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SUMMARY

The main subject of this thesis is the development of new geometric tools and

techniques for solving classic problems within the geometry of numbers and convex

geometry. At a high level, the problems considered in this thesis concern the var-

ied interplay between the continuous and the discrete, an important theme within

computer science and operations research.

The first subject we consider is the study of cutting planes for non-linear integer

programs. Cutting planes have been implemented to great effect for linear integer

programs, and so understanding their properties in more general settings is an impor-

tant subject of study. As our contribution to this area, we show that Chvátal-Gomory

closure of any compact convex set is a rational polytope. As a consequence, we resolve

an open problem of Schrijver (Ann. Disc. Math. ‘80) regarding the same question

for irrational polytopes.

The second subject of study is that of ellipsoidal approximation of convex bod-

ies. Different such notions have been important to the development of fundamental

geometric algorithms: e.g. the ellipsoid method for convex optimization (enclosing el-

lipsoids), or random walk methods for volume estimation (inertial ellipsoids). Here we

consider the construction of an ellipsoid with good “covering” properties with respect

to a convex body, known in convex geometry as the M-ellipsoid. As our contribution,

we give two algorithms for constructing M-ellipsoids, and provide an application to

near-optimal deterministic volume estimation in the oracle model.

Equipped with this new geometric tool, we move to the study of classic lattice

problems in the geometry of numbers, namely the Shortest (SVP) and Closest Vector

Problems (CVP). Here we use M-ellipsoid coverings, combined with an algorithm of
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Micciancio and Voulgaris for CVP in the `2 norm (STOC ‘10), to obtain the first

deterministic 2O(n) time algorithm for the SVP in general norms. Combining this

algorithm with a novel lattice sparsification technique, we derive the first deterministic

2O(n)(1 + 1/ε)n time algorithm for (1 + ε)-approximate CVP in general norms.

For the next subject of study, we analyze the geometry of general integer programs.

A central structural result in this area is Kinchine’s flatness theorem, which states that

every lattice free convex body has integer width bounded by a function of dimension.

As our contribution, we build on the work Banaszczyk, using tools from lattice based

cryptography, to give a new and tighter proof of the flatness theorem.

Lastly, combining all the above techniques, we consider the study of algorithms

for the Integer Programming Problem (IP). As our main contribution, we give a new

2O(n)nn time algorithm for IP, which yields the fastest currently known algorithm for

IP and improves on the classic works of Lenstra (MOR ‘83) and Kannan (MOR ‘87).
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CHAPTER I

INTRODUCTION

Throughout the twentieth century, the study of convexity and its interactions with

discrete structures, from both the algorithmic and structural viewpoint, has lead to

many fundamental discoveries in mathematics. Major achievements range from the

development of the geometry of numbers by Minkowski, to the development of effi-

cient algorithms for optimization problems within operations research and computer

science.

In this thesis, we will be concerned with problems involving the intersections of

continuous and discrete spaces. In particular, we will examine algorithmic problems

over lattices (discrete subgroups of Rn) and convex bodies. Our main focus problems

will be on lattice problems, namely, the Shortest (SVP) and Closest Vector Problems

(CVP), as well as the Integer Programming Problem (IP). The combined algorithmic

study of these problems was coined the algorithmic geometry of numbers by Kan-

nan [72]. In Kannan’s view, this subject, which combined the classic mathematical

theory of Minkowski [97], as well as the sophisticated and elegant algorithmics of

researchers such as Lenstra [84], and Lovász [82], and certainly himself [70], was per-

haps the perfect playground for testing new combinatorial and geometric techniques

on exceedingly difficult computational problems.

Twenty five after Kannan has written his survey on the subject, there has been

tremendous progress on both sides of the equation: the subject of lattice algorithms

has grown by leaps and bounds due to its many new connections to cryptography

and complexity, and our understanding of the asymptotic properties of convex bodies

(volume, concentration, isoperimetry, etc.) has grown beyond measure. However,
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the essential synthesis for which Kannan had hoped, i.e. of bringing these new un-

derstandings together in a singular and focused manner to bear on the core set of

problems within the subject, remains undone.

The main goal of this thesis, is to take a step in this direction. The theme

of combining newly developed geometry, with recent techniques on lattices, will be

pervasive throughout. In the chapters that follow, we will revisit nearly every classical

problem within the subject from a fresh perspective, and hope to point the way

towards future progress.

1.1 Contributions of this Thesis

1.1.1 Cutting Planes

The study of cutting planes, i.e. valid linear inequalities for the feasible solutions to an

integer program, has played a fundamental role in the development of IP technology.

The main body of cutting plane research has, until recently, focused on integer linear

programming models (ILP). Due to the great success of cutting planes for linear

models, and the increasing need to solve non-linear IPs, generalizing the theory of

cuttings planes to more general settings is an important task.

In Chapter 3, with this aim in mind, we examine the properties of cutting planes

for convex integer programs, i.e. IPs where the feasible region of the continuous re-

laxation is a general convex set. One of the first and most important classes of

cutting planes developed for IP are the Chvátal-Gomory (CG) cuts, which were first

introduced in [55] to design the first cutting plane algorithm for ILP.

The basis of our study is a fundamental structural result due to Schrijver [119],

which states that the CG closure of a rational polyhedron, i.e. the set obtained by

adding all CG cuts over the feasible region, is a rational polyhedron. A natural

question is whether Schrijver’s result extends to more general settings, and indeed

Schrijver himself poses the question of whether it holds for polytopes described by

2



irrational data. As our main contribution, we extend Schrijver’s result, and show

that the CG closure of any compact convex set is a rational polytope. This resolves

Schrijver’s original question, and helps extend the theory of cutting planes to the

convex IP setting.

This Chapter is based on joint work with Santanu Dey and Juan Pablo Vielma

which appeared in the proceeding of the conference on Integer Programming and

Combinatorial Optimization, 2011 [34].

1.1.2 Algorithmic Convex Geometry

In Chapter 4, we develop a nearly optimal algorithm for deterministically estimating

the volume of a convex body. To achieve this, we develop new geometric algorithms

which may find wider application, and which are used throughout the rest of thesis.

At a high level, our main contributions are to make algorithmic certain fundamental

constructions from convex geometry and the local theory of Banach spaces.

The M-Ellipsoid. An n dimensional ellipsoid is a body representable as an affine

transformation of the euclidean ball (see Section 2.2 for precise definitions). Differ-

ent types of ellipsoidal approximations for convex bodies, and techniques to compute

them, have been fundamental to the development of algorithms in Operations Re-

search and Computer Science. For example, the ellipsoid method for convex opti-

mization, which was used to give the first polynomial algorithm for Linear Program-

ming [73], is based on constructing a shrinking sequence of enclosing ellipsoids for the

feasible region.

As a first problem, we examine the problem of building an M-Ellipsoid for a

n dimensional convex body K. An M-Ellipsoid E for K approximates K from a

“covering” perspective. Precisely, E is an M-Ellipsoid for K if 2O(n) translates of E

suffices to cover K and vice versa. The existence of the M-Ellipsoid was first proved by

Milman [92], who used it to derive many fundamental inequalities in convex geometry.

3



Our motivation for constructing the M-Ellipsoid will be due to the utility of its implied

covering, for which we give applications to volume estimation, lattice algorithms, and

integer programming.

Our first results, are to give two different algorithms for computing M-Ellipsoids

for convex bodies presented by membership oracles (i.e. where we can query whether

a point is inside the body; see Section 2.5.1 for precise definitions). Our first algo-

rithm, based on a construction of Klartag [77], runs in randomized polynomial time

and succeeds with high probability. Our second algorithm, based on Milman’s orig-

inal construction [92], is deterministic and runs in 2O(n) time and uses polynomial

space. Furthermore, we show that there is a 2Ω(n) lower bound for any deterministic

construction in the oracle model.

Our next result within this context is a near optimal algorithm for computing

ellipsoid coverings. Given as input an n dimensional convex body K and ellipsoid E,

we give a polynomial space algorithm for outputting the translates of E corresponding

to a covering of K by E. Furthermore, the size of the covering outputted by the

algorithm is at most a 2O(n) factor larger than the optimal such covering, and the

runtime of the algorithm is proportional to the size of the outputted covering.

Deterministic Volume Estimation. The problem of estimating the volume of a

convex body is a central problem in computer science, which has lead to the devel-

opment of many algorithmic techniques for studying high dimensional distributions.

The volume estimation problem is one of the prime examples for the power of ran-

domization. In the work of Elekes [48], and later Bárány and Füredi [51, 52], it was

shown that deterministically computing volume in the oracle model is hard. In par-

ticular, any deterministic algorithm which reliably estimates the volume of symmetric

convex bodies to within a factor (1 + ε)n must make at least (1 + 1
ε
)Ω(n) membership

queries in the worst case. In contrast, the breakthrough result of Dyer, Frieze, and

4



Kannan [45] gives a poly(n, 1
ε
) time randomized algorithm which estimates volume to

within (1 + ε) with high probability using Monte Carlo markov chain techniques.

As our contribution in this area, we show that the lower bounds for volume esti-

mation are essentially tight for all values of 0 < ε ≤ 1. Precisely, we use a variant

of the deterministic M-Ellipsoid construction, together with the ellipsoid covering al-

gorithm, to give a deterministic (1 + 1
ε
)O(n) time and polynomial space algorithm for

estimating the volume of any symmetric convex body to within a factor (1 + ε)n.

The results in this Chapter are based two works, the first is joint with Chris Peikert

and Santosh Vempala and appeared in the Symposium on Foundations of Computer

Science, 2011 [36], and the second is joint with Santosh Vempala [32].

1.1.3 Lattice Problems

The Shortest (SVP) and Closest Vector Problems (CVP) are classic problems in the

geometry of numbers and computer science. Given a n dimensional lattice L (a lattice

is a discrete subgroup of Rn, see section 2.4 for a precise definition) and norm ‖ · ‖

(with query access), the SVP is to find a shortest non-zero element of L under ‖ · ‖.

The CVP is the inhomogeneous version which takes in addition a target vector x,

and where the problem becomes to find an element of L closest to x under ‖ · ‖.

In Chapter 5, we study the SVP and CVP under arbitrary norms. A majority

of the algorithms developed for SVP and CVP have focused on the setting of the

`2 norm [82, 7, 118, 70, 64, 61, 91], and the techniques used therein have not gen-

eralized to other norms (without incurring large polynomial approximation factors).

An important exception are the algorithms based on randomized sieving, a technique

developed by Ajtai, Kumar and Sivakumar [2] to give the first randomized 2O(n) time

algorithm for the SVP under `2. Subsequently, the AKS sieving approach was gener-

alized to solve SVP and (1 + ε)-approximate CVP in any norm [3, 18, 5, 33], where

the algorithms use 2O(n) and (1 + 1
ε
)O(n) time, space and randomness respectively.
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A natural question is whether there exists deterministic algorithms for general

norm SVP and CVP with similar or better running times with respect to AKS.

Our main contribution is to show that this is indeed possible. Formally, we give

polynomial space Turing reductions from SVP and (1 + ε)-approximate CVP in any

norm to CVP in the `2-norm which perform 2O(n) and 2O(n)(1 + 1
ε
)n calls to the CVP

oracle and arithmetic operations respectively. Instantiating our reductions with the

current fastest deterministic algorithm for CVP in `2, i.e. the O(22n) time and O(2n)

space algorithm of Micciancio and Voulgaris [91], we get 2O(n) and 2O(n)(1 + 1
ε
)n time

algorithms for SVP and (1+ ε)-CVP respectively under any norm which run in O(2n)

space.

The main tool behind our reductions is a novel method for enumerating the lat-

tice points inside any convex body, which relies on the construction of M-Ellipsoid

coverings from the previous chapter. The second major ingredient, used within our

(1 + ε)-CVP algorithm, is a new technique for “sparsifying” a lattice with respect to

an arbitrary norm which approximately maintains the lattice’s metric structure.

The results in this chapter are based on joint work with Chris Peikert and Santosh

Vempala [36], as well as subsequent extensions.

1.1.4 Integer Programming

The Integer Programming Problem (IP) is one of the foundational problems in oper-

ations research and computer science. IP is a highly effective modeling paradigm for

discrete optimization problems that was introduced in the 1950’s. The first appear-

ance of IP in the literature is the seminal paper of Dantzig, Fulkerson and Johnson [37]

who used cutting plane methods to solve (by hand) a Traveling Salesman Problem

(TSP) on 49 cities. The study of fully general IPs began with the work of Gomory [55]

in 1958, who gave the first finite cutting plane algorithm for general problem. After

the introduction of NP-Completeness, the binary version of IP appeared on Karp’s
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original list of 21 NP-Complete problems. It remains one of the most well studied

optimization problems even today.

Here we study the general integer version of the IP problem. The general form

in which we consider the problem is as follows: given a convex set K ⊆ Rn by a

separation oracle, decide whether K ∩ Zn 6= ∅. We also study a natural optimization

variant, that is, given a convex function f : K → R (equipped with a subgradient

oracle), either decide that K ∩ Zn = ∅ or compute y ∈ K ∩ Zn minimizing f .

Structure. In Chapter 6, we study the structure of the IP problem. The focus of

our analysis is Kinchine’s flatness theorem in the geometry of numbers. The flatness

theorem states that every convex body not containing integer points has integer width

bounded by a function of dimension. More explicity, if K ⊆ Rn is integer free, there

exists a partition of Zn into parallel hyperplanes such that at most f(n) of these

hyperplanes intersect K, where f(n) is function of dimension alone. The flatness

theorem is one of the main structural results used in algorithms for solving general

integer IP.

Due to its applications to IP, and its importance within the geometry of numbers,

many proofs of the flatness theorem have been presented [76, 7, 80, 67, 10, 12, 13],

each giving different asymptotic estimates on the function f(n). The best current

bounds are f(n) = Ω(n), and f(n) = O(n
4
3 polylog(n)) due to Rudelon [113] using a

reduction by Banaszczyk [12]. As our main contribution, we improve on a proof of

Banaszczyk, which achieves a reduction with small explicit constants from bounding

f(n) to bounding the classical ``∗ estimate in convex geometry. We remark that

the best known asymptotic bounds on f(n) are indeed derived in this fashion. Our

main improvement is to avoid Banasczczyk’s reliance on Talagrand’s majorizing mea-

sure theorem (which results in huge unknown constants), by using a new geometric

characterization of the smoothing parameter of a lattice.
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The work in this Chapter in based on joint work with Kai-Min Chung, Feng Hao

Liu, and Chris Peikert [27].

Algorithms. In Chapter 7, we study algorithms for the IP problem. The major

algorithmic breakthroughs for general integer IP are due to Lenstra [84] and later

Kannan [70], who respectively gave 2O(n3) and 2O(n)n2.5n time algorithms (focusing on

the dependence on dimension) for IP when K is given by a system of linear inequalities

(i.e. a polyhedron). These algorithms both relied on then recent advances in convex

optimization, as well as novel insights in geometry of numbers (in particular, the

flatness theorem).

Our main contributions are faster algorithms for both feasibility and optimization

variants of IP. The first algorithm, based on a framework of Lenstra, solves IP feasibil-

ity problems in 2O(n)(n
4
3 polylog(n))n time and O(2n) space. The second algorithm,

based on a framework of Kannan, solves IP feasibility in 2O(n)nn time and O(2n)

space. Our last algorithm, directly solves integer optimization problems. In expected

2O(n)nn time and O(2n) space algorithm it can minimize any convex function over

the integer points in a bounded convex set. Here, our IP algorithms crucially rely

on both the lattice algorithms and lattice point enumeration techniques developed in

Chapter 5.

The results in this Chapter are based on joint work with Chris Peikert and Santosh

Vempala [36], as well as subsequent extensions.
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CHAPTER II

MATHEMATICAL BACKGROUND

In this chapter, we present the basic concepts and notational conventions used through-

out this thesis. It is intended as a reference only, and may be skipped upon first

reading. Throughout the thesis, we shall refer the reader to relevant sections of the

background chapter to elucidate the used notation and concepts.

2.1 Basics

We denote C the set of complex numbers, R the set of real numbers, Q the set of

rational numbers, and Z the set of integers. We write R̄ = R ∪ {−∞,∞} for the

extended reals (∞ denotes infinity). The sets R̄+,R+,Q+,Z+ denote the correspond-

ing non-negative versions. We define the natural numbers N, as the set of positive

integers. For n ∈ N, we denote [n] = {1, . . . , n}. For sets S, T we denote their cross

product S × T = {(s, t) : s ∈ S, t ∈ T}. For n ≥ 1, we define Sn =

n times︷ ︸︸ ︷
S × S × · · · × S.

For some notational conventions, we write vectors in bold and scalars in regular

font, i.e. x ∈ Rn and x ∈ R. As a further convention, we let 0 denote either the all

zero vector or matrix for the ambient space (which will be clear from context). We

write ∅ to denote the emptyset.

Functions and Sets. Let f : X → Y be a function from X to Y . For S ⊆ X we

denote the image of S under f as f(S) = {f(s), s ∈ S}, and for T ⊆ Y we denote

the inverse image of T under f as f−1(T ) = {x ∈ X : f(x) ∈ T}. For functions

f : X → Y , and g : Y → Z, we define the composition g ◦ f : X → Z by the relation

(g ◦ f)(x) = g(f(x)). We say that f : X → Y is injective if for x, z ∈ X, x 6= z,

f(x) 6= f(z), and we say that f is surjective if ∀y ∈ Y there exists x ∈ X such that
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f(x) = y (i.e f(X) = Y ). Lastly, f is bijective if it is both surjective and injective.

We say that a set X is countable if there exists a mapping f : N→ X such that f is

surjective.

For sets A,B ⊆ Rn we define the Minkowski sum of A and B as

A+B = {x + y : x ∈ A,y ∈ B}.

For a vector t ∈ Rn, we define t + A = {t} + A for notational convenience. For a

scalar s ∈ R, we define sA = {sa : a ∈ A}. For a set of scalars S ⊆ R and vector

x ∈ Rn, we define Sx = {sx : s ∈ S}. The above definitions extend in the natural

way for any spaces supporting the requisite addition and multiplication operations.

For x,y ∈ Rn, we denote the line (or interval) between x and y as

[x,y] = {αx + (1− α)y : 0 ≤ α ≤ 1}.

We denote [x,y) = [x,y] \ {x} ((x,y] is defined analogously), and (x,y) = [x,y] \

{x,y}, the half-open, and open interval between x and y respectively. We note

that for numbers x, y ∈ R, x ≤ y, from the above definition, the set [x, y] =

{z ∈ R : x ≤ z ≤ y} ([x, y) and (x, y) are similarly understood).

For a real number x ∈ R, we define bxc as the greatest integer less than or equal to x,

and dxe as the least integer greater than or equal to x. Note that x−bxc ∈ [0, 1). For

a set S ⊆ R̄, we denote supS the smallest element x ∈ R̄ satisfying x ≥ y ∀y ∈ S,

and inf S the largest element x ∈ R̄ satisfying x ≤ y ∀y ∈ S. If (inf) supS ∈ S, i.e. S

contains its (infimum) supremum, we write (inf) supS = (min) maxS. For a function

f : S → R, we define arg maxx∈S f(x) = {x ∈ S : f(x) = max{f(x) : x ∈ S}} and

define arg minx∈S f(x) analogously.

Modular Arithmetic. For integers a, b ∈ Z, m ∈ N, we define the equivalence

relation a ≡ b (mod m)⇔ m
∣∣ a−b (m divides a−b). We write the set of equivalence

classes as Zm = {a+mZ : a ∈ Z} (i.e. the integers mod m), where |Zm| = m. Here
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one can check that for a, b, c, d ∈ Z such that a ≡ b (mod m) and c ≡ d (mod m)

then a + c ≡ b + d (mod m) and ac ≡ bd (mod m), and hence both addition and

multiplication are well defined on Zm. Therefore Zm is a ring. If p ∈ N is prime (has

only 1 and p as divisors), then for every a 6≡ 0 (mod p), there exists b ∈ Z such that

ab ≡ 1 (mod p). In this case all non-zero elements of Zp have multiplicative inverses,

and hence Zp is a field.

For a treatment of groups, fields and modular arithmetic, the reader may con-

sult [42].

Graphs. A graph G is a tuple (V,E), denoting a vertex set V , which is either count-

able or finite (often identified as a subset of N), and edge set E ⊆ {{x, y} : x ∈ V, y ∈ V },

i.e. a subset of pairs of vertices. A directed graph G is tuple (V,E), where V again

denotes vertices, and where E ⊆ V 2, i.e. are ordered pairs of vertices (so (v, w)

and (w, v) are distinct for distinct v, w ∈ V ). A graph H = (V1, E1) is a sub-

graph of a graph G = (V,E) if V1 ⊆ V and E1 ⊆ E. H is an induced subgraph

on G if E1 = E ∩ {{v, w} : v, w ∈ V1} (i.e. all edges on the vertices of V1 in G are

present). We analogously define the subgraph and induced subgraph relations for

directed graphs. Lastly, for a directed graph H = (V1, E1) and the (undirected)

graph G = (V,E), we say that H is a directed subgraph of G if V1 ⊆ V and

E ′1 = {{v, w} : (v, w) ∈ E1 or (w, v) ∈ E1} ⊆ E (i.e. the undirected “version” of H is

a subgraph of G).

For a (directed) graph G = (V,E), the vertices v and w are adjacent, which

we write v ∼ w, if ((v, w)) {v, w} ∈ E. An ordered list of distinct vertices P =

(v1, . . . , vk) in a (directed) graph G is a (directed) path if vi ∼ vi+1 for i ∈ [k − 1].

An ordered list C = (v1, . . . , vk, v1), where each vi are distinct and k ≥ 2, is a cycle

if vi ∼ vi+1 for i ∈ [k − 1] and vk ∼ v1. A graph G is connected if for all v, w ∈ V ,

there is a path starting at v and ending at w. G is disconnected if G is not connected.
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A connected component of a graph G, is a connected induced subgraph of G that is

vertex maximal (i.e. adding any additional vertex would make it disconnected).

For a graph G = (V,E), and vertex v ∈ V , we denote the edges incident to v as

E(v) = {{v, w} : w ∈ V, {v, w} ∈ E}. For a directed graph G = (V,E), and vertex

v ∈ V , we denote the in-edges at v as E−(v) = {(w, v) : w ∈ V, (w, v) ∈ E} and the

out-edges at v as E+ = {(v, w) : w ∈ V, (v, w) ∈ E}. We say that v ∈ V is a sink, if

|E+(v)| = 0.

A graph G is a forest if G is acyclic (i.e. G contains no cycles). G is a tree if G

is both acyclic and connected. A directed graph G is a directed rooted forest if the

underlying undirected graph (i.e. forced all edges to be undirected) is a forest and

each connected component contains a unique sink vertex. Under this definition, note

that every vertex v ∈ V must have |E+(v)| ≤ 1. Furthermore, from every v ∈ V

there exists a unique path along out-edges leading to a sink vertex of G. Lastly, G is

a directed rooted tree if the underlying undirected graph is a tree and G has a unique

sink vertex.

For a treatment of graphs and their properties, the reader may consult [39].

2.1.1 Linear Spaces

For a thorough treatment of linear spaces and their properties, the reader may con-

sult [121, 54].

W ⊆ Rn is a linear subspace if for x,y ∈ W and a, b ∈ R, ax + by ∈ W . An affine

subspace T ⊆ Rn is set of the form W + x, where W ⊆ Rn is a linear subspace and

x ∈ Rn.

Vectors b1, . . . ,bk ∈ Rn are linearly independent if
∑k

i=1 aibi = 0 ⇔ a1 = · · · =

ak = 0. b1, . . . ,bk form a basis for a linear subspace W ⊆ Rn, if they are linear

independent and Rb1 + · · · + Rbk = W . From basic linear algebra, we have that

every linear subspace W admits a basis, and every basis of W is composed of the
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same number of vectors. We define dim(W ), the dimension of the subspace W , as

the number of vectors in any basis of W . For an affine space T = W + x, we define

dim(T ) = dim(W ). An affine space T ⊆ Rn is a hyperplane if dim(T ) = n− 1.

Let A ⊆ Rn. We denote span(A) the linear span of A, i.e. the smallest linear sub-

space containing A, and aff(A) the affine hull of A, i.e. the smallest affine subspace

containing A. We define dim(A) = dim(aff(A)).

Matrices. We let Rn×m, integers n,m ≥ 1, denote the set of matrices with n rows

and m columns with entries in R. For A ∈ Rn×m, we write (A)ij for the ijth entry of

A. In this notation we identify Rn above with Rn×1, i.e. column vectors with n rows.

Furthermore for x ∈ Rn, we write (x)i (or xi when their is no confusion with other

subscripts) for the ith entry of x. We write A = (a1, . . . , am) ∈ Rn×m, to denote the

n×m matrix whose ith column is ai ∈ Rn, 1 ≤ i ≤ m.

We denote e1, . . . , en ∈ Rn, the standard unit vectors, which satisfy (ei)j = 1 if i = j

and 0 otherwise, for i, j ∈ [n].

We define AT ∈ Rm×n, the transpose of A, by relation (AT )ij = (A)ji. For A ∈ Rn×m

and B ∈ Rm×p, we define the matrix product AB ∈ Rn×p by the relation

(AB)ij =
m∑
l=1

(A)il(B)lj for i ∈ [n], j ∈ [p].

For S ⊆ Rm, we define the image of S under A as A(S) = {Ax : x ∈ S} (we also

write AS when there is no confusion). We define the kernel of the matrix A by

kern(A) = {x ∈ Rm : Ax = 0}.

Define In ∈ Rn×n, the n × n identity matrix by the rule (In)ij = 1 if i = j and 0

otherwise. For A ∈ Rn×n, we define A−1 the inverse of A (when it exists) to be the

matrix satisfying A−1A = AA−1 = In. We say that A is invertible (or non-singular) if

A−1 exists. A matrix A ∈ Rn×n is orthogonal if AT = A−1, i.e. ATA = In. We define

the trace of A by tr(A) =
∑n

i=1(A)ii. For the trace operator, we have the relation

tr(AB) = tr(BA) for matrices A,B ∈ Rn×n.
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A map T : V → W , where V ⊆ Rn and W ⊆ Rm are linear subspaces, is a

linear transformation (or linear map) if T (ax + by) = aT (x) + bT (y) for a, b ∈ R and

x,y ∈ W . Given bases v1, . . . ,vk and w1, . . . ,wl for V and W respectively, we can

associate a matrix to A ∈ Rl×k to the transformation T by the relation

Tvi =
l∑

j=1

(A)jiwj for i ∈ [k].

Given v ∈ V , letting a ∈ Rk denote the unique vector satisfying v = (v1, . . . ,vk)a,

we recover T (v) as follows:

T (v) = (w1, . . . ,wl)Aa.

Hence, after choosing a basis, linear transformations can be expressed via appropriate

matrix multiplications.

Norms. A function p : Rn → R+ defines a norm on Rn if ∀ x,y ∈ Rn, and t ∈ R+,

we have that

(1) p(x + y) ≤ p(x) + p(y) (triangle inequality)

(2) p(tx) = tp(x) (positive homegeneity)

(3) p(x) = p(−x) (symmetry)

(4) p(x) = 0⇔ x = 0 (non-degeneracy)

If p satisfies all the above condition except symmetry, we call p an asymmetric

norm. When we refer to general norms, we include both symmetric and asymmetric

norms. We define the unit ball of the norm p to be Bp = {x ∈ Rn : p(x) ≤ 1}.

Define the `p norms on Rn, p ≥ 1, as ‖x‖p = (
∑n

i=1 |xi|p)
1
p . That ‖ · ‖p, p ≥ 1,

defines a norm on Rn is classical fact from analysis. For convenience we generally write

‖x‖ for ‖x‖2, i.e. the standard euclidean norm. We note that ‖x‖∞ = maxi∈[n] |xi|.
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Let Bn
p = {x ∈ Rn : ‖x‖p ≤ 1}, p ≥ 1, denote the `p ball in Rn. Here Bn

p is the

unit ball of the norm ‖ · ‖p. We note that Bn
∞ = [−1, 1]n and Bn

2 is the unit euclidean

ball in Rn.

For a matrix A ∈ Rn×m, we denote its operator norm as ‖A‖2 = maxx∈Bn2 ‖Ax‖2,

and its Frobenius norms as ‖A‖F =
√∑

ij(A)2
ij.

Determinant. We define determinant det : Rn×n → R as the unique function on

n× n matrices satisfying:

(1) Multilinearity: For a1, . . . , an,x ∈ Rn, s, t ∈ R and 1 ≤ i ≤ n,

det(a1, . . . , sai+tx, . . . , an) = s det(a1, . . . , an)+t det(a1, . . . , ai−1,x, ai+1, . . . , an).

(2) Anti-symmetry: For a1, . . . , an ∈ Rn, ai = aj for any i 6= j implies that

det(a1, . . . , an) = 0.

(3) Normalization: det(In) = 1.

From elementary linear algebra, for A ∈ Rn×n we have that det(A) 6= 0 iff A is non-

singular. Furthermore, for A,B ∈ Rn×n, we have that det(AB) = det(A) det(B) and

det(A) = det(AT ).

Positive Semi-Definite Matrices. A matrix A ∈ Rn×n is symmetric is AT = A.

A is positive (semi-)definite, which we write A �(�) 0, if A is symmetric and ∀ x ∈

Rn \ {0}, xTAx >(≥) 0. We note that relation � (�) yields a partial ordering on

the space of symmetric matrices, i.e. for A,B ∈ Rn×n symmetric, A � (�)B ⇔

(A − B) � (�)0. Furthemore, the ordering is stable under the following operation,

if B ∈ Rn×n and A � 0 then BTAB � 0. Furthemore if B is non-singular then

A �(�)0⇔ BTAB �(�)0. From here, we see that A � 0 if and only if A−1 � 0.

Inner Products. An inner product 〈·, ·〉 : Rn × Rn → R satisfies:
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(1) For x,y ∈ Rn, 〈x,y〉 = 〈y,x〉 (symmetry).

(2) For x,y, z ∈ Rn, a, b ∈ R, 〈ax + by, z〉 = a 〈x, z〉+ b 〈y, z〉 (bilinearity)

(3) For x ∈ Rn, 〈x,x〉 > 0 if x 6= 0 (non-degeneracy)

An inner product 〈·, ·〉 satisfies the Cauchy-Schwarz inequality: 〈x,y〉2 ≤ 〈x,x〉 〈y,y〉

for all x,y ∈ Rn. Furthermore the inequality holds with equality iff x and y are

collinear (i.e. x = ty for some t ∈ R).

An inner-product 〈·, ·〉 induces a matrix A ∈ Rn×n by the relation (A)ij = 〈ei, ej〉.

From here it is easy to verify that 〈x,y〉 = xTAy. Furthermore, 〈·, ·〉 is an inner

product if and only if the induced matrix A is positive definite, i.e. A � 0. Henceforth,

for a matrix A � 0, A ∈ Rn×n, we denote the inner product 〈x,y〉A = xTAy. When

no matrix A is specified, we shall intend A to be the identity, i.e. the standard inner

product 〈x,y〉 = xTy.

We define ‖x‖A =
√
〈x, x〉A =

√
xtAx to be the norm induced by the inner

product 〈·, ·〉A. We refer to ‖ · ‖A as an ellipsoidal norm. That ‖ · ‖A is a norm follows

directly from the Cauchy-Schwarz inequality. We note that the standard `2 norm is

induced by the standard inner product 〈,̇·〉.

Vectors b1, . . . ,bk ∈ Rn are orthorgonal if 〈bi,bj〉 = 0 if i 6= j, and are orthonor-

mal if they additionally satisfy ‖bi‖2 = 1 ∀i ∈ [n].

For a linear subspace W ⊆ Rn, we define its orthogonal complement W⊥ =

{x ∈ Rn : 〈x,y〉 = 0 ∀y ∈ W}. From basic linear algebra, we have that W ∩W⊥ =

{0} and W + W⊥ = Rn.For notional convenience, for a vector x ∈ Rn, we write x⊥

for span(x)⊥.

For a linear subspace W ⊆ Rn, we define the orthogonal projection πW : Rn → W

as the linear transformation defined by the relation πW (x) = x̄ where x̄ ∈ W is the

unique vector satisfying 〈x,y〉 = 〈x̄,y〉 ∀y ∈ W . For an affine subspace T = W + c,

c ∈ Rn, we define the orthogonal projection πT : Rn → T to be the affine map
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x→ πW (x) + t, where t is the unique vector in T ∩W⊥. The orthogonal projection

map can also be rephrased as follows: for an affine subspace T ⊆ Rn, the orthogonal

projection πT corresponds with the map x→ arg miny∈T ‖x− y‖2.

Gram Schmidt Orthogonalization. For vectors linearly independent vectors

b1, . . . ,bk ∈ Rn, we define their gram schmidt orthogonalization (or gram schmidt

vectors) b∗1, . . . ,b
∗
k as follows: b∗1 = b1 and b∗i = bi −

∑i−1
j=1

〈bi,b∗j〉
〈b∗j ,b∗j〉

b∗j . We note

that the vectors b∗1, · · · ,b∗k are orthogonal. Given vectors b1, . . . ,bk we define the

map πi : Rn → span(b1, . . . ,bi−1)⊥, 1 ≤ i ≤ k, as the orthogonal projection map

onto span(b1, . . . ,bi−1)⊥. Under this definition, the gram schmidt vectors satisfy

b∗i = πi(bi) ∀i ∈ [n].

For b1, . . . ,bk ∈ Rn, we define the gram matrix Gram(b1, . . . ,bk) = G ∈ Rk×k

by the relation (G)ij = 〈bi,bj〉. Equivalently, letting B = (b1, . . . ,bk), we have that

G = BTB. It is easy to see that G � 0, and that G � 0 if and only if b1, · · · ,bk

are linearly independent. Furthermore, we have that det(G) =
∏n

i=1 ‖b∗i ‖2
2, where

b∗1, . . . ,b
∗
k are the gram schmidt vectors of b1, . . . ,bk.

Eigen Values. For a matrix A ∈ Cn×n, its eigen values are the roots of the char-

acteristic polynomial det(A − λIn) (univariate polynomial in the variable λ). In

particular, A has an eigen value λ ∈ C if and only if there is an associated eigen vec-

tor v ∈ Cn satisfying Av = λv. We note that det(A− λIn) is a polynomial of degree

n with complex coefficients, and hence by the fundamental theorem of Algebra, has

exactly n complex roots λ1, . . . , λn (counting multiplicities). Furthermore, we have

that det(A) =
∏n

i=1 λi and tr(A) =
∑n

i=1 λi.

If A ∈ Rn×n is symmetric (AT = A), then A admits a basis of real orthonormal

eigen vectors b1, . . . ,bn ∈ Rn with associated real eigen values λ1, . . . , λn ∈ R. Given

such a basis, we can write A =
∑n

i=1 λibib
T
i . Furthermore, A �(�)0 if and only if

λ1, . . . , λn ≥(>)0. Also, if A � 0 there is a unique matrix A
1
2 (the square root of A),
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satisfying A
1
2 � 0 and (A

1
2 )2 = A. In particular, A

1
2 =

∑n
i=1 λ

1
2
i bib

T
i .

2.1.2 Elementary Analysis

For a thorough treatment of the point set topology, continuity and differentiation,

the reader may consult [115, 22].

Point Set Topology. A set S ⊆ Rn is open, if for all x ∈ S there exists ε > 0 such

that x + εBn
2 ⊆ S. S ⊆ Rn is closed if and only if Rn \ S is open. S is bounded if

there exists R <∞ such that S ⊆ RBn
2 . The closure cl(S) of S is the smallest closed

set containing S, and the interior int(S) of S is the largest open set contained in S.

We denote the boundary of S as bd(S) = cl(S) \ int(S) (we also occasionally write

∂S for bd(S)). We say that S is full dimensional if int(S) 6= ∅.

For an affine subspace T ⊆ Rn, we say that S ⊆ T is open with respect to T if

∀x ∈ S there exists ε > 0 such that (x+εBn
2 )∩T ⊆ S. Similarly, S ⊆ T is closed in T

if T \S if open in T . We define the interior of S with respect to T , as the largest open

set in T contained in S, and the closure of S with respect ot T , as the smallest closed

set in T containing S. The boundary of S with respect to T is defined analogously.

For S ⊆ Rn, we define the relative interior relint(S), as the interior of S with

respect to affine subspace aff(S). Similarly, we define the relative boundary relbd(S),

as the boundary of S with respect to the affine subspace aff(S).

For a sequence (xi)
∞
i=1 ⊆ Rn, we write that limi→∞ xi = x ∈ Rn (i.e. x is the

limit of the sequence x1,x2, . . . ), if for all ε > 0, there exists N0 ∈ N, such that for

all i ≥ N0, ‖x − xi‖ ≤ ε. We may also define limits for sequences of functions. Let

f1, f2, . . . denote a countable sequence of functions, where fi : U → V for i ≥ 1,

where U ⊆ Rn and V ⊆ Rm. For f : U → V , we write limi→∞ fi = f , if ∀x ∈ U we

have that limi→∞ fi(x) = f(x).

A set C ⊆ Rn is compact if for any collection U = {Ui : i ≥ 1} of open sets in Rn

such that C ⊆ ∪U∈UU there exists a finite subcollection U ′ ⊆ U , |U ′| <∞ such that
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C ⊆ ∪U∈U ′ . We now state some fundamental equivalences about compacts sets in Rn

which will be useful in the segway.

Theorem 2.1.1. The following statements are equivalent:

(1) C ⊆ Rn is compact.

(2) C ⊆ Rn is closed and bounded.

(3) For any sequence (xi)
∞
i=1 ⊆ C, there exists a subsequence (xsi)

∞
i=1 such that the

limit limi→∞ xsi = x̄ exists and x̄ ∈ C.

Continuity and Differentiation. Let f : U → V be a function from U ⊆ Rn to

V ⊆ Rm. f is continuous at a point x ∈ U , if ∀ε > 0 there exists δ > 0 such that

∀y ∈ U , ‖y−x‖ ≤ δ, we have that ‖f(x)−f(y)‖ ≤ ε. f is continous if for all x ∈ U ,

f is continous at x.

Let f : U → V be function from U ⊆ Rn to V ⊆ Rm, where U, V are open sets.

f is a differentiable at a point x ∈ U , if there exists a matrix Tx ∈ Rn×m such that

∀ε > 0 there exist δ > 0 such that ∀h ∈ Rn, ‖h‖2 ≤ δ, we have that

‖f(x + h)− f(x)− Txh‖
‖h‖

≤ ε

f is differentiable (on S ⊆ U) if ∀x ∈ U (∀x ∈ S), f is differentiable at x. Here it is

easy to verify that if f is differentiable, then it is also continuous. If U, V ⊆ R (i.e. f

is 1 dimensional), then for x ∈ U , we write f ′(x) ∈ R for the differential Tx of f at x.

A function f : R→ R is monotone non-decreasing (non-increasing) if for x, y ∈ R,

x ≤ y, f(x) ≤(≥)f(y). If f is differentiable, then f is monotone non-decreasing

(non-increasing) if and only if ∀x ∈ R, f ′(x) ≥(≤)0.

2.1.3 Probability and Measure

For a detailed expositions on measure theory, integration, and probabilty the reader

may consult the following references [114, 16, 60].
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For a domain Ω, we let 2Ω (the power set of Ω) denote the set of all subsets of Ω.

A ⊆ 2Ω is a σ-algebra on Ω, if A satisfies (1) A 6= ∅, (2) A ∈ A ⇒ Ω \A ∈ A and (3)

A1, A2, · · · ∈ A ⇒ ∪∞i=1Ai ∈ A. A measure µ : A → R̄+ is function satisfying

(1) µ(∅) = 0.

(2) For A1, A2, . . . a countable collection of pairwise disjoint sets:

µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai)

We denote the triple (Ω,A, µ) a measure space. If µ(Ω) = 1, we say that (Ω,A, µ) is

a probability measure. A measure space (Ω,A, µ) is σ-finite if Ω can be expressed as

the union of countably many sets in A of finite measure.

Let (Ω1,A1, µ1), (Ω2,A2, µ2) denote two σ-finite measure spaces. We define the

product measure µ1×µ2 on Ω1×Ω2, as the unique measure defined on the σ-algebra

induced by A1 ×A2 satisfying (µ1 × µ2)(A1 × A2) = µ1(A1)× µ2(A2).

We define the Borel sets in Rn, which we write Bn, as the smallest σ-algebra

containing the open sets in Rn. Let (Ω,A, µ) denote a measure space. A function

f : Ω → Rn is measurable, if f−1(A) ∈ A ∀A ∈ Bn (i.e. the Borel sets). A function

g : Rn → Rm is measurable if g−1(A) ∈ Bn for A ∈ Bm. Here we have that the

composition g ◦ f : Ω→ Rm is also measurable under our definitions. If g : Rn → Rm

is continuous, it is again easy to check that g is measurable. For measurable functions

f, g : Ω→ Rn, the functions f+g, f ·g, and (f, g) (i.e. (f, g)(x) = (f(x), g(x))) are also

measurable. Lastly, for a convergent sequence of measurable functions fi : Ω → Rn,

i ≥ 1, the function f = limi→∞ fi is measurable.

Let voln (n dimensional volume), denote the Lebesgue measure on Rn. Restricted

to Bn, the Lebesgue measure voln is unique translation invariant measure on Rn (i.e.

voln(A + x) = voln(A) for A ∈ Bn, x ∈ Rn) satisfying voln([0, 1]n) = 1. We define a

subset S ⊆ Rn to be measurable if S ∈ Bn (i.e. S is Borel-measurable1). For a matrix

1Technically, from the perspective of Lebesgue measure, we should use the more general class of
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A ∈ Rn×n, we have the important relation voln(AS) = | det(A)|voln(S). In particular,

we note that if A is orthogonal (i.e ATA = In), we have that voln(AS) = voln(S).

Lastly, for a scaling t ≥ 0, this gives that voln(tS) = tnvoln(S) (note that scaling is

equivalent to the action of tIn on S).

We define volk(·) on Rn, k ≤ n, as the normalized k dimensional Hausdorff measure

on Rn. In this thesis, we will only use volk to measure subsets of a k dimensional

affine space H = W + x ⊆ Rn, where W ⊆ Rn is a k dimensional linear subspace

and x ∈ Rn. In this setting volk is easy to understand. Let P = (b1, . . . ,bk) ∈ Rn×k

denote a matrix whose columns form an orthonormal basis of W . Then for S ⊆ H,

we have that volk(S) = volk(P
TS). Since P T maps S to Rk, the second volume is

simply corresponds to the standard k-dimensional Lebesgue measure on Rk.

Integration. Let (Ω,A, µ) be a measure space. For a set A ∈ A, we define 1A :

Ω→ R, the indicator of A, by the relation 1A(x) = 1 if x ∈ A and 0 otherwise.

A function g : Ω→ R+ is simple if g =
∑k

i=1 ai1Ai , where Ai ∈ A and ai ∈ R+ for

i ∈ [k]. We define the Lebesgue integral of g with respect to the measure µ as∫
g(x)dµ(x) =

k∑
i=1

aiµ(Ai)

For a A-measurable function f : Ω→ R+, we define the Lebesgue integral of f as∫
f(x)dµ(x) = sup

{∫
g(x)dµ(x) : g : Ω→ R+ simple and g ≤ f

}
f is µ-integrable if

∫
fdµ < ∞. If f, g : Ω → R+ are µ-integrable then f + g is

µ-integrable and ∫
(f + g)(x)dµ(x) =

∫
f(x)dµ(x) +

∫
g(x)dµ(x)

Let fi : Ω→ R+, i ∈ N, denote a monotonically non-decreasing sequence of functions,

Lebesgue measurable sets. However this generality will not be needed here.
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i.e. fi ≤ fi+1. Then the monotone convergence theorem states that

lim
i→∞

∫
fi(x)dµ(x) =

∫
lim
i→∞

fi(x)dµ(x)

For a A-measurable function f : Ω → R (i.e. f is not necessarily non-negative),

we say that f is µ-integrable if |f | is µ-integrable. Here we define∫
f(x)dµ(x) =

∫
f+(x)dµ(x)−

∫
f−(x)dµ(x),

where f+(x) = max{0, f(x)} and f− = max{0,−f(x)} (both non-negative func-

tions), noting that f(x) = f+(x)− f−(x).

For convenience, for A ∈ A, we write
∫
A
f(x)dµ(x) =

∫
f(x)1A(x)dµ(x). If f is

non-negative, then the function µf (A) =
∫
A
f(x)dµ(x) for A ∈ A defines a measure

on A.

For measurable functions f, g : Ω → R, and a number p ≥ 1, the following is the

Minkowski inequality(∫
|f(x) + g(x)|pdµ(x)

) 1
p

≤
(∫
|f(x)|pdµ(x)

) 1
p

+

(∫
|g(x)|pdµ(x)

) 1
p

Let µ1, µ2 denote measures on the same space Ω and σ-algebra A. We say that

µ2 is absolutely continuous with respect to µ1, if there exists a µ1-integrable function

f : Ω→ R+ such that for all A ∈ A

µ2(A) =

∫
A

f(x)dµ1(x)

Here we refer to f as the density of µ2 with respect to µ1. In this thesis, we will

mainly be interested in measures which are absolutely continuous with respect to the

Lebesgue measure voln in Rn. If a measure µ is absolutely continuous with respect

to the Lebesgue measure, for A ⊆ Rn measurable, we may write

µ(A) =

∫
A

f(x)dvoln(x)

for some measurable f : Rn → R+. For notational convenience we simply write dx

for dvoln(x) when the context is clear, i.e. µ(A) =
∫
A
f(x)dx.
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Take a measurable function f : Ω → Rn, which we write (f1, . . . , fn)T (i.e. a

column vector). Here f is µ-integrable if each fi, i ∈ [n], is µ-integrable, where we

define ∫
f(x)dµ(x) =

(∫
f1(x)dµ(x), . . . ,

∫
fn(x)dµ(x)

)T
Random Variables: Let (Ω,A, µ) denote a probability space (i.e. µ(Ω) = 1). A

random variable is a measurable function X : Ω → Rn. For a measurable A ⊆ Rn,

we denote the probability that X ∈ A as

Pr[X ∈ A] = µ({w ∈ Ω : X(w) ∈ A})

We note that PX(A) = Pr[X ∈ A] defines a probability measure on Rn with σ-

algebra Bn. We call PX the probability distribution of X on Rn. We say that a

random variable X is discrete if it takes on only countably many values, i.e. the set

X(Ω) is countable. If X takes on a continuum of values (e.g. with support on [0, 1]),

we denote X a continuous random variable.

For a measurable function f : Rn → Rm, we denote the expectation of f with

respect to X as

E[f(X)]
def
=

∫
f(X(w))dµ(w) =

∫
f(x)dPX(x)

From the above, we see that to measure properties of the random variable X, the

probability distribution PX contains all the required information.

Given another random variable Y : Ω→ Rn, we note that (X, Y ) ∈ Rn×2 is again

a random variable (by measurability of (X, Y )). For measurable A ⊆ Rn×2, we denote

the joint probability distribution of (X, Y ) by

Pr[(X, Y ) ∈ A]
def
= µ({w : (X(w), Y (w)) ∈ A})

The random variables X and Y are independent if for all A,B ⊆ Rn measurable

Pr[X ∈ A, Y ∈ B] = Pr[X ∈ A] Pr[Y ∈ B].
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Let PX ,PY denote probability distributions of X, Y . By the independence assumption

on X and Y , we note that the joint probability distribution of (X, Y ) is exactly

the product measure PX × PY (by uniqueness of the product measure). Hence for

independent random variables, all the requisite information for the joint distribution

is contained in the individual probability measures. Therefore we may define the joint

distributions of such variables without reference to the ambient probability space.

In this thesis, we will often need to examine the distributions of sums of indepen-

dent random variables. In particular, for X and Y independent random variables as

above, we have that for A ⊆ Rn measurable the distribution of X + Y satisfies

Pr[X + Y ∈ A] =

∫
1A[x + y]d(PX × PY )(x,y) =

∫ ∫
1A[x + y]dPX(x)dPY (y)

Here the probability distribution of X + Y is known as the convolution of PX and

PY , which we write PX ∗ PY . If the probability distributions PX ,PY are absolutely

continuous with respect to the Lebesgue measure then so is PX ∗PY . Furthermore, if

PX ,PY have associated densities f, g : Rn → R+ then the density of PX ∗ PY is

(f ∗ g)(x) =

∫
f(x− y)g(y)dy,

i.e. the convolution of f and g.

Let σ1, σ2 denote two probability measures on a domain Ω with σ-algebra A. We

define their total variation (or statistical) distance as

dTV(σ1, σ2) = sup
A∈A
|σ1(A)− σ2(A)|.

Gaussian Random Variables. For a measurable subset A ⊆ Rn, we define the n

dimensional Gaussian measure of A (parameterized by s > 0) as

γn,s(A) =
1

sn

∫
A

e−π‖
x
s
‖22dx.

From classical probability, γn,s is a probability measure, i.e. γn,s(Rn) = 1. Note that

Gaussian measure is absolutely continuous with respect to the Lebesgue measure and
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has density s−ne−π‖
x
s
‖22 . We define the canonical (or standard) Gaussian measure on

Rn to be γn
def
= γn,

√
2π.

Define the Gaussian probability distribution on Rn with parameter s > 0, center

c ∈ Rn, as

Dn,s,c(A) = γn,s(A− c) for A ⊆ Rn measurable.

Here we define Dn,s
def
=Dn,s,0. When the context is clear, we drop the n in the notation,

and write Ds and Ds,c for Dn,s and Dn,s,c

We say that X ∈ Rn is a Gaussian random vector with distribution Dn,s,c if

Pr[X ∈ A] = Dn,s,c(A), for all A ⊆ Rn measurable. From classical probability, we

have that E[X] = c and that for v ∈ Rn, E[〈X − c,v〉2] = ‖v‖2( s√
2π

)2. We say that

X ∈ Rn is standard Gaussian if it has distribution Dn,
√

2π. For X ∈ Rn standard

Gaussian, ∀v ∈ Rn, we have that E[〈X,v〉2] = ‖v‖2
2, or equivalenty E[XXT ] = In.

Furthermore, we see that E[‖X‖2
2] =

∑n
i=1 E[X2

i ] = n.

If X ∈ Rn is a Gaussian random vector with distribution Dn,s1,c1 , then the scaling

tX, t > 0, is distributed as Dn,ts1,tc1 . If Y ∈ Rn is a Gaussian random vector

independent from X with distribution Dn,s2,c2 , then the sum X+Y is again Gaussian

and is distributed as D
n,
√
s21+s22,c1+c2

.

2.2 Convexity

For detailed exposition of convex analysis, the structure of convex sets, and polyhedral

theory, the reader may consult [110, 117, 120].

Convex Sets. A set K ⊆ Rn is convex if for all x,y ∈ K, the line segment [x,y] ∈

K. K ⊆ Rn is a convex body if K is convex, compact and full-dimensional. K is

0-centered if 0 ∈ int(K). K is centrally symmetric if K = −K.

We state the following simple lemma, which will be useful in the segway.

Lemma 2.2.1.

25



(1) K ⊆ Rn is a convex set if and only if ∀a, b ≥ 0, aK + bK = (a+ b)K.

(2) If K ⊆ Rn is a convex set with 0 ∈ K, then for all 0 ≤ t ≤ s, tK ⊆ sK.

(3) If K ⊆ Rn is a symmetric convex body, then K is a 0-centered convex body.

Separation. A halfspace is a subset of Rn defined by a single linear inequality. For

v ∈ Rn, a ∈ R, we define the halfspace H
≤(≥)
v,a = {x : 〈v,x〉 ≤(≥)a}. For v 6= 0, we

define the hyperplane Hv,a = {x : 〈v,x〉 = a}, where we note that Hv,a = ∂H
≤(≥)
v,a .

Henceforth, we shall write H to denote a generic hyperplane and H≤ for a generic

halfspace.

One of the most important concepts in convexity is that of a separator. Given

two convex sets K,C ⊆ Rn, we say that a hyperplane H separates K and C, if

∀x ∈ K,y ∈ C, the line [x,y] ∩ H 6= ∅ and K ∪ C ( H. Furthermore, we say that

H strictly separates K and C (or H is a strict separator) if K ∩ H = C ∩ H = ∅.

Similarly, we say that a halfspace H≤ separates (strictly) separates K and C if the

hyperplane ∂H≤ (strictly) separates K and H.

The first fundamental theorem in convexity states that disjoint convex sets can

always be separated:

Theorem 2.2.2 (Separator Theorem). Let K,C ⊆ Rn denote non-empty convex sets.

Then the following holds:

(1) If relint(K) ∩ relint(C) = ∅, there exists a hyperplane H separating K and C.

(2) If K ∩C = ∅, K is compact and C is closed, there exists a hyperplane H which

strictly separates K and C.

From the separator theorem, we immediately get the following corollary, which

tells us a first structural characterization of convex sets:

Theorem 2.2.3. K ⊆ Rn is a closed convex set if and only if K can be expressed as

an intersection of halfspaces (possibly infinite).
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A fundamental class of convex sets is the class of polyhedra: the class of bodies

which can be defined as a finite intersection of halfspaces. More precisely, P ⊆ Rn is

a polyhedron if P can be written as {x ∈ Rn : Ax ≤ b} where A ∈ Rm×n and b ∈ Rm

(for vectors, a ≤ b if ai ≤ bi for all i). The following fundamental result, known as

Farkas Lemma, tells us precisely when a linear inequality is valid for a polyhedron:

Lemma 2.2.4 (Farkas Lemma). Let P = {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n,

b ∈ Rm. Then for v ∈ Rn, a ∈ R, we have that

P ⊆ H≤v,a ⇔ ∃ y ∈ Rm
+ such that ATy = v and 〈y,b〉 ≤ a.

Faces. Let K ⊆ Rn denote a convex set. We say that F ⊆ K is a face of K if for

every line segment [x, y] ⊆ K, [x, y]∩F 6= ∅ ⇒ [x, y] ⊆ F . A face F of K is proper if

F 6= K. A facet F ⊆ K is d−1 dimensional face of K, where d = dim(K). A extreme

point (or vertex) of K is a 0-dimensional face of K. We denote the set of extreme

points of K as ext(K). We say that a hyperplane H is a supporting hyperplane of

K, if H ∩K is a non-empty face of K. Similarly, H≤ is a supporting halfspace of (or

bounds a face of) K if K ⊆ H≤ and K ∩ ∂H≤ is a non-empty face of K. A halfspace

H≤ is facet defining for K is K ∩∂H≤ is a facet of K. A face F ⊆ K is supported by

a (halfspace) hyperplane (H≤) H, if (H≤) H is a supporting (halfspace) hyperplane

for K and F ⊆ (H≤)H. Furthemore, F is an exposed face if there exists a hyperplane

H such that H ∩ K = F . If K is a polyhedron, then one can show that all of K’s

faces are exposed.

Lastly, we note that Theorem 2.2.3 can be strengthened by saying that a closed

convex set K is the intersection of its supporting halfspaces. Furthermore for a full

dimensional polyhedron P , this can strengthened further by saying that P is the

intersection of all its facet defining halfspaces.
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Algebra of Convex Sets. We give some constructions of convex sets and their

properties. Let K,C ⊆ Rn be convex sets. Then the sets K ∩ C, K − C and K + C

are all convex. For linear transformations T1 : Rn → Rm and T2 : Rm → Rn, the

image T1(K) and inverse image T−1
2 (K) are convex. For a subset A ⊆ Rn, define the

convex hull conv(A) as the smallest convex set (by inclusion) containing A. For K

and C as before, we have that conv{K,C} def
= conv{K ∪ C} =

⋃
0≤λ≤1 λK+ (1−λ)C.

A fundamental construct in convex analysis is the polar of a convex set. Let K

be a closed convex set such that 0 ∈ K. We define the polar of K∗ as

K∗ = {y ∈ span(K) : ∀x ∈ K, 〈x,y〉 ≤ 1}

Here note that K∗ is convex and that 0 ∈ K∗. A fundamental theorem in convex

analysis (which follows from the separator theorem) is that (K∗)∗ = K. Furthermore,

for a linear subspace W ⊆ Rn, we have the relation (K ∩W )∗ = πW (K∗).

Functions over Convex Sets. A function f : K → R̄+ is convex, if the domain

K of f is a convex set, and ∀x,y ∈ K, and α ∈ [0, 1], f satisfies

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) (2.2.1)

From the definition, one can check that the level sets of f , i.e. {x ∈ K : f(x) ≤ a}

for a ∈ Rn, are all convex. Note that if f, g : K → R̄ are convex functions, then f + g

and max{f, g} are also convex. Lastly, we say that a function f : K → R is concave

if −f is convex.

A subgradient v ∈ Rn of f at x ∈ K, written v ∈ ∂f(x), is a vector satisfying

f(z) ≥ f(x) + 〈v, z− x〉 ∀z ∈ K

A classical fact from convex analysis is that a convex function admits subgradients

at all points in its domain.
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Let X : Ω → K be a random variable, and let f : K → R be a convex function.

A fundamental inequality we shall uses is Jensen’s inequality, which states that

f(E[X]) ≤ E[f(X)] (2.2.2)

Implicit in the above inequality is that the vector E[X] ∈ K. This follows by convexity

of K and the fact that E[X] is an average of points in K.

We define the support function of a convex set K ⊆ Rn by

hK(v) = sup
x∈K
〈v,x〉 , for v ∈ Rn.

Since hK is the supremum of linear functions (which are convex), we get that hK :

Rn → R̄+ is a convex function.

We define widthK , the width functional of K by

widthK(y) = sup
x∈K
〈y,x〉 − inf

x∈K
〈y,x〉 = hK(y) + hK(−y).

If K is a convex body, then widthK : Rn → R+ in fact defines a norm on Rn. We will

use this in the segway.

Let K ⊆ Rn be convex set. We define the gauge function, or Minkowski functional,

‖ · ‖K of K by ‖x‖K = inf{s ≥ 0 : x ∈ sK}, x ∈ Rn.

Let C1, C2, K ⊆ Rn be convex sets satisfying the containment relation C1 ⊆ K ⊆

C2. Then by the definition of the gauge function, it is easy to see that for x ∈ Rn,

‖x‖C2 ≤ ‖x‖K ≤ ‖x‖C1 . Furthermore, If for 0 < a ≤ b, we have that containment

relations aC1 ⊆ K ⊆ bC1, then for all x ∈ Rn, we have that 1
b
‖x‖C1 ≤ ‖x‖K 1

a
‖x‖C1 .

The next lemma shows that convex bodies are in a sense equivalent to norms.

This fact will used continuously throughout the thesis.

Lemma 2.2.5. Take S ⊆ Rn. Then the following holds:

(1) ‖ · ‖S is an asymmetric norm satisfying S = {x : ‖x‖S ≤ 1} if and only if S is

a 0-centered convex body.
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(2) ‖ · ‖S is an symmetric norm satisfying S = {x : ‖x‖S ≤ 1} if and only if S is a

symmetric convex body.

The last lemma of this section establishes certain dualities between the support

function and gauge function of a convex body.

Lemma 2.2.6. Let K ⊆ Rn be 0-centered convex body. Then the following holds:

(1) For x,y ∈ Rn, we have that 〈x,y〉 ≤ ‖x‖K‖y‖K∗.

(2) For v ∈ Rn, ‖x‖K = inf{s ≥ 0 : x ∈ sK} = sup
z∈K∗

〈x, z〉 = hK∗(x).

Furthermore, for a linear subspace W ⊆ Rn,

‖x‖πW (K) = inf
z∈W⊥

‖x + z‖K = sup
z∈K∗∩W

〈x, z〉 = hK∗∩W (x)

2.3 Convex Geometry

For a treatment of the fundamental results in Convex Geometry, the reader may

consult [117, 9, 53].

Definition 2.3.1 (Distances Measures for Convex Bodies). For convex bodies K,C ⊆

Rn we define their geometric distance as

d(K,C) = inf{ b
a

: a, b > 0,x ∈ K,y ∈ C, a(K − x) ⊆ c− y ⊆ b(K − x)}

We define their Banach-Mazur distance as

dBM(K,C) = inf{s : x ∈ K, y ∈ C, T : Rn → Rn non-singular linear transformation ,

T (K − x) ⊆ C − y ⊆ sT (K − x)}

A fundamental theorem in Convex Geometry is John’s theorem, which bounds

the distance of any convex body the euclidean ball.

Theorem 2.3.2 (John’s Theorem). If K ⊆ Rn is a convex body, then dBM(K,Bn
2 ) ≤

n. Furthermore, if K is centrally symmetric then dBM(K,Bn
2 ) ≤

√
n.
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From the measure theoretic perspective, the first fundamental inequality is the

Brunn-Minkowski inequality, which shows the volume is in a sense concave.

Theorem 2.3.3 (Brunn Minkowski). Let A,B ⊆ Rn be non-empty compact sets.

Then

voln(A)
1
n + voln(B)

1
n ≤ vol(A+B)

1
n

2.3.1 Logconcave Functions and Convex Bodies

A very useful concept in convex geometry is that of the logconcave function, which in

a sense generalizes both convex functions and convex bodies. A function f : Rn → R+

is logconcave if for all x,y ∈ Rn, and 0 ≤ α ≤ 1, we have that

f(αx + (1− α)y) ≥ f(x)αf(y)1−α

Equivalently, f is logconcave if and only if log f is concave. Some examples of logcon-

cave functions are indicator functions of convex bodies, the gaussian density function,

concave functions, and much more.

For a logconcave function f on Rn such that 0 <
∫
Rn f(x) dx <∞, we define the

associated probability measure (distribution) πf , where for measurable A ⊆ Rn, we

have

πf (A) =

∫
A
f(x) dx∫

Rn f(x) dx
.

We define the centroid (or barycenter) and covariance matrix of f as

b(f) =

∫
Rn xf(x)dx∫
Rn f(x) dx

cov(f)ij =

∫
Rn(xi − b(f)i)(xj − b(f)j)f(x) dx∫

Rn f(x) dx
1 ≤ i, j ≤ n

The matrix cov(f) is positive semi-definite and symmetric. We say that f is

isotropic, or in isotropic position, if b(f) = 0 and cov(f) is the identity matrix.

Define the inertial ellipsoid of f as

Ef = E(cov(f)−1) = {x : xt cov(f)−1x ≤ 1}
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The isotropic constant of f is defined as

Lf =

(
sup
x∈Rn

f(x)∫
Rn f(x)dx

) 1
n

· det(cov(f))
1
2n .

For a convex body K, let πK denote the uniform measure (distribution) over K. Let

fK denote the associated density, i.e.,

fK(x) =
1

voln(K)
I[x ∈ K],

We extend all the above notions to convex bodies by defining cov(K)
def
= cov(fK),

b(K)
def
= b(fK), LK

def
= LfK , etc. We say that K is in isotropic position if b(K) = 0

and cov(K) is the identity (a different normalization is sometimes used in asymptotic

convex geometry, namely, b(K) = 0, voln(K) = 1, and cov(K) is constant diagonal).

A major open conjecture in convex geometry is the following:

Conjecture 2.3.4 (Slicing Conjecture [20]). There exists an absolute constant C > 0,

such that LK ≤ C for all n ≥ 1 for any convex body K ⊆ Rn.

The original bound computed by Bourgain [20] was LK ≤ Cn1/4 log n, C > 0 an

absolute constant. This has since been improved by Klartag [78] to LK = Cn1/4,

C > 0 an absolute constant. In addition, the conjecture has been verified for many

classes of bodies such as 1-unconditional bodies, zonoids, duals of zonoids, etc. We

note that associated conjecture for logconcave functions (i.e. Lf ≤ C for a logconcave

function) is equivalent to the slicing conjecture up to a universal constant [8].

2.3.2 Geometric Inequalities

The following gives bounds on how well the inertial ellipsoid approximates a convex

body. The estimates below are from [68]:

Theorem 2.3.5. For a convex body K ⊆ Rn, the inertial ellipsoid EK satisfies√
n+ 2

n
· EK ⊆ K − b(K) ⊆

√
n(n+ 2) · EK
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The above containment relationship was shown in [94] for centrally symmetric

bodies (with better bounds), and by [124] for general bodies with suboptimal con-

stants.

The next theorem gives estimates on the volume product, a fundamental quan-

tity in Convex Geometry. The upper bound for centrally symmetric bodies follows

from the work of Blashke [17], and for general bodies by Santaló [116]. The lower

bound was first established by Bourgain and Milman [21], and was recently refined by

Kuperberg [79], as well as by Nazarov [98], where Kuperberg achieves the best con-

stants. Finding the exact minimizer of the volume product is a major open problem

in Convex Geometry.

Theorem 2.3.6. Let K be a convex body in Rn. Then we have

voln(Bn
2 )2 ≥ inf

x∈K
voln(K − x)voln((K − x)∗) ≥

(
πe(1 + o(1))

2n

)n
.

If K is centrally symmetric, then

voln(Bn
2 )2 ≥ voln(K)voln(K∗) ≥

(
πe(1 + o(1))

n

)n
.

In both cases, the upper bounds are equalities if and only if K is an ellipsoid.

We remark that the upper and lower bounds match within a 4n factor (2n for

symmetric bodies) since voln(Bn
2 )2 =

(
2πe(1+o(1))

n

)n
.

The next theorem gives useful volume estimates for some basic operations on a

convex body. The first estimate is due to Rogers and Shepard [111], and the second

is due Milman and Pajor [95]:

Theorem 2.3.7. Let K ⊆ Rn be a convex body. Then

voln(K −K) ≤
(

2n

n

)
voln(K) ≤ 4nvoln(K).

If b(K) = 0, i.e., the centroid of K is at the origin, then

voln(K) ≤ 2nvoln(K ∩ −K).
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Definition 2.3.8 (Covering Numbers). For convex bodies K,T ⊆ Rn, we define

N(K,T ) = min{|Λ| : Λ ⊆ Rn, K ⊆ Λ + T},

to be the minimum number of translates of T needed to cover K.

We relate some well-known covering estimates.

Lemma 2.3.9. Let K,T ⊆ Rn be convex bodies. Then

N(K,T ) ≤ 6n inf
c∈Rn

voln(K)

voln(K ∩ (T + c))
and

voln(K + T )

voln(T )
≤ 2nN(K,T ).

If T is centrally symmetric, then

N(K,T ) ≤ voln(K + T/2)

voln(T/2)
.

If K ∩ T are centrally symmetric, then

N(K,T ) ≤ 3n
voln(K)

voln(K ∩ T )
.

Proof. Let us first examine the case where T is centrally symmetric, where we wish

to show that

N(K,T ) ≤ voln(K + T/2)

voln(T/2)
(2.3.1)

Let Λ ⊆ K be a maximal subset of K such that for x1,x2 ∈ Λ, x1 6= x2, x1 + T/2 ∩

x2 + T/2 = ∅.

Claim 1: K ⊆ ∪x∈Λ x + T .

Take y ∈ K. By maximality of Λ, there exists x ∈ Λ such that

y + T/2 ∩ x + T/2 6= ∅ ⇒ y ∈ x + T/2− T/2 ⇒ y ∈ x + T

where the last equality follows since T is centrally symmetric. The claim thus follows.
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Claim 2: |Λ| ≤ voln(K + T/2)

voln(T/2)
.

For x ∈ Λ, note that since x ∈ K, we have that x + T/2 ⊆ K + T/2. Therefore

Λ + T/2 ⊆ K. Since the sets x + T/2, x ∈ Λ, are disjoint, we have that

voln(K + T/2) ≥ voln(Λ + T/2) = |Λ|voln(T/2) (2.3.2)

as needed.

If K ∩ T is centrally symmetric, then by the estimate in (2.3.1) we get that

N(K,T ) ≤ N(K,T ∩K) ≤
voln(K + 1

2
(T ∩K))

voln(1
2
(T ∩K))

≤
voln(3

2
K)

voln(1
2
(T ∩K))

= 3n
voln(K)

voln(T ∩K)

(2.3.3)

as needed.

Now we examine the case where neither K nor T is necessarily symmetric. Since

the covering estimate is shift invariant, we may assume thatK and T have been shifted

such that voln(K ∩ T ) is maximized, and that the centroid of K ∩ T is at 0. Let

S = (K ∩T )∩−(K ∩T ). By Theorem 2.3.7 we have that voln(S) ≥ 2−nvoln(K ∩T ).

Note that S is a centrally symmetric convex body. Hence by identical reasoning as

in (2.3.3) we get that

N(K,T ) ≤ 3n
voln(K)

voln(S)
≤ 6n

voln(K)

voln(K ∩ T )

as needed.

Lastly, pick any Λ ⊆ Rn such that K ⊆ Λ + T and |Λ| = N(K,T ). Now we see

that

voln(K +T ) ≤ voln((Λ +T ) +T ) = voln(Λ + 2T ) ≤ |Λ|voln(2T ) = 2nvoln(T )N(K,T )

as needed.

2.4 Lattices

For a thorough exposition on the fundamental properties of lattices, the reader may

consult [25, 59].
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A k-dimensional lattice L ⊂ Rn is a discrete subgroup under addition. It can be

written as

L =

{
k∑
i=1

zibi : zi ∈ Z, i ∈ [k]

}
(2.4.1)

for some (not necessarily unique) basis B = (b1, . . . ,bk) ∈ Rn×k of k ≤ n linearly

independent vectors in Rn. In this thesis, we will interchangeably refer to the matrix

B and its column vectors b1, . . . ,bk as a basis for L.

A matrix U ∈ Rk×k is unimodular if U ∈ Zk×k and U−1 ∈ Zk×k. Equivalently by

Cramer’s rule (the matrix inversion formula), U is unimodular if and only if U ∈ Zk×k

and det(U) = ±1. Two bases B1, B2 ∈ Rn×k generate the same lattice if and only if

B1 = B2U , for a k × k unimodular matrix U .

Let L be k-dimensional lattices generated by B = (b1, . . . ,bk). The determinant

of L is defined as

det(L) =
√

det(Gram(b1, . . . ,bk))
def
=
√

det(BTB). (2.4.2)

The determinant is a lattice invariant, i.e. it does not depend on the choice of basis

for L. To see this, for a unimodular matrix U ∈ Zk×k, note that

det((BU)T (BU)) = det(UTBTBU) = det(UT ) det(BTB) det(U)

= det(U)2 det(BTB) = det(BTB).

Since every basis of L can be be expressed as BU , for some unimodular U , the above

equation proves the claimed invariance.

The dual lattice L∗ of L is defined as

L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}. (2.4.3)

A basis matrix B∗ ∈ Rn×k for the dual lattice (i.e. the columns form a basis of L∗)

can obtained from a basis B of L, by letting B∗ = B(BTB)−1. We note that if L is n

dimensional, i.e. B forms a basis of Rn, then the expression for B∗ simplifies to B−T .
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Two fundamental relations between L and L∗ are that (L∗)∗ = L and that

det(L) det(L∗) = 1.

A linear subspace W ⊆ Rn is a lattice subspace of L if L contains a basis of W ,

or equivalently dim(L ∩W ) = dim(W ). The following lemma, tells us which some

basic operations which preserve lattice structure, and well as some duality relations.

Lemma 2.4.1. Let L denote an n-dimensional lattice. The following holds:

(1) If W is a lattice subspace of L, then L∩W is a lattice and (L∩W )∗ = πW (L∗).

(2) For a linear map T : Rn → W , W ⊆ Rm a linear subspace, TL is a lattice if

and only if Kern(T ) is a lattice subspace of L.

(3) For W ⊆ Rn a linear subspace, then πW (L) is a lattice if and only if W is a

lattice subspace of L∗.

Let L be an n-dimensional lattice. We define a coset of L to be a set of the

form L + x for some x ∈ Rn. We define the equivalence relation x ≡ y (mod L) ⇔

x − y ∈ L. For a set S ⊆ Rn we write S (mod L) to denote set of equivalences

classes represented in S. Here Rn (mod L) corresponds to the set of all cosets of

L. Furthermore Rn (mod L) forms a group under addition. A simple yet important

lemma, tells us the structure of certain subgroups of Rn (mod L).

Lemma 2.4.2. Let L denote an n dimensional lattice, and let m ≥ 1 be an positive

integer. Then the group (L/m (mod L),+) is isomorphic to Znm. In particular,

|L/m (mod L)| = mn.

Let K ⊆ Rn be a convex body. The covering radius of L with respect to K

is µ(K,L) = inf{s ≥ 0 : L+ sK = Rn}. Since Rn + t = Rn for any t ∈ Rn, we

have that µ(K + t,L) = µ(K,L). Furthermore, since L = −L we also have that

µ(−K,L) = µ(K,L).
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Let K ⊆ Rn be a 0-centered convex body. The length of the shortest non-zero

vector (or minimum distance) of L with respect to K is λ1(K,L) = miny∈L\{0}‖y‖K .

For a point x ∈ Rn, we define the distance of x to L with respect to K as

dK(L,x) = infy∈L‖y − x‖K .

We define the ith minimum of L, i ∈ [n], with respect to K

λi(K,L) = inf{r ≥ 0 : dim(span(rK ∩ L)) ≥ i}

For notational simplicity, for the `2 norm we write λi(L) = λi(B
n
2 ,L) and µ(L) =

µ(Bn
2 ,L).

We note that all of the above concepts easily generalize to lower dimensional

lattices.

2.4.1 Packing, Covering and Tiling

Let F ⊆ Rn be measurable set. We define F to be

(1) L-packing if ∀x,y ∈ L, x 6= y, (x + F ) ∩ (y + F ) = ∅

(2) L-covering if L+ F = Rn.

(3) L-tiling (or a fundamental domain for L) if F is both L-packing and L-covering.

We derive the following simple equivalence. F is L-(packing, covering, tiling) if

∀x ∈ Rn, |(L+ x) ∩ F | (≤,≥,=) 1. (2.4.4)

Assume F is L-packing. Take x ∈ Rn. If |(L + x) ∩ F | ≥ 2, then we can pick

distinct w, z ∈ F such that w, z ∈ L + x. Now note that w ∈ F = F + 0 and

w = z + (w − z) ∈ F + (w − z). Therefore (F + 0) ∩ (F + w − z) 6= ∅. But 0

and w − z are distinct points in L, a contradiction to our assumption on F . Hence

|(L+x)∩F | ≤ 1 as needed. Assume F is L-covering. Take x ∈ Rn. Since L+F = Rn,

there exists y ∈ L such that x ∈ y + F . Therefore x− y ∈ F , and since −y ∈ L we
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get that |(L + x) ∩ F | ≥ 1 as needed. The claim for F an L-tiling follows directly

from the previous assertions.

For a A ⊆ Rn, we say that Λ is a tiling of A by F with respect to L, if A ⊆ Λ+F ,

Λ ⊆ L and F is L-tiling.

Lemma 2.4.3. Let B ∈ Rn×n denote a basis for a lattice L. Then F = B[0, 1)n is a

fundamental domain for L and voln(F ) = det(L).

Proof. First, to compute the volume of F , we note that

voln(B[0, 1)n) = | det(B)|voln([0, 1)n) = | det(B)|.

Since det(L) =
√

det(BtB) =
√

det(B)2 = | det(B)|, we get the desired equality for

volume F .

We prove that F is K-packing. Take distinct x,y ∈ L. We wish to show that

x + F ∩ y + F = ∅. Now note that

x + F ∩ y + F 6= ∅ ⇔ x− y /∈ F − F

Now applying B−1 to both sides, we get that B−1(x−y) /∈ [0, 1)n− [0, 1)n = (−1, 1)n.

Since x−y ∈ L\{0}, we have that B−1(x−y) ∈ Zn\{0}. Clearly Zn\{0}∩(−1, 1)n =

∅ as needed.

We now show that F is L-covering. Take x ∈ Rn. Let z = bB−1xc (b·c is

performed component wise) and let w = B−1x − z. Then clearly z ∈ Zn, and

w ∈ [0, 1)n (since x− bxc ∈ [0, 1) for any x ∈ R). But then

x = B(z + w) = Bz +Bw ∈ L+B[0, 1)n = L+ F

as needed.

Lemma 2.4.4. Let F ⊆ Rn be measurable L. Let g : Rn → R+ be a measurable

function. If F is a L-(packing, covering, tiling) we have that∫
F

∑
y∈L

g(y + x)dx (≤,≥,=)

∫
Rn
g(x)dx.
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Furthermore, if F is a L-(packing, covering, tiling) we have that

voln(F ) (≤,≥,=) det(L).

Proof. Since g ≥ 0 and measurable, we have that the function µ(A) =
∫
A
g(x)dx, for

A ⊆ Rn measurable, defines a measure on Rn. Let 1y+F , y ∈ L, denote the indicator

function of y + F . Since y + F is measurable, we get that 1F+y is non-negative

measurable function. Since L is countable, by the monotone convergence theorem we

have that∑
y∈L

µ(y + F ) =
∑
y∈L

∫
Rn

1y+F (x)g(x)dx =
∑
y∈L

∫
Rn

1F (x)g(x + y)dx

=

∫
Rn

∑
y∈L

1F (x)g(x + y)dx =

∫
F

∑
y∈L

g(x + y)dx

If F is L-packing, then collections of sets y + F ⊆ Rn, for y ∈ L, are all disjoint.

Therefore we have that∫
Rn
g(x)dx = µ(Rn) ≥ µ(L+ F ) =

∑
y∈L

µ(y + F ) =

∫
F

∑
y∈L

g(x + y)dx

as needed. If F is L-covering, we have that Rn ⊆ L+ F , and hence

µ(Rn) = µ(L+ F ) ≤
∑
y∈L

µ(y + F ) =

∫
F

∑
y∈L

g(x + y)dx

as needed. If F is L-tiling, we get the desired equality by combining the above two

inequalities.

We now prove the furthermore. Let B ∈ Rn×n denote a basis for L. From Lemma

2.4.3, we know that B[0, 1)n is L-tiling and satisfies voln(B[0, 1)n) = det(L). From

the first part of the lemma, we have that

voln(F ) =

∫
Rn

1F (x)dx =

∫
B[0,1)n

∑
y∈L

1F (x + y)dx =

∫
B[0,1)n

|(L+ x) ∩ F |dx

If F is L-(packing, covering, tiling) we have that ∀x ∈ Rn, |(L+x)∩F | (≤,≥,=) 1.

Therefore if F is L-(packing, covering, tiling) we have that

voln(F ) =

∫
B[0,1)n

|(L+ x) ∩ F |dx (≤,≥,=)

∫
B[0,1)n

1dx = voln(B[0, 1)n) = det(L)

as needed.
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2.4.2 Lattice Inequalities

Perhaps the most fundamental inequality in the geometry of numbers is Minkowski’s

first theorem, which is stated as follows:

Theorem 2.4.5. Let L ⊆ Rn be an n dimensional lattice and let K ⊆ Rn denote a

centrally symmetric convex body. Then

λ1(K,L) ≤ 2

(
det(L)

vol(K)

) 1
n

Proof. Let λ = λ1(K,L). We claim that λ
2
int(K) = {x ∈ Rn : ‖x‖K < λ

2
} is L-

packing. Take distinct x,y ∈ L. Now note that

x +
λ

2
int(K) ∩ y +

λ

2
int(K) 6= ∅ ⇔ x− y ∈ λ

2
int(K)− λ

2
int(K)

⇔ x− y ∈ λint(K) (by symmetry of K)

Since x − y ∈ L \ {0}, we have that ‖x − y‖K ≥ λ. Therefore x − y /∈ λint(K) as

needed. Since λ
2
int(K) is L-packing, by Lemma 2.4.4 we have that

voln

(
λ

2
int(K)

)
≤ det(L)⇔ λ ≤ 2 det(L)

1
n

voln(int(K))
1
n

.

Since voln(int(K)) = voln(K), the theorem follows.

The following lemma describes some classical relations between the different pa-

rameters of a lattice (see [25, 67]).

Lemma 2.4.6. Let K denote an n dimensional convex body, and let L denote an

n-dimensional lattice. Then the following holds:

(1) λn(K −K,L) ≤ µ(K,L) ≤
∑n

i=1 λi(K −K,L).

(2) If K is 0-centered then λn−i(K,L)λi+1(K∗,L∗) ≥ 1, for i ∈ [n].

The following lemma strengthens the upper bound on µ(K,L) above due to Kan-

nan and Lovasz [67].
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Lemma 2.4.7. Let K ⊆ Rn be a convex body, and L be an n-dimensional lattice.

Let b1, . . . ,bn denote linearly independent L, with gram schmidt vectors b∗1, . . . ,b
∗
n.

Then

µ(K,L) ≤
n∑
i=1

‖b∗i ‖πi(K−K).

where πi denotes the orthogonal projection map onto span(b1, . . . ,bi−1). Furthermore,

if b1, . . . ,bn is a basis of L then

λ1(K −K,L) ≥ min
i∈[n]
‖b∗i ‖πi(K−K).

2.5 Computational Complexity

For a thorough treatment of the important concepts in algorithms and computational

complexity, the interested reader may refer to the following references [123, 29].

In the study of algorithms, a first fundamental task is to understanding the running

time of algorithms as the size of the input grows (i.e. asymptotic complexity). Other

resources of interest will be the amount of space used by an algorithm, as well as

amount of randomness used (i.e. number of random bits).

We introduce the big O notation for measuring asymptotic complexity. For func-

tions f, g : N→ N, we define the following asymptotic relations.

(1) f(n) = O(g(n)) if ∃C > 0, N0 ∈ N such that for n ≥ N0, f(n) ≤ Cg(n).

(2) f(n) = Ω(g(n)) if ∃C > 0, N0 ∈ N such that for n ≥ N0, f(n) ≥ Cg(n).

(3) f(n) = Θ(g(n)) if f(n) = O(g(n)) and f = Ω(g(n)).

(4) f(n) = o(g(n)) if ∀C > 0, ∃N0 ∈ N such that for n ≥ N0, f(n) ≤ Cg(n).

Instead of comparing the asymptotics of two functions, we will often want to

compare one function to a class of functions. In computer science, one of the most

important classes is the class poly(n), i.e. the class of polynomials.
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For T : N → N we say that T (n) = poly(n) if ∃k ∈ N such that T (n) = O(xk).

Let ALG be an algorithm which on an input of size n, runs in at most T (n) time, and

uses as most S(n) space. We say that ALG runs in polynomial time if T (n) = poly(n)

and that ALG uses polynomial space if S(n) = poly(n).

In this thesis, we will also be interested in algorithms that run in exponential

time, where we denote this class of running times by the symbol 2O(n). Here, we write

T (n) = 2O(n), if there exists c > 0 such that T (n) = O(2cn). As above, we will say

that ALG runs in exponential time if T (n) = 2O(n), and uses exponential space if

S(n) = 2O(n).

In computational complexity, one of the main algorithmic tasks is deciding mem-

bership in a language L. A language L ⊆ {0, 1}∗ =
⋃∞
n=1{0, 1}n is a collection

(generally infinite) of {0, 1} strings. We say that an algorithm ALG decides L if on

input x ∈ {0, 1}∗, ALG(x) outputs 1 if x ∈ L and outputs 0 otherwise. ALG decides

L in T (n) time if for x ∈ {0, 1}n, ALG(x) runs in time at most T (n). We present

the two most important classes of languages in computational complexity. We define

the class P to be the set of languages which can decided in polynomial time. More

precisely, a language L ∈ P if there exists an algorithm which decides L in polynomial

time. We denote the class NP , to be the class of languages which can be verified in

polynomial time. More precisely, L ∈ NP if there exists a polynomial time verifier

V satisfying the following:

(1) If x ∈ L, there exists y ∈ {0, 1}∗ s.t. V (x,y) = 1.

(2) If x /∈ L, then for all y ∈ {0, 1}∗, V (x,y) = 0.

From the above definitions, it is easy to see that P ⊆ NP , however the class

NP is thought to be significantly larger than P (this is the P 6= NP problem). The

canonical example of an NP language is the language of satisfiable boolean formulas

(e.g. x1 ∨ x2 ∨ x3), which we denote SAT . Starting with a boolean formula, given
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an assignment to the variables one can easily check (i.e. in polynomial time) that

the assignment satisfies the formula, and hence verify that the formula is in SAT .

We therefore see that SAT ∈ NP because the statement x ∈ SAT has a short and

efficiently verifiable “proof” if it is true. The SAT problem is also important due to

its relation to other problems in the class NP . In particular, SAT is understood to

be one of the hardest problems in NP . The reason for this is that the membership

problem for any language L ∈ NP can be reduced in polynomial time to a question

of membership in SAT . Hence we call SAT a complete problem for the class NP .

Many of the computational problems we examine in this thesis will in fact be either

NP-Complete or NP-Hard (i.e. at least as hard as SAT ), and hence some grounding

in complexity theory is useful.

An important class of algorithms we will analyze in this thesis is the class of

randomized algorithms. Randomized algorithms are algorithms which utilize random

bits (i.e. random “coin flips”) during their executions to make decisions. An impor-

tant feature of randomized algorithms is that they may not always succeed at the

given computational task, i.e. they have a probability of failure. For example, when

deciding a language L, given an input x, an algorithm ALG may only correctly decide

whether x ∈ L with 99% probability. We designate this class of randomized algo-

rithms as the class of Monte Carlo algorithms. Another important class of randomized

algorithms is the class of Las Vegas algorithms. A Las Vegas algorithm always guar-

antees that its output is correct, however the amount of computational resources used

by the algorithm is a random variable. Hence for a Las Vegas algorithm, we generally

only give bounds on the expected running time of the algorithm.

2.5.1 Computational Model

The algorithms presented in this thesis generally take in as part of their input a

sequence of vectors or matrices with rational coefficients. Since complexity of the
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algorithms will grow with the size of coefficients in these vectors and matrices, we

will need to formally account for them. To do this, for a rational matrix A ∈ Qm×n

we define enc〈A〉 as the length of the binary encoding of A.

In this thesis, nearly all of our algoriths will need to interact in one way or another

with a convex body or norm. To ensure our algorithms work in the most general

settings, we will only require narrow types of oracle access to the body or norm

in question. We define three different types of oracles that we will need for our

algorithms. For convenience, norms here will always be indexed by their associated

unit balls. With some slight modifications, we adopt the terminology from [56].

Let K ⊆ Rn be a convex body. For ε ≥ 0, we define

Kε = K + εBn
2 and K−ε = {x ∈ K : x + εBn

2 ⊆ K}

We say that K is (a0, R)-circumscribed if K ⊆ a0 + RBn
2 for some a0 ∈ Qn and

R ∈ Q. We say that K is (a0, r, R)-centered if a0 +rBn
2 ⊆ K ⊆ a0 +RBn

2 for a0 ∈ Qn,

r, R ∈ Q. We will always assume that the above parameters are given explicitly as

part of the input to our problems, an hence our algorithms will be allowed to depend

on enc〈a0, r, R〉.

Definition 2.5.1. A weak membership oracle OK for K is function which takes as

input a point x ∈ Qn and real ε > 0, and returns

OK(x, ε) =


1 : x ∈ K−ε

0 : x /∈ Kε

where any answer is acceptable if x ∈ Kε \K−ε.

Definition 2.5.2. A strong separation oracle SEPK for K on input y ∈ Qn either

returns YES if y ∈ K, or some c ∈ Qn such that 〈c,x〉 < 〈c,y〉, ∀x ∈ K.

When working with the above oracle, we assume that there is a polynomial φ,

such that on input y as above, the output of SEPK has size bounded by φ(enc〈y〉).

The runtimes of algorithms using SEPK will therefore depend on φ.
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Let K be a convex body containing the origin in its interior.

Definition 2.5.3. A weak distance oracle DK for K is a function that takes as input

a point x ∈ Qn and ε > 0, and returns a rational number satisfying

|DK(x, ε)− ‖x‖K | ≤ εmin{1, ‖x‖K}.

As above, we assume the existence of a polynomial φ, such that the size of the

output of DK on (x, ε) is bounded by φ(enc〈x, ε〉). For a (0, r, R)-centered body K,

∀x ∈ Rn, we crucially have that

1

R
‖x‖ ≤ ‖x‖K ≤

1

r
‖x‖.

In all the above oracles, we shall assume that dim(K) = n, i.e. dimension of the

ambient body, is encoded in unary in the guarantees of the oracles.

Definition 2.5.4. Let f : K → R be a convex function with domain K ⊆ Rn.

f is equipped with a subgradient oracle, if we have query access to a subgradient

v ∈ ∂f(x), for any x ∈ K.

Oracle Time Complexity. To describe the running times and space requirements

of our algorithms, we define the notion of oracle time and space complexity. We say

that an algorithm runs in oracle T (n) time and S(n) space if it performs at most

T (n) arithmetic operations and calls to the oracle(s), and uses at most S(n) space,

on an input of size n. In our setting, we note that the input size includes the encoding

length of all the oracle guarantees (i.e. inner / outer radius, etc). Since almost all our

algorithms run in the oracle model, when we write that an algorithm runs in T (n)

time and S(n) space we will always mean “oracle” T (n) time and S(n) space.

In this thesis, the complexity classes T (n) and S(n) will generally either denote

the class poly(n) or 2O(n). Since many of the oracles used here return vector valued

data (i.e. distance / separation oracles), we make the assumption that the output
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complexity of the oracles is bounded by some polynomial φ (as mentioned above).

Here we will guarantee that the claimed running times and space requirements are

stable under any fixed choice of φ. Since our algorithms will take many parameters as

input, for notational convenience we often describe their complexity by the expression

poly(·) or 2O(n) poly(·) (here n will generally refer to the ambient dimension), where

by poly(·) we mean polynomial in the length of all input parameters.

2.5.2 Operations on Convex Bodies

Here we summarize important results about the equivalence of certain oracles for a

convex body, as well as how to build oracles for certain operations on a convex body.

These results are explicitly given or easily derived from the results in [56].

Theorem 2.5.5. Let K ⊆ Rn be a (a0, r, R)-centered convex body presented by a

weak membership oracle OK. The following oracles can be implemented from OK in

polynomial time:

(1) A weak membership oracle for (K − a0)∗.

(2) For T ∈ Qm×n, m ≤ n, T full rank, a weak membership oracle for TK.

Theorem 2.5.6. Let K1, K2 ⊆ Rn be centered convex bodies presented by weak mem-

bership oracles OK1 , OK2. The following oracles can be implemented from OK1 and

OK2 in polynomial time:

(1) A weak membership oracle for K1 +K2.

(2) A weak membership oracle for conv{K1, K2}.

(3) Assuming K1 ∩K2 is centered, a weak membership oracle for K1 ∩K2.

Lemma 2.5.7. Let K ⊆ Rn be a (0, r, R)-centered convex body. Then a weak distance

oracle for ‖ · ‖K and a weak membership oracle for K are polynomial time equivalent.
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The following simple lemma allows us to construct a strong separation oracle for

any hyperplane section of a convex body already equipped with a strong separation

oracle.

Lemma 2.5.8. Let K ⊆ Rn be a convex body presented by a strong separation oracle

SEPK. Let H = {x ∈ Rn : Ax = b} denote an affine subspace, where A ∈ Qm×n,

b ∈ Qm. Then one can construct a separation oracle for K ∩H, such that on input

y ∈ H, the oracle executes in polynomial time using a single call to SEPK.

2.5.3 Fundamental Algorithms

Here we list some of the fundamental algorithmic tools we will require.

The following theorem is yields the classical equivalence between weak membership

and weak optimization [127, 56].

Theorem 2.5.9 (Convex Optimization via Ellipsoid Method). Let K ⊆ Rn an

(a0, r, R)-centered convex body given by a weak membership oracle OK. Let f : Rn →

R denote an L-Lipshitz convex function given by an oracle that, for every x ∈ Qn

and δ > 0, returns a rational number t such that |f(x) − t| ≤ δ. Then for ε > 0, a

rational number ω and vector y ∈ K satisfying

ω − ε ≤ min
x∈K

f(x) ≤ f(y) ≤ ω

can be computed using OK in polynomial time.

The following algorithm from [56], allows us to deterministically compute an el-

lipsoid with relatively good “sandwiching” guarantees for a convex body K.

Theorem 2.5.10 (Algorithm GLS-Round). Let K ⊆ Rn be an (a0, R)-circumscribed

convex body given by a strong-separation oracle SEPK. Then for any ε > 0, there is

a polynomial time algorithm to compute A � 0, A ∈ Qn×n and t ∈ Rn, such that the

ellipsoid E = E(A) satisfies K ⊆ E + t, and one of the following: (a) voln(E) ≤ ε,

or (b) 1

(n+1)n
1
2
E + t ⊆ K.
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The next algorithm comes from the literature on random walks on convex bod-

ies [87, 86, 88]. The algorithm allows us to sample from essentially any logconcave

measure on a convex body.

Theorem 2.5.11 (Algorithm Logconcave-Sampler, [86]). Let K ⊆ Rn be a (a0, r, R)-

centered convex body given by a weak membership oracle OK. Let f : K → R+ be a

polynomial time computable log-concave function satisfying

sup
x∈K

f(x) ≤ βnf(0)

for some β > 1. Let ε, τ > 0. Then the following can be computed:

(1) A random point X ∈ K with distribution σ satisfying dTV(σ, πf ) ≤ τ polynomial

time.

(2) A point b ∈ K and a matrix A ∈ Qn×n such that ∀ x ∈ Rn

| 〈x,b− b(f)〉 | ≤ ε xt cov(f)x and |xt(A− cov(f))x| ≤ ε xt cov(f)x,

with probability 1− δ in polynomial time.
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CHAPTER III

ON THE CHVÁTAL-GOMORY CLOSURE OF A

COMPACT CONVEX SET

In this Chapter, we show that the Chvátal-Gomory closure of any compact convex set

is a rational polytope. This resolves an open question of Schrijver [119] for irrational

polytopes1, and generalizes the same result for the case of rational polytopes [119],

rational ellipsoids [38] and strictly convex bodies [30]. This Chapter is based on the

paper [34] (joint with Santanu Dey and Juan Pablo Vielma).

3.1 Introduction

Gomory [55] introduced the Gomory fractional cuts, also known as Chvátal-Gomory

(CG) cuts [28], to design the first finite cutting plane algorithm for Integer Linear

Programming (ILP). Since then, many important classes of facet-defining inequali-

ties for combinatorial optimization problems have been identified as CG cuts. For

example, the classical Blossom inequalities for general Matching [46] - which yield the

integer hull - and Comb inequalities for the Traveling Salesman problem [57, 58] are

both CG cuts over the base linear programming relaxations. CG cuts have also been

effective from a computational perspective; see for example [19, 50]. Although CG

cuts have traditionally been defined with respect to rational polyhedra for ILP, they

straightforwardly generalize to the nonlinear setting and hence can also be used for

convex Integer Nonlinear Programming (INLP), i.e. the class of discrete optimization

problems whose continuous relaxation is a general convex optimization problem. CG

1After the completion of this work, it has been brought to our notice that the polyhedrality
of the Chvátal-Gomory Closure for irrational polytopes has recently been shown independently
by J. Dunkel and A. S. Schulz in [43]. The proof presented in this Chapter has been obtained
independently.
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cuts for non-polyhedral sets were considered implicitly in [28, 119] and more explicitly

in [26, 30, 38]. Let K ⊆ Rn be a closed convex set, and let hK represent its support

function. Given a ∈ Zn, we define the CG cut for K derived from a as the inequality

〈a,x〉 ≤ bhK(a)c . (3.1.1)

The CG closure of K is the convex set whose defining inequalities are exactly all

the CG cuts for K. A classical result of Schrijver [119] is that the CG closure of a

rational polyhedron is a rational polyhedron. Previously, we were able to verify that

the CG closure of any strictly convex body2 intersected with a rational polyhedron

is a rational polyhedron [38, 30]. We remark that the proof requires techniques

significantly different from those described in [119].

While the intersections of strictly convex bodies with rational polyhedra yield a

large and interesting class of bodies, they do not capture many natural examples

that arise in convex INLP. For example, it is not unusual for the feasible region

of a semi-definite or conic-quadratic program [15] to have infinitely many faces of

different dimensions, where additionally a majority of these faces cannot be isolated

by intersecting the feasible region with a rational supporting hyperplane (as is the

case for standard ILP with rational data). Roughly speaking, the main barrier to

progress in the general setting has been a lack of understanding of how CG cuts act

on irrational affine subspaces (affine subspaces whose defining equations cannot be

described with rational data).

As a starting point for this study, perhaps the simplest class of bodies where

current techniques break down are polytopes defined by irrational data. Schrijver

considers these bodies in [119], and in a discussion section at the end of the paper,

he writes 3:

2A full dimensional compact convex set whose only non-trivial faces are vertices. It this Chapter,
we call zero dimensional faces as vertices.

3Theorem 1 in [119] is the result that the CG closure is a polyhedron. P ′ is the notation used
for CG closure in [119]
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“We do not know whether the analogue of Theorem 1 is true in real

spaces. We were able to show only that if P is a bounded polyhedron in

real space, and P ′ has empty intersection with the boundary of P , then

P ′ is a (rational) polyhedron.”

In this Chapter, we prove that the CG closure of any compact convex set4 is

a rational polytope, thus also resolving the question raised in [119]. As seen by

Schrijver [119], most of the “action” in building the CG closure will indeed take place

on the boundary of K. While the proof presented in this Chapter has some high level

similarities to the one in [30], a substantially more careful approach was required

to handle the general facial structure of a compact convex set (potentially infinitely

many faces of all dimensions) and completely new ideas were needed to deal with

faces having irrational affine hulls (including the whole body itself).

This Chapter is organized as follows. In Section 3.2 we introduce some notation,

formally state our main result and give an overview of the proof. We then proceed

with the full proof which is presented in Sections 3.3–3.5.

3.2 Definitions, Main Result and Proof Idea

Definition 3.2.1 (CG Closure). For a convex setK ⊆ Rn and S ⊆ Zn let CG(K,S) :=⋂
y∈S{x ∈ Rn : 〈x,y〉 ≤ bhK(y)c}. The CG closure of K is defined to be the set

CG(K) := CG(K,Zn).

The following theorem is the main result of the Chapter.

Theorem 3.2.2. If K ⊆ Rn is a non-empty compact convex set, then CG(K) is

finitely generated. That is, there exists S ⊆ Zn such that |S| < ∞ and CG(K) =

CG(K,S). In particular CG(K) is a rational polyhedron.

4If the convex hull of integer points in a convex set is not polyhedral, then the CG closure cannot
be expected to be polyhedral. Since we do not have a good understanding of when this holds for
unbounded convex sets, we restrict our attention here to the CG closure of compact convex sets.
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For basic definitions related to convexity (i.e. faces, halfspaces, support func-

tion,etc.), we refer the reader to sections 2.1.1 and 2.2. We will use the following

additional definitions and notation: For a convex set K and v ∈ Rn, let H≤v (K) :=

{x ∈ Rn : 〈v,x〉 ≤ hK(v)} denote the supporting halfspace defined by v for K, and

let Hv(K) := {x ∈ Rn : 〈v,x〉 = hK(v)} denote the supporting hyperplane. Let

Fv(K) := K ∩Hv(K) denote the face of K exposed by v. If the context is clear, then

we drop the K and simply write H≤v , Hv and Fv. For A ⊆ Rn, let aff(A) denote the

smallest affine subspace containing A. Furthermore let affI(A) := aff(aff(A) ∩ Zn),

i.e. the largest integer subspace in aff(A).

We present the outline of the proof for Theorem 3.2.2. The proof proceeds by

induction on the dimension of K. The base case (K is a single point) is trivial. By

the induction hypothesis, we can assume that (†) every proper exposed face of K has

a finitely generated CG closure. We build the CG closure of K in stages, proceeding

as follows:

(1) (Section 3.3) For Fv, a proper exposed face, where v ∈ Rn, show that ∃ S ⊆ Zn,

|S| < ∞ such that CG(K,S) ∩ Hv = CG(Fv) and CG(K,S) ⊆ H≤v using (†)

and by proving the following:

(a) (Section 3.3.1) A CG cut for Fv can be rotated or “lifted” to a CG cut for

K such that points in Fv ∩ affI(Hv) separated by the original CG cut for

Fv are separated by the new “lifted” one.

(b) (Section 3.3.2) A finite number of CG cuts for K separate all points in

Fv \ affI(Hv) and all points in Rn \H≤v .

(2) (Section 3.4) Create an approximation CG(K,S) of CG(K) such that (i) |S| <

∞, (ii) CG(K,S) ⊆ K∩affI(K) (iii) CG(K,S)∩relbd(K) = CG(K)∩relbd(K).

This is done in two steps:
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(a) (Section 3.4.1) Using the lifted CG closures of Fv from (1.) and a com-

pactness argument on the sphere, create a first approximation CG(K,S)

satisfying (i) and (ii).

(b) (Section 3.4.2) Noting that CG(K,S)∩ relbd(K) is contained in the union

of a finite number of proper exposed faces of K, add the lifted CG closures

for each such face to S to satisfy (iii).

(3) (Section 3.5) We establish the final result by showing that there are only a finite

number of CG cuts which separate at least one vertex of the approximation of

the CG closure from (2).

3.3 CG(K,S) ∩Hv = CG(Fv) and CG(K,S) ⊆ H≤v

When K is a rational polyhedron, a key property of the CG closure is that for every

face F of K, we have that (∗) CG(F ) = F ∩ CG(K). In this setting, a relatively

straightforward induction argument coupled with (∗) allows one to construct the ap-

proximation of the CG closure described above. In our setting, where K is compact

convex, the approach taken is similar in spirit, though we will encounter significant

difficulties. First, since K can have infinitely many faces, we must couple our induc-

tion with a careful compactness argument. Second and more significantly, establishing

(∗) for compact convex sets is substantially more involved than for rational polyhe-

dra. As we will see in the following sections, the standard lifting argument to prove

(∗) for rational polyhedra cannot be used directly and must be replaced by a more

involved two stage argument.

3.3.1 Lifting CG Cuts

To prove CG(F ) = F ∩ CG(K) one generally uses a ‘lifting approach’, i.e., given a

CG cut CG(F, {w}) for F , w ∈ Zn, we show that there exists a CG cut CG(K, {w′})
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for K, w′ ∈ Zn, such that

CG(K, {w′}) ∩ aff(F ) ⊆ CG(F, {w}) ∩ aff(F ). (3.3.1)

To prove (3.3.1) when K is a rational polyhedron, one proceeds as follows. For

the face F of K, we compute v ∈ Zn such that Fv(K) = F and hK(v) ∈ Z. For

w ∈ Zn, we return the lifting w′ = w + lv, l ∈ Z>0, where l is chosen such that

hK(w′) = hF (w′). For general convex bodies though, neither of these steps may

be achievable. When K is strictly convex however, in [30] we show that the above

procedure can be generalized. First, every proper face F of K is an exposed vertex,

hence ∃ x ∈ K,v ∈ Rn such that F = Fv = {x}. For w ∈ Zn, we show that setting

w′ = w + v′, where v′ is a fine enough Dirichlet approximation (see Theorem 3.3.4

below) to a scaling of v is sufficient for (3.3.1). In the proof, we critically use that F

is simply a vertex. In the general setting, when K is a compact convex set, we can

still meaningfully lift CG cuts, but not from all faces and not with exact containment.

First, we only guarantee lifting for an exposed face Fv of K. Second, when lifting a

CG cut for Fv derived from w ∈ Zn, we only guarantee the containment on affI(Hv),

i.e. CG(K,w′) ∩ affI(Hv) ⊆ CG(F,w) ∩ affI(Hv). This lifting, Proposition 3.3.5

below, uses the same Dirichlet approximation technique as in [30] but with a more

careful analysis. Since we only guarantee the behavior of the lifting w′ on affI(Hv),

we will have to deal with the points in aff(F ) \ affI(Hv) separately, which we discuss

in the next section.

Lemmas 3.3.1- 3.3.3 are technical results that are needed for proving Proposition

3.3.5.

Lemma 3.3.1. Let K be a compact convex set in Rn. Let v ∈ Rn, and let (xi)
∞
i=1,

xi ∈ K, be a sequence such that limi→∞ 〈v,xi〉 = hK(v). Then

lim
i→∞

d(Fv(K),xi) = 0.
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Proof. Let us assume that limi→∞ d(Fv(K),xi) 6= 0. Then there exists an ε > 0

such that for some subsequence (xαi)
∞
i=1 of (xi)

∞
i=1 we have that d(Fv(K),xαi) ≥ ε.

Since (xαi)
∞
i=1 is an infinite sequence on a compact set K, there exists a conver-

gent subsequence (xβi)
∞
i=1 where limi→∞ xβi = x and x ∈ K. Now we note that

d(Fv(K),x) = limi→∞ d(Fv(K),xβi) ≥ ε, where the first equality follows from the

continuity of d(Fv(K), ·). Since d(Fv(K),x) > 0 we have that x /∈ Fv(K). On the

other hand,

hK(v) = lim
i→∞
〈v,xi〉 = lim

i→∞
〈v,xβi〉 = 〈v,x〉

and hence x ∈ Fv(K), a contradiction.

Lemma 3.3.2. Let K be a compact convex set in Rn. Let v ∈ Rn, and let (vi)
∞
i=1,

vi ∈ Rn, be a sequence such that limi→∞ vi = v. Then for any sequence (xi)
∞
i=1,

xi ∈ Fvi(K), we have that

lim
i→∞

d(Fv(K),xi) = 0.

Proof. We claim that limi→∞ 〈xi,v〉 = hK(v). Since K is compact, there exists R ≥ 0

such that K ⊆ RBn. Hence we get that

hK(v) = lim
i→∞

hK(vi) = lim
i→∞
〈vi,xi〉

= lim
i→∞
〈v,xi〉+ 〈vi − v,xi〉 ≤ lim

i→∞
〈v,xi〉+ ‖vi − v‖R = lim

i→∞
〈v,xi〉 ,

where the first equality follows by continuity of hK (hK is convex on Rn and fi-

nite valued). Since each xi ∈ K, we get the opposite inequality limi→∞ 〈v,xi〉 ≤

hK(v) and hence we get equality throughout. Now by Lemma 3.3.1 we get that

limi→∞ d(Fv(K),xi) = 0 as needed.

The next lemma describes the central mechanics of the lifting process explained

above. The sequence (wi)
∞
i=1 will eventually denote the sequence of Dirichlet approx-

imates of the scaling of v added to w, where one of these will serve as the lifting
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w′.

Lemma 3.3.3. Let K ⊆ Rn be a compact convex set. Take v,w ∈ Rn, v 6= 0. Let

(wi, ti)
∞
i=1, wi ∈ Rn, ti ∈ R+ be a sequence such that

a. lim
i→∞

ti =∞, b. lim
i→∞

wi − tiv = w. (3.3.2)

Then for every ε > 0 there exists Nε ≥ 0 such that for all i ≥ Nε

hK(wi) + ε ≥ tihK(v) + hFv(K)(w) ≥ hK(wi)− ε. (3.3.3)

Proof. By (3.3.2) a,b we have that

lim
i→∞

wi

ti
= v (3.3.4)

and that we may pick N1 ≥ 0 such that

‖wi − tiv‖ ≤ ‖w‖+ 1 ≤ C for i ≥ N1. (3.3.5)

Let (xi)
∞
i=1 be any sequence such that xi ∈ Fwi(K) = Fwi/ti(K). For each i ≥ 1, let

x̃i = arg miny∈Fv(K) ‖xi−y‖. By (3.3.4) and Lemma 3.3.2, we may pick N2 ≥ 0 such

that

d(Fv(K),xi) = ‖xi − x̃i‖ ≤
ε

2C
for i ≥ N2. (3.3.6)

Since hFv(K) is a continuous function, we may pick N3 ≥ 0 such that

|hFv(K)(wi − tiv)− hFv(K)(w)| ≤ ε

2
for i ≥ N3. (3.3.7)

Let Nε = max{N1, N2, N3}. Now since xi ∈ Fwi(K) and x̃i ∈ Fv(K) we have that

〈xi,wi〉 ≥ 〈x̃i,wi〉 and 〈x̃i, tiv〉 ≥ 〈xi, tiv〉 . (3.3.8)

From (3.3.5), (3.3.6), (3.3.8) we get that for i ≥ Nε

〈xi,wi〉 − 〈x̃i,wi〉 ≤ 〈xi,wi〉 − 〈x̃i,wi〉+ 〈x̃i, tiv〉 − 〈xi, tiv〉 = 〈xi − x̃i,wi − tiv〉

≤ ‖xi − x̃i‖‖wi − tiv‖ ≤
( ε

2C

)
C =

ε

2
.

(3.3.9)
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From (3.3.9) we see that for i ≥ Nε

hK(wi) ≥ hFv(K)(wi) ≥ 〈wi, x̃i〉 ≥ 〈wi,xi〉 −
ε

2
= hK(wi)−

ε

2
. (3.3.10)

Since 〈v, ·〉 is constant on Fv(K), we have that

hFv(K)(wi) = hFv(K)(wi − tiv + tiv) = hFv(K)(wi − tiv) + tihFv(K)(v)

= hFv(K)(wi − tiv) + tihK(v) (3.3.11)

Combining (3.3.7), (3.3.10) and (3.3.11) we get that for i ≥ Nε,

hK(wi) + ε ≥ tihK(v) + hFv(K)(w) ≥ hK(wi)− ε

as needed.

Theorem 3.3.4 (Dirichlet’s Approximation Theorem). Let (α1, . . . , αl) ∈ Rl. Then

for every positive integer N , there exists 1 ≤ n ≤ N such that max1≤i≤l |nαi−bnαie| ≤

1/N1/l.

Proposition 3.3.5. Let K ⊆ Rn be a compact and convex set, v ∈ Rn and w ∈ Zn.

Then ∃w′ ∈ Zn such that CG(K,w′)∩ affI(Hv(K)) ⊆ CG(Fv(K),w)∩ affI(Hv(K)).

Proof. First, by possibly multiplying v by a positive scalar we may assume that

hK(v) ∈ Z. Let S = affI(Hv(K)). We may assume that S 6= ∅, since otherwise the

statement is trivially true.

From Theorem 3.3.4 for any v ∈ Rn there exists (si, ti)
∞
i=1, si ∈ Zn, ti ∈ N such

that (a.) ti → ∞ and (b.) ‖si − tiv‖ → 0. Now define the sequence (wi, ti)
∞
i=1,

where wi = w + si, i ≥ 1. Note that the sequence (wi, ti) satisfies (3.3.2) and

hence by Lemma 3.3.3 for any ε > 0, there exists Nε such that (3.3.3) holds. Let

ε = 1
2

(
1− (hFv(K)(w)−bhFv(K)(w)c)

)
, and let N1 = Nε. Note that bhFv(K)(w) + εc =

bhFv(K)(w)c. Hence, since hK(v) ∈ Z by assumption, for all i ≥ N1 we have that
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bhK(wi)c ≤ btihK(v) + hFv(K)(w) + εc = tihK(v) + bhFv(K)(w) + εc = tihK(v) +

bhFv(K)(w)c.

Now pick z1, . . . , zk ∈ S ∩ Zn such that aff(z1, . . . , zk) = S and let

R = max{‖zj‖ : 1 ≤ j ≤ k}. Choose N2 such that ‖wi − tiv − w‖ ≤ 1
2R

for i ≥

N2. Now note that for i ≥ N2, | 〈zj,wi〉 − 〈zj, tiv + w〉 | = | 〈zj,wi − tiv −w〉 | ≤

‖zj‖‖wi − tiv −w‖ ≤ R 1
2R

= 1
2
∀j ∈ {1, . . . , k}.

Next note that since zj,wi ∈ Zn, 〈zj,wi〉 ∈ Z. Furthermore, ti ∈ N, 〈v, zj〉 =

hK(v) ∈ Z and w ∈ Zn implies that 〈zj, tiv + w〉 ∈ Z. Given this, we must

have 〈zj,wi〉 = 〈zj, tiv + w〉 ∀j ∈ {1, . . . , k}, i ≥ 1 and hence we get 〈x,wi〉 =

〈x, tiv + w〉 ∀x ∈ S, i ≥ 1.

Let w′ = wi where i = max{N1, N2}. Now examine the set

L = {x : 〈x,w′〉 ≤ bhK(w′)c} ∩ S.

Here we get that 〈x,wi〉 ≤ tihK(v) + bhFv(K)(w)c and 〈x,v〉 = hK(v) for all x ∈ L.

Hence, we see that 〈x,wi − tiv〉 ≤ bhFv(K)(w)c for all x ∈ L. Furthermore, since

〈x,wi − tiv〉 = 〈x,w〉 for all x ∈ L ⊆ S, we have that 〈x,w〉 ≤ bhFv(K)(w)c for all

x ∈ L, as needed.

3.3.2 Separating All Points in Fv \ affI(Hv)

Since the guarantees on the lifted CG cuts produced in the previous section are

restricted to affI(Hv), we must still deal with the points in Fv \ affI(Hv). In this

section, we show that points in Fv\affI(Hv) can be separated by using a finite number

of CG cuts in Proposition 3.3.9. To prove this, we will need Kronecker’s theorem on

simultaneous diophantine approximation which is stated next. See Niven [100] or

Cassels [24] for a proof.

Theorem 3.3.6. Let (x1, . . . , xn) ∈ Rn be such that the numbers x1, . . . , xn, 1 are

linearly independent over Q. Then the set {(nx1 (mod 1), . . . , nxn (mod 1)) : n ∈ N}

is dense in [0, 1)n.
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The following lemmas allow us to normalize the vector v defining Fv and Hv and

simplify the analysis that follows.

Lemma 3.3.7. Let K ⊆ Rn be a closed convex set, and let T : Rn → Rn be an invert-

ible linear transformation. Then hK(v) = hTK(T−tv) and Fv(K) = T−1(FT−tv(TK))

for all v ∈ Rn. Furthermore, if T is a unimodular transformation, then CC(K) =

T−1(CC(TK)).

Proof. Observe that

hTK(T−tv) = sup
x∈TK

〈
T−tv,x

〉
= sup

x∈K

〈
T−tv, Tx

〉
= sup

x∈K
〈v,x〉 = hK(v).

Now note that

T−1(FT−tv(TK)) = T−1
(
{x : x ∈ TK, hTK(T−tv) =

〈
T−tv,x

〉
}
)

= {x : Tx ∈ TK, hTK(T−tv) =
〈
T−tv, Tx

〉
}

= {x : x ∈ K, hK(v) = 〈v,x〉} = Fv(K).

Finally,

T−1(CC(TK)) = T−1 ({x : x ∈ TK, 〈v,x〉 ≤ bhTK(v)c ∀ v ∈ Zn})

= {x : Tx ∈ TK, 〈v, Tx〉 ≤ bhTK(v)c ∀ v ∈ Zn}

= {x : Tx ∈ TK,
〈
T−tv, Tx

〉
≤ bhTK(T−tv)c ∀v ∈ Zn}

= {x : x ∈ K, 〈v,x〉 ≤ bhK(v)c ∀v ∈ Zn} = CC(K).

Lemma 3.3.8. Take v ∈ Rn. Then there exists an unimodular transformation T :

Rn → Rn and λ ∈ Q>0 such that for v′ = λTv we get that

v′ =

 0, . . . , 0︸ ︷︷ ︸
t times

, 1︸︷︷︸
s times

, α1, . . . , αr

 , (3.3.12)
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where t, r ∈ Z+, s ∈ {0, 1}, and {1, α1, . . . , αr} are linearly independent over Q. Fur-

thermore, we have that D(v) = inf{dim(W ) : v ∈ W,W = {x ∈ Rn : Ax = 0}, A ∈ Qm×n} =

s+ r.

Proof. Choose a permutation matrix P such that the rational entries of Pa form a

contiguous block starting from the first entry of Pa, i.e. let k ∈ {0, . . . , n} such

that (Pa)1, . . . , (Pa)k ∈ Q and (Pa)k+1, . . . , (Pa)n ∈ R \ Q. Now we set our initial

transformation T ← P , λ← 1, and working vector a′ ← Pa. In what follows, we will

apply successive updates to T ,λ and a′ such that we maintain that T is unimodular,

λ ∈ Q>0, and a′ = λTa.

First consider a vector a′ ∈ Rn such that a′1, . . . , a
′
k are rational and (1, a′k+1, . . . , a

′
n)

are linearly independent over Q. If k = 0, i.e. (1, a′1, . . . , a
′
n) are linearly indepen-

dent over Q, then we are done. We may therefore assume that k ≥ 1. Similarly,

if (a′1, . . . , a
′
k) = 0k, then again we are done. Now let a′R = (a′1, . . . , a

′
k) and a′I =

(a′k+1, . . . , a
′
n). By our assumptions, we note that a′R 6= 0. Via an appropriate scaling

λ′ ∈ Q>0, we may achieve λ′a′R ∈ Zk and gcd(λ′a′1, . . . , λ
′ak) = 1. Since λ′ ∈ Q, note

that (1, a′k+1, . . . , a
′
n) are linearly independent over Q iff (1, λ′a′k+1, . . . , λ

′a′n) are. Set

λ← λ′λ and a′ ← λ′a′. Next, applying the Euclidean algorithm on the vector a′R, we

get a unimodular transformation E such that

Ea′R = (0k−1, gcd(a′1, . . . , a
′
k)) = (0k−1, 1).

Now define the unimodular transformation T ′, where

T ′(x) = (E(x1, . . . ,xk),xk+1, . . . ,xn).

By construction, note that ((Ta′)1, . . . , (Ta′)k) = Ea′R = (0k−1, 1). Next note that

((Ta′)k+1, . . . , (Ta′)n) are linearly independent over Q. Letting T ← T ′T and a′ ←

T ′a′, we have that a′ = λTa satisfies the required form.

Given the above case analysis, we are left with the case where a′R = (a′1, . . . , a
′
k) ∈
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Qk, a′I = (a′k+1, . . . , a
′
n) ∈ (R \Q)n−k and where (1, a′k+1, . . . , a

′
n) have a linear depen-

dency over Q. Now after an appropriate scaling of this dependency, we get numbers

c0 ∈ Q, c ∈ Zn−k \ {0}, gcd(c1, . . . , cn−k) = 1, and where

〈a′I , c〉 = c0

Applying the Euclidean algorithm on c, we get a unimodular matrix E such that

Ec = (gcd(c1, . . . , cn−k), 0
n−k−1) = (1, 0n−k−1)

Let â = E−ta′I . Note that E is unimodular iff E−t is unimodular. We get that

〈a′I , c〉 = c0 ⇒
〈
E−ta′I , Ec

〉
= c0 ⇒ â1 = c0

Hence we see that â1 = c0 ∈ Q. Let T ′ be the unimodular transformation defined by

T ′(x) = (x1, . . . ,xk, E
−t(xk+1, . . . ,xn))

Here T ′ is the identity on the first k coordinates, and acts like E−t on the last

n − k coordinates. Note that ((T ′a′)1, . . . , (T
′a′)k) = (a′1, . . . , a

′
k) ∈ Qk. Next

((T ′a′)k+1, . . . , (T
′a′)n) = E−ta′I = â, and â1 ∈ Q. Hence T ′a′ has at least one

more rational coefficient than a′. By repeating the above operation suitable number of

times, we obtain a vector a′ ∈ Rn such that a′1, . . . , a
′
k are rational and (1, a′k+1, . . . , a

′
n)

are linearly independent over Q. By the previous analysis, there exists unimodular

transformation T ′′, λ′ ∈ Q such that λ′T ′′T ′a′ satisfies the required form. Letting

T ← T ′′T ′T , λ← λ′λ, and a′ ← λ′T ′′T ′a′, we get the desired result.

For proving the second part of the result, we first claim that D(a′) = D(a). To

see this, note that

Aa′ = 0⇔ A(λTa) = 0⇔ ATa = 0

and

Aa = 0⇔ A

(
1

λ
T−1a′

)
= 0⇔ AT−1a′ = 0
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since T is invertible and λ 6= 0. Since both AT,AT−1 are rational, this gives that

D(a′) = D(a) as needed. Hence we need only show that D(a′) = s+ t.

Take y ∈ Qn such that 〈y, a′〉 = 0. Note that a′ = (0t, 1s, α1, . . . , αr) where

(1, α1, . . . , αr) are linearly independent over Q. If s = 0, then
∑r

i=1 yt+iαi = 0.

Since y ∈ Qn, this gives a linear dependence of (α1, . . . , αr) over Q, and hence by

assumption we must have that yt+i = 0 for 1 ≤ i ≤ r. Otherwise if s = 1, we get

yt+1 +
∑r

i=1 yt+i+1αi = 0, which gives a linear dependence of (1, α1, . . . , αr) over Q.

Therefore yt+i = 0 for 1 ≤ i ≤ t + 1. Hence in both cases, we get that yt+i = 0

for 1 ≤ i ≤ r + s. Next note that for y ∈ Qt × 0n−t, we have that 〈y, a′〉 = 0 since

a′1, . . . , a
′
r = 0 by assumption. By the previous observations, we obtain that

L := {y ∈ Qn : 〈y, a′〉 = 0} = Qt × 0n−t = Qt × 0s+r.

Now let W ⊆ Rn denote the linear subspace W = {x ∈ Rn : xi = 0, 1 ≤ i ≤ t}.

Note that a′ ∈ W , and hence D(a′) ≤ dim(W ) = s + r. Now take any M =

{x ∈ Rn : Ax = 0}, such that a′ ∈ M and A ∈ Qm×n. We claim that W ⊆ M . Let

a1, . . . , am ∈ Qn denote the rows of A. Since a′ ∈ M , we have 〈ai, a′〉 = 0 ∀ i ∈

{1, . . . ,m}. Hence we must have that ai ∈ L = Qt × 0. Since W = 0t × Rs+r, we

have that for all x ∈ W , 〈ai,x〉 = 0, and hence W ⊆ L. Hence

dim(L) ≥ dim(W ) = s+ r,

from which conclude that D(a′) = s+ r as needed.

We now show that the points in Fv \ affI(Hv) can be separated using a finite

number of CG cuts. We first give a rough sketch of the proof. We restrict to the

case where affI(Hv) 6= ∅. From here one can verify that any rational affine subspace

contained in aff(Hv) must also lie in affI(Hv). Next we use Kronecker’s theorem

to build a finite set C ⊆ Zn, where each vector in C is at distance at most ε from

some scaling of v, and where v can be expressed as a non-negative combination
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of the vectors in C. By choosing ε and the scalings of v appropriately, we can

ensure that the CG cuts derived from C dominate the inequality 〈v,x〉 ≤ hK(v), i.e.

CG(K,C) ⊆ H≤v . If CG(K,C) lies in the interior of H≤v (K), we have separated all of

Hv (including Fv\affI(Hv)) and hence are done. Otherwise, T := CG(K,C)∩Hv is a

face of a rational polyhedron, and therefore aff(T ) is a rational affine subspace. Since

aff(T ) ⊆ aff(Hv), as discussed above we obtain T ⊆ aff(T ) ⊆ affI(Hv) as required.

Proposition 3.3.9. Let K ⊆ Rn be a compact convex set and v ∈ Rn. Then there

exists C ⊆ Zn, |C| ≤ D(v) + 1, such that

CG(K,C) ⊆ H≤v (K) and CG(K,C) ∩Hv(K) ⊆ affI(Hv(K)).

Proof. By scaling v by a positive scalar if necessary, we may assume that hK(v) ∈

{0, 1,−1}. Let T and λ denote the transformation and scaling promised for v in

Lemma 3.3.8. Note that T−t{x ∈ Rn : 〈v,x〉 = hK(v)} = {x ∈ Rn : 〈v, T tx〉 = hK(v)} =

{x ∈ Rn : 〈λTv,x〉 = hT−tK(λTv)}.

Now let v′ = λTv and b′ = hT−tK(λTv). By Lemma 3.3.7, it suffices to prove

the statement for v′ and K ′ = T−tK. Now v′ has the form (3.3.12) where t, r ∈ Z+,

s ∈ {0, 1}, and (1, α1, . . . , αr) are linearly independent over Q. For convenience, let

k = s+ t, where we note that v′k+1, . . . ,v
′
k+r = (α1, . . . , αr).

Claim 1: Let S = {x ∈ Zn : 〈v′,x〉 = b′}. Then S satisfies one of the following: (1)

S = Zt× b′× 0r: s = 1, b′ ∈ Z, (2) S = Zt× 0r: s = 0, b′ = 0, (3) S = ∅: s = 0, b′ 6= 0

or s = 1, b′ /∈ Z.

Note that b′ = hT−tK(λTv) = λhK(v) ∈ {0,±λ} ⊆ Q. We first see that

(s = 1) : b′ = 〈v′,x〉 = xk +
r∑
i=1

xk+iαi, (s = 0) : b′ = 〈v′,x〉 =
r∑
i=1

xk+iαi.

Now if x ∈ S, then

(s = 1) : (xk − b′) +
r∑
i=1

xk+iαi = 0, (s = 0) : (−b′) +
r∑
i=1

xk+iαi = 0.
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Since b′ ∈ Q, and x ∈ Zn, in both cases the above equations give us a linear de-

pendence of (1, α1, . . . , αr) over Q. Since by assumption (1, α1, . . . , αr) are linearly

independent over Q, we have that

(s = 0, 1) : xk+i = 0, 1 ≤ i ≤ r (s = 1) : xk = b′ (s = 0) : b′ = 0.

If s = 1, then we must have that b′ ∈ Z, since xk = b′ and x ∈ Zn. From this we

immediately recover case (1). If s = 0, then the conditions b′ = 0 and xk+i = 0,

1 ≤ i ≤ r, verify case (2). If we are neither in case (1) or (2), then by the above

analysis S must be empty, and so we are done.

Claim 2: Let I = {nv′ (mod 1) : n ∈ N}. Then Theorem 3.3.6 implies that I is

dense in 0k × [0, 1)r.

We first note that v′1, . . . ,v
′
k ∈ Z and hence v′1, . . . ,v

′
k ≡ 0 (mod 1). Next note

that (1, α1, . . . , αr) are linearly independent over Q, and hence by Theorem 3.3.6 we

have that {n(α1, . . . , αr) : n ∈ N} is dense over [0, 1)r. Putting the last two state-

ments together immediately yields the claim.

Claim 3: There exists a1, . . . , ar+1 ⊆ Zn and λ1, . . . , λr+1 ≥ 0 such that
∑r+1

i=1 λiai

= v′ and
∑r+1

i=1 λibh′K(ai)c ≤ b′, where the inequality can be made strict if S = ∅.

Since K ′ is compact, there exists R > 0 such that K ′ ⊆ RBn. Take the subspace

W = 0k × Rr. Let w1, . . . ,wr+1 ∈ W ∩ Sn−1, be any vectors such that for some

0 < ε < 1 we have sup1≤i≤r+1 〈wi,d〉 ≥ ε for all d ∈ Sn−1 ∩W (e.g. w1, . . . ,wr+1 are

the vertices of a scaled isotropic r-dimensional simplex).

Case 1: S 6= ∅.

Let a = 1
8

min{ 1
R
, ε}, and b = 1

2
εa. Now, for 1 ≤ i ≤ r + 1 define Ei =

{x : x ∈ awi + b(Bn ∩W ) (mod 1)}. Since W = 0k×Rr, note that Ei ⊆ 0k× [0, 1)r.
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By Claim 2 the set I is dense in 0k × [0, 1)r. Furthermore each set Ei has non-

empty interior with respect to the subspace topology on 0k × [0, 1)r. Hence for all i,

1 ≤ i ≤ r + 1, we can find ni ∈ N such that niv
′ (mod 1) ∈ Ei.

Now niv
′ (mod 1) ∈ Ei, implies that for some δ′i ∈ Ei, niv′−δ′i ∈ Zn. Furthermore

δ′i ∈ Ei implies that there exists δi ∈ awi + b(Bn ∩ W ) such that δ′i − δi ∈ Zn.

Hence (niv
′ − δ′i) + (δ′i − δi) = niv

′ − δi ∈ Zn. Let ai = niv
′ − δi. Note that

‖ai − niv′‖ = ‖ − δi‖ ≤ a + b ≤ 2a ≤ 1/(4R). We claim that bhK′(ai)c ≤ hK′(niv
′).

First note that hK′(niv
′) = nib

′. Since we assume that S 6= ∅, we must have that

b′ ∈ Z and hence nib
′ ∈ Z. Now note that

hK′(ai) = hK′((ai − niv′) + niv
′) ≤ hK′(niv

′) + hK′(ai − niv′)

= nib
′ + hK′(−δi)

≤ nib
′ + hRBn(−δi) ≤ nib

′ +R‖δi‖ ≤ nib
′ +R

(
1

4R

)
= nib

′ +
1

4
.

Therefore we have that bhK′(ai)c ≤ bnib′ + 1
4
c = nib

′ = hK′(niv
′), since nib

′ ∈ Z.

We claim that aε
4
Bn ∩W ⊆ conv{δ1, . . . , δr+1}. First note that by construction,

conv{δ1, . . . , δr+1} ⊆ W . Hence if the conclusion is false, then by the separator

theorem there exists d ∈ W ∩ Sn−1 such that haε
4
Bn∩W (d) = aε

4
> sup1≤i≤r+1 〈d, δi〉.

For each i, 1 ≤ i ≤ r + 1, we write δi = awi + bzi where ‖zi‖ ≤ 1. Now note that

sup
1≤i≤r+1

〈d, δi〉 = sup
1≤i≤r+1

〈d, awi + bzi〉 = sup
1≤i≤r+1

a 〈d,wi〉+ b 〈d, zi〉

≥ sup
1≤i≤r+1

a 〈d,wi〉 − b‖d‖‖zi‖ ≥ aε− b =
aε

2
>
aε

4
,

a contradiction. Hence there exists λ1, . . . , λr+1 ≥ 0 and
∑r+1

i=1 λini = 1 such that∑r+1
i=1 λiδi = 0.

Now we see that
r+1∑
i=1

λiai =
r+1∑
i=1

λiniv
′ +

r+1∑
i=1

λi(ai − niv′) =

(
r+1∑
i=1

λini

)
v′ −

r+1∑
i=1

λiδi =

(
r+1∑
i=1

λini

)
v′.

Next note that
r+1∑
i=1

λibhK′(ai)c ≤
r+1∑
i=1

λihK′(niv
′) = hK′

((
r+1∑
i=1

λini

)
v′

)
.
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Case 2: S = ∅. The proof here shall proceed very similarly to the one above, with

the exception that we need to do some extra work to guarantee a strict inequality.

If s = 0, then since S = ∅ we must have that b′ 6= 0. Let vz = 1
|b′|v

′ and

bz = sign(b′), and vf = 1
2|b′|v

′ and bf = 1
2
sign(b′). Note that hK′(v

z) = bz ∈ {±1}

and hK′(v
f ) = bf ∈ {±1/2}. Furthermore, since b′ ∈ Q, we see that

(1,vzk+1, . . . ,v
z
k+r) = (1,

1

2|b′|
α1, . . . ,

1

2|b′|
αr)

are still linearly independent over Q, and that vz1, . . . ,v
z
k = v′1, . . . ,v

′
k = 0 ∈ Z.

Next if s = 1, then b′ ∈ Q \ Z. Let c1 ∈ Z denote the least positive integer such

that c1b
′ ∈ Z and let c2 ∈ Z denote the least positive integer such that 1

3
≤ c2b

′

(mod 1) ≤ 2
3

(always exists since b′ 6= 0). Let vz = c1v
′ and bz = c1b

′, and let vf =

c2v
′ and bf = c2b

′. Again we have that hK′(v
z) = bz ∈ Z, and hK′(v

f ) = bf (since

c1, c2 ≥ 0). Lastly, since c1, c2 ∈ Z, we note that vz1, . . . ,v
z
k−1 = vf1 , . . . ,v

f
k−1 = 0 ∈ Z,

vzk = c1,v
f
k = c2 ∈ Z, and (1,vzk+1, . . . ,v

z
k+r) = (1, c1α1, . . . , c1αr) are still linearly

independent over Q.

Now let I ′ = {nvz (mod 1) : n ∈ N}. Using the proof of Claim 2, we see that

I ′ is dense in 0k × [0, 1)r. Furthermore since vf mod 1 ∈ 0k × [0, 1)r, we have

that I ′ + vf (mod 1) is also dense in 0k × [0, 1)r. Note that I ′ + vf (mod 1) =

{(nc1 + c2)v′ (mod 1) : n ∈ N}.

Let w1, . . . ,wl+1, E1, . . . , El+1 be defined identically as in Case 1. Via the same

density argument as in case 1, we may pick ni ∈ N, such that (nic1 + c2)v′ ∈ Ei.

Again we define a1, . . . , ar+1 in exactly the same way as in Case 1. To conclude the

proof of the claim, we need only show that bhK′(ai)c ≤ bnib′ + 1
4
c = nib

′ = hK′(niv
′)

holds with a strict inequality in this case. The exact same argument gives us now

that

hK′(ai) ≤ (nic1 + c2)b′ +
1

4
. (3.3.13)
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Now nic1b
′ = nib

z ∈ Z and 1
3
≤ c2b

′ (mod 1) ≤ 2
3
. Therefore

bhK′(ai)c < (nic1 + c2)b′, (3.3.14)

as needed.

Claim 4: Let C = {ai}r+1
i=1 for the ai’s from Claim 3. Then CG(K,C)∩{x : 〈v′,x〉 = b′} ⊆

aff(S).

If S = ∅, note that by the Claim 3, we have that

sup{〈v′,x〉 : x ∈ Rn, 〈ai,x〉 ≤ bhK′(ai)c, 1 ≤ i ≤ r + 1} < b′,

and hence CG(K,C) ∩ {x : 〈v′,x〉 = b′} = ∅ as needed.

If S 6= ∅, examine the set examine the set

P = {x : 〈v′,x〉 = b′, 〈ai,x〉 ≤ bhK′(ai)c, 1 ≤ i ≤ l + 1}.

From the proof of Claim 3, we know that for each i, 1 ≤ i ≤ r+1, we have bhK′(ai)c ≤

hK′(niv
′) = nib

′ and hence 〈niv′ − ai,x〉 = 〈δi,x〉 ≥ 0, is a valid inequality for P .

Now, from the proof of Claim 3, we have

aε

4
Bn ∩W ⊆ conv{δ1, . . . , δr+1}. (3.3.15)

We claim that for all H ⊆ {1, . . . , r + 1}, |H| = r, the set {δi : i ∈ H} is linearly

independent. Assume not, then WLOG we may assume that δ1, . . . , δr are not linearly

independent. Hence there exists d ∈ Sn−1∩W , such that 〈d, δi〉 = 0 for all 1 ≤ i ≤ n.

Now by possibly switching d to −d, we may assume that 〈d, δr+1〉 ≤ 0. Hence we get

that sup1≤i≤r+1 〈d, δi〉 ≤ 0 in contradiction to (3.3.15).

Now let λ1, . . . , λr+1 ≥ 0,
∑r+1

i=1 λini = 1 be a combination such that
∑r+1

i=1 λiδi =

0. Note that λ1, . . . , λr+1 forms a linear dependency on δ1, . . . , δr+1, and hence by the

previous claim we must have that λi > 0 for all 1 ≤ i ≤ r + 1.

We claim for P ⊆ W⊥. To see this, note that 0 = 〈x, 0〉 =
〈
x,
∑r+1

i=1 λiδi
〉

=∑r+1
i=1 λi 〈x, δi〉 for every x ∈ P . Now since span(δ1, . . . , δr+1) = W , we see that
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〈x, δi〉 = 0 for all 1 ≤ i ≤ r + 1 iff x ∈ W⊥. Hence if x /∈ W⊥, then by the

above equation and the fact that λi > 0 for all i ∈ {1, . . . , r + 1}, there exists i, j ∈

{1, . . . , r + 1} such that 〈x, δi〉 > 0 and 〈x, δj〉 < 0. But then x /∈ P , since 〈x, δj〉 < 0,

a contradiction. Now W = 0k × Rr, hence W⊥ = Rk × 0r. To complete the proof we

see that P ⊆ {x : x ∈ Rk × 0r, 〈v′,x〉 = b′} = aff(S).

3.3.3 Lifting the CG Closure of an Exposed Face of K

Proposition 3.3.10. Let K ⊆ Rn be a compact convex set. Take v ∈ Rn. Assume

that CG(Fv(K)) is finitely generated. Then ∃ S ⊆ Zn, |S| <∞, such that CG(K,S)

is a polytope and

CG(K,S) ∩Hv(K) = CG(Fv(K)) (3.3.16)

CG(K,S) ⊆ H≤v . (3.3.17)

Proof. The right to left containment in (3.3.16) is direct from CG(Fv(K)) ⊆ CG(K,S)

as every CG cut for K is a CG cut for Fv(K). For the reverse containment and for

(3.3.17) we proceed as follows.

Using Proposition 3.3.9 there exists S1 ⊆ Zn such that CG(K,S1) ∩ Hv(K) ⊆

affI(Hv(K)) and CG(K,S1) ⊆ {x ∈ Rn : 〈v,x〉 ≤ hK(v)}. Next let G ⊆ Zn be such

that CG(Fv(K), G) = CG(Fv(K)). For each w ∈ G, by Proposition 3.3.5 there exists

w′ ∈ Zn such that CG(K,w′) ∩ affI(Hv(K)) ⊆ CG(Fv(K),w) ∩ affI(Hv(K)). For

each w ∈ G, add w′ above to S2. Now note that

CG(K,S1 ∪ S2) ∩Hv(K) = CG(K,S1) ∩ CG(K,S2) ∩Hv(K)

⊆ CG(K,S2) ∩ affI(Hv(K))

= CG(Fv(K), G) ∩ aff(Hv(K)) ⊆ CG(Fv(K)).

Now let S3 = {±ei : 1 ≤ i ≤ n}. Note that since K is compact CG(K,S3) is a cuboid

with bounded side lengths, and hence is a polytope. Letting S = S1 ∪ S2 ∪ S3, yields

the desired result.
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We now obtain a generalization of the classical result known for rational polyhedra.

Corollary 3.3.11. Let K be a compact convex set and let F be an exposed face of

K, then we have that CG(F ) = CG(K) ∩ F .

3.4 Approximation of the CG Closure

3.4.1 Approximation 1 of the CG Closure

In this section, we construct a first approximation of the CG closure of K. Under the

assumption that the CG closure of every proper exposed face is finitely generated, we

use a compactness argument to construct a finite set of CG cuts S ⊆ Zn such that

CG(K,S) ⊆ K ∩ affI(K). We use the following lemma to simplify the analysis of

integral affine subspaces.

Lemma 3.4.1. Take A ∈ Rm×n and b ∈ Rm. Then there exists λ ∈ Rm such that

for a′ = λA, b′ = λb, we have that {x ∈ Zn : Ax = b} = {x ∈ Zn : a′x = b′}.

Proof. If {x ∈ Rn : Ax = b} = ∅, then by Farka’s Lemma there exists λ ∈ Rm such

that λA = 0 and λb = 1. Hence {x ∈ Rn : Ax = b} = {x ∈ Rn : 0x = 1} = ∅ as

needed. We may therefore assume that {x ∈ Rn : Ax = b} 6= ∅. Therefore we may

also assume that the rows of the augmented matrix [A |b] are linearly independent.

Let T = span(a1, . . . , am), where a1, . . . , am are the rows of A. Define r : T → R

where for w ∈ T we let r(w) = λb for λ ∈ Rm where λA = w. Since the rows of

A are linearly independent we obtain that r is well defined and is a linear operator.

Let S = {x ∈ Zn : Ax = b}. For z ∈ Zn, examine Tz = {w ∈ T : 〈w, z〉 = r(w)}.

By linearity of r, we see that Tz is a linear subspace of T . Note that for z ∈ Zn,

Tz = T iff z ∈ S. Therefore ∀ z ∈ Zn \ S, we must have that Tz 6= T , and hence

dim(Tz) ≤ dim(T )− 1. Let mT denote the Lebesgue measure on T . Since dim(Tz) <

dim(T ), we see that mT (Tz) = 0. Let T ′ =
⋃

z∈Zn\S Tz. Since Zn \ S is countable,

by the countable subadditivity of mT we have that mT (T ′) ≤
∑

z∈Zn\SmT (Tz) = 0.

Since mT (T ) = ∞, we must have that T \ T ′ 6= ∅. Hence we may pick a′ ∈ T \ T ′.
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Letting b′ = r(a′), we note that by construction there ∃ λ ∈ Rm such that λA = a′

and λb = b′. Hence for all z ∈ S, λAz = λb ⇒ a′x = b′. Now take z ∈ Zn \ S.

Now since a′ ∈ T \ T ′, we have that a′ /∈ Tz. Hence a′z 6= b′. Therefore we see that

{x ∈ Zn : a′x = b′} = {x ∈ Zn : Ax = b} as needed.

Proposition 3.4.2. Let ∅ 6= K ⊆ Rn be a compact convex set. If CG(Fv(K)) is

finitely generated for any proper exposed face Fv(K) then ∃ S ⊆ Zn, |S| < ∞, such

that CG(K,S) ⊆ K ∩ affI(K) and CG(K,S) is a polytope.

Proof. Let us express aff(K) as {x ∈ Rn : Ax = b}. Note that aff(K) 6= ∅ since K 6=

∅. By Lemma 3.4.1 there exists λ, c = λA and d = λb, and such that aff(K) ∩ Zn =

{x ∈ Zn : 〈c,x〉 = b}. Since hK(c) = b and hK(−c) = −b, using Proposition 3.3.9 on

c and −c, we can find SA ⊆ Zn such that CG(K,SA) ⊆ aff({x ∈ Zn : 〈c,x〉 = b}) =

affI(K).

Express aff(K) as W + a, where W ⊆ Rn is a linear subspace and a ∈ Rn.

Now take v ∈ W ∩ Sn−1. Note that Fv(K) is a proper exposed face and hence,

by assumption, CG(Fv(K)) is finitely generated. Hence by Proposition 3.3.10 there

exists Sv ⊆ Zn such that CG(K,Sv) is a polytope, CG(K,Sv)∩Hv(K) = CG(Fv(K))

and CG(K,Sv) ⊆ {x ∈ Rn : 〈x,v〉 ≤ hK(v)}. Let Kv = CG(K,Sv), then we have

the following claim.

Claim: ∃ open neighborhood Nv of v in W ∩ Sn−1 such that v′ ∈ Nv ⇒ hKv(v′) ≤

hK(v′).

Since Kv is a polytope, there exists C ⊆ Rn, |C| < ∞, such that Kv = conv(C).

Then note that hKv(w) = supc∈C 〈c,w〉. Now let H = {c : hK(v) = 〈v, c〉 , c ∈ C}.

By construction, we have that conv(H) = CG(Fv(K)).

First assume that CG(Fv(K)) = ∅. Then H = ∅, and hence hKv(v) < hK(v).

Since Kv, K are compact convex sets, we have that hKv , hK are both continuous

functions on Rn and hence hK − hKv is continuous. Therefore there exists ε > 0 such
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that hKv(v′) < hK(v′) for ‖v − v′‖ ≤ ε as needed.

Now assume that CG(Fv(K)) 6= ∅. Let R = maxc∈C ‖c‖, and let

δ = hK(v)− sup{〈v, c〉 : c ∈ C \H}.

Now let ε = δ
2R

. Now take any v′ such that ‖v′−v‖ < ε. Now for all c ∈ H, we have

that

〈c,v′〉 = 〈c,v〉+ 〈c,v′ − v〉 = hK(v) + 〈c,v′ − v〉 ≥ hK(v)− ‖c‖‖v′ − v‖

> hK(v)−R δ

2R
= hK(v)− δ

2
,

and that for all c ∈ C \H, we have that

〈c,v′〉 = 〈c,v〉+ 〈c,v′ − v〉 ≤ hK(v)− δ + 〈c,v′ − v〉 ≤ hK(v)− δ + ‖c‖‖v′ − v‖

< hK(v)− δ +
δ

2
= hK(v)− δ

2
.

Therefore we have that 〈c, v′〉 > 〈c′, v′〉 for all c ∈ H, c′ ∈ C \H and hence

hKv(v′) = sup
c∈C
〈c,v′〉 = sup

c∈H
〈c,v′〉 = hCG(Fv(K))(v

′) ≤ hK(v′), (3.4.1)

since CG(Fv(K)) ⊆ Fv(K) ⊆ K. The statement thus holds by letting Nv = {v′ ∈

Sn−1 : ‖v′ − v‖ ≤ ε}.

Note that {Nv : v ∈ W ∩ Sn−1} forms an open cover of W ∩ Sn−1, and since

W ∩Sn−1 is compact, there exists a finite subcover Nv1 , . . . , Nvk such that
⋃k
i=1 Nvi =

W ∩Sn−1. Now let S = SA ∪ ∪ki=1 Svi . We claim that CG(K,S) ⊆ K. Assume not,

then there exists x ∈ CG(K,S) \ K. Since CG(K,S) ⊆ CG(K,SA) ⊆ W + a and

K ⊆ W +a, by the separator theorem there exists w ∈ W ∩Sn−1 such that hK(w) =

supy∈K 〈y,w〉 < 〈x,w〉 ≤ hCG(K,S)(w). Since w ∈ W ∩ Sn−1, there exists i, 1 ≤

i ≤ k, such that w ∈ Nvi . Note then we obtain that hCG(K,S)(w) ≤ hCG(K,Svi )
(w) =

hKvi
(w) ≤ hK(w), a contradiction. Hence CG(K,S) ⊆ K as claimed. CG(K,S)

is a polytope because it is the intersection of polyhedra of which at least one is a

polytope.
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3.4.2 Approximation 2 of the CG Closure

In this section, we augment the first approximation of the CG(K) with a finite number

of extra CG cuts so that this second approximation matches CG(K) on the relative

boundary of K.

To achieve this, we observe that our first approximation of CG(K) is polyhedral

and contained in K, and hence its intersection with the relative boundary of K is

contained in the union of a finite number of proper exposed faces of K. Therefore,

by applying Proposition 3.3.10 to each such face (i.e. adding their lifted CG closure),

we can match CG(K) on the relative boundary as required. The following lemma

makes precise the previous statements.

Lemma 3.4.3. Let K ⊆ Rn be a convex set and P ⊆ K be a polytope. Then there

exists Fv1 , . . . , Fvk ⊆ K, proper exposed faces of K, such that P ∩ relbd(K) ⊆
⋃k
i=1

Fvi

Proof. Let F = {F : F ⊆ P, F a face of P , relint(F ) ∩ relbd(K) 6= ∅}. Since P is

polytope, note that the total number of faces of P is finite, and hence |F| <∞. We

claim that

P ∩ relbd(K) ⊆
⋃
F∈F

F. (3.4.2)

Take x ∈ P ∩ relbd(K). Let Fx denote the minimal face of P containing x (note

that P is a face of itself). By minimality of Fx, we have that x ∈ relint(Fx). Since

x ∈ relbd(K), we have that Fx ∈ F , as needed.

Take F ∈ F . We claim that there exists HF ⊆ K, HF a proper exposed face of K,

such that F ⊆ HF . Take x ∈ relint(F )∩ relbd(K). Let aff(K) = W + a, where W is

a linear subspace and a ∈ Rn. Since x /∈ relint(K), by the separator theorem, there

exists v ∈ W ∩ Sn−1 such that hK(v) = 〈x,v〉. Let HF = Fv(K). Note that since

v ∈ W ∩ Sn−1, Fv(K) is a proper exposed face of K. We claim that F ⊆ HF . Since

F is a polytope, we have that F = conv(ext(F )). Write ext(F ) = {c1, . . . , ck}. Now
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since x ∈ relint(F ), there exists λ1, . . . , λk > 0,
∑k

i=1 λi = 1, such that
∑k

i=1 λici = x.

Now since ci ∈ K, we have that 〈ci,v〉 ≤ hK(v). Therefore, we note that

〈x,v〉 =

〈
k∑
i=1

λici,v

〉
=

k∑
i=1

λi 〈ci,v〉 ≤
k∑
i=1

λihK(v) = hK(v) (3.4.3)

Since 〈x,v〉 = hK(v), we must have equality throughout. To maintain equality, since

λi > 0, 1 ≤ i ≤ k, we must have that 〈ci,v〉 = hK(v), 1 ≤ i ≤ k. Therefore ci ∈ HF ,

1 ≤ i ≤ k, and hence F = conv(c1, . . . , ck) ⊆ HF , as needed.

To conclude the proof, we note that the set {HF : F ∈ F} satisfies the conditions

of the lemma.

Proposition 3.4.4. Let K ⊆ Rn be a compact convex set. If CG(Fv) is finitely

generated for any proper exposed face Fv then ∃ S ⊆ Zn, |S| <∞, such that

CG(K,S) ⊆ K ∩ affI(K) (3.4.4)

CG(K,S) ∩ relbd(K) = CG(K) ∩ relbd(K) (3.4.5)

Proof. By Proposition 3.4.2, there exists SI ⊆ Zn, |SI | <∞, such that CG(K,SI) ⊆

K ∩ affI(K) and CG(K,SI) is a polytope. Since CG(K,SI) ⊆ K is a polytope, let

Fv1 , . . . , Fvk be the proper exposed faces of K given by Lemma 3.4.3. By Proposition

3.3.10, there exists Si ⊆ Zn, |Si| < ∞, such that CG(K,Si) ∩ Hvi = CG(Fvi). Let

S = SI ∪ ∪ki=1Si. We claim that CG(K,S) ∩ relbd(K) ⊆ CG(K) ∩ relbd(K). For

this note that x ∈ CG(K,S) ∩ relbd(K) implies x ∈ CG(K,SI) ∩ relbd(K), and

hence there exists i, 1 ≤ i ≤ k, such that x ∈ Fvi . Then x ∈ CG(K,S) ∩ Hvi ⊆

CG(K,Si)∩Hvi = CG(Fvi) ⊆ CG(K)∩relbd(K). The reverse inclusion is direct.

3.5 Proof of Theorem

Finally, we have all the ingredients to prove the main result of the Chapter. The

proof is by induction on the dimension of K. Trivially, the result holds for zero
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dimensional convex bodies. Now using the induction hypothesis, we can construct

the second approximation of CG(K) using Proposition 3.4.4 (since it assumes that the

CG closure of every exposed face is finitely generated). Lastly, we observe that any

CG cut for K not dominated by those already considered in the second approximation

of CG(K) must separate a vertex of this approximation lying in the relative interior

of K. From here, it is not difficult to show that only a finite number of such cuts

exists, thereby proving the polyhedrality of CG(K). The proof here is similar to the

one used for strictly convex sets, with the additional technicality that here aff(K)

may be irrational.

Theorem 3.5.1. Let K ⊆ Rn be a non-empty compact convex set. Then CG(K) is

finitely generated.

Proof. We proceed by induction on the affine dimension of K. For the base case,

dim(aff(K)) = 0, i.e. K = {x} is a single point. Here it is easy to see that setting

S = {±ei : i ∈ {1, . . . , n}}, we get that CG(K,S) = CG(K). The base case thus

holds.

Now for the inductive step let 0 ≤ k < n let K be a compact convex set where

dim(aff(K)) = k + 1 and assume the result holds for sets of lower dimension. By

the induction hypothesis, we know that CG(Fv) is finitely generated for every proper

exposed face Fv of K, since dim(Fv) ≤ k. By Proposition 3.4.4, there exists a set

S ⊆ Zn, |S| < ∞, such that (3.4.4) and (3.4.5) hold. If CG(K,S) = ∅, then we are

done. So assume that CG(K,S) 6= ∅. Let A = affI(K). Since CG(K,S) 6= ∅, we have

that A 6= ∅ (by (3.4.4)), and so we may pick t ∈ A∩Zn. Note that A− t = W , where

W is a linear subspace of Rn satisfying W = span(W ∩ Zn). Let L = W ∩ Zn. Since

t ∈ Zn, we easily see that CG(K − t, T ) = CG(K,T ) − t for all T ⊆ Zn. Therefore

CG(K) is finitely generated iff CG(K − t) is. Hence replacing K by K − t, we may

assume that affI(K) = W .

Let πW denote the orthogonal projection onto W . Note that for all x ∈ W ,
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and z ∈ Zn, we have that 〈z,x〉 = 〈πW (z),x〉. Now since CG(K,S) ⊆ K ∩ W ,

we see that for all z ∈ Zn, CG(K,S ∪ {z}) = CG(K,S) ∩ {x : 〈z,x〉 ≤ bhK(z)c} =

CG(K,S) ∩ {x : 〈πW (z),x〉 ≤ bhK(z)c}. Let L∗ = πW (Zn). Since W is a rational

subspace, we have that L∗ is full dimensional lattice in W . Now fix an element of

w ∈ L∗ and examine Vw := {bhK(z)c : πW (z) = w, z ∈ Zn}. Note that Vw ⊆ Z. We

claim that inf(Vw) ≥ −∞. To see this, note that

inf{bhK(z)c : πW (z) = w, z ∈ Zn} ≥ inf{bhK∩W (z)c : πW (z) = w, z ∈ Zn}

= inf{bhK∩W (πW (z))c : πW (z) = w, z ∈ Zn}

= bhK∩W (w)c > −∞.

Now since Vw is a lower bounded set of integers, there exists zw ∈ π−1
W (w) ∩ Zn such

that inf(Vw) = bhK(zw)c. From the above reasoning, we see that CG(K,S∪π−1
W (z)∩

Zn) = CG(K,S ∪ {zw}). Now examine the set

C = {w : w ∈ L∗, CG(K,S ∪ {zw}) ( CG(K,S)}.

Here we get that

CG(K) = CG(K,S ∪Zn) = CG(K,S ∪{zw : w ∈ L∗}) = CG(K,S ∪{zw : w ∈ C}).

From the above equation, if we show that |C| <∞, then CG(K) is finitely generated.

To do this, we will show that there exists R > 0, such that C ⊆ RBn, and hence

C ⊆ L∗ ∩RBn. Since L∗ is a lattice, |L∗ ∩RBn| <∞ for any fixed R, and so we are

done.

Now let P = CG(K,S). Since P is a polytope, we have that P = conv(ext(P )).

Let I = ext(P ) ∩ relint(K), and let B = ext(P ) ∩ relbd(K). Hence ext(P ) = I ∪ B.

By assumption on CG(K,S), we know that for all v ∈ B, we have that v ∈ CG(K).

Hence for all z ∈ Zn, we must have that 〈z,v〉 ≤ bhK(z)c for all v ∈ B. Now

assume that for some z ∈ Zn, CG(K,S ∪ {z}) ( CG(K,S) = P . We claim that
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〈z,v〉 > bhK(z)c for some v ∈ I. If not, then 〈v, z〉 ≤ bhK(z)c for all v ∈ ext(P ),

and hence CG(K,S ∪ {z}) = CG(K,S), a contradiction. Hence such a v ∈ I must

exist.

For z ∈ Zn, note that hK(z) ≥ hK∩W (z) = hK∩W (πW (z)). Hence 〈z,v〉 >

bhK(z)c for v ∈ I only if 〈πW (z),v〉 = 〈z,v〉 > bhK∩W (πW (z))c. Let C ′ :=

{w ∈ L∗ : ∃v ∈ I, 〈v,w〉 > bhK∩W c(w)}. From the previous discussion, we see that

C ⊆ C ′.

Since I ⊆ relint(K) ∩W = relint(K ∩W ) we have

δv = sup{r ≥ 0 : rBn ∩W + v ⊆ K ∩W} > 0

for all v ∈ I. Let δ = infv∈I δv. Since |I| < ∞, we see that δ > 0. Now let R = 1
δ
.

Take w ∈ L∗, ‖w‖ ≥ R. Note that ∀v ∈ I,

bhK∩W (w)c ≥ hK∩W (w)− 1 ≥ h(v+δBn)∩W (w)− 1 = 〈v,w〉+ δ‖w‖ − 1 ≥ 〈v,w〉 .

Hence w /∈ C ′. Therefore C ⊆ C ′ ⊆ RBn and CG(K) is finitely generated.

3.6 Conclusion

The need to solve non-linear IP models has rapidly expanded over the last years,

and this trend is likely to continue for the foreseeable future. Given the usefulness of

cutting planes in ILP, an important research direction is to understand the properties

of cutting plane closures in the non-linear setting. In this Chapter, we have made

significant progress in extending the study of the CG closure to this setting. Our

main result was to show that the CG closure of any compact set is polyhedral. In the

process of proving this, we believe we have developed useful tools for a more general

study of cutting plane closures in this setting. As a consequence of our result, we

also resolve an open question of Schrijver [119], who asked whether the CG closure

of irrational polytopes is polyhedral.
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Future Research. A first avenue for future research is to understand whether our

CG closure result can be extended to other classic cutting plane closures. Perhaps, a

first natural candidate, is the split closure. A split disjuntion is indexed by an integer

vector y ∈ Zn, and an integer π0 ∈ Z. For a convex set K ⊆ Rn, the split disjunction

induced by y and π0 is

Ky,π0 = conv{K ∩H≤y,π0 , K ∩H
≥
y,π0+1}

The split closure of K is SC(K) =
⋂

y∈Zn,π0∈ZK
y,π0 . In [35], we show that the split

closure of an ellipsoid not be polyhedral, so we cannot hope for a general polyhedrality

result as is satisfied by the CG closure. However, we show that for a strictly convex

body (a body whose boundary does not contain lines), the split closure is in fact

finitely generated, i.e. there exists a finite number of split disjunctions that generate

SC(K). An interesting open question is whether the same is true for general compact

sets. Another direction of interest, is to extend our polyhedrality result for the CG

closure to unbounded convex sets. We know that the result cannot extend to all

unbounded convex sets, as the CG closure of an irrational cone is not polyhedral.

However, the CG closure of any rational polyhedron is indeed polyhedral. Therefore,

exactly classifying the convex sets for which the CG closure is polyhedral remains an

interesting open question.
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CHAPTER IV

THE M-ELLIPSOID AND VOLUME ESTIMATION

The M-Ellipsoid is a fundamental construct in asymptotic convex geometry. An

M-Ellipsoid for an n-dimensional convex body K is an ellipsoid E whose covering

estimates with respect to K are single exponential, i.e. 2O(n) translates of E suffices to

cover K and vice versa. The existence of the M-Ellipsoid is a fundamental result due

to Milman [92], which has lead to many fundamental discoveries in convex geometry.

In this Chapter, we give algorithms for constructing an M-Ellipsoid for any convex

body, and provide an application to volume estimation in the oracle model. In par-

ticular, we give a nearly optimal deterministic algorithm for estimating the volume

of any symmetric convex body. We provide further applications of the M-Ellipsoid to

classical lattice problems and the integer programming problem in Chapters 5 and 7.

This Chapter is based on work from the papers [36] (joint with Chris Peikert and

Santosh Vempala) and [32] (joint with Santosh Vempala).

4.1 Introduction

Ellipsoids have traditionally played an important role in the study of convex bodies.

The classical Löwner-John ellipsoids, for instance, is the starting point for many

interesting studies. To recall John’s theorem, for any convex body K in Rn, there is

an ellipsoid E and center x ∈ Rn such that

x + E ⊆ K ⊆ x + nE.

In fact, this bound is achieved by the maximum volume ellipsoid contained in K.

Ellipsoids have also been critical to the design and analysis of efficient algorithms.

The most notable example is the ellipsoid algorithm [122, 127] for linear [74] and
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convex optimization [56], which represents a frontier of polynomial-time solvability.

For the basic problems of sampling and integration in high dimensions, the inertial

ellipsoid defined by the covariance matrix of a distribution has played an important

role in the development of efficient algorithms [69, 88, 126]. This ellipsoid also achieves

the bounds of John’s theorem for general convex bodies (for centrally-symmetric

convex bodies, the max-volume ellipsoid achieves the best possible sandwiching ratio

of
√
n while the inertial ellipsoid could still have a ratio of n).

Another ellipsoid that has played a critical role in the development of modern

convex geometry is the M-Ellipsoid (Milman’s ellipsoid). This object was introduced

by Milman as a tool to prove fundamental inequalities in convex geometry such as

the Bourgain-Milman and reverse Brunn-Minkowski inequality (see e.g., Chapter 7

of [106]). An M-Ellipsoid E of a convex body K has small covering numbers with

respect to K. As shown by Milman, every convex body K has an ellipsoid E for which

the number of translates of E needed to cover K and vice versa is bounded by 2O(n)

(i.e. N(K,E)N(E,K) = 2O(n)). This is the best possible bound up to a constant in

the exponent. In contrast, the John ellipsoid can have this covering bound as high

as nΩ(n). There are now multiple proofs of existence of the M-Ellipsoid: the original

construction due to Milman [92], multiple ones by Pisier [106], and most recently, by

Klartag [77].

The complexity of computing these ellipsoids is important for the applications

mentioned above, but is also interesting to study for its own sake. John ellipsoids are

NP-hard to compute, but their worst case sandwiching bounds can be approximated

deterministically to within O(
√
n) in polynomial time via the ellipsoid method [56].

Inertial ellipsoids can be approximated to arbitrary accuracy by random sampling in

polynomial time [69]. The associated question for M-Ellipsoids however has, to the

best of our knowledge, not been considered previously.
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Here we consider the task of constructing the M-Ellipsoid and explore its applica-

tion to volume estimation. The extent to which randomness is essential for efficiency

in computation is a very interesting and important question in computational com-

plexity. Here we use the M-Ellipsoid to improve the deterministic complexity of

volume estimation, a problem where a strong separation between randomized and

deterministic complexity is known in the oracle model [51, 44]. In Chapter 5, we pro-

vide further applications of the M-Ellipsoid to classical lattice problems, namely the

Shortest Vector Problem (SVP) and Closest Vector Problem (CVP), and in Chapter

7 we give its application to the Integer Programming Problem (IP).

4.1.1 Results

The main results of this chapter are two algorithms for computing M-Ellipsoids for

arbitrary convex bodies in the oracle model. The first algorithm is based on an

M-Ellipsoid construction of Klartag [77] and runs in randomized polynomial time.

The second, based on Milman’s original construction [92], runs in deterministic 2O(n)

time and uses polynomial space. Lastly, we show that Milman’s construction can

be modified to give a nearly optimal algorithm for deterministically estimating the

volume of a symmetric convex body. A crucial tool we develop for this purpose,

which will have many applications in the next chapters, is a near optimal algorithm

for computing a cover of a convex body by an ellipsoid.

Here the input convex bodies will be specified by well guaranteed membership

oracles (see section 2.5.1). We measure the complexity of our algorithms by the

number of oracle calls and arithmetic computations.

Our first algorithm, based on Klartag’s M-Ellipsoid construction, yields a poly(n)

time randomized algorithm which succeeds with high probability.

Theorem 4.1.1 (M-Ellipsoid generator, informal). There is a polynomial-time ran-

domized algorithm that with high probability computes an M-Ellipsoid E of a given
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n-dimensional convex body K.1

The next result is an algorithm which compute a near optimal covering of a convex

body K by an a given ellipsoid E. In particular, it allows us to certify that a given

ellipsoid E is an M-Ellipsoid of K.

Theorem 4.1.2 (Ellipsoid covering algorithm, informal). Given an n dimensional

convex body K and ellipsoid E, there is a deterministic 2O(n)N(K,E)-time and poly-

nomial space algorithm which outputs a covering of K by E of size at most 2O(n)N(K,E).2

We remark that the above algorithm outputs the elements of the covering one

at a time without storing them; this is critical for ensuring the polynomial space

complexity. Combining the previous two theorems (using a certain duality relation

to bound N(E,K)), we get an expected 2O(n)-time and polynomial space algorithm

that is guaranteed to output an M-Ellipsoid and its implied covering for any given

convex body K. We note that the computed covering of K by E will play a critical

role in both the applications to volume estimation and lattices problems.

The second algorithm, based on Milman’s M-Ellipsoid construction, yields a de-

terministic 2O(n) time and poly(n) space algorithm. Moreover, there is a 2Ω(n) lower

bound for deterministic algorithms in the oracle model, so this is the best possible

up to a constant in the exponent.

Theorem 4.1.3. There is a deterministic 2O(n) time and poly(n) space algorithm

that computes an M-Ellipsoid E of any given n dimensional convex body K.

We remark that the above algorithm will not need to build coverings to certify

the outputted M-Ellipsoid. However, as mentioned previously, the covering of K by

E will be crucial for the intended applications.

1We thank Bo’az Klartag for suggesting to us that his M-Ellipsoid construction [78] can be made
algorithmic.

2We thank Gideon Schechtman for suggesting the use of a parallelepiped tiling to compute the
covering.
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We now explore the consequences of the deterministic M-Ellipsoid construction

to the problem of estimating the volume of a convex body. This is an ancient prob-

lem that has lead to many insights and algorithmic techniques in high-dimensional

geometry and probability theory. On the one hand, the problem can be solved for

any convex body presented in the general membership oracle model in randomized

polynomial time to arbitrary accuracy [45]. On the other hand, the following lower

bound (improving on [48]) shows that deterministic algorithms cannot achieve such

approximations.

Theorem 4.1.4. [51] Suppose there is a deterministic algorithm that takes a convex

body K as input and outputs A(K), B(K) such that A(K) ≤ vol(K) ≤ B(K) and

makes at most na calls to the membership oracle for K. Then there is some convex

body K for which

B(K)

A(K)
≤
(

cn

a log n

)n/2
where c is an absolute constant.

In particular, this implies that even achieving a 2O(n) approximation requires 2Ω(n)

oracle calls. Now the volume of an M-Ellipsoid E of K is clearly within a factor of

2O(n) of the volume of K, thus Theorem 4.1.3 gives a 2O(n) algorithm that achieves

this approximation. And, as claimed, we have a lower bound of 2Ω(n) for computing

an M-Ellipsoid deterministically. We state this corollary formally.

Theorem 4.1.5. There is a deterministic 2O(n) time and polynomial space algorithm

that estimates the volume of any given n-dimensional convex body K to within a 2O(n)

multiplicative factor.

A natural question is whether this can be generalized to a trade-off between ap-

proximation and complexity. Indeed the following result of Bárány and Füredi [52]

gives a lower bound.
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Theorem 4.1.6. [52] For any 0 ≤ ε ≤ 1, any deterministic algorithm that estimates

the volume of any input symmetric convex body to within a (1 + ε)n factor given

only a membership oracle to the body, must make at least (1 + 1/ε)Ω(n) queries to the

membership oracle.

Our next result answers this question in the affirmative. Here we apply the tech-

niques from the deterministic M-Ellipsoid construction to give an algorithm that

essentially matches the best possible complexity (up to a constant in the exponent)

for centrally symmetric convex bodies.

Theorem 4.1.7. For any 0 ≤ ε ≤ 1, there is a deterministic algorithm that given a

symmetric convex body K ⊆ Rn computes a number V ≥ 0, satisfying V ≤ voln(K) ≤

(1 + ε)nV , in 2O(n)(1 + 1/ε)O(n) time and polynomial space.

Our last result concerns finding a good “central” point for a convex body K.

For symmetric convex bodies, the center of symmetry is the obvious center to pick.

For asymmetric bodies however, the question becomes more subtle. For the lattice

algorithms in the following chapters, a useful notion of good center, will be any point

“approximately” maximizing the following ratio

max
x∈K

voln((K − x) ∩ (x−K))

voln(K)
. (4.1.1)

In convex geometry, the above ratio is as known Kovner-Besicovitch measure of sym-

metry for K. It is known that a uniform point X ∈ K satisfies that the expected ratio

is 2−n. It was shown by Milman and Pajor [95] that this bounds holds in particular

for the centroid of K (see Theorem 2.3.7).

We shall call any point x ∈ K for which the ratio (4.1.1) is 2−O(n) an approximate

center of mass. Using the properties of the centroid and our deterministic volume

estimation algorithm, we give a Las Vegas algorithm for computing good approximate

centers of mass.
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Theorem 4.1.8. For any convex body K, there is a randomized algorithm which runs

in 2O(n) time, using polynomial space and randomness that computes a center x ∈ K

satisfying voln((K − x) ∩ (x−K)) ≥ 5−nvoln(K).

4.1.2 The M-Ellipsoid

An M-Ellipsoid of a convex body K is an ellipsoid E with the property that at most

2O(n) translated copies of E are sufficient to cover all of K, and at most 2O(n) copies

of K are sufficient to cover E. The following theorem was first proved for symmetric

bodies by Milman [92] and extended by Milman and Pajor [95] to the general case.

Theorem 4.1.9 ([95]). There exists an absolute constant C > 0, such that for all

n ≥ 1 and any convex body K ⊆ Rn, there exists an ellipsoid E satisfying

N(K,E) ·N(E,K) ≤ Cn. (4.1.2)

Definition 4.1.10 (M-Ellipsoid). Let K ⊆ Rn be a convex body. If E is an ellipsoid

satisfying Equation (4.1.2) (for some particular fixed C) with respect to K, then we

say that E is an M-Ellipsoid of K.

There are many equivalent ways of understanding the M-Ellipsoid; here we list a few

(proofs of many of these equivalences can be found in [95]).

Theorem 4.1.11. Let K ⊆ Rn be a convex body with b(K) = 0 (centroid at the

origin), and let E ⊆ Rn be an origin-centered ellipsoid. Then the following conditions

are equivalent, where the absolute constant C may vary from line to line:

(1) N(K,E) ·N(E,K) ≤ Cn.

(2) vol(K + E) ≤ Cn ·min{vol(E), vol(K)}.

(3) supt∈Rn vol(K ∩ (t+ E)) ≥ C−n ·max{vol(E), vol(K)}.

(4) E∗ is an M-Ellipsoid of K∗.
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From the above we see that the M-Ellipsoid is very robust object, and in particular

is stable under polarity (assuming K is near-symmetric). We will use this fact (or a

slight variant of it) in what follows, to help us certify a candidate M-Ellipsoid.

For specific examples, M-Ellipsoids for the `p balls are easy to describe. Using

condition 3 of Theorem 4.1.11 above and standard volume estimates for `p balls, i.e.,

that vol(Bn
p )1/n = Θ(n−1/p), we have the following:

Lemma 4.1.12. Let Bn
p denote the n-dimensional `p ball. Then

• For 1 ≤ p ≤ 2, n
1
2
− 1
p · Bn

2 ⊆ Bn
p (the largest inscribed ball in Bn

p ) is an M-

Ellipsoid for Bn
p .

• For p ≥ 2, n
1
2
− 1
p ·Bn

2 ⊇ Bn
p (the smallest containing ball of Bn

p ) is an M-Ellipsoid

for Bn
p .

For general convex bodies, the first proof of existence for the M-Ellipsoid (see [92])

relies on a technique, developed by Milman, known as isomorphic symmetrization.

This technique, which we describe and implement in section 4.4, slowly tranforms

any input body into an ellipsoid via a sequence of surgeries. Though the construction

does not seem implementable in polynomial time, it can be used to yield a 2O(n) time

deterministic algorithm. As mentioned in the introduction, there is a 2Ω(n) lower

bound for any such deterministic construction.

In section 4.3, we present a more direct construction of Klartag, which admits

a randomized polynomial time algorithm. In constrast to the symmetrization ap-

proach, Klartag’s approach is fundamentally randomized, and seems difficult to make

deterministic.

To begin, in section 4.2, we give an efficient procedure to compute a covering of a

convex body by an ellipsoid.
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4.2 Building a Covering

In this section, we describe how to efficiently build a covering of a convex body

K ⊆ Rn by an ellipsoid E. To construct such a covering, we first reduce the problem

of covering K by E to the problem of computing a tiling of K by a maximum volume

inscribed parallelepiped P of E. Though the such a tiling will clearly yield a covering

of K by E (since P ⊆ E), it will not be optimal. However, we will see that the size of

the tiling will be at worst a 2O(n) factor larger than N(K,E) (the size of the optimal

covering of K by E), which will suffice for our purposes.

To understand the structure of such a tiling, we first note that the centers of the

translates of P in the tiling of K correspond to points in a lattice. Due to this special

lattice structure, we will be able to lazily enumerate the centers in the tiling (i.e.

produce them one by one on demand) very efficiently using only polynomial space.

Here we will rely on a space efficient graph enumeration technique known as reverse

search, which was first developed by Avis and Fukuda [6] for enumerating the vertices

of rational polyhedra.

Reverse Search for Enumeration: To be able to describe our parallelepiped

tiling algorithm (which will be used to build ellipsoid coverings), we first introduce

the Avis-Fukuda reverse search enumeration technique [6] 3. This technique was

developed by Avis and Fukuda to get an efficient algorithm for enumerating the

vertices of a polyhedron or hyperplane arrangement.

In the reverse search setting, we start with a graph G = (V,E) (generally with

only an implicit description) of max degree ∆. To interact with G, we have access to

an adjacency oracle Adj, which on input v ∈ V and k, 1 ≤ k ≤ ∆, either returns the

index k neighbor of v or returns NULL if v has no neighbor at index k. Here we have

3We are indebted to Matthias Köppe for suggesting the use of reverse search to reduce the space
complexity of our covering and enumeration algorithms.
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the guarantee that the neighbors of v returned from distinct indices are distinct, and

that every neighbor of v has an associated index.

Finally, we are given a local search function f : V → V of G. Let S =

{v ∈ V : f(v) = v} denote the sink of nodes of f . By local search function of

G, we mean that for any v ∈ V there exists a finite integer k ≥ 1 such that

f (k)(v) = v (where f (k)(v) = f(f (k−1)(v)) and f (0)(v) = v), and that {f(v),v)} ⊆ E

forall v ∈ V \ S. Stated differently, the graph T (f) = (V,E(f)), where E(f) =

{(v, f(v)) : v ∈ V \ S}, is directed subforest of G whose sinks correspond to S.

The main goal of reverse search is to “discover” the graph G, i.e. to output all the

vertices of G in a time and space efficient manner. Given the adjacency oracle, we

can certainly perform a breadth or depth search search of G to achieve this, however

such an approach requires space proportional to the size of the graph (which could be

huge) and hence is undesirable. To avoid this, Avis and Fukuda propose to use the

directed tree structure T (f) induced by f on G to perform the enumeration. When

G is a rooted tree, a full traversal of the tree starting from the root, crossing each

edge exactly twice, can be performed while only storing two nodes of the tree at any

one time, i.e. the current visited node its immediate predecessor.

Using the local search and adjacency function, we will be able to traverse the tree

T (f) in the aforementioned way using only local information. In particular, given a

vertex v ∈ V , we will only need a way to list the parent and the child nodes of v in

T (f). Here, the parent of v in T (f) is f(v), and w = Adj(v, k), 1 ≤ k ≤ ∆, is a child

of v in T (f) iff w 6= NULL and f(w) = v. Now given a sink vertex s ∈ S, reverse

search will be able to enumerate the entire (weakly) connected component of T (f)

containing s. The main caveat here is that the reverse search procedure requires the

set of sink vertices S to be given explicitly to initiate the tree traversal. This must

be achieved in an instance specific way.

We now provide an implementation of the Avis-Fukuda reverse search algorithm
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(taken from [6]) and its associated guarantees.

Algorithm 4.1 Reverse-Search(Adj,∆, S, f)

Input: Adjacency oracle Adj for graph G = (V,E), max degree bound ∆, initial set
of sinks S ⊆ V , and local search function f .

Output: Outputs V .
for each vertex s ∈ S do
v ← s; j ← 0 . j: neighbor counter
repeat

while j < ∆ do
if j = 0 then

output v . Output on first occurence
j ← j + 1; next← Adj[v, j]
if next 6= NULL and f(next) = v then
v ← next; j ← 0 . Reverse traverse

if v 6= s then
u← v; v ← f(v); j ← 0 . Forward traverse
repeat
j ← j + 1

until Adj[v, j] = u . Restore j
until v = s and j = ∆

Theorem 4.2.1 (Reverse Search [6]). Given G = (V,E), Adj, ∆, S and f as above,

Algorithm 4.1 outputs the vertices of G (each vertex is outputted exactly once) using

space proportional to storing 2 elements of V , using O(∆|V |) queries to the Adj oracle

and O(|E|) queries to the local search function f . Furthermore, if the search is halted

after having visited N ≤ |V | vertices of G, the number of calls to Adj and f up until

termination is O(∆N).

We now present the Parallelepiped-Tiling algorithm which uses reverse search to

construct a parallelepiped tiling of any convex body K in a time and space efficient

manner.

Theorem 4.2.2. Algorithm 4.2 Algorithm Parallelepiped-Tiling is correct, and runs

in 4nN(K,P ) time using polynomial space.

Proof. Since B is invertible, we note that P = B[−1, 1)n tiles Rn with respect to the

lattice L = 2BZn, i.e. L+ P = Rn and for distinct x,y ∈ L, x + P ∩ y + P = ∅.
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Algorithm 4.2 Parallelepiped-Tiling(K,P, ε): Deterministic parallelepiped tiling of
a convex body.

Input: A weak membership oracle OK for an (a0, r, R)-centered convex body K, a
parallelepiped P = B[−1, 1)n, B ∈ Rn×n invertible, and tolerance 0 < ε ≤ 1.

Output: Outputs tiling Λ of K by P with respect to L = 2BZN , satisfying Λ ⊆
K + (1 + ε)P .

1: Build intersection oracle INT, such that INT(x, ε) = 1 if K ∩ (P + x) 6= ∅ and
INT(x, ε) = 0 if K ∩ ((1 + ε)P + x) = ∅.

2: Let L = 2BZn, and let {u1, . . . ,u2n} = {±2Be1, . . . ,±2Ben}.
3: Let G be the graph with vertex set V = {x ∈ a0 + L : INT(x, ε) = 1}, and edge

set E = {(x,y) : x,y ∈ V,x− y ∈ {u1, . . . ,u2n}}.
4: Build adjacency oracle Adj for G, where for y ∈ V and i ∈ [2n],

Adj[y, i] returns y + ui if INT(y + ui, ε) = 1 and NULL otherwise.
5: Build local search function f for G, where for y ∈ V , f(y) either

returns Adj[y, i] for the minimum i ∈ [2n] satisfying Adj[y, i] 6= NULL and∥∥∥∥1

2
B−1(Adj[y, i]− a0)

∥∥∥∥
1

=

∥∥∥∥1

2
B−1(y − a0)

∥∥∥∥
1

− 1,

or returns y if no such i exists.
6: return Reverse-Search(Adj, 2n, a0, f)

We now wish to tile K with copies of P . We examine the set of centers of tiles

intersecting K, i.e.

H = {x ∈ a0 + L : (x + P ) ∩K 6= ∅} = (a0 + L) ∩ (K + P )

We note that since K is (a0, r, R) centered, a0 ∈ H. Since P + L = Rn, it is easy

to see that K ⊆ H + P . To successfully output the centers in the tiling H, we shall

need to decide for x ∈ a0 + L, whether x + P ∩ K 6= ∅. For simplicity, in the rest

of the proof, we replace P = B[−1, 1)n by P̄ = B[−1, 1]n (the closure of P ). Clearly

the set of intersecting tiles is only larger in this way, and hence the output will still

enable us to compute a tiling for the original P .

Distinguishing Intersecting Tiles. Since we only have a weak membership oracle

for K, we will only be able to decide whether x + P approximately intersects K. To

formalize this, we build an weak intersection oracle INT which queried on x ∈ Rn,
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ε > 0 satisfies

INT(x, ε) =


0 : x + P ∩K = ∅

1 : x + (1 + ε)P ∩K 6= ∅
.

Using this oracle we will be able to overestimate H, and compute a set S ⊆ a0 + L

such that

H ⊆ S ⊆ {x ∈ a0 + L : x + (1 + ε)P ∩K 6= ∅}

which will suffice for our purposes. Now to build INT, we first remark that for x ∈ Rn,

t ≥ 0

x + tP ∩K 6= ∅ ⇔ inf
y∈K
‖y − x‖P ≤ t⇔ inf

y∈K
‖B−1(y − x)‖∞ ≤ t

Hence deciding the minimum scaling t of P for which x + tP ∩K 6= ∅ is equivalent to

solving a simple convex program. The above convex program is of the form described

in Theorem 2.5.9, hence for ε > 0, and x ∈ Qn, we may compute a number ω ≥ 0

such that

|ω − inf
y∈K
‖y − x‖P | ≤ ε (4.2.1)

in polynomial time. We now build INT. On query x ∈ Qn, ε > 0, we do the following:

(1) Compute ω ≥ 0 satisfying |ω − infy∈K ‖y − x‖P | ≤ ε
2
.

(2) If ω ≤ 1 + ε
2

return 1, otherwise return 0.

From (4.2.1) the above procedure clearly runs in polytime. To prove correctness, we

must show that INT(x, ε) = 1 if x+P∩K 6= ∅ and INT(x, ε) = 0 if x+(1+ε)P∩K = ∅.

If (x + P ) ∩K 6= ∅, we note that infy∈K ‖y − x‖P ≤ 1, hence by the guarantee on ω

we have that

ω ≤ inf
y∈K
‖y − x‖P +

ε

2
≤ 1 +

ε

2
,

and so we correctly classify x. If x + (1 + ε)P ∩K = ∅, then infy∈K ‖y− x‖P > 1 + ε

and so

ω ≥ inf
y∈K
‖y − x‖P −

ε

2
> 1 +

ε

2

as needed.
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Implementing Reverse Search to Compute the Tiling. Let

Hε = {x ∈ a0 + L : INT(x, ε) = 1}.

By construction of the intersection oracle INT, we have that H ⊆ Hε ⊆ (a0 + L) ∩

(K+ (1 + ε)P ). Hence the elements of Hε contain the desired tiling H with a “small”

number of extraneous tiles.

To compute the tiling, we will run a taylored reverse search on the graph G =

(V,E) where V = Hε and E = {{x,y} : x,y ∈ V,x− y ∈ 2B{±e1, . . . ,±en}}. Note

that the G has max degree ∆ = 2n. To implement the adjacency oracle Adj, we first

let let u1,u2, . . . ,u2n denote an ordering of the vectors ±2Be1, . . . ,±2Ben. For a

vertex v ∈ Hε, and integer k, 1 ≤ k ≤ 2n, Adj(v, k) returns v+uk if INT(v+uk,
1
n
) =

1 (i.e. checks whether v+uk ∈ Hε) and NULL otherwise. We note that Adj is correct

and runs in polynomial time.

Next we implement a local search function f satistying the following properties:

(1) a0 ∈ Hε is a sink of f , (2) the connected component of a0 in T (f) (the directed

subforest induced by f) contains H, and (3) f runs in polynomial time. We note that

if we build f satisfying properties (1) and (2), then running reverse search from the

root a0 gives us a superset of the desired tiling H. On input v ∈ Hε, the local search

f does the following. Compute the minimum i ∈ [2n], such that v + ui ∈ Hε and∥∥∥∥1

2
B−1(v + ui − a0)

∥∥∥∥
1

=

∥∥∥∥1

2
B−1(v − a0)

∥∥∥∥
1

− 1.

If a minimizing index i satisfying the above is found, return v + ui; else, return v.

Here we see that f attempts to find the lowest indexed neighbor which gets closer

to the “root” a0 (under a certain `1 distance). To output the desired tiling, we run

the reverse search algorithm on the graph G, ∆, adjacency oracle Adj, local search

function f , and initial set S = {a0}.

The correctness of the algorithm at this point depends solely on the stated prop-

erties of the local search function f . These are proved in the following claim.
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Claim: f satisfies properties (1),(2) and (3).

Proof. Without loss of generality (after an appropriate affine transformation), we may

assume that B = 1
2
In (In is n × n identity) and that a0 = 0 (and hence 0 ∈ K). In

this case, we see that L = 2BZn = Zn, P = [−1/2, 1/2]n, H = (K + P ) ∩ Zn.

For (1), note that any neighbor w of 0 in G (i.e. one of ±{e1, . . . , en}) is non-zero

and integral, and hence satisfies ‖1
2
B−1w‖1 = ‖w‖1 ≥ 1. Therefore, by construction

of f , we have that f(0) = 0 as needed.

For (2), we first show that every v ∈ H,v 6= 0, has a neighbor w in G such that

‖w‖1 = ‖v‖1−1. Since v ∈ H, we have that (v +P )∩K 6= ∅. Pick y ∈ (v +P )∩K.

Note that

v + P = v + [−1/2, 1/2]n = {x ∈ Rn : uti(x− v) ≤ 1

2
, i ∈ [2n]}

where {u1, . . . ,u2n} = {±e1, . . . ,±en}. Examine the line (1 − α)y for α ∈ [0, 1].

Since 0 /∈ v + P and v + P is a closed and convex, there exists a minimum α ∈ [0, 1)

such that ȳ = (1 − α)y ∈ v + P and y − δy /∈ v + P for all δ > 0. Since 0,y ∈ K,

we see that ȳ ∈ K. Note that ȳ is on the boundary of v + P , and so the set

I = {i ∈ [2n] : uti(ȳ − v) = 1
2
} (indices of the tight constraints for ȳ) is non-empty.

I claim that there exists i ∈ I, such that utiy < 0. Assume not, then for δ > 0 and

i ∈ I, uti(ȳ − δy − v) = 1
2
− δutiy ≤ 1

2
. Since the constraints indexed by i ∈ [2n] \ I

are not tight at ȳ, there exists δ > 0 (small enough) such that ȳ − δy ∈ v + P , a

contradiction to our assumption on ȳ.

Take i ∈ I such that utiy < 0. I claim that y+ui ∈ H, and that ‖y+ui‖1 = ‖y‖1−

1. First, we show that ȳ ∈ ui+v+P = {x ∈ Rn : utj(x− ui − v) ≤ 1
2
, j ∈ [2n]}. Since

the u′js are sign flips of the standard basis vectors, we have that utjui = 0 unless

uj = ±ui. For j ∈ [2n] satisfying utjui = 0, note that uti(ȳ−ui−v) = uti(ȳ−v) ≤ 1
2

since ȳ ∈ v +P . Now assume uj = ui, then uti(ȳ−ui−v) = 1
2
−‖ui‖2 = −1

2
. Lastly,

if uj = −ui, then −uti(ȳ − ui − v) = 1
2
. Hence ȳ ∈ v + ui + P as needed. Since
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ȳ ∈ K we have that v + ui ∈ K + P , and hence v + ui ∈ H. Lastly, we show that

‖v + ui‖1 = ‖v‖1 − 1. Take j ∈ [n], such that ui = ±ej. Here we have that

‖v + ui‖1 =
∑
k∈[n]

|etk(v + ui)| = |etj(v + ui)|+
∑

k∈[n],k 6=j

|etkv|

= |etj(v + ui)| − |etjv|+ ‖v‖1

Let a = etjv and b = etjui. Since v ∈ Zn and ui = ±ej, we have that a ∈ Z and

b ∈ {−1, 1}. I claim that ab < 0. To see this, first note that uti(ȳ−v) = 1
2

and hence

uti(ȳ) − 1
2

= utiv = ab. Since ytui < 0 and ȳ = (1 − δ)y, δ ∈ [0, 1), we have that

utiȳ < 0. Hence ab < −1
2
< 0. Combining ab < 0, a ∈ Z and b ∈ {−1, 1}, yields that

|ej(v + ui)| = |a+ b| = |a| − 1. Therefore ‖v + ui‖1 = ‖v‖1 − 1 as needed.

To prove (2), we note that for v ∈ Zn, ‖v‖1 =
∑

i∈[n] |etv| ∈ Z. From the above

argument, for v ∈ H = (K + P ) ∩ Zn, v 6= 0, we have that f(v) ∈ H and ‖f(v)‖1 =

‖v‖1 − 1. Therefore letting t = ‖v‖1 ∈ Z, we have that ‖f (t)(v)‖1 = ‖v‖1 − t = 0,

and hence f (t)(v) = 0. Therefore the connected component of 0 in T (f) contains H

as needed.

Lastly, on input v, f calls the oracle INT at most 2n times, and then performs

basic matrix operations. Therefore f runs in polynomial time and satisfies (3) as

needed.

Runtime: To bound the running time, we need only bound the time needed to

run the reverse search. By Theorem 4.2.1, we have that the search uses O(∆|V |) =

O(2n|Hε|) calls to the adjacency oracle Adj and O(|E|) = O(∆|V |) = O(2n|Hε|)

queries to the local search function f . Now we note that

|Hε| =
voln(Hε + P )

voln(P )
≤ voln(K + (1 + ε)P + P )

voln(P )
=

voln(K + (2 + ε)P )

voln(P )

Now let T ⊆ Rn denote a covering of K by P (i.e. K ⊆ T + P ), satisfying |T | =

N(K,P ). Now note that

voln(K + (2 + ε)P )

voln(P )
≤ voln(T + (3 + ε)P )

voln(P )
≤ |T |voln((3 + ε)P )

voln(P )
= N(K,P )(3 + ε)n
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Since both queries to f and Adj take polynomial time, the total running time is

4nN(K,P ) poly(·) (ε ≤ 1). Lastly, since reverse search uses space polylogarithmic in

|Hε| (i.e. storing two nodes of the graph), the total space usage is polynomial.

We now give the straightforward reduction from ellipsoid covering to parallelepiped

covering.

Algorithm 4.3 Ellipsoid-Cover(K,E): Deterministic construction of an ellipsoid
covering of a convex body.

Input: A weak membership oracle OK for an (a0, r, R)-centered convex body K, an
ellipsoid E = E(A), A � 0.

Output: Outputs a covering of K by E of size at most
(
3
√

πe
2

(1 + o(1))
)n
N(K,E).

1: Compute B = A−
1
2 and let P = 1√

n
B[−1, 1)n (a maximum-volume inscribed

parallelepiped of E).
2: return Parallelepiped-Tiling(K, P , 1

n
)

Theorem 4.2.3. Algorithm Ellipsoid-Cover is correct and runs in(
3
√

πe
2

(1 + o(1))
)n
N(K,E) poly(·) time using polynomial space.

Proof.

Correctness: Given the correctness of algorithm Parallelepiped-Tiling, to check

that the output is indeed a covering of K by E, we need only check that P ⊆ E.

To see this, we first note that E = A−
1
2Bn

2 . Next by the containment 1√
n
[−1, 1)n =

1√
n
Bn
∞ ⊆ Bn

2 , we have that P ⊆ 1√
n
A−

1
2Bn
∞ ⊆ A−

1
2Bn

2 = E, as needed.

Now we need to show that the size of the outputted covering is bounded by

N(K,E) in the appropriate way. To begin, we note that

voln(E)

voln(P )
=

voln(A−
1
2Bn

2 )

voln( 1√
n
A−

1
2Bn
∞)
≤ voln(Bn

2 )

voln( 1√
n
Bn
∞)

=

(√
πe

2
(1 + o(1))

)n
By the guarantees on the algorithm Parallelepiped-Tiling, on inputs K,P , 1

n
, it returns

a tiling H of K by P satisfying H ⊆ K + (1 + 1
n
)P . From the analysis of the
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Parallelepiped-Tiling algorithm, we have that

|H| ≤
voln(K + (2 + 1

n
)P )

voln(P )
≤
(√

πe

2
(1 + o(1))

)n
voln(K + (2 + 1

n
)P )

voln(E)

≤
(√

πe

2
(1 + o(1))

)n
voln(K + (2 + 1

n
)E)

voln(E)

Now, let T denote a covering of K by E satisfying |T | = N(K,E). Then

voln(K + (2 + 1
n
)E)

voln(E)
≤

voln(T + (3 + 1
n
)E)

voln(E)
≤ N(K,E)

(
3 +

1

n

)n
≤ N(K,E)3ne

This gives the final bound |H| ≤
(
3
√

πe
2

(1 + o(1))
)n
N(K,E) as needed.

Runtime: Since A � 0 we have A−
1
2 is well defined and can be computed in polyno-

mial time. By the analysis of algorithm parallelepiped tiling, we know that the tiling

algorithm runs in |H| poly(·) using polynomial space. Using the the above bound on

|H| yields the result.

4.3 Klartag’s Construction

Our first algorithm for generating a candidate M-Ellipsoid is based on a constructive

proof of Theorem 4.1.9 by Klartag [78], who suggested to us the idea of using these

techniques to build an M-Ellipsoid algorithmically.

Let K ⊆ Rn denote a convex body. To understand Klartag’s construction, we be-

gin with the assertion that under the slicing conjecture (also known as the hyperplane

conjecture), a
√
n scaling of K’s inertial ellipsoid is an M-Ellipsoid — indeed, this is

an equivalent form of the slicing conjecture (see [96] for a proof). Since the validity

of the slicing conjecture is unknown, Klartag shows that a random perturbation K ′

of K, which remains close to K and has bounded isotropic constant. We reproduce

the main theorem of [78] below:

Theorem 4.3.1 ([78]). Let K ⊆ Rn be a convex body. Then for every real ε ∈ (0, 1),

there exists a convex body K ′ ⊆ Rn such that
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(1) d(K,K ′) = inf {b/a : ∃ x,y ∈ Rn s.t. a(K ′ − x) ⊆ K − y ⊆ b(K ′ − x)} ≤ 1+ε.

(2) LK′ ≤ c/
√
ε.

where c > 0 is an absolute constant and LK′ is the isotropic constant of K ′.

The relationship between the above theorem and the existence of the M-Ellipsoid

is straightforward. First, from the closeness of K and K ′ it follows that an M-Ellipsoid

for K ′ is an M-Ellipsoid for K. Lastly, from the bound on LK′ , a
√
n scaling of the

inertial ellipsoid of K ′ is an M-Ellipsoid for K ′.

Here we will not need to construct K ′ itself, but only an ellipsoid very close to

its inertial ellipsoid (which as just mentioned is an M-Ellipsoid for K). The body

K ′ is derived from a certain family of reweighted densities over K. These densities

are given by exponential reweightings of the uniform density along some vector s ∈

Rn, i.e., fs(x) = e〈s,x〉 for x ∈ K (and 0 otherwise). For s chosen uniformly from

n · conv{K − b(K),b(K)−K}∗, the reweighting fs has two important properties:

(i) it is not too highly biased away from uniform over K, and (ii) it has bounded

isotropic constant (independent of n) with very high probability. Let E be the inertial

ellipsoid of fs (or any reasonably good approximation to it), which can be found by

sampling from fs. The first property of fs allows us to prove that E can be covered

by 2O(n) copies of K, while the second property lets us cover K by 2O(n) copies of E

(see Lemma 4.3.8).

To make everything work algorithmically, we need robust versions of Klartag’s

main lemmas, since we will only be able to the approximate centroid of K, sample s

from near uniform distribution, and estimate the covariance matrix of fs.

Algorithm 4.4 makes the above description more formal. Note that given an ora-

cle for a convex body, an oracle for the polar body can be constructed in polynomial

time [56]. Sampling, both from the uniform and exponentially reweighted distribu-

tions, can be done in polynomial time using the random walk algorithm of [87, 86].
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Theorem 4.3.8 together with Theorem 4.3.9 implies that the algorithm’s output is

indeed an M-Ellipsoid with good probability.

Algorithm 4.4 M-Gen: Randomized generation of a candidate M-Ellipsoid.

Input: A weak membership oracle OK for a (a0, r, R)-centered convex body K.
Output: With probability 1− o(1), an M-Ellipsoid E of K, or FAIL.

1: Estimate the centroid b = b(K) using Algorithm Estimate-Centroid.
If Estimate-Centroid fails, return FAIL.

2: Construct a membership oracle for n (conv{K − b,b−K})∗.
3: Sample a random vector s from n (conv{K − b,b−K})∗.
4: Estimate the covariance matrix A of the density proportional to e〈s,x〉 on K.
5: Output the ellipsoid

√
nE(A−1) = {x ∈ Rn : xtA−1x ≤ n}.

Theorem 4.3.2 (Correctness of M-Gen). For large enough n, Algorithm 4.4 (M-Gen)

outputs an ellipsoid E satisfying

N(E,K) ≤ (25e)n and N(K,E) ≤ (13e)n (4.3.1)

with probability at least 1− 1
n

in polynomial time.

Proof of Theorem 4.3.2 (Correctness of M-Gen). The proof has two parts, first esti-

mating the centroid of K and using it to build a membership oracle for the polar,

and finally using this oracle to sample and estimate an appropriate inertial ellipsoid.

Estimating The Centroid: In the first step, we call algorithm Estimate-Centroid

(Lemma 4.3.5) on K with failure probability guarantee 1
4n

. If Estimate-Centroid

returns FAIL, we return FAIL. Else, Estimate-Centroid returns an estimate b of

b(K) with the guarantee

r

2(n+ 1)
√
n
Bn

2 ⊆ K − b ⊆ 2RBn
2

Furthermore, with probability at least 1− 1
4n

, we have that

b− b(K) ∈ 1

n+ 1
EK (4.3.2)
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Building a membership oracle for the polar: From the guarantees on the

algorithm Estimate-Centroid, we know that K − b is (0, r
2(n+1)

√
n
, 2R) centered. We

note these guarantees are polynomial in the input. Using these guarantees, we will

build a polynomial time weak membership oracle for S = n (conv{K − b,b−K})∗.

We note that

v ∈ n (conv{K − b,b−K})∗ ⇔ max { sup
x∈K−b

〈v,x〉 , sup
x∈K−b

〈−v,x〉} ≤ n

Given the guarantees on K − b, we have that

n

2R
Bn

2 ⊆ n (conv{K − b,b−K})∗ ⊆ 2n(n+ 1)
√
n

r
Bn

2

Using the above characterization, and the sandwiching bounds, we will be able to

build a weak membership oracle for S by approximately maximizing v and −v over

over K − b. For v ∈ Rn, ε > 0, the weak membership oracle OS(v, ε) performs the

following. If ‖v‖2 ≤ n
2R

, return 1, if ‖v‖2 >
2n(n+1)

√
n

r
return 0, otherwise continue.

Using the ellipsoid algorithm for convex optimization (Theorem 2.5.9), compute a

number ω ≥ 0 satisfying

ω − εr

2(n+ 1)
√
n
≤ max{ sup

x∈K−b
〈v,x〉 , sup

x∈K−b
〈−v,x〉} ≤ ω.

If ω ≤ n, return 1, and otherwise return 0. Since ω can be computed in polynomial

time, we see that OS executes in polynomial time.

Claim: OS yields a weak membership oracle for S.

Proof. We first show that if v ∈ S−ε then O(v, ε) = 1. Given that we accept if

‖v‖2 ≤ n
2R

, we may assume that ‖v‖2 > n
2R

> 0. Since v ∈ S−ε, we have that

v+εv/‖v‖2 ∈ S. We recall the support function ofK−b, hK−b(v) = supx∈K−b 〈v,x〉.
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Since εv/‖v‖2 corresponds to a positive scaling of v, we have that

n ≥ max{hK−b(v + εv/‖v‖2), hK−b(−v − εv/‖v‖2)}

= max{hK−b(v) + εhK−b(v/‖v‖2), hK−b(−v) + εhK−b(−v/‖v‖2)}

≥ max{hK−b(v), hK−b(−v)}+ εmin{hK−b(v/‖v‖2), hK−b(−v/‖v‖2)}

Since r
2(n+1)

√
n
Bn

2 ⊆ K − b, we see that

εmin{hK−b(v/‖v‖2), hK−b(−v/‖v‖2)} ≥ ε
r

2(n+ 1)
√
n

Combining the above inequalities, we get

n− ε r

2(n+ 1)
√
n
≥ max{hK−b(v), hK−b(−v)}

From here, we see that the number ω ≥ 0 computed by OS(v, ε) satisfies

ω ≤ max{hK−b(v), hK−b(−v)}+ ε
r

2(n+ 1)
√
n
≤ n

Hence OS(v, ε) returns 1 as needed.

Lastly if v /∈ Sε we show that O(v, ε) = 0. Since v /∈ Sε, and S is closed, we

have that n < max{hK−b(v), hK−b(−v)}. By the guarantee on ω, we have that

ω ≥ max{hK−b(v), hK−b(−v)} > n. Therefore OS(v, ε) = 0 as needed.

Building the M-Ellipsoid: Let πS denote the uniform distribution on S. Equipped

with a weak membership oracle for S, we may use the sampling algorithm of Theo-

rem 2.5.11, to sample a point Y ∈ S with distribution σ satisfying dTV(σ, πS) ≤ 1
4n

in polynomial time. Set s = Y , where Y is the computed sample. We shall use s

to specify a reweighting of the uniform distribution on K − b. Let fs(x) = e〈s,x〉 for

x ∈ K − b and 0 otherwise. Using the algorithm described by Corollary 4.3.4, we

may compute a matrix A ∈ Rn×n satisfying

e−
1
nEfs ⊆ E(A) ⊆ e

1
nEfs (4.3.3)
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with probability 1− 1
4n

in polynomial time. We return the ellipsoid
√
nE(A) as our

candidate M -ellipsoid for K.

Analysis: We now show that for n large enough, the ellipsoid returned by this

algorithm satisfies with high probability the covering conditions

N(K,
√
nE(A)) ≤ (13e)n and N(

√
nE(A), K)) ≤ (25e)n

First, we condition on the event (4.3.2), i.e. that we get a good estimate b of b(K).

Next, we condition on the event (4.3.3), i.e. that we get a good estimate of Efs .

Hence at this point, our success probability is at least 1− 1
2n

.

Let η > 0 be a constant to be decided later. Let X be uniformly distributed on S,

and let Y denote the approximately uniform sample the above algorithm computes

on S, remembering that S = n (conv{K − b,b−K})∗. Given the guarantee that

b(K) − b ∈ 1
n+1

EK , from Theorem 4.3.9 setting ε = 1, for n large enough we have

that

E[L2n
fX

] ≤

(
(1 + o(1))

√
2

πe

eε√
ε

)2n

≤

(
(1 + η)

√
2e

π

)2n

Using Markov’s inequality, we see that

Pr

[
LfX > (1 + η)2

√
2e

π

]
≤

E[L2n
fX

](
(1 + η)2

√
2e
π

)2n ≤
1

(1 + η)2n
.

Now since dTV(X, Y ) ≤ 1
4n

, we see that

Pr

[
LfY > (1 + η)2

√
2e

π

]
≤ 1

(1 + η)2n
+

1

4n
≤ 1

2n
(4.3.4)

for n large enough (η will be chosen to be constant). Hence after additionally condi-

tioning on the complement of event 4.3.4, our success probabiblity is at least 1 − 1
n
.

At this point, letting s = Y , we see that s specifies a density fs on K satisfying

Lfs ≤ (1 + η)2

√
2e

π
.
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Furthermore since s ∈ n (conv{K − b,b−K})∗, b(K)−b ∈ 1
n+1

EK and EK ⊆ K−b,

we have that

supx∈K−b fs(x)

fs(b(K − b))
= sup

x∈K−b
e〈s,x−b(K)−b〉 = sup

x∈K−b
e〈s,x〉+〈−s,b(K)−b〉 ≤ en+1.

Hence by Lemma 4.3.8, letting
√
nE(A) = T , and δ = e

1
n , we get that

N(K,
√
nE(A)) ≤ (12δ)n

4

3

supx∈K−b fs(x)

fs(b(K − b))
≤ 12ne

4

3
en+1 ≤ (12e(1 + η))n

and

N(
√
nE(A), K) ≤ (12δ2)n voln(

√
nBn

2 )
4

3
Lnfs

≤ 12ne2 (
√

2πe(1 + o(1)))n
4

3

(
(1 + η)3

√
2
)n
≤ (24e(1 + η)3)n

for n large enough. Choosing η > 0 such that (1 + η)3 = 25
24

yields the result.

4.3.1 A Las Vegas Algorithm for Generating an M-Ellipsoid

The main result of this section is a 2O(n) time Las Vegas algorithm to generate an

M-Ellipsoid of any convex body. In the previous section, we showed that Klartag’s

construction yields an algorithm which succeeds with high probability. Here we show

how to certify the outputted ellipsoid, removing the uncertainty of the Monte Carlo

guarantee of Algorithm 4.4 (M-Gen).

To check whether that the candidate ellipsoid produced by M-Gen is an M-

Ellipsoid, we use the Ellipsoid-Cover Algorithm (section 4.2) to check that both

N(K,E), N((K − K)∗, E∗) = 2O(n) by constructing explicit coverings (if possible).

Because N(E,K) ≈ N((K −K)∗, E∗) (up to 2Θ(n) factors) by the duality of entropy

(Theorem 4.3.7), bounds on the size of such coverings suffice to prove that E is an

M-Ellipsoid for K.

Theorem 4.3.3. Algorithm M-Ellipsoid outputs (for n large enough) an ellipsoid

E ⊆ Rn satisfying

N(K,E) ≤
(

40e

√
πe

2

)n
and N(E,K) ≤

(
901e

√
πe

2
· 289

)n
(4.3.5)
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Algorithm 4.5 M-Ellipsoid-Vegas: Generates a guaranteed M-Ellipsoid

Input: A weak membership oracle OK for a (a0, r, R)-centered convex body K.
Output: An M-Ellipsoid E of K.

1: Generate a candidate M-Ellipsoid E = E(A) of K using M-Gen (Algorithm 4.4).
If M-Gen fails, restart.

2: size← 0.
3: for all c ∈ Ellipsoid-Cover(K,E) do
4: size← size+ 1.
5: if size >

(
40e
√

πe
2

)n
then

6: restart.
7: size← 0.
8: for all c ∈ Ellipsoid-Cover((K −K)∗, E∗) do
9: size← size+ 1.

10: if size >
(
901e

√
πe
2

)n
then

11: restart.
12: return E.

in expected time
(
901e

√
πe
2

)n · poly(·) using polynomial space.

Proof. The algorithm proceeds by first generating a candidate M-Ellipsoid E for K

using M-Gen. Following this, it verifies that the covering numbers N(K,E) and

N(E,K) are not too large by using the algorithm Ellipsoid-Cover. If any of the

verification steps fails, the algorithm is restarted from the beginning.

Verifying the covering numbers. To verify the covering number N(K,E), we

call Algorithm Ellipsoid-Cover(K,E) and simply count to make sure the covering is

not too large. To verify the covering number N(E,K), we apply the same procedure

however on the body (K −K)∗ and ellipsoid E∗ = E(A−1). To call Ellipsoid-Cover

on (K −K)∗ and E∗ = E(A−1), we need to construct a weak membership oracle for

(K −K)∗. First, from the guarantees on K, i.e. rBn
2 ⊆ K − a0 ⊆ RBn

2 , we have that

1
2R
Bn

2 ⊆ (K − K)∗ ⊆ 1
2r
Bn

2 , i.e. (K − K)∗ is (0, r 1
2R
, 1

2r
)-centered. To build a weak

membership oracle for (K −K)∗ we use the following characterization:

v ∈ (K −K)∗ ⇔ sup
x∈K
〈v,x〉 − inf

x∈K
〈v,x〉 ≤ 1.
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From the above, we will be able to build a weak membership oracle for (K − K)∗

by approximately maximizing and minimizing with respect to v over K. This can

readily be done via the ellipsoid algorithm (see Theorem 2.5.9). The exact details of

the oracle construction are almost identical to the construction of the membership

oracle for the polar in Algorithm 4.4; we leave the full analysis as an exercise to the

reader.

Correctness: We must show that if the algorithm succeeds, the returned ellipsoid

E satisfies

N(K,E) ≤
(

40e

√
πe

2

)n
N(E,K) ≤

(
901e

√
πe

2
· 289

)n
These guarantees depend only on the correctness of the algorithm Ellipsoid-Cover.

The first counting test success if and only if Ellipsoid-Cover(K,E) returns a cover

of size at most
(
40e
√

πe
2

)n
. Upon successful termination, the first requirement is

therefore met. For the second test, we check that the cover produced by Ellipsoid-

Cover((K −K)∗, E∗) is smaller than
(
901
√

πe
2

)n
. Now by Theorem 4.3.7, since E∗ is

centrally symmetric, we have that

N(E,K) ≤ 289nN((K −K)∗, E∗) ≤
(

901

√
πe

2
· 289

)n
for n large enough. Therefore the second requirement is also met.

Runtime: The main contributions to the running time comes the covering verifica-

tion steps (i.e. checking that N(K,E) and N(E,K) are not too large). Since we halt

the enumeration of the coverings if any of them grows larger than
(
901e

√
πe
2

)n
, none

of the inner loops execute more than this number of times. Therefore the runtime of

a single iteration of the main loop takes at most
(
901e

√
πe
2

)n
poly(·). Furthermore,

all the algorithms invoked during the main loop require at most polynomial space.

Therefore, to complete the runtime analysis, it suffices to show that the main loop is

executes O(1) times on expectation.

104



To begin this analysis, we condition the run of the main loop on the event that

M-Gen returns an ellipsoid E satisfying

N(K,E) ≤ (13e)n and N(E,K) ≤ (25e)n. (4.3.6)

By the guarantees on M-Gen, the probability of satisfying (4.3.6) is at least 1− 1
n
. Now

we examine the covering number verication step. By the guarantees on Algorithm

Ellipsoid-Cover and the conditioning (4.3.6), the size of the covering generated of K

by E has size at most(
3

√
πe

2
(1 + o(1))

)n
N(K,E) ≤

(
3

√
πe

2
· 13e(1 + o(1))

)n
≤
(

40e

√
πe

2

)n
,

for n large enough. Hence (for n large enough), the counting test for N(K,E) is

guaranteed to pass. Since E is centrally symmetric, by Theorem 4.3.7, we have

that N((K − K)∗, E∗) ≤ (12(1 + o(1)))nN(E,K). Therefore by the guarantees on

Ellipsoid-Cover, the cover generate of (K −K)∗ by E∗ has size at most(
3

√
πe

2
(1 + o(1))

)n
N((K −K)∗, E∗) ≤

(
3

√
πe

2
· 12(1 + o(1))

)n
N(K,E)

≤
(

3

√
πe

2
· 12 · 25e(1 + o(1))

)n
≤
(

901e

√
πe

2

)n
for n large enough. Therefore, the counting test forN((K−K)∗, E∗) is also guaranteed

to pass.

Finally, we get that the probability that each execution of the loop terminates

successfully is at least 1 − 1
n
. The expected number of runs of the loop is therefore

O(1) as needed.

4.3.2 Helper Algorithms

In this section, we provide some technical helper algorithms for the algorithms in

the previous sections. These are straightforward applications of the fundamental

algorithms presented in the section 2.5.3.
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Corollary 4.3.4 (Algorithm Estimate-Covariance). Let K ⊆ Rn be an (a0, r, R)-

centered convex body given by a weak membership oracle OK. Let f : K → R+ be a

polynomial time computable log-concave function satisfying

sup
x∈K

f(x) ≤ e2nf(0).

Then an ellipsoid E(A), A ∈ Qn×n, can be computed satisfying

e−
1
nEf ⊆ E(A) ⊆ e

1
nEf

with probability 1− δ in polynomial time.

Proof. Using Theorem 2.5.11, we can compute a matrix B ⊆ Qn×n satisfying

|xt(B − cov(f))x| ≤ 1

n
xt cov(f)x ∀ x ∈ Rn, (4.3.7)

with probability 1 − δ in polynomial time. We now condition on the event (4.3.7).

Remembering that xtBx = ‖x‖2
B and xt cov(f)x = ‖x‖2

cov(f), we may rewrite (4.3.7)

as √
n− 1

n
‖x‖cov(f) ≤ ‖x‖B ≤

√
n+ 1

n
‖x‖cov(f)

From the above, we see that the ellipsoid E(cov(f)) = {x : ‖x‖cov(f) ≤ 1} and E(B) =

{x ∈ Rn : ‖x‖B ≤ 1} satisfy√
n

n+ 1
E(cov(f)) ⊆ E(B) ⊆

√
n

n− 1
E(cov(f)) (4.3.8)

Remembering that the polar ellipsoids satisfy

E(B)∗ = E(B−1) and E(cov(f))∗ = E(cov(f)−1) = Ef .

where the last equality follows by the definition of Ef . Taking the polars of the above

ellipsoids, the containment relationships in (4.3.8) flip, and we get√
n− 1

n
Ef ⊆ E(B−1) ⊆

√
n+ 1

n
Ef (4.3.9)
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Now using the inequalities 1− 1
n
≥ e−

2
n for n ≥ 3 and 1 + 1

n
≤ e

2
n , we see that (4.3.9)

implies

e−
1
nEf ⊆ E(B−1) ⊆ e

1
nEf

as needed. Letting A = B−1, the ellipsoid E(A) satisfies the desired requirements.

Corollary 4.3.5 (Algorithm Estimate-Centroid). There is a probabilistic algorithm

Estimate-Centroid that, given a (a0, r, R)-centered convex body K presented by a weak

membership oracle OK and some δ > 0, in polynomial time either outputs FAIL (with

probability at most δ) or some b ∈ K such that:

b +
r

2(n+ 1)
√
n
Bn

2 ⊆ K ⊆ b + 2RBn
2

where with probability at least 1− δ,

b− b(K) ∈ 1

n+ 1
EK .

Proof. Using Theorem 2.5.11, we compute a center b ∈ K satisfying

| 〈x,b− b(K)〉 | ≤ 1

(n+ 1)2
xt cov(K)x ∀ x ∈ Rn, (4.3.10)

with probability 1− δ in polynomial time

First, check whether

OK

(
b± 3r

4(n+ 1)
ei,

r

4(n+ 1)
√
n

)
= 1 for 1 ≤ i ≤ n (4.3.11)

If any of the above tests fail, abort and return FAIL.

Let δ = r
n+1

. If these tests pass, by the properties of OK we know that

b +
3δ

4
conv{±e1, . . . ,±en} ⊆ K

δ
4
√
n ⇒ b +

3δ

4
√
n
Bn

2 ⊆ K
δ

4
√
n ⇒ b +

δ

2
√
n
Bn

2 ⊆ K

Since b ∈ K ⊆ RBn
2 , we clearly also have that K ⊆ b + 2RBn

2 . Hence conditioned

on outputting b, we have that

b +
r

2(n+ 1)
√
n
Bn

2 ⊆ K ⊆ b + 2RBn
2
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as needed.

We now show that if the event (4.3.10) holds, then the above test will pass and

condition (b) will also be satisfied. Since this event holds with probability 1− δ, this

will suffice to prove the statement.

For the center b, we note that for all x ∈ (n+ 1)E(cov(K)), by equation (4.3.10)

we have that

| 〈b− b(K),x〉 | ≤ 1

(n+ 1)2
xt cov(K)x ≤ 1

(n+ 1)2
(n+ 1)2 = 1

Therefore, we have that b− b(K) ∈ ((n+ 1)E(cov(K)))∗ = 1
n+1

EK as needed.

We now show that the tests must all pass. From Theorem 2.3.5, we know that

b(K) +

√
n+ 2

n
EK ⊆ K ⊆ b(K) +

√
n(n+ 2)EK

By the guarantee on OK , we know that rBn
2 ⊆ b(K) +

√
n(n+ 2)EK . But we have

that

rBn
2 − b(K) ⊆

√
n(n+ 2)EK ⇒ rBn

2 + b(K) ⊆
√
n(n+ 2)EK

⇒ 1

2
(rBn

2 − b(K)) +
1

2
(rBn

2 + b(K)) ⊆
√
n(n+ 2)EK

⇒ rBn
2 ⊆

√
n(n+ 2)EK

since both EK and Bn
2 are symmetric. From the inequality n + 1 ≥

√
n(n+ 2), we

have that

r

n+ 1
Bn

2 ⊆
√
n(n+ 2)

n+ 1
EK ⊆ EK (4.3.12)

Since b− b(K) ∈ 1
n+1

EK by assumption, and
√

n+2
n
EK + b(K) ⊆ K, we get that

b ∈ b(K)+
1

n+ 1
EK ⇒ b+EK ⊆ b(K)+

n+ 2

n+ 1
EK ⇒ b+EK ⊆ b(K)+

√
n+ 2

n
EK ⊆ K

Therefore by 4.3.12 we have that b+ r
n+1

Bn
2 ⊆ K. Letting δ = r

n+1
, from the previous

sentence we see that

b± 3

4
δei ∈ K−

δ
4 ⊆ K

− δ
4
√
n

Therefore by the properties of OK , the tests in 4.3.11 must all pass. The claim thus

holds.
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4.3.3 Geometric Estimates

Here we list and prove the necessary geometric inequalities that are needed in the

previous sections. We begin with a slight extension of Theorem 2.3.7.

Theorem 4.3.6. Let K be a convex body such that b(K) ∈ tEK, for some t ∈ [0, 1).

Then

voln(K ∩ −K) ≥
(

1− t
2

)n
voln(K)

Proof. From Theorem 2.3.7 we have that

1

2n
voln(K) ≤ voln(K − b(K) ∩ −K + b(K)) = voln(K ∩ −K + 2b(K))

Next, we note that for x ∈ Rn

K ∩ (−K + 2x) 6= ∅ ⇔ 2x ∈ K +K ⇔ x ∈ K (4.3.13)

Since b(K) ∈ tEK and b(K) + EK ⊆ K, we see that (1 − t)EK ⊆ K. Hence we

can write

0 = t(−2nb(K)) + (1− t)2b(K),

where −nb(K) ∈ −(1− t)EK = (1− t)EK ⊆ K. Now we see that

t (K ∩ (−K +−2nb(K))) + (1− t) (K ∩ (−K + 2b(K))) ⊆ K ∩ −K

where both sets on the left hand side are non-empty by (4.3.13). Therefore by the

Brunn-Minkowski inequality, we have that

voln(K ∩ −K)
1
n ≥ tvoln (K ∩ (−K +−n2b(K)))

1
n + (1− t)voln (K ∩ (−K + 2b(K)))

1
n

≥ (1− t)voln (K ∩ (−K + 2b(K)))
1
n ≥ 1− t

2
voln(K)

1
n

Therefore we get that

voln(K ∩ −K) ≥
(

1− t
2

)n
voln(K)

as needed.
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The next lemma is a slight specialization of [95, Theorem 5]. We require this

inequality for the M-Ellipsoid certification procedure.

Theorem 4.3.7 (Duality of Entropy). Let K,T ⊆ Rn be convex bodies where T is

centrally symmetric. Then

N(T,K) ≤ ((1 + o(1))288)n ·N((K −K)∗, T ∗)

and

N((K −K)∗, T ∗) ≤ (12(1 + o(1)))n ·N(T,K).

Proof. Since the above quantities are invariant under shifts of K, we may shift K so

that b(K) = 0. Applying Theorem 2.3.7, we see that that voln(K−K) ≤ 4nvoln(K) ≤

8nvoln(K∩−K), where we note that since 0 ∈ K we have that K∩−K ⊆ K ⊆ K−K.

Next applying the covering estimates from Lemma 2.3.9, we get that

N(K −K,K) ≤ N(K −K,K ∩ −K) ≤ 3n
voln(K −K)

voln(K ∩ −K)
≤ 24n.

From here, we see that

N(T,K) ≤ N(T,K −K)N(K −K,K) ≤ 24nN(T,K −K).

Next since both T and K −K are centrally symmetric, we apply Lemma 2.3.9 to get

that

N(T, (K −K)) ≤ 3n
voln(T )

voln((K −K) ∩ T )
.

Now we note that ((K−K)∩T )∗ = conv{(K −K)∗, T ∗}. Hence applying the Blashke-

Santaló inequality to voln(T ) and the Bourgain-Milman inequality to voln((K−K)∩

T ) we get that

3n
voln(T )

voln((K −K) ∩ T )
≤ (6(1 + o(1)))n

voln(conv{(K −K)∗, T ∗})
voln(T ∗)

Since 0 is both in (K−K)∗ and T ∗, we see that conv{(K −K)∗, T ∗)} ⊆ (K−K)∗+T ∗

and hence

(6(1 + o(1)))n
voln(conv{(K −K)∗, T ∗})

voln(T ∗)
≤ (6(1 + o(1)))n

voln((K −K)∗ + T ∗)

voln(T ∗)
.
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Lastly, applying Lemma 2.3.9 to the last estimate, we get that

(6(1 + o(1)))n
voln((K −K)∗ + T ∗)

voln(T ∗)
≤ (12(1 + o(1)))nN((K −K)∗, T ∗).

Combining the above estimates yields the first desired inequality.

Now switching the roles (K −K) and T with (K −K)∗ and T ∗, we have that

N((K −K)∗, T ∗) ≤ (12(1 + o(1))nN(T,K −K) ≤ (12(1 + o(1))nN(T,K),

yielding the second inequality.

We now make precise the relationship between the isotropic constant of the expo-

nential reweightings defined by Klartag [78] and the M-Ellipsoid.

Lemma 4.3.8. Let K ⊆ Rn be a convex body. Take s ∈ Rn and let fs(x) = e〈s,x〉 for

x ∈ K and 0 otherwise. Let T ⊆ Rn be a convex body such that for some δ ≥ 1 we

have that √
n

δ
Efs ⊆ T ⊆ δ

√
nEfs (4.3.14)

where Efs is the inertial ellipsoid of fs. Then we have that

N(K,T ) ≤ (12δ)n
4

3

supx∈K fs(x)

fs(b(K))
and N(T,K) ≤ (12δ2)n voln(

√
nBn

2 )
4

3
Lnfs

(4.3.15)

where b(K) is the centroid of K, and Lfs is the isotropic constant of fs.

Proof. Since the above estimates are all invariant under shifts of K, we may assume

that b(fs) = 0 (centroid of fs). We note that b(fs) ∈ K always and hence 0 ∈ K.

Let X be distributed as πfs , where πfs is the probability measure induced by fs. So

we have that E[X] = b(fs) = 0 and E[XX t] = cov(fs).

Remember that Efs = {x ∈ Rn : xt cov(fs)
−1x ≤ 1},

therefore ‖x‖Efs =
√

xt cov(fs)−1x. Now note that

E[‖X‖2
Efs

] = E[X t cov(fs)
−1X] = E[trace[cov(fs)

−1XX t]] = trace[cov(fs)
−1 E[XX t]]

= trace[cov(fs)
−1 cov(fs)] = trace[Idn] = n.
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Now by Markov’s inequality, we have that

πfs(2
√
nEfs) = 1− Pr[‖X‖Efs > 2

√
n] ≥ 1−

E[‖X‖2
Efs

]

4n
= 1− n

4n
=

3

4
. (4.3.16)

By Jensen’s inequality, we see that∫
K

fs(x)dx =

∫
K

e〈s,x〉dx = voln(K)

∫
K

e〈s,x〉
dx

voln(K)
≥ voln(K)e〈s,b(K)〉

= voln(K)fs(b(K)),

(4.3.17)

where b(K) is the centroid of K.

Using (4.3.17) and (4.3.16) we see that

voln(2
√
nEfs ∩K) ≥

∫
2
√
nEfs

fs(x)dx

supx∈K fs(x)
≥ 3

4

∫
K
fs(x)dx

supx∈K fs(x)
≥ 3

4

fs(b(K))

supx∈K f(x)
voln(K).

(4.3.18)

Using that
√
n
δ
Efs ⊆ T , 0 ∈ K, δ ≥ 1, and by (4.3.18) we get that

voln(T ∩K) ≥ voln

(√
n

δ
Efs ∩K

)
=

(
1

δ

)n
voln(

√
nEfs ∩ δK)

≥
(

1

δ

)n
voln

(√
nEfs ∩

1

2
K

)
=

(
1

2δ

)n
voln(2

√
nEfs ∩K)

≥
(

1

2δ

)n
3

4

fs(b(K))

supx∈K f(x)
voln(K).

(4.3.19)

Using the definition of Lfs , (4.3.16),
√
nEfs ⊆ δT and that 0 ∈ K, we get that

det(cov(fs))
1
2 = LnK

∫
K
fs(x)dx

supx∈K fs(x)
≤ LnK

4

3

∫
2
√
nEfs

fs(x)dx

supx∈K fs(x)

≤ LnK
4

3
voln(2

√
nEfs ∩K) ≤ LnK

4

3
voln(2δT ∩K)

≤ (2δLK)n
4

3
voln(T ∩K).

(4.3.20)

Using that T ⊆ δ
√
nEfs and the ellipsoid volume formula, we have that

voln(T ) ≤ voln(δ
√
nEfs) = δnvoln(

√
nBn

2 ) det(cov(fs))
1
2 . (4.3.21)

Combining equations (4.3.20),(4.3.21) we get that

voln(T ) ≤ (2δ2LK)n voln(
√
nBn

2 )
4

3
voln(T ∩K). (4.3.22)

Now applying Lemma 2.3.9 to the inequalities (4.3.19),(4.3.22) the theorem fol-

lows.

112



From Lemma 4.3.8, we see that if the slicing conjecture is true, then for any

convex body, its inertial ellipsoid appropriately scaled is an M -ellipsoid. To bypass

this, Klartag shows that for any convex body K, there exists a “mild” exponential

reweighting fs of the uniform density on K with bounded isotropic constant. As

one can see from Lemma 4.3.8, the severity of the reweighting controls N(K,
√
nEfs)

whereas the isotropic constant of fs controls N(
√
nEfs , K).

The main tool to establish the existence of “good” exponential reweightings for K

is the following lemma, which one can extract from the proof of Theorem 4.3.1 in [78].

We will use it here for ε = 1, in which case the expectation below is of order 2O(n).

The argument is essentially identical to that of [78]; we include it for completeness.

Theorem 4.3.9 ([78]). Let K ⊆ Rn be a convex body such that b(K) ∈ 1
n+1

EK.

For s ∈ Rn, let fs : K → R+ denote the function fs(x) = e〈s,x〉, x ∈ K. Let X be

distributed as εn (conv{K,−K})∗) for some real ε > 0. Then we have

E[L2n
fX

] ≤

(
(1 + o(1))

√
2

πe

eε√
ε

)2n

Proof. For s ∈ Rn define fs : K → R+ by fs(x) = e〈s,x〉 for x ∈ K. In Lemma 3.2

of [78] is it shown that ∫
Rn

det(cov(fs))ds = voln(K) (4.3.23)

By Theorem 2.3.5, we have that EK + b(K) ⊆ K. Since b(K) ∈ 1
n+1

EK by as-

sumption, we see that n
n+1

EK ⊆ EK+b(K) ⊆ K. Hence 0 ∈ K. From [112], we know

that for any convex body K such that 0 ∈ K, we have that voln(conv{K,−K}) ≤

2nvoln(K).

Let L = conv{K,−K}. Note that

L∗ = (conv{K,−K})∗ = {y ∈ Rn : | 〈x,y〉 | ≤ 1, ∀x ∈ K}

Since L is centrally symmetric by the Bourgain-Milman inequality (Theorem 2.3.6),

we have that

voln(L∗)voln(L) ≥
(

(1 + o(1))
πe

n

)n
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Hence we get that

voln(L∗) ≥

(
(1 + o(1))πe

nvoln(L)
1
n

)n

≥

(
(1 + o(1))πe

2nvoln(K)
1
n

)n

(4.3.24)

Take s ∈ εnL∗. We examine the properties of fs : K → R+. Since s ∈ εnL∗, we see

that

sup
x∈K

fs(x) = esupx∈K〈s,x〉 ≤ eεn (4.3.25)

Since b(K) ⊆ 1
n+1

EK ⊆ 1
n
K and s ∈ εn (conv{K,−K})∗, we see that | 〈s,b(K)〉 | ≤ ε.

Now by Jensen’s inequality, we have that∫
K

e〈s,x〉dx = voln(K)

(∫
K

e〈s,x〉
dx

voln(K)

)
≥ voln(K)e

∫
K〈s,x〉

dx
voln(K)

= voln(K)e〈s,b(K)〉 ≥ voln(K)e−ε

Now we see that

L2n
fs =

(
sup
x∈K

fs(x)∫
K
fs(x)dx

)2

det(cov(fs)) ≤
(

eεn

voln(K)e−ε

)2

det(cov(fs))

=
e2(n+1)ε

voln(K)2
det(cov(fs))

(4.3.26)

Applying inequality (4.3.26), Lemma 3.2 of [78], and equation (4.3.24), we get that

1

voln(εnL∗)

∫
εnL∗

L2n
fs ds ≤

e2(n+1)ε

voln(εnL∗)voln(K)2

∫
εnL∗

voln(K)2 det(cov(fs))ds

≤ e2(n+1)ε

voln(εnL∗)voln(K)2
voln(K) ≤

(
(1 + o(1))e2ε

εnvoln(L∗)
1
nvoln(K)

1
n

)n

≤
(

(1 + o(1))2e2ε

πeε

)n
=

(
(1 + o(1))

√
2

πe

eε√
ε

)2n

The above quantity is exactly E[LfX ] since X is uniform over εnL∗. The statement

thus follows.

4.4 Milman’s Construction

In this section, we provide a deterministic algorithmic implementation of Milman’s

M-Ellipsoid construction.
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We begin with some background to his construction, and then proceed to outline

its steps. Let K ⊆ Rn be a symmetric convex body. To construct an M-Ellipsoid, a

natural starting point is to try the the John (or Löwner) ellipsoid E of K, i.e. the

maximum volume inscribed ellipsoid in K. Here in the worst case that E ⊆ K ⊆
√
nE, and hence voln(E) ≤ voln(K) ≤ n

n
2 voln(E). From the classical bounds on the

covering estimates (see Lemma 2.3.9), we remember that

max{N(K,E), N(E,K)} = 2Θ(n) max{voln(E), voln(K)}
voln(E ∩K)

Therefore, the covering estimates for the John ellipsoid are of order nΩ(n) in the worst

case. The main problem with the John ellipsoid is that the containment condition

(i.e. E ⊆ K) is far too restrictive. More precisely, we may potentially be able to

ensure a much larger intersection volume if we allow E to “stick out” of K a bit.

Moving in line with this intuition, the next ellipsoid which was considered is the `-

Ellipsoid of K (which we describe in section 4.4.1) , which roughly corresponds to the

largest “half-contained” ellipsoid inK. By half-contained we mean that voln(E∩K) ≥
1
2
voln(E). This condition is not imposed directly and is instead expressed (up to

constant factor scaling of E) by imposing that a certain gaussian expectation related

to K and E be small. Here a deep theorem of Pisier [105], shows that relaxing the

containment condition in this way yields a drastic improvement in the size of the

intersection. In particular, he shows that the `-Ellipsoid E satisfies

max{voln(E), voln(K)}
voln(E ∩K)

= O(log n)n.

Furthermore, he shows that something stronger is true. Letting DK = dBM(K,Bn
2 ),

the Banach Mazur distance between K and the euclidean ball Bn
2 (see Definition

2.3.1), the above ratio is bounded by O(log(DK))n (where the above estimate now

follows from John’s theorem).

In the final development, Milman [92] discovered that `-Ellipsoid construction can

in fact be “amplified”, i.e. it can be used in an iterated fashion, via a process he calls
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isomorphic symmetrization, to yield a sequence of ellipsoids with larger and larger

intersection volumes with K. To understand this, we note that the main barrier to

the `-Ellipsoid having large intersection volume is DK . What Milman noticed is that

one apply a small surgery to K to yield a body K ′, that has substantially smaller

DK′ and for which the ratio

max{voln(K), voln(K ′)}
voln(K ∩K ′)

is not too large. The surgery here is simple, given an `-Ellipsoid E of K, we

let K ′ = conv{ 1
C log(DK)

E,C log(DK)E ∩K}, for an appropriately chosen constant

C ≥ 1. From the surgery formula, is is easy to check the new Banach-Mazur distance

satifies DK′ = O(log(DK)2). Hence, after applying the above iteration i times, the

Banach-Mazur distance of the resultant body to Bn
2 drops like log(i)(n), i.e. the iter-

ated logarithm. Therefore after only log∗(n) iterations, the resultant body is in fact

O(1)-isomorphic to a ball and still contains large intersection volume with K. The

`-Ellipsoid for the final body now yields the desired M-Ellipsoid for K.

We devote the rest of this section to making the above outline precise and showing

that each of the associated steps can be algorithmically implemented in a time and

space efficient manner.

4.4.1 The Lewis Ellipsoid

Let α be a norm on n×n matrices. We define the dual norm α∗ for any S ∈ Rn×n as

α∗(S) = sup{tr(SA) : A ∈ Rn×n, α(A) ≤ 1}. (4.4.1)

For a matrix A ∈ Rn×n, we denote its transpose by AT , and its inverse (when it

exists) by A−1.

Theorem 4.4.1. [85] For any norm α on Rn×n, there is an invertible linear trans-

formation A ∈ Rn×n such that

α(A) = 1 and α∗(A−1) = n.
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The proof of the above theorem is based on examining the properties of the optimal

solution to the following mathematical program:

max det(A)

s.t.

A ∈ Rn×n

α(A) ≤ 1

(4.4.2)

From here, showing that the optimal A satisfies α∗(A−1) = n is a simple variational

argument (reproduced in Lemma 4.4.11).

We will be interested in norms α of the following form. Let K ⊆ Rn denote

a convex body, satisfying 0 ∈ int(K), with associated norm ‖ · ‖K , and let γn de-

note the canonical Gaussian measure on Rn (i.e. for A ⊆ Rn measurable γn(A) =

1√
2π
n

∫
A
e−

1
2
‖x‖22dx). We define the `-norm with respect to K for A ∈ Rn×n as

`K(A) =

(∫
‖Ax‖2

Kdγn(x)

)1/2

The `-norm was first studied and defined by Tomczak-Jaegermann and Figiel [49].

The next crucial ingredient is a connection between the dual norm α∗ defined

above and the `-norm with respect to the polar K∗ = {x ∈ Rn : 〈x,y〉 ≤ 1 ∀y ∈ K},

namely,

`K∗(A) =

(∫
‖Ax‖2

K∗dγn(x)

)1/2

.

Lemma 4.4.2. [106] For K ⊆ Rn a symmetric convex body, and A ∈ Rn×n we have

that

`K∗(A
T ) ≤ 4(1 + log2 dBM(K,Bn

2 ))`∗K(A)

where dBM(K,Bn
2 ) is the Banach-Mazur distance between K and Bn

2 .

Combining Lemma 4.4.2 with the optimal solution to program 4.4.2 yields the

following classical bound on the ``∗ estimate in convex geometry.
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Theorem 4.4.3. For K ⊆ Rn a symmetric convex body, we have that

``∗(K)
def
= inf

A∈Rn×n
det(A)=1

`K(A)`K∗(A
−T )

≤ 4n(1 + log2 dBM(K,Bn
2 )) ≤ 4n(1 +

1

2
log2 n)

Note that the bound log2 dBM(K,Bn
2 ) ≤ 1

2
log2 n is precisely John’s Theorem. In

the segway, the bound on ``∗ will yield the most important tool for the M-Ellipsoid

construction.

4.4.2 Covering Numbers and Volume Estimates

Let Bn
2 ⊆ Rn denote the n-dimensional Euclidean ball. Recall that N(K,D) is the

number of translates of D required to cover K. The following bounds for symmetric

convex bodies K,D ⊂ Rn are classical.

Lemma 4.4.4. For any two symmetric convex bodies K,D,

vol(K)

vol(K ∩D)
≤ N(K,D) ≤ 3n

vol(K)

vol(K ∩D)
.

The next lemma is from [93].

Lemma 4.4.5. Let D ⊆ αK, α ≥ 1. Then,

vol(conv {K,D}) ≤ 4αnN(D,K)vol(K).

The following are the Sudakov and dual Sudakov inequalities (see e.g., Section 6

of [53]).

Lemma 4.4.6 (Sudakov Inequality). For any t > 0, and invertible matrix A ∈ Rn×n

N(K, tABn
2 ) ≤ eC`K∗ (A−T )2/t2 .

Lemma 4.4.7 (Dual Sudakov Inequality). For any t > 0, and A ∈ Rn×n

N(ABn
2 , tK) ≤ eC`K(A)2/t2 .
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The following lemma gives a simple containment relationship (see e.g., [31]).

Lemma 4.4.8. For any A ∈ Rn×n, A invertible, we have that

1

`K∗(A−1)
K ⊆ ABn

2 ⊆ `K(A)K

Proof. We first show that E = ABn
2 ⊆ `K(A)K. Assume not, then there exists

x ∈ E such that ‖x‖K = supy∈K∗ | 〈y,x〉 | > `K(A). Now pick y ∈ K∗ achieving

| 〈y,x〉 | = ‖x‖K . Then we have that

`K(A) < | 〈x,y〉 | ≤ sup
z∈ABn2

| 〈z,y〉 | = sup
z∈Bn2
|
〈
z, Aty

〉
| = ‖Aty‖2

But now note that

`K(A) = E[‖AX‖2
K ]

1
2 ≥ E[| 〈y, AX〉 |2]

1
2 = ‖Aty‖2

a clear contradiction. Therefore ABn
2 ⊆ `K(A)K as needed. Now applying the same

argument on E∗ = A−1Bn
2 and K∗, we get that E∗ ⊆ `K(A−1)K∗. From here via

duality, we get that

1

`K∗(A−1)
K = (`K∗(A

−1)K∗)∗ ⊆ (A−1Bn
2 )∗ = ABn

2

as needed.

4.4.3 A Deterministic M-Ellipsoid Construction

In this section, we present the algorithm for computing an M-Ellipsoid of an arbitrary

convex body in the oracle model.

We first observe that it suffices to give an algorithm for centrally symmetric K.

For a general convex body K, we may replace K by the difference body K−K (which

is symmetric). An M-Ellipsoid for K−K remains one for K, as the covering estimates

changes by at most a 2O(n) factor. To see this, note that for any ellipsoid E we have

that N(K,E) ≤ N(K −K,E) and that

N(E,K) ≤ N(E,K −K)N(K −K,K) ≤ N(E,K −K)2O(n),
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To prove the last inequality, we use Lemma 2.3.9 which gives

N(K −K,K) ≤ sup 6n sup
c∈Rn

voln(K −K)

voln((K −K) ∩ (K + c))

= 6n
voln(K −K)

voln(K)
≤ 6n4n = 24n

where the inequality voln(K − K) ≤ 4nvoln(K) follows from the classical Rogers-

Shephard inequality [111] (see Theorem 2.3.7).

Lastly, given a (a0, r, R)-centered convex body K presented by a weak membership

oracle OK , we can construct a weak membership oracle for K−K in polynomial time

(see [56]). In the what follows, we now assume that K is symmetric and given by a

weak membership oracle.

Our algorithm has two main components: a subroutine to compute an approxi-

mate Lewis ellipsoid for a norm given by a convex body, and an implementation of the

iteration that makes this ellipsoid converge to an M-Ellipsoid of the original convex

body.

4.4.3.1 Approximating the `-norm

Our approximation of the `K norm is as follows:

˜̀
K(A) =

∑
x∈{−1,1}n

1

2n
‖Ax‖K .

Note that ˜̀
K(A) can be deterministically computed using 2n queries to a weak dis-

tance oracle DK for ‖·‖K using polynomial space (by simply iterating over {−1, 1}n).

Furthermore, by the guarantees on DK , for ε > 0, we have that

∣∣ ∑
x∈{−1,1}n

1

2n
(DK(Ax, ε)− ‖Ax‖K)

∣∣
≤

∑
x∈{−1,1}n

1

2n
∣∣DK(Ax, ε)− ‖Ax‖K

∣∣
≤

∑
x∈{−1,1}n

1

2n
εmin{1, ‖Ax‖K} = εmin{1, ˜̀

K(A)}
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Hence ˜̀
K can be estimated to any desired accuracy in 2n poly(·) time and polynomial

space.

The next lemma is essentially folklore, we give a known proof here.

Lemma 4.4.9. For a symmetric convex body K and any A ∈ Rn×n, we have√
2

π
˜̀
K(A) ≤ `K(A) ≤ 4

√
π

2
(1 + log2 dBM(K,Bn

2 ))˜̀
K(A).

Proof. Let g1, . . . ,gn denote i.i.d. N(0, 1) Gaussians, let u1, . . . ,un denote i.i.d. uni-

form {−1, 1} random variables and let A1, . . . , An ∈ Rn denote the columns of A.

We begin with the lower bound. We relate a classical comparison theorem:

E[f(u1, . . . ,un)] ≤ E[f(

√
π

2
g1, . . . ,

√
π

2
gn)] (4.4.3)

for any convex function f : Rn → R. Letting f(x1, . . . ,xn) = ‖
∑

iAixi‖K , we see

that

˜̀
K(A) = E[‖

∑
i

Aiui‖2
K ]

1
2 ≤ E[‖

√
π

2

∑
i

Aigi‖2
K ]

1
2 =

√
π

2
`K(A)

as needed.

For the upper bound, we see that

`K(A) ≤ 4(1 + log2 dBM(K,Bn
2 )) sup

{∑
i

〈Ai,yi〉 : E[‖
∑
i

giyi‖2
K∗ ]

1
2 ≤ 1

}

≤ 4

√
π

2
(1 + log2 dBM(K,Bn

2 )) sup

{∑
i

〈Ai,yi〉 : E[‖
∑
i

uiyi‖2
K∗ ]

1
2 ≤ 1

}

≤ 4

√
π

2
(1 + log2 dBM(K,Bn

2 )) E[‖
∑
i

uiAi‖2
K ]

1
2 = 4

√
π

2
(1 + log2 dBM(K,Bn

2 )) ˜̀
K(A)

Here, the first inequality follows by Lemma 4.4.2. The second inequality, follows from

the comparison inequality (4.4.3), setting the convex function f to f(x1, . . . ,xn) =

‖
∑

i xiyi‖2
C . The last inequality follows from the following weak duality relation:∑

i

〈Ai,yi〉 = E[

〈∑
i

uiAi,
∑
j

ujyj

〉
] ≤ E[‖

∑
i

uiAi‖K‖
∑
j

ujyj‖K∗ ]

≤ E[‖
∑
i

uiAi‖2
K ]

1
2 E[‖

∑
j

yjuj‖2
K∗ ]

1
2 ≤ `K(A).
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The next lemma is a strengthening due to Pisier, using Proposition 8 from [104].

While it is not critical for our results, we use this stronger bound in our analysis.

Lemma 4.4.10. For a symmetric convex body K and any A ∈ Rn×n, we have

1√
π
2

˜̀
K(A) ≤ `K(A) ≤ c1

˜̀
K(A)

√
1 + log dBM(K,Bn

2 )

where c0, c1 are absolute constants. Furthermore, by duality, we get that

1

c1

√
1 + log dBM(K,Bn

2 )
˜̀∗
K(A) ≤ `∗K(A) ≤

√
π

2
˜̀∗(A).

4.4.3.2 Convex Program for the `-Ellipsoid

To compute the approximate `-Ellipsoid we use the following convex program:

max det(A)
1
n

s.t.

A � 0

˜̀
K(A) ≤ 1

(4.4.4)

Here the main thing we change is that we replace the `-norm with ˜̀
K . This

will suffice for our purposes. We optimize over only positive semidefinite matrices

(unlike Lewis’ program 4.4.2). This enables us to ensure convexity of program while

maintaining the desired properties for the optimal solution. For convenience we use

det(.)1/n as the objective function and clearly this makes no essential difference.

4.4.3.3 The Algorithm

Given a convex body K, we put it in approximate John position using the Ellipsoid

algorithm in polynomial time [56], so that Bn
2 ⊆ K ⊆ nBn

2 . We then use the above

procedure, which gives an algorithmic implementation of Milman’s M-Ellipsoid con-

struction. In the description below, by log(i) n we mean the i’th iterated logarithm,

i.e., log(1) n = 1, log(2) n = log log n and so on.
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M-Ellipsoid.

(1) Let K1 = K and T = log∗ n

(2) For i = 1 . . . T − 1,

(a) Compute an approximate `-Ellipsoid of Ki using the convex program
(4.4.4) to get an approximately optimal transformation Ai (the correspond-
ing ellipsoid is AiB

n
2 ).

(b) Set

rin =

√
n

log(i)(n)˜̀
Ki(Ai)

and rout = log(i)(n)
˜̀
K∗i

(A−1
i )

√
n

.

(c) Define
Ki+1 = conv{Ki ∩ routAiBn

2 , rinAiB
n
2 }.

(3) Output E =
√
n

˜̀
KT−1

(AT−1)
AT−1B

n
2 as the M-Ellipsoid.

Figure 4.1: The M-Ellipsoid Algorithm

4.4.4 Analysis

We note that the time complexity of the algorithm is bounded by poly(n)2O(n) and

the space complexity is polynomial in n. In fact, the only step that takes exponential

time is the evaluation of the `-norm constraint of the SDP. This evaluation happens a

polynomial number of times. The rest of computation involves applying the ellipsoid

algorithm and computing oracles for successive bodies (for Ki+1 given an oracle for

Ki), both of which are fairly straightforward [56]. In particular, we build an oracle for

the intersection of two convex bodies given by oracles and for the convex hull of two

convex bodies given by oracles. The oracle for a body consists of a membership test

and a bound on the ratio between two balls that sandwich the body. Our analysis

below provides sandwiching bounds and the complexity of the oracle grows as nO(i)

in the i’th iteration, for a maximum of nO(log∗ n) = 2o(n).

We begin by showing that Lewis’s bound (Theorem 4.4.1) is robust to approx-

imation and works when restricted to positive semi-definite transformations. This
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allows us to establish the desired properties for approximate optimizers of the convex

program (4.4.4).

Lemma 4.4.11. Let K be such that Bn
2 ⊆ K ⊆ nBn

2 and A ∈ Rn×n, be a (1 − ε)-

approximate optimizer for the convex program (4.4.4), i.e. det(A)
1
n ≥ (1 − ε)OPT .

Then for ε ≤ 1/36n4, we have that

˜̀
K(A)˜̀∗

K(A−1) ≤ n(1 + 6n2
√
ε) ≤ 2n.

Proof. For simplicity of notation, we write ˜̀
K(T ) as α(T ) for T ∈ Rn×n. Take

T ∈ Rn×n (not necessarily positive semidefinite) satisfying α(T ) ≤ 1. Let ‖T‖F =√∑
i,j T

2
ij denote the frobenius norm of T , and ‖T‖2 = supx∈Bn2 ‖Tx‖2 denote the

operator norm of T .

Claim: α(T ) ≤ ‖T‖F ≤ nα(T ).

Proof. Let U denote a uniform vector in {−1, 1}n. Since 1
n
‖x‖2 ≤ ‖x‖K for any

x ∈ Rn, we have that

α(T ) = E[‖UT‖2
K ]

1
2 ≥ 1

n
E[‖UT‖2

2]
1
2 =

1

n
‖T‖F .

Now using the inequality ‖x‖K ≤ ‖x‖2 for x ∈ Rn, a similar argument yields α(T ) ≤

‖T‖F .

First note that In/α(In) is a feasible solution to (4.4.4) satisfying

det(
In

α(In)
)

1
n =

1

α(In)
≥ 1

‖In‖F
=

1√
n
.

Let AOPT � 0 denote the optimal solution to (4.4.4). Since det(AOPT ) ≥ 1√
n
, we

clearly have that AOPT � 0. Therefore for δ > 0 small enough we have that AOPT +

δT � 0. From this, we see that (AOPT + δT )/α(AOPT + δT ) is also feasible for (4.4.4)

as α((AOPT + δT )/α(AOPT + δT )) = 1. Since AOPT is the optimal solution, we have

that

det

(
AOPT + δT

α(AOPT + δT )

) 1
n

≤ det(AOPT )
1
n .
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Rewriting this and using the triangle inequality,

det(AOPT + δT )
1
n ≤ det(AOPT )

1
nα(AOPT + δT ) ≤ det(AOPT )

1
n (α(AOPT ) + δα(T ))

≤ det(AOPT )
1
n (1 + δ).

Dividing by det(AOPT )
1
n on both sides, we get that

det(In + δA−1
OPTT )

1
n ≤ 1 + δ. (4.4.5)

Since both sides are equal at δ = 0, we must have the same inequality for the deriva-

tives with respect to δ at 0. This yields

1

n
tr(A−1

OPTT ) ≤ 1⇔ tr(A−1
OPTT ) ≤ n (4.4.6)

Up to this point the proof is essentially the same as Lewis’ proof of Theorem 4.4.1.

We now depart from that proof to account for approximately optimal solutions.

Claim: ‖A−1
OPT‖2 ≤ n.

Proof. Let σ denote the largest eigenvalue of A−1
OPT and v ∈ Rn be an associated unit

eigenvector. Since AOPT � 0, we have that A−1
OPT � 0, and hence σ = ‖A−1‖2. Now

note that AOPT + δvvT � 0 for any δ ≥ 0, and that α(vvT ) ≤ ‖vvT‖F = ‖v‖2
2 = 1.

Therefore by Equation (4.4.6), we have that

n ≥ tr(A−1(vvT )) = tr(σvvT ) = σ

as needed.

Claim: A−1 � (1 + 6
√
nε)A−1

OPT .

Proof. Since A is (1− ε)-approximate maximizer to (4.4.4) we have that

det(A)
1
n ≥ (1− ε) det(AOPT )

1
n ⇒ det(A) ≥ (1− nε) det(AOPT )
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We begin by proving by proving A � (1− 3
√
nε)AOPT . Now note that

A � (1− 3
√
nε)AOPT ⇔ A

− 1
2

OPTAA
− 1

2
OPT � (1− 3

√
nε)In

Hence letting B = A
− 1

2
OPTAA

− 1
2

OPT , it suffices to show that B � (1 − 3
√
nε)In. From

here, we note that 1 ≥ det(B) = det(A)/ det(AOPT ) ≥ (1− nε). Now from Equation

(4.4.6), we have that

tr(B) = tr(A
− 1

2
OPTAA

− 1
2

OPT ) = tr(A−1
OPTA) ≤ n

Let σ1, . . . , σn ≥ 0 denote the eigen values of B in non-increasing order. We first note

that σn ≤ 1 since otherwise

det(B) =
n∏
i=1

σi ≥ σnn > 1

a contradiction. Furthermore, since B � 0, we have that 0 < σn ≤ 1. So we may

write σn = 1− ε0, for 1 > ε0 ≥ 0. Now since
∑n

i=1 σi = tr(B) ≤ n, by the arithmetic

mean - geometric mean inequality we have that

det(B) = σn

n−1∏
i=1

σi = (1−ε0)
n−1∏
i=1

σi ≤ (1−ε0)

(∑n−1
i=1 σi
n− 1

)n−1

≤ (1−ε0)(1+
ε0

n− 1
)n−1

Using the inequality 1 + x ≤ ex ≤ 1 + x+ e−1
2
x2 for x ∈ [−1, 1], we get that

(1− ε0)(1 +
ε0

n− 1
)n−1 ≤ (1− ε0)eε0 ≤ (1− ε0)(1 + ε0 +

e− 1

2
ε20)

= 1− 3− e
2

ε20 −
e− 1

2
ε30 ≤ 1− 3− e

2
ε20

From this we get that

1− 3− e
2

ε20 ≥ det(B) ≥ (1− nε) ⇒ ε0 ≤
√

2

3− e
nε ≤ 3

√
nε

Therefore σn = 1− ε0 ≥ 1− 3
√
nε⇒ B � (1− 3

√
nε)In ⇒ A � (1− 3

√
nε)AOPT as

needed. From here we get that

A−1 �
(

1

1− 3
√
nε

)
A−1
OPT � (1 + 6

√
nε)A−1

OPT

for ε ≤ 1/36n, proving the claim.
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Now take T ∈ Rn×n satisfying α(T ) ≤ 1. By the first claim, we note that ‖T‖F ≤

nα(T ) ≤ n. Now by Equation (4.4.6), we have that

tr(A−1T ) = tr(A−1
OPTT )+tr((A−1−A−1

OPT )T ) ≤ n+‖A−1−A−1
OPT‖F‖T‖F ≤ n+n‖A−1−A−1

OPT‖F

We bound the second term using the previous claim. Since A−1 � (1 + 6
√
nε)A−1

OPT ,

we have that A−1 − A−1
OPT � 6

√
nεA−1

OPT , and hence

‖A−1 − A−1
OPT‖F ≤

√
n‖A−1 − A−1

OPT‖2 ≤ 6n
√
ε‖A−1

OPT‖2 ≤ 6n2
√
ε

Using this bound, we get

tr(A−1T ) ≤ n+ 6n3
√
ε = n(1 + 6n2

√
ε)

for any T ∈ Rn×n satisfying α(T ) ≤ 1. Thus we get that α∗(A−1) ≤ n (1 + 6n2
√
ε).

Together with the constraint α(A) ≤ 1, the conclusion of the lemma follows.

Theorem 4.4.12. Let A be a (1 − ε)-approximate optimizer to the convex program

(4.4.4) for ε ≤ 1/(36n4). Then

`K(A)`K∗(A
−1) ≤ Cn log

3
2 dBM(K,Bn

2 ).

for an absolute constant C > 0.

Proof. Using Lemma 4.4.11, we have that

˜̀
K(A)˜̀∗

K(A−1) ≤ 2n.

Next we use the approximation property (Lemma 4.4.10) of ˜̀
K to derive that

`K(A)`∗K(A−1) ≤ Cn
√

log dBM(K,Bn
2 )).

Finally, noting that A−T = A−1 (by symmetry of A), we apply Lemma 4.4.2 to infer

that

`K∗(A
−1) ≤ C`∗K(A−1) log dBM(K,Bn

2 ),

which completes the proof.
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Next we turn to proving that the algorithm produces an M-Ellipsoid. While the

analysis follows the existence proof to a large extent, we need to handle the various

approximations incurred.

To aid in the analysis of Algorithm 4.1 on input K ⊆ Rn, we make some additional

definitions. Let ai = log(i) n and T = log∗ n. Let K1, . . . , KT and A1, . . . , AT denote

the sequence of bodies and transformations generated by the algorithm. Set Kout
1 =

Kin
1 = K, and for 1 ≤ i ≤ T − 1 define

Kin
i+1 = conv{Kin

i , r
i
inAiB

n
2 } Kout

i+1 = Kout
i ∩ rioutAiBn

2

where riin, r
i
out are defined as rin, rout in the i’th iteration of the main loop in Algorithm

4.1.

By construction, we have the relations

K ⊆ Kin
1 ⊆ · · · ⊆ Kin

T , K ⊇ Kout
1 ⊇ · · · ⊇ Kout

T , Kout
i ⊆ Ki ⊆ Kin

i ∀i ∈ [T ]

The proof of the main theorem will be based on the following inductive lemmas

which quantify the properties of the sequences of bodies defined above.

Lemma 4.4.13. ∀i ∈ [T ], we have that dBM(Ki, B
n
2 ) ≤ C(log(i−1) n)

7
2 .

Proof. For the base case, we have that dBM(K1, B
n
2 ) ≤

√
n ≤ Cn

7
2 for any constant

C ≥ 1.

For the general case, by construction of Ki+1 we have that

riinAiB
n
2 ⊆ Ki+1 ⊆ rioutAiB

n
2 .

Therefore,

dBM(Ki+1, B
n
2 ) ≤ riout/r

i
in

= a2
i
˜̀
K∗i

(A−1
i )˜̀

Ki(Ai)/n

≤ C1a
2
i `K∗i (A−1)`Ki(Ai)/n (by Lemma 4.4.10)

≤ C1(log(i) n)2(log dBM(Ki, B
n
2 ))

3
2 . (by Lemma 4.4.12)
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Using the fact that log(i)(n) ≥ 1, ∀i ∈ [T − 1], a direct computation shows that the

above recurrence equation implies the existence of a constant C > 1 (depending only

on C1) such that the stated bound on dBM(Ki+1, B
n
2 ) holds.

Lemma 4.4.14. For i ∈ [T − 1], we have that

max

{
vol(Kout

i )

vol(Kout
i+1)

,
vol(Kin

i+1)

vol(Kin
i )

}
≤ eCn/ log(i) n

Proof. By Lemma 4.4.4, the fact that Kout
i ⊆ Ki, Lemma 4.4.6, Lemma 4.4.10 and

Lemma 4.4.13, we have that

vol(Kout
i )

vol(Kout
i+1)
≤ N(Kout

i , rioutAiB
n
2 ) ≤ N(Ki, r

i
outAiB

n
2 )

≤ e
C(`K∗

i
(A−1
i )/riout)

2

= e
Cn`K∗

i
(A−1
i )2/(ai ˜̀K∗

i
(A−1))2

≤ eCn log(dBM (K∗i ,B
n
2 ))/a2i ≤ eCn/ log(i) n

By Lemma 4.4.8, 4.4.10 and 4.4.13, we see that

riinAiB
n
2 ⊆ riin`Kin

i
(Ai)K

in
i ⊆ riin`Ki(Ai)K

in
i ⊆ C1

√
nKin

i .

Next by Lemma 4.4.5, the fact that Ki ⊆ Kin
i , Lemma 4.4.7, Lemma 4.4.10 and

Lemma 4.4.13, we have that

vol(Kin
i+1)

vol(Kin
i )
≤ C14n

3
2N(riinAiB

n
2 , K

in
i ) ≤ C1n

3
2N(riinAiB

n
2 , Ki)

≤ C1n
3
2 eC(`Ki (Ai)r

i
in)2 = C1n

3
2 eCn`Ki (Ai)

2/(ai ˜̀Ki (Ai))
2

≤ C1n
3
2 eCn log(dBM (Ki,B

n
2 ))/a2i ≤ C1n

3
2 eCn(1/ log(i) n) ≤ eCn/ log(i) n

We are now ready to complete the proof.

Proof. (of Theorem 4.1.3.) By construction of KT , we note that

rT−1
in AT−1B

n
2 ⊆ KT ⊆ rT−1

out AT−1B
n
2
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where by Lemma 4.4.13 we have that rT−1
out /r

T−1
in = O(1). Therefore the returned

ellipsoid E =
√
n

˜̀
KT−1(AT−1)

AT−1B
n
2 (last line of Algorithm 4.1) satisfies that

1

C
E ⊆ KT ⊆ CE

for an absolute constant C ≥ 1. Next by Lemma 4.4.4, we have that

N(K,E), N(E,K) ≤ 3n
max{vol(K), vol(E)}

vol(K ∩ E)

Now we see that

K ⊆ Kin
T ⊆ CKin

T E ⊆ CKT ⊆ CKin
T ,

and that

K ⊇ 1

C
Kout
T E ⊇ 1

C
KT ⊇

1

C
Kout
T .

Therefore,

max{vol(K), vol(E)}
vol(K ∩ E)

≤ C2n vol(Kin
T )

vol(Kout
T )

.

Finally, by Lemma 4.4.14 we have that

vol(Kin
T )

vol(Kout
T )

=
T−1∏
i=1

vol(Kin
i+1)

vol(Kin
i )

vol(Kout
i )

vol(Kout
i+1)
≤

T−1∏
i=1

e2Cn/ log(i) n = 2O(n).

Combining the above inequalities yields the desired guarantee on the algorithm. The

time complexity is 2O(n), dominated by the time to evaluate the ˜̀
K-norm. The space

is polynomial since all we need to maintain are efficient oracles for the successive

bodies Ki, which can be done space-efficiently for the operations of intersection and

convex hull used in the algorithm [56].

4.5 An Asymptotically Optimal Volume Algorithm

As noted in the introduction, the result of Theorem 4.1.5, a deterministic 2O(n)-

approximation for volume, follows directly from Theorem 4.1.3. In this section, we

show how to modify our M-Ellipsoid algorithm (based on Milman’s iteration) to match

this lower bound algorithmically.
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In the M-Ellipsoid algorithm of the previous section, we construct a series of

convex bodies K0 = K,K1, . . . , KT such that the covering numbers N(K,KT ) and

N(KT , K) are bounded by 2O(n) and the final body KT has dBM(KT , B
n
2 ) < C for

some constant C. Our modification will construct a similar sequence of bodies, but

rather than covering numbers, we will ensure that

e−Cεnvol(K) ≤ vol(KT ) ≤ eCεnvol(K)

and

dBM(KT , B
n
2 ) ≤ C

ln(1/ε)
5
2

ε2
.

Then we approximate the volume of KT by finding an approximate `-Ellipsoid E for

it, and covering it with translations of a maximal parallelopiped that fits in εE. Since

this covering will consist of disjoint parallelopipeds, and their union will be contained

in KT + εE ⊆ (1 + ε)KT , we get the desired approximation. Here is the precise

algorithm.

Proof of Theorem 4.1.7. Let ai = log(i) n. As in Lemma 4.4.13, we bound the Banach

Mazur via the following recurrence

dBM(Ki+1, B
n
2 ) ≤ riout/r

i
in ≤ C

ln(1/ε)

ε2
(log(i)(n))2(log dBM(Ki, B

n
2 ))

3
2 .

From the above recurrence a direct computation reveals that for ∀ i ∈ [T ],

dBM(Ki, B
n
2 ) ≤ C

ln(1/ε)5/2

ε2
(log(i−1)(n))

7
2

We now show that the volumes of the Ki bodies changes very slowly. This will

enable us to conclude that the volume of KT is very close to the volume of K.

By Lemmas 4.4.8, 4.4.10 and the above bound on dBM(Ki, B
n
2 ), we have that

riinAiB
n
2 ⊆ riin`Ki(Ai)Ki ⊆ C

ε
√
n log dBM(Ki, Bn

2 )√
ln(1/ε) log(i)(n)

Ki ⊆ Cε
√
nKi

and that

rioutAiB
n
2 = C

√
ln(1/ε) log(i)(n)˜̀

K∗(A
−1)

ε
√
n

AiB
n
2 ⊇ C

`K∗(A
−1)

ε
√
n

AiB
n
2 ⊇ C

1

ε
√
n
Ki.
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Volume(K, ε).

(1) Let K1 = K and T = log∗ n

(2) For i = 1 . . . T − 1,

(a) Compute an approximate `-Ellipsoid of Ki using the convex program
(4.4.4) to get an approximately optimal transformation Ai (the correspond-
ing ellipsoid is AiB

n
2 ).

(b) Set

rin =
ε
√
n√

ln(1/ε)C log(i)(n)˜̀
Ki(Ai)

and rout =
C
√

ln(1/ε) log(i)(n)˜̀
K∗i

(A∗i )

ε
√
n

.

(c) Define
Ki+1 = conv{Ki ∩ routAiBn

2 , rinAiB
n
2 }.

(3) Compute the ellipsoid E = rinAT−1B
n
2 and a maximum volume parallelopiped

P inscribed in E.

(4) Call Parallelepiped-Tiling(KT , ε
2
P ,1) to tile KT with ε

2
P .

Output kvol(P ), where k is the computed size of the tiling.

Figure 4.2: Deterministic Volume Algorithm

Therefore if ε ≤
√
n/C, then Ki+1 = conv{riinAiBn

2 , Ki ∩ rioutAiBn
2 } = Ki. Since this

holds for all i ∈ [T − 1], we get that KT = K and hence vol(KT ) = vol(K).

Now assume that ε ≥
√
n/C. Then for i ∈ [T − 1], using Lemmas 4.4.4 and 4.4.6, we

have,

vol(Ki+1) ≥ vol(Ki ∩ routBn
2 )

≥ vol(Ki)

N(Ki, rioutB
n
2 )

≥ e
−C(`K∗

i
(A−1
i )/riout)

2

vol(Ki)

≥ e−C(ε2/ ln(1/ε))n log dBM (Ki,B
n
2 )/a2i vol(Ki)

≥ e−Cnε/ log(i)(n)vol(Ki).
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From the above, we get that

vol(KT )

vol(K)
=

T−1∏
i=1

vol(Ki+1)

vol(Ki)
≥

T−1∏
i=1

e−Cnε/ log(i)(n) ≥ e−Cnε

Next via Lemma 4.4.5, the above containment, and Lemma 4.4.6, we have,

vol(Ki+1) ≤ vol(conv {Ki, rinB
n
2 })

≤ C(ε
√
n)nN(rinB

n
2 , Ki)vol(Ki)

≤ C(εn
3
2 )eC(riin`K(Ai))

2

vol(Ki)

≤ C(εn
3
2 )eC(ε2/ ln(1/ε))n log dBM (Ki,B

n
2 )/a2i vol(Ki)

≤ C(εn
3
2 )eCnε/ log(i)(n)vol(Ki).

From this, we get that

vol(KT )

vol(K)
=

T−1∏
i=1

vol(Ki+1)

vol(Ki)
≤ (Cεn

3
2 )log∗(n)

T−1∏
i=1

eCnε/ log(i)(n) ≤ eCnε,

where the above holds as long as ε = Ω( logn log∗ n
n

) (which we have by assumption).

Combining the above inequalities we get

e−Cεnvol(K) ≤ vol(KT ) ≤ eCεnvol(K).

Let E = E(A) denote the final ellipsoid computed by the algorithm, and let

P = A−
1
2 [−1, 1]n denote a maximimum volume inscribed parallelipiped of E. By

construction of E and KT , we have that E ⊆ KT ⊆ C ln(1/ε)5/2

ε2
E. By the guarantees

on Algorithm Parallelepiped-Tiling (from section 4.2) on input KT , ε
2
P , and 1, the

outputted tiling is contained in KT + (1 + 1) ε
2
P ⊆ KT + εE ⊆ (1 + ε)KT . Hence

the estimate outputted by the algorithm lies between vol(KT ) and vol((1 + ε)KT ) =

(1 + ε)nvol(KT ). Thus the overall approximation factor is bounded by eCnε as desired

(setting ε = c1ε
′, for c1 < 1 sufficiently small, yields a (1 + ε′)n approximation).

Finally, the running time of the algorithm is dominated by the time to compute

the covering. Noting that vol(E) = (
√

πe
2

(1 + o(1)))nvol(P ) = 2O(n)vol(P ), the size
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of the covering is bounded by

vol(KT + εP )

vol( ε
2
P )

≤ 2n(1 + ε)n
vol(KT )

vol(P )
≤ Cn(1 + ε)n

vol(KT )

vol(E)

≤ Cn(1 + ε)n(ln(1/ε)5/2/ε2)n = (1/ε)O(n).

Hence by the guarantees on algorithm Parallelepiped tiling, the time to compute the

covering is (1/ε)O(n). Lastly, the space needed to compute the size of the covering is

polynomial, as we only need to keep track of the count as we iterate over elements of

the covering.

4.6 Computing an Approximate Center of Mass

In this section, we give a Las Vegas algorithm which finds an approximate center

of mass for any convex body. More precisely, for a convex body K ⊆ Rn, we wish

to output a point b ∈ K such that voln(K) ≤ 2O(n)voln((K − b) ∩ (b − K)). We

remember that voln(K) ≤ 2nvoln((K−b(K))∩ (b(K)−K)) (Theorem 2.3.7), where

b(K) is the centroid of K. Given this, we can apply random sampling techniques to

estimate the centroid, and get an approximate center of mass with high probability. In

future chapters, our lattice algorithms will make critical use of approximate centers of

mass. To avoid byzantine failures we will prefer a Las Vegas algorithm for computing

such centers. Our strategy here will be to use the randomized sampling methods to

approximate the centroid and certify it using the volume estimation algorithm from

the previous section.

We give the algorithm below.

Algorithm 4.6 Approx-Mass-Center(K)

Input: A weak membership oracle OK for a (a0, r, R)-centered convex body K ⊆ Rn.
Output: b satisfying the conditions of Theorem 4.6.1.

1: b← Estimate-Centroid(K, 1
n
).

If Estimate-Centroid returns FAIL, restart; else, continue.
2: V1 ← Volume(K −K, 1

10
); V2 ← Volume((K − b) ∩ (b−K), 1

10
).

3: If V1/2
n > (4.5)nV2, restart; else, return b.
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Theorem 4.6.1 (Correctness of Approx-Mass-Center). Given an (a0, r, R)-centered

convex body K ⊆ Rn, in expected 2O(n) poly(·) time, using poly(·) space and random-

ness, algorithm 4.6 outputs a vector b ∈ K satisfying (for n large enough)

(1) voln(K) ≤ 5nvoln((K − b) ∩ (b−K)).

(2) K is (b, r
2(n+1)

√
n
, 2R) centered.

Analysis of Approx-Mass-Center.

Correctness: We show that if the algorithm succesfuly returns b, then b satisfies

both (1) and (2). We first note that (2) follows directly from the guarantees on

the algorithm Estimate-Centroid. Next, note that by the guarantees on algorithm

Volume we have that

V1 ≤ voln(K −K) ≤ (1 + ε)nV1 and V2 ≤ voln((K − b) ∩ (b−K)) ≤ (1 + ε)nV2

(4.6.1)

for ε = 1
10

. Next, by the Rogers-Shephard inequality and the Brunn-Minkowski

inequality, we have that

2nvoln(K) ≤ voln(K −K) ≥ 4nvol(K). (4.6.2)

Now assuming the final test passes, we have that

V1/2
n ≤ (4.5)nV2 ⇒ voln(K)/(1 + ε)n ≤ (4.5)nvoln((K − b) ∩ (b−K))

⇒ voln(K) ≤ 5nvoln((K − b) ∩ (b−K)).

Therefore the output of the algorithm is correct, as needed.

Runtime: For the runtime, we see that the calls to Estimate-Centroid run in poly(·)

time and space and the calls to algorithm Volume run in 2O(n) poly(·) time and poly(·)

space. Therefore, to achieve the desired runtime, it suffices to show that the algo-

rithm’s loop executes at most O(1) times.
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To prove this, we will show that if Estimate-Centroid outputs b satisfying b ∈

b(K) + 1
n+1

EK , then the loop tests succeed. By the guarantees on Estimate-Centroid

on input K and error probability 1
n
, this event happens with probability at least

1 − 1
n
. This will therefore suffice to show that the number of loop iterations is O(1)

on expectation.

Since b ∈ b(K) + 1
n+1

EK , by theorem 4.3.6 we have that

voln((b−K) ∩ (b−K)) ≥
(

1− 1

n+ 1

)n
2−nvoln(K) ≥ 1

e
2−nvoln(K).

Therefore since (1+ε)nV2 ≥ voln((K−b)∩(b−K)) and that 2nvoln(K) ≥ 2−nvoln(K−

K) ≥ 2−nV1, we have that

e 4n (1+ε)nV2 ≥ e 4nvoln((K−b)∩(b−K)) ≥ 2nvoln(K) ≥ 2−nvoln(K−K) ≥ 2−nV1

Next, we note that

e 4n (1 + ε)n = e 4n (1 +
1

10
)n = e 4.4n ≤ 4.5n

for n ≥ 45. Therefore the test at the end of the loop passes with probability at

least 1 − 1
n
, for n large enough, as needed. We note that the only randomness in

the algorithm is used by Estimate-Centroid, and since Estimate-Centroid runs in

polynomial time, the amount of randomness used in the algorithm is polynomial as

needed.
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4.7 Conclusion

The study of different types of ellipsoids for convex bodies and the complexity of

computing them has played a fundamental role in both convex geometry and computer

science. The complexity of computing John and inertial ellipsoids for example, has

been well studied. In this Chapter, we have focused our attention on computing

another fundamental ellipsoid in convex geometry: the M-Ellipsoid. To the best of

our knowledge, this problem had not been studied previously.

Here, we have given two different algorithms for computing M-Ellipsoids: the

first being a randomized polynomial time algorithm, based on a construction of

Klartag [77], and the second being a deterministic 2O(n) time algorithm, based on

Milman’s original construction [92]. A main motivation for studying M-Ellipsoid con-

structions has been to gain a better understanding of what properties of a convex

body are deterministically computable. Our main result from this perspective, has

been to show that the M-Ellipsoid (in particular its deterministic construction), can

be used to give a nearly optimal algorithm for estimating the volume of a symmetric

convex body. Lastly, as a crucial tool, we have developed an algorithm to efficiently

cover any convex body by an ellipsoid. This algorithm will play a central role in the

applications to lattice problems and integer programming in the next chapters.

Future Research. A first future research direction is to find more optimized al-

gorithms than the ones given here. We have made very little effort in this Chapter

to optimize the quality of the outputted M-Ellipsoid, and understanding how small

the product of covering estimates N(K,E)N(E,K) can be made in an algorithmic

and deterministic manner is a very interesting question. Following this, to deter-

ministically estimate the volume of a symmetric convex body to within (1 + ε)n our

algorithm requires roughly (1 + 1/ε)2n time (modulo polylogarithmic factors in ε).

From the Bárány-Füredi lower bound [52], the optimal dependence on ε should be
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(1 + ε)
n
2 . Closing this gap would seem to require stronger methods than the ones

described here, and is an interesting open problem.

A next series of questions, is on the subject of generalizing the algorithms given

here. Firstly, the volume algorithm presented here only works for symmetric convex

bodies. A first question is therefore whether the same con be done for asymmetric

convex bodies in the same time and space complexity. Second, our current covering

algorithm only works for covering convex bodies by ellipsoids (or more precisely,

cuboids). Given two convex bodies K1, K2, is there a general method for covering K1

by K2 in a near optimal fashion (i.e. of size roughly N(K1, K2))?

Lastly, we would like explore algorithmic questions on convex bodies beyond the

oracle model. In particular, given the work presented here, a tantalizing question is

whether one can compute M-Ellipsoids for explicit polytopes (i.e. whose descriptions

are given explicitly as input) in polynomial time. The main complexity of Milman’s

construction for example, is computing the expectation

E[‖TU‖K ] =
∑

x{−1,1}n

1

2n
‖Tx‖K

If K is a symmetric polytope, we can express K = {z : |Az| ≤ 1}. We note that

‖x‖K = ‖Ax‖∞, and hence E[‖TU‖K ] = E[‖ATU‖∞]. Here it seems very likely that

one may able to shortcut the complexity of computing this expectation by directly in-

specting the matrix AT , avoiding the cost associated with directly evaluating over all

of {−1, 1}n. Furthermore, we note that for symmetric bodies, the problem computing

an M-Ellipsoid is self dual, i.e. it is equivalent to compute an M-Ellipsoid for either K

or K∗. Therefore, from the perspective of symmetric polytopes, the complexity of the

problem is the same whether the polytope is given in either convex hull or inequality

representation.
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CHAPTER V

EFFICIENT DETERMINISTIC ALGORITHMS FOR

LATTICE PROBLEMS

We give a new algorithm for enumerating lattice points in any convex body, and give

applications to several classic lattice problems, including the Shortest and Closest

Vector Problems (SVP and CVP, respectively). Our enumeration technique relies on

the classical M-Ellipsoid concept from convex geometry (presented in the previous

chapter), and uses as a crucial subroutine the recent algorithm of Micciancio and

Voulgaris [91] for lattice problems in the `2 norm. Additionally, we give a novel

algorithm to “sparsify” an input lattice at any desired distance while approximately

maintaining the lattice’s metric structure.

As applications, we give deterministic single exponential time and space algo-

rithms for solving exact SVP, exact CVP when the target is “close”, and (1+ε)-CVP,

on n-dimensional lattices in any norm. Our approach yields the first deterministic

alternative to the “AKS Sieve” (Ajtai, Kumar and Sivakumar) for exact SVP and

(1 + ε)-CVP [2, 3] for norms other than `2.

This Chapter is based on work from the paper [36] (joint with Santosh Vempala,

Chris Peikert) as well as subsequent extensions.

5.1 Introduction

The Shortest and Closest Vector Problems (SVP and CVP, respectively) on lattices

are central algorithmic problems in the geometry of numbers, with applications to In-

teger Programming [84], factoring polynomials over the rationals [83], cryptanalysis
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(e.g., [101, 66, 99]), and much more. (See section 2.4 for appropriate lattice defini-

tions) The SVP is simply: given a lattice L represented by a basis, find a nonzero

v ∈ L such that ‖v‖ is minimized, where ‖·‖ denotes a particular norm on Rn. The

CVP is an inhomogeneous analogue of SVP: given a lattice L and a point t ∈ Rn, find

some v ∈ L that minimizes ‖v − t‖. In these problems, one often uses the Euclidean

(`2) norm, but many applications require other norms like `p or, most generally, the

norm defined by a convex body K 3 0 as ‖x‖K = inf{s ≥ 0 : x ∈ sK}. Indeed,

general norms arise quite often in the study of lattices; for example, the “flatness the-

orem” in Integer Programming — which states that every lattice-free convex body

has lattice width bounded by a function of the dimension alone — is a statement

about SVP in general norms (see Chapter 6).

Much is known about the computational complexity of SVP and CVP, in both

their exact and approximation versions. On the negative side, SVP is NP-hard (in

`2, under randomized reductions) to solve exactly, or even to approximate to within

any constant factor [1, 23, 89, 75]. Many more hardness results are known for other

`p norms and under stronger complexity assumptions than P 6= NP (see, e.g., [125,

40, 109, 62]). CVP is NP-hard to approximate to within nc/ log logn factors for some

constant c > 0 [4, 41, 40], where n is the dimension of the lattice. Therefore, we

do not expect to solve (or even closely approximate) these problems efficiently in

high dimensions. Still, algorithms providing weak approximations or having super-

polynomial running times are the foundations for the many applications mentioned

above.

The celebrated LLL algorithm [83] and variants [118] give 2n/polylog(n) approxima-

tions to SVP and CVP in `2, in poly(n) time. For exact SVP and CVP in the `2 norm,

Kannan’s algorithm [70] gives a solution in deterministic 2O(n logn) time and poly(n)

space. This performance remained essentially unchallenged until the breakthrough

randomized “sieve” algorithm of Ajtai, Kumar, and Sivakumar [2], which provides a
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2O(n)-time and -space solution for exact SVP; moreover, the algorithm was shown,

in a sequence of works, to generalize to essentially any norm [18, 5, 33]. For CVP,

in roughly the same sequence [3, 18, 5, 33] it was shown that a modified version of

the AKS sieve can approximate CVP in any essentially any norm to within a (1 + ε)

factor in time and space (1/ε)O(n) for any ε > 0. Furthermore, these algorithms can

solve CVP exactly in 2O(n) time as long as the target point is “very close” to the

lattice. It is worth noting that the AKS sieve is a Monte Carlo algorithm: while the

output solution is correct with high probability, it is not guaranteed.

In a more recent breakthrough, Micciancio and Voulgaris [91] gave a deterministic

2O(n)-time (and space) algorithm for exact SVP and CVP in the `2 norm, among many

other lattice problems in NP. Interestingly, their algorithm works very differently from

the AKS sieve, by computing an explicit description of the Voronoi cell of the lattice.

(The Voronoi cell is the set of all points in Rn that are closer to the origin than to

any other lattice point.) In contrast to the AKS sieve, however, the algorithm of [91]

appears to be quite specialized to `2 (or any norm defined by an ellipsoid, simply

by applying a linear transformation). This is in part because in `2 the Voronoi cell

is convex and has 2O(n) facets, but in general norms this is not the case. A main

problem left open in [91] was to find deterministic 2O(n)-time algorithms for lattice

problems in `p and other norms.

5.1.1 Lattice Problems

We define the lattice problems addressed in this chapter:

Definition 5.1.1 (Shortest Vector Problem). Given a 0-centered convex body K ⊆

Rn, and an n-dimensional lattice L, the SVP with respect to K and L is to compute

an element of

SVP(K,L) = arg minz∈L\{0} ‖z‖K .
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Definition 5.1.2 (Closest Vector Problem). Given a 0-centered convex body K ⊆

Rn, an n-dimensional lattice L, and target x ∈ Rn, the CVP with respect to K, L

and x is to compute an element of

CVP(K,L,x) = arg miny∈L ‖y − x‖K .

Given ε > 0, the (1 + ε)-CVP with respect to K, L and x is to find y ∈ L satisfying

‖y − x‖K ≤ (1 + ε)dK(L,x) (distance from x to L).

We note that above definitions do not prescribe any computational assumptions

on the set K. Since these details are technical and non-essential, we defer their

presentation.

5.1.2 Results and Techniques

Our main contributions are new deterministic algorithms for solving SVP, CVP and

(1 + ε)-CVP in general norms. These yield the first deterministic alternatives to

the AKS randomized sieving approaches for these problems in norms other than `2

[2, 3, 18, 5, 33]. Compared to the AKS sieved based algorithms, our algorithms achieve

similar running times (up to large 2O(n) factors) and utilize less space (exactly O(2n)).

Furthermore, we show that if there exists an algorithm which solves CVP in `2 using

2O(n) time and S(n) space, then all our algorithms can be implemented using only

S(n) space. In particular, a polynomial space algorithm for `2 CVP would imply

polynomial space versions of all our algorithms.

The first major tool underlying our algorithms is a new method for enumerating

lattice points in any convex body. It uses as a crucial subroutine the Micciancio-

Voulgaris (MV) algorithm [91] for the `2 norm that enumerates lattice points in an

ellipsoid, and relies on the M-Ellipsoid concept from the previous chapter. This

connection between lattice algorithms and convex geometry appears to be a fertile

direction for further research.
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For a lattice L and convex body K in Rn, let G(K,L) be the largest number of

lattice points contained in any translate of K, i.e.,

G(K,L) = max
x∈Rn
|(K + x) ∩ L|. (5.1.1)

Our starting point is the following guarantee on the enumeration of K ∩ L.

Theorem 5.1.3 (Enumeration in convex bodies, informal). Let K ⊆ Rn be a convex

body and L ⊆ Rn denote an n-dimensional lattice.

(1) Given an ellipsoid E ⊆ Rn, the set K∩L can be outputted in deterministic time

G(K,L) ·N(K,E) ·N(E,K) · 2O(n) using O(2n) space.

(2) Using the deterministic M-Ellipsoid construction for K (Algorithm 4.1) to gen-

erate E, the set K ∩ L can be outputted in time G(K,L) · 2O(n) using O(2n)

space.

From the above guarantees, we see that the running time of the lattice point enu-

meration procedure is minimized for an ellipsoid E where the productN(K,E)N(E,K)

is as small as possible. This shows us that a near optimal choice for E is in fact an

M-Ellipsoid of K, which satisfies N(E,K)N(K,E) = 2O(n).

Definition 5.1.4 (Near Symmetric Norms). A general norm ‖ · ‖K is γ-symmetric,

0 < γ ≤ 1, if vol(K) ≥ γnvol(K ∩ −K). ‖ · ‖K is “near-symmetric” if it is Ω(1)-

symmetric.

For a centrally symmetric K, where ‖ · ‖K corresponds to a standard norm, K is

1-symmetric. If the centroid of K is at the origin, then ‖ · ‖K is 1
2
-symmetric (see

Theorem 2.3.7).

Our enumeration algorithm is at the core of the all the following applications. We

begin with the Shortest Vector Problem in any near-symmetric norm ‖ · ‖K .
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Theorem 5.1.5 (SVP in any norm, informal). There is a deterministic algorithm

that, given any near symmetric norm ‖ · ‖K and n dimensional lattice L, finds a

shortest non-zero vector in L under ‖ · ‖K in 2O(n) time and O(2n) space.

Here, the improvement over previous approaches is in the generalization to asym-

metric norms defined by arbitrary convex bodies, as well as the deterministic nature

of the algorithm.

We get a similar algorithm for the exact Closest Vector Problem, but its complex-

ity grows with the distance from the target point to the lattice.

Theorem 5.1.6 (CVP in any norm, informal). There is a deterministic algorithm

that, given any near-symmetric norm ‖ · ‖K, n dimensional lattice L, and target

x ∈ Rn, finds a closest vector to x in L under ‖ · ‖K in (1 + 2α)n · 2O(n) time and

O(2n) space, if the distance from t to L is at most αλ1(K,L).

To remove the dependence on the target distance, which in general is due to the

existence of many short vectors which “confuse” the algorithm, we develop a method

to “sparsify” any lattice while approximately maintaining its metric properties.

Theorem 5.1.7 (Lattice Sparsifier, informal). There is a deterministic algorithm

that, given any near-symmetric norm ‖ · ‖K, n dimensional lattice L, and distance

t ≥ 0, computes a sublattice L′ ⊆ L in deterministic 2O(n) time and O(2n) space

satisfying: (1) the distance from L′ to any point in the lattice is at most its distance

to L + t, (2) the number of points in L′ at distance t is at most 2O(n).

By combining the lattice sparsifier construction and our enumeration technique,

we give a novel algorithm for solving the CVP approximately on any norm and lattice:

Theorem 5.1.8 (Approximate CVP in any norm, informal). There is a deterministic

algorithm that, given any near-symmetric norm in ‖ · ‖K, n dimensional lattice L,

target x ∈ Rn, and 0 < ε ≤ 1, finds a (1 + ε)-approximate closest vector to x under

‖ · ‖K in L, in (1 + 1
ε
)n · 2O(n) time and O(2n) space.
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For our next result, we show the utility of our general norm CVP solver, by using

it to find a lattice point near the “center” of any given convex body. Though our

algorithm is randomized, it is Las Vegas and uses only polynomial randomness.

Theorem 5.1.9 (Central Lattice Point, informal). There is a randomized algorithm

that, given any convex body K, n dimensional lattice L, and 0 < ε ≤ 1, returns

x ∈ K such that K − x is 1
5
-symmetric and a vector y ∈ L such that ‖y − x‖K−x ≤

(1 + ε)dK−x(L,x) in expected (1 + 1
ε
)n · 2O(n) time, using O(2n) space and poly(n)

randomness.

One consequence of the above result is that it allows us to “approximately” de-

cide whether K contains a point of L, i.e. an approximate version of the Integer

Programming problem (see Chapter 7). More precisely, the above algorithm allows

us to distinguish between the following cases: either K ∩ L 6= ∅, or a (1 + ε)-scaling

of K about x contains no point of L. To see this, if we run the algorithm with pa-

rameter ε, then if K ∩ L 6= ∅, we are guaranteed that ‖y − x‖K−x ≤ (1 + ε), and if

((1 + ε)K− εx)∩L = ∅, then by definition ‖y−x‖K−x > (1 + ε). Thus the two cases

can be correctly distinguished as desired.

For our last result, we give a blackbox reduction from all of the above problems

to `2 CVP. The following theorem states that the only thing required to reduce the

space usage of our algorithms is a more space efficient algorithm for `2 CVP.

Theorem 5.1.10 (Reduction to `2-CVP). If there exists an algorithm for `2 CVP

which runs in 2O(n) time and S(n) space (for S(n) at least polynomial), then all the

above algorithms can be implemented to run in the same time complexity while using

only S(n) space.

In the rest of this introduction we give an overview of our enumeration technique

and its application to SVP, CVP.
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Enumeration via M-Ellipsoid coverings. We now explain the main technique

underlying Theorem 5.1.3 (enumeration of lattice points in a convex body K). The

idea is to reduce enumerating lattice points in a convex body K to enumerating

lattice points inside translates of an M -ellipsoid E of K. First, for a translate t +E,

we show that a slight extension of the MV algorithm [91] for `2 CVP can be used

to determininistically enumerate the the points in t + E ∩ L in 2O(n)G(E,L) time.

From here, to enumerate the points in K ∩ L, we compute a covering Λ of K by E

(i.e. K ⊆ Λ + E) and for each t ∈ Λ use the ellipsoid enumeration algorithm to

compute t + E ∩ L. This procedure computes a superset of K ∩ L, and so during

the enumeration we simply ignore the lattice points that do no land in K. Finally,

we do small amount of extra processing to ensure that every lattice point in K ∩L is

outputted exactly once.

For the complexity of the enumeration algorithm, we perform |Λ| = 2O(n)N(K,E)

ellipsoid enumerations, each of which require 2O(n)G(E,L) time. Since G(E,L) ≤

N(E,K)G(K,L), the total running time is bounded by

2O(n)N(K,E)G(E,L) ≤ 2O(n)N(K,E)N(E,K)G(K,L) ≤ 2O(n)G(K,L). (5.1.2)

as needed.

Shortest and Closest Vector Problems. Here we outline our deterministic 2O(n)-

time algorithm for SVP in any norm defined by a symmetric convex body K. (near-

symmetric norms are dealt with similarly.)

Let L be an n-dimensional lattice, and let λ1 = λ1(K,L) be the length of its

shortest vector under ‖·‖K . We can assume by rescaling that 1/2 < λ1 ≤ 1, so K

contains an SVP solution. Our algorithm simply enumerates all nonzero points in

K ∩L (using Theorem 5.1.3), and outputs one of the shortest. For the running time,

it suffices to show that G(K,L) ≤ 2O(n), which follows by a simple packing argument:

for any x ∈ Rn, copies of 1
4
K centered at each point in (K+x)∩L are pairwise disjoint
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(because λ1 > 1/2) and contained in 5
4
K+x, so |(K + x) ∩ L| ≤ vol(5

4
K)/vol(1

4
K) =

5n.

For exact CVP with target point x, the strategy is exactly the same as above,

but we use a scaling dK so that (dK − x) ∩ L 6= ∅ and (d
2
K − x) ∩ L = ∅ (i.e., d is

a 2-approximation of the distance from x to L). In this case, the packing argument

gives a bound of G(dK,L) ≤ (1 + 2d/λ1)n.

As we can see, the complexity of the exact CVP algorithm above depends on the

distance of x to the lattice. A natural question is whether such a dependence can

be removed. In its exact version, the CVP (for near-symmetric norms) is at least as

hard as IP, and so progress here seems hard. However, we show that if we are willing

to tolerate near-optimal solutions, then our current enumeration framework can be

modified to give (1 + ε)-approximate solution in single exponential time.

Given the above guarantees, the high level idea is straightforward: first preprocess

L to get a sublattice L′, satisfying dK(L′,x) ≤ (1 + ε)dK(L), i.e. the distance from L′

to x is approximately the same, and G(d′K,L′) = 2O(n)(1+1/ε)n (for d′ = dK(L′,x)),

i.e. L′ is “sparse” at the target distance. Given such a L′ we simply run the current

CVP on L′ and x to get the desired solution. Hence the key for this approach is the

construction of the “sparsifier” L′ for L. For further details on the construction of

lattice sparsifiers, we refer the reader to Section 5.5.

Interestingly, the above deterministic algorithms nearly match the running times

(up to large 2O(n) factors) of the randomized AKS sieve based algorithms for the same

problems. Though our running times suffer from larger 2O(n) factors compared to AKS

due to our covering approach, we on the other hand save substantially on space. To

contrast, the AKS sieving approach relies on sampling exponentially many “random”

lattice points and combining them via a sieving procedure, until they all land in a

desired convex region with overwhelming probability. For (1+ε)-CVP, the AKS based

appraoches need to keep 2O(n)(1
ε
)n in memory to perform the necessary sieving. In
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our approach however, we use the Micciancio-Voulgaris techniques combined with an

M-Ellipsoid cover to induce a graph on the lattice points we wish to enumerate, and

then rely on a very space efficient graph traversal technique to output the desired

lattice points. In particular, the space usage we require is proportional only to the

maximum degree of the induced lattice point graph, which will be at most 2(2n − 1)

(corresponding the max number of voronoi relevant vectors of a lattice). Therefore,

in contrast to AKS, our space usage does not depend on the number of outputted

points.

5.2 Lattice Point Enumeration in Convex Bodies

In this section we prove our general enumeration theorem for convex bodies (Theo-

rem 5.1.3, formalized in Theorem 5.2.6). This algorithm will be form the core of our

algorithms for the Shortest and Closest Vector Problems (discussed in the following

sections), as well as the Integer Programming Problem (discussed in Chapter 7).

To implement our general enumeration algorithm we will make crucial use of

Micciancio and Voulgaris [91] algorithm for the Closest Vector Problem under the

`2 norm (and general ellipsoidal norms), which we call the MV algorithm for short.

In the following paragraphs, we discuss the key ideas behing the MV algorithm, as

well as how it can be used to perform efficient lattice point enumeration inside an

ellipsoid.

Voronoi Cell based Enumeration: For an ellipsoid E = {x ∈ Rn : ‖x‖A ≤ 1},

A � 0, define the voronoi cell of L with respect to E as

V(E,L) = {x ∈ Rn : ‖x‖A ≤ ‖x− y‖A,∀y ∈ L \ {0}}

= {x ∈ Rn : 〈x,y〉A ≤
1

2
〈y,y〉A ,∀y ∈ L \ {0}}.

(5.2.1)

Here we remember that 〈x,y〉A = xtAy and that ‖x‖E = ‖x‖A =
√
〈x,x〉A. We

write V for V(E,L) when the ellipsoid E and lattice L are clear from context. From
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its definition, we see that V denotes the points in Rn that are at least as close to 0

as any other lattice vector under ‖ · ‖E. We note that V is defined by infinitely many

linear inequalities and is symmetric (since L = −L), and hence is a symmetric convex

set. In the next theorem, we present the fundamental structural properties of V .

Theorem 5.2.1 (Voronoi Cell Structure). Let L be an n dimensional, E = E(A),

A � 0, denote an ellipsoid in Rn. Then V = V(E,L) satisfies the following:

(1) y ∈ CVP(E,L,x)⇔ ±(y − x) ∈ V.

(2) 1
2
λ(E,L)E ⊆ V ⊆ µ(E,L)E. Furthermore, V is full dimensional and bounded.

(3) int(V) is L-packing, and V is L-covering. Furthermore, voln(V) = det(L).

(4) V is a full dimensional polytope.

(5) The halfspace {x ∈ Rn : 〈y,x〉A ≤
1
2
〈y,y〉A}, y ∈ L \ {0}, bounds a facet of V

iff CVP(E,L, 1
2
y) = {0,y}. Furthermore, V has at most 2(2n − 1) facets.

Proof.

Proof of 1. We note that y ∈ CVP(E,L,x) = arg minz∈L ‖z − x‖E iff ‖y − x‖ ≤

‖z−x‖E for all z ∈ L. Since y− (L\{0}) = y + (L\{0}) = L\{y}, we can rewrite

that last condition to ‖y − x‖E ≤ ‖y − v − x‖E for all v ∈ L \ {0} (condition holds

trivially for v = 0), and hence by definition v − x ∈ V . Lastly, since V is symmetric

we have that ±(v − x) ∈ V .

Proof of 2. Let λ = λ1(E,L). We will show that 1
2
λE ⊆ V . Assume not, there

exists x ∈ 1
2
λE such that 0 is not the closest lattice vector x. Since ‖x − 0‖E =

‖x‖E ≤ 1
2
λ, there must y ∈ L \ {0} satisfying ‖x− y‖E < 1

2
λ. But then note that

‖y‖E = ‖y − x + x‖E ≤ ‖y − x‖E + ‖x‖E <
1

2
λ+

1

2
λ < λ
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a clear contradiction. Let µ = µ(E,L). We show that V ⊆ µE. Assume not, then

there exists x ∈ V such that ‖x‖E > µ. But then, by definition of µ, there exists

y ∈ L such that ‖x− y‖E ≤ µ. But then y is closer to x than 0, a contradiction to

x being in V .

Let b1, . . . ,bn denote a basis for L. From Lemma 2.4.7 we know that λ ≥

mini ‖b∗i ‖πi(E) > 0 and that µ ≤
∑n

i=1 ‖b∗i ‖πi(E) < ∞. Since 0 < 1
2
λ < µ < ∞,

we have that V is both full dimensional and bounded.

Proof of 3. We begin by showing that

int(V) = {x ∈ Rn : ‖x‖E < ‖x− y‖E, ∀y ∈ L \ {0}}.

Clearly if x ∈ int(V), then none of the constraints of V can be tight at x, and hence

‖x‖E < ‖x − y‖E for all y ∈ L \ {0}. Now assume that ‖x‖E < ‖x − y‖E for all

y ∈ L \ {0}. To show that x ∈ int(V), it suffices to show that for some ε > 0,

x + εE ⊆ V . Let d = inf{‖y − x‖E − ‖x‖E : y ∈ L \ {0}}. We claim that d > 0.

Take y ∈ L, and assume that ‖y‖E ≥ 2‖x‖E + d+ 1. Then by the triangle inequality

note that

‖y − x‖E − ‖x‖E ≥ ‖y‖E − 2‖x‖E ≥ d+ 1

From the above, we see that it suffices to evaluate the infimum over the points in

L \ {0} ∩ (2‖x‖E + d + 1)E. Since this set contains only a finite number of points,

the infimum is achieved and hence d > 0 as needed. Letting ε = d
2
, we claim that

x + εE ⊆ V . Take z ∈ x + εE. By the triangle inequality note that ‖z‖E ≤ ‖x‖E + ε.

Furthermore, for y ∈ L \ {0} we have that

‖z− y‖E = ‖z− x + x− y‖E ≥ ‖x− y‖E − ‖z− x‖E ≥ (‖x‖E + 2ε)− ε ≥ ‖z‖E.

Therefore z ∈ V as needed.

We show that int(V) is L-packing. Now that for any y ∈ L\{0}, ‖x+y‖E > ‖x‖E

and hence x + y /∈ V . Therefore |(x +L) ∩ int(V)| = 1, for all x ∈ int(V), as needed.
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We now show that V is L-covering. Take x ∈ Rn, and let x̄ ∈ arg minz∈L+x ‖z‖K .

Then by definition of x̄, we have that ∀y ∈ L that ‖x̄‖E ≤ ‖x̄ + y‖E. Therefore

x̄ ∈ V , and hence |(L+ x) ∩ V| ≥ 1, as needed.

We prove that voln(V) = det(L). By Lemma 2.4.4 since int(V) is L-packing we

have voln(int(V)) ≤ det(L), and since V is L-covering we have voln(V) ≥ det(L). The

claim follows by noting that voln(int(V)) = voln(V).

Proof of 4. We now show that V is polyhedral. Let S = 2µE ∩ L. We claim that

V = {x ∈ Rn : 〈x,y〉 ≤ 1
2
〈y,y〉A ∀y ∈ S}. Since S is finite (as µE is bounded), this

will prove polyhedrality of V . To prove this, it suffices to show that if x /∈ V , there

exists y ∈ S, such that ‖x−y‖E < ‖x‖E. Now take x /∈ V . Let t = min{1, µ
‖x‖E
} and

let w = tx. Note that 0 ≤ t ≤ 1 and that ‖w‖E ≤ min{µ, ‖x‖E} ≤ µ. Assume that

w /∈ V . Then there exists y ∈ L, such that ‖w − y‖E < ‖w‖E ≤ µ. Then note that

‖y‖E ≤ ‖y − x‖E + ‖x‖E ≤ µ+ µ = 2µ

and hence y ∈ S. Furthermore, remembering that tx = w, we have that

‖x− y‖E = ‖(x−w) + (w − y)‖E ≤ ‖x−w‖E + ‖w − y‖E

< ‖x−w‖E + ‖w‖E = ‖(1− t)x‖E + ‖tx‖E = ‖x‖E

as needed. Now assume that w ∈ V . Since x /∈ V , we must have that t < 1 and

hence ‖x‖E > ‖w‖E = µ. Since V ⊆ µE, we must have w ∈ ∂V , and hence there

exist y ∈ L \ {0} such that ‖w − y‖E = ‖w‖E = µ. Using the exact same argument

as above, we get that y ∈ S and that

‖x− y‖E ≤ ‖x−w‖E + ‖w − y‖E = ‖(1− t)x‖E + ‖tx‖E = ‖x‖E

We show that the above inequality is strict. By Cauchy-Schwarz, we know that

the above inequality is tight if and only if x − w = s(w − y) and s > 0. Hence

y = (t + t−1
s

)x, and since ‖x − y‖E = |(1 − t)( s+1
s

)|‖x‖E = ‖x‖E, we must satisfy
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|(1 − t)( s+1
s

)| = ±1. Since t < 1 and s > 0, we must have that s = 1−t
t
⇒ y = 0, a

contradiction to our assumption on y. Hence the above inequality is strict, as needed.

Proof of 5. Take y ∈ L \ {0}, and let ty = 1
2
〈y,y〉. The halfspace H≤y,ty =

{x ∈ Rn : 〈x,y〉A ≤ ty} (we use the inner product 〈·, ·〉A for the rest of the proof)

bounds a facet of V if H=
y,ty ∩ V is n− 1 dimensional.

Now assume that CVP(E,L, 1
2
y) = {0,y}. From here, we see that 1

2
y ∈ V , and

that the only tight constraint at 1
2
y is H≤y,ty . By the proof of (3), we now have that

∀z ∈ L \ {0,y} that ‖1
2
y − z‖E ≥ ‖y‖E + ε for some ε > 0. Following the same

argument as in (3), we get that (1
2
y + ε

2
E) ∩H=

y,ty ⊆ V , i.e. that V ∩H=
y,ty is n − 1

dimensional.

Now assume that CVP(E,L, 1
2
y) 6= {0,y}. Since the distance from ‖1

2
y− 0‖E =

‖1
2
y − y‖E, there must exist z ∈ CVP(E,L, 1

2
y) \ {0,y}. Therefore we have that

‖1

2
y − z‖E ≤ ‖

1

2
y‖E ⇔

1

2
〈y, z〉A ≥

1

2
〈z, z〉A ⇔ 〈y − z, z〉A ≥ 0

Now let w = y − z, and let tz = 1
2
〈z, z〉 and tw = 1

2
〈w,w〉. We claim that

H≤z,tz ∩H
≤
w,tw ⊆ H≤y,ty

Assume that x ∈ H≤z,tz ∩H
≤
w,tw . Since w + z = y and 〈w, z〉A ≥ 0, we have that

〈y,x〉A = 〈w + z,x〉A ≤
1

2
(〈w,w〉A + 〈z, z〉A) ≤ 1

2
(〈w,w〉A + 2 〈w, z〉A + 〈z, z〉A)

=
1

2
〈w + z,w + z〉A =

1

2
〈y,y〉A

as needed. First assume that 〈z,w〉A > 0. From the above, this implies that x ∈

H≤z,tz ∩ H
≤
w,tw satisfies 〈x,y〉A < 1

2
〈y,y〉A. Since V ⊆ H≤z,tz ∩ H

≤
w,tw , this implies

that V ∩ H=
y,ty = ∅ and hence H≤y,ty does not bound a facet of V . Now assume

that 〈z,w〉A = 0. Since z /∈ {0,y}, note that w 6= 0, and hence 〈z,w〉A = 0 ⇒

z,w are linearly independent. Now take x ∈ V ∩ H=
y,ty . Since x ∈ H≤z,tz ∩ H

≤
w,tw ,
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x ∈ H=
y,ty ⇒ x ∈ H=

z,tz ∩ H
=
w,tw . Since y,w are linearly independent, we have that

dim(V ∩H=
y,ty) ≤ dim(H=

z,tz ∩H
=
w,tw) = n− 2⇒ H≤y,ty does not bound a facet of V .

We now show that V has at most 2(2n − 1) facets. First note that by symmetry

of V , H≤y,ty , y ∈ L \ {0}, bounds a facet of V if and only if H≤−y,ty bounds a facet of

V . Using the first part, we get the equivalence

H≤±y,ty bounds a facet of V ⇔ CVP(E,L, y
2

) = {0,y}

⇔ arg minz∈y
2

+L ‖z‖E = {y
2
,−y

2
}

Now note that |L/2 (mod L)| = |{1
2
y + L : y ∈ L \ {0}}| = 2n − 1 (see Lemma

2.4.2). Now since each pair {y,−y} ∈ L \ {0} inducing facets of V can be identified

to a non-zero coset in L/2 (mod L), we must have that number of facets is bounded

by 2(2n − 1) as needed.

The algorithm of Micciancio and Voulgaris make crucial use of the voronoi of the

cell to solve CVP in the `2 norm (or any ellipsoidal norm). In particular, they show

that the facet defining lattice vectors for V(E,L), which they denote the voronoi

relevant vectors of L with respect to E, form an extremely efficient “basis” for closest

lattice vector search. Formally, we denote the set of voronoi relevant vectors as

VR(E,L) = {y ∈ L \ {0} : the halfspace {x ∈ Rn : 〈x,y〉A ≤
1

2
〈y,y〉A}

is facet defining for V(E,L)}.
(5.2.2)

We write VR for VR(E,L) whenever the context is clear. We now explain the

utility of the voronoi relevant vectors for CVP. First, we note that since V is a

full dimensional polytope, V is defined by its facet defining halfspaces, and hence

V = {x ∈ Rn : 〈x,y〉A ≤
1
2
〈y,y〉 y ∈ VR}. Now assume we wish to solve CVP with

respect L and target x ∈ Rn under ‖ · ‖E. Let y ∈ L denote the closest lattice vector

to x we have found thus far. From Theorem 5.2.1, we know that y ∈ CVP(E,L,x)⇔

y−x ∈ V . Now if y /∈ CVP(E,L,x), given the description of V , there exists v ∈ VR
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such that y− v ∈ L is closer to x than y. Hence if we have VR stored as a list, then

a simple finite algorithm to compute a closest lattice vector to x is as follows: start

with any initial vector y ∈ L and iterate moving to y + v, for v ∈ VR such that

‖y − x‖E > ‖y − v − x‖E, as long as such an improving v exists.

A refinement of the above procedure, which chooses the improving v ∈ VR more

carefully, is essentially what is used in the MV algorithm to compute closest vectors.

We note that the set of voronoi relevant vectors for L must be computed in advance

for it to be used in the above procedure. Indeed, much of the work performed by the

MV algorithm is spent reducing the computation of the set VR to 2O(n) CVPs on a

lower dimensional sublattice L′ of L, for which the set of voronoi relevant vectors has

been precomputed. We refer the interested reader to [91] for the full details.

We now give a formal statement of the MV algorithm:

Theorem 5.2.2 (MV Algorithm [91]). Let E = E(A), A � 0, A ∈ Qn×n, denote

an ellipsoid in Rn, L denote an n-dimensional lattice with basis B ∈ Qn×n. Then

in 22n poly(·) time and 2n poly(·) space, the MV algorithm can compute any of the

following:

(1) The set of voronoi relevant vectors VR(E,L).

(2) A shortest non-zero lattice vector y ∈ SVP(E,L).

(3) Linearly independent vectors y1, . . . ,yn ∈ L satisfying ‖yi‖E = λi(E,L).

(4) For a target vector x ∈ Qn, a closest lattice vector y ∈ CVP(E,L,x).

Enumeration in an Ellipsoid: As a first task, we will show that the MV algorithm

can be adapted to efficiently enumerate the lattices points inside an arbitrary ellipsoid.

Given an ellipsoid E = E(A), A � 0, shift x and a lattice L, we want to enumerate

the set (E + x) ∩ L.
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To achieve this we first define the graph G with vertex set V [G] = (E + x) ∩ L

and edge set E[G] = {{y,w} : y,w ∈ V,y −w ∈ VR(E,L)}. The idea will be to

traverse the graph G using Avis-Fukuda reverse search 1 (see section 4.2 for a thorough

exposition) to enumerate the lattice points in (E+x)∩L in a time and space efficient

manner. To traverse the graph using reverse search, we will need to build a good

local search function f on V having a unique sink. Here we will show that a slight

refinement of the “naive” CVP algorithm, which uses locally improving moves indexed

by voronoi relevant vectors in VR(E,L), can be used to give a local search function

whose unique sink is a lexicographically minimal closest lattice vector to x.

Let <lex denote the standard strict lexicographic ordering on Rn, i.e. for x,y ∈ Rn,

x<lex y, if either x1 < y1 or x1 = y1 and (x2, . . . ,xn)<lex(y2, . . . ,yn).

We now present the local search function f on G and its associated guarantees:

Lemma 5.2.3. Let v1, . . . ,vN denote an ordering of vectors in VR(E,L). Let

f : L → L denote the function where f(y) = y−vi, for a minimum index i ∈ [N ] such

that either ‖y−vi−x‖E < ‖y−x‖E or ‖y−vi−x‖E = ‖y−x‖E and y−vi<lex y,

and f(y) = y if no such i exists. Then we have that

(1) f is a local search function on G, i.e. the graph T (f) = {(y, f(y)) : y ∈ V, f(y) 6= y)}

is a directed acyclic subgraph of G.

(2) The unique sink of f is the lexicographically minimal element of CVP(E,L,x).

(3) f runs in 2n poly(·) time and space.

Proof. We show that f is a valid local search function on G. By the definition of f ,

for a non-sink node y ∈ L (i.e. f(y) 6= y) we have that either ‖f(y)−x‖E < ‖y−x‖

or ‖f(y) − x‖E = ‖y − x‖K and f(y)<lex x. Therefore for a non-sink node y ∈ L,

we have that f (k)(y) 6= y for all k ≥ 1, and hence the graph T (f) is directed acyclic.

1We are indebted to Matthias Köppe for suggesting the use of reverse search to reduce the space
complexity of our covering and enumeration algorithms.
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Furthermore if y ∈ E + x (i.e. ‖y − x‖E ≤ 1), we clearly have that f(y) ∈ E + x.

Since by construction of f , y− f(y) ∈ VR(E,L), we get that {y, f(y)} is an edge of

G. Therefore the graph T (f) is a directed acyclic subgraph of G as needed.

We now show that f(y) = y, for y ∈ L, then y is the lexicographically minimal

element of CVP(E,L,x). Since f(y) = y, by construction of f we must have that

‖y− x‖E ≤ ‖y− vi − x‖E for all i ∈ [N ], and hence by Theorem 5.2.1 we have that

y − x ∈ V(E,L) ⇔ y ∈ CVP(E,L,x). Let y′ denote the lexicographically minimal

element of CVP(E,L,x).

For the sake of contradiction, assume that y′ 6= y. Since V is symmetric, note

y− x ∈ V ⇒ x− y ∈ V ⇒ 0 ∈ CVP(E,L,x− y). Since y ∈ L, CVP(E,L,x− y) =

CVP(E,L,x)−y and hence y′−y ∈ CVP(E,L,x−y), and y′−y 6= 0. Letting w =

y′−y, noting that <lex is translation invariant (i.e. a+c<lex b+c⇔ a<lex b), we have

that w is the lexicographically minimal element of CVP(E,L,x − y). Furthermore,

since 0,w ∈ CVP(E,L,x− y), w<lex 0 and

‖(x− y)−w‖E = ‖x− y‖E ⇔ 〈x− y,w〉A =
1

2
〈w,w〉A .

Since w ∈ L\{0}, the inequality 〈·,w〉A ≤
1
2
〈w,w〉A is a non-trivial valid inequality

for V , where we remember that

V = {x ∈ Rn : 〈x,vi〉A ≤
1

2
〈vi,vi〉 i ∈ [N ]} (since {v1, . . . ,vN} = VR(E,L)) .

Therefore by Farkas Lemma, there exists non-negative multipliers a1, . . . , aN ∈ R+

such that
N∑
i=1

aivi = w and
n∑
i=1

1

2
ai 〈vi,vi〉A ≤

1

2
〈w,w〉A

Letting I = {i ∈ I : ai > 0}, we see that

1

2
〈w,w〉A = 〈x− y,w〉A =

∑
i∈I

ai 〈x− y,vi〉 ≤
∑
i∈I

1

2
ai 〈vi,vi〉A ≤

1

2
〈w,w〉A

Therefore all the inequalities above are equalities, and hence for all i ∈ I,

〈x− y,vi〉 =
1

2
〈vi,vi〉A ⇒ ‖x− y‖E = ‖vi − (x− y)‖E.
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Since
∑

i∈I aivi = w<lex 0, and ai > 0 for i ∈ I, there exists j ∈ I such that vj <lex 0.

Pick j ∈ I s.t. vj <lex 0, and note that y + vj <lex y and ‖y + vj − x‖E = ‖y− x‖E.

Since −vj ∈ VR(E,L), by construction of f we must have that f(y)<lex y and hence

f(y) 6= y, a clear contradiction. Therefore y = y′ as needed.

Lastly, we need to bound the running time of f . For a call of f on y ∈ L, we

iterate over i ∈ [N ] and perform polynomial time checks over the vectors y, x, and

vi. Since N = |VR(E,L)| ≤ 2(2n− 1), the space needed to store the voronoi relevant

vectors is at most 2n poly(·). Furthermore, the time needed to iterate over them and

perform the required checks is also at most 2n poly(·) as needed.

Algorithm 5.1 Ellipsoid-Enum(E,L,x)

Input: Ellipsoid E = E(A), A � 0, n dimensional lattice L with basis B ∈ Qn×n,
and shift x ∈ Qn.

Output: Enumerate (E + x) ∩ L.
1: Use the MV Algorithm to compute y ∈ CVP(E,L,x) and the

set {v1, . . . ,vN} = VR(E,L). If ‖y − x‖E > 1, return ∅; else, continue.
2: Let G denote the graph on vertex set (E + x) ∩ L and

edge set {{w, z} : w, z ∈ (E + x) ∩ L,w − z ∈ VR(E,L)}.
3: Build adjacency oracle Adj for G, where for y ∈ (E + x) ∩ L, i ∈ [N ], Adj[y, i]

returns y + vi if ‖v + vi − x‖A ≤ 1 and return NULL otherwise.
Let f denote the local search function from Lemma 5.2.3.

4: while f(y) 6= y do
5: y← f(y) . Find lexicographically minimal closest lattice vector
6: return Reverse-Search(Adj, N,y, f) (Algorithm 4.1)

Due to the current necessity of maintaining the list of voronoi relevant vectors, the

above ellipsoid enumeration algorithm requires 2O(n) poly(·) space to run. If one could

avoid keeping this list explicitly (perhaps using a compact implicit representations of

the VR(E,L)), then the space could be reduced significantly. In fact, the above

algorithm is currently the only bottleneck for reducing the space usage of all of the

intended applications (i.e. SVP, CVP and (1 + ε)-CVP, IP).

We state the guarantees of the ellipsoid enumeration algorithm in the following

theorem:
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Theorem 5.2.4 (Enumeration in Ellipsoids). Algorithm 5.1 (Ellipsoid Enum) is

correct and runs in 2O(n) · (1 + |(E + x) ∩ L|) · poly(·) time using 2n poly(·) space.

Proof.

Correctness: Using the MV algorithm (see Theorem 5.2.2), we first find a lexico-

graphically minimal closest lattice vector y ∈ L to x under ‖ · ‖E.

If ‖y − x‖E > 1, we return ∅. Note that if y /∈ E + x, and since y is the closest

such vector we indeed get that (E + x) ∩ L = ∅, as needed.

If y ∈ E + x, we begin by applying the local search function to y (i.e. y← f(y)),

until we find the lexicographically minimal closest lattice vector in CVP(E,L,x). By

Lemma 5.2.3, the unique sink of f is exactly the desired vector, and hence this step

terminates correctly. Lastly, we perform a reverse search starting from y of the graph

G on vertex set (E+x)∩L with respect to the local search function f . The correctness

of this step follows directly from the correctness of the reverse search algorithm (see

Algorithm 4.1) and the local search function f (see Lemma 5.2.3).

Running Time: The call to the MV algorithm for computing the voronoi relevant

vectors requires 22n poly(·) time and 2n poly(·) space. Throughout the rest of the

algorithm, the space needed is simply the space needed to store the list of voronoi

relevant vectors VR(E,L) (as well as a couple extra lattice vectors), for use in both the

adjacency oracle Adj and local search function f . This requires N poly(·) = 2n poly(·)

space.

In the next step, we apply the reverse search function f to y until we reach the

unique sink of f . We claim that the number of loop iterations is bounded by 2n. By

construction of f , we know that ‖f(y) − x‖E ≤ ‖x − x‖E. Since y ∈ CVP(E,L,x)

at the beginning of the loop, y remains a closest lattice vector to x during every

loop iteration. Since f never cycles, to bound the number of iterations it suffices
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to bound |CVP(E,L,x)|. We claim that |CVP(E,L,x)| ≤ 2n. Assume for the

sake of contradiction that |CVP(E,L,x)| ≥ 2n + 1. Since the number of distinct

cosets of L (mod 2L) = 2n, by the pigeon hole principle there exists distinct y1,y2 ∈

CVP(E,L,x) such that y1 ≡ y2 (mod 2L)⇒ 1
2
(y1 + y2) ∈ L. Now we have that

‖1

2
(y1+y2)−x‖E = ‖1

2
(y1−x)+

1

2
(y2−x)‖E ≤

1

2
‖y1−x‖K+

1

2
‖y2−x‖E = ‖y1−x‖K

(5.2.3)

By the strict convexity of ‖ · ‖E, we note that the above inequality can only hold

with equality if y1 − x = t(y2 − x) for t ≥ 0. Since ‖y1 − x‖E = ‖y2 − x‖E, if

y1 − x = t(y2 − x) then t = 1. But then y1 − x = y2 − x, which is not possible

since y1 6= y2 by assumption. Therefore inequality (5.2.3) holds strictly, and hence

1
2
(y1 + y2) ∈ L is closer to x than y1 and y2, a clear contradiction. Now since the

loop executes at most 2n times, and each invocation of f takes 2n poly(·) time, the

whole loop requires 2O(n) poly(·) time to execute.

Lastly, we run the Reverse-Search algorithm on the graph G starting from y.

By the guarantees of the Reverse-Search algorithm, outputting the lattices points

in (E + x) ∩ L requires at most N |(E + x) ∩ L| calls to the adjency oracle Adj

and local search function f . Since both Adj and f requires at most 2n poly(·) space

and time on each invocation, the full running time is 2O(n)N(|(E + x) ∩ L| + 1) =

2O(n)(|(E + x) ∩ L|+ 1), and the space usage is 2n poly(·) as needed.

We now give a blackbox reduction from lattice point enumeration in an ellipsoid

to CVP in the `2 norm. From the implementation of Ellipsoid-Enum, we see that to

perform ellipsoid enumeration it suffices to be able to (1) compute a closest lattice

vector to the center of the ellipsoid and (2) efficiently enumerate the voronoi relevant

vectors of the lattice. Clearly, (1) is by definition achieved by any CVP solver so

we may focus on (2). We see that the above implementation currently calls the

MV algorithm to compute VR(E,L), and then stores these vectors as a list. From

here, we note that (a) all the accesses to the list VR are sequential (i.e. we iterate
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over all the elements in the list), and (b) replacing VR by any superset would still

suffice. Therefore to reduce the space usage of Lattice-Enum, it suffices to give a

space efficient algorithm that sequentially outputs a superset of VR. Lastly, given

the implementation, we must guarantee that the list is enumerated in the same order

upon each invocation, but this is easily achieved.

We now give a simple space efficient and blackbox reduction from enumeration of

the voronoi relevant vectors to CVP in the `2 norm (or more precisely, in ellipsoidal

norms). This will enable us to satisfy requirement (2) above, and hence to reimple-

ment Ellipsoid-Enum to use only as much space as the used CVP solver. We note

that this reduction is already implicit in [91], and so we simply make it explicit here.

Algorithm 5.2 Voronoi-Enum(E,L,CVP-ALG)

Input: Ellipsoid E = E(A), A � 0, n dimensional lattice L with basis B ∈ Qn×n,
and solver CVP-ALG for `2-CVP.

Output: Outputs set V satisfying VR(E,L) ⊆ S.
1: for all a ∈ {0, 1}n \ {0} do
2: x← Ba.
3: v← CVP-ALG(E, 2L,x).
4: output ±(v − x).

Theorem 5.2.5. Let CVP-ALG be an algorithm for `2-CVP which runs in 2O(n) poly(·)

time and S(n) poly(·) space on n dimensional lattices. Then given an ellipsoid E =

E(A), and an n dimensional lattice L with basis B ∈ Qn×n, Voronoi-Enum outputs

a superset of VR(E,L) using at most 2O(n) poly(·) time and S(n) poly(·) space.

Analysis of Voronoi-Enum.

Correctness: To show that the algorithm is correct, we simply need to show that

the algorithm outputs a superset of VR(E,L). Take y ∈ VR(E,L). Then by Theorem

5.2.1, we have that

{1

2
y,−1

2
y} = arg min 1

2
y+L ‖y‖E ⇔ {y,−y} = arg miny+2L ‖y‖E
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Now let ā = B−1y ∈ Zn. Now let a denote the unique element of ā + 2Zn ∩ {0, 1}n.

We note that

ā− a ∈ 2Zn ⇔ B(ā− a) ∈ 2L ⇔ y ≡ Ba (mod 2L)

Assume we are in the loop iteration of Voronoi-Enum corresponding to a above.

We claim that Voronoi-Enum outputs ±y. Since x = Ba is in the same coset of

2L as y, we have that CVP(E, 2L,x) = {y + x,x− y}. Therefore by correctness of

CVP-ALG, we must have that v← CVP-ALG(E, 2L,x) satisfies v ∈ {y + x,x− y}.

Therefore the output ±(v − x) = ±y. Hence Voronoi-Enum outputs a superset of

VR(E,L) as needed.

Runtime: The runtime of the algorithm is the time needed to solve 2n − 1 CVPs

using algorithm CVP-ALG. Since CVP-ALG runs in 2O(n) poly(·) time at each invo-

cation, the runtime is bounded by (2n−1)2O(n) poly(·) = 2O(n) poly(·) time as needed.

Furthemore, the space needed to run in the algorithm is simply the space needed to

iterate over {0, 1}n, which is O(n), and the space needed to run CVP-ALG, which

is S(n) poly(·). Therefore the total space usage of the algorithm is S(n) poly(·) as

needed.

Proof of Theorem 5.1.10 (Reduction to `2-CVP). The space requirements of all the

algorithms in this chapter are dominated by the space needed to run algorithm

Ellipsoid-Enum. Using algorithm 5.2 (Voronoi-Enum), Ellipsoid-Enum can be re-

implemented to use only S(n) poly(·) space while maintaining the same time com-

plexity. Therefore the space usage of all the algorithms in this chapter can be reduced

to S(n) poly(·) without increasing their running times.

We can now state our enumeration theorem, which formalizes Theorem 5.1.3 from

the introduction.
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Algorithm 5.3 Algorithm Lattice-Enum(K,L, ε)
Input: An (a0, r, R)-centered convex body K ⊆ Rn given by a weak membership

oracle OK , a basis B ∈ Qn×n for a lattice L, and 0 < ε ≤ 1.
Output: S ⊆ L satisfying (5.2.4).

1: Let E(A)← M-Ellipsoid(K) (Algorithm 4.1).
2: Strengthen oracle OK to an oracle O∗K , where O∗K satisfies
O∗K(x, ε) = 1 if x ∈ K and O∗K(x, ε) = 0 if x /∈ Kε.

3: Let P ← 1√
n
A−

1
2 [−1, 1)n (maximum volume parallelepiped in E(A)).

4: for all x ∈ Parallelepiped-Tiling(K,P, 1
n
) do

5: for all y ∈ Ellipsoid-Enum(E,L,x) do
6: if O∗K(y, ε) = 1 and y ∈ P then
7: output y.

Theorem 5.2.6 (Enumeration in convex bodies). Given a (a0, r, R)-centered convex

body K ⊆ Rn, and an n dimensional lattice L, Algorithm 5.3 (Lattice-Enum) outputs

a S ⊆ L (each lattice point is outputted exactly once) satisfying

K ∩ L ⊆ S ⊆ (K + εBn
2 ) ∩ L (5.2.4)

in deterministic G(K,L) · 2O(n) poly(·) time using 2n poly(·) space.

In the above algorithm, we are forced to go back and forth between ellipsoids

and parellelepipeds at different stages. At the beginning, we start by computing the

M-Ellipsoid E. Then for the purposes of efficient covering, we switch from E to the

inscribed parallelepiped P . Next, we wish to compute the lattice points inside each

shift of P intersected with K. We note that since P tiles K, each lattice point in K∩L

is contained exactly one shift of P , and hence is outputted exactly once. To compute

(P +x)∩L for a shift x, we again switch back to ellipsoids (since the MV tecnology is

taylored for ellipsoids), and enumerate all the lattice points inside (E + x) ∩ L while

outputting only those contained in P + x.

We note that the parallelepiped covering used is identical to the one in Algorithm

Ellipsoid-Cover. We will reference the analysis therein when appropriate.

Proof.
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Correctness: The correctness is straightforward. We first compute an M-Ellipsoid

E of K using Algorithm 4.1. From here, we use Parellelepiped-Tiling to compute over

a tiling Λ of P by K (i.e. K ⊆ Λ + P ), where P = 1
n
A−

1
2 [−1, 1)n ⊆ E is a maximum

volume (half-open) inscribed parallelepiped in E. For each element x ∈ Λ, we use

Ellipsoid-Enum to enumerate the lattice points in E + x. Since P ⊆ E, we have

that K ⊆ Λ + E, and hence the lattice points in K ∩ L form a subset of the lattice

points enumerated by the calls to Ellispsoid-Enum. Finally, the algorithms filters so

that only lattice vectors y ∈ (E + x) ∩ L satisfying O∗K(y, ε) = 1 and y ∈ P + x are

outputted. The first condition guarantees that any lattice point in K is outputted

and that no lattice point outside of K + εBn
2 is outputted. The second guarantee

ensures that we only output lattice points contained inside the current intersecting

tile x + P . Since every lattice point is contained in exactly one intersecting tile, this

allows us to guarantee that every lattice point is outputted exactly once (note that

a lattice point may indeed be contained in multiple shifts of the ellipsoid E). This

completes the proof of correctness.

Runtime: By Theorem 4.1.3, Algorithm M-Ellipsoid computes an M-Ellipsoid E

of K in 2O(n) poly(·) time using poly(·) space. Next, we build a strengthening O∗K

of the weak membership oracle for OK . Since K is (a0, r, R)-centered, O∗K can be

implemented in polynomial time from OK (see Lemma 4.3.3 of [56]).

For the outer loop, using the analysis of Ellipsoid-Cover, we iterate a tiling

Λ of K by P size at most (3(
√

πe
2

)(1 + o(1)))nN(K,E) = 2O(n)N(K,E), which

takes at most 2O(n)N(K,E) poly(·) time and poly(·) space. For the inner loop,

for each x ∈ Λ, Ellipsoid-Enum iterates over the lattice points in (E + x) ∩ L.

By the guarantees on Ellipsoid-Enum, iterating over (E + x) ∩ L requires at most

2O(n)(1+ |(E+x)|∩L) poly(·) ≤ 2O(n)G(E,L) poly(·) time and 2n poly(·) space. Next

we note that G(E,L) ≤ N(E,K)G(K,L), i.e. the maximum number of lattice points
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in any translation of E is bounded by the maximum number of lattice points in any

translate of K times the minimum number of translates of K needed to cover E.

Hence the total time for enumeration is bounded by

2O(n)N(K,E)G(E,L) poly(·) = 2O(n)N(K,E)N(E,K)G(K,L) poly(·).

Since E is an M-Ellipsoid for K, we have that N(K,E)N(E,K) = 2O(n), and hence

we get the desired runtime. Furthermore, we require at most 2n poly(·) space to

perform the enumeration (this space is needed by Ellipsoid-Enum), and hence the

total space usage is 2n poly(·) as needed.

5.3 Shortest Vector Problem

Our main goal will be to use the above enumeration algorithm to solve the Shortest

Vector Problem. The following gives a useful bound on G(K,L) for a general convex

body. We recall that a γ-symmetric convex body K, satisfies the relation voln(K ∩

−K) ≥ γnvol(K).

Lemma 5.3.1. Let K ⊆ Rn denote a γ-symmetric convex body and let L denote an

n-dimensional lattice. Then for d > 0 we have that

G(dK,L) ≤ γ−n
(

1 +
2d

λ1(K ∩ −K,L)

)n
. (5.3.1)

Since K ∩ −K ⊆ K, we have that λ1(K ∩ −K,L) ≥ λ1(K,L). From this we see

that the above bound is stronger than if we replaced K ∩−K by K. Next, we note γ

above is easily bounded in many natural situations. When K is centrally symmetric

we can set γ = 1 since K∩−K = K, and if K is a general convex body with b(K) = 0

setting γ = 1
2

is valid by Theorem 4.3.6.

Proof of Lemma 5.3.1. Let s = 1
2
λ1(K ∩ −K,L). For x ∈ L, we examine

x + int(s(K ∩ −K)) = {z ∈ Rn : ‖z− x‖K∩−K < s}.
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Now for x,y ∈ L, x 6= y, we claim that

x + int(s(K ∩ −K)) ∩ y + int(s(K ∩ −K)) = ∅ (5.3.2)

Assume not, then ∃ z ∈ Rn such that ‖z− x‖K∩−K , ‖z− y‖K∩−K < s. Since K∩−K

is symmetric, we note that ‖y − z‖K∩−K = ‖z− y‖K∩−K < s. But then we have that

‖y − x‖K∩−K = ‖y − z + z− x‖K∩−K ≤ ‖y − z‖K∩−K + ‖z− x‖K∩−K

< s+ s = 2s = λ1(K ∩ −K,L)

a clear contradiction since y − x 6= 0.

Take c ∈ Rn. To bound G(dK,L) we must bound |(c+dK)∩L|. For x ∈ c+dK,

we note that x + s(K ∩ −K) ⊆ c + (d+ s)K. Therefore,

voln((d+ s)K) = voln(c + (d+ s)K) ≥ voln (((c + dK) ∩ L) + s(K ∩ −K))

= |(c + dK) ∩ L|voln(s(K ∩ −K))

where the last equality follows from (5.3.2). Therefore, we have that

|(c + dK) ∩ L| ≤ voln((d+ s)K)

voln(s(K ∩ −K))
=

(
d+ s

γs

)n
= γ−n

(
1 +

2d

λ1(K ∩ −K,L)

)n
as needed.

We can now state the algorithm and main theorem of this section.

Theorem 5.3.2 (Analysis of Shortest-Vectors). Let λ1 = λ1(K,L). Given a γ-

symmetric convex body K ⊆ Rn, Algorithm 5.4 (Shortest-Vectors) outputs a set S ⊆ L

satisfying

SVP(K,L) ⊆ S ⊆ {y ∈ L \ {0} : ‖y‖K ≤ λ1 + εmin{1, λ1}} (5.3.3)

in deterministic 2O(n)γ−n poly(·) time and 2n poly(·) space.

Proof.
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Algorithm 5.4 Shortest-Vectors(K,L, ε)
Input: (0, r, R)-centered convex body K with a weak distance oracle DK for ‖·‖K , a

basis B ∈ Qn×n for a lattice L, and 0 < ε ≤ 1.
Output: Output S ⊆ L satisfying (5.3.3).

1: Compute z ∈ SVP(Bn
2 ,L) using the MV algorithm.

2: l← ‖z‖2
R

; ε0 ← ε
3

min{1, l}
3: d← l

2
; λ̃1 ←∞

4: repeat
5: d← 2d
6: for all y ∈ Lattice-Enum(dK,L, rε0) do
7: if y 6= 0 then
8: λ̃1 ← min{λ̃1, DK(y, ε0), df + ε0}
9: until λ̃1 <∞

10: for all y ∈ Lattice-Enum((λ̃1 + ε0)dK,L, rε0) do
11: if y 6= 0 then
12: output y

Correctness: First note that since K is (0, r, R)-centered, we know that ‖y‖
R
≤

‖y‖K ≤ ‖y‖
r

for all y ∈ Rn. Now take any z ∈ SVP(K,L) and z̃ ∈ SVP(Bn
2 ,L). Here

we note that λ1 = ‖z‖K . As in the algorithm, let l = ‖z̃‖
R

. Now we see that

l =
‖z̃‖
R
≤ ‖z‖

R
≤ ‖z‖K ≤ ‖z̃‖K ≤

‖z̃‖
r

= l
R

r

Therefore l ≤ λ1 ≤ lR
r
.

Let df denote the value of d after the first while loop terminates. We claim that

1
2
df ≤ λ1 ≤ df + ε0. After the loop terminates, we are guaranteed that the call to

Lattice-Enum(dfK,L, rε0) outputs a non-zero lattice vector y ∈ L \ {0}. Therefore,

by the guarantees on Lattice-Enum

y ∈ dfK + rε0B
n
2 ⊆ dfK + ε0K = (df + ε0)K

Since by definition ‖y‖K ≥ λ1, we have that λ1 ≤ df + ε0. For the lower bound,

we examine two cases. If the while loop finishes after the first iteration, we have

that 1
2
df < df = l ≤ λ1 as needed. If the while loop executes more than once, we

get that Lattice-Enum(1
2
dfK,L, rε0) does not output any non-zero lattice points. By
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the guarantees on Lattice-Enum, this implies that 1
2
dfK ∩ L = {0} ⇒ 1

2
df ≤ λ1 as

needed.

We now claim that λ̃1 (as in the algorithm) satisfies λ1 − ε0 ≤ λ̃1 ≤ λ1 + ε0.

We first note that λ̃1 = min{df + ε0, DK(z, ε0)} from some non-zero z ∈ L. By the

guarantees on DK , we get that

λ̃1 = min{df + ε0, DK(z, ε0)} ≥ min{λ1, ‖z‖K − ε0} ≥ λ1 − ε0,

as needed. For the second inequality, we examine two cases. First assume that

Lattice-Enum(dfK,L, rε0) outputs z ∈ SVP(K,L). Then λ̃1 ≤ DK(z, ε0) ≤ λ1 + ε0

as needed. If Lattice-Enum does not output any element of SVP(K,L), we must have

that df < λ1 and hence λ̃1 ≤ df + ε0 < λ1 + ε0, as needed.

We claim that if y ∈ SVP(K,L) then y is outputted by the algorithm. Since

‖y‖K = λ1 and λ1 ≤ λ̃1 + ε0, we have that y ∈ (λ̃1 + ε0)K. Therefore by the guaran-

tees on Lattice-Enum, y is outputted during the iteration over Lattice-Enum((λ̃1 +

ε0)K,L, rε0) as needed. Lastly, any lattice point y ∈ L outputted during the iteration

satisfies y 6= 0 and

y ∈ (λ̃1 + ε0)K + rε0B
n
2 ⊆ (λ̃1 + 2ε0)K ⊆ (λ1 + 3ε0)K

Since 3ε0 = 3 ε
3

min{1, l} ≤ εmin{1, λ1}, we have that ‖y‖K ≤ λ1 + εmin{1, λ1} as

needed.

Runtime: First, the computation of y ∈ SVP(Bn
2 ,L) using the MV algorithm takes

22n poly(·) time and 2n poly(·) space. Next, we bound the number iterations of the

while loop. If d ≥ λ1 during a loop iteration, by the guarantee on Lattice-Enum,

the call to Lattice-Enum(dK,L, rε0) is guaranteed to find a non-zero lattice vector.

Since d starts at l/2, and by construction λ1 ≤ R
r
l, we have that max number of loop

iterations k, satisfies 2k(l/2) ≤ R
r
l, i.e. k ≤ log2(2R

r
).

By the proof of correctness, we have that df ≤ 2λ1, where df is the value of

d at the last iteration. Therefore d ≤ 2λ1 at each loop iteration. Then by the
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guarantees on Lattice-Enum, each call to Lattice-Enum(dK,L, rε0) takes time at most

2O(n)G(2λ1K,L) poly(·) = 2O(n)γ−n poly(·) since K is γ-symmetric (Lemma 5.3.1).

Since λ̃1 + ε0 ≤ (1 + ε)λ1 ≤ 2λ1, the complexity of the final call to Lattice-Enum is

similarly bounded. Since the number of loop iterations log2(2R
r
) + 1 is polynomial

bounded, and each call to Lattice-Enum takes at most 2O(n)γ−n poly(·) time, the total

running time is 2O(n)γ−n poly(·) as needed. Lastly, the space usage of all subroutines

calls is at most 2n poly(·), and hence the total space usage is 2n poly(·) as needed.

5.4 Closest Vector Problem

Before presenting our CVP algorithm, we again need a simple enumeration bound.

Lemma 5.4.1. Let K ⊆ Rn be a γ-symmetric convex body, and let L ⊆ Rn denote

an n-dimensional lattice. Then for t > 0 we have that

G(tK,L) ≤ γ−n(2t+ 1)n · |(K ∩ −K) ∩ L|

Furthermore, letting β =
(

maxc∈K
voln((K−c)∩(c−K))

voln(K)

) 1
n

, for t > 0 we have that

G(tK,L) ≤ β−n(2t+ 1)n ·G(K,L) ≤ (4t+ 2)n ·G(K,L)

Proof. Examine tK + x. Let y1, . . . ,yN ∈ (tK + x)∩L, denote a maximal collection

of points such that the translates yi + 1
2
(K ∩ −K), i ∈ [N ], are interior disjoint. We

claim that (tK + x) ∩ L ⊆ ∪Ni=1yi + (K ∩ −K). Take z ∈ (tK + x) ∩ L. Then by

construction of y1, . . . ,yN , there exists i ∈ [N ] such that

z +
1

2
(K ∩ −K) ∩ yi +

1

2
(K ∩ −K) 6= ∅ ⇒ z ∈ yi + (K ∩ −K)

as needed. Therefore |(tK+x)∩L| ≤
∑n

i=1 |(yi+(K∩−K))∩L| = N |(K∩−K)∩L|.

Since K is γ-symmetric, we get that

N =
voln(∪ni=1yi + 1

2
(K ∩ −K))

voln(1
2
(K ∩ −K))

≤ 2nγ−n
voln(tK + 1

2
(K ∩ −K)

voln(K)
≤ γ−n(2t+ 1)n
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as needed. Since the above bound holds for all x ∈ Rn, we get that

G(tK,L) ≤ γ−n(2t+ 1)n · |(K ∩ −K) ∩ L| as needed.

Since G(K,L) is invariant under translations of K, we may center K so that

vol(K ∩ −K) = βnvol(K). By Theorem 2.3.7, we have that

vol((K − b(K)) ∩ (b(K)−K)) ≥ 2−nvol(K),

where b(K) is then centroid of K, and hence β ≥ 1
2
. Using the first part of the

lemma, we now get that

G(tK,L) ≤ β−n(2t+1)n ·|(K∩−K)∩L| ≤ β−n(2t+1)n ·G(K,L) ≤ (4t+2)n ·G(K,L)

as needed.

We can now state the algorithm and main theorem of this section.

Algorithm 5.5 Closest-Vectors(K,L,x, ε)
Input: (0, r, R)-centered convex body K with weak distance oracle DK for ‖·‖K , a

basis B ∈ Qn×n for a lattice L, target point x ∈ Qn, and 0 < ε < 1.
Output: S ⊆ L satisfying (5.4.1).

1: if x ∈ L then
2: return {x}
3: Compute z ∈ CVP(Bn

2 ,L,x) using the MV algorithm.

4: l← ‖z−x‖
R

, ε0 ← ε
3

min{1, l}
5: d← l

2
, d̃x ←∞

6: repeat
7: d← 2d
8: for all y ∈ Lattice-Enum(dK + x,L, rε0) do
9: d̃x ← min{d̃x, DK(y − x, ε0), d+ ε0}

10: until d̃x <∞
11: return Lattice-Enum((d̃x + ε0)K + x,L, rε0).

Theorem 5.4.2 (Correctness of Closest-Vectors). Given a γ-symmetric convex body

K ⊆ Rn, Algorithm 5.5 outputs a set S ⊆ L such that

CVP(K,L,x) ⊆ S ⊆ {y ∈ L : ‖y − x‖K ≤ dK(L,x) + εmin{1, dK(L,x)}}. (5.4.1)
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in deterministic time 2O(n)G(dxK,L) poly(·) using at most 2n poly(·) space, where

dx = dK(L,x). Furthermore if dx ≤ αλ1(K ∩ −K,L), the running time is bounded

by 2O(n)γ−n(1 + 2α)n poly(·).

The proof is essentially identical to the one for SVP.

Analysis of Closest-Vectors.

Correctness: First if x ∈ L, then x is clearly the unique closest lattice vector to

itself, and so we are done.

Next we note that since K is (0, r, R)-centered, we know that ‖y‖
R
≤ ‖y‖K ≤ ‖y‖

r

for all y ∈ Rn. Now take any z ∈ CVP(K,L,x) and z̃ ∈ SVP(Bn
2 ,L). Here we note

that dx = ‖z− x‖K . As in the algorithm, let l = ‖z̃−x‖
R

. Now we see that

l =
‖z̃− x‖

R
≤ ‖z− x‖

R
≤ ‖z− x‖K ≤ ‖z̃− x‖K ≤

‖z̃− x‖
r

= l
R

r

Therefore l ≤ dx ≤ lR
r
.

Let df denote the value of d after the first while loop terminates. We claim that

1
2
df ≤ dx ≤ df + ε0. After the loop terminates, we are guaranteed that the call to

Lattice-Enum(dfK + x,L, rε0) outputs a lattice vector y ∈ L. Therefore, by the

guarantees on Lattice-Enum

y ∈ dfK + rε0B
n
2 + x ⊆ dfK + ε0K + x = (df + ε0)K + x

Since by definition ‖y − x‖K ≥ dx, we have that dx ≤ df + ε0. For the lower bound,

we examine two cases. If the while loop finishes after the first iteration, we have

that 1
2
df < df = l ≤ dx as needed. If the while loop executes more than once, we

get that Lattice-Enum(1
2
dfK + x,L, rε0) does not output any lattice points. By the

guarantees on Lattice-Enum, this implies that (1
2
dfK + x) ∩ L = ∅ ⇒ 1

2
df ≤ dx as

needed.

We now claim that d̃x (as in the algorithm) satisfies dx − ε0 ≤ d̃x ≤ dx + ε0. We

first note that d̃x = min{df + ε0, DK(z− x, ε0)} from some z ∈ L. By the guarantees
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on DK , we get that

d̃x = min{df + ε0, DK(z− x, ε0)} ≥ min{dx, ‖z− x‖K − ε0} ≥ dx − ε0,

as needed. For the second inequality, we examine two cases. First assume that Lattice-

Enum(dfK+x,L, rε0) outputs z ∈ CVP(K,L,x). Then d̃x ≤ DK(z−x, ε0) ≤ dx+ε0

as needed. If Lattice-Enum does not output any element of CVP(K,L,x), we must

have that df < dx and hence d̃x ≤ df + ε0 < dx + ε0, as needed.

We claim that if y ∈ CVP(K,L,x) then y is outputted by the algorithm. Since

‖y− x‖K = dx and dx ≤ d̃x + ε0, we have that y ∈ (d̃x + ε0)K + x. Therefore by the

guarantees on Lattice-Enum, y is outputted during the call to Lattice-Enum((d̃x +

ε0)K + x,L, rε0) as needed. Lastly, any lattice point y ∈ L outputted during the

iteration satisfies

y ∈ (d̃x + ε0)K + rε0B
n
2 + x ⊆ (d̃x + 2ε0)K + x ⊆ (dx + 3ε0)K + x

Since 3ε0 = 3 ε
3

min{1, l} ≤ εmin{1, dx}, we have that ‖y − x‖K ≤ dx + εmin{1, dx}

as needed.

Runtime: First, we check whether x ∈ L, this takes polynomial time. Next, the

computation of z ∈ CVP(Bn
2 ,L,x) using the MV algorithm takes 2O(n) poly(·) time

and 2n poly(·) space. Next, we bound the number iterations of the while loop. If

d ≥ dx during a loop iteration, by the guarantee on Lattice-Enum, the call to Lattice-

Enum(dK + x,L, rε0) is guaranteed to find lattice vector. Since d starts at l/2, and

by construction dx ≤ R
r
l, we have that max number of loop iterations k, satisfies

2k(l/2) ≤ R
r
l, i.e. k ≤ log2(2R

r
).

By the proof of correctness, we have that df ≤ 2dx, where df is the value of

d at the last iteration. Therefore d ≤ 2dx at each loop iteration. Then by the

guarantees on Lattice-Enum, each call to Lattice-Enum(dK + x,L, rε0) takes time

at most 2O(n)G(2dxK,L) poly(·) = 2O(n)G(dxK,L) poly(·) by Lemma 5.4.1. Since
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d̃x+ ε0 ≤ (1+ ε)dx ≤ 2dx, the complexity of the final call to Lattice-Enum is similarly

bounded. Since the number of loop iterations log2(2R
r
)+1 is polynomial bounded, and

each call to Lattice-Enum takes at most 2O(n)G(dxK,L) poly(·) time, the total running

time is 2O(n)G(dxK,L) poly(·) as needed. Lastly, the space usage of all subroutines

calls is at most 2n poly(·), and hence the total space usage is 2n poly(·) as needed.

For the furthermore, if dx ≤ αλ1(K ∩ −K,L), then by γ-symmetry of K and

Lemma 5.3.1 we have that G(dxK,L) ≤ γ−n(1+2α)n. The total running time is thus

bounded by 2O(n)γ−n(1 + 2α)n poly(·) as needed.

5.5 Approximate Closest Vector Problem

In this section, we give a single exponential algorithm to solve the approximate closest

vector problem. In particular, we will give an algorithm which solves (1 + ε)-CVP

under any norm in essentially (1/ε)n time. To compare with Algorithm Closest-

Vectors, we note that Closest-Vectors solves CVP under ‖·‖K exactly in O(1/ε)n time

as long as dK(L,x) ≤ (1/ε)λ1(K,L). However, in the worst case maxx∈Rn dK(L,x) =

µ(K,L) � λ1(K,L) (the ratio can be unbounded in fact), and hence the running

time guarantee of Closest-Vectors is not in general meaningful.

The obtain our (1 + ε)-CVP algorithm, we shall essentially keep Closest-Vectors

as the algorithmic base, however we shall first “sparsify” the input lattice before

running it. Given a target vector x, the high level idea is as follows. Instead of

solving the CVP against L, we solve it with respect to sublattice L′ which is (1)

at approximately the same distance to x as L and (2) doesn’t have too many short

vectors (i.e. is “sparse”). We formalize this as follows:

Definition 5.5.1 (Lattice Sparsifier). Let K ⊆ Rn be a γ-symmetric convex body,

L be an n-dimensional lattice, and t ≥ 0. A sublattice L′ ⊆ L is a (K, t) sparsifier

for L if

(1) ∀x ∈ Rn, dK(L′,x) ≤ dK(L,x) + t
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(2) G(tK,L) = 2O(n)γ−n

To solve (1 + ε)-CVP on target x, letting d = dK(L,x), it suffices to solve the

CVP on a (K, εd) sparsifier L′ of L. Here property (1) guarantees that L′ contains a

(1 + ε) closest-vector, and (2) allows us to use lattice point enumeration to find this

vector in roughly (1 + 1/ε)n time. We note that L is a (K, d) sparsifier of itself as

long as d = O(λ1(K,L)).

We now give some simple equivalences for lattice sparsifiers:

Lemma 5.5.2. Let K be a γ-symmetric convex body, and let L be an n-dimensional

lattice. Take L′ ⊆ L a full dimensional sublattice. For t ≥ 0, we have that

(1) ∀y ∈ L, dK(L′,y) ≤ t⇔ ∀x ∈ Rn, dK(L′,x) ≤ t+ dK(L,x)

(2) L′ is a (K ∩ −K, t) sparsifier ⇒ L′ is a (K, t) sparsifier.

Proof. For statement (1), we prove the (⇒) implication (the other implication is

immediate). Take x ∈ Rn, and pick z ∈ CVP(K,L,x). Then by assumption, there

exists y ∈ L′ such that ‖y − z‖K ≤ t. Therefore

dK(L,x) ≤ ‖y − x‖K = ‖y − z + z− x‖K ≤ ‖y − z‖K + ‖z− x‖K

≤ t+ dK(L,x),

as needed.

We prove statement 2. Let L′ ⊆ L be a (K ∩ −K, t) sparsifier. Since K ∩ −K is

1-symmetric, by definition we have that G(t(K ∩−K),L′) = 2O(n). By Lemma 2.3.9

and γ-symmetry of K, we have that

N(tK, t(K ∩ −K) = N(K,K ∩ −K) ≤ 3nγ−n

Therefore

G(tK,L′) ≤ G(t(K ∩ −K),L′)N(tK, t(K ∩ −K)) = 2O(n)3nγ−n = 2O(n)γ−n.
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Since K∩−K ⊆ K, we have that ‖a‖K ≤ ‖a‖K∩−K for all a ∈ Rn. Take z ∈ L. Since

L′ is a (K∩−K, t) sparsifier there exists y ∈ L′ such that t ≥ ‖y−z‖K∩−K ≥ ‖y−z‖K ,

as needed. Using part (1) of the lemma, we conclude that L′ ⊆ L is (K, t) sparsifier

as needed.

From the above lemma, we see that it suffices to build lattice sparsifiers for sym-

metric convex bodies, i.e. to build a (K, t) sparsifier it suffices to build a (K ∩−K, t)

sparsifier for L. Furthermore, the “closeness” requirement for a sparsifier of L need

only be checked against points in L. Both these facts will help simplify the analysis.

The main technical contribution of this section is an explicit deterministic con-

struction of a lattice sparsifier for any input norm and lattice. Apriori, it is unclear

whether such sublattices should even exist even for simple norms such as `2. As

we will show, a simple probabilistic argument will guarantee the existence of such

sublattices independent of the norm in question (see subsection 5.5.1).

The guarantees on our Lattice Sparsifier construction are as follows:

Theorem 5.5.3 (Algorithm Lattice-Sparsifier). Let K ⊆ Rn be a (0, r, R)-centered

and γ-symmetric convex body specified by a weak membership oracle OK, and let L

denote an n dimensional lattice with a basis B ∈ Qn×n. For t ≥ 0, a (K, t) sparsifier

for L can built using 2O(n) poly(·) time and 2n poly(·) space.

Using the above construction, we first give a simple algorithm for (1 + ε)-CVP.

Theorem 5.5.4 (Correctness of Approx-Closest-Vectors). For a γ-symmetric convex

body K ⊆ Rn, Algorithm 5.6 returns a non-empty set S ⊆ L of (1 + ε)-approximate

closest vectors to x in deterministic 2O(n)γ−n(1+ 1
ε
)n poly(·) time and 2n poly(·) space.

The analysis is very similar to that of Closest-Vectors, so we reference the previous

analysis whenever appropriate for the sake of concision.

Analysis of Approx-Closest-Vectors.
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Algorithm 5.6 Approx-Closest-Vectors(K,L,x, ε)
Input: (0, r, R)-centered convex body K ⊆ Rn with weak distance oracle DK for
‖·‖K , a basis B ∈ Qn×n for L, target x ∈ Qn, 0 < ε ≤ 1

Output: Outputs a non-empty set S ⊆ {y ∈ L : ‖y − x‖K ≤ (1 + ε)dK(L,x)}
1: if x ∈ L then
2: return {x}
3: Compute z ∈ CVP(Bn

2 ,L,x) using the MV algorithm

4: l← ‖z−x‖2
R

; ε0 ← ε
9

min{1, l}
5: d← l

2
; d̃x ←∞

6: repeat
7: d← 2d
8: L′ ← Lattice-Sparsifier(K,L, ε

3
d)

9: for all y ∈ Lattice-Enum((1 + ε
3
)dK + x,L′, rε0) do

10: d̃x ← min{d̃x, DK(y − x, ε0), (1 + ε
3
)d+ ε0}

11: until d̃x <∞
12: return Lattice-Enum((d̃x + ε0)K + x,L′, rε0)

Correctness: If x ∈ L, we are clearly done. Next, by same analysis as Closest-

Vectors, we get the guarantee that l ≤ dx ≤ lR
r

where dx = dK(L,x).

Let df denote the value of d after the first while loop terminates. We claim that

1
2
df ≤ dx ≤ (1 + ε/3)df + ε0. When the while loop terminates, we are guaranteed

that the call to Lattice-Enum((1 + ε
3
)dfK + x,L′, rε0), outputs a lattice vector in

L′ at distance at most (1 + ε
3
)df + ε0 from x. Since L′ ⊆ L, we clearly have that

dx ≤ (1 + ε
3
)df + ε0 as needed.

If the while loop terminates after the first iteration, then df = l ≤ dx and hence

1
2
df < dx as needed. If the loop iterates more than once, then for the sake of con-

tradiction, assume that 1
2
df > dx. Then in the before last iteration, the value of d is

greater than dx. Now we are guaranteed that Lattice-Sparsifier(K,L, ε
3
d) returns a

lattice L′ satisfying

dK(L′,x) ≤ dK(L,x) +
ε

3
d ≤ (1 +

ε

3
)d

But then the call to Lattice-Enum((1+ ε
3
)dK+x,L′, rε0) is guaranteed to return a lat-

tice point, and hence the while loop terminates at this iteration, a clear contradiction.
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Hence 1
2
df ≤ dx as needed.

Let d′x = dK(L′,x), for L′ at the end of the while loop. By the same analysis as

Closest Vectors, at the end loop we have that d′x − ε0 ≤ d̃x ≤ d′x + ε0. Furthermore

by construction of L′, d′x ≤ dx + ε/3df ≤ (1 + 2ε/3)dx.

Since d′x ≤ d̃x + ε0, we know that ((d̃x + ε0)K + x) ∩ L 6= ∅. Therefore we are

guaranteed that the final call to Lattice-Enum((d̃x + ε0)K+ x,L′, rε0) outputs all the

closest vectors of L′ to x. Lastly, any vector y outputted during this call satisfies

‖y − x‖K ≤ d̃x + 2ε0 ≤ d′x + 3ε0 ≤ (1 + 2ε/3)dx + (ε/3)l ≤ (1 + ε)dx

as needed.

Running Time: We first bound the running time of each call to Lattice-Enum.

Within the while loop, the calls to Lattice-Enum((1 + ε/3)dK + x,L′, rε0) run in

2O(n)G((1 + ε/3)dK,L′) poly(·) time and 2n poly(·) space. By Lemma 5.4.1, since

(1 + ε/3) = t(ε/3) for t = (3/ε+ 1), we have that

G((1+ε/3)dK,L′) ≤ (4t+2)nG((ε/3)d,L′) = 6n(1+2/ε)nG((ε/3)d,L′) = 2O(n)γ−n(1+1/ε)n

since by the guarantees on Lattice-Sparsifier, we have that G((ε/3)d,L′) = γ−n2O(n).

Next the final call to Lattice-Enum((d̃x+ε0)K+x,L′, rε0) runs 2O(n)G((d̃x+ε0)K,L′) poly(·)

time and 2n poly(·) space. Now note that ε0 ≤ 1
9
εdx, and hence (1+ε/3)df ≥ dx−ε0 ≥

(1− ε/9)dx. From here we get that

df ≥
1− ε/9
1 + ε/3

dx ≥
1− 1/9

1 + 1/3
dx = 2/3dx

Finally, d̃x + ε0 ≤ (1 + ε/3)df + 2ε0 ≤ (1 + ε/3)df + 2/9εdx ≤ (1 + 2ε/3)df . Therefore,

since (1 + 2ε/3) = t(ε/3) for t = (2 + 3/ε), we get that

G((d̃x + ε0)dfK,L′) ≤ G((1 + 2ε/3)dfK,L′) ≤ (4t+ 2)nG((ε/3)df ,L′)

= (10 + 12/ε)nG((ε/3)df ,L′) = 2O(n)γ−n(1 + 1/ε)n

176



by the guarantee on L′.

Lastly, note that each call to Lattice-Sparsifier takes at most 2O(n) poly(·) time

and 2n poly(·) space. Since the while loop iterates polynomially many times (i.e. at

most log2(2R/r)),the total runtime is 2O(n)γ−n(1 + 1/ε)n poly(·) and the total space

usage is 2n poly(·) as needed.

The remainder of this section is dedicated to the lattice sparsifier construction.

5.5.1 A Simple Randomized Lattice Sparsifier Construction

We begin with an existence proof for lattice sparsifiers using the probabilistic method.

We will need the following classical sumset inequality:

Theorem 5.5.5. Let p ≥ 1 be a prime. Then for A1, . . . , Ak ⊆ Zp, we have that

|A1 + · · ·+ Ak| ≥ min{p,
k∑
i=1

|Ai| − k + 1}

We will also need the following fact from number theory:

Theorem 5.5.6 (Bertrand’s Postulate). For every integer k > 3, there exists a prime

p ∈ Z satisfying k < p < 2k − 2.

We begin with the following crucial lemma. This forms the core of our lattice

sparsifier construction.

Lemma 5.5.7. Let p ≥ 5 be a prime. Take S ⊆ Znp satisfying |S| < p < 2|S| − 2 and

0 ∈ S. Then there exists a ∈ Znp satisfying

(1) |{y ∈ S : 〈y, a〉 ≡ 0 (mod p)}| ≤ 6

(2) |{〈y, a〉 (mod p) : y ∈ S}| ≥ p
4

+ 1

Proof. Let a denote a uniform random vector in Znp . The idea will be show that a

satisfies both conditions (1) and (2) with non-zero probability.

Let N0 = |S| − 1. Let Ey
i denote the indicator for the event 〈a,y〉 ≡ i (mod p)

for y ∈ S and i ∈ Znp .
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Claim 1: E[
∑

y∈S\{0}E
y
0 ] = N0/p

Proof. By linearity of expectation it suffices to prove that E[Ey
0 ] = Pr[〈a,y〉] = 1

p
for

y ∈ S \ {0}. Since y 6= 0, p is prime, and a is uniform in Znp we have that 〈a,y〉 is

uniform in Zp. Therefore Pr[〈a,y〉] = 1
p

as needed.

Claim 2: Letting Ei =
∨

y∈S E
y
i , we have E[

∑
i∈Zp Ei] ≥

p−1
p
N0(1− N0−1

2p
) + 1

Proof. Take i ∈ Zp, i 6= 0. For y ∈ S \ {0}, as 〈a,y〉 is uniform in Zp, we have that

Pr[〈w,y〉 ≡ i (mod p)] = 1
p
. Now take distinct y, z ∈ S \ {0}, we claim that

Pr[Ey
i = 1 ∧ Ez

i = 1] ≤ Pr[Ey
i = 1] Pr[Ez

i = 1] =
1

p2
(5.5.1)

First assume that y, z are linearly dependent over Zp, i.e. y = az, a ∈ Zp, a 6= 1,

then if 〈a,y〉 ≡ i (mod p), we have that 〈a,y〉 ≡ a 〈a, z〉 ≡ ai (mod p). Since i 6≡ 0

(mod p) and a 6≡ 1 (mod p), we must have that ai 6≡ i (mod p) and hence the

probability of the event in (5.5.1) is 0. Next if y, z are linearly independent over Zp,

then the random variables 〈a,y〉 and 〈a, z〉 are independent, and hence the inequality

in (5.5.1) holds with equality. Now for i 6= 0, we have that

E[Ei] = Pr[∪y∈S\{0}{Ey
i = 1}] ≥

∑
y∈S\{0}

Pr[Ey
i = 1]−

∑
y,z∈S\{0}

y 6=z

Pr[Ey
i = 1 ∧ Ez

i = 1]

≥ 1

p
N0 −

1

p2

(
N0

2

)
=

1

p
N0(1− N0 − 1

2p
)

Next, since 0 ∈ S, we have clearly have that E0 = 1. Therefore, we get that

E[
∑
i∈Zp

Ei] = E[
∑

i∈Zp\{0}

Ei] + E[E0] ≥ p− 1

p
N0(1− N0

2p
) + 1

as needed.

Let Ēi = 1− Ei for i ∈ Zp. Examine the events:

(1) B1 :
∑

y∈S E
y
0 ≥ 7.
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(2) B2 :
∑

i∈Zp Ēi >
3
4
p− 1.

Notice that if the vector a does not satisfy the conditions of the lemma, then either

B1 or B2 must occur. Therefore it suffices to prove that Pr[B1∪B2] < 1. By Markov’s

inequality, we have that

Pr[B1] = Pr

[∑
y∈S

Ey
0 ≥ 7

]
= Pr

 ∑
y∈S\{0}

Ey
0 ≥ 6

 ≤ E
[∑

y∈S\{0}E
y
0

]
6

≤ N0

6p
<

1

6
.

By our assumption on p, we know that

p < 2|S| − 2 = 2(N0 + 1)− 2⇒ p

2
< N0 ⇒

p+ 1

2
≤ N0.

Since the lower bound on E[
∑

i∈Zp Ei] is an increasing function of N0 (for N0 < p),

the bound is minimized for N0 = p+1
2

. From here, a straightforward computation

reveals that

E

∑
i∈Zp

Ei

 ≥ p− 1

p
N0(1− N0 − 1

2p
) + 1 ≥ p− 1

p
(
p+ 1

2
)(1− p− 1

4p
) + 1

=
3

8
p+

9

8
− 3

8p
− 1

8p2
>

3

8
p+ 1

for p ≥ 5. From the above inequality we get that

E

∑
i∈Zp

Ēi

 < p− 3

8
p− 1 =

5

8
p− 1

Again by Markov’s inequality, we have that

Pr

∑
i∈Zp

Ēi >
3

4
p− 1

 ≤ E
[∑

i∈Zp Ēi

]
3
4
p− 1

<
5
8
p− 1

3
4
p− 1

<
5
8
3
4

=
5

6
.

Hence Pr[B1 ∪B2] ≤ Pr[B1] + Pr[B2] < 1
6

+ 5
6

= 1, as needed.

We now give our first lattice sparsifier construction.

Theorem 5.5.8. Let K ⊆ Rn be a symmetric convex body, L ⊆ Rn be an n-

dimensional lattice, and t ≥ 0 be a non-negative number. Let N = |tK ∩ L|, and

take p prime satisfying N < p < 2N − 2 if N > 3 and p = 3 otherwise. Then there

exists w ∈ L∗ such that the sublattice L(w) = {y ∈ L : 〈w,y〉 ≡ 0 (mod p)} satisfies
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(1) ∀x ∈ Rn, dK(L(w),x) ≤ L+ 4t

(2) G(4tK,L(w)) = 9n+1

Proof. If N ≤ 3, we let w = 0, noting that L(0) = L. Here condition (1) is trivially

satisfied, and for condition (2) we have that

G(4tK,L) ≤ (2 · 4 + 1)n|tK ∩ L| ≤ 9n · 3 ≤ 9n+1

by Lemma 5.4.1, as needed.

Now we assume that N > 3. By Bertrand’s Postulate (i.e. theorem 5.5.6) there

exists a prime p satisfying N < p < 2N − 2, as required by the theorem.

Claim 1: pL ∩ 2tK = {0}.

Proof. For sake of contradiction, assume not and take y ∈ pL ∩ 2tK, y 6= 0. Then

for k ∈ Z, note that (k/p)y ∈ L and

‖(k/p)y‖K = |k/p| ‖y‖K ≤ 2t |k/p|

by symmetry of K. Hence for |k| ≤ bp/2c, we get that ‖(k/p)y‖K ≤ 1
2
2t = t and

hence (k/p)y ∈ tK. But then there at least 2bp/2c + 1 ≥ p > N distinct lattices

points in L ∩ tK, a contradiction to our initial assumption.

LetB∗ = (b1, . . . ,bn) denote a basis for L∗. Let S = {B∗Ty (mod pZn) : y ∈ tK ∩ L}.

We claim that |S| = |tK ∩ L| = N . Assume not, then there exists distinct y1,y2 ∈

tK ∩ L such that

B∗Ty1 ≡ B∗Ty2 (mod pZn)⇔ B∗T (y1 − y2) ≡ 0 (mod pZn)⇔ y1 − y2 ∈ pL

Now note that ‖y1 − y2‖K ≤ ‖y1‖K + ‖y2‖K ≤ t+ t = 2t, and hence y1 − y2 ∈ 2tK.

But then y1−y2 ∈ 2tK ∩L, in contradiction to Claim 1 since y1−y2 6= 0. Therefore

|S| = N as needed.
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Since 0 ∈ S (since 0 ∈ tK), and |S| < p < 2|S| − 2, by Lemma 5.5.7 there exists

a ∈ Znp satisfying (a) |y ∈ S : 〈a,y〉 ≡ 0 (mod p)| ≤ 6 and (b) |〈a,y〉 (mod p) : y ∈ S| ≥
p
4
+1. Let ā denote the unique representative of a in {0, . . . , p− 1}n, and let w = B∗ā.

The theorem will now follow directly from the following claim:

Claim 2: L(w) satisfies conditions (1) and (2).

Proof. Let Sin = {y ∈ S : 〈a,y〉 ≡ 0 (mod p)} and let C = {〈a,y〉 (mod p) : y ∈ S}.

By our guarantees on a, we know that |Sin| ≤ 6 and |C| ≥ p
4

+ 1.

We first prove establish condition (1). First, for y ∈ L we have that

y ∈ L(w)⇔ 〈y,w〉 ≡ 0 (mod p)⇔ 〈y, B∗a〉 ≡ 0 (mod p)⇔
〈
B∗Ty, a

〉
≡ 0 (mod p)

Therefore y ∈ tK ∩ L(w)⇔ y ∈ tK ∩ L and
〈
B∗Ty, a

〉
≡ 0 (mod p)

⇔ y ∈ tK ∩ L and B∗Ty (mod pZn) ∈ Sin.

Since the map y → B∗Ty (mod pZn) is injective restricted to tK ∩ L, we have that

|tK ∩ L(w)| = |Sin| ≤ 6. Now by Lemma 5.4.1, we have that

G(4tK,L(w)) ≤ 9n · |tK ∩ L(w)| ≤ 9n · 6 ≤ 9n+1,

as needed.

We now establish condition (2), i.e. for any x ∈ Rn, dK(L(w),x) ≤ dK(L,x) + 4t.

By Lemma 5.5.2 it suffices to prove (2) for x ∈ L. Take z ∈ L. Let cz ≡
〈
B∗Tz, a

〉
(mod p). By Theorem 5.5.5, since C ⊆ Zp, |C| ≥ p

4
+ 1, we have that

|C + C + C + C| ≥ min{p, 4(
p

4
+ 1)− 3} ≥ p

and hence C +C +C +C = Zp. Therefore there exists y1, . . . ,y4 ∈ tK ∩L satisfying

cz ≡
4∑
i=1

〈
B∗Tyi, a

〉
≡

〈
B∗T

4∑
i=1

yi, a

〉
(mod p)
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Let y =
∑4

i=1 yi ∈ L. Now we have that

〈
B∗Tz, a

〉
≡ cz ≡

〈
B∗Ty, a

〉
(mod p)⇔ z− y ∈ L(w),

and that ‖y‖K = ‖
∑4

i=1 yi‖K ≤
∑4

i=1 ‖yi‖K ≤ 4t. Therefore letting v = z − y ∈

L(w), we get that

dK(L, z) ≤ ‖v − z‖K = ‖ − y‖K = ‖y‖K ≤ 4t

as needed.

5.5.2 Derandomizing the Lattice Sparsifier Construction

We first summarize the lattice sparsifier construction from the previous section. Let

K be a symmetric convex body, and L be an n dimensional lattice. To build a (K, t)

sparsifier, we do as follows

(1) Compute N ← |tK ∩ L|, and prime p satisfying N < p < 2N − 2.

(2) Build basis B∗ ∈ Qn×n for L∗ and compute S ← {B∗Ty (mod p) : y ∈ tK ∩ L}.

(3) Find vector a ∈ Znp satisfying

(a) |{y ∈ S : 〈a,y〉 ≡ 0 (mod p)}| ≤ 6 (b) |{〈a,y〉 : y ∈ S}| ≥ p

4
+ 1

(4) Return sublattice L′ = {y ∈ L : 〈y, B∗a〉 ≡ 0 (mod p)}.

To implement the above construction efficently and deterministically, we must

overcome several obstacles. First the number of lattices points N in tK ∩L could be

very large (since we have no control on t), and hence we cannot hope to compute N

or the set S efficiently via lattice point enumeration. Second, the construction of the

vector a is probabilistic (see Lemma 5.5.7), and hence we will need to replace it with

an explicit deterministic construction.
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To overcome the first difficulty, we will build the (K, t) sparsifier iteratively. In

particular, we will compute a sequence of sparsifiers L′1, . . . ,L′k, satisfying that L′i+1

is a (K, ciλ) sparsifier for L′i for i ≥ 0, where L′0 = L, λ = λ1(K,L) and c > 1 is a

constant. Since we start the sparsification process at the mininum distance of L, and

only increase the sparsification distance by a constant factor at each step, we will be

able to guarantee that the number of lattice points we process at each step is bounded

by 2O(n). Furthermore, the geometric growth rate in the sparsification distance will

allow us to conclude that L′i is in fact a (K, c
i+1

c−1
λ) sparsifier for L. Hence, iterating

the process roughly k ≈ ln t
λ1

steps will yield the final desired sparsifier.

For the second difficulty, i.e. the deterministic construction of a, the main idea is

to use a dimension reduction procedure2 which allows a to be computed efficiently

via exhaustive enumeration (i.e. trying all possible a’s). Let N and S be as in the

description. Since N < p < 2N − 2, we note that exhaustive search over Znp requires

a search over pn ≤ (2N)n possibilities, and the validity check (i.e. conditions (a) and

(b)) for of any particular a can be implemented in poly(N) time by simple counting.

Since the existence of the desired a depends only on |S| (and not on n), if we can

compute a linear projection π : Znp → Zn−1
p such that π(S) = |S|, then we can restrict

to finding a good a ∈ Zn−1
p for π(S). Indeed, we will show that such a map π can be

computed efficiently and deterministically as long as n ≥ 3. Therefore, repeating the

process n − 2 times, we are left with finding a good a ∈ Z2
p, which can do by trying

all p + 1 ≤ 2N lines in Z2
p. As discussed in the previous paragraph, we will be able

to guarantee that N = 2O(n), and hence the entire construction described above will

be implementable in 2O(n) time and space as desired.

2We are indebted to Gabor Kuhn for suggesting the dimension reduction procedure in Algorithm
5.7
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Algorithm 5.7 Algorithm Good-Vector(S, p)

Input: S ⊆ Znp , 0 ∈ S, integer n ≥ 1, p a prime satisfying |S| < p < 2|S| − 2.
Output: a ∈ Znp satisfying conditions of Lemma 5.5.7 .

1: if n = 1, return 1
2: P ← In (n× n identity)
3: for n0 in n to 3 do
4: for all q ∈ Lines(Zn0

p ) do
5: Compute basis B ∈ Zn0×n0−1

p satisfying q⊥ = BZn0−1
p

6: ∀ distinct x,y ∈ PS check that BTx 6≡ BTy (mod pZn0−1).
If no collisions, set P ← BTP and exit loop; otherwise, continue.

7: for all a ∈ Lines(Z2
p) do

8: Compute zeros← |{y ∈ PS : 〈a,y〉 ≡ 0 (mod p)}|
9: Compute distinct← |{〈a,y〉 (mod p) : y ∈ PS}|

10: if zeros ≤ 6 and distinct ≥ p
4

+ 1 then
11: return P ta

We begin with the deterministic algorithm implementing Lemma 5.5.7. We denote

the set of lines in Znp as

Lines(Znp ) =
n⋃
i=1

{a ∈ Znp : aj = 0, 1 ≤ j < i, ai = 1, ak ∈ Zp, i < k ≤ n}.

It is easy to see that Lines(Znp ) contains a unique representative of every 1 dimensional

subspace of Znp , and that |Lines(Znp )| =
∑n−1

i=0 p
i = pn−1

p−1
. For a vector q ∈ Znp we

denote the orthogonal complement q⊥ = {y ∈ Znp : 〈q,y〉 ≡ 0 (mod p)}.

In the desired application of the above algorithm, the set S above will in fact be

represented implicitly. Here the main access methodology we will require from S is

a way to iterate over its elements. In the context of (1 + ε)-CVP, the enumeration

method over S will correspond to the Lattice-Enum algorithm. Here we state the

guarantees of the algorithm abstractly in terms of the number of iterations that

required over S.

Theorem 5.5.9 (Good-Vector). Algorithm 5.7 is correct, and performs poly(n, log p)p4

arithmetic operations as well as O(np3) iterations over the elements of S. Furthemore,

the space usage (not counting the space needed to iterate over S) is poly(n, log p).

Analysis of Good-Vector.
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Correctness: We must show that the outputted vector a satisfies the guarantees

of Lemma 5.5.7, i.e. that for the returned vector a ∈ Znp satisfies:

(1) |{y ∈ S : 〈a,y〉 ≡ 0 (mod p)}| ≤ 6

(2) |{〈a,y〉 (mod p) : y ∈ S}| ≥ p
4

+ 1

If n = 1, setting a ∈ Zp to 1 (i.e. line 1), trivially satisfies (1) and (2). We assume

n ≥ 2. We prove the following invariant for the first loop (line 2): at the beginning

of each iteration, P ∈ Zn0×n
p and |PS| = |S|.

First let’s assume that during the loop iteration, we find B ∈ Zn0×(n0−1)
p satisfying

the BTx 6= BTy for all distinct x,y ∈ PS (verified in line 5). From this condition we

have that the map x→ BTx is injective when restricted to PS, and hence |BTPS| =

|S|. Next, since B ∈ Zn0×(n0−1)
p and P ∈ Zn0×n

p , we have that P is set to BTP ∈

Zn0−1×n
p for the next iteration as needed.

Now we show that a valid projection matrix BT is guaranteed to exist as long as

n0 ≥ 3. First, we claim that there exists q ∈ Lines(Zn0
p ), such that for all distinct

x,y ∈ PS, (Zpq + x) ∩ (Zpq + y) = ∅, i.e. all the lines passing though PS in the

direction q are disjoint. Since y − x 6= 0, Zp is a field, and Zpq is a subgroup of Znp ,

we have that

(Zpq + x) ∩ (Zpq + y) 6= ∅ ⇔ Zpq + (x− y) ∩ Zp 6= ∅

⇔ x− y ∈ Zpq ⇔ q ∈ Zp(x− y).

Therefore a line Zpq fails to satisfy (a) if and only if q is contained in the line Zp(x−y)

for distinct x,y ∈ PS. Clearly, the number of lines that can be generated in this way

from PS is at most
(|PS|

2

)
=
(|S|

2

)
< p(p−1)

2
. Since |Lines(Zn0

p )| = pn0−1
p−1

> p(p−1)
2

, for

n0 ≥ 3, and every q ∈ Lines(Zn0
p ) is contained in a distinct line through the origin,

we may pick q ∈ Lines(Znp ) \ Zp(PS − PS) 6= ∅. Now let B ∈ Zn0×(n0−1)
p denote a

basis satisfying q⊥ = BZn0−1
p . I claim that |BTPS| = |PS|. Assume not, then there
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exists distinct x,y ∈ PS such that

BTx ≡ BTy (mod pZn0−1) ⇔ BT (x− y) ≡ 0 (mod pZn0−1)

⇔ (x− y) ∈ (BZn0−1
p )⊥ = Zpq,

which contradicts to our assumption on q. Therefore, the algorithm is indeed guar-

anteed to find a valid projection as needed.

After the first for loop, we have construction P ∈ Z2×n
p satisfying |PS| = |S|,

where |S| < p < 2|S| − 2. By Lemma 5.5.7, there exists a ∈ Z2
p satisfying (1) and

(2) for the set PS. Since (1) and (2) holds for any non-zero multiple of a, i.e. any

vector defining the same line as a, we may restrict the search to elements of Lines(Z2
p).

Therefore, by trying all p
2−1
p−1

= p+1 elements of Lines(Z2
p) the algorithm is guaranteed

to find a valid a for the PS. Noting that 〈a, Py〉 ≡ 〈P ta,y〉 (mod p), we get that

P Ta satisfies (1) and (2) for the set S, as needed.

Runtime: For n = 1, the runtime is constant. We assume n ≥ 2. Here the first for

loop is executed n− 2 times. For each loop iteration, we run though q ∈ Lines(Zn0
p ),

until we find one inducing a good projection matrix B. From the above analysis, we

iterate through at most
(|S|

2

)
< p(p−1)

2
elements q ∈ Lines(Zn0

p ) before finding a good

projection matrix. For each q, we build a basis matrix for B for q⊥ which can be done

in using poly(n, log p) arithmetic operations via standard methods. Next we check

for collisions against each pair x,y ∈ PS, which can be done using O(|S|) = O(p)

iterations over S. Therefore, at each loop iteration we enumerate over S at most p3

times while performing only polynomial time computations. Hence, the total number

of operations (excluding the time needed to output the elements of S) is at most

poly(n, log p)p4.

For the last phase, we run through the elements in Lines(Z2
p), where |Lines(Z2

p)| =

p+1. The validity check for a ∈ Lines(Z2
p), simply requires computing both the quan-

tities (1) and (2). To compute |{y ∈ S : 〈y, a〉 ≡ 0 (mod p)}| we iterate once over the
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set S and count how many zero dot products there are. To compute |{〈a,y〉 : y ∈ S}|,

we first iterate over all residues in Zp. Next for each residue i ∈ Zp, if we find y ∈ S

satisfying 〈a,y〉 ≡ i (mod p), we increment our counter by one, and otherwise con-

tinue. Hence for any specific a ∈ Z2
p, we iterate over the set S exactly p + 1 times,

performing poly(n, log p)p2 operations. Hence, over the whole loop we perform O(p2)

iterations of the set S, and perform poly(n, log p)p3 operations.

Therefore, over the whole algorithm we iterate over the set S at most np3 times,

and perform at most poly(n, log p)p4 operations. Furthermore, not counting the space

needed to iterate over the set S, the space used by the the algorithm is poly(n, log p).

Using the Good-Vector algorithm, we give a completely deterministic construction

for Lattice Sparsifiers.

Algorithm 5.8 Algorithm Lattice-Sparsifier(K, L, t)

Input: (0, r, R)-centered convex body K ⊆ Rn with distance oracle DK for ‖ · ‖K ,
basis B ∈ Qn×n for L, and t ≥ 0.

Output: (K, t) sparsifier for L
1: K ← K ∩ −K
2: Compute y ∈ Shortest-Vectors(K,L, 1

3
)

3: λ← DK(y, 1
3
); ε← 9−(n+3)

4: k ← bln
(

3
4
t
λ

+ 1
)
/ ln 4c

5: L0 ← L;B0 ← B
6: for i in 0 to k − 1 do
7: S ← Lattice-Enum(4i(1− ε)λK,Li, ελr)
8: Compute N ← |S|
9: if N > 3 then

10: Compute B∗i ← B−Ti , a basis for L∗i
11: Compute prime p satisfying N < p < 2N − 2
12: a← Good-Vector(B∗Ti S (mod pZn), p)
13: Compute Li+1 ← {y ∈ Li : 〈B∗i a,y〉 ≡ 0 (mod p)} and basis Bi+1 for Li+1

14: else
15: Li+1 ← Li;Bi+1 ← Bi

16: return Lk

Theorem 5.5.10 (Correctness of Lattice Sparsifier). Given a γ-symmetric convex
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body K ⊆ Rn, Algorithm 5.8 returns a (K, t) sparsifier for L satisfying G(tK,L) ≤

2O(n)γ−n using 2O(n) poly(·) time and 2n poly(·) space.

Analysis of Lattice Sparsifier.

Correctness: We show that the outputted lattice is a (K, t) sparsifier for L. By

Lemma 5.5.2 it suffices to show that the algorithm outputs a (K ∩ −K, t) sparsifier,

which justifies the switch in line 2 from K to K ∩−K. In what follows, we therefore

assume that K is symmetric.

We first claim that λ ≤ 2λ1(K,L). To see by the guarantee on Shortest-Vector(K,L, 1
3
),

we have that ‖y‖K ≤ (1 + 1
3
)λ1(K,L). Next, by the guarantee on DK , we have that

λ = DK(y,
1

3
) ≤ (1 +

1

3
)‖y‖K ≤ (1 +

1

3
)2λ1(K,L) ≤ 2λ1(K,L),

as needed.

Claim 1: for each i, 0 ≤ i ≤ k, we have that

(1) ∀x ∈ Rn, dK(Li,x) ≤ dK(L,x) + 4
3
(4i − 1)λ.

(2) G(4iλ,Li) = 9n+2.

Proof. We establish the claim by induction on i. For i = 0, we have that L0 = L.

Therefore, L0 trivially satisfies property (1). Next, since λ ≤ 2λ1(K,L), by Lemma

5.3.1 we have that G(λK,L0) ≤ (2(2) + 1)n = 5n < 9n+2. Hence L0 also satisfies (2).

We now prove the claim for i ≥ 1. Let S denote the set outputted by Lattice-

Enum(4i−1(1 − ε)λK,Li−1, ελr). By the guarantees on Lattice-Enum, the set S sat-

isfies 4i−1(1 − ε)λK ∩ Li−1 ⊆ S ⊆ (4i−1(1 − ε)λK + ελrBn
2 ) ∩ Li−1. Since rBn

2 ⊆ K

and i ≥ 1, we note that 4i−1(1− ε)λK + ελrBn
2 ⊆ 4iλK. Therefore, we have that

4i−1(1− ε)λK ∩ Li−1 ⊆ S ⊆ 4i−1λK ∩ Li−1 (5.5.2)

Let N denote |S| (line 8). By (5.5.2) and the induction hypothesis, we have that

|4i−1(1− ε)λK ∩ Li−1| ≤ N ≤ |4i−1λK ∩ Li−1| ≤ G(4i−1λK,L) ≤ 9n+2
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Assume N ≤ 3. Then the algorithm sets Li = Li−1 and Bi = Bi−1. By the

induction hypothesis, for x ∈ Rn we have that

dK(Li,x) = dK(Li−1,x) ≤ dK(L,x) +
4

3
(4i−1 − 1)λ ≤ dK(L,x) +

4

3
(4i − 1)λ,

and hence Li satisfies (1). Next, by (5.5.2) we have that |4i(1− ε)λK ∩Li| ≤ N ≤ 3.

Therefore by Lemma 5.4.1, we have that

G(4i+1λK,Li+1) ≤ (2 · 4(1/(1− ε)) + 1)n|4i(1− ε)λK ∩ Li+1|

≤ 9n(1 + 2ε)n · 3 ≤ 9n+2,

where the last two inequalities follow since ε ≤ 9−(n+3). Therefore Li satisfies require-

ment (2) as needed.

Assume N > 3. Here we first compute N < p < 2N−2 (which exists by Bertrand’s

Postulate), and a dual basis B∗i−1 for L∗i−1.

Claim 2: |B∗Ti−1S (mod pZn)| = N

Proof. Since |S| = N , if the claim is false, there exists distinct x,y ∈ L such that

B∗Ti−1x ≡ B∗Ti−1y (mod pZn)⇔ B∗Ti−1(x− y) ≡ 0 (mod pZn)⇔ x− y ∈ pLi−1.

Since x,y ∈ 4i−1λK and K is symmetric, we have that x−y ∈ 2 ·4i−1K ∩pLi−1. Let

z = x − y ∈ pLi−1. We examine the vector sz
p

for s ∈ Z satisfying |s| ≤ bp
2
c = p−1

2

(since p is odd). Since z
p
∈ Li−1, we have that sz

p
∈ Li−1 and

s
z

p
∈
∣∣∣∣sp
∣∣∣∣ · 2 · 4i−1K ⊆

(
p− 1

2p

)
2 · 4i−1K =

(
1− 1

p

)
4i−1K

⊆ (1− ε)4i−1K

where the last inequality follows since p < 2N − 2 ≤ 2 · 9n+2 and ε = 9−(n+3). Then,

since s can take on 2bp
2
c + 1 = p different values, the set (1 − ε)4i−1K contains at

least p lattice points in Li−1. However, by construction of N , we have that

|(1− ε)4i−1K ∩ Li−1| ≤ N < p, a clear contradiction. The claim thus holds.
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Next, the algorithm computes a← Good-Vector(B∗Ti S (mod pZn), p), and sets

Li = {y ∈ L : 〈B∗a,y〉 ≡ 0 (mod p)}. From Claim 2, equation 5.5.2, and the guar-

antees on Good-Vector, we get that

(a) |4i−1(1− ε)λK ∩Li| = |{y ∈ 4i−1(1− ε)λK ∩ Li−1 : 〈B∗a,y〉 ≡ 0 (mod p)}| ≤ 6.

(b) |{〈B∗a,y〉 (mod p) : y ∈ 4i−1λK ∩ Li−1}| ≥ p
4

+ 1.

From here, using the identical analysis as in Theorem 5.5.8, from (a) above we get

that ∀x ∈ Rn, dK(Li,x) ≤ dK(Li−1,x) + 4iλ. Now by the induction hypothesis on

Li−1, we get that

dK(Li−1,x) + 4iλ ≤ dK(L,x) +
4

3
(4i−1 − 1) + 4iλ = dK(L,x) +

4

3
(4i − 1)λ.

Therefore Li satisfies (1) as needed. Using (b) and Lemma 5.4.1, we have that

G(4iλK,Li) ≤ (2 · 4 · (1/(1− ε)) + 1)n|4i−1(1− ε)λK ∩ Li|

≤ 9(1 + 2ε)n · 6 ≤ 9n+2.

Therefore Li satisfies (2) as needed. The claim thus follows.

Given Claim 1, we will show that Lk is (K, t) sparsifier for L. By our choice

of k, note that 4
3
(4k − 1)λ ≤ t ≤ 4 · 4

3
(4k+1 − 1)λ. By the claim, for x ∈ Rn,

dK(Lk,x) ≤ dK(L,x)+ 4
3
(4k−1)λ ≤ dK(L,x)+ t. It therefore only remains to bound

G(tK,Lk). By the previous bounds, note that

t

4kλ
≤ 4

3

(4k+1 − 1)λ

4kλ
≤ 16

3
≤ 6

Therefore by the claim and Lemma 5.4.1, we have that

G(tK,Lk) ≤ (2 · 6 + 1)nG(4kλK,Lk) ≤ 13n · 9n+2 = 2O(n)

as needed. The algorithm therefore returns a valid (K, t) sparsifier for L as needed.

190



Runtime: The algorithm first runs the Shortest-Vectors on K and L, which takes

2O(n) poly(·) time and 2n poly(·) space. Next, the for loop on line 6 iterates k =

bln(3
4
t
λ

+ 1)/ ln 4c = poly(·) times.

Each for loop iteration, indexed by i satisfying 0 ≤ i ≤ k − 1, consists of com-

putations over the set S ← Lattice-Enum(4i(1 − ε)λK,Li, ελr). For the intended

implementation, we do not store the set S explicitly. Every time the algorithm

needs to iterate over the S, we implement this by performing a call to Lattice-

Enum(4i(1 − ε)λK,Li, ελr). Furthermore, note the algorithm only interacts with

S by iterating over its elements, and hence the implemented interface suffices. Now

at the loop iteration indexed by i, we do as follows:

(1) Compute N = |S|. This is implemented by iterating over the elements of

S and counting, and so by the guarantees of Lattice-Enum requires at most

2O(n)G(4iλK,Li) poly(·) = 2O(n) poly(·) time (by Claim 1) and 2n poly(·) space.

(2) If N ≤ 3, we keep the same lattice and skip to the next loop iteration. If N > 3,

continue.

(3) Compute B∗i = B−Ti . This can be done in poly(·) time and space.

(4) Compute prime p satisfying N < p < 2N − 2. Such a prime can be computed

by trying all integers in the previous range and using trial division. This takes

at most O(N2 poly(logN)) = 2O(n) time and poly(n) space.

(5) Call Good-Vector(BT∗S (mod pZn), p). By the guarantees on Good-Vector,

the algorithm performs poly(n, log p)p4 = 2O(n) operations and iterates at most

np3 = 2O(n) times over the set BT∗S (mod pZn). These iterations can be per-

formed 2O(n) poly(·) time and 2n poly(·) space by the guarantees on Lattice-

Enum.
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(6) Compute a basisBi+1 for the new lattice Li+1 = {y ∈ Li :
〈
B∗Ta,y

〉
≡ 0 (mod p)}.

This can be done in poly(·) time using standard methods.

From the above analysis, we see that the entire algorithm runs in 2O(n) poly(·)

time and 2n poly(·) space as needed.

5.6 Finding a Central Lattice Point

In this section, we give a Las Vegas algorithm to find a lattice point near an approx-

imate center of mass of a convex body K. The algorithm presented here will have

applications to integer programming, which we elaborate on in Chapter 7.

We present the algorithm below.

Algorithm 5.9 Central-Lat-Pt(K,L, ε)
Input: Weak membership oracle OK for a (a0, r, R)-centered convex body K ⊆ Rn,

a basis B ∈ Qn×n for L, and ε ∈ (0, 1).
Output: Vector b ∈ K and y ∈ L satisfying the conditions of Theorem 5.6.1.

1: Let b← Approx-Mass-Center(K)
2: Pick y ∈ Approx-Closest-Vectors(K − b,L,b, ε)
3: return (b,y)

Theorem 5.6.1 (Correctness of Central-Lat-Pt). On input K, L and ε > 0 as above,

in expected 2O(n)(1 + 1
ε
)n poly(·) time, using 2n poly(·) space and poly(·) randomness,

algorithm 5.9 outputs a vector b ∈ K and vector y ∈ L such that

(1) K is (b, r
2
√
n(n+1)

, 2R)-centered and K − b is 1
5
-symmetric.

(2) ‖y − b‖K−b ≤ (1 + ε)dK−b(L,b).

Analysis of Approx-Lat-Cont.

Correctness: The correctness of the algorithm follows directly by the guarantees

on algorithms Approx-Mass-Center (see algorithm 4.6) and Approx-Closest-Vectors

(see algorithm 5.6).
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Runtime: The call to Approx-Mass-Center requires expected 2O(n) poly(·)-time and

poly(·) space. Since K − b is 1
5
-symmetric, the call of to Approx-Closest-Vectors

requires 2O(n)(1 + 1
ε
)n time and 2n poly(·) space. The desired runtime bound thus fol-

lows. Since the only randomness comes from Approx-Mass-Center, where the amount

of randomness used is polynomial, we get that the entire algorithm uses only polyno-

mial randomness, as needed.
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5.7 Conclusion

The study of lattice problems, such as the SVP and CVP, has lead to many funda-

mental discoveries in computer science and the geometry of numbers. In this chapter,

we have performed and in-depth study of these lattices problems under general norms.

For our main contributions, we gave efficient deterministic algorithms for the SVP,

CVP and (1 + ε)-CVP under general norms, that yield the only known deterministic

alternatives to the previous AKS sieve based algorithms for these problems. Though

our running times are generally 2O(n) factors larger than the AKS alternatives, our

algorithms save considerably on space compared to AKS. In particular, our (1 + ε)-

CVP algorithm requires only 2n space as opposed to (1 + 1/ε)n space required by the

AKS sieve approaches. Furthermore, the deterministic guarantees on our algorithms

will be helpful for their application to Integer Programming, which we describe in

Chapter 7.

From a more general perspective, we have introduced new geometric techniques to
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the study of lattice problems. In particular, we show the usefulness of ellipsoid cov-

erings and M-Ellipsoids to lattice algorithms, and present a new type of complexity

guarantee for lattice point enumeration (i.e. the G(K,L) bound). Lastly, our lattice

sparsifier construction for general norms yields, to the best of our knowledge, a new

structural result for lattices. We note that the core idea behind the lattice sparsi-

fier, i.e. the random sublattice restriction, has appeared previously in the context of

proving NP-hardness for SVP under `p norms [75, 62]. Furthermore, it remains an

outstanding open problem to give a deterministic NP-hardness reduction for SVP

under the `2 norm. We are therefore hopeful that our analysis of the lattice sparsifier

construction and its subsequent derandomization may find applications beyond what

has been described here.

Future Research. A first important problem we would like to explore is that of

finding a polynomial space and 2O(n) time algorithm for the CVP under `2. As shown

in Theorem 5.1.10, such an algorithm would immediately reduce the space complexity

of all our algorithms to polynomial. As a first step towards such an algorithm, we

would like to explore the problem of finding a succinct implicit representation of the

voronoi relevant vectors. One question in this vein is as follows: for an n dimensional

lattice L is there a collection of vectors v1, . . . , vcn ∈ Rn, such that the vectors in

VR are expressible as integer combinations of v1, . . . , vcn of norm at most C
√
n (of

the coefficient vector), for c, C ≥ 1 absolute constants? The existence of such a

representation, would immediately imply a 2O(n) time and poly(n) space algorithm

for CVP with preprocessing (i.e. where the list is given as advice), and hence yield

important step towards this problem.

A next question pertains to the current structure of our algorithms. At a high

level, we show that the SVP, CVP and (1+ ε)-CVP under general norms all reduce to

`2 CVP. The reduction however, which passes through the M-Ellipsoid computation,
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ellipsoid coverings (generated by a parallelepiped tiling), and lattice point enumera-

tion inside an ellipsoid, is quite complex and very time inefficient (though quite space

efficient). A natural question is therefore whether all this complexity is needed. In

particular, is there a direct way of achieving the guarantees of our algorithms without

passing through this complex reduction to `2?

Lastly, we would like to explore computational lower bounds for the SVP and

CVP. Even though such bounds are in general dependent on P 6= NP , we note that

all our algorithms require only query access to the norm in question, and hence are

amenable to information theoretic lower bounds. Here it would be interesting to

establish that our algorithms for SVP and (1 + ε)-CVP algorithms are nearly optimal

in this model, in the same vein as the volume estimation algorithm from Chapter 4.
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CHAPTER VI

GEOMETRY OF THE DISCRETE GAUSSIAN AND

THE FLATNESS THEOREM

In this chapter, we give a tighter proof of Kinchine’s flatness theorem in the geometry

of numbers. To prove this result we develop a tight characterization of the smoothing

parameter of a lattice, as well as nearly matching upper and lower bounds for norm

expectations of discrete Gaussian random variables. The work in this chapter is

based on parts of the paper [27] (joint with Kai-Min Chung, Feng Hao Liu, and Chris

Peikert).

6.1 Introduction

One of the most famous results in the Geometry of Numbers is Minkowski’s theorem.

Minkowski answered the question “when does a centrally symmetric convex body

contain a non-zero integer point?”. He showed that any symmetric convex body

with large enough volume indeed contains such a point. His discovery laid the way

for many significant advances in number theory, and has had ramifications in many

other areas including combinatorics, computational complexity, and cryptography.

A natural extension to the above question is “when does a convex body contain

an integer point?”. Here the situation is very different from the above since large

volume no longer yields a sufficient condition. One may examine the example of a

band in between two consecutive integral hyperplanes, to see that a convex set may

have infinite volume and yet not contain any integers. Instead of volume, what turns

out to be true is that any convex set that is not too “flat” must contain an integer

point.
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This result, known as Kinchine’s flatness theorem is a powerful tool in the geome-

try of numbers. Stated precisely, the flatness theorem says that for any convex body

K in Rn, either µ(K,Zn) = inf{s ≥ 0 : Zn + sK = Rn} ≤ 1 (covering radius is small)

or

λ1((K −K)∗,Zn) = inf
y∈L∗\{0}

widthK(y) ≤ f(n) (width function of K)

K has “integer width” bounded by a function of dimension. We note that the above

statement generalizes to any n dimensional lattice (which we state below), and is not

restricted to the integers. To understand the relation to the original question, note

that if K has covering radius less than 1, then not only does K contain an integer

point, but so does every translation of K, i.e. a seemingly much stronger statement.

A major application of the flatness theorem is to the Integer Programming Prob-

lem (IP), i.e. the problem of deciding whether a convex set contains an integer point.

Here, the idea is that if a convex body K has integer width > f(n), then we can im-

mediately correctly decide that K∩Zn 6= ∅. Otherwise if the integer width is ≤ f(n),

then we can use a short integer width direction to decompose the feasibility problem

into subproblems along at most f(n) integral hyperplanes. Most of the known algo-

rithms for IP (achieving any reasonable complexity guarantee) rely on this type of

approach (see for example [84, 70, 65, 36]). For more details on the application of the

flatness theorem to IP, we refer the interested reader to Chapter 7.

Due to its importance to IP and other problems, many works have been devoted

to the task of improving the bounds on the flatness function [76, 7, 80, 67, 10, 12,

13]. The main result of this chapter is a quantitative improvement on a theorem

of Banaszczyk [10], which reduces the task of bounding the flatness constant for

dimension n to bounding the ``∗ estimate in Convex Geometry (see section 4.4.1 for

a thorough discussion of ``∗). Our main result is stated as follows:
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Theorem 6.1.1. For a convex body K and lattice L in Rn, we have that

1 ≤ µ(K,L)λ1((K −K)∗,L∗) ≤ 8
√

2

π
``∗(K) (6.1.1)

where

``∗(K)
def
= inf

A∈Rn×n,det(T )=1
x∈K

`K−x(A)`(K−x)∗(A
−T ))

We note that definition of ``∗(K) is slightly more general than the one presented

in Section 4.4.1. In section 4.4.1 we only needed to define ``∗ for symmetric convex

bodies, whereas here we require it for general bodies. To compensate for the lack

of symmetry, we allow for recentering the body K. For K = Bn
2 , ``∗(Bn

2 ) = n.

For a general symmetric convex body K, it was shown by Pisier[106] that ``∗(K) =

4n(1 + 1
2

log2 n). For asymmetric bodies, the estimates are significantly worse, where

the best known bound is O(n
4
3 polylog(n)) due to Rudelson [113]. It remains a major

open problem in Convex geometry to show that ``∗(K) = O(n log n) for asymmetric

bodies (which is tight for K = Bn
∞).

For the above theorem, we note that the lower bound 1 ≤ µ(K,L)λ((K−K)∗,L∗)

is classical (see Lemma 2.4.6), and hence our focus in this Chapter is dedicated to

the upper bound.

The above theorem, which yields the current best asymptotic upper bounds on

the flatness function f(n), was first proved by Banaszczyk in [12] with very large

(and hard to compute) hidden constants. More precisely, to prove 6.1.1 Banaszczyk

relies on Talagrand’s majorizing measure theorem. Here the majorizing measure

theorem is used to upper bound expectations of the form E[‖Y ‖K ] for a sub-Gaussian

random variable Y (where Y represents a certain discrete distribution over L) by the

corresponding Gaussian expectation. However, the constants in this reduction are

to the best of the author’s knowledge, unknown and presumed to be quite large. In

this chapter, we follow same outline as Banaszczyk’s proof while avoiding the use

of majorizing measure theorem. At a high level, we show that the generality of the
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majorizing measure theorem is unnecessary by relying on the lattice structure more

directly. Furthermore, we provide new structural insights for lattices which may be

useful elsewhere.

We remark that even with the best possible bound on ``∗ (i.e. O(n log n)), there

would still be a gap with respect to the best known lower bound for f(n), i.e. f(n) =

Ω(n) (see [10]). Indeed, it is conjectured that the f(n) = Θ(n). However, resolving

this conjecture would seem to require completely different techniques than the ones

described here.

6.2 Preliminaries

Discrete Gaussian measures. We define the Gaussian function ρn,s,c : Rn → R+,

n ∈ N, s > 0, and c ∈ Rn by ρn,s,c(x) = e−π‖
x−c
s
‖22 for x ∈ Rn. We define ρn,s

def
= ρn,s,0.

For a countable subset T ⊆ Rn, we define ρn,s,c(T ) =
∑

x∈T ρn,s,c(x). When the

context is clear, we shall often drop the n in the notation, and write ρs, ρs,c for ρn,s

and ρn,s,c.

For any countable subset T ⊆ Rn for which ρs,c(T ) converges, define the discrete

Gaussian distribution DT,s,c over T by

DT,s,c(x) =
ρs,c(x)

ρs,c(T )
∀ x ∈ T.

In this chapter, we will examine the discrete Gaussian over a lattice L or one of its

cosets, i.e., where T = L+ c, for some c ∈ Rn. (In all this case, ρs,c(T ) converges.)

Recalling the notation of section 2.1.3, Dn,s,c denotes the continuous Gaussian

distribution over Rn, and that γn,s denotes the n dimensional Gaussian measure. We

call X ∈ Rn a standard n-dimensional Gaussian if X is distributed as Dn,
√

2π. For

K ⊆ Rn a 0-centered convex body, p ≥ 1, and A ∈ Rn×n, we recall the definition of

the `-norm:

`pK(A) = E[‖AX‖pK ]
1
p ],
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where X is standard Gaussian. Note that this is slightly more general than the

definition in 4.4.1, since we allow varying p ≥ 1. Here we write `2
K ≡ `K .

Poisson Summation Formula. For an integrable function f : Rn → R, the

Fourier transform f̂ : Rn → R of f is

f̂(y) =

∫
Rn
e−2πi〈y,x〉f(x)dx, y ∈ Rn.

For f(x) = ρn,s,c(x), from classical analysis we have that

ρ̂n,s,c(x) = sne−2πi〈c,x〉ρn, 1
s
(x) (6.2.1)

Let L denote an n-dimensional lattice. For f : Rn → R “nice-enough”, the Poisson

summation formula states that∑
y∈L

f(y) =
1

det(L)

∑
y∈L∗

f̂(y) (6.2.2)

As for the niceness condition, the above formula holds in particular if f is continuous,

integrable, and satisfies |f(x)|+|f (x)| ≤ C(1+‖x‖2)−n−δ, for some constants C, δ > 0.

In this chapter, we will only apply the formula to ρn,s,c, where the above conditions

hold.

For more information on the Fourier transform and its properties, the reader may

consult [103].

The smoothing parameter. We recall the definition of the smoothing parameter

from [90].

Definition 6.2.1 (Smoothing Parameter). For a lattice L and real ε > 0, the smooth-

ing parameter ηε(L) is the smallest s > 0 such that ρ1/s(L∗ \ {0}) ≤ ε.

At a high level, the smoothing parameter helps us measure how close the discrete

Gaussian distribution from the continuous Gaussian. Making this intuition quantita-

tive will be the crucial task of the rest of the chapter.
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6.3 Bounding the Smoothing Parameter

The following theorem gives a general bound on the smoothing parameter of L with

respect to any ε > 0 and norm. The work of Banaszczyk [12] gives the first bounds

of this type. His proof however passes through Talagrand’s majorizing measure the-

orem, which yields bounds with very large hidden constants. Here we avoid the use

of majorizing measures by deriving our general norm bounds via comparison to the

“optimal” norm for the lattice, i.e. the norm induced by the voronoi cell. Further-

more, our technique allows us to bounds with respect to arbitrary Gaussian moments

with small explicit constants.

Theorem 6.3.1. Let L ⊆ Rn be a lattice and K ⊆ Rn be a symmetric convex body.

Let X ∈ Rn denote the n dimensional Gaussian with distribution γ. Then for any

ε > 0 and p > 0, we have that

ηε(L) ≤ 2

(
1 +

1

ε

) 1
p E[‖X‖pK ]

1
p

λ1(K,L∗)

The following theorem shows that for constant ε, the smoothing parameter is

essentially determined (up to constant factors) by the expected norm of the Gaussian

under the norm induced by the voronoi cell.

Theorem 6.3.2. Let L ⊆ Rn be an n-dimensional lattice, V = V(L∗), and X ∈ Rn

the Gaussian with distribution D1,0. Then

1

3
E[‖X‖V ] ≤ η 1

2
(L) ≤ 3 E[‖X‖V ]

To prove the above theorems, we will need the following technical lemmas. We

give their proofs and continue to the proofs of the main subsection theorems.

The following is a standard Gaussian tailbound for both continuous and discrete

Gaussian (see Lemma 2.4 in [11] for the discrete Gaussian bound).
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Lemma 6.3.3. Let X ∈ Rn be distributed as either Ds or DL,s for a lattice L ⊂ Rn.

For any v ∈ Rn and t > 0, we have

Pr[〈X,v〉 ≥ t‖v‖] ≤ e−π(t/s)2 ,

and for ε > 0 we have

Pr[‖X‖2 ≥ (1 + ε)s2 n

2π
] ≤ ((1 + ε)e−ε)n/2,

which for 0 < ε < 1
2

is bounded by e−nε
2/6.

The following well known lemma bounds how quickly the Gaussian measure of a

symmetric set can decrease as it is shifted away from the origin. We include its proof

for completeness.

Lemma 6.3.4. Let S ⊆ Rn be symmetric (i.e., S = −S) measurable set. Then for

any y ∈ Rn,

γs(S + y) ≥ γs(S) · ρs(y).

Proof. By scaling S and y, it suffices to prove the claim for s = 1. For any t ∈ R,

note that cosh(t) = 1
2
(et + e−t) ≥ 1. We have

γ(S + y) =

∫
S

e−π‖y−x‖
2

dx =

∫
S

1

2
(e−π‖y−x‖

2

+ e−π‖y+x‖2) dx (symmetry of S)

= e−π‖y‖
2

∫
S

e−π‖x‖
2 · 1

2

(
e2π〈x,y〉 + e−2π〈x,y〉) dx (expanding the squares)

≥ ρ(y)

∫
S

ρ(x) dx = ρ(y) · γ(S).

The following simple lemma establishes a tight relationship between discrete Gaus-

sian sums on L and the Gaussian mass of the Voronoi cell. It will play a crucial role

in the segway.

Lemma 6.3.5. Let L ⊆ Rn be a lattice with Voronoi cell V = V(L), and let s > 0.

Then

ρs(L \ {0})
ρs(L)

≤ 1− γs(V) ≤ ρ2s(L \ {0}).
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Proof. By scaling L, it suffices to prove the claim for s = 1. We first show the upper

bound. Let X ∈ Rn be distributed as D1, and note that 1 − γ(V) = Pr[X /∈ V ]. By

the union bound and Lemma 6.3.3,

Pr[X /∈ V ] = Pr[
⋃

y∈L\{0}

{〈X,y〉 > 1
2
〈y,y〉}] ≤

∑
y∈L\{0}

Pr[〈X,y〉 > 1
2
〈y,y〉]

≤
∑

y∈L\{0}

e−π‖y/2‖
2

= ρ2(L \ {0}).

We now prove the lower bound. Since V tiles space with respect to L, by applying

Lemma 6.3.4 with S = V , we have

1− γ(V) = γ(Rn \ V) =
∑

y∈L\{0}

γ(V + y) ≥ γ(V) · ρ(L \ {0}).

Since for x, y ≥ 0, we have that 1 − x ≥ xy ⇔ 1 − x ≥ y
y+1

, from the above we get

that

1− γ(V) ≥ ρ(L \ {0})
ρ(L \ {0}) + 1

=
ρ(L \ {0})
ρ(L)

as desired.

The following lemma shows the optimality of the voronoi cell with respect to

certain Gaussian expectations.

Lemma 6.3.6. Let L ⊆ Rn be a lattice, and let K ⊆ Rn be a symmetric convex body

satisfying λ1(K,L) ≥ 2. Then for any differentiable and non-decreasing function

f : R+ → R+, we have that

E[f(‖X‖V)] ≤ E[f(‖X‖K)]

where X is distributed as Ds,0, s > 0, and V = V(L).

Proof. Letting ‖ · ‖ denote an arbitrary norm, we have that

E[f(‖X‖)] =

∫
Rn
f(‖x‖)dγs(x) =

∫
Rn

(
f(0) +

∫ ‖x‖
0

f ′(t)dt

)
dγs(x)

= f(0) +

∫
Rn

∫ ‖x‖
0

f ′(t)dtdγs(x) = f(0) +

∫ ∞
0

f ′(t)γs({x ∈ Rn : ‖x‖ ≥ t})dt
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Given the above identity and that f ′ ≥ 0 (since f is non-decreasing), it now suffices

to prove that for all t > 0

γs({x ∈ Rn : ‖x‖V ≥ t}) ≤ γs({x ∈ Rn : ‖x‖K ≥ t})⇔

1− γs({x ∈ Rn : ‖x‖V ≤ t}) ≤ 1− γs({x ∈ Rn : ‖x‖V ≤ t})⇔ γs(tV) ≥ γs(tK)

Define K ′ = int(K), i.e. K ′ = {x ∈ Rn : ‖x‖K < 1}. Note that for t > 0, (tK)′ =

tK ′.

Claim 1: For any t > 0, there exists an injective measure preserving (Lebesgue

measure) map T : tK ′ → tV satisfying that ‖T (x)‖2 ≤ ‖x‖2 ∀x ∈ K ′.

We first show the claim for t = 1. Define the map c : Rn → L which sends x ∈ Rn

to the lexicographically minimal (using the standard lexicographic ordering on the

coordinates) lattice vector y ∈ L which is closest to x under the `2 norm. Let the

map T : K ′ → V be defined by T (x) = x− c(x). To see that the map is well defined,

note that for any x ∈ Rn, x − c(x) is closer to 0 than any other point in L (since

otherwise c(x) would not be a closest lattice vector to x), and hence x − c(x) ∈ V

as needed. By definition ‖x − c(x)‖2 = infy∈L ‖x − y‖2 and hence ‖T (x)‖2 ≤ ‖x‖2

as needed. We now show that T is injective on K ′. Assume not, i.e. there exists

distinct x,y ∈ K ′ such that x − c(x) = y − c(y). If this is the case then note that

0 6= x− y = c(x)− c(y) ∈ L. From here we have that

‖x− y‖K ≤ ‖x‖K + ‖ − y‖K = ‖x‖K + ‖y‖K < 1 + 1 = 2,

but this is a contradiction since by assumption λ1(K,L) ≥ 2. To see that T is

measure preserving, we note that T is injective and acts on K by a finite number of

translations (each of which preserve Lebesgue measure).

To build the map for general t > 0, we define the map Tt : tK ′ → tV by Tt(x) =

tT (x/t). It is simple to check that the generalized map Tt satisfies all the required

properties.
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Claim 2: ∀t > 0, γs(tK) ≤ γs(tV).

We first note that γs(tK) = γs(tK
′). From the previous claim, we have the

existence of the map T : tK ′ → tV with the aforementioned properties. From here

we see that

1

sn

∫
tV
e−π‖x/s‖

2
2dx ≥ 1

sn

∫
T (tK′)

e−π‖x/s‖
2
2dx

=
1

sn

∫
tK′

e−π‖T (x)/s‖22dx ≥ 1

sn

∫
tK′

e−π‖x/s‖
2
2dx = γs(tK

′)

as needed.

The lemma thus follows.

Corollary 6.3.7. Let L ⊆ Rn be a lattice, and let K ⊆ Rn be a symmetric convex

body. Then for p > 0, we have that

E[‖X‖pV ]
1
p

2
≤ E[‖X‖pK ]

1
p

λ1(K,L)

where X is distributed as Ds,0, s > 0, and V = V(L).

Proof. For x ∈ Rn and t > 0, note that ‖x‖tK = 1
t
‖x‖K . Hence λ1(tK,L) =

1
t
λ1(K,L) and E[‖X‖ptK ]

1
p = 1

t
E[‖X‖pK ]

1
p . From this, we get that the above in-

equality is invariant under scalings of K. It therefore suffices to prove the inequality

when λ1(K,L) = 2, which follows immediately from Lemma 6.3.6 (setting f(z) = zp

for z ∈ R+).

We are now ready to give a the proof of the main smoothing parameter bound.

Proof of Theorem 6.3.1. Let Y be distributed as DL∗,s,0 and V = V(L∗). Noting that

Pr[Y 6= 0] =
ρ 1
s
(L∗ \ {0}

1 + ρ 1
s
(L∗ \ {0})

we get that ρ 1
s
(L∗ \ {0}) ≤ ε⇔ Pr[Y 6= 0] ≤ ε

1 + ε

Now using Lemma 6.3.5 and Markov’s inequality, we have that

Pr[Y 6= 0] =
ρ 1
s
(L∗ \ {0})
ρ 1
s
(L∗)

≤ 1− γ 1
s
(V) = Pr[

1

s
X ∈ Rn \ V ] = Pr[‖1

s
X‖V ≥ 1] ≤ E[‖1

s
X‖pV ]
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From Corollary 6.3.7 we have that E[‖1
s
X‖pV ] ≤ 2p

E[‖ 1
s
X‖pK ]

λ1(K,L∗) . Hence, combining the

above inequalities together we get that

Pr[Y 6= 0] ≤ E[‖1

s
X‖pV ] ≤ 2p

E[‖1
s
X‖pK ]

λ1(K,L∗)p
=

(
2

s

)p
E[‖X‖pK ]

λ1(K,L∗)p

Therefore to insure ρ 1
s
(L∗ \ {0}) ≤ ε, it suffices to choose s > 0 satisfying

ε

1 + ε
≤
(

2

s

)p
E[‖X‖pK ]

λ1(K,L∗)p
⇐ s ≥ 2

(
1 +

1

ε

) 1
p E[‖X‖pK ]

1
p

λ1(K,L∗)

The desired bound on ηε(L) thus follows.

To prove Theorem 6.3.2, we will use the following theorem of Latala and Oleszkiewicz [81].

While a far weaker and elementary bound would suffice, the following theorem will

allow us to derive better constants.

Theorem 6.3.8. Let X ∈ Rn be an n dimensional Gaussian random variable. Let

K ⊆ Rn be a symmetric convex body, and let α ≥ 0 be chosen such that Pr[X ∈ K] =

Pr[|X1| ≤ α]. Then the following holds:

• For t ∈ [0, 1], Pr[X ∈ tK] ≤ Pr[|X1| ≤ tα].

• For t ≥ 1, Pr[X ∈ tK] ≥ Pr[[X1| ≤ tα].

Proof of Theorem 6.3.2. The upper bound follows directly from Theorem 6.3.1, so we

need only prove the lower bound. Define m > 0 to satisfy Pr[X ∈ mV ] = Pr[‖X‖V ≤

m] = 1
2
. Define α by the relation Pr[|X1| ≤ α] = 1

2
. Then by Theorem 6.3.8, we have

that Pr[‖X‖V ≥ tm] ≤ Pr[|X1| ≥ tα] for t ≥ 1. We now have that

E[‖X‖V ] =

∫ ∞
0

Pr[‖X‖V ≥ t]dt ≤ m+

∫ ∞
m

Pr[‖X‖V ≥ t]dt ≤ m+

∫ ∞
m

Pr[|X1| ≥
αt

m
]dt

= (1 +
1

α

∫ ∞
α

Pr[|X1| ≥ t]dt)m = (1 +
2

α

∫ ∞
0

te−π(t+α)2dt)m = (1 + β)m

Let s = η 1
2
(L). Since ρ 1

s
(L∗ \ {0}) = 1

2
, by Lemma 6.3.5, we have that

1− γ 1
2s

(V) ≤ ρ 1
s
(L∗ \ {0}) =

1

2
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Therefore γ 1
2s

(V) = Pr[X ∈ 2sV ] ≥ 1
2
. Since Pr[X ∈ mV ] = 1

2
, we have that

2s ≥ m ≥ 1
1+β

E[‖X‖V ]. Hence

η 1
2
(L) = s ≥ 1

2(1 + β)
E[‖X‖V ].

Using numerical approximations one gets that β ≤ .444, and hence 1
2(1+β)

≥ 1
3

as

needed.

6.4 Comparing the Discrete and Continuous Gaussian

As mentioned in the preliminaries, the smoothing parameter measures how close

the discrete Gaussian is to the continuous Gaussian. In this section, we first relate

known results which show that the convolution of a “smooth” discrete Gaussian

with a continuous Gaussian is close to Gaussian, and the a convulution of discrete

Gaussians is again close to discrete Gaussian. We shall then use these results to

give nearly matching upper and lower bounds on the expected norm of the discrete

Gaussian under general norms.

The first fundamental lemma of this section, which first appeared in [90], gives

tight bounds on discrete Gaussian sums above the smoothing parameter.

Lemma 6.4.1. Let L be an n dimensional lattice, and let s ≥ ηε(L) for 0 < ε < 1.

Then ∀x ∈ Rn,

(1− ε) sn

det(L)
≤ ρs(L+ x) ≤ (1 + ε)

sn

det(L)

Proof. By the Poisson summation formula

ρs(L+ x) =
∑
y∈L

ρs(y + x) =
sn

det(L)

∑
y∈L∗

e2πi〈x,y〉ρ 1
s
(y)

Since s ≥ ηε(L), we have that∣∣∣∣∣
(

sn

det(L)

∑
y∈L∗

e2πi〈x,y〉ρ 1
s
(y)

)
− sn

det(L)

∣∣∣∣∣ =
sn

det(L)

∣∣∣∣∣ ∑
y∈L∗\{0}

e2πi〈x,y〉ρ 1
s
(y)

∣∣∣∣∣
≤ sn

det(L)

∣∣∣∣∣ ∑
y∈L∗\{0}

ρ 1
s
(y)

∣∣∣∣∣ ≤ ε
sn

det(L)
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as needed.

We first relate theorems about convolutions of discrete Gaussians and continuous

Gaussians. The following is a combination of Claim 3.9 from [108] and Theorem 3.1

from [102].

Theorem 6.4.2. Let a1, a2 ∈ Rn, and s1, s2 > 0 such that s1s2√
s21+s22

≥ ηε(L), ε > 0.

Setting ā = a1 + a2, and s̄ =
√
s2

1 + s2
2, then for the random variables X ∼ DL+a1,s1

and Y ∼ DL+a2,s2 we have that(
1− ε
1 + ε

)2

DL+ā,s̄(x) ≤ Pr[X + Y = x] ≤
(

1 + ε

1− ε

)2

DL+ā,s̄(x) ∀x ∈ Rn

Furthermore, if Y ∼ Ds2, we have that(
1− ε
1 + ε

)
ρs̄(x)

s̄n
≤ dPr[X + Y = x] ≤

(
1 + ε

1− ε

)
ρs̄(x)

s̄n
∀x ∈ Rn

Proof. We prove the first claim. Since X,Y are supported on L + a1, L + a2 re-

spectively, we see that X + Y ∈ L + a1 + a2 = L + ā. For x ∈ L + ā, we have

that

Pr[X + Y = x] =
1

ρs1(L+ a1)

1

ρs2(L+ a2)

∑
y∈L+a2

ρs1(x− y)ρs2(y)

Letting s̃ = s1s2√
s21+s22

, we have that

∑
y∈L+a2

ρs1(x− y)ρs2(y) =
∑

y∈L+a2

exp

[
−π

(∥∥∥∥x− y

s1

∥∥∥∥2

2

+

∥∥∥∥ y

s2

∥∥∥∥2

2

)]
(Completing the square)

=
∑

y∈L+a2

exp

−π
∥∥∥∥∥ x√

s2
1 + s2

2

∥∥∥∥∥
2

2

+

∣∣∣∣∣
√
s2

1 + s2
2

s1s2

(y − s2
2

s2
1 + s2

2

x)

∥∥∥∥∥
2

2


= ρs̄(x)ρs̃

(
L+ a2 −

s2
2

s2
1 + s2

2

x

)
Since s1, s2, s̃ ≥ ηε(L), by Lemma 6.4.1 we have that

ρs̃

(
L+ a2 − s22

s21+s22
x
)

ρs1(L+ a1)ρs2(L+ a2)
≤ (1 + ε)

(1− ε)2

s̃n

sn1s
n
2

det(L)

=
(1 + ε)

(1− ε)2

det(L)

s̄n
≤ (1 + ε)2

(1− ε)2

1

ρs̄(L+ ā)
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For the lower bound, we similarly derive that that

ρs̃

(
L+ a2 − s22

s21+s22
x
)

ρs1(L+ a1)ρs2(L+ a2)
≥ (1− ε)2

(1 + ε)2

1

ρs̄(L+ ā)

Combining all the above inequalities, we get that

(1− ε)2

(1 + ε)2

ρs̄(x)

ρs̄(L+ ā)
≤ Pr[X + Y = x] ≤ (1 + ε)2

(1− ε)2

ρs̄(x)

ρs̄(L+ ā)

Now let Y be distributed as Ds2 . Then the density of X +Y , for x ∈ Rn, satisfies

dPr[X + Y = x] =
1

ρs1(L+ a1)sn2

∑
y∈L+a1

ρs1(y)ρs2(x− y)

Then using the identical analysis as above, we get that∑
y∈L+a1

ρs1(y)ρs2(x− y) = ρs̄(x)ρs̃(L+ a1 −
s2

2

s2
1 + s2

2

x).

In the same way as in the previous analysis, we get that

(1− ε)
(1 + ε)

1

s̄n
≤
ρs̃(L+ a1 − s22

s21+s22
)

ρs1(L+ a1)sn2
≤ (1 + ε)

(1− ε)
1

s̄n

Combining the above inequalities yields the result.

The next theorem shows nearly tight bounds for discrete Gaussian norm expecta-

tions beyond the smoothing parameter. Compared to previous literature, our main

contribution is that we give nearly matching upper and lower bounds for discrete

Gaussian expectations under general norms.

Theorem 6.4.3. Let K ⊆ Rn be a convex body containing the origin in its interior

and let L be an n dimensional lattice. For δ > 1, s ≥ δηε(L), for any c ∈ Rn and

p ≥ 1 the random variables Y ∼ DL+c,s and X ∼ Ds,0 satisfy

E[‖Y ‖pK ]
1
p ≤

(
1 + ε

1− ε

) 1
p

√
δ2

δ2 − 1
E[‖X‖pK ]

1
p

Furthermore, as long as δ ≥ 2
(

1+ε
1−ε

) 3
p , we have that

E[‖Y ‖pK ]
1
p ≥

(
1− ε
1 + ε

) 2
p

(
1−

(
1 + ε

1− ε

) 3
p 2

δ

)
E[‖X‖pK ]

1
p

209



Proof. We begin by proving the upper bound. Let Z be distributed as Ds̄,0, for

s̄ =
√

δ2

δ2−1
ηε(L). Since the gauge ‖ · ‖K is convex and non-negative, and p ≥ 1, by

Jensen’s inequality we have that

E[‖Y + Z‖pK ] =
∑
y∈L

E[‖y + Z‖pK ] Pr(Y = y) ≥
∑
y∈L

‖y + E[Z]‖pK Pr(Y = y)

=
∑
y∈L

‖y‖pK Pr(Y = y) = E[‖Y ‖pK ]

Now note that

s̄s√
s̄2 + s2

=
1√

1
s̄2

+ 1
s2

=
1√

δ2−1
δ2

+ 1
δ2

ηε(L) = ηε(L)

and that
√
s̄2 + s2 =

√
δ4

δ2−1
ηε(L) = s

√
δ2

δ2−1
. Letting δ̄ =

√
δ2

δ2−1
by proposition 6.4.2

we have that

1− ε
1 + ε

ρδ̄s(x)

(δ̄s)n
≤ dPr[Y + Z = x] ≤ 1 + ε

1− ε
ρδ̄s(x)

(δ̄s)n
∀x ∈ Rn

Therefore

E[‖Y ‖pK ]
1
p ≤ E[‖Y + Z‖pK ]

1
p =

(∫
Rn
‖x‖pKdPr[Y + Z = x]dx

) 1
p

≤
(∫

Rn
‖x‖K

1 + ε

1− ε
ρδ̄s(x)

(δ̄s)n
dx

) 1
p

=

(
1 + ε

1− ε

) 1
p

δ̄ E[‖X‖pK ]
1
p

as needed.

We now prove the lower bound. Redefine s̄ to be
√

δ2+(c2−1)δ4

δ2−1
ηε(L) (c will be

chosen later), c ≥ 1, where we note that now
√
s2 + s̄2 = c

√
δ2

δ2−1
s = cδ̄s. Let

t = cδ̄s.

Let F denote a fundamental parallelipiped of L (i.e. F = B[0, 1)n for a basis
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matrix B of L). Then

E[‖cδ̄X‖pK ] =
1

tn

∫
Rn
‖x‖pKρt(x)dx =

1

tn

∫
F

∑
y∈L+x

‖y‖pKρt(y)dx

=
1

tn

∫
F

ρt(L+ x)

( ∑
y∈L+x

‖y‖pK
ρt(y)

ρt(L+ x)

)
dx

≤ max
x∈F

( ∑
y∈L+x

‖y‖pK
ρt(y)

ρt(L+ x)

) (6.4.1)

where the inequality follows since t−nρt(L+x) induces a probability distribution over

F .

Let x∗ denote an element of F maximizing the expression in Equation (6.4.1).

Let W ∼ DL+x∗,t,0. Then by equation (6.4.1) and the choice of x∗, we have that

E[‖W‖pK ] ≥ E[‖cδ̄X‖pK ]. Now let us redefine Z to be distributed as DL+x∗−c,s̄,0.

Since s̄s√
s̄2+s2

≥ ηε(L) and c + x∗ − c = x∗, by Proposition 6.4.2 we have that(
1− ε
1 + ε

)2

DL+x∗,t,0(x) ≤ Pr[Y + Z = x] ≤
(

1 + ε

1− ε

)2

DL+x∗,t,0(x) ∀x ∈ Rn

Therefore we have that

E[‖Y + Z‖pK ]
1
p =

( ∑
w∈L+x∗

‖w‖pK Pr[Y + Z = w]

) 1
p

≥

( ∑
w∈L+x∗

‖w‖pK
(

1− ε
1 + ε

)2
ρt(w)

ρt(L+ x∗)

) 1
p

=

(
1− ε
1 + ε

) 2
p

E[‖W‖pK ]
2
p ≥

(
1− ε
1 + ε

) 2
p

E[‖cδ̄X‖pK ]
1
p

(6.4.2)

Using Holder’s inequality (and the fact that ‖ · ‖K satisfies the triangle inequality),

we have that

E[‖Y ‖pK ]
1
p + E[‖Z‖pK ]

1
p ≥ E[‖Y + Z‖pK ]

1
p (6.4.3)

Using the first part of the Theorem, a straightforward computations reveals that

E[‖Z‖pK ]
1
p ≤

(
1 + ε

1− ε

) 1
p 1 + (c2 − 1)δ2√

1 + (c2 − 1)δ4
δ̄ E[‖X‖

1
p
p ]

1
p (6.4.4)

Combining Equation (6.4.2),(6.4.3),(6.4.4), we have that

E[‖Y ‖pK ]
1
p ≥

((
1− ε
1 + ε

) 2
p

c−
(

1 + ε

1− ε

) 1
p 1 + (c2 − 1)δ2√

1 + (c2 − 1)δ4

)
δ̄ E[‖X‖pK ]

1
p
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Setting c =
√

1 + 1
δ2

, we get that

E[‖Y ‖pK ]
1
p ≥

((
1− ε
1 + ε

) 2
p

√
1 +

1

δ2
−
(

1 + ε

1− ε

) 1
p 2√

1 + δ2

)
δ̄ E[‖X‖pK ]

1
p

≥

((
1− ε
1 + ε

) 2
p

−
(

1 + ε

1− ε

) 1
p 2

δ

)
E[‖X‖pK ]

1
p

≥
(

1− ε
1 + ε

) 2
p

(
1−

(
1 + ε

1− ε

) 3
p 2

δ

)
E[‖X‖pK ]

1
p

as long as δ ≥ 2
(

1+ε
1−ε

) 3
p .

6.5 Flatness Theorem Proof

We are now ready to prove the flatness theorem. We give two versions of the theorem,

one with respect to the smoothing parameter, and one with respect to the ``∗ estimate.

Theorem 6.5.1. Let K ⊆ Rn be a convex body and let L ⊆ Rn be an n dimensional

lattice. Then for all ε ∈ (0, 1) and p ≥ 1, we have that

µ(K,L) ≤
(

1 + ε

1− ε

) 1
p

√
2

π
ηε(L) inf

x∈K
`pK−x(In) (6.5.1)

and that

µ(K,L)λ1((K −K)∗,L∗) ≤ 4

π
8

1
p inf
T∈Rn×n,det(T )=1

x∈K

`pK−x(T )`p(K−x)∗(T ) (6.5.2)

Proof. We begin by proving inequality (6.5.1). To bound µ(K,L) we must find t ≥ 0

such that ∀c ∈ Rn, c + tK ∩ L 6= ∅. Since the covering radius is shift invariant, we

may center K arbitrarily (i.e. shift K to K − x for some x ∈ K). Hence we may

assume that the origin in is in the interior of K.

Pick c ∈ Rn. Let s =
√

2ηε(L). Let Yc be distributed as DL,s,c, and let X be

distributed as D1,0. Note that Yc − c ∼ DL−c,s,0, therefore by Theorem 6.4.3

E[‖Yc − c‖pK ]
1
p ≤

(
1 + ε

1− ε

) 1
p √

2 E[‖sX‖pK ]
1
p =

(
1 + ε

1− ε

) 1
p

2ηε(L) E[‖X‖pK ]
1
p

=

(
1 + ε

1− ε

) 1
p

√
2

π
ηε(L) `pK(In)
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Letting t = E[‖Yc − c‖pK ]
1
p , we note that there must a lattice point y ∈ L such that

‖x− c‖K ≤ t⇒ c + tK ∩ L 6= ∅. Therefore

µ(K,L) ≤ max
c∈Rn

E[‖Yc − c‖K ] ≤
(

1 + ε

1− ε

) 1
p

√
2

π
ηε(L) `pK(In) (6.5.3)

Lastly, since we have freedom in where we center K, we may replace `pK(In) above by

infx∈K `
p
K−x(In).

We now derive inequality 6.5.2 from inequality 6.5.1. Since (K − K)∗ is a sym-

metric convex body by Theorem 6.3.1, we have that

ηε(L) ≤ 2

(
1 +

1

ε

) 1
p E[‖X‖p(K−K)∗ ]

1
p

λ1((K −K)∗,L∗)
(6.5.4)

Since we may assume that 0 ∈ K, we have that for x ∈ Rn that ‖x‖(K−K)∗ =

‖x‖K∗ + ‖ − x‖K∗ . Therefore by Minkowski’s inequality and the symmetry of the

Gaussian we have that

E[‖X‖p(K−K)∗ ]
1
p = E[(‖X‖K∗ + ‖ −X‖K∗)p]

1
p ≤ E[‖X‖pK∗ ]

1
p + E[‖ −X‖pK ]

1
p

= 2 E[‖X‖pK∗ ]
1
p =

√
2

π
`pK∗(In)

(6.5.5)

Now combining Equations (6.5.4), (6.5.5) and (6.5.3), we get that

µ(K,L)λ1((K −K)∗,L∗) ≤ 4

π

(
(1 + ε)2

(1− ε)ε

) 1
p

`pK(In)`pK∗(In)

Minimizing over ε, we get that
(

(1+ε)2

(1−ε)ε

)
attains a minimum value of 8 at ε = 1

3
. Now

we note that the left hand side is invariant under affine transformations, i.e. for

T ∈ Rn×n, det(T ) = 1 and x ∈ K, we have that

µ(T (K − x), TL)λ1((T (K − x)− T (K − x))∗, (TL)∗) = µ(TK, TL)λ1((T (K −K))∗, (TL)∗)

= µ(K,L)λ1((K −K)∗,L∗)

Therefore, we may minimize over all such choices over the right hand side, which

yields

µ(K,L)λ1((K −K)∗,L∗) ≤ 4

π
8

1
p inf
T∈Rn×n,det(T )=1

x∈K

`pK−x(T )`p(K−x)∗(T )

as claimed.
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6.6 Conclusion

Kinchine’s flatness theorem is a fundamental result in the geometry of numbers. From

the algorithmic perspective, it is the key structural result on lattices responsible for

the efficiency of the current fastest algorithms for Integer Programming (see Chapter 7

for details). From the complexity perspective, it has been a valuable tool for relating

the approximation complexity of various lattice problems. Within Cryptography,

perhaps more important than the theorem itself has been the tools developed to prove

it, i.e. the discrete Gaussian distribution and its associated properties [10, 11, 12]. The

properties of the discrete Gaussian have played a central role in the development of

modern lattice based cryptography, and are currently behind the tightest worst-case

to average case reductions for lattice problems [90, 108].

In this chapter, we have come full circle, by bringing to bear the insights devel-

oped within the cryptographic study of the discrete Gaussian back onto the original

problem it was designed to solve, i.e. obtaining near-optimal bounds for the flatness

theorem. For our main result, we have improved on a theorem of Banaszczyk by

giving a tighter reduction (with very small constants) from bounding the flatness

constant to bounding the ``∗ estimate in convex geometry. Our main improvement

here was to avoid Banaszczyk’s use of Talagrand’s majorizing measure theorem, by

giving a new geometric characterization of the smoothing parameter in terms of the

Gaussian measure of the voronoi cell. We note that this characterization is crucially

used in [27] to show that the problem of estimating the smoothing parameter within

a factor 2 + o(1) is in SZK (Statistical Zero Knowledge). Our second contribution,

was to show that above the smoothing parameter, the expected norm of the discrete

Gaussian is both upper and lower bounded by the corresponding Gaussian expecta-

tion. The main novelty here is the lower bound for general norms (though it is not

used in the proof of the flatness theorem), which had only previously been shown for

the `2 norm [90].
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Future Research. As mentioned in the introduction, the current bounds on the

``∗ estimate for asymmetric convex bodies, i.e. O(n
4
3 polylog n), are very far from the

current lower bound of O(n log n). Closing this gap remains a major open problem

in convex geometry.

A second line of research, involves understanding finer properties of the smoothing

parameter. We note that the presented proof of the flatness theorem simply utilizes

the shortest vector of the dual lattice as a proxy for the smoothing parameter. Hence

if we are interested in connecting the smoothing parameter directly to other lattice

quantities, it maybe possible to get tighter connection factors. Furthermore, the

current proofs only use discrete Gaussians with spherical covariances. A natural

question is whether one might be able to prove stronger results by directly optimizing

over the discrete Gaussian covariances.

Lastly, another natural question is whether one can prove stronger transference

type theorems by using non-Gaussian densities functions.
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CHAPTER VII

THE INTEGER PROGRAMMING PROBLEM

The Integer Programming Problem (IP), i.e. the problem of deciding whether a con-

vex set contains an integer point, is a fundamental problem in Computer Science and

Operations Research. In this chapter, we present two improved algorithms for IP fea-

sibility, the first being based on a framework developed by Lenstra [84], and second

on a framework developed by Kannan [70]. For an n-variable integer program, our

Lenstra type and Kannan type algorithm respectively run in 2O(n)(n
4
3 polylog(n))n

and 2O(n)nn time, and both use 2n space. Together they represent the fastest algo-

rithms of either type, and the fastest known algorithms for IP feasibility in general.

Lastly, we generalize these algorithms to their natural optimization counterpart, by

giving a randomized 2O(n)nn expected time and 2n space algorithm to minimize a

general convex function over the integer points in a convex set. This yields the first

exact integer optimization algorithm for general convex functions.

The work in this chapter is based in part on the paper [36] (joint with Chris

Peikert and Santosh Vempala) as well as subsequent improvements.

7.1 Introduction

The Integer Linear Programming problem (ILP) is a classic NP-Complete problem

that has received much attention within Computer Science and Operations Research.

Given a rational polytope P = {x ∈ Rn : Ax ≤ b}, the ILP is to decide whether P

contains an integer point, i.e. whether P ∩ Zn 6= ∅. More generally, for a convex

set K ⊆ Rn, the Convex Integer Programming feasibility problem (CIP) is to decide

whether K∩Zn 6= ∅. Both these problems are subclasses of the Integer Programming

Problem (IP).
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Starting with the classic cutting plane algorithm of Gomory [55], algorithms for

ILP have been extensively studied over the last fifty years. Despite much effort,

ILP remains one of the few NP-Complete problems for which no single exponential

time algorithm is known. We note that when all the variables of the IP are binary

(take values in {0, 1}), the trivial exhaustive search algorithm yields a straightfor-

ward 2n time algorithm for an n-variable problem. Furthermore, using the standard

assumption that 3-SAT is exponentially hard [107], the exhaustive search algorithm

is essentially “optimal” for a general binary IP. When the variables are allowed to

general integers however, developing an algorithm which yields any reasonable com-

plexity bound is highly non-trivial. The first breakthrough algorithms in this area

are due to Lenstra [84] and Kannan [70], where the former solves an n variable ILP in

2O(n3) time and the latter 2O(n)n2.5n time, and both use polynomial space. Subsequent

to their work, many algorithms were discovered for solving more general problems

such as counting the integer points in a rational polyhedron [14], parametric integer

programming [71, 47], and integer programming over quasi-convex polynomials [63].

However, the core dimensional dependence of IP algorithms was not improved until

recently [65]. In this work, Hildebrand and Köppe [65] develop a stronger determin-

istic ellipsoidal rounding scheme which allows them to reduce the dependence on n to

O(n)2n while using 2O(n) space. The central problem in this area thus remains: does

there exist a 2O(n) time algorithm for IP?

There are two main types of IP algorithms extant in the literature. The first are

the Lenstra type algorithms, which use a “thinnest” direction of the feasible region

to decompose the integer program into lower dimensional subproblems corresponding

parallel lattice hyperplanes. The second are the Kannan type algorithms, which

decompose the feasible region along lattice shifts of a linear subspace, generalizing

the hyperplane decompositions of Lenstra.
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The above algorithms all use lattice algorithms at their core, in particular al-

gorithms for basis reduction and the shortest vector problem. Though the lattice

problems solved within IP are inherently general norm problems, due to the lack of

general norm techniques they were previously only solved approximately via reduc-

tions to `2. In this chapter, we show how to obtain complexity improvements for

IP using general norm techniques for lattice problems, as well as stronger structural

results in the geometry of numbers.

7.1.1 Results

The fundamental tool for Lenstra type algorithms is Kinchine’s flatness theorem in

the geometry of numbers (proved in the chapter 6). Recalling from the previous

chapter, the flatness theorem states that

1 ≤ µ(K,L) · λ1((K −K)∗,L∗) ≤ f(n),

The flatness theorem is most easily interpreted as follows: either K contains a

lattice point in every translation (µ(K,L) ≤ 1), or there exist y ∈ L∗ \ {0} such

that at most bf(n)c+ 1 hyperplanes of the form Hk = {x ∈ Rn : 〈y,x〉 = k}, k ∈ Z,

intersect K (noting that any lattice point in K must be on one of these hyperplanes).

Crucially, computing λ1((K − K)∗,L∗) for a general convex body K exactly corre-

sponds to a general norm SVP computation. The defining characteristic of Lenstra

type algorithms is the use of “thin width” dual directions to decompose the IP along

consecutive parallel hyperplanes (as described in the previous sentence).

Using the best known bounds on the flatness theorem, our algorithm achieves the

following complexity:

Theorem 7.1.1 (IP-Lenstra). Let K be a (a0, R) circumscribed convex set given by

a strong separation oracle SEPK. Let L ⊆ Rn be an n-dimensional lattice given by

a basis B ∈ Qn×n. Then there is an algorithm which either decides that K ∩ L = ∅,
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or returns a point y ∈ K ∩ L in time 2O(n)(n
4
3 polylog(n))n poly(·) using 2n poly(·)

space.

We note that any improvement on the bound f(n) in the Flatness Theorem yields a

corresponding improvement to the above algorithm. In general, we get an algorithm

of complexity 2O(n)f(n)n (though an exact bound on f(n) is required to run the

algorithm). Hence, assuming the conjectured bound on f(n), the complexity drops

to 2O(n)nn. However, given that f(n) = Ω(n) (even when K = Bn
2 ) it seems unlikely

that Lenstra’s approach can yield running times below nΩ(n).

Our next result is an improved Kannan type algorithm for Integer Programming.

The difference with respect to the Lenstra type algorithms is that the IP decompo-

sitions considered (i.e. how we decompose into subproblems) are general subspace

decompositions as opposed to hyperplane decompositions.

In Lenstra’s algorithm, the hyperplanes considered for K and lattice L correspond

to lattice hyperplanes orthogonal to a shortest non-zero vector y of L∗ with respect

to the norm induced by (K−K)∗. To generalize from this point of view, we formulate

the decomposition in terms of fibers of a projection. Let πy denote the orthogonal

projection map onto span(y). Now examine the set A = πy(K) ∩ πy(L). By the

containment

πy(K ∩ L) ⊆ πy(K) ∩ πy(L) (7.1.1)

we note that K∩L 6= ∅ ⇒ πy(K)∩πy(L) 6= ∅. Since πy is a 1-dimensional projection,

we note that for each a ∈ A, the fiber π−1(a) = {x ∈ Rn : 〈v,x〉 = 〈v, a〉} corresponds

to an n−1 dimensional affine subspace (i.e. a hyperplane), satisfying π−1
y (a)∩K 6= ∅.

From Equation (7.1.1) we have that

K ∩ L ⊆ ∪a∈Aπ−1
y (a) (7.1.2)

The above exactly recovers the hyperplane decomposition used in Lenstra’s algorithm.
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The idea behind Kannan’s algorithm is to use decompositions induced by the fibers

of a general projection map, i.e. not just 1-dimensional as in Lenstra’s. In particular,

for a general projection map πW from Rn to a k-dimensional linear subspace W ,

1 ≤ k ≤ n, letting A = πW (K) ∩ πW (L), we examine the subspace decomposition

K ∩ L ⊆ ∪a∈Aπ−1
W (a).

There are two main difficulties with this approach. First, we need a general

method for enumerating the subproblems, i.e. for computing the set πW (K)∩πW (L).

When dim(W ) = 1 (as in Lenstra’s), this is straightforward, since πW (K) is an interval

and πW (L) is generated by a single vector. For a general subspace W , computing

πW (K) ∩ πW (L) corresponds to enumerating the lattice points (since πW (L) is a

lattice as long as W is a lattice subspace of L∗) inside a general convex set, which is

non-trivial. To achieve this, we will rely on our lattice point enumeration algorithm

(Algorithm 5.3). However we remember that algorithm Lattice-Enum only guarantees

a running time proportional to G(πW (K), πW (L)). Hence the second major problem

is to find a projection πW such that G(πW (K), πW (L)) is “small”.

In Kannan’s paper [70], the above framework is directly implemented for the case

where K is an ellipsoid. To obtain results for all convex bodies, Kannan first outer

approximates the IP feasible region by an ellipsoid. All the lattice point enumeration

and projection finding problems mentioned above are therefore reduced to their `2

counterparts. Our main contribution here is to give methods to solve these problems

directly without incurring the losses due to ellipsoidal approximation. Combining

these elements together allows us to give the following IP algorithm.

Theorem 7.1.2 (IP-Kannan). Let K ⊆ Rn be a (a0, R)-circumscribed and let L be

an n-dimensional lattice with basis B ∈ Qn×n. Then there exists an algorithm which

either decides that K ∩ L = ∅ or outputs a point in y ∈ K ∩ L in time O(n)n poly(·)

using 2n poly(·) space.

The complexity of the above algorithm is controlled, as in Lenstra’s algorithm,
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by the number of subproblems created at each recursion node. As explained above,

the subproblems correspond to the fibers of a projection map πW , where the number

of fibers is bounded by G(πW (K), πW (L)). To build a “good” projection map πW ,

we will use a construction of Kannan and Lovász [67] which yields a subspace W ,

dim(W ) = k ∈ [n], satisfying G(πW (K), πW (L)) = (3n)k (see Lemma 7.4.4). Though

we do not have control on the dimension of W , the stated bound combined with a

simple recursion relation allows us to bound the maximum number of subproblems

created during the algorithm by 2O(n)nn (which yields the dominant complexity term).

Though this does not improve on the current conjectured runtime for Lenstra’s algo-

rithm, it yields a pathway for improving on the current nO(n) runtime for IP. More

precisely, a conjecture of Kannan and Lovász [67] essentially states that there always

exists a subspace W , dim(W ) = k, such that G(πW (K), π(L)) = O(log n)k. An al-

gorithmic version of this conjecture (i.e. which computes the desired subspace W ),

would yield an O(log n)n algorithm for IP (assuming it takes at most O(log n)n time

to find W ), greatly improving upon the complexity of IP. We state this more formally

in the following theorem:

Theorem 7.1.3 (IP-Kannan Extended, informal). Assume that for any convex body

K ⊆ Rn and n-dimensional lattice L such that µ(K,L) ≥ 1, there is a 2O(n)g(n)n

time algorithm which computes a subspace W ⊆ Rn, dim(W ) = k ∈ [n], satisfying

G(πW (K), πW (L)) = 2O(k)g(n)r. Then there is a 2O(n)g(n)n time algorithm for IP.

A natural further question is whether the above IP feasibility solvers can be ex-

tended to work in the optimizaton setting. Our final result of this chapter shows that

this can be achieved in a very general sense.

Theorem 7.1.4 (Convex IP). Let K ⊆ Rn be a (a0, R)-circumscribed convex set,

f : K → R be a convex function equipped with subgradient oracle, and let L denote an

n-dimensional lattice with basis B ∈ Qn×n. Then there exists a randomized algorithm
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which either decides that K ∩L = ∅ or outputs a point y ∈ K ∩L minimizing f(·) in

expected time O(n)n poly(·) using 2n poly(·) space.

We note that in the above theorem, if we are only interested in approximate min-

imizers (as opposed to exact), then there is a direct reduction to IP feasibility which

uses a standard binary search on the objective (assuming it is easy to compute upper

and lower bounds on the optimal objective value). Obtaining an exact minimizer

using binary search however, seems to require us to make more assumptions about

f than just convexity. Indeed, in most previous works on integer optimization, the

exact description of f is used to bound the accuracy required for binary search to

find an optimal solution. Our main contribution with the above result is to provide a

method which completely avoids binary search, allowing us to handle general convex

objective functions. As far as the author is aware, this is the first result of this type

in the literature.

The following table summarizes all known complexity improvements for IP.

Constraints Time Space Decomposition Type Reference

Linear 2O(n3) poly(n) Hyperplane [84]
Linear O(n)2.5n poly(n) Subspace [70]

Quasi-Convex Polynomials O(n)2n 2n Hyperplane [65]

General Convex Õ(n)
4
3
n 2n Hyperplane [36]

General Convex O(n)n 2n Subspace This thesis

Organization. The following sections are organized as follows. In the section 7.2,

we show how to preprocess any integer program to one where the feasible region is

well-sandwiched and the lattice basis is “short”. In sections 7.3 and 7.4 we give our

implementations of Lenstra’s and Kannan’s algorithm respectively. In section 7.5, we

give our algorithm for convex integer minimization.
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7.2 Preprocessing the Integer Program

As a first step, we give a crucial preprocessing algorithm for an input IP which

“normalizes” the initial feasible region and lattice basis. The preprocessing step

allows us to deal with general convex sets which are not necessarily full dimensional.

The reader will note that the time required to run the preprocessing is independent

of “inner roundness” of K (say the size of the largest ball K contains in its affine

hull). This is because if K is very “thin” the algorithm can use the discrete structure

of the lattice to reduce dimension.

Lemma 7.2.1 (Algorithm IP-Preprocess). Let K ⊆ Rn be a (a0, R)-circumscribed

convex set given by a strong separation oracle SEPK, and let L denote an n-dimensional

lattice given by a basis B ∈ Qn×n, and let H = {x ∈ Rn : Ax = b}, A ∈ Qm×n,

b ∈ Qm, be an affine subspace. Then there is a 2O(n) poly(·) time algorithm which

either decides that K ∩ L ∩H = ∅ or returns

(1) a shift p ∈ L,

(2) a sublattice L′ ⊆ L, dim(L′) = k ≤ n, given by a basis b′1, . . . ,b
′
k,

(3) a vector a′0 ∈ span(L′) and radius 0 < R′ ≤ R,

(4) a convex set K ′ = (K − p) ∩ (a′0 +R′Bn
2 ) ∩ span(L′) (by its separation oracle),

(5) an ellipsoid E ′ = {x ∈ span(L′) : xtA′x ≤ 1} and center c′ ∈ span(L′)

satisfying the following properties:

(1) K ∩ L ∩H = (K ′ ∩ L′) + p.

(2) c′ + 1√
k+1(k+1)

E ′ ⊆ K ′ ⊆ c′ + E ′.

(3) max1≤i≤k ‖b′i‖2 ≤ 2
√
kR′.

(4) a′0, c′, A′, b′1, . . . ,b
′
k, and p have polynomial sized encodings.

Proof.
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Basis Refinement: In this step, we use the circumscribing information for K and

the affine space H to restrict L to a shifted sublattice admitting a short basis.

First if H = ∅ return EMPTY. Else set ā0 ← orthogonal projection of a0 onto H

and R̄←
√
R2 − ‖a0 − ā0‖2

2. Note that R̄ ≤ R and K ∩H ⊆ ā0 + R̄Bn
2 and a0 ∈ H.

Set a0 ← ā0 and R← R̄.

Use the MV algorithm (with some standard preprocessing) for CVP to compute a

closest vector p ∈ L∩H to a0 in the `2 norm. Let H0 = {x ∈ Rn : Ax = 0}, and note

that H ∩L = (L∩H0) + p. If ‖p− a0‖2 > R return EMPTY (since K ⊆ a0 +RBn
2 ).

If not, set K ← (K − p) ∩H0 (which readily admits a separation oracle by Lemma

2.5.8) and a0 ← a0 − p, noting now that a0 ∈ H0 and ‖a0‖ ≤ R.

Let L ← L∩H0 and compute a new basis b1, . . . ,bl where l = dim(H0) ≤ n. Next

we use MV algorithm again to compute linearly independent lattice vectors v1, . . . ,vl

achieving the successive minima of L, i.e. where ‖vi‖2 = λi(L). Both invocations of

the MV algorithm here take 2O(n) poly(·) time. Letting v0 = 0, perform the following

procedure:

k ← l, ā0 ← a0, R̄← R.

while ‖vk‖2 > 2R̄ do

k ← k − 1

if ‖vk‖2 ≤ 2R̄ then

Wk ← span(v0,v1, . . . ,vk).

ā0 ← orthogonal projection of a0 onto Wk.

R̄←
√
R2 − ‖a0 − ā0‖2

2.

Let L̄ = L ∩Wk, where k is set to its final value in the above procedure. Let ā0 and

R̄ be set to their final values as well.

Claim: L ∩ (a0 +RBn
2 ) ⊆ L̄.

Proof. Take y ∈ L∩(a0+RBn
2 ). Let i ≥ 0 be the minimum index such that y ∈ L∩Wi,
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where Wi = span(v0,v1, . . . ,vi) (note that i is well defined since Wl = span(L)). To

prove the claim it suffices to show that i ≤ k. Assume that i > k. For j, 0 ≤ j ≤ n, let

bj denote the orthogonal projection of a0 onto Wj and let Rj =
√
R2 − ‖a0 − bj‖2

2.

A straightforward computation reveals that

y ∈ (a0 +RBn
2 ) ∩Wj = (bj +RjB

n
2 ) ∩Wj

As j increases, note that bj gets closer to a0 (since Wj ⊆ Wj+1), and hence Rj ≤ Rj+1

for 0 ≤ j ≤ n− 1. By the above computations and by assumption on i, we see that

y ∈ (a0 + RBn
2 ) ∩Wi = (bi + RiB

n
2 ) ∩Wi, and hence ‖y − bi‖ ≤ Ri. Next since

‖a0‖2 ≤ R, we have that 0 ∈ (a0 + RBn
2 ) ∩ Wi, and therefore 0 ∈ bi + RiB

n
2 ⇒

‖bi‖2 ≤ Ri. By our choice of i, we have that ‖y‖2 ≥ λi(L) = ‖vi‖2. Since i > k,

by the implementation of the procedure, we must have that ‖vi‖2 > 2Ri and hence

‖y‖2 > 2Ri. Therefore

‖y − bi‖2 ≥ ‖y‖ − ‖bi‖2 > 2Ri −Ri = Ri

a clear contradiction. Therefore i ≤ k as needed.

Since K ⊆ a0 + RBn
2 , the above claim gives us that K ∩ L = K ∩ L̄. Also, we

remember that K ∩Wk ⊆ (ā0 + R̄Bn
2 ) ∩Wk. Now set a0 ← ā0, R ← R̄, and L ← L̄

and K ← K ∩Wk.

Now using standard techniques, we may compute a basis b1, . . . ,bk for L using

v0,v1, . . . ,vk sastifying maxi ‖bi‖2 ≤
√
k‖vk‖2 ≤ 2

√
kR in polynomial time.

After the above basis refinement, we have a (a0, R)-circumscribed convex set K ⊆

Wk, a lattice L ⊆ Wk with basis B = (b1, . . . ,bk) satisfying maxi bi ≤ 2
√
kR.

Localizing K: For the next step, we attempt to compute a strong enough ellip-

soidal approximation of K. To do this, we use algorithm GLS-Round (Theorem

2.5.10), running against K (restricted to Wk) with parameter ε =
(

1
4k

)k
det(L) to
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deterministically compute an ellipsoid E+ c ⊆ Wk such that either (1) E sandwiches

K well, i.e. c + 1√
k+1(k+1)

E ⊆ K ⊆ c +E, or (2) volk(E) ≤ ε (i.e. E is tiny compared

to the ‘sparsity’ of L), or This step can be done in polynomial time. If we are in

case (1), return E, c as well as the current K,L (and other associated parameters)

as the proprocessing. If we are instead in case (2), proceed to the next part of the

algorithm.

Reducing dimension: Here we are in case (2), and hence unable to compute a

good ellipsoidal approximation of K. By the termination condition of the ellipsoidal

rounding algorithm however, we know that the containing ellipsoid E + c for K has

very small volume compared to det(L). We will use this information to reduce the

effective dimension of K by one. To achieve this we will find a dual vector y ∈ L∗\{0},

such that there exists at most one hyperplane of the form Hs = {x ∈ Wk : 〈x,y〉 = s},

s ∈ Z, that intersects K. For y ∈ L∗ \ {0}, we note any vector in x ∈ L satisfies

〈x,y〉 ∈ Z, and hence every vector in L ∩K must lie on some hyperplane Hs, s ∈ Z.

To find such a y, we proceed as follows. If we are in case (1) above, we use the MV

algorithm to compute a vector y ∈ SVP(E∗,L∗), which can be done in 2O(k) poly(·)

time. Noting that (E − E)∗ = 1
2
E∗, we see that

volk((E − E)∗) =

(
1

2

)k
volk(E

∗) =

(
1

2

)k
volk(B

k
2 )2 1

volk(E)
>

(
1

2k

)k
1

volk(E)

Given that volk(E)
1
k ≤ ε = 1

4k
det(L)

1
k , from the above we see that

volk((E − E)∗)
1
k >

1

2k

1

volk(E)
1
k

≥ 2
1

det(L)
1
k

= 2 det(L∗)
1
k

Since (E−E)∗ = 1
2
E∗ is centrally symmetric, by Minkowski’s first theorem (Theorem

2.4.5) we have that 2‖y‖E∗ = ‖y‖(E−E)∗ = λ1((E −E)∗,L∗) < 1. We remember that

‖y‖(E−E)∗ = supx∈E 〈y,x〉 − infx∈E 〈y,x〉 is the width of E with respect to y. Since

y ∈ L∗ we note that for any x ∈ (E + c) ∩ L, we must have that

〈x,y〉 ∈ (〈y, c〉+ [ inf
x∈E
〈y,x〉 , sup

x∈E
〈y,x〉]) ∩ Z.
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Since E has width < 1 with respect to y, it is easy to see that if (E + c) ∩ L is

non-empty then all the lattice points in (E + c) ∩ L must lie on the hyperplane

H = {x ∈ Wk : 〈x,y〉 = b〈c,y〉e}. Since K ⊆ E + c, it is also clearly the case that

K ∩ L ⊆ H ∩ L.

If H ∩ (E + c) = ∅, return EMPTY. Else, call IP-Preprocess recursively on K,L

and H (with remaining parameters). If the recursive call returns EMPTY, return

EMPTY. Else, letting K ′,L′,p′ denote the returned convex set, lattice and shift, we

return K ′,L′,p′ + p (along with remaining parameters).

7.3 An Improved Lenstra Type Algorithm

We are now ready to give our implementation of Lenstra’s algorithm. Throughout

the analysis, we shall let f(n) the best current bound on the flatness constant for

dimension n. We give present the outline of the algorithm (additional details will be

provided in the proof).

Algorithm 7.1 IP-Lenstra(K,L, H)

Input: (a0, R)-circumscribed convex set K ⊆ Rn with separation oracle SEPK ,
n dimensional lattice L with basis B ∈ Qn×n, a rational affine subspace
H = {x ∈ Rn : Ax = b}.

Output: Return NULL if K ∩ L ∩H = ∅ or y ∈ K ∩ L ∩H.
1: (K,L,p)← IP-Preprocess(K,L, H).
2: if K = ∅ then return NULL; else if 0 ∈ K then return p.
3: y ∈ Shortest-Vectors((K −K)∗,L∗,1

2
).

4: α = min{1, f(dim(L))
widthK(y)−1

}. K ← (1− α)a0 + αK.

5: for all s ∈ {〈y,x〉 : x ∈ K} ∩ Z do
6: Hs ← {x ∈ span(L) : 〈x,y〉 = s}.
7: y← IP-Lenstra(K,L, Hs).
8: if y 6=NULL then return y + p.
9: return NULL.

Proof of Theorem 7.1.1.

IP ALGORITHM: To begin, we call IP-Preprocess(K,L,H) algorithm which re-

quires 2O(n) poly(·) time. If the preprocessing step concludes that K ∩ L ∩ H = ∅,
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terminate and return NULL. Otherwise, we recover a new lattice L, dim(L) = k, with

a short basis b1, . . . ,bk, a well sandwiched convex set K ⊆ span(L), c+ 1√
k+1(k+1)

E ⊆

K ⊆ c + E, and a shift p.

Branching on a “thinnest” direction: With the preprocessing phase complete,

we will now attempt to reduce the problem of finding a vector in K ∩ L to find-

ing a lattice point in one of at most f(k) + 1 (noting that k is current dimension)

hyperplane sections of K, i.e. reducing dimension by 1 at the cost of solving at

most f(k) + 1 subproblems. The hyperplane sections in question will be of the form

Hs = {x ∈ span(L) : 〈x,y〉 = s}, s ∈ Z, for some y ∈ L∗ \ {0}. Note that for a fixed

y ∈ L∗, every x ∈ L (and hence in L ∩K) belongs to some Hs, namely H〈x,y〉 (since

〈x,y〉 ∈ Z).

To find a desired “thin” direction for K, we shall compute y ∈ SVP((K−K)∗,L∗).

To do this, we must build a weak distance oracle for (K −K)∗. Given that K is well

sandwiched by E, using the Ellipsoid Method (theorem 2.5.9), for any y ∈ L∗ and

ε > 0, we may compute l, u ∈ Q satisfying

l − ε

2
≤ inf

x∈K
〈y,x〉 ≤ l u ≤ sup

x∈K
〈y,x〉 ≤ u+

ε

2

in polynomial time. We note now that

|‖y‖(K−K)∗ − (u− l)| = | sup
x∈K
〈y,x〉 − inf

x∈K
〈y,x〉 − (u− l)| ≤ ε

as needed. Next, the SVP algorithm needs sandwiching guarantees on (K − K)∗.

Given our guarantees onK, we see that 1
2
E∗ = (E−E)∗ ⊆ K−K ⊆ 1

2
(k+1)

√
k + 1E∗.

Technically, the algorithm Shortest-Vectors requires the sandwiching ratio with re-

spect to euclidean balls, but this type of sandwiching is equivalent to ellipsoidal

sandwiching after linear transformation. Having constructed a weak distance oracle

for (K −K)∗ and computed the sandwiching guarantees, we may now call Shortest-

Vectors((K − K)∗,L∗, 1
2
) (Theorem 5.3.2) and retrieve y ∈ L∗{0} from the output.
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Since the sandwiching guarantees are polynomial in k and the required accuracy is

Ω(1), this call be executed in expected time 2O(n) poly(·) time.

Using the Ellipsoid Method (theorem 2.5.9) as above, we compute bounds u, l ∈ Q

satisfying u− 1
4
≤ supx∈K 〈y,x〉 ≤ u and l ≤ infx∈K 〈y,x〉 ≤ l+ 1

4
in polynomial time.

By construction, we see that u− l − 1
2
≤ ‖y‖(K−K)∗ ≤ u− l. Now by the guarantees

on y, we know that ‖y‖(K−K)∗ ≤ λ1((K −K)∗,L∗) + 1
2
, and therefore

u− l − 1 ≤ ‖y‖(K−K)∗ −
1

2
≤ λ1((K −K)∗,L∗) ≤ ‖y‖(K−K)∗ ≤ u− l (7.3.1)

We will now distinguish two cases.

Case 1: u − l − 1 < f(k). In this case, compute A = [l, u] ∩ Z, and let Hs =

{x ∈ Rn : 〈y,x〉 = s}. By construction, for all x ∈ K we have that 〈y,x〉 ∈ [l, u], and

furthermore if x ∈ L then 〈x,y〉 = [l, u] ∩ Z = A. Therefore K ∩ L ⊆ ∪s∈AHs. For

each s ∈ A, we recursively call IP-Lenstra(K,L,Hs). If for all s ∈ A, the recursive

calls return NULL, return NULL. Else, if for some s ∈ A, the recursive call returns

y ∈ K ∩L, return y + p. A straightforward computation reveals that the number of

examined subproblems |A| satisfies |A| ≤ bu− lc+ 1 ≤ bf(n) + 1c+ 1 = bf(k)c+ 2.

Case 2: u− l− 1 ≥ f(k). In this case, let K ′ = (1−α)c +αK for α = f(k)
u−l−1

. Note

that a separation oracle for K ′ is readily available starting from a separation oracle

for K (i.e. x is separated from K ′ iff x−αc
1−α is separated from K). We shall rely on the

following claim:

Claim: K ′∩L 6= ∅, K ′ ⊆ K, andK ′∩L ⊆ ∪s∈AHs for A = (α[l, u] + (1− α) 〈y, c〉)∩

Z. Furthermore |A| ≤ bf(k)c+ 2.

Proof. First, since 0 ≤ α ≤ 1 and c ∈ K, we clearly have that K ′ = (1−α)c +αK ⊆

K. Next, we note that

(K ′ −K ′)∗ = ((1− α)c + αK − (1− α)c− αK)∗ = (α(K −K))∗ =
1

α
(K −K)∗.
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By homogeneity

λ1((K ′ −K ′)∗,L∗) = λ1(
1

α
(K −K)∗,L∗) = αλ1((K −K)∗,L∗).

Hence by equation (7.3.1)

λ1((K ′ −K ′)∗,L∗) = αλ1((K −K)∗,L∗) =
f(k)

u− l − 1
λ1((K −K)∗,L∗) ≥ f(k)

By the Flatness Theorem, we must have that µ(K ′,L) ≤ 1 and hence K ′ ∩ L 6= ∅.

Let T = {〈y, z〉 : z ∈ K ′}, and note that

T = {〈y, z〉 : z ∈ αK + (1− α)c} = α{〈z,y〉 : z ∈ K}+ (1− α) 〈y, c〉

⊆ α[l, u] + (1− α) 〈y, c〉

For x ∈ L, we know that 〈x, y〉 ∈ Z, hence if x ∈ L∩K ′ we have that 〈x, y〉 ∈ T ∩Z =

A. Therefore K ′ ∩ L ⊆ ∪s∈AHs. Now by same bound used in case 1, we see that

|A| ≤ bα(u− l)c+ 1. Noting that

α(u− l) =
f(k)

u− l − 1
(u− l) = f(n) +

f(k)

u− l − 1
≤ f(k) + 1,

we get that |A| ≤ bf(k) + 1c+ 1 = bf(k)c+ 2, as needed.

By the claim, K ′ ∩L 6= ∅, and hence it suffices to restrict our attention to K ′ and

L. Letting A be as in the claim, we recursively call IP-Lenstra(K ′,L,Hs) for each

s ∈ A, and return the first lattice point found (which is guaranteed to exist since

K ′ ∩ L 6= ∅).

RUNTIME: The correctness of the algorithm has already been discussed above,

so it only remains to check that the runtime of the algorithm is bounded by O(f(n))n

poly(·). The algorithm above is recursive, where at each node of the recursion we per-

form the IP-Preprocess procedure and then break the problem into at most df(n)e+2

(since f is monotonic in n) subproblems which we solve recursively.

230



We now claim that the processing in each node of the recursion takes at most

2O(n) poly(·) time. Now we note that dimension decreases at each node, and the

algorithms executed during node processing (IP-Preprocess, MV, GLS-Round,etc)

have either polynomial or single exponential dependence on dimension. Therefore,

the only thing we need to check is that the encoding length of the subspaces and

bases used at each node (which the algorithms have polynomial dependence on) have

encoding sizes bounded by a fixed polynomial in the original input. Here it is not

hard to see, that the main concern lies with the sublattice bases used in the recursions

nodes. We note that after each call to IP-Preprocess, the bases returned have length

at most 2
√
nR. Now we note that any lattice vector in L ⊆ Rn of `2 norm 2

√
nR

has encoding length bounded by poly(enc〈B〉, logR, n) (where B is the top level

basis). Hence immediately after each call to IP-Preprocess, the current basis indeed

has encoding length bounded by a fixed polynomial in the input. Lastly, it is easy

to see that in between calls to IP-Preprocess, the encoding size of all the computed

parameters grows by at most a fixed polynomial as well. Hence, all computations

during the execution of algorithm occur on inputs having polynomial encoding size

as needed.

Lastly, since the branching factor of the recursion tree is O(f(n)) and the amount

of processing at each recursion node is at most 2O(n) poly(·), we have that the total

running time of the algorithm is at most O(f(n))n as needed.

7.4 An Improved Kannan Type Algorithm

To give our implementation of Kannan’s algorithm, we will first need to develop some

tools in the geometry of numbers. In the next section, we give a volumetric character-

ization of the quality of a projection for lattice point enumeration. Following this, we

will give an algorithmic version of a transference theorem of Kannan-Lovasz [67] which

enables us to find a “good” (though not optimal) projection. Finally, in subsection
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7.4.2 we give our implementation of the improved Kannan type algorithm.

7.4.1 Finding a Thin Projection

We first give a volumetric characterization (up to single exponentional factor) of

G(K,L).

Lemma 7.4.1. Let K ⊆ Rn be a convex body and let L be an n-dimensional lattice

with basis B ∈ Rn×n. Letting C = K (mod B), we have that

voln(K)
1
n

voln(C)
1
n

≤ G(K,L)
1
n ≤ min{2, 1 + µ(K,L)}voln(K)

1
n

voln(C)
1
n

(7.4.1)

Furthermore, if µ(K,L) ≤ 1 then vol(C) = det(L).

Proof. Let F = B[0, 1)n, i.e. the fundamental parallelepiped of L with respect to

B. We remember that the map x → x (mod B) sends Rn to F by the rule x

(mod B) = y ∈ F satisfying x − y ∈ L (this uniquely determines y). For the lower

bound, we see that

voln(K)

voln(C)
=

1

voln(C)

∫
F

|(L+ x) ∩K|dx =
1

voln(C)

∫
C

|(L+ x) ∩K|dx

≤ max
x∈C
|(L+ x) ∩K| = G(K,L)

since for x ∈ F , |(L+ x) ∩K| > 0 iff x ∈ C.

By shifting K, we may assume that 0 ∈ K. Let α = min{1, µ(K,L}, and define

V = {x ∈ αK : x ≤lex y, ∀y ∈ (L+ x) ∩K}

where ≤lex is the standard lexicographic ordering on Rn. Since ≤lex is a total ordering,

by construction of V we must have that |L + x ∩ V | ≤ 1 ∀x ∈ B[0, 1)n, and hence

for distinct x,y ∈ L we get that x + V ∩ y + V = ∅. Next since 0 ∈ K and α < 1,

V ⊆ αK ⊆ K.
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Claim: voln(V ) = voln(C)

Proof. We firt show that V (mod B) = C and the map x→ x (mod B) is injective

on V . Since x (mod B) = y (mod B) iff x− y ∈ L, for distinct x,y ∈ V we clearly

have x− y /∈ L and hence x (mod B) 6= y (mod B). This proves injectivity on V .

Next we show that V (mod B) = C ′ where C ′ = αK (mod B). If w ∈ C ′, then

there exists y ∈ αK such that y (mod B) = w. Let x denote the lex least element

of (L + y) ∩ αK. By construction x ∈ V and x − y ∈ L, therefore x (mod B) = y

(mod B) = w as needed.

If α = 1, then clearly C ′ = C, hence V (mod B) = C ′ = C as needed. If α < 1,

then α = µ(K,L) < 1 and hence |(L+ x) ∩ αK| ≥ 1 for all x ∈ F . Since αK ⊆ K

F ⊆ αK (mod B) ⊆ K (mod B) ⊆ F .

Therefore V (mod B) = C ′ = C = F as needed. Since V (mod B) = C, by injectiv-

ity we get that

voln(C) = voln(V (mod B)) = voln(
⋃
y∈L

V ∩ (y + F ) (mod B))

= voln(
⋃
y∈L

V ∩ (y + F )− y) =
∑
y∈L

voln(V ∩ (y + F )− y)

=
∑
y∈L

voln(V ∩ (y + F )) = voln(V )

as needed.

Take x ∈ Rn. We wish to bound |K ∩ (L+ x)|. Since V ⊆ αK, we note that for

y ∈ K ∩ (L+ x), we have that

y + V ⊆ K + V ⊆ K + αK = (1 + α)K (7.4.2)

Furthermore, since x + V ∩ y + V = ∅ for distinct x,y ∈ L and voln(V ) = voln(C),
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we have that

voln((1 + α)K) ≥ vol(
⋃

y∈(L+x)∩K

y + V ) = |(L+ x) ∩K| voln(V )

= |(L+ x) ∩K| voln(C)

Hence |(L+ x) ∩K| ≤ voln((1+α)K)
voln(C)

= (1 + α)n voln(K)
voln(C)

, as needed. Lastly, by the proof

of the claim, if µ(K,L) ≤ 1 then voln(C) = voln(F ) = det(L) as needed.

Corollary 7.4.2. Let K ⊆ Rn be a convex body with µ(K,L) ≤ 1. Then for any

linear subspace W ⊆ Rn, dim(W ) = k, we have that

volk(πW (K))
1
k

det(πW (L))
1
k

≤ G(πW (K), πW (L))
1
k ≤ 2

volk(πW (K))
1
k

det(πW (L))
1
k

Proof. First, if πW (L) is not a lattice (i.e. is not discrete), then any open set

A in W intersecting πW (L), i.e. for which πW (L) ∩ A 6= ∅, satisfies |πW (L) ∩

A| = ∞. Since πW (K) has non-empty interior, the previous statement implies that

G(πW (K), πW (L)) = ∞. By convention, if πW (L) is not a lattice, we have that

det(πW (L)) = 0, and hence both the lower and upper bounds above are infinite

(again by convention) as needed.

If πW (L) is a lattice, I claim that µ(πW (K), πW (L)) ≤ 1. Since span(L) = W ,

by definition we have that µ(πW (K), πW (L)) = inf{s ≥ 0 : πW (L) + sπW (K) = W}.

Since µ(K,L) ≤ 1, we have that L + K = Rn, and hence πW (L + K) = πW (L) +

πW (K) = πW (Rn) = W . Therefore µ(πW (K), πW (L)) ≤ 1.

Applying Lemma 7.4.1 to πW (K) and πW (L) (restricting to the subspace W )

yields the result.

Let b1, . . . ,bn denote a basis of L, and let b∗1, . . . ,b
∗
n denote its gram-schmidt

orthogonalization (see section 2.1.1 for a definition). Let πi, 1 ≤ i ≤ n, denote the

orthogonal projection onto the orthogonal complement of span(b1, . . . ,bi−1).
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A basis b1, . . . ,bn of L is an HKZ basis with respect to K −K, if it satisfies the

relations

‖b∗i ‖πi(K−K) = λ1(πi(K −K), πi(L)), 1 ≤ i ≤ n

We now present the transference theorem of Kannan and Lovász [67] which relates

crucial properties HKZ bases. This theorem will be at the center of our efficency

improvements for IP.

Theorem 7.4.3. Let b1, . . . ,bn denote a basis for L satisfying, for some ε ∈ [0, 1],

‖b∗i ‖πi(K−K) ≤ (1+ ε)λ1(πi(K−K), πi(L)), i ∈ [n]. ((1+ ε) approximate HKZ basis)

Then

1 ≤

(
n∑
i=1

‖b∗i ‖πi(K−K)

)
min

1≤i≤n

voln−i+1(πi(K))
1

n−i+1

det(πi(L))
1

n−i+1

≤ (1 + ε)n. (7.4.3)

Furthermore, we have that

1 ≤ µ(K,L) inf
W⊆Rn

dim(W )=k

volk(πW (K))
1
k

det(πW (L))
1
k

≤ n (7.4.4)

where W ranges over all non-trivial linear subspaces of Rn.

Proof. We prove the upper bound in equation (7.4.3). Let j = arg max1≤i≤n ‖b∗i ‖πi(K−K).

Clearly
n∑
i=1

‖b∗i ‖πi(K−K) ≤ n‖b∗j‖πj(K−K) (7.4.5)

By Minkowski’s first theorem, we have that

‖b∗j‖πj(K−K) = (1 + ε)λ1(πj(K −K), πj(L))

≤ 2(1 + ε)
det(πj(L))

1
n−j+1

voln−j+1(πj(K −K))
1

n−j+1

≤ (1 + ε)
det(πj(L))

1
n−j+1

voln−j+1(πi(K))
1

n−j+1

(7.4.6)

where the last inequality follows by the Brunn-Minkowski inequality, i.e.

voln−j+1(πj(K −K))
1

n−j+1 ≥ voln−j+1(πj(K))
1

n−j+1 + voln−j+1(πj(−K))
1

n−j+1

= 2voln−j+1(πj(K))
1

n−j+1
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The bound now follows by combining equations (7.4.5) and (7.4.6).

We prove the upper bound for equation (7.4.4). By Lemma 2.4.7, we have that

µ(K,L) ≤
n∑
i=1

‖b∗i ‖πi(K−K)

Furthermore, by direct inclusion we have that

inf
W⊆Rn

dim(W )=k

volk(πW (K))
1
k

det(πW (L))
1
k

≤ min
1≤i≤n

voln−i+1(πi(K))
1

n−i+1

det(πi(L))
1

n−i+1

Therefore the upper bound on equation (7.4.4) is direct consequence of the upper

bound on equation (7.4.3) (setting ε = 0). From this we also have that the lower

bound on equation (7.4.4) implies the lower bound for equation (7.4.3)

We prove the lower bound for equation (7.4.4). For a subspaceW ⊆ Rn, dim(W ) =

k, we note by homogeneity that µ(K,L)volk(πW (K))
1
k = volk(πW (µ(K,L)K))

1
k .

Hence we may assume that µ(K,L) = 1.

It now suffices to show that volk(πW (K)) ≥ det(πW (L)). From the proof of

Corollary 7.4.2, we have that µ(πW (K), πW (L)) ≤ µ(K,L) = 1. Therefore, πW (K)

contains a fundamental domain of πW (L) and hence volk(πW (K)) ≥ det(πW (L)) as

needed.

The next algorithm essentially makes the above transference theorem algorithmic

and reinterprets its conclusion (using corollary 7.4.2) in terms of G(K,L) instead of

volumes.

Lemma 7.4.4 (Algorithm Find-Subspace). Let K ⊆ Rn be an (a0, r, R)-centered

convex set with separation oracle SEPK, and let L be an n-dimensional lattice with

basis B ∈ Qn×n. There there exists a 2O(n) poly(·) time and 2n poly(·) space algorithm

which returns a convex set K ′ ⊆ K (by its separation oracle) and a subspace W ⊆ Rn,

dim(W ) = k, 1 ≤ k ≤ n, such that

K ′ ∩ L 6= ∅ ⇔ K ∩ L 6= ∅
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and

G(πW (K ′), πW (L))
1
k ≤ 3n

Proof. Since K is centered and equipped with a separation oracle SEPK , for any

projection π : Rn → W , we can implement a weak distance oracle Dπ(K−K) for

‖ · ‖π(K−K), where Dπ(K−K)(x, ε) executes in polynomial time.

We begin by building a (1 + 1
24n

)-approximate HKZ basis v1, . . . ,vn for L as fol-

lows:

π1 ← identity on Rn

for i ∈ 1 . . . n do

Build distance oracle for πi(K −K) and basis for πi(L).

Compute v∗i ∈ Shortest-Vectors(πi(K −K), πi(L), 1
24n

).

Compute vi ∈ L such that πi(vi) = v∗i .

πi+1 ← orthogonal projection map onto span(v1, . . . ,vi)
⊥.

From the guarantees on Shortest-Vectors(πi(K −K), πi(L), 1
24n

), it is clear that the

algorithm outputs a basis satisfying ‖v∗i ‖πi(K−K) ≤ (1 + 1
24n

)λ1(πi(K − K), πi(L)).

We now bound its runtime. Each call to the Shortest-Vectors procedure executes

in 2O(n) poly(·) time and 2n poly(·) space, and the runtime of the remaining loop

operations is polynomial. Since the loop executes n times, we see the that entire

runtime is bounded by 2O(n) poly(·) as needed.

Let t =
∑n

i=1
24n

24n−1
Dπi(K−K)(v

∗
i ,

1
24n

) and let α = min{1, t}. First note that from

the guarantees on the distance oracles, we have that

(1− 1

24n
)

n∑
i=1

‖v∗i ‖πi(K−K) ≤
n∑
i=1

Dπi(K−K)(v
∗
i ,

1

24n
) ≤ (1 +

1

24n
)

n∑
i=1

‖v∗i ‖πi(K−K)

Multiplying through by 24n
24n−1

, we get that

n∑
i=1

‖v∗i ‖πi(K−K) ≤ t ≤ 24n+ 1

24n− 1

n∑
i=1

‖v∗i ‖πi(K−K) (7.4.7)

Let K ′ = (1 − α)a0 + αK. We claim that K ′ ∩ L 6= ∅ ⇔ K ∩ L = ∅. If α = 1,

then the statement is trivially true since K ′ = K. If α < 1 then α = t < 1. Since
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K ′ −K ′ = t(K −K), we see that

n∑
i=1

‖v∗i ‖πi(t(K−K)) =
1

t

n∑
i=1

‖v∗i ‖πi(K−K)

Therefore, using equation (7.4.7) we get that

24n− 1

24n+ 1
≤

n∑
i=1

‖v∗i ‖πi(t(K−K)) ≤ 1 (7.4.8)

Now by Lemma 2.4.7, we have that

µ(K ′,L) = µ(tK,L) ≤
n∑
i=1

‖v∗i ‖πi(t(K−K)) ≤ 1

Therefore K ′ ∩L 6= ∅. Since 0 ≤ α ≤ 1 and a0 ∈ K, we have that K ′ ⊆ K and hence

K ∩ L ⊇ K ′ ∩ L 6= ∅ as needed.

Now compute j = arg max1≤i≤nDπi(K−K)(v
∗
i ,

1
24n

). Let W = span(v1, . . . ,vj−1)⊥

and k = n− j + 1, where we note that πj = πW . By the guarantees on the distance

oracles, for i ∈ [n], we see that

(1+
1

24n
)‖v∗j‖πj(K−K) ≥ Dπj(K−K)(v

∗
j ,

1

24n
) ≥ Dπi(K−K)(v

∗
i ,

1

24n
) ≥ (1− 1

24n
)‖v∗i ‖πi(K−K)

From the above, we get that (24n+1
24n−1

)‖v∗j‖πj(K−K) ≥ maxi∈[k] ‖v∗i ‖πi(K−K), and hence

n∑
i=1

‖v∗i ‖πi(K−K) ≤ n(
24n+ 1

24n− 1
)‖v∗j‖πj(K−K) (7.4.9)

The algorithm now returns K ′ and W . The following claim establishes the correctness

of the algorithm.

Claim: G(πW (K ′), πW (L))
1
k ≤ 3n.

By construction, we note that t ≤ α and hence t
α
≥ 1. Therefore

G(πW (K ′), πW (L)) ≤ G(πW (
t

α
K ′), πW (L)) = G(πW (tK), πW (L))

Hence it suffices to bound G(πW (tK), πW (L)). By equation (7.4.8), we know that∑n
i=1 ‖v∗i ‖πi(t(K−K)) ≤ 1. Therefore by Lemma 2.4.7, we have that µ(tK,L) ≤ 1. Now
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since ‖v∗j‖πj(K−K) ≤ (24n+1
24n

)λ1(πj(K −K), πj(L)) and
∑n

i=1 ‖v∗i ‖πi(K−K) ≤ n(24n+1
24n−1

),

by our choice of W and the proof of Theorem 7.4.3, we have that(
n∑
i=1

‖v∗i ‖πi(t(K−K))

)
volk(πW (tK))

1
k

det(πW (L))
1
k

≤ n

(
24n+ 1

24n

)(
24n+ 1

24n− 1

)
Combining the above with lower bound

∑n
i=1 ‖v∗i ‖πi(t(K−K)) ≥ 24n−1

24n+1
from Equation

7.4.8, we get that

volk(πW (tK))
1
k

det(πW (L))
1
k

≤ n

(
24n+ 1

24n

)(
24n+ 1

24n− 1

)2

≤ 5

4
n

for n ≥ 1. Since µ(tK,L) ≤ 1 by Corollary 7.4.2 we have that

G(πW (tK), πW (L)) ≤ 2
volk(πW (tK))

1
k

det(πW (L))
1
k

≤ 2(
5

4
n) ≤ 3n

as needed.

As we will see from the our new IP algorithm’s analysis, an improvement on

the G(πW (K), πW (L)) bound for the returned subspace in the above algorithm will

immediately translate to an improvement in the complexity of IP. Though the limit

for the complexity of Lenstra type algorithms seems likely to be nΩ(n), the subspace

decomposition approach we describe may enable us to do much better. In particular,

it is possible that using just subspace decomposition techniques one maybe able to

develop an O(log n)n time algorithm for IP. This hope is encoded in the following

conjecture of Kannan and Lovász [67].

Conjecture 7.4.5 (Subspace Flatness Conjecture). For a convex body K ⊆ Rn and

n dimensional lattice L, we have that

1 ≤ µ(K,L) inf
W⊆Rn

dim(W )=k

volk(πW (K))
1
k

det(πW (L))
1
k

≤ O(log n) (7.4.10)

where W ranges over all non-trivial linear subspaces of Rn.

In the next section, we will see that an algorithmic version of the above conjecture

(or any progress towards it) will yield a faster algorithm for IP.
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7.4.2 The Improved Algorithm

We are now ready to give the proof for the new IP algorithm (see Algorithm 7.2 for

the description). Note that if no subspace H is provided for input K,L ⊆ Rn, we

simply call IP-Kannan(K,L,Rn).

Algorithm 7.2 IP-Kannan(K,L, H)

Input: (a0, R)-circumscribed convex set K ⊆ Rn with separation oracle SEPK ,
n dimensional lattice L with basis B ∈ Qn×n, a rational affine subspace
H = {x ∈ Rn : Ax = b}.

Output: Return NULL if K ∩ L ∩H = ∅ or y ∈ K ∩ L ∩H.
1: (K,L,p)← IP-Preprocess(K,L, H).
2: if K = ∅ then return NULL; else if 0 ∈ K then return p.
3: (K,W )← Find-Subspace(K,L).
4: for all s ∈ Lattice-Enum(πW (K), πW (L), r) do
5: y← IP-Kannan(K,L, π−1

W (s)).
6: if y 6= NULL then return y + p.
7: return NULL.

Proof of Theorem 7.1.2.

Correctness: As most of the processing occurs in previously analyzed subroutines,

the correctness of the IP-Kannan algorithm is straightforward. We first call IP-

Preprocess on K, L and H to get an equivalent and “nicer” integer program. Next,

we call Find-Subspace on the preprocessed K and L. Find-Subspace possibly rescales

K (if K is too “wide”), which is guaranteed contain a lattice point if the original K

contained one, and then finds a subspace W such that G(πW (K), πW (L)) is “small”.

Next, we use the Lattice-Enum algorithm to decompose the IP along lattice shifts of

the subspace W⊥, and recurse on each subproblem.

Runtime: Given the correctness, we now argue the runtime. Using essentially the

same analysis as in IP-Lenstra, we have that have the encoding sizes of all bases and

subspaces in the recursion nodes are polynomial in the top level inputs. Therefore,

at each node, we have that calls to IP-Preprocess and Find-Subspace all take at most
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2O(n) poly(·) time. The time to compute the subspace decompositions however varies

at each node, so we require an aggregate analysis.

Examine a recursive call to IP-Kannan on a convex set K,L and subspace H,

where min{dim(H), dim(K), dim(L)} ≤ n − d (at the top level node d = 0). Notice

that after IP-Preprocess, we are left with a new convex K and lattice L satisfying

dim(K), dim(L) ≤ n − d. Therefore, after running Find-Subspace(K,L), we are left

with a rescaled convex set K, and subspace W , dim(W ) = l ≤ n − d, such that

G(πW (K), πW (L)) ≤ (3(n− d))l. Hence, the call to Lattice-Enum(πW (K), πW (L), r)

outputs at most (3C1(n − d))l points in time (3C2(n − d))l poly(·) (where C2 ≥ C1)

using 2l poly(·) space. From the perspective of the worst case analysis, we may assume

that dim(K) = dim(L) = n−d and that exactly (3C1(n−d))l points are enumerated,

each corresponding to a subproblem of dimension at n− d− l. In this case, we may

charge (C2/C1)l poly(·) = 2O(n) poly(·) to each created recursion node to account for

the time needed enumerate πW (K) ∩ πW (L).

From the above analysis, if we let T (n) denote the maximum size of the recursion

tree for an integer program of dimension n, then the total running time is bounded

by 2O(n)T (n) poly(·). Clearly T (0) = 1, and from the above analysis, T (n) satisfies

the recursion relation

T (n) ≤ 1 + max
1≤i≤n

(3C1n)iT (n− i)

I claim that T (n) ≤ (3C1(n + 1))n. The base case holds since T (0) = 1 = (3C1)0.

Next, we have that

T (n) ≤ 1 + max
i≤i≤n

(3C1n)iT (n− i) ≤ 1 + max
i≤i≤n

(3C1n)i(3C1(n− i+ 1))n−i

= 1 + (3C1)n max
i≤i≤n

ni(n− i+ 1)n−i

Now by the AM-GM inequality, we have that

max
1≤i≤n

ni(n− i+ 1)n−i ≤ max
1≤i≤n

(
in+ (n− i)(n− i+ 1)

n

)n
= nn
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where the last equality holds since max1≤i≤n
in+(n−i)(n−i+1)

n
= n, where the max is

attained for i = 1, n. Putting it all together, we get that

T (n) ≤ 1 + (3C1)n max
i≤i≤n

ni(n− i+ 1)n−i ≤ 1 + (3C1n)n ≤ (3C1(n+ 1))n

as needed. Therefore the total running time is bounded by 2O(n)T (n) poly(·) =

2O(n)nn poly(·) as needed.

We now discuss a possible pathway for improvement based on the above algorith-

mic approach. A major conjectured source of improvement lies in the possibility of a

better subspace finding algorithm. The current Find-Subspace algorithm is capable

of finding a subspace inducing at most (3n)r subproblems of dimension n − r, for

some r ∈ [n]. However, as suggested by Conjecture 7.4.5, it seems possible that an

algorithm exists which returns a subspace inducing at most O(log n)r subproblems of

dimension n− r, drastically decreasing the total size of the recursion tree.

The following theorem relates the potential complexity improvements for IP given

an improved projection finding algorithm. To be able to make minimal assumptions

on the projection finding procedure, we will only run it when the covering radius of

the input body is already Ω(1). This means we will avoid the scaling technique used

by the above algorithm (as well as in our implementation of Lenstra’s algorithm),

and instead rely on the near central lattice point finder from Section 5.6. The only

drawback to this alternate approach is that the implied algorithm will be randomized

(though it remains Las Vegas). The exact theorem is stated as follows.

Theorem 7.4.6 (IP-Kannan Extension). Let g : N → N denote a non-decreasing

function. Assume there exists an algorithm Thin-Projection that given a centered

convex body K ⊆ Rn and n dimensional lattice L satisfying µ(K,L) ≥ 1
2
, outputs a

linear subspace W ⊆ Rn, dim(W ) = k ∈ [n], such that G(πW (K), πW (L)) ≤ g(n)n

in time 2O(n)g(n)n poly(·). Then there is a randomized algorithm which solves the

Convex Integer Programming feasibility problem in expected time 2O(n)g(n)n poly(·)
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time. Furthermore, the space complexity of the algorithm (notwistanding the space

needed to run Thin-Projection) is 2n poly(·).

We note that the current projection finding algorithm produces a subspace satisfy-

ing the conditions of the above theorem with g(n) = 3n, and hence yields an 2O(n)nn

time algorithm for IP. Assuming Conjecture 7.4.5, it maybe possible to develop a

projection finding algorithm satisfying g(n) = O(log n) above, yielding a O(log n)n

time algorithm for IP.

The guarantees of the above theorem are realized by the following algorithm.

Algorithm 7.3 IP-Kannan-Ext(K,L, H)

Input: (a0, R)-circumscribed convex set K ⊆ Rn with separation oracle SEPK ,
n dimensional lattice L with basis B ∈ Qn×n, a rational affine subspace
H = {x ∈ Rn : Ax = b}.

Output: Return NULL if K ∩ L ∩H = ∅ or y ∈ K ∩ L ∩H.
1: (K,L,p)← IP-Preprocess(K,L, H).
2: if K = ∅ then return NULL; else if 0 ∈ K then return p.
3: (c,y)← Central-Lat-Pt(K,L, 1).
4: if y ∈ K then return y + p.
5: W ← Thin-Projection(K,L).
6: for all s ∈ Lattice-Enum(πW (K), πW (L), r) do
7: y← IP-Kannan-Ext(K,L, π−1

W (s)).
8: if y 6= NULL then return y + p.
9: return NULL.

Analysis of IP-Kannan-Ext.

Correctness: The correctness of the algorithm follows almost the same line of

reasoning as Algorithm 7.2 (Kannan-IP). The main difference is the use of the Central-

Lat-Pt algorithm, which replaces the scaling technique of IP-Kannan. We note that

we only call Central-Lat-Pt on K,L after preprocessing, and hence K is well-centered

as needed by the algorithm. We now show that after running Central-Lat-Pt, either

we find a feasible lattice point or we guarantee that µ(K,L) ≥ 1
2
.

Let (c,y) denote the center and lattice point returned by Central-Lat-Pt(K,L, 1).

If y ∈ K, then by the preprocessing guarantee, y + p is a feasible lattice point for
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the original problem. Otherwise, if y /∈ K, by the guarantees of Central-Lat-Pt on

K,L, 1 we have that

1 ≤ ‖y − c‖K−c ≤ 2dK−c(L, c)

The above implies that dK−c(L, c) ≥ 1
2

and hence the body K ′ = 1
2
K + 1

2
c can only

contain lattice points on its boundary. In turn, this shows that 1 ≥ µ(K ′,L) =

2µ(K,L), and hence µ(K,L) ≥ 1
2

as needed.

If the call to Central-Lat-Pt does not produce a feasible lattice point, the algorithm

proceeds to decompose the feasible region into subproblems using the projection πW

(where W is produced by algorithm Thin-Projection). The correctness of this step

follows exactly in the same way as for IP-Kannan. The algorithm is thus correct.

Runtime: The algorithm begins with the standard preprocessing (IP-Preprocess)

and then proceeds with a call to Central-Lat-Pt. Together these calls require at most

2O(n) poly(·) expected time and 2n poly(·) space. If the algorithm does not find a

feasible lattice point after the cal to Central-Lat-Pt, it continues by executing the

subroutine Thin-Projection on K and L. Let l = dim(K) = dim(L) ≤ n. By the

proof of correctness, we are guaranteed that µ(K,L) ≥ 1
2

before the call to Thin-

Projection. Therefore by the guarantees on Thin-Projection, in 2O(l)g(l)l poly(·) time

it returns a subspace W , dim(W ) = k ∈ [l], satisfying G(πW (K), πW (L)) ≤ g(l)k.

From here, the algorithm enumerates the l − k-dimensional subproblems indexed

by πW (K) ∩ πW (L), where we note that |πW (K) ∩ πW (L)| ≤ g(l)k ≤ g(n)k (since

g is non-decreasing). By the guarantees on algorithm Lattice-Enum, this requires

2O(k)g(l)k poly(·) time and 2l poly(·) space. Lastly, the algorithm recurses on each

of these l − k-dimensional subproblems. At this point, we note that the space used

by algorithm excepting the call to Thin-Projection is 2n poly(·). Therefore the total

space used by the algorithm not including that used by Thin-Projection is 2n poly(·)

as needed.
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Given the above analysis, we see that the algorithm’s expected runtime (ignoring

polynomial factors) is dominated by the recurrence relation

T (n) = (C1g(n))n + max
k∈[n]

(C1g(n))k + g(n)kT (n− k)

where T (0) = 1 and C1 ≥ 1 is an absolute constant.

Claim: T (n) ≤ 2(n+ 1)Cn
1 g(n)n Clearly the base case holds for n = 0. Next, since

g is a non-decreasing, we have that

T (n) = (C1g(n))n + max
k∈[n]

(C1g(n))k + g(n)kT (n− k)

≤ (C1g(n))n + max
k∈[n]

(C1g(n))k + g(n)k2(n− k + 1)(C1g(n− k))n−k

≤ (C1g(n))n + (C1g(n))n + 2n(C1g(n))n = 2(n+ 1)(C1g(n))n

as needed. From the above relation, we have that the expected runtime of the algo-

rithm is bounded by 2O(n)g(n)n poly(·) as desired.

7.5 Convex Integer Minimization

In this section, we generalize our IP feasibility algorithms to solve convex integer

minimization problems. More precisely, we give an algorithm to minimize any convex

function f (admitting a subgradient oracle) over the lattice points inside a convex set.

As noted in the introduction, if we are only interested in approximate minimizers then

one can reduce the convex integer minimization problem to a sequence of feasibility

problems via a standard binary search on the objective. With additional assumptions

on the convex function f (linear, quasi-convex polynomial, etc.), such an approach

often leads to an exact algorithm since we can bound the accuracy needed for binary

search to find an optimal solution. In this section, we will show how to avoid all such

“niceness” conditions on the function except convexity.

We note that binary search procedures require only the level sets of f (sets of the
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form f(x) ≤ M) to be convex, i.e. they require only quasi-convexity of f . Indeed,

our improvements here will be due to a fuller use of the convexity information of f .

We give the high level idea of the algorithm. To explain our approach, we overview

the framework for our feasibility solvers and explain how to modify it to fit the

optimization setting. Given a convex body K and lattice L, our feasibility solver

works as follows. First, we check if K is “flat” with respect to L, i.e. either K has

small lattice width or K admits a thin projection with respect to L. If this is the

case, we compute a decomposition of the integer points in K (via either hyperplane or

subspace decompositions), and recurse on the lower dimensional subproblems. Notice

that if we are minimizing a convex function f over K ∩ L, this step is still be valid,

i.e. we compute the minimizers for all subproblems, and return the best one found.

If K is not “flat”, we simply scale K until it becomes so (without comprimising the

existence of an integer point in K), and now execute the recursion as in the previous

step. This scaling step, on the other hand, is not valid in the optimization setting since

it may remove the minimizing lattice point for f . Instead of scaling K until it becomes

flat, in the optimization setting we will try to find a feasible solution y ∈ K ∩L such

that K ∩ {x ∈ Rn : f(x) ≤ f(y)} is flat. Since any solution improving on y must lie

in such a level set, it is valid to restrict the optimization problem in this way. Of

course, the problem is how do we find a good feasible solution y? Here the idea is

to solve use an approximate CVP solver to find a lattice point near the “center” of

K (using algorithm Central-Lat-Pt from section 5.6). The main implication of K

not being flat in this setting will be that the covering radius of K with respect to

L is � 1. Therefore K will be guaranteed to contain a “deep” lattice point y. At

this point, restricting to the level set of f induced by y will not immediately make

K flat. However, using the convexity of f , we will show that the restriction reduces

the volume of K by a small factor (roughly 1 − 10−n). Using this volume decrease,

we will be able to show that 2O(n) iterations of this procedure will insure that K
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indeed becomes flat. Once flatness has been achieved, we can use recursion as in the

feasibility setting.

We now provide the exact algorithm below.

Algorithm 7.4 Convex-IP(K, f,L, H)

Input: (a0, R)-circumscribed convex set K ⊆ Rn with separation oracle SEPK ,
convex function f : K → R equipped with subgradient oracle, n dimensional
lattice L with basis B ∈ Qn×n, rational affine subspace H = {x ∈ Rn : Ax = b}.

Output: Return NULL if K ∩ L ∩H = ∅ or y ∈ K ∩ L ∩H minimizing f(·).
1: (K,L,p)← IP-Preprocess(K,L, H).
2: if K = ∅ return NULL; else if L = {0} and 0 ∈ K then return p.
3: x← NULL.
4: loop
5: Build (1+ 1

24k
)-approx. HKZ basis b1, . . . ,bk for L (k = dim(L)) under ‖·‖K−K .

6: if maxi∈[k] Dπi(K−K)(b
∗
i ,

1
24k

) ≥ 1
3k

then break loop.
7: (c,y)← Central-Lat-Pt(K,L, 1

3
). x← y + p.

8: Retrieve v ∈ ∂f(x). if πspan(L)(v) = 0 then return x.
9: K ← K ∩ {z ∈ Rn : f(z + p) ≤ f(x)}.

10: (K,L,p′)← IP-Preprocess(K,L, span(L)). p← p + p′.
11: j ← arg maxi∈[k] Dπi(K−K)(b

∗
i ,

1
24k

). W ← span(b1, . . . ,bj−1)⊥ ∩ span(L).
12: for all s ∈ Lattice-Enum(πW (K), πW (L), r) do
13: y← Convex-IP(K, f(·+ p),L, π−1

W (s)).
14: if y 6= NULL and f(y + p) < f(x) then x← y + p.
15: return x.

Theorem 7.5.1 (Correctness of Convex-IP). On input K, f,L, H as in 7.4, in ex-

pected 2O(n)nn poly(·) time and 2n poly(·) space algorithm 7.4 either returns NULL if

K ∩ L ∩H = ∅ or returns y ∈ L ∩K ∩H minimizing f(·).

We will require the following volumetric lemma for the analysis.

Lemma 7.5.2. Let K ⊆ Rn be a n-dimensional γ-symmetric convex body. Then for

any x ∈ K, v ∈ Rn, letting t = 〈v,x〉, we have that

voln(K ∩H≥v,t)
voln(K)

≥ 1

2
γn(1− ‖x‖K)n

Proof. Let K+ = K ∩H≥v,0. First note that

voln(K+) ≥ 1

2
voln(K ∩ −K) ≥ 1

2
γnvoln(K) (7.5.1)
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If t ≤ 0 then K+ ⊆ K ∩H≥v,t, and hence the desired volume lower bound holds from

equation (7.5.1).

Now assume that t ≥ 0. Take y ∈ arg maxz∈K 〈v, z〉. Since x
‖x‖K

∈ K, note that

0 ≤ 〈v,x〉
‖x‖K

≤ 〈v,y〉.

I claim that (1−‖x‖K)K+ +‖x‖Ky ⊆ K ∩H≥v,t. Take w = (1−‖x‖K)z+‖x‖Ky,

for z ∈ K+. Since x ∈ K ⇒ 0 ≤ ‖x‖K ≤ 1, we have that w is a convex combination

of points in K+, and hence w ∈ K+. Now note that

〈v,w〉 = (1− ‖x‖K) 〈v, z〉+ ‖x‖K 〈v,y〉 ≥ ‖x‖K 〈v,y〉 ≥ 〈v,x〉 = t.

Therefore we have that w ∈ H≥v,t as needed..

By the Brunn-Minkowski inequality, we have that

voln(K ∩H≥v,t)
1
n ≥ voln((1− ‖x‖K)K+ + ‖x‖Ky)

1
n ≥ (1− ‖x‖K)voln(K+)

1
n

≥ 2−
1
nγ(1− ‖x‖K)voln(K)

1
n

as needed.

Analysis of Convex-IP.

We first discuss some implementation issues from the description of the algorithm.

Building an approximate HKZ basis: Here we proceeds in the identical way

as in Lemma 7.4.4. More precisely, to build a (1 + ε)-approximate HKZ basis for

L under ‖ · ‖K−K , ε ∈ (0, 1), we proceed recursively by picking b∗i ∈ Shortest-

Vector(πi(K −K), πi(L), ε). Here we remember that πi is the orthogonal projection

onto span(b1, . . . ,bi−1)⊥.

Constructing a separation oracle for level sets of f : During the algorithm,

we require separation oracles for bodies of the form K ′ = K ∩ {z ∈ Rn : f(z) ≤M},

where K is a convex subset of the domain of f .
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To implement the separation oracle for K ′ we proceed as follows. When queried

on a point x ∈ Qn, we first check that x ∈ K and then check that f(x) ≤ M . If

x /∈ K, then we use the separation oracle for K to separate x from K ′. If x ∈ K

and f(x) > M , we use a subgradient v ∈ ∂f(x) (which we have query access to) as

our separator. Here we note that by subgradient properties of v, that 〈v, z〉 ≥ 〈v,x〉

implies that f(z) ≥ f(x) > M , and hence z /∈ K ′. Therefore supz∈K′ 〈v, z〉 < 〈v,x〉

as needed.

Correctness: For the first step, we run our standard preprocessing algorithm on

K,L, H to reduce to a full dimensional problem. Here we obtain a new K and L such

that (K ∩ L) + p corresponds exactly to the original solutions, dim(K) = dim(L),

and K is well sandwiched. If the preprocessing returns that K = ∅, then the set of

solutions is empty, and hence we correnctly return NULL. If the preprocessing returns

L = {0} and 0 ∈ K, then the set of solutions corresponds to a single point, i.e. p,

and so we correctly return p as a minimizer.

Next, we initialize x← NULL, which will denote the best solution found thus far.

We now begin the first main loop. We shall establish the following invariants for this

loop:

(1) At the beginning of each iteration, any improving solution over x must be

contained in (K ∩L) + p. Furthermore, every solution z ∈ (K ∩L) + p satisfies

f(z) ≤ f(x) (with the convention f(x) =∞ if x = NULL).

(2) At the end of any non-terminal iteration, either the volume of K drops by at

least a (1− 1
2
10− dim(K)) factor or the dimension of K decreases.

(3) If the loop terminates, then either we have a found a valid minimizer for f or we

have found an l-dimensional subspace W s.t. G(πW (K), πW (L))
1
l ≤ 7 dim(L).

Proof of Loop Invariants. At the start of the first iteration, invariant (1) clearly holds
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since (K ∩ L) + p corresponds to the entire solution space and x =NULL. We now

assume that the invariants hold at the beginning of the current loop iteration, and

show that they are maintained at the beginning of the next iteration.

At the start of a loop iteration, we build an (1 + 1
24k

)-approximate HKZ basis

b1, . . . , bk for L (as described above). We note that running Shortest-Vectors on

K −K and L is possible here since we have explicit sandwiching guarantees for K in

span(L) (retrieved from IP-Preprocess).

From here if maxi∈[k] Dπi(K−K)(b
∗
i ,

1
24k

) ≥ 1
3k

, we break from the loop. In this

case, upon exiting the loop, we set j ← arg maxi∈[k] Dπi(K−K)(b
∗
i ,

1
24k

), and let W =

span(b1, . . . ,bj−1)⊥ ∩ span(L). Letting l = k−j+1, we see that W is a l-dimensional

subspace of Rn. We claim that G(πW (K), πW (L))
1
l ≤ 7k ≤ 7 dim(L). To see this,

note that

1

3k
≤ DπW (K−K)(b

∗
j ,

1

24k
) ≤ (1+

1

24k
)‖b∗j‖πW (K−K) ≤ (1+

1

24k
)2λ1(πW (K−K), πW (L))

For k ≥ 1, the above implies that λ1(πW (K −K), πW (L)) ≥ 3
10k

. As in the proof of

Theorem 7.4.3, by Minkowski’s first theorem this implies that

voll(πW (K))
1
l

det(πW (L))
1
l

≤ 10k

3

Assume first that µ(K,L) ≤ 1. Then by Corollary 7.4.2 we have that

G(πW (K), πW (L))
1
l ≤ 2

voll(πW (K))
1
l

det(πW (L))
1
l

≤ 2
10k

3
≤ 7k

as needed. Assume that µ(K,L) ≥ 1. Letting µ = µ(K,L), we have that

G(πW (K), πW (L)) ≤ G(πW (µK), πW (L)) (since µ ≥ 1),

and hence it suffices to upper bound the latter term. Here we note that µ(µK,L) =

µ(K,L)
µ

= 1. Now using the exact same argument as in Lemma 7.4.4, remembering

that πj = πW , we have that

1 = µ(µK,L) ≤
k∑
i=1

‖b∗i ‖πi(µ(K−K)) ≤ k
24k + 1

24k − 1
‖b∗j‖πW (µ(K−K))
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Using the fact that ‖b∗j‖πW (µ(K−K))) ≤ (1 + 1
24k

)λ1(πW (µ(K −K)), πW (L)), using the

same argument as in Lemma 7.4.4, we get that(
k∑
i=1

‖b∗i ‖πi(µ(K−K))

)
voll(πW (µK))

1
l

det(πW (L))
1
l

≤ k

(
24k + 1

24k

)(
24k + 1

24k − 1

)

Since
∑k

i=1 ‖b∗i ‖πi(µ(K−K)) ≥ 1, the above inequality yields

voll(πW (µK))
1
l

det(πW (L))
1
l

≤ k

(
24k + 1

24k

)(
24k + 1

24k − 1

)
≤ 8

7
k

for k ≥ 1. Since µ(µK,L) = 1 by Corollary 7.4.2 we have that

G(πW (K), πW (L))
1
l ≤ 2

voll(πW (K))
1
l

det(πW (L))
1
l

≤ 2
8k

7
≤ 7k

as needed. Therefore, if we the loop terminates because maxi∈[k]Dπi(K−K)(b
∗
i ,

1
24k

) ≥
1
3k

, then we have indeed found a “good” projection subspace W as needed. This takes

care of the second part of loop invariant (3).

If instead maxi∈[k] Dπi(K−K)(b
∗
i ,

1
24k

) < 1
3k

, we get that maxi∈[k] ‖b∗i ‖πi(K−K) <

1
3k

+ 1
24k

= 9
24k

. From Lemma 2.4.7, we know that

µ(K,L) ≤
k∑
i=1

‖b∗i ‖πi(K−K) < k
9

24k
=

9

24

Let (c,y)← Central-Lat-Pt(K,L, 1
3
). By the guarantees on algorithm Central-Lat-Pt

(see Theorem 5.6.1), we have that K − c is 1
5
-symmetric and y satisfies

‖y − c‖K−c ≤ (1 +
1

3
)dK−c(L, c) ≤ 4

3
µ(K,L) =

1

2
(7.5.2)

From the above, we in particular have that y ∈ K ∩ L. By loop invariant (1), we

immediately have that f(y + p) ≤ f(x). Therefore, setting x ← y + p, x becomes

the best solution found thus far, and by the furthemore of loop invariant (1), any

improving solution must be contained (K ∩ L) + p.

Now we take v ∈ ∂f(x). If πspan(L(v) = 0, we claim that x is a global minimizer for

f restricted to the affine subspace x+span(L) (and hence in particular on (K∩L)+p).
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To see this, take z ∈ x + span(L). Then since v is a subgradient, we have that

f(z) ≥ f(x) + 〈v, z− x〉. Since z − x ∈ span(L), we have that 〈v, z− x〉 = 0 and

hence f(z) ≥ f(x), as needed. From here we see that x is at least as good any

potential improving solution (again by loop invariant (1)), and hence we correctly

return x as an optimal solution for the IP. This completes the proof of invariant (3).

Now assume that πspan(L)(v) 6= 0. Let K ′ ← K ∩ {z ∈ Rn : f(z + p) ≤ f(x)}.

Since any improving solution over x must be in (K∩L)+p and have better objective

value than x, we clearly have that any improving solution must also be in (K ′∩L)+p.

Letting t = 〈v,y〉, we note that

H≤v,t = {z ∈ span(L) : 〈v, z〉 ≤ t}

is a non-trivial supporting halfspace for K ′. Now by construction y ∈ Hv,t and

dim(K) = dim(L) = k. Since K − c is 1
5
-symmetric and ‖y − c‖K−c ≤ 1

2
by Lemma

7.5.2 we have that

volk(K
′) ≤ volk(K ∩H≤v,t) = volk(K)− volk(K \H≥v,t)

≤ volk(K)− 1

2
5−k2−kvolk(K) = (1− 1

2
10−k)volk(K)

(7.5.3)

From the above, we see that letting K ← K ′ (as is done on line 9) decreases the

volume of K by at least a (1 − 1
2
10− dim(K)) factor. Next, we run our preprocessing

algorithm on K, L, and span(L) to recover updated (K,L,p′). We remember that the

set of solutions (K∩L)+p′ after preprocessing corresponds exactly to (K∩L) before

preprocessing. Therefore the update p← p+p′, leaves the set (K∩L)+p unchanged

before and after preprocessing, and hence loop invariant (1) is still satisfied (and

remains satisfied at the beginning of the next iteration). If dim(K) decreases after

preprocessing, then loop invariant (2) is satisfied. Since K + p′ after preprocessing

is a subset of K before preprocessing, if dim(K) is unchanged by the preprocessing,

then as argued above the volume of K has indeed dropped as required. Therefore

loop invariant (2) is satisfied. This completes the proof of the loop invariants.
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After the first main loop, the remainder of the algorithm is straightforward. Here

we decompose the remainder of the (shifted) solution space (which contains any im-

proving solution over x) using the projection onto W . More precisely we use the

decomposition K ∩ L ⊆
⋃

s∈πW (K)∩πW (L) π−1
W (s) ∩ L, using Lattice-Enum to iterate

over the set πW (L) ∩ πW (K). During the iteration, for each s ∈ πW (K) ∩ πW (L),

we recursively solve the lower dimensional convex integer minimization problem as-

sociated with K,L and π−1
W (s) and f(· + p). As we iterate, we keep track of the

best solution found over all recursive calls (shifting by p each time), and return this

solution at the end of the loop. This completes the proof of correctness.

Runtime: The initial preprocessing step on K,L, H takes 2O(n) poly(·) time and

2n poly(·) space.

Next, we need to bound the time spent in the first main loop. During each loop

iteration, in the worst case, we build a new approximate HKZ basis for L with re-

spect to ‖ · ‖K−K , make a call to Central-Lat-Pt on K and L, and run the standard

preprocessing on a restriction of K and L. By the guarantees on each invoked sub-

routine, the execution of all these steps takes at most 2O(dim(L)) poly(·) = 2O(n) poly(·)

expected time and 2dim(L) poly(·) = 2O(n) poly(·) space (notice that the randomized

runtime comes only from Central-Lat-Pt).

We now show that the maximum number of iterations of the first main loop

is 2O(n) poly(·). To do this, we give a bound on maximum number of consecutive

iterations during which the volume of K can be decreased by a (1− 1
2
10−k) factor, for

k = dim(K), without either finding a “good” projection, decreasing the dimension of

K, or finding a valid minimizer for f . At the start of any such sequence of iterations,

we note that K is (a′0, R
′)-circumscribed, for some R′ ≤ R (where R is the radius

of the original circumscribing ball). Therefore at the beginning of this sequence,

volk(K) ≤ volk(R
′Bk

2 ) ≤ (2R)k. Then after T iterations, letting λ = 1
2
10−k, we have
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that

volk(K) ≤ (1− 1

2
10−k)T (2R)k ≤ e−λT (2R)k.

Then after T = max{d ln((2R)k/ det(L))
λ

e+ 1, 1} iterations, we have that

volk(K) ≤ e−λT (2R)k < det(L)

We note that since L ⊆ Qn, and L is a sublattice of the original input lattice, we

have that | ln(det(L))| is polynomial in the size of the input basis. Therefore T =

poly(·) 1
λ

= poly(·)10k = poly(·)10n. We claim that no such sequence can last more

than 10n poly(·) iterations. To prove this, it suffices to show that if volk(K) < det(L)

at the beginning of a loop iteration, then we guaranteed to find a “good” projection for

K. To begin, by Lemma 2.4.4 we know that if K is L-covering (i.e. µ(K,L) ≤ 1), then

volk(K) ≥ det(L). Since volk(K) < det(L), we must have that K is not L-covering,

and hence µ(K,L) ≥ 1. Now let b1, . . . ,bk denote the (1 + 1
24k

)-approximate HKZ

basis computed during the loop iteration. Then we see that

1 ≤ µ(K,L) ≤
k∑
i=1

‖b∗i ‖πi(K−K) ≤ kmax
i∈[k]
‖b∗i ‖πi(K−K).

Hence 1
k
≥ maxi∈[k] ‖b∗i ‖πi(K−K). Therefore by the guarantees on the distance oracles,

we have that maxi∈[k] Dπi(K−K)(b
∗
i ,

1
24k

) ≥ 1
k
− 1

24k
≥ 1

3k
. Given this, we exit the

first main loop upon the check at line 6, and hence we find good projection for K as

desired. From here, we see that during any sequence of 10n poly(·) iterations, we must

either find a good projection, decrease the dimension of K, or find a valid minimizer

for f . Note that if we find a good projection, or find a valid minimizer, we exit the

loop. On the other hand if we decrease the dimension of K (which happens during

IP-Preprocess), we decrease dimension by at least 1. Since at the beginning of the

first main loop, the dimension of K is at most n, we cannot decrease dimension more

than n times. Therefore, a bound on the maximum number of iterations of the first

main loop is n10n poly(·) = 2O(n) poly(·), as needed. Therefore to finish executing
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the entire first main loop requires at most 2O(n) poly(·) expected time and 2n poly(·)

space.

After the first main loop, assuming we do not find a valid minimizer for f , we

need to execute all the recursive subproblems indexed by πW (K) ∩ πW (L). By loop

invariant (2), we note that for the computed projection subspace W , we have that

G(πW (K), πW (L)) ≤ (7 dim(L))dim(W ) ≤ (7n)dim(W ). At this point, the recursion re-

lation for the runtime is essentially identical to that of Algorithm 7.2 (with expected

running time replacing deterministic running time). Therefore using the identical

analysis as Theorem 7.1.2, we get that entire algorithm runs in 2O(n)nn poly(·) ex-

pected time using 2n poly(·) space, as needed.

7.6 Conclusion

The Integer Programming Problem is one of the central computational problems in

computer science and operations research. The study of algorithms for IP has been an

active area of research since the 1950’s, and a plethora of algorithmic techniques have

been developed to solve IP from both a practical and theoretical standpoint. In this

Chapter, we have developed new geometric techniques for solving integer programs,

based on solvers for general norm lattice problems. With these methods, we have

implemented new Lenstra and Kannan type algorithms, which solve n dimensional

integer programs in 2O(n)(n
4
3 polylog(n))n and 2O(n)nn time using O(2n) space respec-

tively. These algorithms represent the fastest known algorithms of either class, and

in particular the fastest known theoretically efficient algorithms for IP. Furthermore,

our algorithms work for any integer program whose feasible region is specified by

separation oracle, even when the feasible region is not full dimensional, generalizing

over previous approaches.

As mentioned in introduction, a major open question is whether there exists a

2O(n) time algorithm for IP. Though our algorithms retain the same asymptotic nO(n)
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running times of previous algorithms, we believe they represent significant milestones

towards finding a single exponential time algorithm.

Firstly, our use (and development) of general norm solvers for lattice problems,

has allowed us to avoid the complexity blowups due to ellipsoidal approximations

used by previous algorithms. These approximations almost inevitably lead to at least

n
n
2 increases in running time, and hence represented a first major bottleneck to be

overcome in search of a 2O(n) algorithm.

Having surmounted this obstacle, our Kannan type algorithm allowed us to make

headway on another bottleck, i.e. the reliance on Kinchine’s flatness theorem. In the

worst case, it is well-known that a lattice free convex body may have lattice width n.

Therefore, the number of subproblems generated by any Lenstra type algorithm on

such a body must be ≥ n. Though one does not expect such worst case behavior at

every level of recursion, it nevertheless seems unlikely that a hyperplane branching

scheme can achieve better than nΩ(n) running time. Our Kannan type algorithm

however, is based on a completely different transference theorem of Kannan and

Lovasz [67] (see Theorem 7.4.3), which does not suffer from this type of lower bound.

In fact, the only nontrivial lower bound for the quality of a “thin projection” is

Ω(log n). This bound was conjectured to be tight by Kannan and Lovász [67] (see

Conjecture 7.4.5), and we show in Theorem 7.3 that a suitable algorithmic version of

this conjecture would yield an O(log n)n time algorithm for IP.

Future Research. As a first future research direction, we wish to improve the

current bounds on the quality of thin projections. The current best bound of n,

due to Kannan and Lovasz, is based on the use of generalized HKZ bases. However,

even when K = Bn
2 , there are examples of HKZ bases which yield projections of

quality O(
√
n). Therefore it seems that substantially new techniques are required in

this setting. One potentially promising direction in this effort is to see whether the
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discrete gaussian technology developed for proving Kinchine’s flatness theorem can

be brought to bear on this problem.

Another research direction, pertains to getting a better analysis of either our

Kannan or Lenstra type algorithm. In particular, we currently assume the worst case

bounds at every recursion node to obtain our complexity bounds. A main question

here is whether this is really possible, and in particular if a more careful analysis could

allow us to improve the complexity of the algorithms. On the flip side, as mentioned

above, it seems unlikely that any Lenstra type algorithm can in general solve IP in

faster than nΩ(n) time. Here it would be very interesting to show that any algorithm

which proceeds only by branching on hyperplanes must take at least nΩ(n) time.
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