either

side of the vertical mid-plane, as can be seen in a horizontal cross-section of the cavity. For

instance, Fig. 20 shows that the strong modulation (in the x direction) of the 3D tempera-

ture field in the mid-plane disappears near the side walls, making the variation essentially

monotonic. On the other hand, the vertical component of the 3D velocity field in the hor-

izontal plane (see Fig. 21) shows that convection rolls become strongly distorted. Instead
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uz [mm/s] Figure 17: The velocity of the liquid in the horizontal plane z = 1 mm for ∆T = 4 K. The
vertical component uz̃ is shown for (a) the 2D solution and (b) the 3D solution.

(a)

(b)

Figure 18: The flow in the vertical plane for ∆T = 20 K. Streamlines of (a) the 2D flow
and (b) the 3D flow in the mid-plane (y = 2.5 mm) of the cavity are shown.
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of tilting, as predicted by 3D linear stability analyses [14,15], the rolls bend symmetrically

to form “chevrons that approach the side walls at the same angle on both sides.

In summary, for θ = 90◦, 2D simulations appear to provide a reasonably accurate de-

scription (both qualitative and quantitative) of the two-phase flow in the symmetry plane of

the flow cell or cavity containing the fluid for a range of applied temperature gradients. For

(a)

(b)

Figure 19: The temperature field in the vertical plane for ∆T = 20 K. Isotherms of (a) the
2D solution and (b) the 3D solution in the mid-plane (y = 2.5 mm) of the cavity are shown.
The temperature difference between two adjacent isotherms is δT = 1 K.
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Figure 20: The temperature of the liquid in the horizontal plane z = 1 mm for ∆T = 20 K.
Shown are (a) the 2D solution and (b) the 3D solution.

65



(a)

(b)

 

 

294  
       
      

293   
        
      
292 

T [K] 

295  
       
      

293   
        
      
291 

T [K] 

1.0  
       
      

0   
        
      
-1.0 

uz [mm/s] 

3.0  
       
      

0   
        
      
-3.0 

uz [mm/s] 

295  
       
      

293   
        
      
291       
 

T [K] 

1.0 
       
       

0   
        
      
-1.0       
 

uz [mm/s] 

1.0  
       
      

0   
        
      
-1.0      

uz [mm/s] 

3.0  
       
      

0   
        
      
-3.0       

uz [mm/s] 

Figure 21: The velocity of the liquid in the horizontal plane z = 1 mm for ∆T = 20 K. The
vertical component uz̃ is shown for (a) the 2D solution and (b) the 3D solution.

lower ∆T (in the SUF regime) the 2D solution is accurate everywhere except near the side

walls. For higher ∆T (in the SMC regime) a fully 3D solution is required to describe the

flow on either side of the symmetry plane. It is possible that for small values of θ, the case

for most of the experimental studies, the variation of the thickness of the liquid film in the

y direction could have a more pronounced effect on the flow structure and stability. Further

investigation of this issue was impractical, however, due to the cost of the 3D simulations,

each of which took about a month of computational time on a 16-core computer.

3.5 Theoretical Analysis

Many of the numerical results, such as the velocity and temperature fields in the SUF

regime away from the end walls, can be validated by comparison with the analytical so-

lutions for the 2D flow in a laterally unbounded layer driven by an imposed temperature

gradient τ. In order to reduce the number of parameters, the governing equations are nondi-

mensionalized (where the dimensionless parameters are denoted with a tilde) by introduc-

ing the following scales:

Length scale dl,
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Time scale d2
l /νl,

Velocity scale νl/dl,

Density scale ρ0
l ,

Pressure scale ρ0
l (νl/dl)2,

Temperature scale τdl = µlαlMai/(γdl).

The dimensionless governing equations for the liquid layer (−1 < z̃ < 0) become

∇̃ · ũl = 0,

∂t̃ũl + ũl · ∇̃ũl = −∇̃ p̃ + ∇̃2ũl + GrlT̃lẑ,

∂t̃T̃l + ũl · ∇̃T̃l = Pr−1
l ∇̃

2T̃l, (88)

where ũl = uldl/νl, T̃l = (Tl − T0)/τdl, and

Grl =
Ral

Prl
=

gβld4
l τ

ν2
l

. (89)

is the Grashof number. A new coordinate system is defined

r̃ =
r
dl
− ẑ −

L
2dl

x̂, (90)

so that r̃ = 0 in the middle of the liquid-vapor interface. The dimensionless governing

equations for the gas layer (0 < z̃ < d̃g) are

∇̃ · ũg = 0,

∂t̃ũg + ũg · ∇̃ũg = −
ρ0

l

ρ0
g
∇̃ p̃ + Kν∇̃

2ũg + (ΞT T̃g + Ξρρ̃v)ẑ,

∂t̃T̃g + ũg · ∇̃T̃g = Kα∇̃
2T̃g,

∂t̃ρ̃v + ũg · ∇̃ρ̃v = KD∇̃
2ρ̃v, (91)

where ũg = ugdl/νl, T̃g = (Tg − T0)/τdl, ρ̃v = (ρv − ρ
0
v)/ρ0

l , d̃g = dg/dl, ρ0
g = ρ0

a + ρ0
v ,

Kν = νg/νl, Kα = αg/νl, and KD = D/νl. The equilibrium densities of air and vapor are

ρ0
v =

p0
v

R̄vT0
,

ρ0
a =

c̄a

1 − c̄a

p0
v

R̄aT0
=

c̄a

1 − c̄a

R̄v

R̄a
ρ0

v , (92)
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where p0
v is the saturation vapor pressure at the temperature T0, and the nondimensional

parameters

ΞT =
βg

βl
Grl,

Ξρ =
gd3

l

ν2
l

ρ0
l

ρ0
g

(
R̄v

R̄a
− 1

)
(93)

describe the contributions to the buoyancy force in the gas layer due to perturbations in

the tempreature and composition of the gas, respectively. While ΞT depends on τ (through

Grl), but not c̄a, Ξρ depends on c̄a (through ρ0
g), but not τ.

At the bottom of the liquid layer (z̃ = −1) and the top of the gas layer (z̃ = d̃g), no-slip

and adiabatic boundary conditions apply

ũ = 0,

∂z̃T̃ = 0. (94)

At the interface (z̃ = 0), the temperature and velocity fields are continuous

T̃l = T̃g = T̃i,

ũl = ũg = ũi. (95)

Since µl � µg and dg > dl, the viscous stress in the gas layer can be ignored, yielding a

simplified expression for the shear stress balance at the interface

∂z̃ũl,x = −Rel∂x̃T̃l, (96)

where

Rel =
Mai

Prl
=
γd2

l

µlνl
τ, (97)

is the Reynolds number.

The heat flux balance (45) at the interface reduces to

∂z̃T̃l =
kg

kl
∂z̃T̃g −

G2

Mai
J̃, (98)
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where kg = (1 − c̄a)kv + c̄aka and J̃ = Jdl/(Dρ0
l ) is the dimensionless mass flux. The

dimensionless combination

G2 =
LDγdl

νlαlkl
, (99)

or more precisely the ratio G2/Mai, describes the relative magnitude of the latent heat

released (absorbed) at the interface due to condensation (evaporation) compared with the

vertical heat flux in the liquid layer due to conduction.

The mass flux balance at the gas side of the interface for the vapor (48) and the non-

condensable gas (49) in dimensionless form gives

J̃ = −∂z̃ρ̃v + ρ̃vũg,z,

0 = −∂z̃ρ̃a + ρ̃aũg,z. (100)

By eliminating ũg,z from these two equations with the help of (50), the mass flux J̃ can be

related to the gradients of the vapor density and gas temperature

J̃ = −
1
c̄a
∂z̃ρ̃v −

1
c̄a

τdl

T0

ρ0
v

ρ0
l

∂z̃T̃g, (101)

where ρ0
v = ps(T0)/(R̄vT0) is the vapor density which corresponds to the saturation pressure

at the reference temperature T0. Since τdl � T0 as well as ρ0
v � ρ0

l , the last term on

the right-hand-side of (101) is negligibly small compared to the first one and will not be

considered further. Finally, at the top of the gas layer, mass flux vanishes

∂z̃ρ̃r = 0. (102)

For the base return flow (SUF) at atmospheric conditions, since the phase change is

negligible away from the end walls, it is assumed that J̃ = 0, which is also one of the

assumptions made in one-sided models. This leads to a number of simplifications. In

particular, (100) and (101) require that ũl,z = ũg,z = 0 and ∂z̃ρ̃v = 0 at the interface. Fur-

thermore, solutions should satisfy the adiabatic boundary conditions at the free surface,

∂z̃T̃l = ∂z̃T̃g = 0.
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In order to satisfy the incompressibility condition, stream functions are introduced in

both layers, such that

ũl = (∂z̃ψ̃l, 0,−∂x̃ψ̃l),

ũg = (∂z̃ψ̃g, 0,−∂x̃ψ̃g). (103)

Eliminating the pressure, the governing equations (88) for the liquid layer can be rewritten

as

(∂t̃ − ∇̃
2 + ∂z̃ψ̃l∂x̃ − ∂x̃ψ̃l∂z̃)∇̃2ψ̃l + Grl∂x̃T̃l = 0,

∂t̃T̃l + ∂z̃ψ̃l∂x̃T̃l − ∂x̃ψ̃l∂z̃T̃l − Pr−1
l ∇̃

2T̃l = 0. (104)

For the gas layer they are rewritten as

(∂t̃ − Kν∇̃
2 + ∂z̃ψ̃g∂x̃ − ∂x̃ψ̃g∂z̃)∇̃2ψ̃g + ΞT∂x̃T̃g + Ξρ∂x̃ρ̃v = 0,

∂t̃T̃g + ∂z̃ψ̃g∂x̃T̃g − ∂x̃ψ̃g∂z̃T̃g − Kα∇̃
2T̃g = 0,

∂t̃ρ̃v + ∂z̃ψ̃g∂x̃ρ̃v − ∂x̃ψ̃g∂z̃ρ̃v − KD∇̃
2ρ̃v = 0. (105)

The corresponding boundary conditions on ψ̃ can be easily obtained from those for u.

At the bottom of the liquid layer and the top of the gas layer

ψ̃ = 0,

∂x̃ψ̃ = ∂z̃ψ̃ = 0 (106)

and at the interface

ψ̃l = ψ̃g = 0,

∂z̃ψ̃l − ∂z̃ψ̃g = 0,

∂2
z̃ ψ̃l + Rel∂x̃T̃l = 0. (107)
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3.5.1 Fluid Flow and Temperature in the Liquid Layer

Solutions are obtained for a horizontal flow where both ψ̃l and ψ̃g are functions of z̃ alone

and

T̃l = x̃ + θ̃l(z̃), (108)

where θ̃l(0) = 0 such that Ti = T0 at x = 0. In this case the governing equations (104) are

reduced to

−ψ̃′′′′l + Grl = 0,

Prlψ̃
′
l − θ̃

′′
l = 0, (109)

where prime stands for the derivatives with respect to the z̃ coordinate.

Solving the evolution equations (109) subject to the boundary conditions at the bottom

and the free surface of the liquid layer, one finds the steady state solutions for the stream

function

ψ̃l = Rel

[
−

z̃(z̃ + 1)2

4
+ BoD

z̃(z̃ + 1)2(2z̃ − 1)
48

]
x̂, (110)

velocity

ũl = Rel

[
−

(z̃ + 1)(3z̃ + 1)
4

+ BoD
(z̃ + 1)(8z̃2 + z̃ − 1)

48

]
x̂, (111)

and temperature field

T̃l = x̃ + Mai

[
−

z̃2(3z̃2 + 8z̃ + 6)
48

+ BoD
z̃2(8z̃3 + 15z̃2 − 10)

960

]
(112)

describing the SUF regime. These solutions agree with the analytical solutions originally

obtained by Birikh [4] and later rederived by Kirdyashkin [5] and Villers and Platten [184]

using a one-sided model that ignores the effects of the gas phase.

Returning to dimensional units, we find that the flow velocity at the interface can be

written in the form

ui = uT + uB, (113)
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where

uT =
1
4
νl

dl

Mai

Prl
=

1
4
γdl

µl
τ (114)

is the contribution due to thermocapillary stresses and

uB =
1

48
νl

dl

Ral

Prl
=

1
48
βlρlgd3

l

µl
τ, (115)

is the contribution due to buoyancy. Note that, according to (114) we have Rel = 4uT dl/νl.

As Fig. 22 illustrates, the numerical results and the analytical solutions are in excel-

lent agreement for moderate temperature differences ∆T = 4 K and ∆T = 7 K at which
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Figure 22: Vertical profiles of the horizontal velocity ul,x (a) and temperature Tl (b) in
the liquid layer in the middle of the cell, x = L/2. Open and close circles correspond to
numerical results for ∆T = 4 K and ∆T = 7 K, respectively; solid lines show the theoretical
predictions.
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unicellular flow is found in the middle of the test cell. In particular, the predicted flow ve-

locity is in reasonably good agreement with experimental measurements despite the slight

difference in the applied ∆T and the numerics being restricted to 2D: The analytical so-

lution (111) predicts the maximal and minimal values of ul,x to be umin = −3.6 mm/s and

umax = 1.2 mm/s for ∆T = 4 K and d = 2.45 mm (which corresponds to Mai = 342.3 and

BoD = 0.85), while experimental observations [1] give umin = −3.7 mm/s and umax = 1.3

mm/s for ∆T = 3.8 K and dl = 2.5 mm (which corresponds to Mai = 370 and BoD = 0.89).

The assumption that the interfacial temperature varies linearly in the core region of the

flow has been widely used in previous studies without much justification, both for deriving

the solutions (111) and (112) for the return flow underlying the stability analyses [14,16,18]

as well as in models of the adiabatic Section of heat pipes [61, 189, 190], which assume

unidirectional flow in the liquid phase. However, the validity of this assumption cannot

be established by a one-sided model which ignores the transport in the gas phase. In fact,

when c̄a becomes sufficiently low, the interfacial temperature profile becomes nonlinear,

as will be shown in Chapter 5. Proper justification of the linearity assumption requires

showing that it is consistent with a steady-state solution of the transport equations in the

gas phase which satisfies all of the boundary conditions at the free surface.

3.5.2 Fluid Flow, Temperature, and Composition in the Gas Layer

The solutions for the gas velocity, temperature, and vapor density in the core region can be

found in the same way the solutions (111) and (112) were obtained in the liquid phase. The

solution for ρ̃v at the interface is first derived, however, before deriving the solution in the

bulk. The equilibrium vapor density is a function of the saturation temperature. Using the

Clausius-Clapeyron relation and the ideal gas law it is found

∂xρv =

(
1 −

R̄vTs

L

)
Lpv

R̄2
vT 3

s
∂xTs. (116)

Since the interface is flat, there is no pressure jump, and pg = pl. Furthermore, there is no

phase change, J = 0, so Ts = Ti according to (56) and ∂xTs = τ. For τx � T0, Ti can be
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replaced with the reference temperature T0. Nondimensionalizing (116) therefore yields

∂x̃ρ̃v = %̃ ≡
1 − υ
υ

ρ0
v

ρ0
l

dlτ

T0
= (1 − υ)(1 − ca)

G1

G2
Mai, (117)

where we introduced two new nondimensional combinations:

υ =
R̄vT0

L
, (118)

which quantifies the relative magnitude of latent heat compared with thermal energy, and

G1 =
L2Dpg

R̄2
vT 3

0 kl
= υ−2 Dpg

T0kl
, (119)

which describes the relative magnitude of the latent heat released (absorbed) at the interface

due to condensation (evaporation) compared with the horizontal heat flux in the liquid layer

due to conduction. Since ρv = ρ0
v at T = T0,

ρ̃v = %̃x̃, (120)

at the interface. In dimensional units, ρv = ρ0
v + %x, where

% =
ρ0

l

dl
%̃ =

1 − υ
υ

ρ0
v

T0
τ. (121)

For solutions where ψ̃g, θ̃g, and ρ̃v only depend on z̃, (105) can be reduced to

−ψ̃′′′′g + ΞT + Ξρ%̃ = 0,

ψ̃′g − Kαθ̃
′′
g = 0,

ψ̃′g − KDρ̃
′′
v = 0. (122)

Solving these equations subject to the boundary conditions at the interface and the top

wall of the cell stated previously yields the steady state solutions for the nondimensional

velocity

ũg = −R

 (z̃ − d̃g)(3z̃ − d̃g)

4d̃2
g

+ B
(z̃ − d̃g)(8z̃2 − d̃gz̃ − d̃2

g)

48d̃3
g

 x̂, (123)
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temperature

T̃g = x̃ −
R

Kα

 z̃2(3z̃2 − 8d̃gz̃ + 6d̃2
g)

48d̃2
g

+ B
z̃2(8z̃3 − 15d̃gz̃2 + 10d̃3

g)

960d̃3
g

 , (124)

and vapor density of the gas

ρ̃v = %̃x̃ − %̃
R

KD

 z̃2(3z̃2 − 8d̃gz̃ + 6d̃2
g)

48d̃2
g

+ B
z̃2(8z̃3 − 15d̃gz̃2 + 10d̃3

g)

960d̃3
g

 . (125)

The parameters R and B are analogous to the Reynolds number and the dynamic Bond

number, but incorporate the properties of both fluid layers:

R = Rel

(
1 +

BoD

12

)
+

d̃3
g

12Kν

(ΞT + Ξρ%̃),

B = −
d̃3

g

RKν

(ΞT + Ξρ%̃). (126)

Note that the form of the analytical solutions (111)-(112) and (123)-(125) is different com-

pared with Ref. [185] because the buoyancy force caused by the variation in the composi-

tion of the gas is explicitly taken into account in this analysis, and the different choice of

the origin of the coordinate system.

Since both Tg and pg are essentially constant (the variation in Tg over the core region of

the flow is about 0.4% for ∆T = 4 K, while the pressure drop due to viscous effects is neg-

ligible compared with ambient pressure), the concentration field is essentially proportional

to the vapor density, so that (125) yields:

cv =
R̄vTg

pg
ρv =

R̄vTg

pg
(ρ0

v + ρ0
l ρ̃v) (127)

or, after setting Tg ≈ T0,

cv = 1 − ca ≈ 1 − c̄a + ςx + ĉv(z), (128)

where ĉv(z) is the vertical concentration profile which corresponds to the second term on

the right-hand-side of (125) and the horizontal concentration gradient ς = ∂xcv = −∂xca is

given (again with the help of Clausius-Clapeyron relation) by

ς =
1 − c̄a

υ

τ

T0
=

1 − c̄a

1 − υ
ρ0

l

ρ0
v

%̃

dl
. (129)
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In particular, at the interface (128) reduces to

cv ≈ 1 − c̄a + ςx, (130)

Note that the relation (129) between the concentration gradient ς and the temperature gra-

dient τ holds for all the regimes, not just SUF.

Solutions (123)-(125) are valid in a region of length L, provided Ti and ca do not vary

significantly about their averages T0 and c̄a, respectively. This requires

τL � T0,

ςL � c̄a. (131)

Both of these conditions are in fact satisfied, and consequently the interfacial temperature

gradient τ is indeed constant when c̄a is sufficiently large (e.g., at atmospheric conditions)

(a)

(b) (c)

Figure 23: Vapor concentration cv in the gas phase for ∆T = 4 K. Entire cell (a) and the
blow-ups of the 3 mm-wide regions near the contact line at the cold end wall (b) and near
the contact line at the hot end wall (c). The difference between adjacent level sets is δc =

0.02% in (a) and δc = 0.01% in (b) and (c). Darker shade indicates higher concentration,
ranging from 3.82% to 4.46% in the gas phase. The concentration field is not defined in the
liquid phase.
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and ∆T is sufficiently small. This assumption is not valid, however, both at larger ∆T when

convection rolls appear (cf. Figs. 6 and 7) and at smaller c̄a, as will be shown in Chapter

5. Indeed, the numerical solution for a small ∆T = 4 K and large c̄a = 0.96 shown in

Fig. 23(a) has precisely the form (128) in the core region of the flow, where J is negligibly

small and the no-flux boundary condition for ρv at the interface is justified. The numerical

solution for the temperature (cf. Fig. 7), however, deviates noticeably from the analytical

solution (124) even for ∆T = 4 K, which corresponds to the SUF regime. There are two

reasons for this discrepancy. First, the boundary conditions for the temperature at the end

walls impose a large gradient in both the horizontal and the vertical direction, modifying

the temperature profile considerably compared with the analytical solution for a laterally

unbounded layer. Second, the thermal diffusivity αg is four times the molecular diffusivity

D (at atmospheric conditions the Lewis number is Le = αg/D = 2.93), so the temperature

disturbance extends considerably further away from the end walls for the temperature field,

compared with the concentration field, as Fig. 7 illustrates. Hence, due to the relatively

small aspect ratio of the gas layer (Γx,g = L/dg = 6.4) the end wall effects cause a substantial

perturbation of the temperature field even in the core region, which is not the case for the

density and concentration fields.

3.6 End Wall Effects

Near the end walls the assumptions and approximations valid in the core region break

down and Ti is no longer a linear function of x. Indeed, as Fig. 9 shows, the interfacial

temperature changes very quickly near the end walls. In fact, the corresponding thermal

boundary layers account for a significant fraction of the imposed temperature difference

∆T . The remainder of the temperature drop takes place inside the end walls, as can be seen

in Fig. 24. For these flow parameters, the variation in Ti over the core region of the flow

(roughly τL), the temperature drop across the thermal boundary layers, and that inside the

end walls (in the regions wetted by the liquid), are all comparable.

77



As shown in Fig. 24, the inner endwall temperature varies significantly with height,

reflecting the variation in the temperature drop δT across the walls (the difference between

the solid and the dashed line in Fig. 24). This temperature drop is negligible where the

wall is in contact with the gas for which kw � kg, but quite large below the contact line,

since kw is comparable to kl. The largest temperature drop is at the contact line, where heat

conduction through the wall is balanced not only by the heat conduction through the liquid,

but also by the heat released or absorbed as a result of phase change at the interface. It

should be pointed out, however, that the there is also a strong asymmetry between the two

end walls: the temperature drop below the contact line is relatively uniform along the hot

wall, but varies by an order of magnitude (between 0.2 K and 2.5 K) along the cold end

wall. This asymmetry is due to the structure of the thermal boundary layers. The boundary

layer thickness decreases with z at the cold end wall, but increases with z at the hot end

wall due to the opposite direction of the flow (down along the cold endwall, up along the

hot endwall).

Since the endwalls are fairly thin, heat conduction is effectively one-dimensional. Hence,
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Figure 24: Solid lines represent temperature distribution along the inner surfaces of the end
walls, dashed lines represented the temperature imposed on the outer surfaces of the end
walls, which are Tc = 288 K and Th = 298 K at the cold and the hot end wall, respectively,
corresponding to ∆T = 10 K.
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the temperature drop δT across each endwall can be directly related to the heat flux distri-

bution across the endwall, qw = kwδT/hw. Our results illustrate the pitfalls of the simplified

models (e.g., for describing condensation) that relate phase change to the imposed heat

flux. Both the spatial variation in qw and the asymmetry between the two endwalls clearly

demonstrate that the heat flux cannot be imposed externally. Instead, it has to be computed

using the solution of the proper transport equations.

3.7 Validity of the One-Sided Models

Previous studies based on one-side models used a number of assumptions, some of which

were poorly justified. For example, the interface was assumed rigid and, in most cases,

flat; the phase change was neglected; and either adiabatic thermal boundary conditions or

Newton’s law of cooling were used. In this Section, the two-sided model which describes

momentum, heat, and mass transport in both phases, as well as the phase change across the

entire interface, is used to validate the assumptions underlying one-sided models.

3.7.1 Interface Shape

Most existing one-sided models assume that the interface is flat and nondeformable in the

core region. The flow in the liquid layer can, in principle distort the free surface. The

relative importance of gravity, viscous, and inertial effects relative to surface tension is

described, respectively, by the Bond number

Bo =
ρlgd2

l

σ
=

d2
l

l2
c
, (132)

the capillary number

Ca =
µlui

σ
, (133)

and the Weber number

We = RelCa. (134)

The characteristic values of these parameters in this study are Bo = 3, Ca = 0.0002, and

We = 0.01. Since both Ca and We in this problem are much smaller than unity while Bo
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is O(1), the distortion of the interface due to the viscous and inertial effects associated with

the flow should be negligible and the surface shape should be determined by the balance of

gravity and capillarity alone.

To verify this, we computed the curvature κ of the interface numerically. Fig. 25 shows κ

nondimensionalized by the thickness dl of the liquid layer, for the 2D numerical simulation

with ∆T = 20 K. The relatively high curvature near the end walls is caused by the distortion

of the interface due to the deviation of the contact angle from 90◦. At this high temperature

gradient the interface in the core region of the flow is not perfectly flat: the sign of the

curvature oscillates, indicating a stationary surface wave caused by the convection rolls in

the liquid layer. However, the amplitude of these oscillations is quite small, κdl = O(We),

so the interface can indeed be considered essentially flat (and rigid) in the core region

(roughly 8 mm . x . 40 mm).

3.7.2 Phase Change

Existing one-sided models also ignore phase change at the interface, which is justified for

non-volatile liquids with low vapor pressures, such as decane, but certainly not for volatile

liquids, such as acetone or low-viscosity silicone oils. In order to determine whether phase

change can indeed be ignored, a nondimensional mass flux J̄ = J/J∗ is computed, where
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Figure 25: Nondimensional curvature of the liquid-vapor interface for ∆T = 20 K. The
variation in the sign reflects the distortion of the interface due to convection in the liquid
layer. The vertical range has been truncated to amplify the variation in the core region.

80



J∗ is taken equal to the characteristic mass flux

J∗ = ρlui (135)

in the liquid layer based on the tangential component of the velocity at the interface ui

(113).

As shown in Fig. 26, for the volatile silicone oil considered in this Chapter, the phase

change is localized to the boundary layers near the end walls. For ∆T = 4 K, when the

flow is SUF, the mass flux across the interface due to phase change in the core region of
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Figure 26: Nondimensional mass flux J̄ (solid line) and nondimensional heat flux q̄l in the
liquid towards the interface (dashed line) for unicellular flow, ∆T = 4 K. In (a) the vertical
range has been truncated to amplify the variation in the core region of the flow. Panels (b)
and (c) show the variation of the mass flux over its entire range near the end walls.
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the flow is indeed negligibly small compared to J∗. Moreover, as shown in Fig. 27, as

∆T increases and the flow transitions to SMC and OMC, the mass flux J is still negligible

compared to J∗, although it increases significantly and develops modulations corresponding

to the convection rolls in the liquid layer. Therefore, it is reasonable to assume that phase

change does not significantly affect the mass flux in the liquid at ambient conditions. This,

however, does not mean that phase change does not affect the heat flux inside (or between)

the two layers.

3.7.3 Newton’s Law of Cooling

Instead of the proper heat flux balance (45), most one-sided models use either Newton’s

law of cooling

∂nTl = −Bi
Ti − T0

dl
, (136)

where Bi is the Biot number, or treat the interface as adiabatic, which is a special case of

(136) with Bi = 0. For the adiabatic boundary condition at the bottom of the liquid layer,

the analytical solutions derived in Section 3.5 are only valid if the normal component of the

heat flux ql = −kl∂nTl in the liquid at the interface also vanishes, which corresponds to the

limit Bi = 0. In order to check whether ql is negligibly small, a nondimensional heat flux
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Figure 27: Nondimensional mass flux J̄ for different ∆T . The vertical range has been
truncated to amplify the variation in the core region of the flow. The flow at ∆T = 30 K is
time-periodic; a particular (representative) time instance is shown.

82



q̄l = ql/q∗ is computed, where q∗ is the conductive heat flux through the liquid layer along

the z direction,

q∗ = kl
δT
dl
, (137)

where δT = T |z=dl −T |z=0 is the characteristic temperature difference across the liquid layer

(e.g., δT = 0.75 K for ∆T = 4 K). Again, Fig. 26 shows that ql is small compared to

q∗ in the core region of the flow (3% or less), mostly justifying the use of the adiabatic

boundary condition at the interface away from the end walls. Moreover, a high degree of

correlation between J̄ and q̄l is found. Indeed, this is to be expected, since by ignoring

the heat conduction in the gas phase (45) can be reduced to ql ≈ LJ. However, there are

regions near the end walls where the heat flux qg = kg∂nTg in the gas phase cannot be

ignored, as is typically done in one-sided models, even at atmospheric conditions.

Furthermore, a closer inspection of Fig. 26 shows a rather counter-intuitive result. There

is a region near the cold wall (0.1 mm < x < 1.8 mm) where the liquid evaporates (J > 0),

and another region near the hot wall (45 mm < x < 48.1 mm) where the vapor condenses

(J < 0). Everywhere else the sign of J is as one would expect. For instance, vapor con-

denses immediately next to the cold wall (0 mm < x < 0.1 mm) and liquid evaporates

immediately next to the hot wall (48.1 mm < x < 48.5 mm). Our intuition, however, is

shaped primarily by cases involving thin films, where heat is transported through the liq-

uid by conduction: when the wall temperature is higher (lower) than the local saturation

temperature Ts, so is the interfacial temperature Ti, and one expects evaporation (conden-

sation). In this particular geometry, one expects condensation near a cold wall (where the

wall temperature is lower than Ts) and evaporation near a hot wall (where the wall temper-

ature is higher than Ts). Indeed, this is what is found very close to the end walls (within

0.1-0.4 mm). A little further away, heat transport is dominated by advection, not conduc-

tion (as the shape of the isotherms in Fig. 7 clearly illustrates), and Ti can easily become

higher (lower) than Ts near a cold (hot) wall. As it turns out, this is exactly what happens.

As mentioned previously, there is a high degree of correlation between J and ql, so it
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is natural to expect that it is the heat flux in the liquid (towards or away from the interface,

depending on the local flow field) that controls the sign of J. In order to see how the flow

in the liquid affects the phase change at the interface, it is instructive to compare the flow

field, the temperature field, the normal heat flux, and the mass flux for the case ∆T = 20 K

(which corresponds to the SMC regime). As Fig. 28 shows, in the presence of convection

rolls neither the heat fluxes at the two sides of the interface nor the mass flux (which is

proportional to the latent heat associated with phase change, LJ = qm = qg + ql) are

negligible even in the core region of the flow. Both J and ql are modulated by convection

in the liquid, with the minima of J and ql located above the rolls and the maxima located

between the rolls, while the heat flux qg in the gas phase is considerably smaller (although

still non-negligible). In particular, ql can be as high as 10% of q∗ and qg as high as 5%

of q∗ in the core region of the flow, illustrating the breakdown of the adiabatic boundary

condition in the multicellular regime, even at atmospheric conditions.

The same relation applies to the rolls adjacent to the end walls. In particular, a region

of condensation is found above, and a narrow region of evaporation to the right of, the roll

adjacent to the hot end wall for both ∆T = 20 K and ∆T = 4 K. The roll adjacent to the

cold end wall is too weak to drive condensation right above it. However, the flow near the

stagnation point at the contact line is fast enough at all ∆T to invert the sign of ql and cause

evaporation in a narrow region close to the cold wall. Right at the contact line the velocity

vanishes and ql becomes negative, producing an even narrower region of condensation.

3.8 Discussion

Comparison of the numerical results with the experimental data and analytical solutions

helps validate the two-side numerical model which accounts for momentum, mass, and

heat transport in both phases and phase change along the entire interface. At atmospheric

conditions, as Mai increases (while BoD = O(1) is fixed), the flow in the liquid layer tran-

sitions from the base return flow (SUF) to stationary multicells (PMC and SMC) and then
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oscillatory multicells (OMC). These results are consistent with the existing experimental

studies, and the critical values of the Marangoni number are similar to those found in the

experiments, although there are noticeable quantitative differences due to the differences

between the numerical simulations and experiments. It was found that the geometric ef-

fects – specifically the curvature of the free surface due to wetting of the cavity walls by

the fluid and the confinement effect of the side walls – have a weak effect on the convection

pattern, at least in the symmetry plane of the cavity. Therefore the most likely reason for

the discrepancies between the numerics and the experiment is the uncertainty in the values

of various material parameters. Moreover, the vertical profiles of velocity and temperature
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Figure 28: Flow structure, heat flux, and temperature field for the case when ∆T = 20 K.
The middle panel shows the (nondimensionalized) conductive heat flux at the liquid side
ql = −kl∂nTl, the vapor side qg = kg∂nTg, and the heat flux associated with phase change,
qm = LJ = ql + qg. The vertical range has been truncated to amplify the variation in the
core region of the flow.
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in the core region of flow where SUF is observed are compared with the analytical solutions

for base return flow and the results show good agreement.

Theoretical analysis of the unbounded base return flow has been extended to the gas

layer, and the self-consistent analytical solutions of the two-phase flow suggest that the

transport in the gas phase has a significant effect on the flow in the liquid phase. The in-

terfacial temperature gradient τ is controlled by the density and concentration gradient of

vapor in the gas phase (129). In particular, the assumption of a linear interfacial tempera-

ture profile used in one-sided models can be justified by showing its consistency with the

solutions of transport equations in the gas phase. This assumption is only valid at low ∆T

and high c̄a. Furthermore, the value of τ̄ is a free parameter, in confined systems, τ̄ should

be determined by matching this solution in the core region of flow with that in the regions

near the end walls, where phase change cannot be neglected.

Various assumptions used in one-sided models have been validated using this two-sided

model. It was found that in the SUF regime, the assumptions of flat interface, negligible

phase change and heat flux through the interface, and the linear interfacial temperature are

in general satisfied in the core region of the flow, but not near the end walls. Actually,

a counter-intuitive effect was found near the end walls which has never been previously

observed either in experiments or in numerical simulations using one-sided models: there

is a region of evaporation close the cold end wall and a region of condensation near the

hot end wall. This effect can be explained by advective heat transport in the liquid layer.

When additional convection rolls appear in the core region of the flow and advective heat

transport becomes progressively stronger, the heat flux through the interface can no longer

be ignored even in the core region of flow, and Newton’s law of cooling breaks down. This

suggests that one-sided models might be reasonably accurate for describing the base flow

(in SUF regime), which corresponds to low ∆T and high c̄a. However, the results based

on one-sided models are not quantitatively accurate at high ∆T when the transport in the

gas phase becomes more important. Furthermore, at low c̄a, the assumption of a linear
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interfaical temperature profile breaks down and a two-sided model should be used.
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CHAPTER 4

CONVECTION UNDER PURE VAPOR

As noted previously, many of the assumptions underlying current models of two-phase

cooling devices are based on assumptions that have been justified, at least to some ex-

tent, under atmospheric conditions when the gas phase is dominated by noncondensables

(air). On the other hand, it is well known that noncondensables significantly impede phase

change and hence degrade the thermal performances of two-phase cooling devices [191].

Hence, their optimal operating conditions correspond to the opposite limit, when noncon-

densables are nearly absent and the gas phase is dominated by the coolant vapor. Recent

experimental studies [1] showed that the flow of the liquid confined in the sealed cavity

shown in Fig. 4 changes drastically when most of the air is removed. In particular, con-

vection patterns are strongly suppressed as the total pressure pg, and hence the average

concentration c̄a of noncondensables decreases, while the flow speed in the liquid layer un-

expectedly remains essentially the same for a range of pg varying by more than two orders

of magnitude, from atmospheric pressure patm = 101 kPa down to pg = 5 kPa, which is just

above the fluid saturation pressure.

This counterintuitive result cannot be explained using a one-sided model, and illus-

trates the limitations of an approach that ignores transport in the gas phase. Furthermore,

it shows that the results obtained under ambient conditions, when air dominates, cannot be

extrapolated to the opposite limit when vapor dominates, which is the more relevant situ-

ation for thermal management applications. A few theoretical studies [49, 50, 82, 90, 91]

have considered the vapor-dominated limit. However, these studies used very restrictive

assumptions and/or a very crude description of one of the two phases, and shed little light

on the two-phase flow driven by a combination of buoyancy and thermocapillary stresses.

Hence, this chapter details the predictions of the two-sided transport model of two-

phase flow in the limit when there are no noncondensables in the gas phase, i.e., c̄a = 0.
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The same fluid properties are used in this chapter as those used in the air-dominated limit to

facilitate comparison with the air-dominated limit (see Table 2). As discussed in Chapter 3,

the contact angle has a minor effect on the shape of the free surface and the flow everywhere

except very near the contact lines, and the 2D approximation provides reasonably accurate

results in the vertical mid-plane y = W/2 of the cavity. Therefore the 2D flow in that mid-

plane will be considered in this chapter and the contact angle θ ≡ 50◦. The results discussed

in most of this chapter were also reported in [192].

4.1 Fluid Flow and Temperature Fields

To study how the flow in both layers changes with the applied temperature difference,

simulations were performed for values of ∆T ranging from 10 K to 30 K using the KTG

expression for the evaporation/condensation mass flux (56) with accommodation coefficient

χ = 1. Over this range of ∆T under atmospheric conditions, the flow is found to transition

from steady unicellular to steady multicellular to oscillatory convection, as discussed in

Chapter 3. In the absence of noncondensables, at otherwise identical conditions, the flow

was found to reach steady state for all of these values of ∆T . The corresponding streamlines

in both the liquid and the vapor phase are shown in Fig. 29. The flow in the liquid layer

is markedly different under vapor (c̄a = 0) and under air (c̄a = 0.96). Under air the flow

in the central region of the cell is best described as a horizontal return flow with multiple

embedded convection rolls whose strength increases with ∆T (see Fig. 6). In this case

thermocapillarity is the dominant driving force [185]. The flow under vapor, however, is

dominated instead by two counterclockwise convection rolls, a larger one near the cold

wall and a smaller one near the hot wall; and this flow structure remains qualitatively the

same as ∆T increases. The flow is much stronger near the end walls than that in the central

region, suggesting that the main driving force in buoyancy, vs. thermocapillarity.

The flows in the vapor phase also differ at c̄a = 0 and 0.96. Under air a (clockwise)

recirculation flow is found in the vapor phase, which mirrors the flow in the liquid phase. It
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is driven primarily by thermocapillarity, with buoyancy driving counterclockwise recircu-

lation in the top corners. Under vapor, the flow in the vapor phase becomes unidirectional,

where the liquid evaporates near the hot wall, and the resultant vapor flows from the hot

wall to the cold wall and condenses there. Again, increasing ∆T has essentially no effect on

the structure of the flow field. The observation from the numerics that the convection pat-

tern is independent of the applied temperature difference, at least qualitatively, is consistent

with experimental results of Li et al. [1] which show that transitions from steady unicellu-

lar to steady multicellular to oscillatory convection observed under atmospheric conditions

disappear when (most of) the air is removed.

Table 3 summarizes the average interfacial velocities predicted by the numerical model

(along with the analytical estimates derived below) for different values of ∆T . Not only

are the flow patterns under air and under vapor significantly different, but the magnitudes

of the velocity are quite different as well. While the flow is relatively fast under air (the

largest interfacial velocity is of order 1 cm/s), the largest interfacial velocity is reduced to

∆T = 10 K

∆T = 20 K

∆T = 30 K

Figure 29: Streamlines of the flow under pure vapor for different ∆T . The contact angle
is θ = 50◦. As usual, the gray (white) background indicates the liquid (gas) phase; the hot
end wall is on the right, and the cold end wall is on the left.
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Table 3: The spatial average of the interfacial velocity 〈|ui|〉x and the estimates of thermo-
capillary and buoyancy contributions based on (114) and (152). A time-averaged value is
given for the time-periodic flow under air at ∆T = 30 K.

under vapor under air
∆T 〈|ui|〉x uB uT 〈|ui|〉x uB uT

(K) (mm/s) (mm/s) (mm/s) (mm/s) (mm/s) (mm/s)
10 0.5 1.3 0.002 6 1.3 5.3
20 0.9 2.6 0.005 9.4 2.6 7.8
30 1.1 3.8 0.007 11.6 3.8 10.7

a few mm/s under vapor. In order to understand this rather significant reduction in the flow

velocity it is helpful to compare the temperature fields in the two cases.

Figure 30 shows the isotherms for both cases when applied temperature difference is

∆T = 10 K. Under air, the temperature changes gradually between the hot end and the cold

end in both phases. Under vapor, the isotherms are clustered near the hot and cold end

walls, indicating the existence of thin thermal boundary layers along the end walls, and the

temperature is nearly constant over the central region (i.e., most) of the cell. Moreover, the

temperature is essentially constant along the entire interface. This suggests that thermo-

capillarity is significantly reduced under vapor. Indeed, for a liquid in equilibrium with its

vapor, the interfacial temperature is set by the saturation temperature, which depends only

on the absolute pressure. Since the latter is effectively constant, the interfacial temperature

(a)

(b)

Figure 30: Temperature field for the steady-state flows (a) under air and (b) under vapor. In
both cases ∆T = 10 K. The temperature difference between adjacent isotherms is 0.5 K.
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must also be nearly constant, as discussed in more detail next.

4.2 Theoretical Analysis

The numerical results presented above can be understood qualitatively, and in some cases

even quantitatively, by identifying the key physical processes in various regions of the

flow. This allows the comprehensive model presented in Chapter 2 to be simplified to a

form where approximate solutions or, at least, reasonable estimates for various fluxes and

variations, can be derived for the c̄a = 0 limit considered here.

4.2.1 Interfacial Temperature

The variation of the temperature at the interface between the liquid and the gas phase Ti

(about its average value 〈Ti〉x ≈ T0) is shown in Fig. 31. When the system is under air at

atmospheric pressure, Ti(x) is a nearly periodic modulation about a linear profile over most

of the interface, as observed, for instance, in the experiments of Riley and Neitzel [12].

The modulation corresponds to the advection of heat by convective flow and the average

interfacial temperature gradient τ̄ is comparable to the imposed temperature gradient ∆T/L.

In the absence of air, the interfacial temperature becomes essentially constant. The value of

τ̄, and the corresponding thermocapillary stresses, decrease by three orders of magnitude,

compared with the values found under air at the same ∆T .

This drastic reduction in the magnitude of τ̄ can be explained by a simple argument.

In the absence of noncondensables, the diffusion of vapor does not inhibit phase change,

so the interfacial temperature should be very close to the saturation temperature due to the

large value of the latent heat in (56). On the other hand, Ts is a function of the vapor

pressure pv, which is nearly constant. Hence Ts is nearly constant, and so is Ti.

A quantitative estimate for the variation of Ti in the two limits can be obtained by a

straightforward analysis of the theoretical model. Using (56) the interfacial temperature
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can be written as

Ti ≈ Ts +
2 − χ

2χ

√
2π

R̄vTs

R̄vT 2
s

ρvL
J︸                    ︷︷                    ︸

Tp

−
Ts

ρlL
(pl − pv)︸         ︷︷         ︸

Tc

. (138)

The variation ∆Ti ∼ τ̄L in the interfacial temperature over the central portion of the cell is

then the sum of the contributions describing the variations ∆Ts, ∆Tp, and ∆Tc, or the three

terms on the right hand side of (138). These terms describe the effect of variation in the

saturation pressure, phase change, and interfacial curvature, respectively.

First consider the last term, ∆Tc. Since the fluid velocities are very low, the pressure

jump across the interface is determined by the Young-Laplace pressure |pl − pv| ≈ κσ,
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Figure 31: Interfacial temperature (a) under air and (b) under vapor. To amplify the varia-
tion of Ti in the central region of the cell the variation δTi = Ti − 〈Ti〉x about the average
value is plotted with truncated the y-axis.
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where the largest curvature of the interface is comparable to the inverse of the capillary

length scale lc (83). Furthermore, Ts ≈ T0, so the temperature variation due to the curvature

of the interface is

∆Tc ∼
T0

L

√
σg
ρl
≈ 2 × 10−5 K, (139)

irrespective of the presence or absence of noncondensables.

The magnitude of the temperature variation ∆Tp due to the latent heat absorbed or

released at the interface is controlled by the variation in the mass flux ∆J, which describes

the phase change at the interface. In the absence of noncondensables, the amount of latent

heat absorbed (released) at the interface, and therefore the rate of phase change, in the

region adjacent to the hot (cold) end wall is only constrained by heat conduction. Since kw

is substantially higher than both kg and kl, thermal resistance of the walls can be ignored.

Furthermore, since kl � kg, heat conduction through the gas can also be ignored. The

relevant length scale is the thickness of the liquid layer dl and the relevant temperature

scale is ∆T/2. Ignoring the negligible heat flux in the gas phase and using (45) therefore

leads to the following estimate:

∆J ∼
kl

L

∆T
2dl

. (140)

Substituting the fluid properties from Table 2 gives ∆J ∼ 10−3 kg/(m2s) for ∆T = 10 K,

which is consistent with the variation in J across the core region of the flow obtained in

the numerical simulations (cf. Fig. 32(b)). With the typical choice χ = 1 (for a nonpolar

liquid)

∆Tp ∼
2 − χ

2χ

√
2π

R̄vT0

R̄vT 2
0

ρvL
∆J (141)

yields ∆Tp ∼ 8 × 10−4 K.

When the gas phase is dominated by noncondensables (air), phase change is suppressed,

since vapor has to diffuse towards/away from the interface. In this case the mass flux across

the interface is limited by diffusion and the variation in the mass flux can be estimated as

∆J ∼ D |∂nρv| ∼ D
∆ρv

2dl
, (142)
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where ∆ρv is the variation of the vapor density, which can be estimated from the equilibrium

values of the vapor pressure at Th and Tc. With the help of (14) and (41) it is found that

∆ρv ∼
∂ρv

∂pv

∂pv

∂T
∆T ∼

Lpv

R̄2
vT 3

0

∆T, (143)

and therefore

∆J ∼ D
Lpv

R̄2
vT 3

0

∆T
2dl

. (144)

For ∆T = 10 K this estimate gives ∆J ∼ 7×10−4 kg/(m2s). A more accurate estimate can be

obtained by using the variation of temperature along the interface ∆Ti ≈ τ̄L instead of ∆T in

(144), which gives a slightly lower value ∆J ∼ 2 × 10−4 kg/(m2s) that is in better agreement

with the numerical result (cf. Fig. 32(a)). However, for the purposes of estimating ∆Ti the

former, less accurate, estimate is sufficient and gives ∆Tp ∼ 5 × 10−4 K.
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Figure 32: Mass flux for different ∆T (a) under air and (b) under vapor. The y-axis is
truncated so that the details of the variation in the core region of the flow can be seen.
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Finally, the magnitude of the variation in the saturation temperature ∆Ts is controlled

by the variation of the vapor pressure ∆pv, which differs greatly in the two limits considered

here. When the gas phase is pure vapor, the vapor pressure is equal to the absolute pressure

in the gas phase. The variation of the absolute pressure along the liquid-gas interface

can be estimated using the pressure drop for the flow of viscous vapor. The flow has an

approximately Poiseuille profile between the two large parallel planes formed by the top

wall and the liquid-vapor interface, with the separation equal to the vapor layer thickness dg.

The vapor speed is much larger than that of the liquid-vapor interface, so both planes can

be assumed stationary. The volumetric flow rate per unit width (in the y direction) can be

estimated by integrating the phase change mass flux over the region of intense evaporation

(which has a width of order dl) Q̇ ∼ ∆Jdl/ρv yielding

∆pv ∼ 12
µvQ̇L

d3
g
∼ 12

µvdlL
ρvd3

g
∆J, (145)

which together with (14) and (41) gives

∆Ts =
∂Ts

∂pv
∆pv ∼ 12

µvdlLT0

ρ2
vd3

gL
∆J. (146)

Using the estimate (140) for ∆J gives ∆Ts ∼ 3 × 10−7 K.

In the limit where noncondensables are dominant, the vapor pressure is equal to the

partial pressure instead of the absolute pressure. With the help of (14), (41) and (143) it is

found

∆Ts =
∂Ts

∂pv

∂pv

∂ρv
∆ρv ∼

R̄vT 2
0

Lpv
R̄vT0

Lpv∆T
R̄2

vT 3
0

= ∆T, (147)

so that, in this case, it is the imposed temperature difference ∆T instead that sets the scale

for the variation in Ts.

Table 4 summarizes the estimates that quantify the contributions of these various phys-

ical effects to the variation in the interfacial temperature. Clearly, the dominant physical

effect is different for the two limiting cases considered here. Under pure vapor, ∆Ts �

∆Tc � ∆Tp, so that the variation in Ti is mainly due to the latent heat released or ab-

sorbed at the interface. However, despite the absence of noncondensables that suppress
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Table 4: Estimates of how various physical effects contribute to the variation in the interfa-
cial temperature Ti, for ∆T = 10 K.

∆Ts (K) ∆Tp (K) ∆Tc (K) ∆Ti (K)
under vapor 3 × 10−7 8 × 10−4 2 × 10−5 8 × 10−4

under air 10 5 × 10−4 2 × 10−5 10

phase change, this is a fairly weak effect: the resulting variation ∆Ti ≈ ∆Tp is almost

four orders of magnitude less than the imposed temperature difference ∆T . Under air,

∆Tc � ∆Tp � ∆Ts, so that the variation in Ti is mainly due to the variation of the sat-

uration temperature, ∆Ti ≈ ∆Ts ∼ ∆T . Both estimates are in good agreement with the

numerical results presented in Fig. 31.

4.2.2 Thermal Boundary Layer Thickness

The analysis presented above gives an estimate for the interfacial temperature variation

in the core region of the flow. However, as Fig. 31 illustrates, the interfacial temperature

varies much more rapidly near the end walls than in the central portion of the cell, changing

by δTi = O(∆T ) across very thin interfacial thermal boundary layers. The thickness δx of

these boundary layers can be estimated using an energy balance [193]. Since the contact

lines correspond to the stagnation points of the flow, the heat transport in the boundary

layers is dominated by conduction and, since kg � kl both under vapor and under air, the

heat flux balance (45) can be simplified, yielding

LJb = kg∂nTg − kl∂nTl ≈ kl
δTb

δxi
, (148)

where δTb = T in
i − T out

i is the interfacial temperature variation across the boundary layers,

and Jb is the mass flux within the boundary layers. Here the superscripts “in” and “out”

denote the values on the inside and on the outside, respectively, of the thermal boundary

layer. The mass flux Jb can be estimated by ignoring the first (curvature) term on the right-

hand-side of (56), so

Jb ≈
2χ

2 − χ

√
R̄vT in

i

2π

(
ρvL

R̄vT in
i

T in
i − T in

s

T in
s

)
. (149)
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The saturation temperature is essentially constant across the boundary layer, T in
s ≈ T out

s .

Furthermore, the mass flux is much smaller outside of the boundary layers, T out
s ≈ T out

i .

Therefore, T out
i ≈ T in

s . Combining with (148) and (149) this yields an estimate of the

interfacial thermal boundary layer thickness

δxi ∼
2 − χ

2χ

√
2π

R̄vT in
i

(
klR̄vT in

i T in
s

ρvL
2

)
∼

dl

K
, (150)

where K is the “non-equilibrium parameter”

K =
2χ

2 − χ

√
R̄vT0

2π
ρvL

2dl

klR̄vT 2
0

(151)

introduced by Burelbach et al. [194], which defines the ratio of the latent heat flux at the

interface to the conductive heat flux in the liquid. For the conditions of the present study

K = 6.8 × 103, so δx ∼ 0.37 µm, which is two orders of magnitude less than the spatial

resolution of the finest computational mesh used here, explaining the singular behavior of

J and Ti in the vicinity of the contact lines.

It should be noted that the bulk thermal boundary layers inside the liquid layer that

were discussed in Chapter 3 are much thicker. The thickness of the bulk thermal boundary

layers is determined by the balance of advection and conduction, which gives an estimate

δxb = (dl + dc)/Pel ∼ 35 µm for the largest ∆T considered here, a value comparable to the

spatial resolution of the numerical simulations.

4.2.3 Interfacial Flow Speed

The magnitude of the flow velocity at the interface (113) for different c̄a can be estimated

from the analytical solution (111) for the uniform flow in an unbounded fluid layer [4, 5,

184]. However, in the present case it is more appropriate to express the contribution due to

buoyancy in terms of the laboratory, vs. interfacial, Rayleigh number

uB =
1

48
νl

dl

RaL

Prl
≈

1
48
βlρlgd3

l

µlL
∆T. (152)

While in a laterally unbounded layer both uT and uB are controlled by the interfacial tem-

perature gradient τ, in a laterally bounded layer, close to the walls (where ui is maximum
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under air) uB is instead controlled by the imposed temperature difference ∆T , which sets

the vertical temperature variation in the liquid layer under both air and vapor. For the

range of ∆T considered here, the relation between τ and ∆T is not straightforward. For

instance, under air the relationship is nonlinear (86). Furthermore, while uT is sensitive to

the presence of noncondensables, uB is not. The ratio of the two velocities is

uT

uB
≈ 12

Lτ̄
∆T

Bo−1
D , (153)

where the dynamic Bond number BoD = 0.86 for the liquid layer of thickness dl = 2.45

mm considered here.

The values of various nondimensional parameters are summarized in Table 5. Under

air Lτ̄/∆T varies from about 0.2 to 0.3 for ∆T between 10 K and 30 K, so the flow is

dominated by thermocapillary, ui ≈ uT . Under vapor Lτ̄/∆T � 1, so the flow is dominated

by buoyancy, ui ≈ uB and should be slower by a factor of 3 to 4, compared with the flow

at the same ∆T under air. Overall, these estimates are consistent with the numerical results

presented in Table 3, although the numerically computed flow speeds under vapor are found

to be even smaller than uB, since the flow profile differs substantially from the analytical

solution on which the estimate (113) is based (the flow is substantially slower than uB far

from the end walls).

4.2.4 Newton’s Law of Cooling

The numerical results presented in Section 3.7 show that Newton’s law of cooling (136) at

the interface completely breaks down under air. In particular, for SUF, the assumption of

Table 5: The values of nondimensional parameters for the numerical solutions under vapor
and under air.

under vapor under air
∆T (K) 10 20 30 10 20 30

RaL × 10−3 1.6 3.2 4.7 1.6 3.2 4.7
Mai 0.22 0.48 0.72 547 804 1096

Lτ̄/∆T 1.3 × 10−4 0.3 0.22 0.2
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an adiabatic interface (Bi = 0) is not valid near the end walls (although it might be justified

for the regions away from the end walls); for SMC and OMC, this assumption breaks down

over the entire interface.

Under pure vapor, assuming the heat conduction in the gas layer can be ignored, the

heat flux balance relation (45) reduces to

LJ ≈ −kl∂nTl. (154)

Furthermore, ∆Tc and ∆Ts are negligible compared to ∆Tp, so Tc ≈ 0 and Ts ≈ T0 in (138),

which yields Newton’s law of cooling (136) with

Bi ≈ K. (155)

Figure 33 shows the local Biot number computed from the numerical solutions in the

two limits. The local values of Bi under pure vapor are indeed comparable to the theoretical

estimate (155) over the entire x interval. In contrast, under air Bi varies significantly, and

even changes sign, indicating that there is no direct correlation between the deviation of

the interfacial temperature from a constant reference value and the normal component of

the temperature gradient in the liquid layer. While it is known that the Biot number gen-

erally depends on the horizontal wave-number of convective motions [195], the convective

patterns at ∆T . 20 K appear reasonably monochromatic (see Fig. 6), so such significant

variation in Bi is a nontrivial result.

It should be noted that the “non-equilibrium parameter” (151) also determines how

much the interfacial temperature Ti can deviate from the local saturation temperature Ts.

Ignoring the term Tc in (138) and using the estimate (140) for the mass flux J we quickly

find that, regardless of c̄a,

|Ti − Ts| .
∆T
K
∼ 10−3 K. (156)
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4.3 Comparison of Different Phase Change Models

The analysis of the KTG-based model shows that significant gradients in interfacial tem-

perature can only be established when noncondensables impede the transport of vapor from

the hot end to the cold end of the cell. Hence, when air is removed completely from the test

cell, thermocapillary stresses are dramatically suppressed, and the interfacial flow speed

decreases significantly. However, the experiments show the observed flow speed under al-

most pure vapor (when most of the air has been removed) are comparable to, and near the

cold end even slightly higher than, those under air [1]. Since buoyancy is unaffected by

the presence of noncondensables, this implies that the thermocapillary stresses and hence

the interfacial temperature gradient τ̄ in the experiment should be essentially the same at
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Figure 33: Local Biot number computed using (281) for different ∆T (a) under air and
(b) under vapor. Under vapor T0 is set as the interfacial temperature at the point where
∂nTl = 0, while under air T0 = (Tc + Th)/2. The vertical range in (a) is truncated to amplify
the variation in the core region of the flow.
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atmospheric conditions and when most of the air has been removed.

There could be several explanations for this discrepancy. The possibility that even a

small amount of noncondensables could have an unexpectedly strong effect on the flow

will be considered in Chapter 5. In this chapter two of other potential explanations for the

unexpected dependence of the interfacial temperature gradient on c̄a will be investigated.

First, the temperature across the interface may not necessarily be continuous under intense

phase change. Second, it is possible that the value of the accommodation coefficient for

silicone oil, which is not well established, could differ substantially from unity.

The predictions of KTG could possibly break down under intense phase change, so a

different theoretical model may be required to describe phase change in the (near) absence

of noncondensables. Indeed, SRT and NET predict a temperature jump across the liquid-

vapor interface, which could, in principle, lead to a variation in the temperature of the

liquid that exceeds the variation in the temperature of the gas at the interface, and hence

produce stronger thermocapillary stresses. Some experimental studies report temperature

jumps across the interface as high as 3 K for unforced evaporation and as high as 10-20 K

for evaporation of heated layers of water [182, 196, 197].

These three different models of phase change were therefore used to compute the

steady-state flow under vapor for ∆T = 10 K below. For KTG and NET, the accommo-

dation coefficient is set as unity (χ = 1), following the vast majority of theoretical studies
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Figure 34: Mass flux for ∆T = 10 K. The vertical range is truncated to amplify the variation
in the core region of the flow.
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of nonpolar liquids. The corresponding mass flux J is shown in Fig. 34. Quite interest-

ingly, the spatial profile of J is independent of the choice of the model — the three curves

are indistinguishable. The temperature profiles on the liquid side of the interface shown

in Fig. 35(a) are also very similar for all three models. Most importantly, the results of

all three models are consistent with the estimates derived in the previous section. In other

words, all three models unequivocally predict that the thermocapillary stresses should es-

sentially disappear when the noncondensables are removed from the cell.

As expected, NET and SRT both predict that the temperature field is not continuous

across the interface. Fig. 36 shows the temperature jump between the liquid and the vapor

side of the interface, Tl − Tg, computed numerically for these two phase change models
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Figure 35: Interfacial temperature profile for ∆T = 10 K. To amplify the variation of Ti

in the core region of the flow, the deviation δTi = Ti − 〈Ti〉x above the average value (on
the liquid side for NET and SRT) is plotted with truncated the y-axis.. The accommodation
coefficient is χ = 1 in (a) and 0.05 in (b).
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with and without the cross terms. NET and SRT produce essentially identical profiles,

with the largest temperature jump occurring at the cold (hot) wall where vapor condenses

(liquid evaporates) and reaches values of 0.3 K (-0.3 K), or about 3% of the applied tem-

perature difference ∆T = 10 K. The typical values in the core region of the flow are much

smaller (less than 0.1%), so away from the contact lines the temperature can be considered

continuous across the liquid-vapor interface.

When the cross terms are ignored, the temperature jump varies monotonically between

the two end walls. On the other hand, when the cross terms are taken into account, the

temperature jump profile becomes non-monotonic, with Tl > Tg in a narrow region near the
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Figure 36: Temperature jump across the interface predicted by NET and SRT without (a)
and with (b) the cross terms, for ∆T = 10 K. The vertical range is truncated to amplify the
variation in the core region of the flow.
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hot end wall. These results are consistent with the relation (58) shared by the two models,

which predicts that when r21 = 0 the temperature jump is proportional to the monotonically

varying heat flux qv (not shown). When r21 , 0, Tl − Tg depends on both qv and J, which

typically have opposite signs, explaining the loss of monotonicity.

The variation in the vapor temperature along the interface far exceeds that in the liq-

uid, although both are substantially less than the imposed temperature difference ∆T . This

means that KTG provides a reasonably accurate description of the phase change process

and the temperature can be assumed to be continuous across the interface without introduc-

ing significant error.

4.4 Dependence on the Accommodation Coefficient

Another possible explanation for the discrepancy between the model predictions and the

experimental observations is that the assumed value of the accommodation coefficient χ is

incorrect. As discussed earlier, ∆Ti ≈ ∆Tp under vapor. Assuming that the mass flux J is

independent of the details of the phase change model (and, in particular, the choice of χ),

from (141) it follows that

∆Ti ∝ f (χ) =
2
χ
− 1 (157)

for small values of χ. While there are no reliable values for the accommodation coefficient

reported in the literature for 0.65 cSt silicone oil, values as low as 10−2 have been reported

for water [182, 198, 199]. The numerical simulations were therefore repeated for χ = 0.05,

which is most likely much less than the actual value for the silicone oil (which is a non-

polar liquid), to quantify the dependence of the results on the accommodation coefficient.

According to (157), this should increase ∆Ti by a factor of (2χ−1 − 1) ≈ 40.

The results of numerical simulations presented in Fig. 37 show that the mass flux J is

indeed independent not only of the choice of the phase change model, but also of the value

of χ, at least over this range of accommodation coefficients. This result can be easily ratio-

nalized by generalizing the argument which lead to the relation (140) between the overall
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variation ∆J and the heat flux through the liquid layer. In the absence of noncondensables

the heat flux through the gas layer is negligibly small, while the interfacial temperature is

effectively constant. Under these conditions, thermocapillarity is negligible and the flow in

the liquid layer is governed solely by buoyancy. This flow, along with the heat conduction

through the liquid, determines the temperature distribution, and hence the conductive heat

flux kl∂nTl ≈ LJ, along the entire interface.

Fig. 35(b) compares the interfacial temperature Ti computed using KTG and NET for

χ = 0.05. The interfacial temperature profiles remain similar, even for this value of χ. As

expected, the interfacial temperature variation ∆Ti increases significantly as χ decreases

from unity to 0.05. To quantify the changes in the interfacial temperature associated with
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Figure 37: Mass flux using for different values of the accommodation coefficient for (a)
KTG and (b) NET. In both cases ∆T = 10 K and the vertical range is truncated.
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the changes in the accommodation coefficient, the data from Fig. 35 were replotted in

Fig. 38, which shows the temperature variation δTi = Ti − 〈Ti〉x about the mean rescaled by

the dimensionless factor f (χ). The scaled interfacial temperature profiles are essentially in-

dependent of both the choice of model and the value of χ. This means that ∆Ti does indeed

scale with f (χ), as predicted previously. While ∆Ti increases as χ decreases, in order to

achieve ∆Ti of order ∆T , the value of χ has to be reduced to about 10−4 which, for silicone

oil, appears unphysical. Hence, the only logical conclusion is that an improper choice of the

value of the accommodation coefficient also fails to account for the discrepancy between

theoretical predictions and experimental observations.

Finally, while the value of the accommodation coefficient does affect the variation of

Ti along the interface, it has almost no effect on the temperature jump Tl − Tg across the
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Figure 38: Scaled interfacial temperature profiles for (a) KTG and (b) NET. In both cases
∆T = 10 K and the vertical range is truncated.
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interface. As Fig. 36 illustrates, the temperature jump is independent of the value of χ

along the entire interface when the cross terms are ignored. Including the cross terms in

the phase change model leads to a very weak dependence on χ, which is constrained to a

narrow region near the hot end wall (where evaporation is significant).

4.5 Discussion

Comparison of the results presented in Chapters 3 and 4 shows that the presence of non-

condensable gases has a profound effect on the fluid flow and heat and mass transfer. For

example, the convection patterns in the range of ∆T considered here are completely dif-

ferent. Moreover, the flow speed is also significantly reduced in the system under pure

vapor. It is found that the difference is due to the thermocapillary stresses which essentially

disappear in the absence of air. In both cases, the interfacial temperature is determined

by the saturation temperature, with a small deviation (of order 10−3 K) due to the latent

heat released/absorbed at the interface as a result of phase change. When the gas phase is

dominated by air, as the concentration gradient is set up along the interface, the gradient

in the saturation temperature is comparable to the imposed temperature gradient, and the

flow is primarily driven by thermocapillary stresses. When the air is completely removed,

the concentration gradient disappears, thermocapillarity becomes negligible, and the flow

is driven primarily by buoyancy.

While the numerical simulations are qualitatively consistent with the theoretical analy-

sis, there is discrepancy in the flow speed between the numerical predictions and the exper-

imental observations [1]. Some potential reasons have been investigated and it was found

that neither the temperature jump across the interface, which is predicted by some phase

change models, nor the dependence of the interfacial temperature on the accommodation

coefficient were sufficient to explain the discrepancy. A more careful examination of the

experimental conditions shows that although most of the air was removed from the system,

there are still a small amount of air estimated to be around 14%. To better understand the
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effect of residual noncondensables on the heat and mass transport in confined and sealed

two-phase flows of volatile fluids, the case of low, but nonzero, c̄a will be considered in the

next Chapter.

Two-phase cooling devices in practice are never completely free of noncondensables

during operations. Their optimal operating conditions are much closer to the limit consid-

ered in this Chapter (two-phase flow under pure vapor) than the limit considered in Chapter

3 (two-phase flow under atmospheric conditions). The significant differences we discov-

ered between these two limits illustrate the danger of extrapolating the results and intuition

obtained under atmospheric conditions and applying them to models of cooling devices.

For instance, the assumption used by most heat pipe models that phase change is negligible

in the “adiabatic” region holds under atmospheric conditions, but breaks down completely

under pure vapor (and, as we show in the next Chapter, for low c̄a in general).
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CHAPTER 5

CONVECTION AT REDUCED PRESSURES

Chapters 3 and 4 describe buoyancy-thermocapillary convection in a layer of volatile liq-

uid subject to a horizontal temperature gradient at atmospheric conditions and under pure

vapor, respectively. Recent fundamental studies of this problem were mainly motivated

by applications to thermal management. Although the ideal operating conditions for two-

phase cooling devices such as thermosyphons, heat pipes, and heat spreaders corresponds

to the pure vapor case, noncondensables, such as air, tend to dissolve in liquids and be ad-

sorbed into solids, and removing them completely is usually neither feasible, nor practical.

Hence, the liquid almost always remains in contact with a mixture of its own vapor and

some, usually small, amount of air. As the results of Chapter 4 indicate, noncondensables

can have a rather significant effect on heat and mass flow, even in small amounts. Hence the

limit when the gas mixture is dominated by the vapor, but nonetheless contains a (small)

nonzero amount of noncondensables, should be investigated separately.

The effect of noncondensables on some aspects of heat/mass transfer in two-phase

systems has been studied previously. For example, the effect of noncondensables on the

filmwise condensation of vapors in simple geometries (i.e., thin liquid layers of conden-

sate on flat or cylindrical surfaces) is reasonably well understood [109, 110]. However,

there are few theoretical studies that have considered transport in a whole closed system

[49,50,82,90,91], specifically the effects of noncondensables on evaporation and transport

of vapor from the hot to the cold side. The experimental study of Li et al. [1] appears

to be the only investigation to date of the effect of noncondensables on the flow in the

entire liquid layer. In particular, these experiments show that, at relatively small imposed

temperature gradients, the flow structure and speeds remain essentially the same as the air

concentration decreases from 96% (ambient conditions) to 14%, which corresponds to a re-

duction by more than two orders of magnitude in the partial pressure of air. The theoretical
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analysis presented in the previous chapters cannot explain this observation.

To better understand the effect of noncondensables on heat and mass transport in volatile

fluids in confined and sealed geometries, we next consider the limit of the two-sided model

described in Chapter 2 where vapor and air are the dominant and dilute components, re-

spectively (the opposite case was considered in Chapter 3). Although the 0.65 cSt silicone

oil, hexamethyldisloxane, is still the working fluid, the fluid properties have been updated

in this chapter based on more recent values from the literature [161, 162], and so some of

the material parameters differ from those used in Chapters 3 and 4. The updated prop-

erties of the working fluid are summarized in Table 6. The liquid film thickness is still

dl = 2.45 mm, and the corresponding values of the Prandtl and dynamic Bond numbers

are Prl = 9.19 and BoD = 0.67. Since the flow in the vertical mid-plane at atmospheric

conditions was found to be essentially 2D and the contact angle had little effect, the flow

is assumed to be 2D in this Chapter as well, and the contact angle is fixed at θ = 50◦. This

Chapter includes the results that were reported in [200].

Table 6: Material properties of pure components (HMDS, air) at the reference temperature
T0 = 293 K [161, 162].

liquid vapor air
µ (kg/(m·s)) 5.27 × 10−4 5.84 × 10−6 1.81 × 10−5

ρ (kg/m3) 765.5 0.27 1.20
β (1/K) 1.32 × 10−3 3.41 × 10−3 3.41 × 10−3

k (W/(m·K)) 0.110 0.011 0.026
Cp (J/(kg·K)) 1914 1482 1004
α (m2/s) 7.49 × 10−8 2.80 × 10−5 2.12 × 10−5

D (m2/s) - 1.46 × 10−4 5.84 × 10−6

σ (N/m) 1.58 × 10−2

γ (N/(m·K)) 8.9 × 10−5

L (J/kg) 2.25 × 105

Av (Pa) 20.90
Bv (Pa·K) 2.96 × 103

Cv (K) −58.05
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5.1 Solutions in the Bulk

In order to investigate the effect of noncondensables on the flow, numerical simulations

were performed for ∆T varying between 0.01 K and 30 K and c̄a varying between 0 (pure

vapor) and 0.96 (atmospheric pressure). The numerical model employed in Chapters 3 and

4 was used at the limits c̄a ≥ 0.85 and c̄a = 0, respectively. In the vapor-dominated limit

0 < c̄a ≤ 0.16 a revised version of the model from Chapter 3 was used, with the transport

equation (36) describing the concentration of air, vs. vapor, as was the case in Chapter 3.

5.1.1 Flow Field

The dependence of the flow on the imposed temperature gradient was previously discussed

in Chapters 3 and 4. The results discussed here focus instead upon how the flow depends

on the concentration of noncondensables at a fixed ∆T = 10 K. In particular, Fig. 39 shows

the streamlines of the flow in both the liquid and the gas phases. At atmospheric conditions,

c̄a = 0.96 (or 96% air), an oscillatory multicellular flow (OMC) is found with convection

rolls covering the entire liquid layer. The amplitude of oscillation, however, is extremely

small, so the flow can effectively be considered steady. The reduction in the range of ∆T

values where OMC flow occurs, compared with the value (almost 30 K) reported in Chapter

3, is due to the difference in the material parameters (cf. Tables 2 and 6).

As the average air concentration decreases, convection rolls gradually weaken and dis-

appear, starting near the cold end wall. This can be seen already at c̄a = 0.85, where a

steady multicellular flow (SMC) is found. When the concentration of air decreases to 16%

(c̄a = 0.16), the flow is instead steady unicellular flow (SUF), and all of the convection rolls

disappear except for two rolls, one near each end walls. In the central region of the liquid

layer, there is a horizontal return flow (corresponding to the analytical solution (111)) with

the same profile across any vertical cross section. Finally, as c̄a decreases to 8% or less, the

horizontal flow speed becomes nonuniform, with a pronounced minimum forming around

x ≈ 38 mm. The flow at these low, but nonzero, values of c̄a is qualitatively similar to that

found under pure vapor (cf. Fig. 29).
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c̄a = 0 (0% air)

c̄a = 0.04 (4% air)

c̄a = 0.08 (8% air)

c̄a = 0.16 (16% air)

c̄a = 0.85 (85% air)

c̄a = 0.96 (96% air)

Figure 39: Streamlines of the flow (solid lines) at different average concentrations of air c̄a.
The temperature difference is ∆T = 10 K. As usual, the gray (white) background indicates
the liquid (gas) phase; the hot end wall is on the right, and the cold end wall is on the left.
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The flow in the gas phase is not directly observable in experiment, so numerical simula-

tion is, at present, the only way to describe the transport of vapors. Two features of this flow

are noteworthy. First of all, as c̄a decreases, the global flow structure gradually changes.

At (near-) atmospheric conditions (c̄a ≥ 0.85) a return flow is found with the gas (mostly

noncondensables) flowing from the hot to the cold wall along the free surface and in the

opposite direction along the top of the cavity, with almost all streamlines closed. In the

(near-) absence of air (c̄a ≤ 0.04), however, the flow is unidirectional, with the gas (mostly

vapor) flowing from the hot to the cold end wall. At intermediate concentrations (c̄a = 0.08

and 0.16), the velocity field exhibits features of both types of flows: there is a region of

recirculation (closed streamlines) near the top of the cavity, but most of the streamlines

originate and terminate on the interface, as one would expect for a gas mixture dominated

by vapor. Second, at (near-) atmospheric conditions local convection rolls are also found in

the gas phase. They are located directly above their corresponding convection rolls in the

liquid phase for c̄a. This reflects the dominant role of interfacial processes in destabiliza-

tion of the uniform return flow and the emergence of convection pattern. Moreover, there

are no convection rolls in the gas phase when there is steady unicellular flow in the liquid

layer.

5.1.2 Temperature Field

Figure 40 shows the temperature fields corresponding to the flow fields from Fig. 39.

The temperature field in the gas phase is qualitatively similar for all c̄a, but in the liquid it

depends noticeably on c̄a. At intermediate values of c̄a (here 0.08 and 0.16) the temperature

in the central portion of the liquid layer has a profile consistent with the analytical solution

in the SUF regime (112) which, in dimensional form, can be rewritten as

T = τx + T̂ (z), (158)

where T̂ (z) describes the vertical profile. A qualitatively similar state is also found at (near-)

atmospheric conditions in the SUF regime, i.e., ∆T . 3 K (not shown). For c̄a ≥ 0.85
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c̄a = 0 (0% air)

c̄a = 0.04 (4% air)

c̄a = 0.08 (8% air)

c̄a = 0.16 (16% air)

c̄a = 0.85 (85% air)

c̄a = 0.96 (96% air)

Figure 40: The temperature field inside the cavity at different average concentrations of air
c̄a. The temperature difference is ∆T = 10 K and the difference between adjacent isotherms
(solid lines) is 0.5 K.

(and ∆T = 10 K), the temperature field displays a noticeable modulation about the profile

(158) caused by the advection of heat by the flow. For c̄a . 0.16 the periodic modulation
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disappears due to the absence of convection rolls.

Some qualitative features of the temperature field, on the other hand, are independent

of c̄a. For instance, the isotherms show strong clustering in the liquid phase near both

end walls, indicating the formation of thermal boundary layers. In contrast, no thermal

boundary layers form near the end walls in the gas phase. Instead, the temperature field

appears to be fairly insensitive to the fluid flow and is dominated by heat conduction, which

seems odd, given that thermal conductivity kg of the gas is considerably smaller than ther-

mal conductivity kl of the liquid. However, in steady state the temperature field is actually

controlled by the thermal diffusivity α, which is much larger in the gas than in the liquid

(see Table 6) due to their vastly different densities, which explains why conduction dom-

inates. Similar observations were made in Chapter 3, where it was pointed out that the

differences between the two layers can be traced to the values of Péclet numbers Pel � 1,

and Peg = O(1).

5.1.3 Concentration Field

While the liquid phase is a simple fluid, the gas phase is a binary fluid, except for the pure

vapor case c̄a = 0. The concentration field in the gas phase for different c̄a is shown in Fig.

41. The concentration of air decreases with x for all c̄a, which is consistent with the air

being swept by the flow of vapor towards the cold end wall. For c̄a ≥ 0.85, ca varies within

a small range about its average. The horizontal concentration profile is linear near the top

of the cavity, while near the interface significant spatial modulation about the linear profile

is observed, which is caused by advection of the gas mixture by the convective flow.

As c̄a decreases, the range of ca increases. For instance, at c̄a = 0.16, the maximum

value of ca is more than double the minimum value. At this and other intermediate values

of c̄a, the concentration field in the central region of the cavity has a linear (in the horizontal

direction) profile, similar to the temperature field in the liquid layer,

ca = −ςx + ĉa(z), (159)
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where ς is the interfacial concentration gradient given by (129) and ĉa(z) = 1 − ĉv(z) is the

vertical concentration profile.

For c̄a . 0.08, the horizontal concentration gradient ς is no longer constant and its

magnitude decreases with x, while the air concentration at the hot end wall is a small

fraction of c̄a. At the same time, the vertical concentration profile ĉa(z) becomes essentially

flat in the central portion of the cavity.

5.1.4 Flow Regimes

The flow regimes found in the numerical simulations for different ∆T and c̄a are summa-

rized and compared with the experimental observations of Li et al. [1] in Fig. 42. In-

stead of the dimensional parameter ∆T , the results are presented in terms of the interfacial

Marangoni number Mai which depends on the spatial average of the interfacial temperature

gradient τ. Overall, the two sets of results are found to be in good agreement, which sug-

gests that the model captures the salient physical processes. The flow fields shown in Fig.

39 illustrate all the qualitatively different regimes except for PMC, which features multiple

convection rolls that do not extend all the way to the cold end wall. While this regime,

which occurs between SUF and SMC [1], is expected to be found for ∆T = 10 K at inter-

mediate values of c̄a, the numerical model based on a dilute approximation is not expected

to produce accurate predictions when the concentrations of air and vapor are comparable.

Nevertheless, the PMC state is indeed found at higher c̄a and lower ∆T , as shown in Fig.

42.

In fact, for c̄a ≥ 0.85 all four flow regimes are found, from SUF at low ∆T to OMC

at high ∆T . Both experiments and numerics show that a reduction in the concentration of

noncondensables increases the threshold (critical Mai) for transition between different flow

regimes. As a result, not all flow regimes are found at lower c̄a. For instance, at c̄a ≤ 0.16

and ∆T ≤ 30 K only the SUF state is found in the numerics. In the experiment only the

SUF and PMC states are found at c̄a = 0.14, with the latter only occurring at the largest

∆T & 11 K.
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c̄a = 0.01, δca = 0.001, 0.002 < ca < 0.026

c̄a = 0.04, δca = 0.004, 0.011 < ca < 0.081

c̄a = 0.08, δca = 0.005, 0.032 < ca < 0.134

c̄a = 0.16, δca = 0.005, 0.094 < ca < 0.220

c̄a = 0.85, δca = 0.00125, 0.822 < ca < 0.863

c̄a = 0.96, δca = 0.0004, 0.952 < ca < 0.963

Figure 41: Air concentration ca in the gas phase for ∆T = 10 K and different c̄a. δca denotes
the interval between adjacent level sets. In the gas phase, darker shade indicates higher air
concentration. In the liquid phase, the concentration field is not defined.
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At atmospheric conditions the thresholds for transition from SUF to PMC (Mai ≈ 390)

and from SMC to OMC (Mai ≈ 780) are very similar in the experiment and numerics,

however the transition from PMC to SMC occurs in the numerics at a higher Marangoni

number (Mai ≈ 600) compared with the experiment (where it happens at Mai ≈ 430).

One reason for this discrepancy is the different value of the contact angle (in the numerics

θ = 50◦, while in the experiment θ ≈ 0◦), which as shown in section 3.3, does affect the flow

pattern. Another potential reason is the assumption of the model that condensation does

not occur on the cold end wall. In the experiment a significant fraction of the vapor likely

condenses on the cold end wall, forming a thin film that drains towards the liquid layer.

This can noticeably enhance condensation at all c̄a. As a result, the same values of ∆T

can correspond to different Mai in the experiment and numerics. Finally, Mai is estimated
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Figure 42: Flow regimes: SUF (◦), PMC (4), SMC (2), and OMC (3). Open symbols
correspond to experimental results of Li et al. [1] and filled symbols – to numerical results
from this study. Dashed lines show the approximate positions of the boundaries between
different regimes based on the experimental results.
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in the experiments by curve-fitting the spatially-averaged liquid-phase velocity profile (in

the presence of convection rolls) to the analytical solution (applicable in the absence of

convection rolls), and the accuracy of this estimated Mai remains undetermined.

The changes in the structure of the flow found at a fixed ∆T = 10 K as c̄a increases

are qualitatively similar to the changes found at atmospheric conditions (c̄a = 0.96) as ∆T

increases [1, 185]. Hence, it seems likely that the same physical mechanism is responsible

for the destabilization of the uniform return flow found in the SUF regime in both cases

(this will be discussed in detail in the next Chapter). In order to better understand the

structure and stability of the flow as a function of ∆T and c̄a, the next Section considers

the interfacial profiles of the velocity, temperature, and concentration fields, as well as the

mass flux J describing the intensity of phase change at the interface.

5.2 Solutions at the Interface

The flow in the bulk is significantly affected by the conditions at the interface. Thermo-

capillarity, which is the dominant force at BoD = O(1) and c̄a = O(1), is caused by the

interfacial temperature gradient τ. Since Ti ≈ Ts (156), where Ts is a function of pv and

hence ca, the flow is effectively controlled by the concentration profile at the interface. In

this Section the temperature, velocity distribution, as well as the phase change mass flux

and concentration distribution along the interface are discussed in more detail.

5.2.1 The Temperature and Velocity Profiles

First, consider the interfacial temperature Ti. Fig. 43(a) shows interfacial temperature pro-

files for different c̄a (and fixed ∆T = 10 K). In all cases, the most significant feature is that

Ti varies essentially linearly with distance across almost the entire interface, with signif-

icant deviations from linearity only near the end walls (i.e., in the regions where thermal

boundary layers form in the liquid). At intermediate values of c̄a, the interfacial tempera-

ture gradient τ outside the boundary layers can be considered to be constant (cf. Fig. 43(b)).

For c̄a & 0.85, the temperature profile oscillates sinusoidally about the average value τ̄ with
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a period set by the wavelength λ of the convective pattern. For c̄a . 0.08, on the other hand,

the gradient τ slowly (and monotonically) decreases with x.

At atmospheric pressure, τ̄ is comparable to the imposed temperature gradient ∆T/L.

However, as the concentration of air decreases, τ̄ also decreases and in the absence of air

(c̄a = 0), the interfacial temperature becomes essentially constant, with τ̄ decreasing by

three orders of magnitude, compared with the values found at atmospheric conditions at
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Figure 43: Interfacial temperature profile (a) and the interfacial temperature gradient τ =

∂xTi (b) for different average concentrations of air c̄a and ∆T = 10 K. To amplify the
variation of Ti in the central region of the cavity, the variation δTi = Ti − 〈Ti〉x about the
average is plotted in (a) and the y-axis is truncated in both panels.
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the same ∆T (cf. Chapter 5). The relation between τ and ca will be discussed in more

detail at the end of this Section.

The interfacial velocity profiles ui for different c̄a are shown in Fig. 44 and can be

interpreted with the help of the analytical solution (113) for a steady return flow in an

unbounded liquid layer driven by a constant temperature gradient τ̄. The relative strength

of buoyancy and thermocapillarity is described by the ratio of uB and uT (153). These

two forces are of equal strength, uT = uB, at the critical air concentration c̄(1)
a such that

τ̄(c̄(1)
a ) = τ∗, where

τ∗ =
BoD

12
∆T
L
. (160)

Based on the numerical results at ∆T = 10 K and BoD = 0.67, 0.01 < c̄(1)
a < 0.02.

When c̄a > c̄(1)
a the flow is driven mainly by thermocapillarity and the analytical solution

(113) accurately describes the velocity field in the SUF regime. In this limit the interfacial

flow velocity is determined by the interfacial temperature gradient, ui ≈ uT ∝ τ, even

locally, as long as τ varies slowly with x. In particular, ui exhibits spatial modulation

reflecting spatial modulation in τ at higher c̄a, when the flow is in the PMC or SMC regime.

As Fig. 43(b) shows, τ̄ changes relatively little as c̄a decreases from 0.96 to 0.16 and its

magnitude remains comparable to (about a quarter of) ∆T/L. Correspondingly, the average
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Figure 44: Interfacial velocity for different average concentrations of air c̄a and ∆T = 10
K.
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flow velocity remains essentially independent of c̄a in this range of concentrations, as Fig.

44 illustrates. This explains the puzzling experimental observation [1] that the interfacial

velocity remains almost unchanged across much of the interface when the concentration of

air decreases from 0.96 to 0.14. In fact, the numerical simulations show that the interfacial

velocity a few mm away from the cold end wall even increases slightly as c̄a decreases from

0.96 to around 0.16, which is also in agreement with experimental observations.

For c̄a < c̄(1)
a , the buoyancy force becomes dominant, the analytical solution (113)

breaks down completely, and the flow field is described by two large convection rolls driven

by buoyancy, with pronounced maxima near the two end walls. The flow in this limit is

quantitatively similar to that found under pure vapor (cf. Fig. 29) and should correspond to

the limit of infinite BoD at atmospheric conditions (when buoyancy again dominates over

thermocapillarity). Hence, the effect of reducing c̄a from the atmospheric value 0.96 to that

corresponding to pure vapor (c̄a = 0) is analogous to increasing the dynamic Bond number

from its reference value to infinity.

5.2.2 Mass Flux Due to Phase Change

While the concentration of noncondensables affects the velocity profile only indirectly, it

has a direct, and rather dramatic, effect on the phase change at the interface. The mass
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Figure 45: Mass flux due to phase change at the interface at different average concentrations
of air and ∆T = 10 K, with truncated y-axis.
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flux distribution along the interface, which characterizes the intensity of phase change, is

shown in Fig. 45. At atmospheric conditions (c̄a = 0.96), phase change is negligible over

almost the entire interface, as transport of the vapor away from, or towards, the interface is

severely restricted by diffusion through air. The phase change is only non-negligible very

near the contact lines, with the liquid evaporating near the hot end wall (J > 0) and the

vapor condensing near the cold end wall (J < 0).

As expected, decreasing the air concentration enhances phase change near the end

walls. However, the phase change (based on mass flux J) is significant along the entire

interface for c̄a . 0.16. In particular, at c̄a = 0.16 there is a wide region near the hot

end wall where J < 0 (i.e., the vapor condenses) and a narrower region with J > 0 (i.e.,

the liquid evaporates) near the cold end wall. This somewhat paradoxical result is due to

advection, as discussed earlier in Chapter 3.

As the concentration of air is reduced further, the region of condensation expands and

eventually (for c̄a . 0.04) extends to cover about 80% of the entire interface. Although the

maximum values of J are still found next to the end walls (phase change is most intense in

the contact line regions at all c̄a), phase change along the rest of the liquid-vapor interface

becomes non-negligible. As c̄a → 0, the mass flux J smoothly approaches the profile found

in the limit of pure vapor. Similarly, the fluid flow and temperature fields in both the bulk

and at the interface smoothly approach those for pure vapor (cf. Chapter 4).

The results for low c̄a have serious implications for modeling heat pipes, which typically

assume that phase change takes place only in the “evaporator” and the “condenser” regions,

which are separated by a large “adiabatic” section where phase change is negligible and the

temperature profile is linear [61, 189, 190]. Although the liquid flow in this model is not

representative of heat pipes (see Section 5.3 for an in-depth discussion), the temperature

profile and the flow in the gas phase is, so these numerical results should still be relevant to

heat pipes. In practice, noncondensables are mostly evacuated from heat pipes to enhance

phase change and the associated latent heat flux. The above results suggest, however, that
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in this limit there is no “adiabatic” region, since the temperature profile is not linear, and

phase change is non-negligible, away from the heated/cooled end walls. The models of

heat pipes which ignore phase change in the “adiabatic” region appear to be based on

results from experiments performed under atmospheric conditions; hence, these results are

unlikely to provide an accurate description of heat and mass flow at reduced pressures.

Quantifying the net amount of phase change (and the associated latent heat) requires

some care as J is not a monotonic function of x for all c̄a. For instance, at higher c̄a some

of the evaporation (condensation) near the hot (cold) end wall is offset by the condensation

(evaporation) just a few mm away. At lower c̄a phase change is not even localized near the

end walls. To account for the non-monotonic nature of J(x), the characteristic mass flux Jv

(across a vertical cross-section of the cavity) will be used, which is chosen as the maximum

Jv = max
x

I(x) (161)

of the (properly normalized) net mass flux I(x) along a portion of the interface between 0

and x,

I(x) =
1
dg

∣∣∣∣∣∫ x

0
J
√

1 + (dz/dx)2 dx
∣∣∣∣∣ , (162)

where I(L) = 0 in steady state due to mass conservation.

If phase change occurs for the most part in the contact line regions, I(x) should be

essentially constant over the entire “adiabatic” region and the mass flux of vapor across
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Figure 46: Integrated mass flux I at different average concentrations of air and ∆T = 10 K.
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any vertical cross-section in that region would be equal to Jv. As Fig. 46 shows, I(x) varies

most rapidly near the contact lines where phase change is most intense for all c̄a. For c̄a =

0.96, aside from some weak modulation due to convection rolls, I(x) is indeed essentially

constant across most of the interface. However, for c̄a . 0.16, I varies significantly (by

almost an order of magnitude) outside of the contact line regions, and so the “adiabatic”

region disappears at reduced noncondensables concentrations.

The characteristic mass flux Jv is shown as a function of the average concentration

of noncondensables in Fig. 47. As expected, Jv is a monotonically decreasing function

of c̄a (i.e., noncondensables do suppress phase change). Jv does not vary noticeably for

c̄a below about 1%, which suggests that noncondensables essentially do not impede the

flow of vapor once c̄a is below some critical value. Increasing c̄a to about 0.08 (which

corresponds to 1.5% mass fraction of air) halves Jv, compared with the pure vapor case, at

which point the adverse role of noncondensables is evident, as they significantly reduce the

phase change and the latent heat contribution to the heat flux. For reference, for filmwise

condensation of steam, the condensation rate is halved at an air mass fraction of 0.5% [109].

At ambient conditions Jv decreases by more than two orders of magnitude compared with

the pure vapor case, which illustrates the kind of improvement in the heat flux that can be

achieved by evacuating noncondensables from heat pipes and other similar passive thermal

management devices.

5.2.3 The Concentration Profile

The relative role of advection and diffusion to mass transport in the gas layer is defined by

the mass Péclet number

Pem =
uglg

D
, (163)

where lg = dg is the relevant length scale and the characteristic velocity ug is determined

by the interfacial velocity (113) at high c̄a, and by the mass flux Jv ≈ ρvug instead at low

c̄a. Since D ∝ 1/pg ∝ 1 − c̄a, while ug does not vary significantly with c̄a, the Péclet
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number is largest at atmospheric conditions and quickly decreases as c̄a is reduced (cf.

Appendix A). As illustrated by the concentration fields in Fig. 41, advection dominates at

atmospheric conditions. However, for c̄a . 0.85, Pem becomes less than unity, and mass

diffusion becomes the dominant tranport mechanism. In this range of c̄a, the concentration

(and hence density) gradient in the central portion of the cavity is nearly horizontal due to

the large aspect ratio of the gas layer, so vapor flux from the hot side to the cold side can

be considered essentially one-dimensional. Hence, the variation of the mass flux with both

x and z direction in the central portion of the cavity can be ignored, yielding

J(x, z) ≈ −Jvx̂, (164)

where

Jv ≈
1
c̄a

D∂xρv =
D

c̄aR̄vT
∂x pv, (165)

in agreement with the well-known result for condensation of vapor on a cold surface [96].

Jv can be related to the average interfacial temperature gradient τ̄ using the Clausius-

Clapeyron equation and the fact that the interfacial temperature is essentially equal to the

saturation temperature:

Jv ≈
1 − c̄a

c̄a

LDpg

R̄2
vT 3

0

τ̄ =
1 − c̄a

c̄a
G1

kl

L
τ̄. (166)
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Figure 47: Characteristic mass flux Jv as a function of the average concentration of air at
∆T = 10 K.
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Note that, according to (32), the product Dpg is independent of pg (and hence c̄a), while

|T − T0| � T0, so the combination

ξ =
R̄vT0

Dpg
(167)

is only a function of T0 and can be considered a constant which has the same value in all the

cases considered in this study. Since the total pressure pg = pa + pv is essentially constant,

(165) can be rewritten as

ξJv pa ≈ ∂x pv = −∂x pa, (168)

integration of which yields the spatial profile of the partial pressure of noncondensables at

the interface

pa ≈
c̄a

1 − c̄a

ξJvL
1 − e−ξJvL p0

ve−ξJv x, (169)

where p0
v is the saturation pressure of vapor at T0. And since pa/ca = pg = p0

v/(1 − c̄a), the

concentration of noncondensables is given by

ca ≈ c̄a
ξJvL

1 − e−ξJvL e−ξJv x. (170)

The nonlinear profile of ca(x) reflects the accumulation of noncondensables near the cold

end wall when ξJvL & 1 (at low c̄a). As the combination ξJvL decreases below unity (at

high c̄a), the concentration profile becomes linear:

ca ≈ c̄a

[
1 + ξJv

(L
2
− x

)]
. (171)

The transition from a linear to an exponential profile should occur when ξJv(c̄a)L ≈ 1,

which corresponds to the critical concentration c̄(2)
a close to 0.08 for the system considered

here. The numerical results for the (normalized) air concentration at the interface are in

very good agreement with the analytical prediction (170), as shown in Fig. 48. The con-

centration of air indeed has an exponential profile for c̄a ≤ 0.08, with the maximum at the

cold end wall, x = 0. For c̄a ≥ 0.16, however, the concentration profile becomes essentially

linear in x both along the interface and in the bulk.
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It should be pointed out that the derivation of the concentration profile (170) does not

hold at near-atmospheric conditions, where advection is nonnegligible and, as a result, ca

depends on both x and z coordinates. However, in this limit the vapor concentration profile

cv = 1 − ca can be computed analytically in the SUF regime (cf. Eq. (128)). In particular,

at the interface one again finds a linear concentation profile (130), so (170) in fact holds in

the entire range of c̄a. (For consistency, it should also be noted that x = 0 is redefined to

occur in the middle of the cavity when deriving (128) and (130).)

Since the interfacial temperature gradient τ is related to the interfacial concentration

gradient ς = −∂xca locally via (129), for c̄a & c̄(2)
a

τ(x) ≈ τ̄ =
c̄a

1 − c̄a
υT0ξJv, (172)

i.e., τ should become independent of x. For c̄a . c̄(2)
a the τ-profile should become exponen-

tial according to (170):
τ

τ̄
≈

ca

c̄a
≈

ξJvL
1 − e−ξJvL e−ξJv x. (173)

Both predictions are in agreement with the numerical results shown in Fig. 43(b) in the

SUF regime away from the end walls (i.e., when and where the vapor flow is essentially
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Figure 48: Normalized air concentration at different average concentrations of air c̄a and
∆T = 10 K. Numerical and analytical results are represented by symbols and lines, respec-
tively: c̄a = 0.001 ( and solid line), c̄a = 0.08 (N and dash line) and c̄a = 0.16 (� and dot
line).
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one-dimensional, so the above simplified description applies).

When c̄a = c̄(2)
a , the characteristic length scale on which the concentration gradient

varies coincides with the length L of the cavity. Therefore this critical concentration also

determines the transition between different scaling behaviors of Jv and τ̄ with c̄a. For

c̄a > c̄(2)
a , the mass flux of vapor is constrained mainly by the diffusion of vapor through

the air, so that Jv increases as c̄a decreases, while τ̄ remains approximately constant. For

c̄a < c̄(2)
a , phase change is not significantly impeded by the noncondensables, so Jv is instead

constrained by heat conduction through the liquid layer (see Section 5.3.1 for an in-depth

discussion) and hence becomes essentially independent of c̄a (cf. Fig. 47), while τ̄ be-

comes proportional to c̄a according to (166). This is consistent with the main conclusion

of Chapter 4 that thermocapillary stresses essentially disappear when noncondensables are

completely removed.

The numerical results for the interfacial temperature gradient τ̄ over a wide range of ∆T

can be reasonably well approximated by the empirical correlation

τ̄(c̄a)
τ̄(c̄a

a)
≡ Rτ̄(c̄a) =

(
acc̄−1

a + bc

)−1
, (174)
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Figure 49: The dependence of the average temperature gradient τ̄ on the average concen-
trations of air c̄a. The temperature gradient has been normalized by its value at the average
concentration of air c̄a

a at atmospheric conditions. Filled and open circles show the numer-
ical results at ∆T = 4 K and ∆T = 10 K, respectively. Solid line represents the fitting
function (174), where R2 = 0.9928
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where ac = 0.065 and bc = 0.921 are the fitting parameters and c̄a
a = 0.96 is the average

concentration of air at atmospheric conditions (cf. Fig. 49). For BoD = 0.67, the pre-

dicted critical concentration c̄(2)
a = ac/bc ≈ 0.07 agrees with the numerical results, as c̄(2)

a

corresponds to the cross-over in the scaling of both the mass flux Jv (cf. Fig. 47) and the

temperature gradient τ̄ (cf. Fig. 49). It is also supported by the experimental results of Li

et al. [1] which show that τ̄ remains almost independent of c̄a for c̄a & 0.14.

The relation (174) can be used to determine the threshold values of the air concentration

that define transitions between the flow regimes at a fixed ∆T . For instance, combining

(174) and (160) yields the concentration

c̄(1)
a = ac

τ̄(c̄a
a)

(
BoD

12
∆T
L

)−1

− bc

−1

(175)

where thermocapillarity and buoyancy are of equal importance. For ∆T = 10 K and BoD =

0.67, c̄(1)
a ≈ 0.016, which is consistent with the numerical results reported in Section 5.2.1.

5.3 Mass and Heat Fluxes

In this section, the simplified analytical model developed above is used to describe the

effect of the liquid layer thickness on the mass and heat flux in confined two-phase flows

as well as predict the performance of simple thermal management devices. For a sealed

cavity, the net steady-state mass flux of liquid and vapor along the direction of the applied

temperature gradient is zero. However, the characteristic mass flow rate in the gas layer

ṁv and the liquid layer ṁl can vary significantly depending upon the flow conditions. The

intensity of phase change can therefore be characterized by the ratio ṁv/ṁl.

5.3.1 Mass Flux of Vapor

At relatively high c̄a, phase change is constrained mainly by diffusion of vapor from the

hot to the cold side of the cavity. The mass flux of vapor Jv is given by (166), so the

corresponding mass flow rate can be found by integrating Jv across a vertical cross section
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of the gas layer:

ṁv = WdgJv =
1 − c̄a

c̄a

WklG1

L
τ̄dg, (176)

where W is the width of the cavity (cf. Fig. 4). Since ṁv ∝ Jv, its dependence on c̄a can

be determined from the data shown in Fig. 47. In particular, since τ̄ is essentially constant

for relatively high values of c̄a, (176) gives ṁv ∝ (1 − c̄a)/c̄a, so the mass flux increases

monotonically as c̄a decreases.

At small c̄a (more precisely, for c̄a < c̄(2)
a ), which is the limit at which two-phase cooling

devices typically operate, τ̄ ∝ c̄a according to (173), so ṁv approaches a constant value, ṁ0
v .

In this limit phase change is not impeded by the noncondensables, but is constrained by

heat conduction, so we can use the estimate (140) to determine ṁ0
v . The mass flow rate of

vapor can be obtained by integrating the mass flux J over the portion of the interface (of

area ∼ Wdl) where most of the evaporation (or condensation) occurs, yielding an estimate

ṁ0
v ∼ Wdl∆J = ϕc

Wkl∆T
L

, (177)

where ϕc is a geometrical coefficient that describes the heat conduction through the wedge

of liquid bounded by the free surface and one of the end walls, and therefore depends on

the contact angle. For the system considered in this study, ϕc ≈ 3 at θ = 50◦ and ∆T = 10

K. It should be emphasized that (177) is only an estimate, and should be used with care.

For instance, since ṁv → ṁ0
v in the limit c̄a → 0, one finds that ϕc ∝ Lτ̄/∆T which, strictly

speaking, is not a constant and decreases by a factor of four when ∆T increases from 0 K

to 10 K (cf. Fig. 10).

5.3.2 Thick Liquid Layers

The characteristic mass flow rate ṁl in the liquid layer depends on the flow regime. In

thicker layers featuring a return flow, ṁl can be estimated by integrating the mass flux in

the direction of the temperature gradient using the analytical solution (111) for the return

base flow

ṁl = ρlW
∫

ul,x>0
ul,xdz ≈

(
1

27
+

5
972

BoD

)
αlρlMaiW. (178)
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As discussed in Section 5.2.1, the analytical solution (111) and hence (178) for the mass

flow rate in the liquid layer is only valid at c̄a ≥ c̄(1)
a , when the flow is driven by both

thermocapillarity and buoyancy.

Equations (177) and (178) can be used to find the upper limit for the ratio ṁv/ṁl, yield-

ing
ṁv

ṁl
≈ ϕc

(
1

27
+

5
972

BoD

)−1 PrlE
Mai

, (179)

where

E =
kl∆T
ρlνlL

(180)

is the evaporation number introduced by Burelbach et al. [194] which defines the ratio

of the evaporative time scale (i.e., how long it would take for a liquid layer to completely

evaporate) to the viscous time scale. In this study ṁv/ṁl � 1 (for example, ṁv/ṁl ≈

8 × 10−3 at ∆T = 10 K and BoD = 0.67), which means that the net flux is essentially zero

even in the liquid layer, justifying the assumption of a return flow. This is consistent with

the numerical results (cf. Fig. 6).

The heat flux between the hot and the cold end walls is due to conduction and advection

through the liquid and the gas layers, as well as latent heat associated with phase change.

The heat flow rate due to conduction is simply

Qc ≈ W(dlkl + dgkg)τ̄ ∝ τ̄. (181)

Since ṁv � ṁl, the heat flow rate due to advection is confined almost entirely to the liquid

layer

Qa ≈ W
kl

αl

∫ dl

0
Tlul,xdz, (182)

and depends on the flow regime. For a return flow in the SUF regime, Qa can be estimated

using the analytical solutions (112) and (111), giving

Qa ≈ AMa2
i Wdlklτ̄ (183)
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where

A =
19Bo2

D + 252BoD + 864
1451520

. (184)

The heat flow rate due to phase change is related to the mass flow rate of vapor

Qp = ṁvL. (185)

Since the estimate (183) is valid at c̄a & c̄(1)
a when the flow is driven by both thermocapil-

larity and buoyancy, the mass flow rate is given by (176), yielding

Qp = W
1 − c̄a

c̄a
G1kldgτ̄ (186)

The relative contributions of phase change and conduction to the heat transport are

therefore given by the ratio
Qp

Qc =
1 − c̄a

c̄a

d̃gkl

kl + d̃gkg
G1. (187)

In this study, due to the relatively high latent heat and volatility of the silicone oil, the phase

change contribution is non-negligible even at atmospheric conditions (c̄a = 0.96), where

Qp/Qc = 0.30. The ratio quickly increases (Qp/Qc ≈ 1 already at c̄a = 0.88), and phase

change becomes the dominant heat transfer mechanism, as c̄a decreases.

The relative contributions of phase change and advection to the heat transport are given

by the ratio

Qp

Qa ≈
1 − c̄a

c̄a

G1d̃g

AMa2
i

. (188)

For liquid layers with fixed thickness dl and fixed ∆T , this ratio becomes a function of

the concentration of noncondensables c̄a. It is the largest at atmospheric conditions, when

the flow speed is the largest, while phase change is greatly suppressed. As c̄a decreases,

the flow speed decreases, while phase change is enhanced, and so the contribution of

phase change becomes more important. In this study, at ∆T = 10 K and dl = 2.45

mm, Qp/Qa ≈ 10−3 at atmospheric conditions, so advection dominates phase change. At

c̄a ≈ 0.1, Qp/Qa ≈ 1, and phase change becomes the dominant heat transfer mechanism

for c̄a < 0.1.
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The relative contributions of phase change and advection also depend on ∆T and dl.

Although the dependence on the thickness of the liquid layer will be considered in Section

5.3.3, dl is instead assumed to be constant here. When c̄a is also constant, Qp/Qa ∝ τ−2, so

that advection dominates when ∆T is large, and phase change dominates when ∆T is small.

We already know that phase change dominates at low c̄a when τ̄ is also small, regardless of

∆T . Advection can dominate only at high c̄a. For instance, at atmospheric conditions and

dl = 2.45 mm, Qp/Qa < 1 when ∆T > 0.1 K . To summarize, Qp � Qc � Qa for small

c̄a. For large c̄a, the dominant heat transfer mechanism depends on the applied temperature

difference: when ∆T is small, Qc > Qp � Qa, while when ∆T is large, Qa � Qc > Qp.

5.3.3 Thin Liquid Layers

The transport model for the gas layer that has been developed and validated in this chapter

can be applied to modeling two-phase thermal management devices, such as heat pipes

employing wicks or microchannels. To illustrate this, consider the limit dl → 0 of the

two-layer system discussed previously. For BoD . 1, the second term in (179) can be

neglected. Furthermore, Mai ∝ d2
l , so as the thickness of the liquid layer decreases, ṁv/ṁl

should rapidly increase (assuming ∆T/τ̄ does not vary significantly with dl). For instance,

at ∆T = 10 K the magnitudes of ṁv and ṁl become comparable when dl decreases to about

0.2 mm. This, of course, is a fairly crude estimate, since (179) is based on the assumption

of a return flow, which breaks down when ṁv becomes comparable to ṁl. As dl decreases

further, capillary pressure becomes the dominant mechanism driving the flow in the liquid

layer, (179) breaks down completely, and one should expect ṁv ≈ ṁl and the flow in both

the liquid and the gas layer to become unidirectional. This limit is more relevant to the

regime in which heat pipes operate.

The capillary pressure can be related to the interfacial temperature using the mass flux

expression (53). Neglecting the left-hand-side yields

pc = pl − pg = ρlL

∣∣∣∣∣1 − Ti

Ts

∣∣∣∣∣ . (189)
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Since the gas pressure pg is essentially constant in the (thick) vapor layer, the difference in

the capillary pressure between the cold end and the hot end can be related to the temperature

variation

∆pc ≈ ρlL
∆Ti

Ts
≈ ρlL

∆T
T0

. (190)

For a circular capillary of diameter dl, the largest capillary pressure that can be produced

by the meniscus at the hot end is κσ, where the curvature is κ = 2/(dl/2). At the cold end,

where condensate can completely flood the wick, the interface can be considered nearly

flat, so that

∆pc = 4
σ

dl
. (191)

Equating (190) and (191) gives the critical diameter

dc
l =

4σ
ρlL

T0

∆T
. (192)

For a typical ∆T = 10 K, dc
l = 0.01 µm = 10 nm. For dl < dc

l the capillary pressure is given

by (190), while for dl > dc
l , which is the usual case, the capillary pressure is given by (191).

Assuming the liquid flows through a single pore of length of L and uniform transverse

dimension dl � L, we can assume that the flow is fully developed. The mass flow rate in

the liquid phase driven by the capillary pressure drop ∆pc is

ṁ1
l = ϕl

d4
l ∆pc

νlL
, (193)

where ϕl is a geometrical prefactor which describes the cross sectional shape of the pore

(for instance, ϕl = π/128 for a pore with circular cross section). For a single layer of pores

in the wick (note that the result can easily be generalized to an arbitrary number of layers),

the number of pores, per width W of the cavity in the spanwise direction, is roughly W/dl,

so the net flux is

ṁl ≈
W
dl

ṁ1
l = ϕl

Wd3
l ρlL

νlL
∆T
T0

(194)

when dl < dc
l , while for dl > dc

l

ṁl ≈ 4ϕl
Wd2

l σ

νlL
. (195)
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Naively, one would expect that the same results, with a somewhat different ϕl = O(1)

will be obtained if the closed pores were replaced with open microchannels of width dl, as

is often the case in a micro heat pipe. However, since the microchannels are open, phase

change will take place along the entire length of the device and, as our analysis of the

convection problem showed, there will be no adiabatic region and the capillary force will be

opposed by the thermocapillary stresses at the free surface. Furthermore, the temperature

profile will be exponential, rather than linear, as is assumed in standard models of heat

pipes. In the limit of highly conductive walls, the temperature difference between the two

ends of the device is approximately ∆T , so (173) reduces to

τ ≈
ξJv∆T

1 − e−ξJvL e−ξJv x (196)

with τ̄ ≈ ∆T/L. As (196) shows, the highest temperature gradient

τmax ≈
1 − c̄a

c̄a
υ−1 ∆T

T0

∆T
L

(197)

will develop near the cold end. The balance of thermocapillary and capillary forces for the

liquid in the microchannel of width (and depth) dl requires

dlγτ = d2
l
∆pc

L
. (198)

Since τmax ∝ c̄−1
a , thermocapillary forces will overcome the capillary pressure near the cold

end for c̄a . c̄(3)
a , where

c̄(3)
a =

γ

υ∆pc

∆T
T0

∆T
dl
≥
γ∆T
4υσ

∆T
T0

, (199)

blocking the flow of coolant from the “condenser” back to the “evaporator”. However,

the critical concentration of noncondensables at which this happens is relatively low (e.g.,

c̄(3)
a = 0.007 at ∆T = 10 K for HMDS). For c̄a & c̄(3)

a thermocapillarity can be ignored, so

micro-heat pipes can be analyzed in the same way as macro-heat pipes with a wick.

In the limit of low c̄a (c̄a ≤ c̄(2)
a ), the conditions at which two-phase cooling devices

typically operate, the mass flow rate in the gas phase is constrained either by the heat
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conduction through the liquid layer (177) or by the viscosity of the liquid flowing through

the wick, yielding (194) or (195). Since ṁl increases monotonically with dl, another critical

value dh
l can be found by equating (177) and (195), which yields

dh
l =

(
ϕc

4ϕl

klνlL∆T
Lσ

)1/2

. (200)

For a typical ∆T = 10 K we find dh
l = 17.8 µm, which is three orders of magnitude larger

than dc
l . The mass flow rate is controlled by conduction of heat through the liquid when

dl > dh
l (the solid green line in Fig. 50) and by the viscosity of the liquid flowing through the

wick or microchannels when dl < dh
l (the solid red line). In particular, assuming the pores

of the wick have a constant cross section, dh
l determines the smallest diameter yielding the

maximal heat flux. The largest diameter is controlled by the hydrostatic pressure ∆pg =

ρlgL. To ensure the flow in the wick does not depend on the orientation of g, one should

have ∆pc � ∆pg, so that

dl � dm
l =

4σ
ρlgL

=
4l2

c

L
. (201)

For L = 48.5 mm, we find dm
l ≈ 170 µm.

In the limit of small dl the heat flow rate due to conduction is given by (181) with dl = 0.

The heat flow rate due to phase change is given by (185), where the mass flow rate of vapor

0
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Figure 50: The dependence of the mass flow rate per unit width ṁ/W on the pore diameter
dl at ∆T = 10 K, ϕc = 3, and ϕl = π/128. The green, blue and red line represent the results
predicted by (177), (194), and (195), respectively.
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ṁv = ṁl = ṁ can be estimated using (177) for c̄a . c̄(2)
a , yielding

Qp = ṁL ∼ Wϕckl∆T. (202)

Since the liquid layer is very thin, and assuming the wick is made of a highly conductive

material, kw � kl, the temperature profile in both the liquid and gas layer would be essen-

tially the same, Tl(x) ≈ Tg(x), so the heat flow rate due to advection in both layers can be

estimated as

Qa ≈ −ṁ∆CpT0, (203)

where ∆Cp = Cp,l − Cp,g is the difference betweem the specific heat of the liquid and the

gas (cf. Table 6). Since in general ∆Cp > 0, advection actually carries heat in the reverse

direction, from the cold end towards the hot end.

Finally, the heat conduction is negligible at low c̄a, so the net heat flow rate is given by

Q ≈ Qp + Qa = ṁ[L − ∆CpT0]. (204)

For the liquid considered here ∣∣∣∣∣Qa

Qp

∣∣∣∣∣ =
∆CpT0

L
= 0.57, (205)

so Qa and Qp are quite comparable and, therefore, the difference between Cp,l and Cp,g

substantially reduces the heat flux due to phase change. In comparison, for water |Qa/Qp| =

0.25, so the difference in the heat capacities of the two phases has a substantially smaller

effect.

We can thus obtain the theoretical maximum heat transfer coefficient for a heat pipe

(with microchannels of uniform cross-section or with a wick featuring pores with a uniform

diameter)

h =
Q

Wdg∆T
≈ ϕc

kl

dg

[
1 −

∆CpT0

L

]
, (206)

which is limited by the practical minimum value of dg. As dg decreases, the pressure drop

∆pg across the gas layer increases. This pressure drop is related to ṁ via a relation similar
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to (193):

ṁ = ϕg
Wd3

g∆pg

νgL
, (207)

where ϕg = O(1) is a geometric factor describing the cross-section of the cavity through

which the gas flows. We should have ∆pg � ∆pc which, assuming ϕg ≈ ϕl, requires

d3
g

d3
l

�
νg

νl
. (208)

Taking, for instance, dg = 2(νg/νl)1/3dl, we find

h ≈
ϕc

2

(
νl

νg

)1/3 kl

dl

[
1 −

∆CpT0

L

]
, (209)

with the maximum achieved at dl = dh
l . Interestingly, even though phase change is the

dominant heat transfer mechanism, the heat transfer coefficient for a given dl turns out to

be controlled primarily by the thermal conductivity kl, vs. the latent heat L, of the working

liquid. In particular, for the silicone oil considered here, h ≈ 1.2× 103 W/(m2K). For water

(with the same dl = dh
l = 17.8 µm) one finds a higher value h ≈ 4.5 × 103 W/(m2K).

For reference, the corresponding value for solid copper of the same thickness L is 8 × 103

W/(m2K). Moreover, Mozumder et al. [201] found h ≈ 4 × 103 W/(m2K) for a miniature

heat pipe with 5 mm diameter and 150 mm length, with water as a working fluid. The result

(209) also does not explicitly depend on the length L of the cavity, although it does depend

on the pore diameter dl the minimal value of which does depend on both L and the latent

heat L through (200). The heat transfer coefficient can also be increased significantly by

making the pore cross-section nonuniform, but a detailed discussion of this is beyond the

scope of this thesis.

5.4 Discussion

By investigating buoyancy-thermocapillary convections while varying the average concen-

tration of noncondensables (air) in the gas phase from that corresponding to ambient con-

ditions to zero, when the gas phase becomes a pure vapor, it was found that the (average)
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composition of the gas phase has a crucial impact on the fluid flow and the transport of heat

and mass. The numerical results show that as the average concentration c̄a of air decreases

from c̄a
a = 0.96 to c̄(2)

a ≈ 0.07, the interfacial temperature gradient τ̄ remains almost con-

stant, hence the thermocapillary stresses and the average flow speed remain essentially the

same. These numerical results are consistent with the experimental observations of Li et

al. [1]. On the other hand, as c̄a decreases below c̄(1)
a ≈ 0.016, the interfacial temperature

gradient and the associated thermocapillary stresses essentially vanish, and the flow again

becomes independent of the concentration of noncondensables, according to the numerics.

Such low concentrations are not easily accessible in experiment, so no comparison can be

made in this limit.

In order to understand these results, a simplified analytical model of the gas layer

was developed by assuming the mass transport of the vapor through the gas is essentially

one-dimensional (along the direction of the applied temperature difference) and diffusion-

dominated. In this approximation, the concentration profile ca(x) can be computed analyti-

cally as a function of the characteristic mass flux Jv of vapor, with the analytical prediction

showing good agreement with numerical results in the entire range of c̄a and for all ∆T at

which the flow is in the SUF regime. This simplified model helps untangle the interdepen-

dence of the fluid flow, temperature, and concentration fields inherent in the full two-sided

model presented in Chapter 2. Specifically, it is found that the concentration profile that is

set up by the mass transport in the gas phase determines the interfacial temperature profile

which, in turn, determines the interfacial velocity profile and the flow fields in both the

liquid and the gas layer.

Unlike the full two-sided model which can only be solved numerically, the simplified

transport model makes analytical prediction feasible. In particular, it predicts that τ̄ ex-

hibits different scaling behavior with c̄a, with different ranges of c̄a. When the average air

concentration is relatively high, c̄a & c̄(2)
a , the vapor mass flux Jv is constrained by the dif-

fusion of vapor through the gas phase, and the interfacial temperature profile is predicted
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to be linear, with slope τ̄ weakly dependent on c̄a. When c̄a . c̄(2)
a , the mass flux Jv is con-

strained by the heat conduction through the liquid layer and becomes weakly dependent

on c̄a. In this limit, the temperature profile is predicted to be exponential, with the average

slope τ̄ ∝ c̄a. Consequently, thermocapillary stresses decrease significantly as c̄a decreases,

leading to the decrease in the flow speed and noticeable change in the base flow profile.

For c̄a . c̄(1)
a thermocapillary stresses become negligible, the flow is driven primarily by the

buoyancy force which is c̄a-independent, and the flow profile changes substantially.

Unlike the base flow itself, the stability of the flow is strongly affected by the presence

of noncondensables, regardless of their concentration. As c̄a decreases, the flow stability is

enhanced, with critical Marangoni numbers for transitions between different flow regimes

increasing rather significantly. In fact, at sufficiently low c̄a flow transitions disappear

completely, with steady unicellular flow observed for all applied temperature gradients

studied here. While numerical simulations describe the change in flow stability, they do

not explain what drives this change. Hence, in order to better understand the flow stability,

a linear stability analysis of the problem was performed which includes the effect of heat

and mass transport in the gas layer, as well as the phase change at the interface. The results

will be presented in the next Chapter.

Although the flow in the relatively thick liquid layer investigated in this study is quite

different from the liquid flows typical in thermal management applications, the transport of

heat and mass through the gas layer and across the interface are nevertheless quite similar.

Therefore, the transport model for the gas phase can be extended to two-phase evaporative

cooling devices such as heat pipes that employ wicks or microchannels of various geome-

tries. As shown in this Chapter, the mass flow rate ṁv of vapor in the heat pipe is constrained

by either (rarely) the viscosity of the liquid flowing through the wick (or microchannels)

or (much more commonly) by the heat conduction through the liquid layer. By comparing

different constraints on ṁv, the optimal value for the size of a pore in the wick (or the di-

ameter of a microchannel) can be calculated analytically. The optimal pore/microchannel
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size was found to depend on the properties of the fluid, the geometry of the flow, and the

imposed temperature difference.

The transport model for the gas phase shows that while heat pipes employing wicks

with closed pores can be treated by partitioning them into “evaporator,” “condenser,” and

“adiabatic” sections, for heat pipes employing microchannels such a partition is invalid.

In particular, the model predicts that while lowering the concentration of noncondensables

suppresses thermocapillary stresses over most of the free surface, these stresses are actu-

ally enhanced near the cold end. In particular, for c̄a < c̄(3)
a thermocapillary stresses are

predicted to block the flow of coolant out of the condenser. This is notably different from

film dry-out, which has been predicted to occur in the evaporator at higher c̄a.

The model also allows an analytical calculation of the heat flow rate. Heat pipes operate

optimally in the limit c̄a . c̄(2)
a , where ṁv is heat conduction-limited. In this limit the heat

transport is dominated by advection and the latent heat associated with phase change at the

liquid-vapor interface. While phase change transfers the heat from the hot end towards the

cold end, advection in general transfers the heat in the opposite direction. The model shows

that the ratio Qa/Qp of the two contributions to the heat flux is proportional to the ratio of

the difference ∆Cp between the heat capacity of the working fluid in its liquid and vapor

form to the latent heat L. When the product ∆CpT0 is comparable to L, advection has

a strong adverse effect on thermal performance, a fact that appears to have been strongly

under-appreciated to date.

The thermal performance of a particular heat pipe can be conveniently described using

the heat transfer coefficient, which can also be computed analytically using the simplified

model of the two phases. The analytical expression for the heat transfer coefficient provides

a simple way both for evaluating different heat pipe designs and for choosing an optimal

working fluid. Surprisingly, it was found that while the optimal pore size depends on multi-

ple material parameters of the working fluid (its thermal conductivity, latent heat, viscosity,

and surface tension), the heat transfer coefficient is controlled primarily by the ratio of
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thermal conductivity of the liquid to the pore size. The concentration of noncondensables

appears to have a minor effect on the thermal performance below c̄(2)
a (i.e., below 7% for

HMDS), although for water noncondensables have been predicted to affect condensation

even at concentrations as low as 0.5% [109].
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CHAPTER 6

LINEAR STABILITY ANALYSIS

To date, only one study presented a linear stability analysis of pattern formation in buoyancy-

thermocapillary convection which correctly predicts the formation of a stationary pattern at

BoD = O(1). This study by Priede and Gerbeth [18] is, however, based on a one-layer model

where phase change is neglected and the free surface is considered adiabatic. While this

description may be acceptable for nonvolatile liquids or at high concentrations of noncon-

densables, it fails to describe volatile liquids at lower concentrations of noncondensables.

This chapter therefore describes a more general linear stability analysis that also accounts

for heat and mass flux across the interface associated with phase change. In order to avoid

dealing with the boundary conditions near the end or side walls, the horizontal liquid layer

and the gas layer above the liquid are both assumed to be laterally infinite, with constant

thicknesses dl and dg, respectively. The interface is assumed to be flat and non-deformable.

Finally, the base flow (SUF) is assumed to correspond to a mean horizontal temperature

gradient τ.

6.1 Governing Equations and the Base Solution

The governing equations for both layers have been presented in Chapter 2 and in nondi-

mensional form in Chapter 3. While the nondimensional equations (88) for the liquid layer

can be used without modification, several approximations will be made in the treatment of

heat and mass transport on the gas side in order to obtain a tractable problem which can

generate useful physical insights. The relative contribution of advection and diffusion to

the mass transport in the gas layer is described by the mass Péclet number (163). Since

the relevant length scale here is the wavelength of the convective pattern, which is com-

parable to the depth of the liquid layer, it reduces to Pem = dlug/D. Its largest values are

achieved at atmospheric conditions, when D is the smallest and ug = ui. For the problem
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investigated here, the transition happens at around ∆T = 4 K when Pem ≈ 1 at atmospheric

conditions. While this means that diffusion dominates advection only at length scales be-

low dl, dropping the advective term in the transport equation (36) should not affect the

results dramatically. The relative contributions of advection and conduction to the heat

transport in the gas layer is described by the thermal Péclet number (85) which reduces to

Peg = dlui/αg. We find Peg ≈ 0.4 at ∆T = 4 K, so the advective contribution can also be

ignored in the transport equation (35).

The relevant time scale for temperature equilibration in the gas layer is tt
g = d2

l /αg = 0.3

s and the time scale for composition equilibration is tm
g = d2

l /D = 1 s. In the liquid layer

the time scale for momentum equilibration is tv
l = d2

l /νl = 9 s, while the time scale for

temperature equilibration is tt
l = d2

l /αl = 83 s. Since the gas layer is characterized by much

faster relaxation rates than the liquid layer, the time dependence in the gas phase can be

neglected, with the dynamics of perturbation in the gas phase slaved to those in the liquid

phase. As a result, the advection-diffusion equations (91) for the heat and mass transport

in the gas layer are reduced to the much simpler Laplace equations, which can be solved

analytically:

∇2Tg = 0,

∇2ρr = 0, (210)

where Tg is the dimensionless gas temperature, ρr is the dimensionless density of the dilute

component.

It should be noted that neglecting the time-varying dynamics of the gas phase changes

neither the critical Marangoni number nor the critical wavelength for stationary instabili-

ties, so this simplification is justified if the transition thresholds are the only parameters of

interest.

The base solution (110)-(112) describing the core region of the liquid layer in the SUF
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regime was derived in Chapter 3 and will be reproduced here for convenience:

ψ̃l0 = Rel

[
−

z̃(z̃ + 1)2

4
+ BoD

z̃(z̃ + 1)2(2z̃ − 1)
48

]
x̂,

T̃l0 = x̃ + Mai

[
−

z̃2(3z̃2 + 8z̃ + 6)
48

+ BoD
z̃2(8z̃3 + 15z̃2 − 10)

960

]
. (211)

The base solution describing the core region of the gas layer satisfying the equations (210)

can be obtained by setting R = 0 in (124)-(125) which is equivalent to setting ug = 0 and

yields solutions that are independent of z̃ and vary linearly with x̃:

T̃g0 = x̃,

ρ̃v0 = %̃x̃. (212)

6.2 Boundary Conditions for the Perturbations

Although adiabatic boundary conditions apply for the base state, perturbations in the (inter-

facial) temperature will give rise to a nonzero heat and mass flux across the interface and,

consequently, in the gas phase. Perturbed solutions can be written in the form of Fourier

integrals

ψ̃l = ψ̃l0 +

∫ ∞

−∞

ψ̃lq(z̃)eiqx+σq tdq,

T̃l = T̃l0 +

∫ ∞

−∞

θ̃lq(z̃)eiqx+σq tdq,

T̃g = T̃g0 +

∫ ∞

−∞

θ̃gq(z̃)eiqx+σqtdq,

ρ̃v = ρ̃v0 +

∫ ∞

−∞

ρ̃vq(z̃)eiqx+σqtdq, (213)

where q = k + is is the complex wavenumber, σq = αq + iωq is the growth rate, ψ̃lq(z̃),

θ̃lq(z̃), θ̃gq(z̃) and ρ̃vq(z̃) define the vertical profile for the perturbations of stream function

ψ̃l, liquid temperature T̃l, gas temperature T̃g, and vapor density ρ̃v for the mode defined by

the wavenumber q, respectively. Here the vapor is assumed to be dilute in the gas phase

(ρr = ρv).
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The temperature perturbation in the gas phase θ̃gq satisfies (210), which requires

θ̃′′gq = q2θ̃gq, (214)

where the temperature is continuous across the interface

θ̃gq(0) = θ̃lq(0) = θ̃iq, (215)

and the boundary condition at the top of the gas layer is adiabatic

θ̃′gq(d̃g) = 0. (216)

The solution is

θ̃gq(z̃) =
cosh

[
q(z̃ − d̃g)

]
cosh

(
qd̃g

) θ̃iq. (217)

The evolution equation and the boundary conditions for the perturbation in the vapor

density ρ̃vq are analogous and give

ρ̃vq(z̃) =
cosh

[
q(z̃ − d̃g)

]
cosh

(
qd̃g

) ρ̃viq, (218)

where ρ̃viq is determined by the perturbations in the vapor pressure at the interface, which

can be related to the perturbations in the interfacial temperature via the Clausius-Clapeyron

relation which expresses local phase equilibrium

ρ̃viq = %̃θ̃iq. (219)

Fourier transforming (101) yields

J̃q = −
1
c̄a
ρ̃′vq(0), (220)

where J̃q is the Fourier coefficient of J̃(x) (recall that the base solution is J̃ = 0). Subtract-

ing the base solutions from the heat balance (98), Fourier transforming the result, and using

(220) gives the following relation

θ̃′lq(0) =
kg

kl
θ̃′gq(0) +

1
c̄a

G2

Mai
ρ̃′vq(0). (221)
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With the help of (217), (218), and (219) this can rewritten in the form of Newton’s law of

cooling

θ̃′lq(0) = −Biqθ̃lq(0) (222)

where we introduced a wavenumber-dependent analogue of the Biot number

Biq = q tanh
(
qd̃g

) [kg

kl
+

1 − c̄a

c̄a
(1 − υ)G1

]
, (223)

which will be subsequently called the Biot coefficient to emphasize the fact that it is a

function of q and c̄a, vs. a constant. The prefactor tanh(qd̃g) describes the effect of the

finite thickness of the gas layer. For dg � dl, this prefactor approaches unity and (223)

reduces to the expression derived by Chauvet et al. [128] for the stability of a volatile

liquid layer in the presence of a vertical temperature gradient. It should be noted that

the Biot coefficient (223) is different from, and unrelated to, the Biot number (155) that

characterizes the deviation of the interfacial temperature from the average temperature T0.

When the dilute component is air, rather than vapor, the disturbance in the mass flux

can be expressed as

J̃q = −
1
c̄a
ρ̃′vq(0) =

R̄a

R̄v

1
c̄a
ρ̃′aq(0), (224)

where the disturbance in the air density ρaq satisfies the same equation, and therefore has

the same form, as the disturbance in the vapor density

ρ̃aq(z̃) =
cosh

[
q(z̃ − d̃g)

]
cosh

(
qd̃g

) ρ̃aiq. (225)

The interfacial disturbances ρ̃aiq and ρ̃viq can be related, since the total pressure is essentially

constant,

ρ̃aiq = −
R̄v

R̄a
ρ̃viq. (226)

Substituting (225), (226) and (219) into (224), the same relation is obtained between J̃q and

θ̃gq, and thus (222) remains true for any c̄a.
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6.3 Evolution Equations for the Perturbations

By linearizing the governing equations (104) around the base state (211), the evolution

equations for the perturbations ψ̃lq and θ̃lq in the liquid are

(d2
z̃ − q2)2ψ̃lq + iqC1(z̃)Relψ̃

′′
lq − iqC2(z̃)Relψ̃lq − iqGrlθ̃lq = σq(d2

z̃ − q2)ψ̃lq,

Pr−1
l (d2

z̃ − q2)θ̃lq + iqC1(z̃)Relθ̃lq − iqC3(z̃)Maiψ̃lq − ψ̃
′
lq = σqθ̃lq. (227)

where

C1(z̃) =
(z̃ + 1)(3z̃ + 1)

4
− BoD

(z̃ + 1)(8z̃2 + z̃ − 1)
48

,

C2(z̃) = q2C1(z̃) +
3
2
− BoD

8z̃ + 3
8

,

C3(z̃) =
z̃(z̃ + 1)2

4
− BoD

z̃(z̃ + 1)2(2z̃ − 1)
48

. (228)

This is a system of ODEs which is fourth order with respect to ψ̃lq and second order with re-

spect to θ̃lq and hence needs a total of six boundary conditions. These boundary conditions

are:

ψ̃lq(−1) = 0,

ψ̃′lq(−1) = 0,

θ̃′lq(−1) = 0. (229)

at the bottom of the liquid layer and

ψ̃lq(0) = 0,

ψ̃′′lq(0) = −iqRelθ̃lq(0), (230)

θ̃′lq(0) = −Biqθ̃lq(0) (231)

at the free surface.

The corresponding boundary value problem was solved using function bvp5c in Matlab

2013a. This function takes a system of first order ODEs as input, so the higher order ODEs
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(227) are converted to a system of six first order ODEs

y′1 = y2,

y′2 = y3,

y′3 = y4,

y′4 = C4(z̃)y1 + C5(z̃)y3 + iGrlqy5,

y′5 = y6,

y′6 = C6(z̃)y1 + Prly2 + C7(z̃)y5, (232)

where y1 = ψ̃lq, y5 = θ̃lq, and

C4(z̃) = −i Grl
q3(z̃ + 1)(8z̃2 + z̃ − 1)

48
− i Grl q

8z̃ + 3
8

+ i Rel
q3(z̃ + 1)(3z̃ + 1) + 6q

4
− q2(q2 + σq),

C5(z̃) = i Grl
q(z̃ + 1)(8z̃2 + z̃ − 1)

48
− i Rel

q(z̃ + 1)(3z̃ + 1)
4

+ 2q2 + σq,

C6(z̃) = i Mai Prl q C3(z̃),

C7(z̃) = −i Mai q C1(z̃) + σqPrl + q2. (233)

Respectively, the boundary conditions become

y1(−1) = 0,

y1(0) = 0,

y2(−1) = 0,

y3(0) + iq Rel y5(0) = 0,

y6(−1) = 0,

y6(0) + Biqy5(0) = 0. (234)

The critical values for Mai and the wavenumber k = 2πdl/λ describing the transition to

PMC or SMC state correspond to a stationary instability with αq = ωq = 0. The boundary

conditions in this problem are of the “enhancing” type [202], so the pattern emerges near
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the end walls at a smaller value of Mai than in the core region of the flow, away from the

end walls (cf. Section 3.1.1). The perturbation is always O(1) at x = L due to the presence

of a convection roll that exists for all ∆T near the hot end wall. Hence, below the critical

value of Mai, the imaginary part of the wavenumber q defines the spatial attenuation of the

perturbation (or the number of convection rolls that can be detected in the liquid layer). In

this analysis, sPMC = 2dl/λ for the transition from SUF to PMC (which corresponds to one

extra roll). For systems with a small aspect ratio, sSMC = 2/Γx for the transitions from PMC

to SMC (which corresponds to convection rolls filling the entire liquid layer) but, since in

this study Γx ≈ 20 is quite large, sSMC = 0 will be used instead.

6.4 Comparison with Experimental and Numerical Results

Previous theoretical studies focused mainly on the dependence of the critical Marangoni

number Mai on the dynamic Bond number BoD and the Prandtl number Prl characterizing

the liquid layer. In this Section linear stability analysis will also be used to investigate how

both the critical Mai and the critical wavelength λ = 2πdl/k depend on the concentration of

noncondensables c̄a. The linear stability predictions will also be compared with available

experimental and numerical data.

Riley and Neitzel [12] determined how both the critical Mai and the critical wavelength

λ corresponding to the onset of steady multicells (SMC) depended upon the dynamic Bond

number BoD for a 1 cSt silicone oil with Prl = 13.9. In their study, the transition threshold

for SMC is identified as the instance when multiple convection rolls appear near the hot end

wall, but do not extend all the way to the cold end wall, which is a fairly vague definition

that could span a range of Mai. In this study, following Li et al. [1], the onset of partial

multicells (PMC) is defined as the instance when the convection roll near the hot end splits

into two, while the onset of SMC is defined as the instance when multiple convection rolls

cover the entire liquid layer (which can be infinite along the streamwise direction). There-

fore, in order to compare the predictions of linear stability analysis with the experimental
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data, critical values for the onset of both PMC and SMC were calculated using Prl = 13.9,

which matches the working fluid used in the experiments. Other material parameters of the

liquid that were not reported in Ref. [12] were taken from Ref. [203]. Since no data have

been found for the material properties of the vapor, the vapor properties were assumed to

be the same as those of the 0.65 cSt silicone oil [161, 162]. This should only have a minor

effect on the results—since the 1 cSt silicone oil is not particularly volatile (vapor pressure

pv = 0.5 kPa at T = 298 K), the properties of the gas phase are essentially those of air

(c̄a = 0.995 at atmospheric conditions).
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Figure 51: The critical Marangoni number (a) and the critical wavelength (b). Experimental
results obtained by Riley and Neitzel [12] are shown as black filled symbols and lines, the
predictions of the linear stability for transition to the PMC and SMC states are shown as
blue and green lines, respectively.
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As shown in Fig. 51, both the critical Mai and the critical wavelength observed in the

experiments are bracketed by the theoretical values corresponding to the onset of PMC and

SMC, and are closer to the SMC boundary. Indeed, Riley and Neitzel’s supporting figures

show the presence of multiple convection rolls at the critical Mai, so their threshold values

should be closer to the SMC threshold than the PMC threshold predicted by this linear

stability analysis.

Next, how do the critical Mai and the wavelength λ for the onset of the PMC and
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Figure 52: The critical Marangoni number (a) and the critical wavelength (b) for onset of
the PMC and SMC states in the system considered in this work (at Prl = 9.17, c̄a = 0.96)
as a function of the dynamic Bond number BoD. The blue solid line corresponds to onset
of the PMC state, the green solid line corresponds to onset of the SMC state. The notations
for flow regimes are the same as those in Fig. 42: SUF (◦), PMC (4), SMC (2), and OMC
(3). Open symbols correspond to experimental results of Li et al. [1] and filled symbols –
to numerical results from this study.
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SMC states depend on various parameters in this flow? Linear stability calculations were

performed using the material parameters listed in Table 6 to facilitate direct comparison

with the results of numerical simulations reported in Chapter 5 and experimental data of Li

et al. [1].

The predicted dependence on dynamic Bond number at atmospheric conditions c̄a =

0.96 and Prl = 9.19 is shown in Fig. 52. Similar to the case of the Prl = 13.9 liquid,

the critical values of Mai and λ increase monotonically with BoD over the range where a

stationary pattern is found. This increase in Mai can be easily understood by noting that

buoyancy has a stabilizing effect on the flow, since the temperature increases, and hence

the density of the liquid decreases, with height.
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Figure 53: The critical Marangoni number (a) and the critical wavelength (b) for onset of
the PMC and SMC states in the system considered in this work (at BoD = 0.67, c̄a = 0.96)
as a function of the Prandtl number Prl. The notations are the same as those in Fig. 52.

155



The dependence of Mai and λ on the Prandtl number of the liquid, again at atmospheric

conditions c̄a = 0.96 and BoD = 0.67, is shown in Fig. 53. For the onset of PMC, the

critical Mai increases monotonically with BoD, and the critical wavelength λ decreases

monotonically with BoD. For the onset of SMC, the critical Mai quickly decreases for

small Prl, reaching a minimum at Prl ≈ 1.6, and then gradually increases, in qualitative

agreement with the results obtained by Priede and Gerbeth [18] for their one-sided model

with an adiabatic interface. With the exception of liquid metals, Mai can be considered

a monotonically increasing function of Prl over the entire range o f Prl corresponding

to liquids. The dependence of the critical wavelength on the Prandtl number is however

nonmonotonic: λ decreases until it reaches a minimum at Prl ≈ 8, then slowly increases

with Prl. Unlike the critical Mai, the critical λ is almost insensitive to the changes in Prl,

for both the PMC and the SMC threshold over the relevant range of Prl.

While most of the previous studies only investigated convection patterns at atmospheric
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Figure 54: The critical Marangoni number for onset of the PMC and SMC states in the
system considered in this work (at Prl = 9.19, BoD = 0.67) as a function of the average
concentration of noncondensables c̄a. The notations are the same as those in Fig. 52.
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conditions, the present model extends the analysis to arbitrary compositions of the gas

phase by explicitly including the heat and mass transport through the gas phase. The depen-

dence of the critical Mai on the average concentration c̄a of noncondensables at Prl = 9.17

and BoD = 0.67 is shown in Fig. 54. The predicted critical Mai increases rather signifi-

cantly as c̄a decreases from atmospheric values to values where the gas is dominated by the

vapor, vs. air. This is consistent with both experimental and numerical results, as summa-

rized in Table 7.

When the gas phase is dominated by air (c̄a = 0.96, 0.85), the predictions of linear

stability analysis for the onset of PMC are within the transition range found in the numer-

ical simulations, while the predicted threshold of SMC is lower by about 20 % compared

with that found in the numerical simulations. When the vapor is dominant (c̄a ≤ 0.16),

the numerical simulations always find SUF, even when Mai is larger than the threshold

value predicted by the linear stability analysis. Since the model on which the numerical

simulations are based is only valid in the dilute approximation, no results are available for

Table 7: Critical Mai predicted by the linear stability analysis for the onset of PMC state (a)
and SMC state (b) at different average air concentration c̄a, at Prl = 9.17 and BoD = 0.67.
Available numerical and experimental data are included which specifies the range when
transitions occur.

c̄a Linear Stability Numerics Experiments
Analysis

0.96 325 303-379 264-323
0.85 344 301-377 -
0.56 411 - 366-478
0.34 503 - 504-677
0.11 748 - 629-1036

(a)

c̄a Linear Stability Numerics Experiments
Analysis

0.96 487 546-594 323-434
0.85 523 589-627 -
0.56 702 - 667-827

(b)
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comparison at intermediate air concentrations. The predictions of the linear stability anal-

ysis are in better agreement with the experimental data, although the predicted thresholds

for the onset of PMC and SMC states at atmospheric conditions are higher by about 20%

than those found in experiment.

The dependence of the critical wavelength on c̄a shows a trend similar to Mai: λ is found

to decrease as c̄a increases (cf. Fig. 55). For small c̄a, λ becomes comparable to the length

L of the cavity. These predictions are also in reasonable agreement with both numerical

and experimental results [204]. When the gas phase is dominated by air (c̄a = 0.96, 0.85),

linear stability analysis underpredicts the critical wavelengths for both the PMC and SMC

states by about 6% compared with the values found in the numerical simulations. When the

gas phase is dominated by the vapor, the numerical simulations predict that the base state is

stable at all ∆T , so no numerical data are available for comparison at low c̄a. Nevertheless,

the linear stability predictions are in good agreement with the experimental data.
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Figure 55: The critical wavelength for onset of the PMC and SMC states in the system con-
sidered in this work (at Prl = 9.19, BoD = 0.67) as a function of the average concentration
of noncondensables c̄a. The notations are the same as those in Fig. 52.
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The linear stability analysis assumes a flat interface and will therefore break down for

λ � 1, when the thickness of the liquid layer should have significant variations, even in an

unbounded layer. So the theoretical predictions at low c̄a (and also at low Prl) are unlikely

to be very accurate. Furthermore, at low c̄a (c̄a . c̄(2)
a ), the interfacial temperature profile in

the SUF state is not a linear function of position, and so the analytical solution for the base

flow is not valid.

In order to quantify the effect of the gas phase on the flow stability, the predictions of the

linear stability analysis are compared for two cases: (i) when the mass and heat transport

through the gas phase are accounted for through the boundary condition (223); and (ii)
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Figure 56: The critical Marangoni number for the onset of PMC state (a) and SMC state
(b) at atmospheric conditions. Black color represent the 0.65 cSt silicone oil at Prl = 9.17,
c̄a = 0.96, red color represent the 1 cSt silicone oil at Prl = 13.9, c̄a = 0.995. Solid lines
represent results with Bi = Biq, dashed lines represent results with Bi = 0.
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when that transport is completely ignored and the adiabatic boundary condition (Bi = 0)

is used, as is the case for the analysis by Priede and Gerbeth [18] based on the one-sided

model. These two cases will be compared at atmospheric conditions when the difference

should be the smallest, for flow in both the 1 cSt silicone oil used by Riley and Neitzel

[12] and the 0.65 cSt silicone oil used in this study. As shown in Fig. 56, the critical Mai

for case (i) is always higher than that for case (ii). In other words, the transport of heat

and mass through the gas phase delays the transition. Since 0.65 cSt silicone oil is more

volatile than 1 cSt silicone oil, the difference between the two cases is larger for the 0.65

cSt silicone oil. For example, at BoD = 0.69, the critical Mai for onset of the PMC state is

greater by 3% for the 1 cSt silicone oil, and by 5% for the 0.65 cSt silicone oil.

Despite this difference, at atmospheric pressure the adiabatic boundary condition could

be considered a reasonable assumption. Indeed, at atmospheric conditions, phase change

is greatly suppressed, so the effect of vapor transport through the gas phase is relatively

minor. The effect of heat transport is also relatively small, since the thermal conductivity

of both liquids is greater than that of air. However, as c̄a decreases and phase change is

enhanced, the predictions of the one-sided model become progressively less accurate. In

particular, it completely fails to describe the dependence of the critical Mai on the concen-

tration of noncondensables, because heat and mass transport through the gas phase, and

their dependence on the concentration of noncondensables, are completely ignored.

6.5 Discussion

Although the linear stability analysis of the two-sided model presented above neglected

advection in the gas phase, its predictions for the onset of the PMC and SMC states are in

reasonable agreement with the reported numerical results and experimental data. In par-

ticular, the linear stability analysis correctly predicts that the transitions between different

flow regimes are delayed (i.e., shifted towards higher Mai) when the concentration of non-

condensables decreases, although quantitative agreement is not expected at low c̄a when
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both the assumption of a flat interface breaks down and the analytical solution describing

the SUF regime becomes invalid. Despite these limitations, the agreement found at higher

c̄a confirms the validity of the assumptions made in the linear stability analysis, suggest-

ing that it captures most, if not all, of the essential physical processes governing the flow

stability for volatile liquids driven by a horizontal temperature gradient.

The discrepancies between the linear stability analysis and the numerical results are

likely caused by insufficient spatial resolution. While adaptive mesh refinement produces

a fairly fine mesh (with a minimum dimension of 0.0625 mm) in the liquid phase and near

the end walls, a coarser mesh was used in the core region of the gas phase. Discrepancies

between the linear stability analysis and the experimental results are likely due to the cur-

vature of the free surface. The liquid rises at the end walls and side walls, increasing the

thickness of the liquid layer there from dl to dl + dc. The capillary rise dc given by (82)

can be as large as the capillary length lc = 1.45 mm, which is 0.6dl where dl = 2.45 mm.

Since the Marangoni number is a quadratic function of the thickness of the liquid layer,

its average value in the experiments could be significantly greater than that given by the

thickness dl of the liquid layer at the mid-plane of the cavity.

In this problem, buoyancy plays a stabilizing role. Hence, the instability leading to

the formation of convection rolls is driven primarily by thermocapillary stresses, which

depend on the interfacial temperature gradient. The fluctuations in the interfacial tempera-

ture are affected significantly by the heat and mass flux through the gas phase, which can

be described using the Biot coefficient Biq as a function of both the wavenumber q and

the average concentration of noncondensables c̄a. The first term in the square brackets in

(223) describes the effect of conductive heat transport through the gas layer, and reflects

the dependence of thermal conductivity of the gas phase on the gas composition, while the

second term describes the effect of the latent heat released or absorbed at the interface as a

result of phase change, and reflects the variation in the diffusive transport of vapor through

the gas phase, which also depends on the gas composition. Both heat and mass transport
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through the gas phase suppress the fluctuations in the interfacial temperature.

To better understand the relative impact of the heat and mass transfer on stability, it is

instructive to compare the trends and characteristic magnitudes of the two terms in (223).

For the 0.65 cSt silicone oil used in this study, as c̄a decreases, the first term decreases

slightly (thermal conductivity of the vapor is somewhat smaller than that of the air), but

the second term increases significantly as phase change is enhanced. At atmospheric con-

ditions, the heat flux in the gas phase has a slightly larger effect (the magnitudes of the first

and second terms in the square brackets are 0.23 and 0.16, respectively). The mass flux

becomes dominant when c̄a < 0.94 (e.g., for c̄a = 0.1, the magnitudes of the first and sec-

ond terms in the square brackets are 34.1 and 0.11, respectively). In fact, the second term

diverges as c̄a → 0, which, according to (222), implies that the temperature fluctuations at

the interface vanish and the critical Mai diverges. This is consistent with the analysis pre-

sented in Chapter 4 which shows that the interface becomes essentially isothermal under

pure vapor.

Therefore, the increase in the critical Mai with decreasing c̄a is due primarily to the

enhancement of phase change, which increases the amount of latent heat released/absorbed

by the warmer/cooler regions of the interface, thereby suppressing the fluctuations in the

interfacial temperature gradient. The composition of the gas phase has a more significant

effect on flow stability than on the base flow itself. As discussed in Chapter 5, the concen-

tration of noncondensables has a relatively weak effect on the base flow, since the average

interfacial temperature gradient τ̄, which determines the thermocapillary stresses and hence

the speed of the base flow, is almost insensitive to c̄a above ∼ 0.1%.

Since the heat and mass transport through the gas phase significantly affect the flow sta-

bility, one-sided models, which neglect these effects, cannot accurately predict the transi-

tion thresholds for volatile fluids. As discussed previously, even at atmospheric conditions,

when phase change is strongly suppressed, one-sided models with the adiabatic boundary
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condition underestimate the critical Mai corresponding to the transition thresholds (by 3-

5%, compared with the two-phase models considered in this study). At reduced pressures,

heat and mass transport through the gas phase are significantly enhanced, and one-sided

models lead to wrong results as they completely fail to describe these effects.

A number of nondimensional parameters have been introduced by other linear stability

studies of convective flows. In particular, in their analysis of pure Marangoni (thermocap-

illary) instability in volatile fluids subjected to a vertical temperature gradient, Burelbach

et al. [194] introduced two nondimensional parameters, the evaporation number E (180),

which defines the ratio of the evaporative time scale (how long it would take for a liquid

to completely evaporate) to the viscous time scale, and the “non-equilibrium parameter” K

(151), which defines the ratio of the latent heat flux at the interface to the conductive heat

flux in the liquid. A version of the Biot coefficient (223) that describes the limit dg � dl

appears in the recent – correct – stability analysis of that problem [128]. Quite importantly,

neither E nor K appear in the proper linear stability analysis of convection in volatile fluids,

whether the temperature gradient is vertical as in [128] or horizontal as in the present study;

both parameters fail to account for the transport (of either heat or mass) in the gas phase.

Mercier and Normand [16] referred to the Biot number

Bic =
kgdl

kldg
(235)

based on conduction in the two layers in their analysis of buoyancy-thermocapillary con-

vection driven by a horizontal temperature gradient, but did not use it explicitly and instead

warned, as pointed out by Normand et al. [195], that the Biot number should depend on the

wavenumber for convective flows. Indeed, if we were to ignore phase change, and consider

an infinitely thick gas layer, the expression (223) would reduce to

Biq = q
kg

kl
= 2π

kgdl

klλ
, (236)

which is similar to (235) in form, but includes wavenumber dependence. The combination

(235) also does not account for the transport of mass (in response to phase change) and
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is therefore unsuitable for volatile fluids. In summary, the Biot coefficient Biq (223), as

defined here, is required to characterize convection in volatile fluids.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The studies of buoyancy-capillary convection in volatile liquids driven by a horizontal tem-

perature gradient, almost all of which previously considered only atmospheric conditions,

were extended in this thesis to reduced pressures. This thesis work, which is hence more

relevant for thermal management applications, used a combination of numerical simula-

tions and analytical techniques. The main conclusions and contributions of this work, as

well as recommendations for future studies are presented below.

7.1 Summary

In order to improve our fundamental understanding of the confined two-phase flow, which

is important for designing advanced thermal management devices, this thesis work focused

on extending the previous fundamental studies of buoyancy-thermocapillary convection in

volatile fluids to arbitrary concentration of noncondensables. Although this type of convec-

tion has been studied extensively at atmospheric conditions using one-sided models, there

has been little justification provided for neglecting the transport in the gas phase and across

the interface for volatile fluids. Therefore the main question is, “Under what conditions

can one-sided models provide an accurate description of two-phase flow of volatile fluids?

Alternatively, “When is a two-sided model required?

In order to answer either of these questions, it is important to determine the role played

by the transport in the gas phase and across the interface in this problem using a two-sided

model. Hence, as a part of this thesis work, a comprehensive two-sided model of confined

two-phase flows of a simple volatile fluid was developed, which accounts for momentum,

mass, and heat transport in both phases, as well as phase change along the entire interface.

This model is quite complicated since the fluid flow, temperature field, and concentration

field are all interdependent, and hence requires the use of numerical simulations. The model
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was therefore implemented numerically using the open source CFD package OpenFOAM

and validated by experimental data.

This numerical model was used to investigate buoyancy-thermocapillary convection in

the experimental system described in Li et al. [1], where a layer of volatile silicone oil was

contained in a sealed cavity under a mixture of noncondensables (air) and vapor, with the

average air concentration c̄a varying from that corresponding to atmospheric conditions to

zero, in which case the gas phase becomes a pure vapor. The two-sided model produced a

number of profound and unexpected results.

In particular, three different theoretical models of phase change based on Kinetic The-

ory of Gases (KTG), Statistical Rate Theory (SRT), and Non-equilibrium Thermodynamics

(NET) were compared. For an accommodation coefficient of unity (for nonpolar liquids),

the predictions of all three models are in good quantitative agreement. When the accom-

modation coefficient is less than unity (for polar liquids), only KTG and NET are valid, and

the predictions of these two models are in quantitative agreement. Although both SRT and

NET predict a temperature jump across the liquid-vapor interface, this temperature jump is

found to have a negligible effect on the interfacial temperature, and hence on the thermo-

capillary stresses and the flow. Therefore, any of these three phase change models can be

used to accurately model convection in volatile fluids.

Furthermore, it was found that heat and mass transport in the gas phase play a crucial

role in this problem. For relatively thin layers (characterized by BoD = O(1)), the flow is

driven primarily by thermocapillary stresses, which arise in response to the imposed inter-

facial temperature gradient, over a wide range of c̄a. Under typical experimental conditions

the total pressure is essentially constant in the gas layer while, for volatile fluids, the interfa-

cial temperature is essentially equal to the saturation temperature. The latter is determined

by the vapor (partial) pressure which, in turn, is a function of the composition of the gas

phase described by the local air concentration ca. And, since the local gas composition is

controlled by the mass transport through the gas phase, this transport essentially governs
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the fluid flow.

This result illustrates a dramatic contradiction between the predictions of a proper two-

sided model and the conventional modeling approach based on one-sided models, which

assumes that the gas layer plays a negligible role in the problem. Specifically, it was found

that one-sided models are only reasonably accurate for describing the case where there is

a uniform return flow away from the end walls, where the assumptions of a flat interface,

negligible phase change and heat flux through the interface, and linearly varying interfacial

temperature profile are all valid. Moreover, in confined systems, the interfacial temperature

gradient τ̄ is a free parameter and should be determined by matching the solution in the core

region of flow with that near the end walls, where the above assumptions fail (e.g., phase

change cannot be neglected for volatile fluids even under atmospheric conditions), and so

a two-sided model is still required for an accurate description of the entire flow.

Furthermore, the assumption of a linearly varying interfacial temperature profile that is

used in one-sided models is not always valid. In fact, the justification of this assumption

for volatile fluids requires a two-sided model. This work therefore extended the theoretical

analysis of the base return flow in an unbounded liquid layer [4] to the gas phase, yielding

an analytical description of the temperature and velocity field in both phases, and the com-

position field in the gas phase. The analytical solution for the two-phase flow shows that

the assumption of a constant interfacial temperature gradient can be justified by verifying

its consistency with the solution of transport equations in the gas phase at high c̄a.

However, the assumption of a linearly varying interfacial temperature profile breaks

down at low c̄a. This breakdown can be explained using a simplified analytical model of

transport in the gas phase. The obtained analytical solution for the concentration field ca is

valid over the entire range of c̄a, and shows that the concentration and the interfacial tem-

perature profiles in general vary exponentially with the coordinate along the temperature

gradient direction, with the maximum at the cold end and the minimum at the hot end of

the cavity. When c̄a . c̄(2)
a (where c̄(2)

a = 0.07 for HMDS), the characteristic length scale
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over which the concentration gradient varies becomes smaller than the length of the cavity

L and the interfacial temperature profile starts to deviate significantly from a linearly vary-

ing profile. So one-sided models can no longer accurately describe the flow, even at low

temperature differences ∆T .

While one-sided models are reasonably accurate for describing the flow at low ∆T for

c̄a & c̄(2)
a , they fail to describe the flow stability behavior at higher ∆T over the entire range

of c̄a. Even at atmospheric conditions, the heat transport through the gas phase is non-

negligible when additional convection rolls appear in the core region of flow, and one-sided

models are unable to accurately predict this behavior. As c̄a decreases, the flow becomes

more stable, with substantial increase in the critical Mai for transitions between different

flow regimes. Again, the one-sided models completely fail to predict this trend.

To describe the physical mechanisms responsible for suppressing the transitions, lin-

ear stability analysis of the two-sided model was performed, accounting for the heat and

mass transport in the gas phase. In this problem, buoyancy plays a stabilizing role, with

the instability leading to the formation of convection rolls driven primarily by thermocap-

illary stresses. Both the conductive heat flux and the latent heat released/absorbed due

to condensation/evaporation at the interface help damp the perturbations in the interfacial

temperature and the associated thermocapillary stresses, and therefore enhance the flow

stability. In particular, it was found that the increase in the critical Mai with decreasing c̄a

is mostly due to the enhancement in phase change and the associated latent heat released

or absorbed at the interface.

The linear stability analysis of the two-sided model suggests that the heat and mass

transport through the gas phase have a significant effect upon the flow stability and cannot,

in general, be neglected. The wavenumber-dependent Biot coefficient Biq, which describes

the effect of transport in the gas phase, shows that one-sided models are only valid when the

thermal conductivity of the liquid is much higher than that of the gas, kg � kl, and phase

change is negligible, (1 − υ)(1 − c̄a)/c̄a < G−1
1 . In fact, the second of these two conditions
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is never met when c̄a → 0, hence a two-sided model is required for a proper description of

the flow at high ∆T and low c̄a.

As discussed in the introduction, the main motivation for the present study was initially

the applications of two-phase flows to thermal management. On the other hand, due to

its fundamental nature, the focus of this work is on a canonical problem whose geometry

is at best qualitatively similar to that describing two-phase thermal management devices.

However, the transport through the gas layer and across the interface is quite similar for a

variety of geometries relevant to two-phase thermal management devices, and therefore, the

improved fundamental understanding of transport in both phases resulting from this work

should provide useful insights for modeling of evaporative two-phase cooling devices.

The capillary limit that constrains the liquid flow through the wick or microchannels

has always been believed to be the major factor in designing heat pipes. However, the

constraints imposed by the mass transport through the gas phase and the heat transport

through the liquid phase can also be important and hence need to be taken into account.

In particular, it is well known that noncondensable gases have a significant impact on the

diffusion of vapor and, consequently, on phase change. The mass flow rate of vapor ṁv

increases significantly as c̄a decreases from the value c̄a
a at atmospheric pressure to c̄(2)

a . The

simplified transport model of the gas phase shows that phase change becomes essentially

independent of c̄a below c̄(2)
a and the mass flux is instead limited by heat conduction. This

indicates that the benefit of decreasing c̄a becomes small at sufficiently small c̄a.

Heat pipes have been traditionally modeled by separating their interior into three parts:

the “evaporator,” the “condenser,” and the “adiabatic” regions, ignoring phase change in the

adiabatic region, and assuming a linear temperature profile. This is justified for macroscale

heat pipes which use wicks with closed pores to drive the liquid from the condenser to the

evaporator, since there is no free surface in the adiabatic region. However, the theoretical

analysis presented in this work clearly shows that heat pipes featuring open microchannels,

e.g., micro-heat pipes, cannot be partitioned in this way, since in the limit where these
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devices operate optimally (c̄a < c̄(2)
a ) the phase change is non-negligible over the entire

heat pipe and the temperature profile is nonlinear. Furthermore, at very low concentrations

of noncondensables (c̄a < c̄(3)
a ), the model suggests that thermocapillary stresses block the

flow of coolant out of the condenser. This shows that, contrary to the naive expectation, it is

actually counterproductive to decrease c̄a too much in terms of thermal transport, and hence

a heat pipe using microchannels should have the best performance for c̄(3)
a < c̄a < c̄(2)

a .

Based on the capillary limit and the heat conduction limit, the simplified transport

model is able to predict the optimal value for the size of a pore in the wick (or the size

of a microchannel). Moreover, it produces an analytical prediction for the heat flow rate

and the heat transfer coefficient h. The analytical results provide a simple way both for eval-

uating different heat pipe designs and for choosing an optimal working fluid. Specifically, it

was found that while the optimal pore size depends on multiple material parameters of the

working fluid (namely its thermal conductivity, latent heat, viscosity, and surface tension),

the heat transfer coefficient h is controlled primarily by the ratio of the thermal conductiv-

ity of the liquid to the pore size. In other words, it is the heat conduction limit, rather than

the capillary limit, that ultimately defines the performance of a heat pipe. Furthermore, a

working fluid with a smaller difference ∆Cp between the heat capacity of its liquid and va-

por phase is preferred. Advection of heat has an adverse effect, which could be significant

when the product ∆CpT0 is comparable to the latent heat L.

7.2 Main Contributions of This Work

The contributions of this thesis work to the fundamental understanding of two-phase flows

of volatile fluids include:

1. Development of a simplified analytical description of two-dimensional flow in a layer

of liquid under a mixture of its vapor and noncondensable gases, such as air, in

confined geometries.

2. Demonstration that transport in the gas phase essentially controls the convection in
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the liquid phase and can only be neglected in certain specific and limited cases (e.g.,

when the flow regime is SUF at high c̄a).

3. Discovery that the heat and mass transport through the gas layer have a crucial effect

on the stability of the flow in the liquid layer.

4. Demonstration that different phase change models produce virtually indistinguish-

able predictions, despite the differences in their assumptions regarding the existence

of a temperature jump at the interface.

5. Development of a numerical code based upon an open source CFD package, Open-

FOAM, which can be used for fundamental studies of thermocapillary-buoyancy con-

vection.

The contributions of this thesis work to the modeling of evaporative two-phase cooling

devices include:

1. Development of a simple transport model for heat pipes with wicks and micro-heat

pipes that can analytically predict the heat flux and heat transfer coefficient.

2. Prediction of the optimal size for the pores of the wick (or width of the microchan-

nels) based on the constraints imposed by the capillary forces (capillary limit) and

the conduction of heat through the liquid (conduction limit).

3. Discovery that there is no “adiabatic” region in micro-heat pipes at low concentra-

tions of noncondensables, which requires a new modeling approach for such devices.

4. Prediction of the range of concentrations of noncondensables beyond which the ther-

mal performance of evaporative cooling devices will be constrained by either the

diffusion of coolant vapor through the gas (diffusion limit) or by thermocapillary

forces (thermocapillary limit).
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7.3 Open Questions

The analysis presented in this thesis uncovered a number of open questions that should be

addressed in the future:

1. The interfacial temperature gradient is an important variable for the study of buoyancy-

thermocapillary convection, since it determines almost everything in this problem,

including the mass and heat transport, and all of the fields in the bulk of both layers.

For a fixed (confined) geometry and working fluid, the average interfacial temper-

ature gradient τ̄ becomes a function of the applied temperature difference ∆T and

the average concentration of noncondensables c̄a. In this study, the dependence on

these two parameters was described using an empirical correlation (174) based on

the numerical simulations. In principle, it is desirable to find an analytical expres-

sion instead for τ from first principles, which should also determine how it depends

on the geometry and material parameters.

2. The structure of the thin thermal boundary layers near the end walls and especially

near the contact lines (the micro region) clearly play an important role in heat trans-

port. The temperature field and the fluid flow in the micro region are coupled to each

other and must be resolved in order to compute the interfacial temperature and the

flow away from the end walls (in the macro region). Due to limited computational

resources and the large disparity in the length scales, the numerical simulations in

this study were able to resolve the macro region, but not the micro region of the

interface. As a result, the numerical solutions for the mass flux and the interfacial

temperature display a singular behavior in the vicinity of the contact lines. In order

to resolve these fields near the contact line, the wedge-shaped micro region should be

modeled analytically, with the solutions in the micro and macro regions matched in

the overlap region, like in matched asymptotic expansions. While some solutions for

the flow and/or temperature in a wedge are available [205–210], the problem where
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the two fields are coupled through the boundary condition at the free surface remains

unsolved.

3. Due to the extreme computational effort required by full 3D simulations, this thesis

work made only a limited effort to consider the effect of the lateral walls in a smaller

cavity with a contact angle of 90◦. Although the flow in the central vertical plane

of the 3D cavity agreed reasonably well with that obtained by the 2D simulations,

noticeable deviations from the 2D solution were found on either side of the central

plane when additional convection rolls appeared in the bulk flow. 3D numerical sim-

ulations become essential when the width W of the cavity becomes much larger that

the liquid layer thickness since in this case lateral walls provide little confinement.

3D simulations also become necessary when W is comparable to the layer thickness

and the contact angle is different from 90◦ due to the variation in the layer thickness

in the spanwise direction.

4. The numerical simulations in this study accounted for the transport of momentum,

heat, and mass in both phases and phase change across the interface. In particular,

heat and mass transport in the gas phase due to both advection and diffusion were

considered. However, in the linear stability analysis, heat and mass transport in the

gas phase due to advection were neglected. Although this is a reasonable assumption

for the system in this study as both Peg and Pem are typically small, it may not be

a good assumption for other fluids or other geometries. Therefore linear stability

analysis presented in this study should be further extended (or at least verified) by

considering the advection of heat and mass in the gas phase.

5. A general analytical model has been developed in this work for predicting the optimal

pore size and the heat transfer coefficient of a heat pipe with a wick. While this model

should also be qualitatively accurate for a micro-heat pipe, more accurate description

is required to obtain quantitatively accurate predictions. In particular, the capillary
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pressure that drives the flow of liquid is determined by the shape of the grooves and

the wetting properties of the working fluid. Moreover, since the microchannels are

open to the gas phase, thermocapillary stresses and the viscous drag exerted by the

gas phase could become important in certain limiting cases, and should be considered

in analyzing the flow of liquid through the microchannels. There has been some

modeling along these lines by other researchers [190, 211], although the thermal

boundary conditions assumed in those studies are not realistic.
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APPENDIX A

DIMENSIONLESS PARAMETERS

All the dimensionless parameters that have been introduced in the previous chapters are

listed in Table 8. The values are calculated based on the geometry (cf. Fig. 4) and the fluid

(cf. Table 6) used in this study, assuming the thickness of the liquid layer dl = 2.45 mm,

the contact angle θ = 50◦, and ∆T = 10K.

The values for the dimensionless parameters both at atmospheric conditions and under

pure vapor are reported. While some dimensionless parameters are independent of the con-

centration of noncondensables c̄a, others could vary significantly with c̄a. This is because c̄a

affects the material parameters of the gas phase, and more importantly, the mass transport

in the gas phase and hence the interfacial temperature gradient τ.

The velocity scales depend on c̄a and could be different in the two phases. For the ther-

mal Péclet number of the liquid phase Pel (84), velocity scale is chosen as the interfacial

velocity ui (113). At atmospheric conditions, the liquid flow is driven primarily by thermo-

capillary stresses and ui = uT +uB. Under pure vapor, thermocapillarity essentially vanishes

and ui ≈ uB. For the thermal Péclet number Peg (85) and mass Péclet number of the gas

phase Pem (163), the velocity scale ug also depends on c̄a. At atmospheric conditions, the

gas flow is driven primarily by thermocapillary stresses and ug = uT + uB. Under pure

vapor, the gas flow becomes unidirectional and ug can be determined by the mass flow rate

of the vapor ṁv. For thick layers under pure vapor, ṁv = ṁ0
v (177), and

ug =
ṁv

ρgWdl
=
ϕckl∆T
ρgdlL

. (237)

Furthermore, for the linear stability analysis discussed in Chapter 6, the relevant length

scale lg in the gas phase is the wavelength for the convective pattern, which is comparable

to the thickness of the liquid layer, therefore lg = dl. The corresponding values for Peg

and Pem are presented in the parentheses in the following table, which differ by a factor of

d̃g = 3.08 compared with the values based on lg = dg.
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Table 8: Dimensionless parameters and their values at atmospheric conditions and under
pure vapor, at dl = 2.45 mm, θ = 50◦ and ∆T = 10K. The material parameters corresponds
to those in Tables 6.

Dimensionless parameter At atmospheric conditions Under pure vapor
Prl 9.17
RaL 1.9 × 103

MaL 2.8 × 103

G1 4.11
υ 0.067

ΞT 143
BoD 0.67
Bo 2.85
Γx 19.8
Γy 4.08
Γg 6.42
d̃g 3.08
K 6.8 × 103

E 9.3 × 10−3

Mai 758 0.41
Prg 0.71 0.79
Rel 82.6 4.4 × 10−2

Reg 14.2 4.3 × 10−3

Ral 506 0.27
Rag 28.5 5.5 × 10−3

Grl 55.2 3.0 × 10−2

Grg 40.1 7.0 × 10−3

Pel 228 38.8
Peg 3.03 (0.99) 1.98 (0.64)
Pem 9.03 (2.93) 0.37 (0.12)
Ca 1.9 × 10−4 1.0 × 10−7

We 1.6 × 10−2 4.6 × 10−9

G2 5.0 × 107 1.3 × 109

Kν 17.9 31.5
Kα 25.3 40.0
KD 8.5 212.1
Ξρ −1.3 × 108 −7.1 × 108

R 84.8 85.8
B 3.21 1.80
Bic 0.075 0.032
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APPENDIX B

NUMERICAL IMPLEMENTATION

The mathematical model described in Chapter 2 has been numerically implemented by

adapting an open-source general-purpose CFD package OpenFOAM [212] to solve the

governing equations in both 2D and 3D geometries. OpenFOAM uses the finite volume

method [213, 214] to convert the partial differential equations into a set of algebraic equa-

tions on discrete control volumes. The discretization is based on the integral form of the

governing equations, where Gauss’ theorem is used to rewrite the volume integrals of the

terms involving various derivatives as the surface integrals of the corresponding fluxes, en-

suring that the conservation laws are satisfied both locally and globally. Another advantage

of the finite volume method is that it is easy to apply on unstructured meshes.

The moving mesh method [147–155] (also known as moving mesh interface tracking

method) is used to describe the motion of the free surface. The domain occupied by each

phase (liquid, gas) is represented by a separate computational mesh and the interface be-

tween the two phases is represented by a set of mesh faces that divide the two domains.

As interface changes shape, the mesh at the interface follows its motion, with the mesh

on each side of the interface deforming accordingly. The governing equations are solved

separately in each domain, subject to the boundary conditions imposed at the free surface

as well as the boundaries of each domain that correspond to the inner surfaces of the walls

of the container. Although the moving mesh methods are not the most convenient for sim-

ulating flows with interfaces that experience large deformation or changing topology, for

flows with moderate interface deformation, they provides a very accurate description of

the interface position and shape and therefore simplify the implementation of the boundary

conditions at the interface, especially those involving surface tension.

This chapter describes the numerical implementation of the mathematical model. It
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Figure 57: Sketch of the control volume (from [155]).

gives the background on the finite volume method, including the discretization of the solu-

tion domain and the governing equations. Then it describes the moving mesh methods and,

in particular, the implementation of phase change and thermocapillary stresses. In the end,

it describes the procedure for solving the discretized governing equations numerically.

B.1 Finite Volume Method

The finite volume method includes the discretization of the solution domain, the discretiza-

tion of the governing equations, and the boundary conditions. Each of these are discussed

in more detail below.
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B.1.1 Discretization of the Solution Domain

Discretization of the solution domain includes the temporal discretization (if required) and

spatial discretization. The temporal discretization is straightforward: for a transient prob-

lem, the time domain [0,T ] is divided into a set of finite time steps or time intervals ∆t,

which could vary during the numerical simulation. The spatial discretization can be per-

formed in different ways, where the spatial domain V is divided into a set of finite control

volumes ∆V , or computational cells, which fill the entire spatial domain without overlap-

ping each other.

The complete computational mesh, which represents the spatial domain occupied by

the fluid, is formed by the internal field which is represented by the computational cells,

and the boundary fields which are usually represented by a set of cell faces that coincide

with the boundaries of the spatial domain. As shown in Fig. 57, each computational cell is

bounded by a set of cell faces, which can be generated using a set of cell vertex points.

The mesh generates the discretization of the physical fields, material parameters, etc.

In particular, the cell-centered values correspond to the centroids of the cells rP, which are

defined so that ∫
v

(r − rP) dV = 0, (238)

while face-centered values correspond to the centers of the cell faces r f , which are defined

so that ∫
f

(
r − r f

)
dS = 0. (239)

Finally, the edge-centered values correspond to the middle of the edges. For instance, the

discretizations of boundary fields, such as the interfacial temperature, use face-centered

values, while edge-centered values of the interfacial temperature are used to compute the

temperature gradients which determine thermocapillary stresses.
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B.1.2 Discretization of the Equations

The governing equations, written in the form of partial differential equations here, are dis-

cretized into a set of algebraic equations. For a divergence-free velocity field, transport

equations for a tensorial field φ can be written in the form

∂t(ρφ)︸︷︷︸
time derivative

+ ∇ · (ρuφ)︸    ︷︷    ︸
advection term

−∇ · (Γ∇φ)︸     ︷︷     ︸
diffusion term

= S φ︸︷︷︸
source term

, (240)

where ρ is the density, u is the velocity, and Γ is the diffusivity. The discretization of a trans-

port equation using the finite volume method is based on the integral form of that equation,

where integrals over the volume V of a cell for the terms involving spatial derivatives can

be written as a sum of the integrals over the surfaces S that bound the cell based on the

Gauss’ theorem ∫
v

(∇ � φ) dV =

∫
s
(n � φ) dS , (241)

where n is the unit outward normal vector, and the symbol� defines a tensor product, such

that ∇ � φ can represent various derivatives including the divergence ∇ · φ, the gradient

∇φ, and the curl ∇ × φ.

The surface integral on the right-hand-side of (241) can then be estimated based on

the surface fields φ f , which are either specified directly or are approximated using the

values specified at the neighboring cell centroids via different numerical schemes [213,

214], including central differencing (CD), which is second order accurate but unbounded;

upwind differencing (UD), which guarantees boundedness but is first order accurate; and

blended differencing (BD), which preserves boundedness with reasonable accuracy. The

discretization of different terms is discussed in more detail below.

B.1.2.1 Divergence

The integral of a divergence term over a control volume can be rewritten as a sum of the

surface integrals, following Gauss’ theorem (241),∫
v

(∇ · φ) dV =

∫
s
(n · φ) dS ≈

∑
f

S f · φ f , (242)
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where S f = nS f is the outward pointing surface area vector, and φ f is the surface field

which is either specified or evaluated based on the face interpolation as discussed above.

B.1.2.2 Gradient

There are different discretization schemes for the gradient terms. For the cell-centered

gradient, Gauss’s theorem (241) leads to∫
v

(∇φ) dV =

∫
s
(nφ) dS ≈

∑
f

S fφ f . (243)

Alternatively, the cell-center gradient can be evaluated by the least squares method [215],

which determines the gradient by minimizing the weighted errors for estimating cell-centered

values of φ at all the cells neighboring the control volume based on the gradient and the

value of φ at the center of the control volume.

Face-normal component of the gradient n ·∇ fφ also requires discretization. For orthog-

onal meshes where grid lines are perpendicular at the intersection, the vector d = rP − rN

connecting the centroids of two connecting cells is normal to the cell face that is shared by

the two cells, therefore the corresponding face-normal gradient can be estimated as

n · ∇ fφ =
φN − φP

|d|
, (244)

where φP and φN are the values at the centroids P and N of the two connecting cells. For

non-orthogonal meshes, the discretization for the face-normal gradient is augmented to

take into account for both the orthogonal contribution and the non-orthogonal contribution

[216].
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B.1.2.3 Advection Term

The volume integral of the advection term ∇· (ρuφ) from (240) is discretized using Gauss’s

theorem (241) ∫
v
∇ · (ρuφ) dV =

∫
s
(n · ρuφ) dS

≈
∑

f

S f · (ρu) f φ f

=
∑

f

ρV̇ fφ f ,

(245)

where

V̇ f = S f · u f (246)

is the volume flux through the cell face f .

B.1.2.4 Diffusion Term

The volume integral of the diffusion term ∇ · (Γ∇φ) from (240) can be discretized as∫
v
∇ · (Γ∇φ) dV =

∫
s
(n · Γ∇φ) dS

≈
∑

f

S f · Γ f∇ fφ,
(247)

where the normal face gradient S f · ∇ fφ is estimated based on the cell-center values, as

discussed in section B.1.2.2.

B.1.2.5 Source Term

In general, the source term Sφ from (240) can be a function of φ. To facilitate the lineariza-

tion of the transport equation, which will be discussed below in B.1.4, the source term is

typically linearized before the discretization

Sφ = Siφ + Sii, (248)

where both Si and Sii can depend on φ. The discretization is hence∫
v
SφdV ≈ SiφVP + SiiVP. (249)
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B.1.2.6 Time Derivatives

The time derivative ∂t(ρφ) in (240) can be discretized using the difference between the

“new” values at the next time step, φn ≡ φ(t + ∆t), the “old” values at the previous time

step, φo ≡ φ(t), and sometimes the “old-old” values at the time step before the previous

one, φoo ≡ φ(t−∆t). In this study the second-order accurate backward differencing scheme

[217] is used, hence ∫
v
∂t(ρφ)dV ≈

3(ρφV)n
P − 4(ρφV)o

P + (ρφV)oo
P

2∆t
. (250)

Alternatively, other numerical schemes [213, 214] can be specified with an input file in

OpenFOAM [212].

B.1.3 Discretization in Time

For a transient problem, the spatial derivatives, discussed in Sections B.1.2.1 through

B.1.2.5, also need to be discretized in time. In general, following (241), the spatial deriva-

tives are discretized as ∫
v

(∇ � φ) dV =

∫
s
(n � φ) dS

≈
∑

f

S f � φ f ,
(251)

thus, to leading order in ∆t,∫ t+∆t

t

[∫
v

(∇ � φ) dV
]

dt ≈

∑
f

S f � φ f


i

∆t. (252)

where i denotes the time step n, o and oo.

There are different ways of estimating (252) that can be specified in the numerical

code, depending upon the choice of the time when φ is evaluated [213, 214]. In this study

the implicit Euler method is used, which corresponds to setting i = n. It is a first-order

accurate, unconditionally stable and guarantees boundedness.
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B.1.4 Linearization of the Transport Equation

With the discretization discussed in B.1.2 and B.1.3, the integral form of the general trans-

port equation (240) for the control volume VP∫ t+∆t

t

[∫
VP

∂t(ρφ)dV
]

dt︸                         ︷︷                         ︸
time derivative

+

∫ t+∆t

t

[∫
VP

∇ · (ρuφ) dV
]

dt︸                             ︷︷                             ︸
advection term

−

∫ t+∆t

t

[∫
VP

∇ · (Γ∇φ) dV
]

dt︸                              ︷︷                              ︸
diffusion term

=

∫ t+∆t

t

[∫
VP

SφdV
]

dt︸                    ︷︷                    ︸
source term

(253)

can be discretized as

3(ρφV)n
P − 4(ρφV)o

P + (ρφV)oo
P

2∆t
+

∑
f

Sn
f · (ρu)n

f φ
n
f −

∑
f

Sn
f · Γ

n
f∇

n
fφ

= Sn
i φ

n
PVn

P + Sn
iiV

n
P.

(254)

based on (250), (245), (247) and (249), where the backward differencing scheme is used for

the time derivatives and the implicit Euler scheme for the time discretization of the spatial

terms.

Discretization converts the partial differential equation (253) into a set of algebraic

equations for the values φn
P of the field φ at each computational mesh cell

APφ
n
P +

∑
N

ANφ
n
N = BP, (255)

where AP includes all the coefficients corresponding to φn
P, which show up in the time

derivative, the advection and diffusion term, and the linear part for the source terms at the

new (current) time step; AN includes all the coefficients corresponding to the values φn
N at

the neighboring cells, which show up in the advection and diffusion term at the new time

step. The summation is done over all the neighboring cells that share a face with the cell

P. On the other hand, BP includes the rest of the terms contained in the time derivatives

that involve neither φn
P nor φn

N as well as the advection and diffusion terms evaluated at the

previous time step(s) and the constant source terms.
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The system of algebraic equations (255) can be written as

[A]n[φ]n = [B], (256)

where [A]n is a sparse matrix with the diagonal coefficients AP and off-diagonal coeffi-

cients AN , [φ]n is the vector consisting of the values φn
P the field φ takes at the cell cen-

troids of the entire mesh at the new time step, while [B] is a vector consisting of BP. This

system (256) can be solved using different numerical algorithms [214, 218, 219], including

both direct methods and iterative methods. When the matrix [A]n is large and sparse, it is

usually more efficient to use iterative methods.

The transport equations for the momentum, temperature and density are all discretized

using the above procedure and solved together with the continuity equation. The velocity

and pressure are strongly coupled with each other, while they are relatively weakly coupled

with the temperature and the density field. Therefore an iterative method is used to compute

the velocity and pressure. The details of the procedure are discussed below in Section B.3.

B.1.5 Discretization of the Boundary Conditions

In order to close the problem, making it well-defined, boundary conditions need to be

specified on all the boundaries, including the free surface. Additionally, initial conditions

also need to be specified for the transient problem. Discretization requires, as discussed in

the section B.1.2, either the values or the gradients of a field at the cell surfaces. Therefore,

as shown in Fig. 58, when the cell face b lies on a boundary, the value and the gradient

at the boundary face b are required and need to be prescribed. Two types of boundary

conditions are used in this study and will be discussed below.

B.1.5.1 Dirichlet Boundary Conditions

Dirichlet boundary conditions prescribe the values φ f of a field on the boundary faces.

When the face gradient on the boundary face (∇ fφ) is needed, it can be interpolated using
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Figure 58: Sketch of the control volume with a boundary face (from [220]). P and b repre-
sent the centroids of the control volume and the boundary face, respectively. S f represents
the face area normal vector. d represents the distance vector from the cell centroid to the
face centroid, while dn represent the normal distance vector from the cell centroid to the
boundary face, which is parallel to S f .

the value φb at the boundary face and the value φP at the cell centroid,

n f · (∇ fφ)b =
φb − φP

|dn|
, (257)

where |dn| is the normal distance between the cell centroid P and the boundary face f .

B.1.5.2 Neumann Boundary Conditions

Neumann boundary conditions prescribe the gradient gb = n f ·(∇ fφ)b of the variable normal

to the boundary at the boundary face. When the value φ f at a cell face is needed, it can be

extrapolated using the value φP at the corresponding cell centroid and the gradient gb,

φb = φP + |dn|gb (258)

The discretizations (257) and (258) at the boundaries are second-order accurate when

the prescribed boundary conditions, either φb or gb are constant along the face. They are

only first-order accurate when the prescribed boundary conditions vary along the face and

the mesh is non-orthogonal. The correction for the non-orthogonal contribution can be

introduced to improve the accuracy [216, 220].
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Figure 59: Sketch of the interface with mesh boundaries. l f and g f represent the geometri-
cally identical cell faces at the liquid and the gas side of the interface, with the correspond-
ing normal vector nl f and ng f . lP and gP represent the cell centroids of the corresponding
mesh cells, δl f and δg f represent the normal distances between the cell centroids and the
cell faces at the interface.

B.2 Moving Mesh Method

In order to simulate two-phase flows, the moving mesh finite volume method is used in

this study. As shown in Fig. 59, each phase (liquid or gas) is represented by a separate

computational mesh, while the interface between the two phases is represented by two

geometrically identical surfaces, which serve as the boundary surfaces for the two phases.

In this study, the two boundary surfaces at the interface are discretized in the same way, i.e.,

for each boundary cell face l f for the liquid phase, there is a corresponding geometrically

identical boundary cell face g f for the gas phase.

The transport equations are solved separately on the moving meshes representing both

phases, while appropriate boundary conditions are specified on both sides of the interface,

coupling the transport in, and the dynamics of, the two phases. In addition, fluid flow and

phase change cause movement of the liquid-gas interface and the corresponding distor-

tion of the computational meshes in such a way that cell faces l f an g f always lie at the

interface.
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B.2.1 Finite Volume Method on the Moving Mesh

To express the transport equations on a moving control volume, the velocity relative to the

moving mesh should be used in the advection term. The transport equations are modified

based on (240),

∂t(ρφ)︸︷︷︸
time derivative

+∇ ·
[
ρ(u − us)φ

]︸             ︷︷             ︸
advection term

−∇ · (Γ∇φ)︸     ︷︷     ︸
diffusion term

= S φ︸︷︷︸
source term

, (259)

where u is the velocity of the fluid flow and us is the velocity of the mesh or, after this

equation has been discretized, the velocity of the centers of the cell faces bounding the

control volume (computational cell). Specifically, (245) is generalized to∫
v
∇ ·

[
ρ(u − us)φ

]
dV =

∫
s

[
n · ρ(u − us)φ

]
dS

≈
∑

f

(
ρS f · u f − ρS f · us

]
φ f

=
∑

f

(ṁ f − ρV̇ f )φ f ,

(260)

where ṁ f = ρS f · u f is the mass flux through the cell face f , and V̇ f = S f · us is the face

volume flux due to the motion of the cell face f . While the mass flux satisfy the mass

conservation, the face volume flux must satisfy space conservation [221]

∂t

∫
v

dV −
∫

s
V̇ f = 0. (261)

at the discrete level to avoid introducing artificial mass sources [221–223]. In this study,

backward differencing scheme is used, and (261) is discretized as

3Vn
p − 4Vo

p + Voo
p

2∆t
−

∑
f

V̇n
f ≈ 0. (262)

Therefore the face volume flux can be calculated from the volume change of a mesh cell

∆VP between consecutive time steps, which can be decomposed into a set of volumes ∆V f

swept by each cell face f (that bound the mesh cell) during its movement from the old

location to the new location

∆Vn
P = Vn

p − Vo
p =

∑
f

∆Vn
f . (263)
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Combing (262) and (263), the face volume flux through the cell face f

V̇n
f =

3
2

∆Vn
f

∆t
−

1
2

∆Vo
f

∆t
. (264)

B.2.2 Mesh Motion Solver

A polyhedral vertex-based mesh motion solver [224] is used in this study to update the

computational mesh corresponding to the fluid flow by updating the positions of all the cell

vertices of the mesh. The movement of the internal mesh is updated based on the movement

of the interface.

B.2.2.1 Movement of the Surface Mesh at the Interface

The displacement of the interface needs to be computed, before the rest of the mesh on

both sides can be updated. As shown in Fig. 59, the interface is represented by two sets of

geometrically identical cells faces, one for each phase. Therefore, only the displacement

of the surface mesh on one side (the liquid side, in this study) needs to be determined. The

next mass flux through a cell face l f on the liquid side of the interface should be consistent

with the mass flux due to phase change

ṁl f − ρlV̇l f = J. (265)

The face volume flux at the cell face l f , V̇ i
l f , should satisfy (265), otherwise, the following

correction

V̇ ′l f = V̇l f − V̇ i
l f =

ṁl f − J
ρl

− V̇ i
l f (266)

is required for the face volume flux and the interface needs to be moved accordingly. At

each time step, the interface and then entire mesh are updated based on the results from

last time step. The physical fields are updated afterwards without updating the mesh, then

(265) is usually not satisfied. Therefore iteration is required, and this is referred as the outer

iteration, which will be discussed in details in Sec. B.3.3.

In order to update the position of the interface, the displacement of each vertex on

the interface (interface points) needs to be specified so that the required correction of face
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Figure 60: Sketch of the movement of the interface. � represents the control point defined
for cell face l f , • represents the interface point, and + presents the point ls calculated based
on the neighboring control points. The solid lines connecting the interface points present
the interface, the dash lines connecting the control points represent the control point plane,
while the red and green color corresponds to the old and new iterations, respectively. ∆hl f

and ∆hip represent the displacements of the control points and the interface point, while el f

and eip represent the direction vectors for these displacements correspondingly. nl f and nip

are the normal vectors of the interface and the control point place.

volume flux V̇ ′l f is satisfied. This study follows a procedure proposed by Muzaferija and

Peric [225] and modified by Tukovic and Jasak [155], where control points are introduced

to the interface. As shown in Fig. 60, the control point (represented by the diamond symbol)

is introduced to each cell face at the liquid side of the interface, which is typically chosen

as the centroid of the cell face initially.

The displacement of the control point in the direction el f is

∆hl f =
∆V ′l f

S f lnl f · el f
, (267)

where nl f is the normal vector of the cell face l f , and el f is an arbitrary unit vector which

defines the control point displacement direction. In this study, el f is chosen as the normal

vector el f from the previous iteration. ∆V ′l f is the volume swept by the cell face l f during

its movement from the old position to the new position, and is calculated based on the

correction for face volume flux V̇ ′l f . For the backward differencing scheme

∆V ′l f =
2
3

V̇ ′l f ∆t. (268)
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Therefore the new position of the control point can be specified with the position vector

rk
l f = rk−1

l f + ∆hl f el f , (269)

where k represents the number of iterations.

Afterwards each interface point (represented by the dot in Fig. 60) is moved onto a

control point plane (represented by the dash line in Fig. 60) laid over the corresponding

control points. The displacement of the interface point in the direction eip is

∆hip =
nip · (rls − rk

ip)

nip · eip
, (270)

where nip is the normal vector of the control point plane, and eip is an arbitrary unit vector

which defines the interface point displacement direction. In this study, eip is parallel to

el f . rk
ip is the position vector for the interface point from the previous iteration, while rls is

the position vector for a point ls on the control point plane that is calculated based on the

corresponding control points

rls =

∑
l f w2

l f rl f∑
l f w2

l f

, (271)

where the summation is performed over all the neighboring control points to the interface

point, and the weighing factor wl f is the inverse distance from the control point to the

interface point [155].

Therefore the new position of the interface point is

rk
ip = rk−1

ip + ∆hipeip. (272)

For the interface points that lie on the wall boundary ipb, the mirror control points l f m

are introduced in order to determine the control point plane. As shown in Fig. 61, a virtual

symmetry plane sP is defined based on the specified normal vector nb, hence the position

of the mirror control point is

rl f m = rl f − 2(rl f − rk
ipb) · nbnb, (273)
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where rl f specifies the position of the control point for the cell face at the boundary. Then

the position of the interface point at the boundary is also moved to the control point plane

defined by the corresponding control points and the mirror control points using (272).

Moreover, the contact angle for the liquid phase at the solid wall can be specified by

adjusting the mirror control points and hence the control point plane defined by the control

points and the corresponding mirror control points. As shown in Fig 61, when the surface

normal of the virtual symmetry plane nb is parallel to the surface normal on the solid wall

nw (c.f. Fig 61(a)), the control point plane (represented by the dash line) is perpendicular

to the solid wall, therefore enforcing the contact angle θ = 90◦. When the normal vector nb

is defined at an angle θ to nw (c.f. Fig 61(b)), the control point plane will be at the angle θ

to the wall as well, hence enforcing the specified contact angle θ as the interface points at

the boundary are updated.
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Figure 61: The interface at the solid boundary. � represents the control point, 4 represents
the mirror control point, • represents the internal interface point, and × represents the
interface point at the solid boundary. The solid lines connecting the interface points present
the interface, the dash lines connecting the control points represent the control point plane,
while the red and green color corresponds to the old and new iterations, respectively. The
black solid line represents the solid wall with the wall normal vector nw, and the orange
solid line represents the virtual symmetry plane sP defined by the normal vector nb.
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B.2.2.2 Movement of the Internal Mesh

The polyhedral vertex-based mesh motion solver [224] is used in this study. The dis-

placement of all the internal vertices is determined by solving the discretized mesh motion

equations subject to the motion of the cell faces lying at the interface, while preserving the

topology of the mesh. Either the algebraic mesh motion equation or the Laplace equation

with constant or variable diffusivity is chosen as the motion equations. The computational

mesh is updated iteratively as the position of all the mesh vertices rp are updated based the

solution of the velocity up at all the vertices

rk
p = rk−1

p + up∆t. (274)

The movement of the computational mesh is coupled with the fluid flow and heat and

mass transport, iteration is hence required within each time step so that the computational

mesh and the dependent variables are consistent, this will be discussed later in B.3.

B.2.3 Boundary Conditions at the Interface

Appropriate boundary conditions, which are discussed in 2.6.1, need to be discretized and

specified at both sides of the interface before the transport equations are discretized and

solved for in each phase. While the discretization of the boundary conditions at the solid

walls are straightforward, as discussed in B.1.5, the discretization of the boundary condi-

tions at the interface are less easy and is discussed below.

B.2.3.1 Discretization at the Interface

The interface is discretized into a set of geometrically identical mesh cell faces on either

side of the interface, the dependent variables at the interface are stored at the center of the

cell faces, denoted with the subscript l f or g f , on either the liquid or the gas side, while the

dependent variables for the corresponding control volumes are stored at the cell centroid,

denoted with the subscript lP or gP.

The normal component of the surface gradient of the tensorial field φ is estimated using
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one sided first order approximation

ng f · ∇φg f ≈
φgP − φg f

δg f

nl f · ∇φl f ≈
φlP − φl f

δl f
,

(275)

where nl f = −ng f , which are the outward pointing normal vector of cell face l f and g f ,

respectively, and δl f and δg f represent the normal distance between the cell centroid (lP and

gP) and the cell faces (l f and g f ) on either side of the interface.

The surface derivatives are estimated using the surface Gauss’s integral theorem∫
s
(∇s � φ) dS =

∫
l
(t � φ) dL −

∫
s
(κn � φ) dS , (276)

where κ is the surface curvature, t represents the unit vector normal to the boundary of the

surface and tangential to the surface, n represents the unit outward pointing normal vector

at the surfaces, and the symbol � represents the tensor products and therefore ∇ � φ

represents respective derivatives, including the divergence ∇ · φ and the gradient ∇φ.

The line integral can be approximated by the sum on all the edges of the surface, and

the surface integral can be approximated using the values at the cell face centroid, therefore

the surface divergence on surface f can be discretized as

∇s · φ =
1

S f

∑
e

(te · φe) Le − κ f n f · φ f , (277)

and the surface gradient can be discretized as

∇sφ =
1

S f

∑
e

(teφe) Le − κ f n fφ f , (278)

where φe is evaluated at the edge e of the cell surface, from the interpolation between the

cell surface and the neighboring cell surface that shares the edge e; the normal vector to the

edge te is approximated as

te =
e × (ni + n j)
|e||ni + n j|

, (279)

where e is the vector connecting the vertices i and j of the edge e, ni and n j are the unit

normal vectors at the vertices, and κ f is the average surface curvature of the cell face.
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The unit normal vector ni at the vertex i is estimated as the normal vector of a least

squares biquadratic surface, which is fitted through the set of vertices that belongs to the

faces sharing the vertex i, and passes through the vertex i. The average surface curvature

κ f is estimated from the normal component of the surface tension

κ f =
n f ·

∑
e (teσe) Le

σ f S f
(280)

B.2.3.2 Interface Iteration

Most of the boundary conditions at the interface are coupled with each other and need

be solved at the same time, which is essentially a problem of solving a set of equations

F (x) = 0, where x is a vector which consist of all the unknowns. Newton iteration is used

to find the solutions for this set of equations, by finding successive better approximation of

the solutions (or roots). The differences between the two successive approximations can be

estimated by

JF |x=x(n−1) [x(n) − x(n − 1)] = F (x(n − 1)), (281)

where JF = ∂F
∂x is the Jacobian matrix, and the initial guess x0 correspond to the equilib-

rium state, for example, J(0) = 0, Tl = Tv = Ti = Ts, etc.. This iteration at the interface is

converged after the norm of the residual F (x(n)) is smaller than the prescribed criteria.

As discussed in 2.6.1, the equations and the corresponding unknowns are different for

different conditions and with different phase change models. The vapor pressure is not

updated during the iteration at the interface and the value is obtained from the previous

outer iteration.

When the gas phase is pure vapor, and KTG model is used for predicting the phase

change, the unknown vector is

x =

[
J, Ti, Ts, Vni, ρv

]T

, (282)

where Vni = n · (ug − ui) is the normal component of the velocity relative to the interface at

the gas side. The correspond set of equations consist of (56), (45), (237), (42) and (14).
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When the gas phase is pure vapor, and NET model is used for predicting the phase

change, the unknown vector is

x =

[
J, Tl, Tv, Ts, Vni, ρv

]T

, (283)

and the correspond set of equations consist of (57), (58), (45), (237), (42) and (14).

When the gas phase is pure vapor, and SRT model is used for predicting the phase

change, the unknown vector is

x =

[
J, Tl, Tv, Ts, Vni, ρv

]T

, (284)

and the correspond set of equations consist of (59), (60), (45), (237), (42) and (14).

When the gas phase is a binary mixture, and KTG model is used for predicting the

phase change, the unknown vector is

x =

[
J, Ti, Ts, Vn, ρd, n · ∇ρn

v , n · ∇ρn
a

]T

, (285)

and the correspond set of equations consist of (56), (45), (48), (49), (42), (51) and (14).

With the solutions of the interface iteration, the boundary conditions on both sides

of the liquid-gas interface, i.e., on each cell face l f and g f along the interface, can be

either directly specified or calculated, therefore coupling the two phases. The boundary

conditions for each dependent variables are discussed below.

B.2.3.3 Boundary Conditions for Velocity

The normal derivative of the velocity at the liquid side is specified on the cell face l f

nl f · ∇ul f =nl f (nl f · ∇ul f ) · nl f

+ tl f (nl f · ∇ul f ) · tl f .

(286)

The second term on the right hand side of (286) represents the tangential contribution,
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which can be calculated based on the tangential stress balance (72)

tl f (nl f · ∇ul f ) · tl f = nl f · (∇ut)l f

= −
µg

µl

[
ng f · (∇ut)g f

]
+
µg − µl

µl

(
∇sul f · nl f

)
−
γ

µl
∇sTl,

(287)

where the normal gradient of the tangential velocity on the gas side is evaluated using the

one sided first order approximation (275).

The normal derivative of the velocity at the liquid side (286) is therefore updated with

the help of (287) and (275)

nl f · ∇ul f ≈nl f (nl f · ∇ul f ) · nl f

−
µg

µl

(ugP)t − (ul f )t

δg f

+
µg − µl

µl

(
∇sul f · nl f

)
−
γ

µl
∇sTl,

(288)

where (ulP)t is the tangential velocity at the cell centroid, and (ul f )t is the tangential velocity

at the cell face center, which is updated using (291) and (292).

The first term on the right hand side of (288) represents the normal contribution, which

can be estimated directly based on the one sided first order approximation

nl f ng f · ∇(ug f ) · ng f ≈ nl f
(ugP)n − (ul f )n

δg f
, (289)

or through the surface divergence of the velocity at the interface using (66) since the flow

is incompressible

nl f (nl f · ∇ul f ) · nl f = −nl f (∇s · ul f ) (290)

On the gas side, the velocity ul f is specified on the cell face g f , which requires the cal-

culation of both the tangential and the normal component. Along the tangential direction,
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the velocity is assumed to be continuous (61)

(ul f )t = (ug f )t = (ui)t, (291)

with the help of the one sided first order approximation (275) and the tangential stress

balance (287), the tangential component of the velocity at the interface

(ui)t =M

[
µl

δl f
(ul f )t +

µg

δg f
(ug f )t

]
−M

(
γ

µl
∇sTl

)
+M

[
(µg − µl)

(
∇sul f · nl f

)]
,

(292)

where

M =
µl

δl f
+
µg

δg f
(293)

In the normal direction, the velocity at the gas side is updated based on solution Vn from

the interface iteration

(ug f )n = (ui)n + ng f Vn, (294)

where (ui)n is the normal velocity at the cell face center (at the interface), and is calculated

from the volumetric flux V̇g f through the cell face S g f

(ui)n =
V̇g f

S g f
ng f . (295)

The velocity at the gas side is therefore

(ug f ) = (ug f )t + (ug f )n, (296)

where the tangential component is updated using (292), and the normal component is up-

dated using (294).

B.2.3.4 Boundary Conditions for Pressure

Dynamic pressure pd is used when solving the velocity and pressure field, which is related

with the total pressure

p = pd + ρg · r, (297)
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where r is the distance vector of the cell centroid.

The dynamic pressure at the liquid side (pl f )d is updated on the cell face l f , which is

calculated based on the normal stress balance (68) with the help of (297)

(pl f )d =(pg f )d + (ρg − ρl)g · ri

− (σκ)l f

+ 2(µg − µl)∇s · ul f

(298)

At the gas side, the normal gradient of the dynamic pressure ng f · ∇(pg f )d is specified

on the cell face g f , using the normal component of the momentum equation

ng f · ∇(pg f )d = −ρBng f · (∂tu + u · ∇u)g f + ρB (T ) ng f · g (299)

B.2.3.5 Boundary Conditions for Temperature

At the gas side, the temperature Tg f at the cell face g f is specified with the solution of Tg

from the interface iteration. When the NET and SRT model are used, Tg is solved separately

from Tl, and

Tg f = Tg, (300)

when the KTG model is used, the temperature is assumed to be continuous across the

interface and

Tg f = Ti. (301)

At the liquid side, the normal temperature gradient nl f · ∇Tl f is updated based on the

heat flux balance (45) with the help of the one sided first order approximation for the gas

side temperature gradient (275)

nl f · ∇Tl f =
kg

kl

(
TgP − Tg f

δg f

)
−

1
kl

(LJ) . (302)
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B.2.3.6 Boundary Conditions for Density

Since the boundary conditions for the density of the dilute component is only required

for the gas phase, the normal gradient of the concentration of the dilute component n is

specified on the cell face g f with the solution from the interface iteration

ng f · ∇ρ
n
g f = ng f · ∇ρ

n
gi. (303)

B.3 Solution Procedure

For a transient problem for the two phase non-isothermal flow, with the moving mesh

method with finite volume method, the velocity u, the pressure p, the temperature T and

the density ρn for the dilute component (in case of a binary mixture) are solved for at

the centroids of the computational cells from the discretized governing equations, which

are sets of algebraic equations, subject to the movement of the computational meshes and

the boundary conditions at the solid walls as well as the interface. The movement of the

mesh, the boundary conditions and the bulk field are coupled with each other, a segregated

approach used in this study where the systems are solved iteratively.

B.3.1 Pressure-Velocity Coupling

The continuity equation and the Navier-Stokes equation are solved together for the veloc-

ity and the pressure. Using the segregated procedure, the pressure is decoupled from the

Navier-Stokes equations, while the pressure equation is obtained from combing the conti-

nuity equation and the momentum equation.

As discussed in B.1, the discretized continuity equation is

∑
f

(
Sn

f · u
n
f

)
= 0, (304)

and the algebraic equation after discretization of the Navier-Stokes equation is

An
u,Pun

P +
∑

N

An
u,Nun

P = −∇pn
P + Bn

u,P, (305)
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where the pressure force is not discretized here in order to construct the pressure equation

later.

PISO (Pressure Implicit with Splitting of Operators) algorithm [226] is used in this

study, where the velocity field is predicted before the pressure equation is solved so that

continuity is satisfied, and velocity is then corrected based on changes in pressure field. It

is an iterative procedure which is discussed below until both the pressure and the velocity

field converge.

1. Predict the velocity

The prediction of the velocity is obtained from the discretized momentum equation

(305) using the pressure field from the previous time step

un
P =

1
An

u,P
Hn

u,P −
1
An

u,P
∇pn−1

P , (306)

where the operatorHn
u,P combines the contribution from the neighboring cells (except

the pressure force) and the source terms

Hn
u,P = −

∑
N

An
u,Nun

P + Bn
u,P. (307)

2. Solve the pressure equation

The discretized pressure equation is obtained based on the continuity equation (304),

therefore the velocity at the cell faces un
f are required, which can be written in a

similar form as (306)

un
f =

(
Hu

Au

)n

f
−

(
1
Au
∇p

)n

f
, (308)

where different interpolation schemes [227–230] can be used in order to estimate the

operator
(
Hu
Au

)n

f
and

(
1
Au

)n

f
at the cell faces.

Substituting the predicted velocity at the cell faces (308) into the discretized conti-

nuity equation (304), the discretized pressure equation is∑
f

Sn
f ·

(
1
Au

)n

f

(∇p)n
f

 =
∑

f

Sn
f ·

(
Hu

Au

)n

f

 , (309)

201



which can be solved for the pressure field that satisfy the continuity equation.

3. Correct the velocity and the flux

After solving the pressure field, the velocity field is hence corrected explicitly based

on the fully discretizated momentum equation of (306) with the solution of the pres-

sure field

un
P =

1
An

u,P
Hn

u,P −
1
An

u,P

∑
f

Sn
f pn

f . (310)

The face volume flux V̇n
f = Sn

f · u
n
f

is then also updated based on the velocity at the

cell faces,

un
f =

(
Hu

Au

)n

f
−

(
1
Au

)n

f

∑
f

Sn
f pn

f . (311)

which again satisfy the continuity equation.

With a segregated approach, iterations for steps 1 to 3 are required until the pressure

and the velocity field converge.

B.3.2 Temperature and Density Field

The solution of the temperature and the density field are decoupled from the solution of the

pressure and the velocity field and hence are only solved for after the PISO loop converge.

The transport equations are also discretized into sets of algebraic equations

An
T,PT n

P +
∑

N

An
T,NT n

P = Bn
T,P (312)

for the temperature field, and

An
ρ,Pρ

n
P +

∑
N

An
ρ,Nρ

n
P = Bn

ρ,P (313)

for the density field of the dilute component, when the gas phase is a binary mixture.

The velocity obtained from the previous PISO loop is used for calculating the operators

An
P,An

N as well as the source termsBn
P. After temperature and the density field are updated,
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pressure field and the velocity field are updated again using the PISO loop, until all the

fields converge.

Before updating the fields in the bulk, the computational mesh and the boundary condi-

tions for all the fields need to be updated, which requires another level of iterations between

them. The complete solution procedure is discussed in the following section.

B.3.3 Sequence of Solution

Each time step involves three major parts: updating the interface shape and the compu-

tational mesh; updating the boundary conditions on the velocity, pressure, temperature

and density fields; and updating pressure, velocity, temperature, density and concentration

fields in the bulk. Since the shape of the interface, the boundary conditions, and the bulk

fields are coupled, these three parts are repeated iteratively, until convergence.

The solution procedure are as follows:

1. Initialize the velocity, pressure, temperature and density field with the corresponding

values at the previous time step.

2. Initialize the face volume fluxes V̇ f using (246) and (311) with the velocity from the

previous time step.

3. Update the pressure offset using (40) with the density from the previous time step.

4. Start the outer iteration, which updates the computational mesh

(a) Update the position of the interface mesh as discussed in B.2.2.1.

(b) Update the entire computational mesh on both sides of the interface as discussed

in B.2.2.2, which accommodates the movement of the interface.

(c) Update the face volume flux V̇s using (264).

(d) Start the inner iteration, which updates the velocity, pressure, temperature and

density with the updated mesh
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i. Update the boundary conditions for the velocity and the pressure at both

sides of the interface, as discussed in B.2.3.3 and B.2.3.4, respectively, as

well as on all the solid walls as discussed in 2.6.2.

ii. Start the PISO loop, which updates only the velocity and the pressure, as

discussed in B.3.1:

A. Update the discretized momentum equation (305), predict the velocity

using (306).

B. Construct and solve the pressure equation (309).

C. Correct the velocity using (310).

D. Correct the face volume flux V̇ f using (246) and (311) with the cor-

rected velocity

E. Check the convergence criteria for the velocity and the pressure, if they

don not converge, go back to the beginning of the PISO loop, step (A).

iii. Update all the relevant boundary conditions at the interface using the inter-

face iteration, as discussed in B.2.3.2.

iv. Update the boundary conditions for the temperature and the density at the

interface, as discussed in B.2.3.5 and B.2.3.6, respectively, as well as at all

the solid walls as discussed in 2.6.2.

v. Solve the discretized temperature equation (312) and update the tempera-

ture field.

vi. When the gas phase is a binary mixture, solve the discretized density equa-

tion (313) and update the density field, as well as the concentration field

using (16).

vii. Check the convergence criteria for the temperature and the density, if they

don’t converge, go back to the beginning of the inner iteration, step (i).
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Figure 62: Typical 2D computational mesh showing multiple levels of refinement. All
the computational mesh cells are hexahedrons (diagonal lines are rendering artifacts). The
largest mesh cell size is 0.5 mm and the smallest mesh cell size is 1/16 mm (= 0.0625 mm).
The white solid line indicates the position of the free surface.

(e) Update the face volume fluxes V̇ f at the interface and check the difference be-

tween net face fluxes and the mass flux due to phase change. If the residual does

not satisfy the criteria, go back to the beginning of the outer iteration, steps (a).

5. If the specified final time is not reached, start a new time step and go back to (1).

B.3.4 Mesh Refinement

In this study, the rectangular domain is discretized into a set of three-dimensional hexahe-

dral mesh cells. In order to perform two-dimensional numeric simulations in the 2D plane,

the domain is not discretized into multiple mesh cells along the third dimension. (i.e., the

domain is discretized into one layer of mesh cells lying on the 2D plane), and the bound-

aries in the third dimension, which consist of the cell faces that lies on the 2D plane, are

omitted.

As previous numerical studies [19] discovered, and the numerical simulations con-

firmed, the size of the mesh cells needs to be small enough to resolve the fine structure

of the flow, especially in the liquid layer. For instance, it is found that, in order to prop-

erly resolve convection rolls in the liquid, the mesh resolution should be at least 1/8 mm

(= 0.125 mm). Finer meshes have a greater number of cells and require smaller time steps

and, hence, are more computationally expensive. Since the initial transient state is of sec-

ondary interest, the system is relaxed to the asymptotic state using a coarse hexahedral

mesh (initially all cells are cubical with side 0.5 mm).
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Once the transient dynamics have died down, the mesh is refined in several steps, until

the results become mesh independent. At each level, the mesh is refined uniformly (by

splitting each cell in all three directions) in the liquid phase and in the gas phase just above

the free surface. Additionally the mesh in the gas phase is refined in the regions (typically

near the contact lines) where the second derivatives of the physical fields (pressure, velocity,

or temperature) exceed specified thresholds. A typical mesh applied at the final stage of a

simulation is shown in Fig. 62.
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APPENDIX C

PROCEDURE FOR NUMERICAL SIMULATIONS

C.1 Problem Specification

In this section, one case is chosen as an example to demonstrate the procedure of the setting

up the case, run the numerical simulations, and the mesh refinement. A more detailed

tutorial of OpenFOAM is provided in Ref. [212]

The sample case corresponds to a 2-D simulation discussed in Chapter 3. The rectan-

gular test cell has the inner dimensions of the length L = 48.5 mm, the width W = 10 mm,

and the height H = 10 mm. As shown in Fig. 4, a layer of liquid (0.65 cSt silicone oil,

hexamethyldisloxane) is confined in the test cell below a layer of gas, which is a mixture of

vapor and air, held at ambient pressure. The walls of the test cell are made of quartz (fused

silica) with thermal conductivity kw = 1.4 W/(m-K) and have a thickness hw = 1.25 mm.

The temperature difference applied between the outer surface of the walls ∆T = 10 K, and

the contact angle θ = 50◦.

In OpenFOAM, all the relevant information and results are stored in one directory,

which is referred as case directory. The case directory in general has the structure shown

as below:
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Case

Allrun,Allclean,...

system

cellSetDict,faceSetDict

decomposeParDict

faSchemes,faSolution

fvSchemes,fvSolution

controlDict

constant

freeSurfaceProperties

dynamicMeshDict

faMesh faMeshDefinition

polyMesh blockMeshDict

t0,t1...

p,U,T,rho1...

polyMesh points

There are three major subdirectories in the case directory. The time directories (t0,t1

...) store the initial values for various fields and their boundary conditions at t0, as well as

the results at specified time (e.g.,t1 ). The subdirectory constant includes the files for gen-

erating the volume and surface mesh, for choosing the mesh motion solver, and that specify

the relevant material properties. The subdirectory system includes files which specify the

control parameters for the simulation, the numerical discretization schemes and the linear

solver, etc. Finally, the case file also includes some script files (Allrun,Allclean,...)

which simplify the execution of multiple commands. The details are discussed in the fol-

lowing sections.
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C.2 Mesh Generation

In order to generate computational mesh for simulations of the two-phase flow, the space

domain need to be discretized in each phase. In addition, the surfaces that represent the

interface between the two phases need to be discretized.

C.2.1 Volume Mesh Generation

The computational mesh on both sides of the interface is generated using the mesh genera-

tor from OpenFOAM, blockMesh, on the input dictionary file, blockMeshDict, which is

located in the constant/polyMesh directory of the case, as shown below:

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: 1.5 |

5 | \\ / A nd | Web: http://www.OpenFOAM.org |

6 | \\/ M anipulation | |

7 \*---------------------------------------------------------------------------*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object blockMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 convertToMeters 0.01;

18

19 vertices

20 (

21 (0 0 0)

22 (4.85 0 0)

23 (4.85 0.25 0)

24 (4.85 1 0)

25 (0 1 0)

26 (0 0.25 0)

27 (0 0 0.1)

28 (4.85 0 0.1)

29 (4.85 0.25 0.1)

30 (4.85 1 0.1)

31 (0 1 0.1)

32 (0 0.25 0.1)

33 (4.85 0.25 0)

34 (0 0.25 0)

35 (4.85 0.25 0.1)

36 (0 0.25 0.1)

37 );

38

39 blocks

40 (

41 hex (0 1 2 5 6 7 8 11) (96 5 1) simpleGrading (1 1 1)

42 hex (13 12 3 4 15 14 9 10) (96 15 1) simpleGrading (1 1 1)

43 );

44

45 edges

46 (

47 );
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48

49 patches

50 (

51 patch freeSurface

52 (

53 (11 8 2 5)

54 )

55 patch freeSurfaceShadow

56 (

57 (13 12 14 15)

58 )

59 wall leftWall

60 (

61 (0 6 11 5)

62 (13 15 10 4)

63 )

64 wall rightWall

65 (

66 (1 2 8 7)

67 (12 3 9 14)

68 )

69 wall bottomWall

70 (

71 (0 1 7 6)

72 )

73 wall topWall

74 (

75 (4 10 9 3)

76 )

77

78 empty frontAndBack

79 (

80 (6 7 8 11)

81 (15 14 9 10)

82 (0 5 2 1)

83 (13 4 3 12)

84 )

85 );

86

87 mergePatchPairs

88 (

89 );

90

91 // ************************************************************************* //

All the input dictionary files will in general include the header information (lines 1-7)

and the file information (lines 8-14) at the beginning. In order to save space, the header

information will not be included in the verbatim quoting of the case files.

The blockMesh file defines a conversion ratio to convert the input values to the actual

dimensions with the unit of meters, for example, with the convertion ratio of 0.01, the

coordinate (4.85, 0.25, 0) represents the location (4.85 cm, 0.25 cm, 0).

A 3-D Cartesian coordinate system is applied by OpenFOAM to generate the compu-

tational mesh. First, the coordinates of all the vertices of the blocks are specified (lines

210



19-37), then two blocks are defined (lines 39-43) based on the labels of the vertices, which

represent the liquid and the gas phase. The blocks are discretized into a set of hexahedral

mesh cells by specifying the number of the mesh cells and the size ratio between the two

consecutive mesh cells along each direction. In this study, the computations start with a

uniform mesh with cell size 0.5 mm × 0.5 mm × 0.5 mm.

The boundaries of the computational domain are defined afterwards (lines 49-85) based

on the vertices labels, and the types of boundaries are also specified.

OpenFOAM operates in 3-D by default. For 2-D calculations, the number of the mesh

cells along the third dimension is set to be unity, while the types for the boundaries that lie

on the 2-D plane are specified as “empty”.

The volume mesh is generated by typing:

blockMesh

in the terminal from within the case directory.

C.2.2 Surface Mesh Generation

The mesh at the interface is generated using the mesh generator makeFaMesh from Open-

FOAM, on the input dictionary file, faMeshDefinition, which is located in the constant/

faMesh directory of the case, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant/faMesh";

14 object faMeshDefinition;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 polyMeshPatches 1( freeSurface );

19

20 boundary

21 {

22 left

23 {

24 type patch;

25 ownerPolyPatch freeSurface;

26 neighbourPolyPatch leftWall;

27 }

28

29 right

30 {

31 type patch;
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32 ownerPolyPatch freeSurface;

33 neighbourPolyPatch rightWall;

34 }

35

36 frontAndBack

37 {

38 type empty;

39 ownerPolyPatch freeSurface;

40 neighbourPolyPatch frontAndBack;

41 }

42 }

The faMeshDefinition file specifies the surface mesh that represents the interface,

and its boundaries, which are the contact lines of the interface on the walls.

The volume mesh is generated after the volume mesh is generated by typing:

makeFaMesh

in the terminal from within the case directory.

C.3 Boundary and Initial Conditions

Boundary conditions and the initial conditions need to be specified for all the variables that

are solved for. These values are specified in separate files for different fields at the starting

time t = t0, which locate in the subdirectory t0 of the case file directory. For example,

when the case starts from t = 0 s, the boundary conditions and the initial values for the

velocity field u is specified in the file 0/U of the case directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volVectorField;

13 location "0";

14 object U;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 dimensions [0 1 -1 0 0 0 0];

19

20 internalField uniform (0 0 0);

21

22 boundaryField

23 {

24 freeSurface

25 {

26 type fixedGradient;

27 gradient uniform (0 0 0);

28 }

29 freeSurfaceShadow

30 {
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31 type fixedValue;

32 value uniform (0 0 0);

33 }

34 leftWall

35 {

36 type fixedValue;

37 value uniform (0 0 0);

38 }

39 rightWall

40 {

41 type fixedValue;

42 value uniform (0 0 0);

43 }

44 bottomWall

45 {

46 type fixedValue;

47 value uniform (0 0 0);

48 }

49 topWall

50 {

51 type fixedValue;

52 value uniform (0 0 0);

53 }

54 frontAndBack

55 {

56 type empty;

57 }

58 }

59

60

61 // ************************************************************************* //

There are three major sections in this file. dimensions specifies the dimensions of the

variabl(line 18). internalField specifies the values for the variable at time t, which is

usually set as a uniform value initially. boundaryField specifies the boundary conditions

at each boundary patches at time t. For the velocity, the flow is at rest initially and is set

with uniform value (0 0 0) for the internalField. In OpenFOAM, fixedValue repre-

sents Dirichlet boundary condition, while fixedGradient represents Neumann boundary

condition. All the boundary conditions at the walls are of type fixedValue and the values

(0 0 0), based on the no-slip boundary condition (ub = 0).

Similarly, the boundary conditions and the initial condition of the dynamic pressure

field p is specified in the file 0/p of the case directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "0";

14 object p;

15 }
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16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 dimensions [1 -1 -2 0 0 0 0];

19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 freeSurface

25 {

26 type fixedValue;

27 value uniform 0;

28 }

29 freeSurfaceShadow

30 {

31 type fixedGradient;

32 gradient uniform 0;

33 }

34 leftWall

35 {

36 type fixedGradient;

37 gradient uniform 0;

38 }

39 rightWall

40 {

41 type fixedGradient;

42 gradient uniform 0;

43 }

44 bottomWall

45 {

46 type fixedGradient;

47 gradient uniform 0;

48 }

49 topWall

50 {

51 type fixedGradient;

52 gradient uniform 0;

53 }

54 frontAndBack

55 {

56 type empty;

57 }

58 }

59

60 // ************************************************************************* //

The boundary conditions and the initial condition of the temperature field T is specified

in the file 0/T of the case directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "0";

14 object T;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 dimensions [0 0 0 1 0 0 0];

19

20 internalField uniform 293;

21
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22 boundaryField

23 {

24 freeSurface

25 {

26 type fixedGradient;

27 gradient uniform 0;

28 }

29 freeSurfaceShadow

30 {

31 type fixedValue;

32 value uniform 293;

33 }

34 leftWall

35 {

36 type fixedValue;

37 value uniform 288;

38 }

39 rightWall

40 {

41 type fixedValue;

42 value uniform 298;

43 }

44 bottomWall

45 {

46 type zeroGradient;

47 }

48 topWall

49 {

50 type zeroGradient;

51 }

52 frontAndBack

53 {

54 type empty;

55 }

56 }

57

58

59 // ************************************************************************* //

The initial value for temperature is specified as T = T0 uniformly. For temperature, the

initially value is set with uniform value T = T0 at the internalField. The top and bottom

walls are assumed to be adiabatic and therefore the boundary conditions are specified as

zeroGradient.

When the gas phase is a binary mixture, the boundary conditions and the initial con-

dition of the density of the dilute component ρ1 is specified in the file 0/rho1 of the case

directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class volScalarField;

13 location "0";

14 object rho1;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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17

18 dimensions [1 -3 0 0 0 0 0];

19

20 internalField uniform 0.17;

21

22 boundaryField

23 {

24 freeSurface

25 {

26 type fixedValue;

27 value uniform 0.17;

28 }

29 freeSurfaceShadow

30 {

31 type fixedGradient;

32 gradient uniform 0;

33 }

34 leftWall

35 {

36 type zeroGradient;

37 }

38 rightWall

39 {

40 type zeroGradient;

41 }

42 bottomWall

43 {

44 type zeroGradient;

45 }

46 topWall

47 {

48 type zeroGradient;

49 }

50 frontAndBack

51 {

52 type empty;

53 }

54 }

55

56

57 // ************************************************************************* //

There is no mass flux through the solid walls, therefore all the boundary conditions on

the solid walls are specified as zeroGradient.

C.4 Physical Properties
All the relevant physical properties need to be specified in the case file, including the ma-
terial properties of the liquid, the gas (both vapor and the air when the gas phase is a binary
mixture), and also of the test cell. Both the values and the units of these properties are spec-
ified in the file freeSurfaceProperties, which is located at constant subdirectory of
the case directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";
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14 object freeSurfaceProperties;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 twoFluids yes;

19

20 nFreeSurfaceCorrectors 1;

21

22 smoothing no;

23 correctPointNormals no;

24 correctDisplacement no;

25 correctCurvature no;

26 curvExtrapOrder 0;

27

28 cleanInterface yes;

29 normalMotionDir no;

30

31 muFluidA muFluidA [ 1 -1 -1 0 0 0 0 ] 5.272e-4;

32 muFluidB muFluidB [ 1 -1 -1 0 0 0 0 ] 1.81353e-5;

33 muFluidB1 muFluidB1 [ 1 -1 -1 0 0 0 0 ] 5.841e-6;

34

35 rhoFluidA rhoFluidA [ 1 -3 0 0 0 0 0 ] 765.5;

36 rhoFluidB rhoFluidB [ 1 -3 0 0 0 0 0 ] 1.427;

37 rhoFluidB1 rhoFluidB1 [ 1 -3 0 0 0 0 0 ] 0.270;

38

39

40 kFluidA kFluidA [ 1 1 -3 -1 0 0 0 ] 0.1098;

41 kFluidB kFluidB [ 1 1 -3 -1 0 0 0 ] 0.025695816;

42 kFluidB1 kFluidB1 [ 1 1 -3 -1 0 0 0 ] 0.0112;

43

44 CpFluidA CpFluidA [ 0 2 -2 -1 0 0 0 ] 1914.09;

45 CpFluidB CpFluidB [ 0 2 -2 -1 0 0 0 ] 1004.14;

46 CpFluidB1 CpFluidB1 [ 0 2 -2 -1 0 0 0 ] 1482.33;

47

48 betaFluidA betaFluidA [ 0 0 0 -1 0 0 0 ] 1.319e-3;

49

50 DfFluidA DfFluidA [ 0 2 -1 0 0 0 0 ] 5.837e-6;

51 DfFluidB DfFluidB [ 0 2 -1 0 0 0 0 ] 5.837e-6;

52

53 latentHeat latentHeat [ 0 2 -2 0 0 0 0 ] 225.21e3;

54 gasConstant1 gasConstant1 [ 0 2 -2 -1 0 0 0 ] 51.2;

55 gasConstantD gasConstantD [ 0 2 -2 -1 0 0 0 ] 287.00;

56

57 antoineA antoineA [ 0 0 0 0 0 0 0 ] 6.95255;

58 antoineB antoineB [ 0 0 0 0 0 0 0 ] 1285.12;

59 antoineC antoineC [ 0 0 0 0 0 0 0 ] 215.098;

60

61 kWall kWall [ 1 1 -3 -1 0 0 0 ] 1.4;

62 thWall thWall [ 1 0 0 0 0 0 0 ] 1.25e-3;

63

64 TLeft TLeft [ 0 0 0 1 0 0 0 ] 288;

65 TRight TRight [ 0 0 0 1 0 0 0 ] 298;

66

67 acmCoef acmCoef [ 0 0 0 0 0 0 0 ] 1.0;

68

69 ctangle ctangle [ 0 0 0 0 0 0 0 ] 50;

70 pTotal pTotal [ 0 0 0 0 0 0 0 ] 101325;

71 c0 c0 [ 0 0 0 0 0 0 0 ] 0.04;

72

73 molarMass1 molarMass1 [1 0 0 0 0 0 0] 162.4e-3;

74 molarMassD molarMassD [1 0 0 0 0 0 0] 28.97e-3;

75

76 Mair0 Mair0 [1 0 0 0 0 0 0] 4.208e-07;

77

78 referenceTemperature referenceTemperature [ 0 0 0 1 0 0 0 ] 293.00;

79

80 g g [ 0 1 -2 0 0 0 0 ] (0 -9.81 0);

81
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82 surfaceTension surfaceTension [ 1 -2 0 0 0 0 0 ] 0.01584;

83

84 tempCoeffSurfTension tempCoeffSurfTension [ 1 0 -2 -1 0 0 0 ] -8.94144e-5;

85

86 tempCoefflatentHeat tempCoefflatentHeat [ 0 0 0 -1 0 0 0 ] -1.59687e-3;

87 tempCoeffmuFluidA tempCoeffmuFluidA [ 0 0 0 -1 0 0 0 ] -0.013743437;

88 tempCoeffkFluidA tempCoeffkFluidA [ 0 0 0 -1 0 0 0 ] -2.3159e-3;

89 tempCoeffCpFluidA tempCoeffCpFluidA [ 0 0 0 -1 0 0 0 ] 1.25572e-3;

90 tempCoeffbetaFluidA tempCoeffbetaFluidA [ 0 0 0 -1 0 0 0 ] 3.18423e-3;

91

92 tempCoeffmuFluidB tempCoeffmuFluidB [ 0 0 0 -1 0 0 0 ] 2.644715e-3;

93 tempCoeffkFluidB tempCoeffkFluidB [ 0 0 0 -1 0 0 0 ] 3.06632366e-3;

94 tempCoeffCpFluidB tempCoeffCpFluidB [ 0 0 0 -1 0 0 0 ] 0;

95 tempCoeffDfFluidB tempCoeffDfFluidB [ 0 0 0 -1 0 0 0 ] 7.48745e-3;

96

97 fixedFreeSurfacePatches 0();

98

99 pointNormalsCorrectionPatches 2( left right );

100

101 surfactantProperties

102 {

103 bulkConc bulkConc [ 0 -3 0 0 1 0 0 ] 1.0e-2;

104

105 saturatedConc saturatedSurfConc [ 0 -2 0 0 1 0 0 ] 5.0e-6;

106

107 adsorptionCoeff adsorptionCoeff [ 0 3 -1 0 -1 0 0 ] 40.0;

108

109 desorptionCoeff desorptionCoeff [ 0 -3 0 0 1 0 0 ] 8.93e-2;

110

111 bulkDiffusion bulkDiffusion [ 0 2 -1 0 0 0 0 ] 1.0e-9;

112

113 diffusion diffusion [ 0 2 -1 0 0 0 0 ] 1.0e-9;

114

115 }

116

117 // ************************************************************************* //

C.5 Control Parameters
The controlling parameters related with running the case are specified in the controlDict
file, which is located at system subdirectory of the case directory, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object controlDict;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 applicationClass icoFoam;

19

20 startFrom startTime;

21

22 startTime 0;

23

24 stopAt endTime;

25

26 endTime 500;

27

28 deltaT 1e-3;

29

218



30 writeControl runTime;

31

32

33 writeInterval 1;

34

35 cycleWrite 0;

36

37 writeFormat ascii;

38

39 writePrecision 12;

40 writeCompression uncompressed;

41

42 timeFormat general;

43

44 timePrecision 5;

45

46 runTimeModifiable yes;

47

48 // functions

49 // (

50 // history

51 // {

52 // type sloshingHistory;

53 // functionObjectLibs

54 // (

55 // "libsloshingHistory.so"

56 // );

57 // }

58 // );

59

60 // ************************************************************************* //

The file specifies the time step ∆t, as well as the start time t0 and end time te. When

the case is started, OpenFOAM will read the initial values from the subdirectory t0, and

continue with the specified time step, until it reaches the specified end time and stop.

While the program is running, OpenFOAM can also store the intermediate results at

specified time, by creating the subdirectory named after the specified time, and writing

various fields into separate files with specified format (ascii or binary) and precision.

These results can be either viewed with the post-processing package or output directly.

C.6 Discretization Schemes and the Linear Solver

The numerical schemes can be specified either directly in the numerical code, or in the case

file. The finite volume discretization schemes for different terms in the transport equations

are specified in the file fvSchemes, while the linear solvers for the discretized equations

and the tolerances are specified in the file fvSolution. Similarly, finite area discretization

schemes and their linear solvers are specified in the file faSchemes and faSolution. All
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these files are located in the system subdirectory of the case directory, as shown below1:

• fvSchemes

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 ddtSchemes

19 {

20 ddt(rho,U) backward;

21 ddt(U) backward;

22 ddt(T) backward;

23 ddt(con1) backward;

24 ddt(con2) backward;

25 ddt(con) backward;

26 ddt(rho1) backward;

27 ddt(rho2) backward;

28 }

29

30 gradSchemes

31 {

32 default Gauss linear;

33 }

34

35 divSchemes

36 {

37 div(phi,T) explicit upwind;

38 div(phi,U) Gauss linear;

39 div(phi,con1) explicit upwind;

40 div(phi,con2) explicit upwind;

41 div(phi,con) explicit upwind;

42 div(phi,rho1) explicit upwind;

43 div(phi,rho2) explicit upwind;

44 }

45

46 laplacianSchemes

47 {

48 default none;

49

50 laplacian(mu,U) Gauss linear corrected;

51 laplacian((1|A(U)),p) Gauss linear corrected;

52 laplacian((1|interpolate(A(U))),p) Gauss linear corrected;

53

54 laplacian(kappa,T) Gauss harmonic limited 0.5;

55

56 laplacian(Df1,con1) Gauss harmonic limited 0.5;

57 laplacian(Df2,con2) Gauss harmonic limited 0.5;

58 laplacian(Df,rho1) Gauss harmonic limited 0.5;

59 laplacian(Df1,rho1) Gauss harmonic limited 0.5;

60 laplacian(Df2,rho2) Gauss harmonic limited 0.5;

61

62 laplacian(diffusivity,cellDisplacement) Gauss linear corrected;

63 laplacian(diffusivity,cellMotionU) Gauss linear corrected;

1The finite area discretization numerical schemes are specified in faSchemes, which will be used for
calculating the surface gradient, etc. However, there are no transport equations need to be solved at the
interface, therefore faSolution file is empty and not shown here.
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64 }

65

66 interpolationSchemes

67 {

68 default linear;

69 }

70

71 snGradSchemes

72 {

73 default corrected;

74 }

75

76 fluxRequired

77 {

78 p;

79 }

80

81 // ************************************************************************* //

• fvSolution

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object fvSolution;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 solvers

19 {

20

21 cellDisplacement

22 {

23 solver ICCG;

24 preconditioner DIC;

25 tolerance 1e-9;

26 relTol 0;

27 }

28

29 cellMotionU

30 {

31 solver ICCG;

32 preconditioner DIC;

33 tolerance 1e-9;

34 relTol 0;

35 }

36 p

37 {

38 solver ICCG;

39 preconditioner DIC;

40 tolerance 1e-9;

41 relTol 0;

42 }

43

44 U

45 {

46 solver BICCG;

47 preconditioner DILU;

48 tolerance 1e-8;

49 relTol 0;

50 }

51
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52 T

53 {

54 solver BICCG;

55 preconditioner diagonal;

56 tolerance 1e-10;

57 relTol 1e-10;

58 }

59

60 rho1

61 {

62 solver BICCG;

63 preconditioner none;

64 tolerance 1e-10;

65 relTol 1e-10;

66 }

67

68 con2

69 {

70 solver BICCG;

71 preconditioner none;

72 tolerance 1e-10;

73 relTol 1e-10;

74 }

75 }

76

77 PISO

78 {

79 nOuterCorrectors 10;

80 nCorrectors 2;

81 nNonOrthogonalCorrectors 1;

82 ddtPhiCorr no;

83

84 pRefPoint (0 0.009 0);

85 pRefValue 0;

86 }

87

88 FreeSurface

89 {

90 nFreeSurfCorr 1;

91 }

92

93 relaxationFactors

94 {

95 p 1;

96 U 1;

97 }

98

99 // ************************************************************************* //

• faSchemes

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "system";

14 object faSchemes;

15 }

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18

19 ddtSchemes

20 {

21 ddt(faPhi) backward;
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22 }

23

24

25 gradSchemes

26 {

27 default none;

28 grad(Us) Gauss linear;

29 grad(Ti) Gauss linear;

30 grad(con2i) Gauss linear;

31 }

32

33 divSchemes

34 {

35 default none;

36 div(Us) Gauss linear;

37 }

38

39 laplacianSchemes

40 {

41 default none;

42 }

43

44 interpolationSchemes

45 {

46 default none;

47 }

48

49 snGradSchemes

50 {

51 default none;

52 }

53

54 fluxRequired

55 {

56 p;

57 }

58

59 // ************************************************************************* //

C.7 Mesh Motion Solver
The moving mesh method is used for simulating the two phase flow. The mesh motion
solver and the relevant control parameters are specified in dynamicMeshDict file, which
is located in constant subdirectory of the case file, as shown below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object dynamicMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 dynamicFvMesh dynamicMotionSolverFvMesh;

18

19 solver liquidFilm;

20

21

22 motionDirection (0 1 0);

23 diffusivity linear;

24

25 distancePatches 2 (freeSurface freeSurfaceShadow);
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26

27 frozenDiffusion no;

28

29 // pseudoSolid

30 // {

31 // poissonsRatio 0.3;

32 // nCorrectors 3;

33 // convergenceTolerance 1e-9;

34 // };

35

36 // ************************************************************************* //

C.8 Running the Case
To start the numerical simulation, simply type ./Allrun in the terminal from within the
case directory, where the file Allrun is located at the case directory, as shown below:

1 #!/bin/sh

2

3 . $WM_PROJECT_DIR/bin/tools/RunFunctions

4

5 application="newInterTrackFoam"

6

7 runApplication blockMesh

8 runApplication makeFaMesh

9 runApplication $application

The commands can also be executed by typing each command (blockMesh, makeFaMesh,

newInterTrackFoam) one by one in the terminal from the case file directory.

C.9 Mesh Refinement

The mesh refinement procedure is used in this study where a new case is created based

on the finished case on a coarser mesh. The new case file directory is created in the same

directory where the finished case is located. Before the mesh refinement, the folders t0, te,

constant, system are copied from the finished case to the new case directory. The mesh

of the new case can be refined before resuming the calculation from time te, which is the

end time of the old case, by typing

./Allmeshrefinement

in the terminal within the new case directory. The Allmeshrefinement file is located

in the new case directory, as shown below:

1 #!/bin/sh

2
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3 # Source tutorial run functions

4 . $WM_PROJECT_DIR/bin/tools/RunFunctions

5

6 time="500"

7 case1="uni-0.5mm"

8

9 application="fieldVari-sim-vac"

10

11 chooseFaceSet()

12 {

13 echo "creating face set for primary zone - $1"

14 cp system/faceSetDict.$1 system/faceSetDict

15 faceSet > log.faceSet.$1

16 }

17

18 chooseCellSet()

19 {

20 echo "creating cell set for primary zone - $1"

21 cp system/cellSetDict.$1 system/cellSetDict

22 cellSet > log.cellSet.$1

23 }

24

25 refineMeshByCellSet()

26 {

27 echo "refining primary zone - $1"

28 cp system/refineMeshDict.$1 system/refineMeshDict

29

30 refineMesh -dict -overwrite > log.refineMesh.$1

31 }

32

33 deleteFiles ()

34 {

35 echo "delete field files except polyMesh"

36 rm -rf $time/uniform

37 rm $time/*

38 rm log.*

39 }

40

41 mapResults()

42 {

43 echo "map the results from coarse mesh to refined mesh case"

44 mapFields ../$case1 -consistent

45

46 cp 0/motionU* $time/

47 cp 0/contactAngle $time/

48 cp 0/pointMotion* $time/

49

50 cp -r $time/polyMesh/* constant/polyMesh/

51 }

52

53 makefieldGradient()

54 {

55

56 cp 0/motionU* $time/

57 cp 0/contactAngle $time/

58 cp 0/pointMotion* $time/

59 echo "produce gradient fields"

60 $application

61 }

62

63 chooseFaceSet 1

64 chooseCellSet 1

65 refineMeshByCellSet 1

66 deleteFiles

67 mapResults
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First the mesh cells that requires refinement are chosen (lines 11-23), which are all

the mesh cells in the liquid phase, and in the gas phase where the second derivatives of

the variable exceed the specified thresholds. Then the mesh is refined using the utility

refineMesh on the dictionary file refineMeshDict (lines 25-30). The fields from the

old case are therefore deleted (lines 33-39) since they are not compatible with the refined

computational mesh, and new fields are generated by mapping the results from the coarser

mesh of the old case to the refined mesh of the new case (lines 41-51).

The utility refineMesh of OpenFOAM will refine the mesh based on the dictionary file

refineMeshDict, which is located in the system subdirectory of the case file, as shown

below:

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object refineMeshDict;

14 }

15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

16

17 set c1;

18

19 coordinateSystem global;

20

21 globalCoeffs

22 {

23 tan1 (1 0 0);

24 tan2 (0 1 0);

25 normal;

26 }

27

28 directions

29 (

30 tan1

31 tan2

32 // normal

33 );

34

35 useHexTopology yes;

36

37 geometricCut no;

38

39 writeMesh no;

40

41 // ************************************************************************* //

A set of mesh cells (c1) is refined by splitting the original cell evenly along the specified

directions (lines 28-33). For 2-D calculations, the third direction (normal) is omitted and
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one mesh cell is split into four new mesh cells; for 3-D calculations, one mesh cell is split

into eight new mesh cells.

The mesh cell set (c1) consists of all the mesh cells that require refinement, and is

chosen based on the specifications in the file cellSetDict, which selects all the mesh

cells in the liquid phase and that in the gas phase where the criteria is satisfied. Moreover,

in order to make sure that the area meshes at the interface remain consistent between the

two phases, all the cells that lie on both side of the interface need to be included in cell

set (c1). In order to select these mesh cells, first the face set f1, which consists of all the

mesh faces at the interface, is generated via the specifications in the file faceSetDict;

then all the mesh cells that have cell face in f1 will be selected. Both cellSetDict and

faceSetDict are located in the system subdirectory of the case file, as shown below:

• cellSetDict

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object cellSetDict;

14 }

15

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 // Name of set to operate on

19 name c1;

20

21 // One of clear/new/invert/add/delete|subset/list

22 action new;

23

24 // Actions to apply to cellSet. These are all the topoSetSource’s ending

25 // in ..ToCell (see the meshTools library).

26

27 topoSetSources

28 (

29

30 // Select based on faceSet

31 faceToCell

32 {

33 set f1; // Name of faceSet

34 //option neighbour; // cell with neighbour in faceSet

35 //option owner; // ,, owner

36 option any; // cell with any face in faceSet

37 //option all; // cell with all faces in faceSet

38 }

39

40 // Cells with cell centre within box

41

42

43 boxToCell
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44 {

45 box (0 0 0) (48.5e-3 3e-3 1e-3);

46 }

47

48 boxToCell

49 {

50 box (0 0 0) (0.25e-3 10e-3 1e-3);

51 }

52

53 boxToCell

54 {

55 box (48.25e-3 0 0) (48.5e-3 10e-3 1e-3);

56 }

57

58 // values of field within certain range

59 fieldToCell

60 {

61 fieldName fieldVari2;

62 min 0.0005;

63 max 10;

64 }

65 );

66

67

68 // ************************************************************************* //

• faceSetDict

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object faceSetDict;

14 }

15

16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

17

18 // Name of set to operate on

19 name f1;

20

21 // One of clear/new/invert/add/delete|subset/list

22 action new;

23

24 // Actions to apply to pointSet. These are all the topoSetSource’s ending

25 // in ..ToFace (see the meshTools library).

26 topoSetSources

27 (

28

29 // All faces of patch

30 patchToFace

31 {

32 name "freeSurface"; // Name of patch, regular expressions allowed

33 }

34

35 patchToFace

36 {

37 name "freeSurfaceShadow"; // Name of patch, regular expressions allowed

38 }

39

40 );

41

42 // ************************************************************************* //
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After the new case is set up, the simulation can be resumed from time te, using the same

commands as discussed in C.8.

229



REFERENCES

[1] Y. Li, R. O. Grigoriev, and M. Yoda, “Experimental study of the effect of noncon-
densables on buoyancy-thermocapillary convection in a volatile low-viscosity sili-
cone oil,” Phys. Fluids, vol. 26, p. 122112, 2014.

[2] G. Peterson, An Introduction to Heat Pipes: Modeling, Testing, and Applications.
New York: Wiley-Interscience, 1994.

[3] J. Collier and J. Thome, Convective Boiling and Condensation. Oxford: Clarendon
Press, 1996.

[4] R. V. Birikh, “Thermocapillary convection in a horizontal layer of liquid,” J. Appl.
Mech. Tech. Phys., vol. 7, pp. 43–44, 1966.

[5] A. G. Kirdyashkin, “Thermogravitational and thermocapillary flows in a horizontal
liquid layer under the conditions of a horizontal temperature gradient,” Int. J. Heat
Mass Transfer, vol. 27, pp. 1205–1218, 1984.

[6] M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary liquid layers.
part 1. convective instabilities,” J. Fluid Mech., vol. 132, pp. 119–144, 1983.

[7] M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary liquid layers.
part 2. surface-wave instabilities,” J. Fluid Mech., vol. 132, pp. 145–162, 1983.

[8] M. F. Schatz and G. P. Neitzel, “Experiments on thermocapillary instabilities,” Annu.
Rev. Fluid Mech., vol. 33, pp. 93–127, 2001.

[9] D. Villers and J. K. Platten, “Coupled buoyancy and marangoni convection in ace-
tone: experiments and comparison with numerical simulations,” J. Fluid Mech.,
vol. 234, pp. 487–510, 1992.

[10] C. De Saedeleer, A. Garcimartı́n, G. Chavepeyer, J. K. Platten, and G. Lebon, “The
instability of a liquid layer heated from the side when the upper surface is open to
air,” Phys. Fluids, vol. 8, no. 3, pp. 670–676, 1996.

[11] A. Garcimartı́n, N. Mukolobwiez, and F. Daviaud, “Origin of waves in surface-
tension-driven convection,” Phys. Rev. E, vol. 56, pp. 1699–1705, 1997.

[12] R. J. Riley and G. P. Neitzel, “Instability of thermocapillarybuoyancy convection
in shallow layers. Part 1. Characterization of steady and oscillatory instabilities,” J.
Fluid Mech., vol. 359, pp. 143–164, 1998.

[13] J. Burguete, N. Mukolobwiez, F. Daviaud, N. Garnier, and A. Chiffaudel, “Buoyant-
thermocapillary instabilities in extended liquid layers subjected to a horizontal tem-
perature gradient,” Phys. Fluids, vol. 13, no. 10, pp. 2773–2787, 2001.

230



[14] P. M. Parmentier, V. C. Regnier, and G. Lebon, “Buoyant-thermocapillary instabili-
ties in medium-prandtl-number fluid layers subject to a horizontal gradient,” Int. J.
Heat Mass Transfer, vol. 36, pp. 2417–2427, 1993.

[15] C. L. Chan and C. F. Chen, “Effect of gravity on the stability of thermocapillary
convection in a horizontal fluid layer,” J. Fluid Mech., vol. 647, pp. 91–103, 2010.

[16] J. F. Mercier and C. Normand, “Buoyant-thermocapillary instabilities of differen-
tially heated liquid layers,” Phys. Fluids, vol. 8, pp. 1433–1445, 1996.

[17] J. Mercier and C. Normand, “Influence of the prandtl number on the location of
recirculation eddies in thermocapillary flows,” Int. J. Heat Mass Transfer, vol. 45,
pp. 793–801, 2002.

[18] J. Priede and G. Gerbeth, “Convective, absolute, and global instabilities of
thermocapillary-buoyancy convection in extended layers,” Phys. Rev. E, vol. 56,
no. 4, pp. 4187–4199, 1997.

[19] H. Ben Hadid and B. Roux, “Buoyancy- and thermocapillary-driven flows in dif-
ferentially heated cavities for low-prandtl-number fluids,” J. Fluid Mech., vol. 235,
pp. 1–36, 1992.

[20] M. Mundrane and A. Zebib, “Oscillatory buoyant thermocapillary flow,” Phys. Flu-
ids, vol. 6, no. 10, pp. 3294–3306, 1994.

[21] X. Lu and L. Zhuang, “Numerical study of buoyancy- and thermocapillary-driven
flows in a cavity,” Acta Mech Sinica (English Series), vol. 14, no. 2, pp. 130–138,
1998.

[22] V. M. Shevtsova, A. A. Nepomnyashchy, and J. C. Legros, “Thermocapillary-
buoyancy convection in a shallow cavity heated from the side,” Phys. Rev. E, vol. 67,
p. 066308, 2003.

[23] V. M. Shevtsova and J. C. Legros, “Instability in thin layer of liquid confined
between rigid walls at different temperatures,” Acta Astronautica, vol. 52, no. 7,
pp. 541–549, 2003.

[24] Y.-R. Li, H.-R. Zhang, C.-M. Wu, and J.-L. Xu, “Numerical study of the turbu-
lent flow past an airfoil with trailing edge separation,” Heat Mass Transfer, vol. 48,
pp. 241–251, 2012.

[25] Y. Ji, Q.-S. Liu, and R. Liu, “Coupling of evaporation and thermocapillary convec-
tion in a liquid layer with mass and heat exchanging interface,” Chin. Phys. Lett.,
vol. 25, pp. 608–611, 2008.

[26] W. Nusselt, “Die oberflachenkondensation des wasserdampfes,” Zeitschrift des Vere-
ins Deutscher Ingenieure, vol. 60, p. 569, 1916.

231



[27] L. A. Bromley, “Effect of heat capacity of condensate,” Industrial and Engineering
Chemistry, vol. 44, no. 12, pp. 2966–2969, 1952.

[28] W. M. Rohsenow, “A method of correlating heat transfer data for surface boiling
liquids,” Trans. ASME, vol. 74, no. 12, p. 969979, 1952.

[29] W. Rohsenow, J. Webber, and T. Ling, “Effect of vapor velocity on laminar and
turbulent film condensation,” Trans. ASME, vol. 78, p. 16371643, 1956.

[30] D. Butterworth, “Simplified methods for condensation on a vertical surface with
vapor shear,” UKAEA Rept. AERE-R9683, 1981.

[31] E. M. Sparrow and J. L. Gregg, “A boundary-layer treatment of laminar film con-
densation,” J.Heat Transfer, vol. 81, pp. 13–18, 1959.

[32] E. M. Sparrow, R. Eichhorn, and J. L. Gregg, “Combined forced and free convection
in a boundary layer flow,” Physics of Fluids, vol. 2, no. 3, pp. 319–328, 1959.

[33] J. Koh, E. Sparrow, and J. Hartnett, “The two phase boundary layer in laminar film
condensation,” International Journal of Heat and Mass Transfer, vol. 2, no. 12,
pp. 69 – 82, 1961.

[34] R. Ranjan, J. Y. Murthy, and S. V. Garimella, “A microscale model for thin-film
evaporation in capillary wick structures,” International Journal of Heat and Mass
Transfer, vol. 54, no. 13, pp. 169 – 179, 2011.

[35] A. Faghri, “Heat pipes: Review, opportunities and challenges,” Frontiers in Heat
Pipes, vol. 5, no. 1, p. 013001, 2014.

[36] D. Bharathan and G. Wallis, “Air-water countercurrent annular flow,” International
Journal of Multiphase Flow, vol. 9, no. 4, pp. 349 – 366, 1983.

[37] M. A. Grolmes, G. A. Lambert, and H. K. Fauske, “Flooding in vertical tubes,” in
AIChE Symposium Series No. 38, Multiphase Flow Systems, pp. paper A–4, 1974.

[38] J. G. Reed and C. L. Tien, “Modeling of the two-phase closed thermosyphon,” Jour-
nal of Heat Transfer, vol. 109, no. 3, pp. 722–730, 1987.

[39] S. Roesler and M. Groll, “Flow visualization and analytical modelling of interaction
phenomena in closed two-phase flow systems,” in Proc. of the 8th International Heat
Pipe Conference, pp. 26–32, 1992.

[40] J. Linehan, The interaction of two-dimensional stratified, turbulent air water and
steam-water flows. Ph.d. dissertation, University of Wisconsin, 1968.

[41] R. A. Seban and J. A. Hodgson, “Laminar-film condensation in a tube with up-
ward vapor flow,” International Journal of Heat and Mass Transfer, vol. 25, no. 9,
pp. 1291–1300, 1982.

232



[42] M. S. ElGenk and H. H. Saber, “Flooding limit in closed, two-phase flow ther-
mosyphons,” International Journal of Heat and Mass Transfer, vol. 40, no. 9,
pp. 2147–2164, 1997.

[43] M. S. El-Genk and H. H. Saber, “Determination of operation envelopes for closed,
two-phase thermosyphons,” International Journal of Heat and Mass Transfer,
vol. 42, no. 5, pp. 889–903, 1999.

[44] F. Blangetti and M. Naushahi, “Influence of mass transfer on the momentum transfer
in condensation and evaporation phenomena,” International Journal of Heat and
Mass Transfer, vol. 23, no. 12, pp. 1694 – 1695, 1980.

[45] S. J. Chen, J. G. Reed, and C. L. Tien, “Reflux condensation in a 2-phase closed
thermosyphon,” International Journal of Heat and Mass Transfer, vol. 27, no. 9,
pp. 1587–1594, 1984.

[46] Y. Pan, “Condensation heat transfer characteristics and concept of sub-flooding limit
in a two-phase closed thermosyphon,” International Communications in Heat and
Mass Transfer, vol. 28, no. 3, pp. 311 – 322, 2001.

[47] A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,”
Reviews of Modern Physics, vol. 69, no. 3, pp. 931–980, 1997.

[48] G. P. Peterson and B. K. Bage, “Entrainment limitations in thermosyphons and heat
pipes,” Journal of Energy Resources Technology, vol. 113, no. 3, pp. 147–153, 1991.

[49] K. Kafeel and A. Turan, “Axi-symmetric simulation of a two phase vertical ther-
mosyphon using eulerian two-fluid methodology,” Heat Mass Transfer, vol. 49,
pp. 1089–1099, 2013.

[50] B. Fadhl, L. C. Wrobel, and H. Jouhara, “Numerical modelling of the temperature
distribution in a two-phase closed thermosyphon,” Applied Thermal Engineering,
vol. 60, pp. 122–131, 2013.

[51] F. L. Chang and Y. M. Hung, “The coupled effects of working fluid and solid wall on
thermal performance of micro heat pipes,” International Journal of Heat and Mass
Transfer, vol. 73, no. 0, pp. 76 – 87, 2014.

[52] T. Cotter, “Principles and prospects for micro heat pipes,” NASA STI/Recon Technical
Report N, vol. 84, p. 29149, 1984.

[53] B. R. Babin and G. P. Peterson, “Experimental investigation of a flexible bellows
heat pipe for cooling discrete heat-sources,” Journal of Heat Transfer-Transactions
of the Asme, vol. 112, no. 3, pp. 602–607, 1990.

[54] B. R. Babin, G. P. Peterson, and D. Wu, “Steady-state modeling and testing of a
micro heat pipe,” Journal of Heat Transfer-Transactions of the Asme, vol. 112, no. 3,
pp. 595–601, 1990.

233



[55] S. Dasgupta, J. A. Schonberg, and P. C. Wayner, “Investigation of an evaporating ex-
tended meniscus based on the augmented young-laplace equation,” Journal of Heat
Transfer-Transactions of the Asme, vol. 115, no. 1, pp. 201–208, 1993.

[56] S. Dasgupta, J. A. Schonberg, I. Y. Kim, and P. C. Wayner, “Use of the augmented
young-laplace equation to model equilibrium and evaporating extended menisci,”
Journal of Colloid and Interface Science, vol. 157, no. 2, pp. 332–342, 1993.

[57] J. A. Schonberg, S. Dasgupta, and P. C. Wayner, “An augmented young-laplace
model of an evaporating meniscus in a microchannel with high heat-flux,” Aerospace
Heat Exchanger Technology 1993, pp. 239–254, 1993.

[58] D. M. Anderson and S. H. Davis, “The spreading of volatile liquid droplets on heated
surfaces,” Physics of Fluids, vol. 7, no. 2, pp. 248–265, 1995.

[59] L. Deng, J. L. Plawsky, P. C. Wayner, and S. DasGupta, “Stability and oscillations
in an evaporating corner meniscus,” Journal of Heat Transfer-Transactions of the
Asme, vol. 126, no. 2, pp. 169–178, 2004.

[60] G. P. Peterson and H. B. Ma, “Theoretical analysis of the maximum heat transport in
triangular grooves: A study of idealized micro heat pipes,” Journal of Heat Transfer-
Transactions of the Asme, vol. 118, no. 3, pp. 731–739, 1996.

[61] B. Suman and P. Kumar, “An analytical model for fluid flow and heat transfer in a
micro-heat pipe of polygonal shape,” International Journal of Heat and Mass Trans-
fer, vol. 48, no. 21-22, pp. 4498–4509, 2005.

[62] B. Suman, S. De, and S. Dasgupta, “A model of the capillary limit of a micro heat
pipe and prediction of the dry-out length,” International Journal of Heat and Fluid
Flow, vol. 26, no. 3, pp. 495–505, 2005.

[63] B. Suman, “Effects of a surface-tension gradient on the performance of a micro-
grooved heat pipe: an analytical study,” Microfluidics and Nanofluidics, vol. 5, no. 5,
pp. 655–667, 2008.

[64] B. Suman and R. Savino, “Capillary flow-driven heat transfer enhancement,” Journal
of Thermophysics and Heat Transfer, vol. 25, no. 4, pp. 553–560, 2011.

[65] B. Suman and N. Hoda, “Effect of variations in thermophysical properties and de-
sign parameters on the performance of a v-shaped micro grooved heat pipe,” Inter-
national Journal of Heat and Mass Transfer, vol. 48, no. 10, pp. 2090–2101, 2005.

[66] H. Ma, G. Peterson, and X. Lu, “The influence of vapor-liquid interactions on the
liquid pressure drop in triangular microgrooves,” International Journal of Heat and
Mass Transfer, vol. 37, no. 15, pp. 2211 – 2219, 1994.

[67] D. Khrustalev and A. Faghri, “Thermal-analysis of a micro-heat pipe,” Journal of
Heat Transfer-Transactions of the Asme, vol. 116, no. 1, pp. 189–198, 1994.

234



[68] J. P. Longtin, B. B. Badran, and F. M. Gerner, “A one-dimensional model of a micro
heat pipe during steady-state operation,” ASME. J. Heat Transfer., vol. 116, no. 3,
pp. 709–715, 1994.

[69] H. B. Ma and G. P. Peterson, “Experimental investigation of the maximum heat
transport in triangular grooves,” J. Heat Transfer., vol. 118, pp. 740–746, 1996.

[70] Y. M. Hung and K. K. Tio, “Analysis of microheat pipes with axial conduction in
the solid wall,” Journal of Heat Transfer-Transactions of the Asme, vol. 132, no. 7,
2010.

[71] Y. M. Hung and Q. Seng, “Effects of geometric design on thermal performance of
star-groove micro-heat pipes,” International Journal of Heat and Mass Transfer,
vol. 54, no. 5-6, pp. 1198–1209, 2011.

[72] Y. M. Hung and K. K. Tio, “Thermal analysis of a water-filled micro heat pipe with
phase-change interfacial resistance,” Journal of Heat Transfer-Transactions of the
Asme, vol. 134, no. 11, 2012.

[73] Y. M. Hung and K. K. Tio, “Thermal analysis of optimally designed inclined micro
heat pipes with axial solid wall conduction,” International Communications in Heat
and Mass Transfer, vol. 39, no. 8, pp. 1146–1153, 2012.

[74] H. X. C. B. Sobhan and L. C. Yu, “Investigations on transient and steady-state perfor-
mance of a micro heat pipe,” Journal of Thermophysics and Heat Transfer, vol. 14,
no. 2, pp. 161–169, 2000.

[75] F. M. White, Viscous fluid flow. New York: McGraw-Hill, 2nd ed., 1991.

[76] C. A. Bankston and H. J. Smith, “Incompressible laminar vapor flow in cylindrical
heat pipes,” Mechanical Engineering, vol. 94, no. 2, p. 52, 1972.

[77] J. H. Jang, A. Faghri, and W. S. Chang, “Analysis of the one-dimensional transient
compressible vapor flow in heat pipes,” International Journal of Heat and Mass
Transfer, vol. 34, no. 8, pp. 2029–2037, 1991.

[78] P. Ayyaswamy, I. Catton, and D. Edwards, “Capillary flow in triangular grooves.,”
Journal of Applied Mechanics, Transactions ASME, vol. 41, no. 2, pp. 332–336,
1974.

[79] D. Khrustalev and A. Faghri, “Coupled liquid and vapor flow in miniature passages
with micro grooves,” Journal of Heat Transfer, vol. 121, no. 3, pp. 729–733, 1999.

[80] S. Thomas, R. Lykins, and K. Yerkes, “Fully developed laminar flow in trapezoidal
grooves with shear stress at the liquid-vapor interface,” International Journal of Heat
and Mass Transfer, vol. 44, no. 18, pp. 3397–3412, 2001.

235



[81] S. J. Kim, J. K. Seo, and K. H. Do, “Analytical and experimental investigation on
the operational characteristics and the thermal optimization of a miniature heat pipe
with a grooved wick structure,” International Journal of Heat and Mass Transfer,
vol. 46, no. 11, pp. 2051 – 2063, 2003.

[82] J. Zhang, S. J. Watson, and H. Wong, “Fluid flow and heat transfer in a dual-wet
micro heat pipe,” J. Fluid Mech., vol. 589, pp. 1–31, 2007.

[83] A. Nouri-Borujerdi and M. Layeghi, “A review of concentric annular heat pipes,”
Heat Transfer Engineering, vol. 26, no. 6, pp. 45–58, 2005.

[84] A. Faghri, “Vapor flow-analysis in a double-walled concentric heat pipe,” Numerical
Heat Transfer, vol. 10, no. 6, pp. 583–595, 1986.

[85] A. Faghri and S. Parvani, “Numerical analysis of laminar flow in a double-walled an-
nular heat pipe,” Journal of Thermophysics and Heat Transfer, vol. 2, no. 2, pp. 165–
171, 1988.

[86] A. Faghri, “Performance characteristics of a concentric annular heat pipe: Part ii-
vapor flow analysis,” Journal of Heat Transfer-Transactions of the Asme, vol. 111,
no. 1-4, pp. 851–857, 1989.

[87] H. Wang, J. Y. Murthy, and S. V. Garimella, “Transport from a volatile meniscus
inside an open microtube,” Int. J. Heat Mass Transfer, vol. 51, pp. 3007–3017, 2008.

[88] H. Wang, Z. Pan, and S. V. Garimella, “Numerical investigation of heat and mass
transfer from an evaporating meniscus in a heated open groove,” Int. J. Heat Mass
Transfer, vol. 54, p. 30153023, 2011.

[89] Z. Pan and H. Wang, “Symmetry-to-asymmetry transition of marangoni flow at a
convex volatizing meniscus,” Microfluidics and Nanofluidics, vol. 9, pp. 657–669,
2010.

[90] G. V. Kuznetzov and A. E. Sitnikov, “Numerical modeling of heat and mass transfer
in a low-temperature heat pipe,” J. Eng. Phys. Thermophys., vol. 75, pp. 840–848,
2002.

[91] T. Kaya and J. Goldak, “Three-dimensional numerical analysis of heat and mass
transfer in heat pipes,” Heat Mass Transfer, vol. 43, pp. 775–785, 2007.

[92] D. F. Othmer, “The condensation of steam,” Ind. Eng. Chem., vol. 21, no. 6,
p. 576583, 1929.

[93] S. J. Meisenburg, R. M. Boarts, and W. L. Badger, “The influence of small concen-
trations of air in steam on the steam film coefficient of heat transfer,” Transactions
of the American Institute of Chemical Engineers, vol. 31, pp. 622–638, 1935.

[94] H. K. Aldiwany and J. W. Rose, “Free convection film condensation of steam in
presence of non-condensing gases,” International Journal of Heat and Mass Trans-
fer, vol. 16, no. 7, pp. 1359–1369, 1973.

236



[95] Henderso.Cl and Marchell.Jm, “Film condensation in presence of a noncondensable
gas,” Journal of Heat Transfer, vol. 91, no. 3, p. 447, 1969.

[96] D. Kroger and W. Rohsenow, “Condensation heat transfer in the presence of a non-
condensable gas,” Int. J. Heat Mass Trans., vol. 11, p. 15, 1968.

[97] K. M. Vierow, Behavior of steam-air systems condensing in cocurrent vertical down-
flow. University of California, Berkeley, 1990.

[98] S. Kuhn, V. Schrock, and P. Peterson, “An investigation of condensation from steam-
gas mixtures flowing downward inside a vertical tube,” Nuclear Engineering and
Design, vol. 177, no. 13, pp. 53 – 69, 1997.

[99] K.-Y. Lee and M. H. Kim, “Experimental and empirical study of steam condensation
heat transfer with a noncondensable gas in a small-diameter vertical tube,” Nuclear
Engineering and Design, vol. 238, no. 1, pp. 207 – 216, 2008.

[100] A. P. Colburn, “Calculation of condensation with a portion of condensate layer in tur-
bulent motion,” Industrial and Engineering Chemistry, vol. 26, pp. 432–434, 1934.

[101] A. P. Colburn and O. A. Hougen, “Design of cooler condensers for mixtures of
vapors with noncondensing gases,” Industrial and Engineering Chemistry, vol. 26,
pp. 1178–1182, 1934.

[102] T. H. Chilton and A. P. Colburn, “Mass transfer (absorption) coefficients - prediction
from data on great transfer and fluid friction,” Industrial and Engineering Chemistry,
vol. 26, pp. 1183–1187, 1934.

[103] M. L. Corradini, “Turbulent condensation on a cold wall in the presence of a non-
condensable gas,” Nuclear Technology, vol. 64, no. 2, pp. 186–195, 1984.

[104] M. H. Kim and M. L. Corradini, “Modeling of condensation heat-transfer in a reactor
containment,” Nuclear Engineering and Design, vol. 118, no. 2, pp. 193–212, 1990.

[105] P. F. Peterson, V. E. Schrock, and T. Kageyama, “Diffusion layer theory for tur-
bulent vapor condensation with noncondensable gases,” Journal of Heat Transfer-
Transactions of the Asme, vol. 115, no. 4, pp. 998–1003, 1993.

[106] T. Kageyama, P. F. Peterson, and V. E. Schrock, “Diffusion layer modeling for con-
densation in vertical tubes with noncondensable gases,” Nuclear Engineering and
Design, vol. 141, no. 1-2, pp. 289–302, 1993.

[107] E. M. Sparrow and E. R. G. Eckert, “Effects of superheated vapor and noncondens-
able gases on laminar film condensation,” Aiche Journal, vol. 7, no. 3, pp. 473–477,
1961.

[108] E. M. Sparrow and S. H. Lin, “Condensation heat transfer in the presence of a non-
condensable gas,” Journal of Heat Transfer, vol. 86, no. 3, pp. 430–436, 1964.

237



[109] W. Minkowycz and E. Sparrow, “Condensation heat transfer in the presence of
noncondensables, interfacial resistance, superheating, variable properties, and dif-
fusion,” Int. J. Heat Mass Trans., vol. 9, p. 1125, 1966.

[110] E. Sparrow, W. Minkowycz, and M. Saddy, “Forced convection condensation in the
presence of noncondensables and interfacial resistance,” Int. J. Heat Mass Trans.,
vol. 10, p. 1829, 1967.

[111] Y. Mori and K. Hijikata, “Free convective condensation heat-transfer with noncon-
densable gas on a vertical surface,” International Journal of Heat and Mass Transfer,
vol. 16, no. 12, p. 2229, 1973.

[112] V. E. Denny, A. F. Mills, and V. J. Jusionis, “Laminar film condensation from a
steam-air mixture undergoing forced flow down a vertical surface,” Journal of Heat
Transfer, vol. 93, no. 3, p. 297, 1971.

[113] V. E. Denny and V. J. Jusionis, “Effects of noncondensable gas and forced flow
on laminar film condensation,” International Journal of Heat and Mass Transfer,
vol. 15, no. 2, p. 315, 1972.

[114] E. C. Siow, S. J. Ormiston, and H. M. Soliman, “Fully coupled solution of a two-
phase model for laminar film condensation of vapor-gas mixtures in horizontal chan-
nels,” International Journal of Heat and Mass Transfer, vol. 45, no. 18, pp. 3689–
3702, 2002.

[115] E. C. Siow, S. J. Ormiston, and H. M. Soliman, “A two-phase model for laminar film
condensation from steam-air mixtures in vertical parallel-plate channels,” Heat and
Mass Transfer, vol. 40, no. 5, pp. 365–375, 2004.

[116] E. C. Siow, S. J. Ormiston, and H. M. Soliman, “Two-phase modelling of laminar
film condensation from vapour-gas mixtures in declining parallel-plate channels,”
International Journal of Thermal Sciences, vol. 46, no. 5, pp. 458–466, 2007.

[117] R. H. Pletcher, “Prediction of transpired turbulent boundary layers,” ASME. J. Heat
Transfer., vol. 96, no. 1, pp. 89–94, 1974.

[118] B. L. W.P. Jones, “The predictions of laminarization with a two-equation model of
turbulence,” Int. J. Heat Mass Transfer, vol. 15, p. 301314, 1972.

[119] R. Yuann, Condensation from vapor-gas mixtures for forced downflow inside a tube.
Ph.d. thesis, University of California, Berkeley, 1993.

[120] M. K. Groff, S. J. Ormiston, and H. M. Soliman, “Numerical solution of film con-
densation from turbulent flow of vapor-gas mixtures in vertical tubes,” International
Journal of Heat and Mass Transfer, vol. 50, no. 19-20, pp. 3899–3912, 2007.

[121] J. M. Martin-Valdepenas, M. A. Jimenez, F. Martin-Fuertes, and J. A. Fernandez,
“Improvements in a cfd code for analysis of hydrogen behaviour within contain-
ments,” Nuclear Engineering and Design, vol. 237, no. 6, pp. 627–647, 2007.

238



[122] K. Karkoszka and H. Anglart, “Multidimensional effects in laminar filmwise con-
densation of water vapour in binary and ternary mixtures with noncondensable
gases,” Nuclear Engineering and Design, vol. 238, no. 6, pp. 1373–1381, 2008.

[123] A. Dehbi, F. Janasz, and B. Bell, “Prediction of steam condensation in the presence
of noncondensable gases using a cfd-based approach,” Nuclear Engineering and
Design, vol. 258, pp. 199–210, 2013.

[124] G. Zschaeck, T. Frank, and A. D. Burns, “Cfd modelling and validation of wall
condensation in the presence of non-condensable gases,” Nuclear Engineering and
Design, vol. 279, pp. 137–146, 2014.

[125] R. Marek and J. Straub, “The origin of thermocapillary convection in subcooled
nucleate pool boiling,” International Journal of Heat and Mass Transfer, vol. 44,
no. 3, pp. 619–632, 2001.

[126] M. Barthes, C. Reynard, R. Santini, and L. Tadrist, “Non-condensable gas influence
on the marangoni convection during a single vapour bubble growth in a subcooled
liquid,” Epl, vol. 77, no. 1, 2007.

[127] C. Reynard, M. Barthes, R. Santini, and L. Tadrist, “Experimental study of the onset
of the 3d oscillatory thermocapillary convection around a single air or vapor bubble.
influence on heat transfer,” Experimental Thermal and Fluid Science, vol. 29, no. 7,
pp. 783–793, 2005.

[128] F. Chauvet, S. Dehaeck, and P. Colinet, “Threshold of benard-marangoni instability
in drying liquid films,” Epl, vol. 99, no. 3, 2012.

[129] C. W. Hirt and B. D. Nichols, “Volume of fluid (vof) method for the dynamics of free
boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201–225, 1981.

[130] R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and in-
terfacial flow,” Annual Review of Fluid Mechanics, vol. 31, pp. 567–603, 1999.

[131] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, “Volume-of-fluid in-
terface tracking with smoothed surface stress methods for three-dimensional flows,”
Journal of Computational Physics, vol. 152, no. 2, pp. 423–456, 1999.

[132] P. Queutey and M. Visonneau, “An interface capturing method for free-surface hy-
drodynamic flows,” Computers & Fluids, vol. 36, no. 9, pp. 1481–1510, 2007.

[133] M. Sussman, P. Smereka, and S. Osher, “A level set approach for computing solu-
tions to incompressible 2-phase flow,” Journal of Computational Physics, vol. 114,
no. 1, pp. 146–159, 1994.

[134] J. A. Sethian, “Evolution, implementation, and application of level set and
fast marching methods for advancing fronts,” Journal of Computational Physics,
vol. 169, no. 2, pp. 503–555, 2001.

239



[135] S. Osher and R. P. Fedkiw, “Level set methods: An overview and some recent re-
sults,” Journal of Computational Physics, vol. 169, no. 2, pp. 463–502, 2001.

[136] F., R. Fedkiw, and S. Osher, “Spatially adaptive techniques for level set methods and
incompressible flow,” Computers & Fluids, vol. 35, no. 10, pp. 995–1010, 2006.

[137] T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa, “Exactly conservative semi-
lagrangian scheme for multi-dimensional hyperbolic equations with directional split-
ting technique (vol 174, pg 171, 2001),” Journal of Computational Physics, vol. 175,
no. 2, pp. 792–792, 2002.

[138] D. Jacqmin, “Calculation of two-phase navier-stokes flows using phase-field model-
ing,” Journal of Computational Physics, vol. 155, no. 1, pp. 96–127, 1999.

[139] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, “Modeling merg-
ing and fragmentation in multiphase flows with surfer,” Journal of Computational
Physics, vol. 113, no. 1, pp. 134–147, 1994.

[140] S. Popinet and S. Zaleski, “A front-tracking algorithm for accurate representation
of surface tension,” International Journal for Numerical Methods in Fluids, vol. 30,
no. 6, pp. 775–793, 1999.

[141] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W.
Williams, “A balanced-force algorithm for continuous and sharp interfacial surface
tension models within a volume tracking framework,” Journal of Computational
Physics, vol. 213, no. 1, pp. 141–173, 2006.

[142] J. Glimm, O. Mcbryan, R. Menikoff, and D. H. Sharp, “Front tracking applied to
rayleigh-taylor instability,” Siam Journal on Scientific and Statistical Computing,
vol. 7, no. 1, pp. 230–251, 1986.

[143] J. Glimm, J. Grove, B. Lindquist, O. A. Mcbryan, and G. Tryggvason, “The bifurca-
tion of tracked scalar waves,” Siam Journal on Scientific and Statistical Computing,
vol. 9, no. 1, pp. 61–79, 1988.

[144] S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompress-
ible, multi-fluid flows,” Journal of Computational Physics, vol. 100, no. 1, pp. 25–
37, 1992.

[145] D. Juric and G. Tryggvason, “A front-tracking method for dendritic solidification,”
Journal of Computational Physics, vol. 123, no. 1, pp. 127–148, 1996.

[146] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han,
S. Nas, and Y. J. Jan, “A front-tracking method for the computations of multiphase
flow,” Journal of Computational Physics, vol. 169, no. 2, pp. 708–759, 2001.

[147] G. Ryskin and L. G. Leal, “Numerical-solution of free-boundary problems in fluid-
mechanics .1. the finite-difference technique,” Journal of Fluid Mechanics, vol. 148,
no. Nov, pp. 1–17, 1984.

240



[148] G. Ryskin and L. G. Leal, “Numerical-solution of free-boundary problems in fluid-
mechanics .2. buoyancy-driven motion of a gas bubble through a quiescent liquid,”
Journal of Fluid Mechanics, vol. 148, no. Nov, pp. 19–35, 1984.

[149] G. Ryskin and L. G. Leal, “Numerical-solution of free-boundary problems in fluid-
mechanics .3. bubble deformation in an axisymmetric straining flow,” Journal of
Fluid Mechanics, vol. 148, no. Nov, pp. 37–43, 1984.

[150] S. Takagi and Y. Matsumoto, “3-dimensional deformation of a rising bubble,” Pro-
ceedings of the German-Japanese Symposium on Multi-Phase Flow, pp. 499–511,
1994.

[151] B. Yang and A. Prosperetti, “A second-order boundary-fitted projection method for
free-surface flow computations,” Journal of Computational Physics, vol. 213, no. 2,
pp. 574–590, 2006.

[152] M. Z. Dai and D. P. Schmidt, “Adaptive tetrahedral meshing in free-surface flow,”
Journal of Computational Physics, vol. 208, no. 1, pp. 228–252, 2005.

[153] S. P. Quan and D. P. Schmidt, “A moving mesh interface tracking method for 3d
incompressible two-phase flows,” Journal of Computational Physics, vol. 221, no. 2,
pp. 761–780, 2007.

[154] S. P. Quan, J. Lou, and D. P. Schmidt, “Modeling merging and breakup in the mov-
ing mesh interface tracking method for multiphase flow simulations,” Journal of
Computational Physics, vol. 228, no. 7, pp. 2660–2675, 2009.

[155] Z. Tukovic and H. Jasak, “A moving mesh finite volume interface tracking method
for surface tension dominated interfacial fluid flow,” Computers & Fluids, vol. 55,
pp. 70–84, 2012.

[156] S. Chapman and T. Cowling, The mathematical theory of non-uniform gases: an
account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases.
Cambridge: Cambridge University Press, 1990.

[157] R. W. Schunk, “Mathematical structure of transport equations for multispecies
flows,” Reviews of Geophysics, vol. 15, no. 4, pp. 429–445, 1977.

[158] H. Grad, “On the kinetic theory of rarefied gases,” Communications on Pure and
Applied Mathematics, vol. 2, no. 4, pp. 331–407, 1949.

[159] B. B. Hamel, “Two-fluid hydrodynamic equations for a neutral, disparate-mass, bi-
nary mixture,” Phys. Fluids, vol. 9, p. 12, 1966.

[160] M. J. Moran and H. N. Shapiro, Fundamentals of engineering thermodynamics. Wi-
ley, 2004.

[161] C. L. Yaws, Yaws’ Handbook of Thermodynamic and Physical Properties of Chemi-
cal Compounds (Electronic Edition): physical, thermodynamic and transport prop-
erties for 5,000 organic chemical compounds. Norwich: Knovel, 2003.

241



[162] C. L. Yaws, Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons
(Electronic Edition). Norwich: Knovel, 2009.

[163] R. Reid, J. Prausnitz, and B. Poling, The Properties of Gases and Liquids. Chemical
engineering series, McGraw-Hill, 1987.

[164] K. E. Grew and T. L. Ibbs, Thermal diffusion in gases. Cambridge monographs on
physics, Cambridge [Eng.] University Press, 1952., 1952.

[165] L. Landau and E. Lifshitz, Fluid Mechanics. Elsevier Science, 2013.

[166] R. B. Bird, Dynamics of polymeric liquids. New York : Wiley, c1977., 1977.

[167] J. Hirschfelder, C. Curtiss, and R. Bird, Molecular theory of gases and liquids. Struc-
ture of matter series, Wiley, 1954.

[168] O. L. Flaningam, “Vapor pressures of poly(dimethylsiloxane) oligomers,” J. Chem.
Eng. Data, vol. 31, pp. 266–272, 1986.

[169] C. R. Wilke, “Viscosity equation for gas mixtures,” Journal of Chemical Physics,
vol. 18, pp. 517 – 519, 1950.

[170] W. Sutherland, “Lii. the viscosity of gases and molecular force,” Philosophical Mag-
azine Series 5, vol. 36, no. 223, pp. 507–531, 1893.

[171] F. White, Heat and Mass Transfer. Addison-Wesley series in mechanical engineer-
ing, Addison-Wesley, 1988.

[172] R. W. Schrage, A Theoretical Study of Interface Mass Transfer. New York: Columbia
University Press, 1953.

[173] G. Wyllie, “Evaporation and surface structure of liquids,” Proc. Royal Soc. London,
vol. 197, pp. 383–395, 1949.

[174] R. Rudolf, M. Itoh, Y. Viisanen, and P. Wagner, “Sticking probabilities for con-
densation of polar and nonpolar vapor molecules,” in Nucleation and Atmospheric
Aerosols (N. Fukuta and P. E. Wagner, eds.), pp. 165–168, Hampton: A. Deepak
Publishing, 1992.

[175] G. Balekjian and D. L. Katz, “Heat transfer from superheated vapors to a horizontal
tube,” AIChE Journal, vol. 4, no. 1, pp. 43–48, 1958.

[176] J. Klentzman and V. S. Ajaev, “The effect of evaporation on fingering instabilities,”
Phys. Fluids, vol. 21, p. 122101, 2009.

[177] S. Kjelstrup and D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous
Systems. Singapore: World Scientific, 2008.

[178] H. Struchtrup, S. Kjelstrup, and D. Bedeaux, “Temperature-difference-driven mass
transfer through the vapor from a cold to a warm liquid,” Phys. Rev. E, vol. 85,
p. 061201, 2012.

242



[179] C. A. Ward, R. D. Findlay, and M. Rizk, “Statistical rate theory of interfacial trans-
port. i. theoretical development,” J. Chem. Phys., vol. 76, p. 5599, 1982.

[180] C. A. Ward and G. Fang, “Expression for predicting liquid evaporation flux: Statis-
tical rate theory approach,” Phys. Rev. E, vol. 59, pp. 429–440, Jan 1999.

[181] G. Fang and C. A. Ward, “Temperature measured close to the interface of an evapo-
rating liquid,” Phys. Rev. E, vol. 59, pp. 417–428, 1999.

[182] V. K. Badam, V. Kumar, F. Durst, and K. Danov, “Experimental and theoretical
investigations on interfacial temperature jumps during evaporation,” Exp. Therm.
and Fluid Sci., vol. 32, pp. 276–292, 2007.

[183] M. Bond and H. Struchtrup, “Mean evaporation and condensation coefficients based
on energy dependent condensation probability,” Phys. Rev. E, vol. 70, p. 061605,
Dec 2004.

[184] D. Villers and J. K. Platten, “Separation of marangoni convection from gravitational
convection in earth experiments,” Phys. Chem. Hydrodyn., vol. 8, pp. 173–183,
1987.

[185] T. Qin, Z̆. Tuković, and R. O. Grigoriev, “Buoyancy-thermocapillary convection
of volatile fluids under atmospheric conditions,” Int. J Heat Mass Transf., vol. 75,
pp. 284–301, 2014.

[186] G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge: Cambridge Uni-
versity Press, 1967.

[187] P. Hintz, D. Schwabe, and H. Wilke, “Convection in a czochralski crucible - part 1 :
non-rotating crystal,” Journal of Crystal Growth, vol. 222, pp. 343–355, 2001.

[188] P. Gillon and G. M. Homsy, “Combined thermocapillary-buoyancy convection in a
cavity: An experimental study,” Phys. Fluids, vol. 8, pp. 2953–2963, 1996.

[189] J. M. Ha and G. P. Peterson, “Analytical prediction of the axial dryout point for
evaporating liquids in triangular microgrooves,” ASME J. Heat Transfer, vol. 116,
pp. 498–503, 1994.

[190] M. Markos, V. S. Ajaev, and G. M. Homsy, “Steady flow and evaporation of a volatile
liquid in a wedge,” Phys. Fluids, vol. 18, p. 092102, 2006.

[191] A. Faghri, Heat Pipe Science And Technology. Boca Raton: Taylor & Francis Group,
1995.
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