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The contractile energy of the entire muscle can surpass that of the stimulus. It is thus 
that a tiny spark ignites a great mass of gunpowder, the energy of which is prodigious. 

 
-Felice Fontana (1760) 
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Figure 6-4. Performance in the context of noise and time-variance across multiple test 

functions and dimensions. Each plot shows a heat map of a specific test function. One-

dimensional test functions are on the top row, two-dimensional test functions are on the 

second row, three- and four-dimensional test functions are on the bottom row. In all 

cases success was defined based on the performance metric of the number of iterations 

in which the estimated optimum was within 10% of the actual optimum. ...................... 188 
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SUMMARY 
 
 
 
Sensory stimulation has shown promise in improving human walking after spinal cord 

injury (SCI). Previous studies have demonstrated some improvement with open-loop, 

non-individualized sensory stimulation, but after SCI, there are many unique, individual 

changes in sensorimotor processing. These changes make a priori identification of the 

best sensory stimulation pattern difficult for any given individual. Real-time optimization 

provides a solution to this individuality problem, through optimizing sensory stimulation 

parameters for a given subject in on-line (in real-time). In this research, I developed an 

approach to optimize sensory stimulation to maximally assist human walking after 

incomplete SCI. To do so, I had to develop and validate a novel optimization algorithm 

for globally-optimizing noisy, time-variant, black-box systems, while maximizing the 

information gained from each test (experiment). I optimized sensory stimulation across a 

range of SCI subjects, across multiple sensory stimulation sites, and with different 

stimulation parameterizations. In all subjects and stimulation sites, the optimal 

stimulation protocol produced better walking (i.e. less external force assistance was 

required) than three alternative stimulation protocols: an industry-standard stimulation 

protocol, a no-stimulation protocol, and a random-stimulation protocol. The optimization 

approach minimized the total force required from an assistive orthosis, and post-hoc 

analysis of the optimization sessions produced a better understanding of how stimulation 

parameters affected specific gait features (e.g. hip forces during swing).  

Transcutaneous spinal cord stimulation (TSCS) frequency had divergent effects on the 

stance and swing phases – high frequencies tended to assist with swing, but low 

frequencies tended to assist with stance. For the two peripheral nerve stimulation sites 

(posterior tibial and common peroneal nerves), the optimal gait-phase for stimulation 

was generally after mid-stance and before early swing. There was some variability within 



xxvi 
 

this time-range depending on the specific feature under study. Experimental history (i.e. 

time spent walking/time spent being stimulated) proved to be as important a predictor as 

any of the stimulation parameters. 
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CHAPTER 1: INTRODUCTION 

This chapter briefly discusses the motivations, problem statement, and specific 

contributions from my research on optimizing sensory stimulation to assist humans to 

walk after spinal cord injury walk. 

1.1. Motivations 

The research presented in this dissertation was motivated by the following: (1) Sensory 

stimulation can assist people with spinal cord injury (SCI) to walk. (2) Reflex responses, 

however, have significant variability in the general population, and that variability is 

increased after SCI. (3) Real-time optimization is a new approach in medicine, that can 

be applied to identify the best stimulation pattern on an individual basis. 

Spinal cord injury has a worldwide prevalence of 250-750/1,000,000 people (Wyndaele 

and Wyndaele 2006, Chiu et al. 2010), corresponding to an estimated 1.8-5.4 million 

people in the world, including approximately 270,000 spinal cord injured individuals in 

the United States (Center 2012). Of those cases, approximately 22% are complete 

paraplegics and 21% are incomplete paraplegics. Even with current clinical 

interventions, many people with SCI do not achieve the level of ambulation they would 

like (Anderson 2004). There is little we can offer to those with complete or the most 

severe incomplete injuries to recover the ability to walk. 

In uninjured individuals, spinal neurons integrate sensory feedback from the legs with 

descending commands from the brain to produce walking (Kiehn and Butt 2003, 

Rossignol, Dubuc, and Gossard 2006). After SCI, spinal neurons are (partially or 

completely) disconnected from the brain, leading to the loss of voluntary locomotion. 

However, the injury generally leaves the sensory connections to the spinal neurons 
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intact, and the effects of sensory input on those neurons actually become stronger 

(Lhermitte 1919, Little and Halar 1985, Zehr, Komiyama, and Stein 1997, Rossignol and 

Frigon 2011). This connection remains sufficient for sensory input to recruit the central 

pattern generators (CPGs), which generate the walking pattern (Kiehn et al. 1998, 

Edgerton et al. 2001). 

Sensory inputs from the legs have numerous and substantial effects on walking 

(Rossignol, Dubuc, and Gossard 2006). Many studies have shown that Sensory 

stimulation can both recruit and modulate the CPG (Marchetti, Beato, and Nistri 2001, 

Hultborn 2001, Schomburg et al. 1998, McCrea 1998, 2001, Roberts et al. 1998, Sillar 

and Roberts 1992). Studies have explored the use of sensory stimulation to assist 

people with SCI to walk, and have found it effective across multiple contexts and 

performance metrics (Ladouceur and Barbeau 2000b, Ladouceur and Barbeau 2000a, 

Granat et al. 1993, Ragnarsson 2008). 

Despite the possibilities of sensory stimulation, sensory feedback to assist, produce, or 

control a walking pattern has not been rigorously optimized previously. If the correct 

sensory stimulus pattern can be identified, the walking pattern will not just be improved, 

but can be maximally improved. 

However, identifying the optimal stimulation parameters is complicated by the variability 

in the SCI population. Even neurologically normal individuals have significant variability 

in their responses to sensory input. Identified sources of reflex-response variability 

include age (Evans, Harrison, and Stephens 1990, Gibbs et al. 1999), level of activity 

(Loeb 1993), and athletic history (Gruber et al. 2007, Wolpaw and Tennissen 2001, 

Maffiuletti et al. 2001). After SCI, that variability is compounded by additional sources, 

including SCI level (Poirrier et al. 2004, Dietz et al. 1999), severity (Rossignol et al. 

1996), and time since injury (Hiersemenzel, Curt, and Dietz 2000). 
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Therefore, I pursued an approach based on individual, real-time optimization of sensory 

stimulation. Real-time optimization of clinical interventions is relatively unexplored, and 

the best practices remain unidentified. Real-time optimization, in this context, means to 

measure the performance of an intervention and modify the parameters of that 

intervention based on performance metrics. This process must be done quickly (e.g. in 

seconds), such that tens or hundreds of rounds of improvements can be made to the 

intervention within a relatively short time-period (e.g. a visit to the doctor’s office). These 

approaches are rare in both neuroscience and clinical research, and researchers have 

only begun to explored the possibilities in the last two decades. A few previous studies 

have utilized real-time optimization in the fields of functional electrical stimulation 

(Kostov et al. 1995, Lynch and Popovic 2008), neurophysiological responses (Földiák 

2001, Edin et al. 2004, O'Connor, Petkov, and Sutter 2005, Benda et al. 2007, Lewi, 

Butera, and Paninski 2008), brain-machine interfaces (Gürel and Mehring 2012, Fruitet 

et al. 2012, Fruitet et al. 2013), and epidural spinal cord stimulation (Desautels 2014, 

Desautels et al. 2015). 

Beyond just identifying the optimal sensory stimulation patterns, my objective was to 

further characterize human sensorimotor responses after SCI. Human sensorimotor 

responses are under-studied as compared to animal sensorimotor responses. The 

optimization process in my research required testing many different stimulation patterns 

across multiple subjects and multiple stimulation sites. Ultimately, this dataset included 

>20,000 stimulated-steps, providing the opportunity to perform in-depth analysis to 

discover how specific stimulation patterns produced responses and affected specific 

features of gait. 
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1.2. Problem Statement 

The goal of this research was to develop an approach to optimize sensory stimulation to 

maximally-assist spinal-cord-injured individuals to walk, identifying the best stimulation 

patterns for both individuals and the entire subject population. A secondary goal was to 

map the relationship of sensory-stimulation to specific features of gait. 

1.3. Contributions 

There were four main contributions of my research: 

 I created an approach to individually optimize sensory stimulation in real-time to 

assist individuals to walk after SCI (Chapter 3). This approach was demonstrated 

in a system that could stimulate with multiple types of stimulus patterns, analyze 

walking in real-time, and maintain an up-to-date model of the sensory-input-to-

motor-output mapping. 

 I identified the optimal sensory stimulation patterns for individuals and for the 

entire subject population (Chapter 4). The optima produced are more precise 

than previous reports in the literature. Multiple stimulation sites were compared 

for their efficacy in assisting their walking pattern. 

 I calculated the ideal sensory stimulation patterns for a range of gait-features that 

might be of interest to a clinical researcher through post-hoc analysis of force 

and EMG data (Chapter 5). 

 I developed and validated a new algorithm for time-varying, noisy global 

optimization, exploring the limitations of this approach with a suite of test 

functions across multiple levels of noise and time-variance (Chapter 6). I 

empirically identified the limits of the approach, and compared the algorithm with 

two other potential algorithm choices. 
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In addition, there were several minor contributions. My study represents one of the 

largest transcutaneous spinal cord stimulation studies to date. I developed a new 

walking metric. I analyzed an onset stimulus response to cutaneous nerve stimulation 

that has never been thoroughly studied. My comparisons between optimization 

algorithms will better quantify the differences between the various classes of 

optimization approaches. Lastly, I demonstrated a novel model space for optimization for 

rotationally symmetric problems. 

1.4. Overview of Remaining Chapters 

The remainder of the thesis is organized into a background chapter, four 

experimental/analysis chapters, and a short conclusion. The background chapter 

(chapter 2) introduces the reader to the relevant topics in order to understand the 

context of the work. The first experimental chapter (chapter 3) introduces the system that 

was used to optimize, how it works, and a validation involving one subject. Chapter 4 

discusses the results across all subjects and all sensory stimulation sites, quantifying the 

success of individual optimization. Chapter 5 presents an in-depth analysis of how 

sensory stimulation affects different aspects of gait, exploring stimulation parameters at 

multiple sensory stimulation sites with respect to how the parameters affect different gait 

features. Chapter 6 validates the optimization algorithm that was developed for this 

system, comparing the algorithm against alternatives, and quantifying its limitations. 
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CHAPTER 2: RELEVANT BACKGROUND 

This chapter describes the relevant literature for the dissertation. It is split into four sub-

chapters: the physiology of walking, spinal cord injury, sensory stimulation and walking, 

and optimization. In each section, more literature exists than can reasonably be covered 

in this chapter, but every attempt was made to include the findings necessary to 

understand the context of this work. 

2.1. The Physiology of Walking 

In uninjured individuals, the movements and motor commands for walking are generated 

by three parts of the nervous system working in concert: the brain, central pattern 

generators in the spinal cord, and sensory feedback. The brain supplies the drive, such 

as turning on the system to start walking forwards. Central pattern generators (CPGs) in 

the spinal cord produce oscillating patterns for walking. Sensory feedback modulates 

those patterns by reporting the biomechanical interactions between the body and the 

environment to the central nervous system (Rossignol, Dubuc, and Gossard 2006). This 

section will review the physiology of walking in the context of this thesis, but for more 

depth, there are many excellent reviews on walking in recent years, for example: Zehr 

and Duysens (2004), Kiehn and Butt (2003), and Rossignol, Dubuc, and Gossard 

(2006). 

In the most basic sense, walking can be divided into the swing and stance phases. The 

stance phase is defined as the period of time when the foot is touching the ground, and 

the swing phase is defined as the period of time when the foot is “swinging” through the 

air. In humans, the stance phase begins when the heel touches the ground and ends 

when the toe lifts off. The precise timing of these phases vary, depending on the speed 
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of walking and the individual, but the stance phase is approximately 60% of the gait 

cycle, and the swing phase is approximately 40% of the gait cycle. 

Much of the progress in understanding how the nervous system implements the walking 

task began with Sir Charles Sherrington (Sherrington 1906, 1910) and Graham Brown 

(Brown 1911a, b, 1914) in the early 1900s . Animal models were used to understand the 

necessary and sufficient parts of the nervous system required to walk. The use of animal 

models has continued throughout the 1900s, and as a result of this effort, substantial 

progress has been made in understanding how we walk. 

Since the studies on walking have mostly been based on animal models, scientists 

currently understand quadrupedal walking (e.g. cat walking) better than human walking. 

There are differences between bipedal walking and quadrupedal walking (Rossignol and 

Frigon 2011), but, fortunately, many observations have been found to apply to both 

(Dietz 2002, Duysens and Van de Crommert 1998, Van de Crommert, Mulder, and 

Duysens 1998). 

2.1.1. Supraspinal Role 

The brain’s role in walking is complex. In the 1960s, a portion of the brain called the 

mesencephalic locomotor region (MLR) was identified (Shik, Severin, and GN 1966). If 

the MLR is stimulated with a constant frequency, an animal will begin walking (Jordan, 

Pratt, and Menzies 1979). However, the MLR does not directly connect to the spinal 

cord, rather, it communicates with the spinal cord through the reticulospinal tract 

(Steeves and Jordan 1980, Garcia-Rill and Skinner 1987). The importance of the 

reticulospinal neurons in activating locomotion appears to be evolutionarily conserved, 

with examples from lampreys (Di Prisco et al. 2000), mammals (Garcia-Rill and Skinner 

1987), and some limited results supporting its role in humans (Hathout and Bhidayasiri 
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2005, Thornton et al. 2002). Recent work has divided cells in the MLR into areas 

associated with exploratory, appetitive, and defensive locomotion, based on the 

behavioral context in which each subset of cells is active (Jordan 1998).  

Other regions of the brain are involved in “skilled” walking (e.g. ladder-walking). For 

example, the pyramidal tracts (from the cortex) are much more active during skilled 

walking tasks (Marple‐Horvat and Armstrong 1999). 

2.1.2. Central Pattern Generators 

Graham Brown, in an illustrative series of experiments, showed that the mammalian 

spinal cord could produce locomotor-like patterns (called fictive locomotion) entirely 

without supraspinal or sensory input, demonstrating unequivocally that walking is not just 

a series of reflexes and that the spinal cord contained the neural circuitry necessary for 

walking (Brown 1911a). He proposed an organization of neurons based on mutual 

inhibition called half-center oscillators (Brown 1914), which still inspires many theoretical 

models (McCrea and Rybak 2007, 2008). Since the early 1900s, substantial work has 

been done to better understand the central pattern generators (CPGs), reviewed in 

Grillner (1981), Duysens and Van de Crommert (1998), and Kiehn and Butt (2003). In 

general, the CPG is modeled as flexor and extensor oscillators on each side of the 

spinal cord, with mutual inhibition between the flexor and extensor on the same side, 

and inhibition between the flexor-flexor and extensor-extensor parts between opposite 

sides. 

CPGs drive many of the rhythmic movements we perform. CPGs produce rhythmic 

movement for both the arms and legs during walking, and there may even be a common 

core of CPGs connected to both sets of limbs in both humans and animals (Dietz 2002, 

Zehr et al. 2007). CPGs not only support normal walking, but they also produce the 
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patterns for other types of walking, such as backwards walking (Lamb and Yang 

2000).There is an extensive literature on CPGs involved in breathing, including the 

demonstration of an incredible robustness of the pattern generation even if a substantial 

number of neurons are lost (Von Euler 1983), and a great flexibility in the patterns a 

small group of neurons can produce (Lieske et al. 2000). 

2.1.2.1. Central Pattern Generators in Humans 

Much of the early work studying the CPG was completed in animals, but it has been 

more difficult to demonstrate their existence directly in humans. Therefore, researchers 

have sought out examples of the spinal cord producing rhythmic motor output without 

any supraspinal input or phasic sensory input. 

Scientists have observed many specific subjects who had a complete loss of supraspinal 

input, but they still produced rhythmic movement (involuntarily). As with many other 

areas of medicine, large-scale wars have progressed our understanding though the 

regrettably large number of injured soldiers. After WWI, a soldier with a complete spinal 

cord injury was shown to produce rhythmic output (Lhermitte 1919); and after WWII, an 

example was documented of stepping movement in a soldier after complete spinal cord 

injury (Kuhn 1950). In earlier observations, rhythmic movements were seen following 

human decapitation (Luys 1893), and later, following brain death (Hanna and Frank 

1995). Although spontaneous rhythmic motion after complete human SCI has remained 

rare, other researchers have noted specific examples (Bussel et al. 1988, Calancie et al. 

1994, Bussel et al. 1996). 

In a different type of reduced supraspinal input, some researchers have studied the 

immature nervous systems of infants and even fetuses still in the womb. The premise 

behind these studies is that infants have immature brains, which will not send coherent 
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commands to the spinal cord yet, so if the spinal cord produces rhythmic movement, it 

can be taken as evidence of a human central pattern generator. Fetuses have been 

observed to produce rhythmic leg movement while still in the womb (Rayburn 1995). 

Infants cannot walk independently, but they can walk with weight support, although their 

walking pattern looks different than the walking pattern of an adult (Forssberg 1985). 

Human infant walking is more similar to a cat’s walking and sensory input plays a larger 

role (Pang and Yang 2000). There are many other studies supporting the existence of 

active CPGs in human infants (Yang, Stephens, and Vishram 1998, Pang and Yang 

2002), including walking in both forward and backward directions (Lamb and Yang 2000) 

Researchers have also attempted to directly activate the human CPG through either 

tonic spinal cord stimulation or tonic sensory input. Tonic stimulation is stimulation that is 

always on, unchanging on the timescale of the walking pattern. Tonic inputs show that 

the nervous system can produce a rhythmic output when no rhythm is present on the 

input, supporting the existence of CPGs. In a series of experiments using tonic leg 

vibration in healthy subjects, researchers were able to generate involuntary stepping-like 

movements (Selionov et al. 1997, Kazennikov et al. 1997). In a number of studies on 

humans with complete spinal cord injury, tonic spinal cord stimulation can produce 

stepping-like movement with reciprocal muscle activity (Rosenfeld et al. 1995, 

Gerasimenko and Makarovsky 1996, Gerasimenko et al. 1996, Shapkova, Shapkov, and 

Mushkin 1997, Dimitrijevic, Pinter, and Sherwood 1997, Dimitrijevic, Gerasimenko, and 

Pollo 1997, Harkema et al. 2011). 

Lastly, some characteristics of reflexes have been interpreted to give evidence for a 

human CPG. Contralateral and ipsilateral reflexes show an inhibitory relationship 

(Bussel et al. 1989), similar to Brown’s half-center oscillator theory of how CPGs work. In 

humans with and without spinal cord injury, many reflexes are modulated during the 
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walking cycle (Yang and Stein 1990), even to the point that they can be completely 

reversed (Duysens et al. 1992), giving evidence that the spinal neural circuitry is capable 

of complex patterned modulation, and that sensory inputs are strongly coupled to the 

CPGs. 

2.1.3. Sensory Afferents 

Most sensory modalities have been shown to affect walking. From the head, visual 

(Sherk and Fowler 2001, Kennedy et al. 2003) and vestibular (Kennedy et al. 2003) 

inputs can affect gait trajectories. From the legs, cutaneous (Zehr, Komiyama, and Stein 

1997, Zehr and Stein 1999, Rossignol, Dubuc, and Gossard 2006) and proprioceptive 

(Pearson 1995, Rossignol, Dubuc, and Gossard 2006) afferents have numerous and 

substantial effects on walking.  

In the early 1900s, Sir Charles Sherrington began the early work of understanding how 

reflexes affect walking (Sherrington 1906, 1910). Due to the extensive role sensory 

feedback has in walking, some early researchers believed that walking could be 

explained as a series of reflexes (Sherrington 1906, 1910) before the discovery of the 

CPG (Brown 1911a). 

Reflex stepping is not the primary means of generating a walking pattern, and animals 

can learn to walk in an altered fashion entirely without sensory input (Goldberger 1977, 

1988). However, sensory feedback can still substantially affect the walking pattern 

(Rossignol, Dubuc, and Gossard 2006). Sensory inputs can change the phase of gait 

and aid phase transitions (Duysens and Pearson 1980, Conway, Hultborn, and Kiehn 

1987). Sensory feedback can even change the phase in highly reduced preparations 

(paralyzed/fictive locomotion) where no other phasic sensory input enters the spinal cord 

(Andersson et al. 1978, Conway, Hultborn, and Kiehn 1987, LaBella, Niechaj, and 
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Rossignol 1992). In one particularly impressive study, the CPG was substantially 

impaired through hemisection of the spinal cord, and supraspinal input was also 

removed, but sensory feedback was still capable of driving locomotion (Kato 1989). 

Sensory input is important to the normal activation of muscles in walking, beyond just 

correcting for environmental perturbations. (Yang, Stein, and James 1991). In 

complicated walking tasks (e.g. ladder-walking, uphill/downhill walking, etc), 

performance is impaired and sometimes eliminated without sensory feedback (Bouyer 

and Rossignol 1998, Rossignol et al. 2002, Bouyer and Rossignol 2003b, Panek et al. 

2014). 

The following sections discuss the role of specific sensory modalities in walking. I 

summarize the results regarding load receptors (e.g. Golgi tendon organs), positional 

afferents (e.g. muscle spindle fibers), and cutaneous afferents. These are followed by a 

discussion of cross-afferent synergies and contributions from other limbs. 

2.1.3.1. Load Receptors in Walking 

Animals, including humans, have load receptors throughout their body that signal how 

much weight or force is being carried by muscles and joints. Load receptors are very 

important in walking (Dietz and Duysens 2000). 

In cats, ankle loading inhibits bursts in the flexor muscles (flexor bursts) and can extend 

the stance phase longer (Duysens and Pearson 1980), modulating the CPG. Other 

studies have found that ankle load receptors can reset the CPG (Conway, Hultborn, and 

Kiehn 1987). It has even been proposed that ankle load receptors are the most 

important sensory input for walking in decerebrate cats (Pearson 2008).  
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In humans with SCI, loading is important to generate normal gait. In one experiment, 

loading was required to generate correct EMG in one population (Dietz, Müller, and 

Colombo 2002). Another human SCI study found that if one leg is loaded and held 

stationary, rhythmic movements in the contralateral leg can induce rhythmic muscle 

activations in the stationary leg (Ferris et al. 2004). 

Other studies have found that some loading (body weight support, BWS) improves many 

aspects of walking in humans who have suffered neural injury. In spastic paretic human 

subjects, BWS improved EMG, straightened the trunk, and produced better knee 

alignment (Visintin and Barbeau 1989). Another study in spastic paretic humans found 

that loading combined with training can help improve subjects even after their 

performance has plateaued with other methods (Barbeau, Danakas, and Arsenault 

1993). In a study on human stroke subjects, load-bearing training produced 

improvements in functional balance, motor recovery, overground walking speed, and 

overground walking endurance (Visintin et al. 1998). The improvements in performance 

from load-bearing training (called body-weight-supported treadmill training, BWSTT) 

continue beyond the end of training in the SCI population (Wernig, Nanassy, and Müller 

1998). This result led to body-weight supported walking becoming a major tool for 

physical therapy in the SCI population. Lastly, in human infants (with their immature 

supraspinal centers) load-bearing locomotion improves the walking pattern (Pang and 

Yang 2000).  

2.1.3.2. Positional Afferents in Walking 

Humans and other mammals, have several groups of proprioceptors that report the leg 

position and velocity to the nervous system. The most well-studied subclass of positional 

afferents are the large, myelinated afferents from the muscle, known as muscle spindle 
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fibers. There are also other types of positional afferents from the muscles, joints, and 

skin. Together these afferents signal the locations and movements of the body to the 

nervous system (Rossignol, Dubuc, and Gossard 2006).   

Positional afferents, in particular hip afferents, are very important for walking. In 

spinalized cats, hip afferents were found to be the single most important afferent for 

walking (Pearson 2008). It is impossible to walk without moving one’s hips. In human 

infants, with their immature supraspinal centers, hip movements are very important to 

help generate the walking pattern (Pang and Yang 2000). Human infant studies have 

found that hips triggered gait phase changes in both forward and backward walking 

(Pang and Yang 2002). 

After hip afferents, ankle afferents are the most important. While only allowing ankle 

movement will not generate anything like normal EMG (Dietz, Müller, and Colombo 

2002), ankle afferents have been found to affect gait transitions in the cat (Conway, 

Hultborn, and Kiehn 1987). 

2.1.3.3. Cutaneous Foot in Walking 

The cutaneous afferents of the foot have many roles in walking. Their roles were 

recently reviewed in Zehr and Duysens (2004), Rossignol, Dubuc, and Gossard (2006), 

and Panek et al. (2014). Many of the experiments performed to understand their role 

have been denervation studies (elimination of peripheral nerves) in animal models. 

Generally, researchers have found that animals, including humans, can walk without 

cutaneous afferents, but that their role becomes more important in complicated walking 

tasks, such as ladder walking, obstacle avoidance, or precise foot placement (Bouyer 

and Rossignol 1998, Panek et al. 2014). In one study, cats could not perform ladder 

walking for the first 1-3 days after denervation, but by weeks 3-7, ladder walking had 
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recovered, likely through substitution from supraspinal centers (Bouyer and Rossignol 

2003b). However, even in the retraining studies, cats never walked in the same way as 

uninjured cats. For example, they no longer walked on the plantar surface of their foot, 

instead, adopting a claw-like foot position (Rossignol et al. 2002). In rats, acute 

hypothermic anesthesia resulted in altered walking kinematics (Varejao and Filipe 2007). 

In humans, hypothermic anesthesia also produces altered kinematics (Lin and Yang 

2011). 

In early studies, obstacle avoidance was identified as the primary role for cutaneous 

afferents during walking. In cats, obstacle avoidance is impaired if a local anesthetic is 

applied to eliminate cutaneous afferent signals (Prochazka, Sontag, and Wand 1978). 

Another study found kinematic adjustments made when cutaneous afferents were 

excited using a mechanical stimulus (Forssberg, Grillner, and Rossignol 1977). 

Later, the role of cutaneous afferents has become more nuanced. For example, it was 

identified that the role may be gait phase dependent, such that cutaneous afferents 

assisted with obstacle avoidance during swing and stabilization during stance (Zehr, 

Komiyama, and Stein 1997). Cutaneous afferents have been found to contribute 

substantially to the reflex regulation of balance and movement in mammals (Rossignol, 

Dubuc, and Gossard 2006). 

Although the role of cutaneous afferents may not be as strong as those of the hip 

afferents or load receptors in affecting gait changes, cutaneous afferents have been 

found to affect gait changes. Cutaneous foot afferents can affect the rhythm of walking in 

cats (Duysens 1977a) in different ways depending on whether the stimulus is delivered 

during stance or swing (Duysens and Pearson 1976). Lastly, cutaneous afferents have 

been shown to control the rhythmic movement in a human SCI subject (Bussel et al. 

1988, Bussel et al. 1996) 
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Cutaneous afferents affects other parts of the nervous system involved in walking. 

Cutaneous afferents can even modulate the reticulospinal system (Drew, Cabana, and 

Rossignol 1996), which contains the centers for the control of walking (Jordan, Pratt, and 

Menzies 1979, Steeves and Jordan 1980). Cutaneous afferents also appear to have 

direct access to the CPG (Lundberg 1979, Duysens and Van de Crommert 1998). The 

relationship of the CPG to cutaneous reflexes is discussed more thoroughly in section 

2.3.5.10. 

2.1.3.4. Cross-Afferent Synergies 

Much of the research on sensory afferents during walking has focused on reductionist 

approaches, attempting to identify the specific role of a specific type of afferent during a 

well-defined, but limited task. However, sensory afferents are built to work together. 

Multiple sensory signals tend to reinforce one another. In studies on human infants, 

loading and hip afferents appear to work together. The more load there was, the more 

hip flexion extended stance and delayed the following swing (Pang and Yang 2000). 

Human infants are very similar to spinalized cats in this regard. 

Cutaneous afferents have also been shown to scale corrective reflexes from other 

modalities (Bolton and Misiaszek 2009), and loading can change cutaneous reflexes 

(Bastiaanse, Duysens, and Dietz 2000). Cutaneous afferent signals from the bottom of 

the foot activate interneurons in concert with Group I afferents from the plantaris muscle 

(Hultborn 2001). 

2.1.3.5. Contributions from Other Limbs 

Sensory afferents affect both the ipsilateral limb and the contralateral limb, in some 

cases even affecting the other set of limbs (i.e. arms can affect legs and vice versa). 
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Stimulation of cutaneous afferents can produce an ipsilateral flexion reflex and a crossed 

(contralateral) extension reflex. (Sherrington 1910, Duysens, Loeb, and Weston 1980). 

There are many other forms of crossed coordination, including crossed flexor reflexes 

(Duysens and Loeb 1980). 

In humans with SCI, loading of a stationary limb, combined with rhythmic motions on the 

contralateral limb, will produce rhythmic muscle activations in the stationary limb (Ferris 

et al. 2004). In human infants, changes in swing on one side affected changes in stance 

on the other (Pang and Yang 2001). 

Coordination between arms and legs in quadrupedal animals shows task-dependence, 

and there is some evidence that humans do too, as precise hand movements can 

override the coupling (Dietz 2002). 

2.2. Spinal Cord Injury 

Spinal cord injury (SCI) is one of the most well-known examples of damage to the 

central nervous system. This section will briefly review the spinal cord, what happens 

when the spinal cord is injured, and how modern medicine approaches SCI. In all cases, 

there will be a particular focus on how walking is affected, and what happens with 

respect to sensory input. 

2.2.1. Spinal Cord 

To understand spinal cord injury, it is necessary to (briefly) review the spinal cord. From 

Principles of Neural Science (Kandel et al. 2014): 

The spinal cord is the most caudal part of the central nervous system 

and in many respects the simplest part. It extends from the base of the 

skull to the first lumbar vertebra. The spinal cord receives sensory 
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information from the skin, joints, and muscles of the trunk and limbs, 

and contains the motor neurons responsible for both voluntary and 

reflex movements. Along its length the spinal cord varies in size and 

shape, depending on whether the emerging motor nerves innervate 

the limbs or trunk; it is thicker at levels that innervate the arms and 

legs. 

The spinal cord is divided into a core of central gray matter and 

surrounding white matter. The gray matter, which contains nerve cell 

bodies, is typically divided into dorsal and ventral horns (so-called 

because the gray matter appears H-shaped in transverse sections). 

The dorsal horn contains an orderly arrangement of sensory relay 

neurons that receive input from the periphery, whereas the ventral 

horn contains groups of motor neurons and interneurons that regulate 

motor neuronal firing patterns. The axons of motor neurons innervate 

specific muscles. The white matter is made up in part of rostral-caudal 

(longitudinal) ascending and descending tracts of myelinated axons. 

The ascending pathways carry sensory information to the brain, while 

the descending pathways carry motor commands and modulatory 

signals from the brain to the muscles. 

The spinal cord is where many of the reflexes related to walking are processed. It is 

where the locomotor CPG(s) resides. Most signals to/from all parts of the body below the 

neck travel via the spinal cord, and those signals are modulated, changed, combined, or 

filtered by the neurons there.  
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2.2.2. Pathophysiology 

Injuries to the spinal cord come from many sources. They can be caused by an object 

cutting the spinal cord (e.g. bullet or knife), bruising (e.g. from a fall), ischemia (e.g. if a 

clot forms preventing blood to the spinal cord), or inflammation (e.g. from an adverse 

reaction to a medication). 

When a spinal cord is injured, there is the so-called primary injury, which includes the 

damage directly caused by the trauma, for example: sharp bone fragments, contusion, 

compression and concussion (Tator 1990). Following the primary injury, there are signs 

of inflammation within 15 minutes (Tator 1990), necrotic zones within a few days (Tator 

1990), and eventual degeneration of white matter tracts weeks after injury (Park, 

Velumian, and Fehlings 2004). Previously, this secondary injury was thought to be 

primarily caused by disruption of the vasculature (Tator 1990), but more recent research 

has focused on excitotoxicity (an excessive concentration of excitatory 

neurotransmitters) as the main cause (Park, Velumian, and Fehlings 2004). 

Although the damage from secondary injury may spread much farther than the initial 

insult, ultimately, the lesion will stabilize. Most often, the injury is incomplete, and some 

pathways to/from the brain remain undamaged.  Sometimes, the injury is complete, and 

there are no functional connection remaining to the brain (there may still be 

nonfunctional connections remaining). 

For the purposes of this dissertation, the most important change after spinal cord injury 

is that the oscillatory circuitry associated with generating a walking pattern in the spinal 

cord is disconnected (partially or completely) from the brain, impairing or eliminating the 

ability to walk. Although clinical interventions have improved substantially in the last 20 

years, many do not achieve the level of ambulation they would like (Anderson 2004), 
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and there is little we can offer to individuals with complete or the most severe incomplete 

injuries to help them recover the ability to walk. 

2.2.3. Clinical Assessment of Spinal Cord Injury 

Spinal cord injury is split into several categories. The most common method of division is 

the International Standards for Neurological Classification of Spinal Cord Injury ASIA 

Impairment Scale (ISNCSCI AIS), which divides SCI into AIS A, B, C, D, or E (Maynard 

et al. 1997): 

 AIS A: No sensory or motor function is preserved 

 AIS B: Some sensory, but no voluntary motor control 

 AIS C: Some motor control is preserved 

 AIS D: More motor control is preserved 

 AIS E: Someone who is neurologically normal after an SCI. 

In addition, the test also delineates where the injury occurred (i.e. which spinal 

segment). This dissertation focused on those with some preserved motor function (AIS 

C), and injuries above the lumbar enlargement (the part of the spinal cord where neural 

circuitry related to walking resides). 

2.2.4. Epidemiology 

There are an estimated 270,000 people with SCI in the United States, with 10,000-

12,000 new cases of SCI each year (Center 2012). There is no reliable census on the 

size of the SCI population in the entire world, but reports have shown a worldwide 

prevalence (people alive with the condition) of ~250-750/1,000,000 people and an 

incidence (new cases/year) of ~20-60/1,000,000 (Wyndaele and Wyndaele 2006, Chiu 

et al. 2010). There is no reliable census on the size of the SCI population in the entire 
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world, but if the documented prevalence is extrapolated to the world population, there 

are ~1.8-5.4 million people with SCI worldwide. 

In the US, SCI often affects people in the prime of their life, and it disproportionately 

affects males. Approximately 43% of the SCI population is paraplegic (functional loss 

does not include the arms), and among those 21.6% are complete paraplegics, while 

21.4% are incomplete paraplegics (Center 2012). 

2.2.5. Measuring the Quality of Walking after SCI 

For both basic and clinical research, assessing human or animal gait quantitatively after 

an intervention can give a great deal of insight into whether the intervention helped or 

not. In humans, most clinical researchers rely on tests that measure how far a subject 

can walk in a specific amount of time (e.g. 6-minute walking test), or how fast they can 

walk a specific distance (e.g. 10-meter walking test) (van Hedel, Wirz, and Dietz 2005).  

In animals, there are many approaches, primarily based on the walking pattern (i.e. 

kinematics). The Basso-Beattie-Bresnahan (BBB) scale for rats (Basso, Beattie, and 

Bresnahan 1995), and the Basso Mouse Scale (BMS) (Basso et al. 2006) are commonly 

used scales to categorically identify locomotion quality, involving the identification of 

specific kinematic features of rat and mouse gait. Other researchers have used even 

simpler approaches, such as the height of the foot in rats (Courtine et al. 2009) and cats 

(De Leon et al. 1999). The pattern of the hip and knee angles are also used by 

researchers (Wernig and Müller 1992, Field-Fote and Tepavac 2002, Courtine et al. 

2009). 

Electromyography (EMG) has been explored in many studies. In general, multiple traces 

are shown without quantification in a single metric (e.g. (Minassian et al. 2004, Harkema 

et al. 2011)), but EMG-envelope-based metrics have also been developed (Fung and 
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Barbeau 1989). One of the major difficulties with EMG-based metrics is that there is a 

large variability in EMG patterns, even among the uninjured population (Arsenault, 

Winter, and Marteniuk 1986, Winter and Yack 1987). 

2.2.6. Existing Approaches for Recovery 

The recovery from spinal cord injury includes a wide range of processes. The nervous 

system itself will mitigate some of the damage, and some recovery is possible without 

intervention. However, outcomes are better if physical therapy is incorporated. Other 

approaches have been pursued, including functional electrical stimulation and stem 

cells, with differing degrees of success. These processes and approaches are discussed 

in detail below. 

Immediately after spinal cord injury, there is a period of spinal shock, with flaccid muscle 

tone, loss of reflexes, and a general muscle paralysis below the injury (Holaday and Faden 

1982, Hiersemenzel, Curt, and Dietz 2000). Spinal shock generally progresses to 

spasticity over a period of months, where the muscles are tonically active (Hiersemenzel, 

Curt, and Dietz 2000). There is also some spontaneous recovery of function over the 

months or years after injury (Schwab and Bartholdi 1996). In humans, most of the recovery 

is in the first 3 months, but some spontaneous recovery will continue up to 1-1.5 years 

after the injury (Fawcett et al. 2007). Other mammals have a similar course, generally with 

animals demonstrating more functional improvement than humans post-injury (Rossignol 

et al. 1996, Belanger et al. 1996, Rossignol et al. 1999, Côté and Gossard 2004). 

This functional improvement is the result of two processes: remyelination and sprouting. 

In SCI, much of the myelin (a form of insulation in the nervous system) is lost, even on 

connections that remain intact. As part of the recovery, the nervous system remyelinates 

the remaining connections (Gensert and Goldman 1997). Axonal sprouting also occurs 
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after SCI, and is a major contributor to the recovery of function in the remaining tracts 

(reviews: (Schwab and Bartholdi 1996, Raineteau and Schwab 2001)). Sprouting has 

been found to parallel functional recovery in multiple rat injury models (Weidner et al. 2001, 

Fouad et al. 2001), and the remaining corticospinal tracts will even sprout onto cross-

lesional propriospinal tracts to route around the injury (Bareyre et al. 2004). 

Training has been found to assist with the functional recovery. In cats, it was discovered 

that locomotor training can even help a cat perform load-bearing locomotion after a 

complete SCI (Barbeau and Rossignol 1987). A similar approach (body-weight-supported 

training) was tried shortly after in human SCI, with positive results (Wernig and Müller 

1992). Studies found that body-weight-supported training would help once the spinal 

shock phase was complete (Dietz et al. 1998). 

This training proved to be strenuous for physical therapists to perform for extended 

sessions, and several robotic solutions have appeared (Colombo, Wirz, and Dietz 2001, 

Veneman et al. 2007, Banala et al. 2009). The Hocoma Lokomat was an early 

commercial device to assist with training (Colombo et al. 2000, Colombo, Wirz, and 

Dietz 2001). It provides body-weight support, and robotically moves the legs to match 

the walking pattern of an uninjured human. 

Another approach to address the reduced supraspinal control after an SCI is to provide 

that control via external devices. The approach to control muscles directly using external 

electrical stimulation is called functional electrical stimulation (FES). The study of FES 

began in the early 60s (Liberson et al. 1961), and has had some success with assisting 

SCI subjects to walk (Ragnarsson 2008), with additional health benefits beyond walking 

(Nash et al. 1997, Fornusek and Davis 2008), but issues with rapid fatigue are an 

ongoing problem (Thrasher, Graham, and Popovic 2005, Ragnarsson 2008). 
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There has been a great deal of research on pharmaceuticals, stem-cells, and 

biomaterials to explicitly cure spinal cord injury through regrowth of the lost connections. 

Substantial progress has been made in understanding the problem (Bradbury and Carter 

2011, McCall, Weidner, and Blesch 2012, Gage and Temple 2013, Kabu et al. 2015), 

but no cure exists yet. 

2.2.7. Sensory Input after Spinal Cord Injury 

As discussed previously, walking relies on three systems: supraspinal connections, 

central pattern generator(s), and sensory feedback. After SCI, the role of sensory 

feedback in walking is even more important (Rossignol and Frigon 2011). Many reflexes 

change in amplitude or even reverse directions in some cases, and the injury can cause 

the sub-lesional spinal cord to alter the functional connections in highly individual ways. 

2.2.7.1. Sensory Input is More Important after SCI 

Some of the earliest studies on SCI came from soldiers suffering bullet wounds that hit 

their spinal cords. An early finding from this population was that cutaneous reflexes tend 

to be larger after SCI (Lhermitte 1919). Later, researchers attributed the amplitude 

increase in cutaneous reflexes to a loss of supraspinal suppression (Zehr and Duysens 

2004). In the cat, these reflexes can also be normalized with training (Côté and Gossard 

2004). 

Cats can recover locomotion after SCI, even complete SCI, but sensory input is required 

for functional walking (Barbeau and Rossignol 1987). Several studies have attempted to 

answer what role sensory signals have in retraining the spinal cord after SCI. In general, 

these studies have found that loss of sensory input after SCI had a weaker effect than a 

sensory loss before the SCI, supporting the role of sensory feedback in recovery 
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(Carrier, Brustein, and Rossignol 1997, Bouyer and Rossignol 2003a). Partial 

denervation studies found that locomotion could be recovered after SCI without sensory 

feedback, but it was much slower than cats with normal sensory systems (Bouyer and 

Rossignol 1998). It also depended on the degree of partial denervation. If all cutaneous 

nerves were removed, that was sufficient to completely prevent recovery of locomotion 

(Bouyer and Rossignol 2003a, Bouyer and Rossignol 1998). Although it is not entirely 

clear why the recovery of walking is so closely tied to sensory input, studies have found 

that sensory afferents, after SCI, sprout new connections in the central nervous system 

(Helgren and Goldberger 1993). 

In other situations with reduced supraspinal inputs, similar results have been found. In 

human infants, sensory afferents have a larger role (Pang and Yang 2000), and 

stimulating large proprioceptors after decerebration in cats produces larger responses 

than in non-decerebrated cats (Whelan and Pearson 1997). In subjects with SCI, 

augmenting sensory feedback (stimulating the peroneal nerve) during training improves 

multiple measures of walking in humans with SCI (Ladouceur and Barbeau 2000b, 

Ladouceur and Barbeau 2000a). 

Sensory signals can even help recover locomotion if the CPG is impaired. In a powerful 

example of the sensory input, one study isolated a hemispinal cord (substantially 

impairing the CPG and eliminating supraspinal input), and they found that peripheral 

sensory signals were sufficient to recover locomotion (Kato 1989). 

2.2.7.2. Changes in Reflexes after SCI 

There are many changes in reflexes after SCI, including amplitude-changes, sign-

reversals, and appearance of new phases in the reflexes. 
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In animal studies, researchers have documented many of these changes. In complete 

injuries (spinalization) of the cat, the overall qualitative change is a reduction in inhibitory 

responses and an increase in excitatory responses (Frigon and Rossignol 2008). In 

partial SCI (of the cat), the responses were more complicated, but tended toward more 

excitation (Frigon et al. 2009). The dependency of the reflex responses to phase of gait 

becomes stronger, such that fully reversed reflexes can be evoked (Nakajima, 

Kamibayashi, and Nakazawa 2012). Interestingly, these changes in the reflexes partially 

normalize after training (Côté and Gossard 2004). 

After human SCI, similar changes have been found. In general, reflexes become larger 

in amplitude (cutaneous reflexes:(Lhermitte 1919), H-reflexes (Little and Halar 1985)). 

Long-latency reflex phases appear (Roby-Brami and Bussel 1987, Dietz et al. 2009). As 

in the animal models, the phase-dependency of reflexes increases (Yang and Stein 

1990, Zehr, Komiyama, and Stein 1997). Lastly, there is an increase in habituation (a 

reduction in the response to an identical stimulus after repeated application) after SCI 

(Schindler-Ivens and Shields 2000). 

Specific changes have been identified in the neural processing of the spinal cord post-

injury. Interneuronal connections in the spinal cord change after SCI (Gazula et al. 2004, 

Bareyre et al. 2004, Courtine et al. 2008). In some cases, inhibitory pathways can simply 

become excitatory through a reversal of ion gradients in some neurons (Boulenguez et 

al. 2010). 

2.2.7.3. Individualized Sensorimotor Processing after SCI 

Much of the research presented here discusses the most common responses, but there 

is substantial variability in uninjured animal and human sensorimotor responses, and 



27 
 

that variability only increases after SCI. Even within a given individual, the response to 

stimuli can change over time. 

Before injury, there is substantial variability in sensorimotor processing. During 

locomotion and reflex responses in the cat, there is significant inter-animal variability in 

terms of which muscles are active and how active they are (Loeb 1993). In human 

cutaneous nerve stimulation studies, the basic response varies substantially between 

studies (Brooke et al. 1997). Studies have shown that the physical activities (e.g. sports) 

subjects have participated in can affect reflex response (Nielsen, Crone, and Hultborn 

1993, Maffiuletti et al. 2001, Wolpaw and Tennissen 2001, Gruber et al. 2007). 

Sensorimotor processing is highly individualistic. Even in neurologically normal 

individuals, there is substantial variability in reflex responses based on age (Evans, 

Harrison, and Stephens 1990, Gibbs et al. 1999), level of activity (Loeb 1993), athletic 

history (Gruber et al. 2007, Wolpaw and Tennissen 2001, Maffiuletti et al. 2001), and 

other factors (Brooke et al. 1997). A number of studies have found further divergence 

after SCI in sensorimotor responses, including SCI level (Poirrier et al. 2004, Dietz et al. 

1999), severity (Rossignol et al. 1996), and time since injury (Hiersemenzel, Curt, and 

Dietz 2000). In one study, all animals underwent identical preparations, but half had 

increases in extensor EMG, while the other half had reductions (Belanger et al. 1996). In 

a human SCI study, the relationship between the early part of a reflex and a late part of 

that reflex varied across the subject population (Roby-Brami and Bussel 1987). In 

studies of human rehabilitation after SCI, one study observed that no two individuals 

showed similar patterns of coordination after an intervention (Field-Fote and Tepavac 

2002), and another study showed that individuals with SCI did not use consistent 

strategies to engage in an incline walking task (Leroux, Fung, and Barbeau 1999).  

There have been observations of individual SCI subjects in whom flexor stretches led to 
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excitation of extensors instead of flexors, reversing the normal relationship (VanHiel 

2012). 

Inappropriate motor recruitment can appear after SCI, often classified clinically under the 

umbrella term “spasticity”, including hyperreflexia (Schurch et al. 2000), hypertonia 

(Woolacott and Burne 2006), dyssynergias (Dykstra et al. 1988), and spasms (Young 

1994, Noreau et al. 2000). 

This variability has lead many researchers to treat human SCI as individually as feasible, 

such as the common approach of showing tables of individuals’ clinical details in 

research studies (for example in: Behrman and Harkema (2000) and Knikou (2005)). An 

approach that individually optimized treatment could be very effective in the SCI 

population. 

2.3. Sensory Stimulation and Walking 

Sensory stimulation can initiate, control, or modulate locomotion in nearly all species 

examined (Kiehn et al. 1998). Many studies have found sensory stimulation to be 

sufficient by itself to excite the CPG. For example, in phylogenetically lower mammals, 

sensory stimulus has been shown to produce long-lasting bouts of locomotion without 

any additional pharmacological agent (Sillar and Roberts 1992, Roberts et al. 1998), and 

in the isolated neonatal rat spinal cord, a walking-like alternation of activity can also be 

produced with nothing more than sensory stimulation (Marchetti, Beato, and Nistri 2001). 

Sensory stimulation can modulate or reset ongoing locomotor activity, demonstrating 

that sensory afferents have direct access to the CPG (Schomburg et al. 1998, McCrea 

1998, 2001, Hultborn 2001). Hip (Andersson and Grillner 1983, Kriellaars et al. 1994) 

and ankle afferents (Conway, Hultborn, and Kiehn 1987) can entrain locomotion 

frequency, affect gait state transitions (Grillner and Rossignol 1978b, Pang and Yang 
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2000), or change the phase of gait (Hultborn et al. 1998). Even reflexes that do not 

explicitly change the walking cycle show substantial differences depending on where in 

the cycle they are induced (Capaday and Stein 1986, Capaday and Stein 1987). Beyond 

these results, sensory stimulation can drive locomotion even with only an impaired CPG 

and without any supraspinal input (Kato 1989). 

When combined with pharmacology, load-bearing stepping can be evoked in many 

animals. In the acute spinalized cat, a combination approach involving L-DOPA (a 

precursor of dopamine) and sensory stimulation produced stepping (Jankowska et al. 

1967). 

Sensory stimulation is commonly implemented by electrically stimulating nerves with a 

series of identical pulses (same amplitude, same pulse width) at a specific frequency, 

starting at a specific time, and lasting for a specific duration (Granat et al. 1992, Collins, 

Burke, and Gandevia 2001, Field-Fote 2001, Field-Fote and Tepavac 2002, Wu et al. 

2011). This type of stimulation is often called “pulse trains.” Pulse trains are simple to 

understand conceptually, and they are easy for most labs to implement. 

It has long been established that longer pulse widths are slightly more selective for 

sensory axons across animal and human models (Erlanger and Blair 1938, Paillard 

1955, Veale, Mark, and Rees 1973, Panizza, Nilsson, and Hallett 1989, Panizza et al. 

1992). Therefore, many reflexes have been studied using a pulse width of 1 ms to 

selectively stimulate sensory fibers, including H-reflexes (Panizza, Nilsson, and Hallett 

1989, Lagerquist and Collins 2008), flexor reflexes (Toorring, Pedersen, and Klemar 

1981), transcutaneous spinal cord stimulation studies (Kitano and Koceja 2009), and 

muscle afferent stimulation (Wu et al. 2011). Not only are longer pulse widths more 

selective for sensory fibers, but the reverse is also true, as shorter pulse widths (0.05 to 

0.4 ms) preferentially activate motor axons (Grill and Mortimer 1996). 
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2.3.1. Potential for Fine-tuned Control and Assistance 

Beyond global changes in locomotion, sensory stimulation has been shown to have a 

nuanced role in locomotion, with the potential for fine-tuned control. Sensory stimulation 

can reset or modulate ongoing locomotor activity, demonstrating that these afferents 

have direct access to the CPG (Schomburg et al. 1998, McCrea 1998, Hultborn 2001, 

McCrea 2001). Hip (Andersson and Grillner 1983, Kriellaars et al. 1994) and ankle 

afferents (Conway, Hultborn, and Kiehn 1987) can entrain locomotion frequency, affect 

gait state transitions (Grillner and Rossignol 1978b, Pang and Yang 2000), or change 

the phase of gait (Hultborn et al. 1998). The stimulation of the largest myelinated 

afferents (Group I) inhibits flexor burst and causes gait phase changes during 

locomotion-like activity without additional sensory input (fictive locomotion) (Conway, 

Hultborn, and Kiehn 1987). 

Even reflexes that do not explicitly change the walking cycle show substantial differences 

depending on where in the cycle they are induced (Capaday and Stein 1986, Capaday 

and Stein 1987). 

2.3.2. Sensory Stimulation with Functional Electrical Stimulation 

Functional Electrical Stimulation (FES) is the use of electrical stimulation to directly modify 

walking patterns. It is most often associated with muscle stimulation through nerve 

stimulation that targets motor axons, not sensory axons (Peckham and Knutson 2005, 

Lynch and Popovic 2008). However, some muscles (e.g. iliopsoas) are inaccessible to 

surface stimulation, leading the FES community to make use of sensory stimulation. The 

earliest mention of FES incorporated peroneal nerve stimulation, which innervates part of 

the cutaneous surface of the foot, to induce hip flexion (Liberson et al. 1961), and 

cutaneous nerve stimulation has been used since (Granat et al. 1992). However, the focus 
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has not been on recruiting the CPG, but rather just utilizing the most convenient path to 

initiate hip flexion. 

Despite this limited use of sensory input, FES has primarily focused on direct muscle 

activation. This focus is understandable, as controlling motor output through muscles is 

much more straightforward than controlling motor output through the nervous system. 

However, this directly activating muscles is limited in many ways. There is a reversed-

order recruitment of the motor units (Peckham and Knutson 2005), where the larger, 

faster-fatiguing muscle fibers are recruited first before the smaller, more fatigue resistant 

fibers. This reverse-order recruitment leads to more fatigue as well as poorer grading of 

muscle force than a natural recruitment would entail. The incorrect muscle fiber 

recruitment order leads to more fatigue as well as poorer grading of muscle force. A more 

natural recruitment order would require the spinal interneurons to activate the 

motoneurons, but the only neurological signals that feed these interneuronal networks are 

supraspinal and sensory signals. In SCI, supraspinal signals are limited, leaving only 

sensory signals to activate these networks. 

Ragnarsson, 2008, wrote that “a major shortcoming of multichannel FES systems” is that 

normal motor activity depends on a “highly sophisticated sensory feedback”(Ragnarsson 

2008). FES systems are generally limited to the peroneal nerve for sensory stimulation 

(Gallien et al. 1995), and other forms of artificial sensory feedback are minimized through 

the use of very short pulse widths.  

2.3.3. Sensory Stimulation with Physical Therapy 

Physical therapists have utilized artificial sensory stimulation, including nonelectrical 

varieties, such as tapping the muscles during walking for many years (Perry 1967). Other 

researchers have explored vibration for affecting the CPG (Calancie et al. 1994), or 
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attempted to normalize patients towards better walking using electrical stimulation of 

reflexes (Bussel et al. 1988, Fung and Barbeau 1994). Lastly, there have been some 

attempts to use other sensory afferents in humans, including the sartorius muscle 

afferents (Wu et al. 2011). 

Sensory stimulation has been explored in combination with training with generally 

positive results. Peroneal nerve stimulation with training in humans with SCI improves 

various measures of walking (Ladouceur and Barbeau 2000b, Ladouceur and Barbeau 

2000a, Field-Fote 2001, Field-Fote and Tepavac 2002). 

2.3.4. Spinal Cord Stimulation 

Spinal cord stimulation (SCS) focuses on nonfocal stimulation of the spinal cord, and 

both epidural and transcutaneous varieties exist. The earliest work focused on a 

reduction in pain from epidural stimulation (Shealy, Mortimer, and Reswick 1967), 

followed by epidural stimulation to reduce pain from peripheral vascular disease in a 

subject with multiple sclerosis (Cook and Weinstein 1973). 

Transcutaneous Spinal Cord Stimulation (TSCS) was developed as a noninvasive 

alternative to epidural SCS. Transcutaneous SCS activates posterior roots in the same 

way as epidural stimulation, according to models (Minassian, Persy, Rattay, Dimitrijevic, 

et al. 2007, Ladenbauer et al. 2010, Danner et al. 2011). However, due to the distance 

from the target, and due to the paraspinal muscles located between the skin and spine, 

TSCS will tend to be less focal and unintentionally stimulate more musculature. 

In both epidural SCS (Coburn 1985, Holsheimer 1998, Rattay, Minassian, and 

Dimitrijevic 2000, Holsheimer 2002) and transcutaneous SCS (Minassian, Persy, Rattay, 

Dimitrijevic, et al. 2007, Danner et al. 2011), the lowest threshold target of SCS are the 
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large myelinated sensory afferents in the posterior roots. Therefore, these large 

myelinated dorsal roots are the primary activation target for SCS. 

2.3.4.1. Spinal Cord Stimulation may substitute for supraspinal drive  

Recently, there has been a lot of interest in SCS, as it may be effective as a replacement 

for the supraspinal drive in the CPG (Herman et al. 2002, Gerasimenko et al. 2003b, 

Ichiyama et al. 2005a, Harkema et al. 2011). In animal work, stimulation of the dorsal 

columns was very effective in eliciting locomotion in decerebrate cats (Beresovskii and 

Bayev 1988). Tonic stimulation of the dorsal surface of spinal cord (in cats) can produce 

rhythmic motion in both fore- and hind-limbs (Avelev et al. 1997, Gerasimenko et al. 

2003a), and similar results were found in rats (Ichiyama et al. 2005a). In humans, spinal 

cord stimulation (tonic/continuous stimulation) can produce reciprocal EMG activity (a 

weak form of stepping) when applied to complete SCI subjects (Rosenfeld et al. 1995, 

Gerasimenko and Makarovsky 1996, Gerasimenko et al. 1996, Shapkova, Shapkov, and 

Mushkin 1997, Dimitrijevic, Pinter, and Sherwood 1997, Dimitrijevic, Gerasimenko, and 

Pollo 1997, Shapkova and Schomburg 2000). It could also induce bilaterally alternating 

modulation of reflexes – a weak form of phase dependence similar to when a subject is 

walking (Shapkova and Schomburg 2000). Later work has found that it could assist with 

weight-bearing locomotion in specific cases (Herman et al. 2002, Harkema et al. 2011). 

2.3.4.2. Most Effective Stimulus Parameters 

Previous studies have found the most effective SCS frequencies for walking to be 20-50 

Hz. In cats, researchers have identified 20-35 Hz (Gerasimenko et al. 2003a). In rats, 

40-50 Hz appears to work best (Ichiyama et al. 2005b). Humans studies have identified 

25-60 Hz (Dimitrijevic, Gerasimenko, and Pinter 1998), 20-60 Hz (Herman et al. 2002), 

25-50 Hz (Minassian et al. 2004), 25-50 Hz (Minassian, Persy, Rattay, Pinter, et al. 
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2007), 30-40 Hz (Harkema et al. 2011), 30 Hz (Hofstoetter et al. 2013), 50 Hz 

(Hofstoetter et al. 2014), and 25-50 Hz (Danner et al. 2015) as the ideal stimulation 

frequencies. Most of these studies had few participants (often just one), and none 

attempted to use any sort of real-time optimization to find the best stimulation frequency. 

Some of the studies identified other effects of frequency. 5-15 Hz can assist with 

standing (Minassian et al. 2004, Minassian, Persy, Rattay, Pinter, et al. 2007). In a 

similar result, tonic activation switched to other patterns more conducive to walking at 

22.5 Hz (Danner et al. 2015). Stimulation frequencies above 50 Hz reduced EMG activity 

(Gerasimenko et al. 2003a), and can correct some motor pathologies (Hofstoetter et al. 

2014). Another study found slower EMG bursts with increasing frequency in the 30-70 

Hz range (Dimitrijevic, Gerasimenko, and Pinter 1998). 

The best spinal segment to stimulate at was generally identified as L2 (the top of the 

lumbar enlargement), although some studies found effective results as low as L4-L5. In 

cats, stimulating the L4-L5 spinal segments was effective (Gerasimenko et al. 2003a). In 

rats, stimulating the L2 spinal segment was effective (Ichiyama et al. 2005b). 

Most human epidural stimulation studies stipulated they targeted the “upper lumbar 

enlargement,” which is generally located at the spinal segments between L2 and L4 

(Herman et al. 2002, Minassian, Persy, Rattay, Pinter, et al. 2007). Other targets 

included: L2 (Dimitrijevic, Gerasimenko, and Pinter 1998), “vertebral levels ranging from 

T10 to L1” - roughly T12-L5 spinal segments (Minassian et al. 2004), L2-L4 spinal cord 

segments (Danner et al. 2015), and L1-S1 spinal cord segments (Harkema et al. 2011). 

In transcutaneous spinal cord stimulation, the targeting of spinal segments is more 

complicated as the spinal vertebrae levels are not the same as the spinal cord 

segmental levels in human adults. This discrepancy is due to the fact the spinal cord 
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does not grow at the same rate as the spine during development. In the human adult 

population, there is some variability in the exact location of the segments with respect to 

the spinal cord, and the end of the human spinal cord (the conus medullaris) can range 

from T12-L3, with a mean of the lower third of L1 (Saifuddin, Burnett, and White 1998). 

Therefore, the upper part of the lumber enlargement should be under the T11-T12 

vertebrae in most subjects. Most studies tended to follow that approach, specifying they 

were targeting the “T11-T12 interspinous space” (Minassian, Persy, Rattay, Dimitrijevic, 

et al. 2007), or “the T11 and T12 spinous processes” (Hofstoetter et al. 2013, Hofstoetter 

et al. 2014). 

Spinal cord stimulation works best in combination with other sensory inputs. Epidural 

stimulation in the rat has greatly reduced effectiveness, for example: if one leg is 

deafferented, it will have a poor walking gait with epidural SCS (Lavrov et al. 2008). 

Even when combined with a pharmacological agent (Quipazine: a sertonergic agent), 

epidural-SCS-induced stepping still required a moving treadmill (Gerasimenko et al. 

2007). In another study on spinalized rats, body-weight support (i.e. sensory input) was 

required to produce stepping (Ichiyama et al. 2005b).  

2.3.4.3. Spinal cord Stimulation as a Reflex Model 

SCS has been explored in reflex models as well. In the normal, awake rat, epidural 

stimulation produces early, middle, and late responses. Reflexes were observed in the 

vastus lateralis (part of the quadriceps muscle), semitendinosus (part of the hamstring 

muscle), tibialis anterior, and triceps surae (Gerasimenko et al. 2006). In humans, similar 

results have been found with TSCS (Minassian, Persy, Rattay, Dimitrijevic, et al. 2007). 

The reflexes from spinal cord stimulation are generally called posterior root motor 



36 
 

responses, and they can be used to confirm the position of the stimulating leads over the 

lumbar enlargement (Hofstoetter et al. 2014). 

2.3.5. Cutaneous Nerve Stimulation 

Cutaneous nerve stimulation is the stimulation of a mostly cutaneous nerve. Most nerves 

carry a mix of proprioceptive afferents, motor neurons, cutaneous afferents, and 

sympathetic efferents. Some nerves only carry cutaneous afferents and sympathetic 

efferents. In this section (and the remainder of the thesis), I will use the term cutaneous 

nerve to refer to those nerves that are all or mostly cutaneously focused (i.e. cutaneous 

afferents and sympathetic efferents). 

Stimulation of cutaneous nerves of the ankle/foot can generate a variety of responses, 

depending on the nerve stimulated and on the timing of the stimulation in the gait cycle, 

including flexion in the ipsilateral leg and/or extension in the contralateral leg. These 

responses are modulated differently from H-reflexes (Zehr, Hesketh, and Chua 2001) 

and differently from background EMG (Komiyama, Zehr, and Stein 2000). Most areas of 

the skin on the legs can produce these responses, but the largest responses tend to be 

from the foot and ankle (Duysens and Loeb 1980). 

There is a rich literature on cutaneous nerve stimulation, and I will not be able to review 

all of it in the context of this dissertation. I will focus on the major findings, beginning with 

a brief review of the afferents stimulated by cutaneous nerve stimulation.  

2.3.5.1. Cutaneous Sensory System 

To understand cutaneous nerve stimulation, it is necessary to briefly review cutaneous 

afferents. For a more thorough review, please consult (McGlone and Reilly 2010, Abraira 

and Ginty 2013). The differentiation of cutaneous afferents began with Müller’s work in 
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the 1800’s exploring whether different feelings were carried on the same nerve (Müller 

1843). Cutaneous feelings are often split into major groups: tactile, thermal, pain, itch, 

and pleasant touch (McGlone and Reilly 2010). Within each of those major groups, there 

are multiple subgroups (e.g. pain can be split into myelinated and nonmyelinated 

afferents, and further split by the precise response characteristics of the afferents). The 

cutaneous afferents can also be split based on whether the afferents innervate “hairy” 

skin or glabrous skin. The vast majority of the body is classified as hairy skin, even if 

only a very small amount of hair is there, but several important areas for the purpose of 

this research are glabrous, including the palms of the hand and the bottom of the foot. 

Entirely different sets of afferents (of each of the above types) innervate hairy and 

glabrous skin.  

Cutaneous afferents serve different roles depending on both the existence of myelination 

and the size of the axon. Myelinated afferents tend to serve a tactile discriminatory role 

(e.g. a quarter or a penny), while unmyelinated afferents tend to serve an affective-

motivational role (e.g. hand is itchy). The most well-studied afferent are the large 

myelinated afferents in glabrous skin. They are split based on how quickly they adapt to 

new stimuli into either fast-adapting (FA) and slow-adapting (SA). There are four types: 

(1) Pacinian corpuscles (FA), (2) Meissner's corpuscles (FA), (3) Merkel's disks (SA), 

and (4) Ruffini endings (SA). They are low-threshold mechanoreceptors, transducing 

mechanical forces on the skin into action potentials. Their axons tend to be large (>10 

µm), with fast conduction speeds (>80 m/s). They are called Aα or Aβ afferents, 

depending on their size, and have the lowest threshold to electrical stimulation – i.e. they 

will always be the first group stimulated. Hairy myelinated afferents are less well-studied, 

but also include varieties of both slow-adapting and fast-adapting. 
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There is also a group of lightly myelinated, smaller afferents called Aδ. These include 

mechanoreceptors and the largest pain afferents. They are not as well-understood as 

the Aα or Aβ afferents, but the pain afferents in this group carry the signals for “first-

pain”, which is the earliest feeling of pain from a noxious stimulus. It is differentiated from 

“second-pain”, which is signaled by unmyelinated afferents. 

Unmyelinated afferents are more diverse, and less well-characterized than the larger 

myelinated afferents (Aα and Aβ). They include pain afferents (multiple types), 

temperature afferents (both cold and hot), itch afferents, and even some low-threshold 

mechanoreceptors (Abraira and Ginty 2013), which may subserve “pleasant” touch 

(McGlone and Reilly 2010). 

These afferents are bundled into nerves, which can be stimulated electrically, as 

discussed in the following sections. 

2.3.5.2. Cutaneous Reflexes 

Substantial research has been conducted on cutaneous reflexes, their responses, and 

how they are organized. Cutaneous reflexes include both non-noxious varieties, often 

called cutaneomuscular reflexes, and noxious varieties, generally associated with 

withdrawal reflexes (Zehr and Duysens 2004, Rossignol, Dubuc, and Gossard 2006, 

Panek et al. 2014). 

In most studies, cutaneous reflexes are induced by electrical stimulation of either skin or 

nerves, but there are a few studies that use mechanical stimuli (Forssberg, Grillner, and 

Rossignol 1975, Forssberg, Grillner, and Rossignol 1977). The evoked response includes 

both ipsilateral and contralateral effects (Tax, Van Wezel, and Dietz 1995). These 

responses are modulated differently than H-reflexes (Zehr, Hesketh, and Chua 2001), and 
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do not follow general EMG activation (Forssberg, Grillner, and Rossignol 1977, 

Komiyama, Zehr, and Stein 2000) 

Both noxious (Schouenborg, Weng, and Holmberg 1994, Schouenborg 2002) and non-

noxious (Nakajima, Sakamoto, Tazoe, et al. 2006, Nakajima et al. 2009) stimuli produce 

cutaneous reflexes, converge on the same spinal motor pathways (Rossi, Zalaffi, and 

Decchi 1996), and are both modulated by gait (Schouenborg, Weng, and Holmberg 1994, 

Schouenborg 2002, Nakajima, Sakamoto, Tazoe, et al. 2006). However, noxious 

stimulation tends to produce more ipsilateral flexion (Forssberg 1979). 

The spinal organization of cutaneous reflexes is not fully understood, but there is 

evidence that the earliest phase of the reflex arrives at the motoneurons via di- and/or 

tri-synaptic connections. The longer-latency effects likely come from interneurons 

involved in walking and the CPG (Quevedo, Stecina, and McCrea 2005). There is also 

evidence that the system is organized as a set of modules, where each module performs 

a function related to the withdrawal efficacy during the task or context at which the 

stimuli is applied (Schouenborg, Weng, and Holmberg 1994, Schouenborg 2002). 

There has been some debate over the role of cutaneous reflexes. The classic view is that 

they are stumble-corrective reactions (Zehr, Komiyama, and Stein 1997). However, 

research has shown that the stumble-corrective hypothesis is oversimplified (Duysens et 

al. 1992), and that the reflexes play a more general role in shaping the gait pattern 

(Nakajima, Sakamoto, Tazoe, et al. 2006, Rossignol, Dubuc, and Gossard 2006). 

Supporting the view that these reflexes have more general roles is the fact that these 

reflexes also exist in the hands (Jenner and Stephens 1982), legs (Duysens and Loeb 

1980), and torso (Kugelberg and Hagbarth 1958). Among these locations, most studies 

have used hand-based cutaneous reflexes as their model. Hand reflexes have also been 



40 
 

found to be task-specific (Evans, Harrison, and Stephens 1989, Datta, Harrison, and 

Stephens 1989, Nakajima, Sakamoto, Endoh, et al. 2006). 

2.3.5.3. Cutaneous Reflex Phases 

The evoked cutaneous reflex response consists of several excitatory and inhibitory 

phases. These phases can be seen in both animal models and human, but they tend to 

be easier to evoke in models with less supraspinal influence. Multiple areas of the body 

have versions of these reflexes, including the hands, legs, torso, and feet. 

In the human foot, there are several identified phases in the response. I will discuss the 

general latencies, but it is important to note that there are significant differences in 

latency depending on the exact combination of nerve-stimulated and muscle-response-

studied – these are only rough guidelines. First, there is a short-latency inhibitory phase 

(<40 ms latency: (Zehr and Stein 1999)), followed by a longer latency excitatory phase, 

often called P1 (~50-60 ms: (Roby-Brami and Bussel 1987), ~70 ms latency: (Zehr and 

Stein 1999), <65 ms after the first stimulus: (Brooke et al. 1997), ~50-60 ms: (Shahani 

and Young 1971), ~50-60 ms: (Pedersen 1954)). This excitatory phase is generally 

inconsistent in human adults (Yang and Stein 1990, Van Wezel, Ottenhoff, and Duysens 

1997, Baken, Dietz, and Duysens 2005). Whether this first phase of the reflex is an 

onset-response or a post-stimulus response has not been well-studied, but there is 

evidence that this part of the reflex is connected to the beginning of the pulse train, not 

the end of the pulse train. For example, in longer duration pulse trains, this response 

may actually occur during the pulse train (Roby-Brami and Bussel 1987, Pearson and 

Collins 1993). The main reason for this lack of certainty is most likely that researchers 

use very short pulse trains (<20 ms duration), for which differentiation of the onset and 

offset responses is impossible. 
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After the conclusion of the pulse train (or after the P1 phase for very short pulse trains), 

there is another excitatory phase, often called P2. It can be found at a latency of ~70-80 

ms (75-100 ms: (Roby-Brami and Bussel 1987), 70-120 ms: (Brooke et al. 1997), ~80 

ms (Tax, Van Wezel, and Dietz 1995), 70-80 ms (Duysens et al. 1996), and 80-85 ms 

(Van Wezel, Ottenhoff, and Duysens 1997)). The P2 phase is the most reproducible of 

the phases in human adults (Yang and Stein 1990, Baken, Dietz, and Duysens 2005). 

There is also an inconsistent later phase (P3) after P2 in the cutaneous reflexes (Brooke 

et al. 1997), following an inhibitory period (Rossignol, Dubuc, and Gossard 2006). One 

study explored the late phases very thoroughly (Roby-Brami and Bussel 1987). They 

found that they were more likely to be produced with longer-duration and higher-

stimulation-strength pulse trains. Sometimes the latency of onset was as late as 450 ms, 

beyond the window many studies even explore. 

Although this discussion has been about the human foot reflexes, nearly identical 

reflexes exist in the hands. The responses there are generally termed E1 or E2 instead 

of P1 or P2. The first phase of the cutaneous hand reflex (E1) has been found to be 

spinally-mediated, while the second phase (E2) is supraspinally mediated (Evans, 

Harrison, and Stephens 1989), although an alternate hypothesis has been proposed that 

E2 is also spinal, but requires cortical inputs (Jenner and Stephens 1982).  

The physiological significance of these phases is not entirely clear, but a few 

observations have been made. P1 and P2 are modulated differently during gait (Baken, 

Dietz, and Duysens 2005, Rossignol, Dubuc, and Gossard 2006), and the contralateral 

response appears to be connected to P2 (Brooke et al. 1997, Rossignol, Dubuc, and 

Gossard 2006). In one study the contralateral and ipsilateral P2 response were observed 

to only be separated by 3 ms (Van Wezel, Ottenhoff, and Duysens 1997). Loss of 

supraspinal input after stroke is correlated with small or absent P2 reflexes during 
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walking (Zehr, Fujita, and Stein 1998). After SCI, P2 is reduced (Jones and Yang 1994), 

and patients with hereditary disorders of their corticospinal tract also have reduced P2 

reflexes (Duysens et al. 2004). The recovery of P2 is correlated with walking recovery in 

people with SCI (Dietz et al. 2009). Interestingly, the analogous reflex in the hand (E2) is 

also associated with the development of skilled, rapid finger movements during 

adolescence (Evans, Harrison, and Stephens 1990). 

P1 appears to be purely spinal (Baken, Dietz, and Duysens 2005). In human adults, it is 

difficult to elicit (Yang and Stein 1990, Van Wezel, Ottenhoff, and Duysens 1997, Baken, 

Dietz, and Duysens 2005). In cats it is somewhat easier to elicit the P1 phase 

(Rossignol, Dubuc, and Gossard 2006). 

2.3.5.4. Local Sign 

Cutaneous reflexes demonstrate a local sign in the motor response – i.e. the response 

may change direction depending on where the limb was when the stimulus was applied. 

For example, the motor response from a stimulus while the foot is in one position might 

be the opposite of what it would have been if the limb were in another location (i.e. reflex 

reversal). The differing response will even affect how the contralateral side responds to a 

stimulus. 

This phenomenon of limb position affecting a stimulus response has been known since 

at least 1877, when Gergens noted that in dogs with partial decerebration, the scratch 

reflex in the hind-limb could be changed by the position of the limb (Gergens 1877). 

Later, Magnus published a series of studies (Magnus 1909a, Magnus 1909b) exploring 

the phenomenon more thoroughly. He found that passive flexion promotes extension in 

the response, while passive extension promotes flexion. In the second study (on cat 
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tails), he found the direction of tail movement was in the direction of the muscles being 

stretched. 

Since those early studies, this phenomenon has been observed in many species and 

many types of cutaneous reflexes. “Local sign” has been observed in humans (Kugelberg 

and Hagbarth 1958, Nakajima, Sakamoto, Endoh, et al. 2006), dogs (Magnus 1909a, 

Magnus 1909b), guinea pigs (Brown 1911b), rats (Schouenborg 2002), and cats (Grillner 

and Rossignol 1978a). It has been observed in multiple cutaneous reflexes, including 

human hand reflexes (Nakajima, Sakamoto, Endoh, et al. 2006), human abdominal 

reflexes (Kugelberg and Hagbarth 1958), and human foot reflexes (Nakajima, Sakamoto, 

Tazoe, et al. 2006, Nakajima et al. 2009). The local sign phenomenon is generally easier 

to observe in subjects or animal models with less supraspinal influence (Gergens 1877, 

Brown 1911b, Kugelberg and Hagbarth 1958, Grillner and Rossignol 1978a, Rossignol 

and Gauthier 1980). 

The local sign phenomenon is not limited to just the ipsilateral side either. Cutaneous 

reflexes produce a contralateral response, and how the contralateral side responds is 

dependent on the initial position of the contralateral limb (Grillner and Rossignol 1978a, 

Duysens, Loeb, and Weston 1980). Similar to the ipsilateral response, researchers have 

found that the stretch receptors are the most important afferent serving the contralateral 

local sign in reflex responses (Rossignol and Gauthier 1980). 

2.3.5.5. Nerve Specificity 

Cutaneous nerve stimulation in the foot produce both nerve-specific and nerve-aspecific 

features (Zehr and Duysens 2004). These similarities and differences are often task-

specific. For example, the sural, peroneal, and tibial nerve produce different facilitatory 

responses in the tibialis anterior at the end of the stance phase, but all three produce the 
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same suppressive response in the tibialis anterior at the end of the swing phase (Zehr 

and Duysens 2004). 

Stimulation of the cutaneous nerves of the foot and leg produce very similar responses 

in many cases. During human standing there is a general lack of nerve specificity 

(Komiyama, Zehr, and Stein 2000). In experiments on decerebrate and spinal cats, 

stimulation of different nerves produces responses with different amplitudes in the 

muscles, but those responses are modulated similarly (LaBella, Niechaj, and Rossignol 

1992). During stance (in humans), the peroneal and tibial nerve were found to evoke 

similar, small responses in the biceps femoris (Van Wezel, Ottenhoff, and Duysens 

1997). In human walking, stimulation of sural and tibial nerves showed similar results at 

both low and high stimulus intensities during the swing phase (Duysens et al. 1990). 

There are also many differences in the responses evoked when different nerves are 

stimulated. Peroneal nerve stimulation produces more suppression of tibialis anterior 

than tibial nerve stimulation does (Zehr, Komiyama, and Stein 1997). Peroneal nerve 

stimulation excited the biceps femoris, but tibial nerve stimulation suppressed it (Van 

Wezel, Ottenhoff, and Duysens 1997). The differences between nerves are often 

stronger during walking than standing (Komiyama, Zehr, and Stein 2000), and within gait 

the differences are stronger during swing than stance (Zehr, Komiyama, and Stein 1997) 

With the similarities and differences between the nerves, the posterior tibial nerve has 

several advantages as a stimulation site. It produces responses across multiple muscle 

groups (Yang and Stein 1990). In cat studies, a branch of the posterior (or distal) tibial 

nerve has shown strong effects on the CPG even during fictive locomotion (Guertin et al. 

1995). In another study, researchers found that a branch of this nerve was better than 

any other cutaneous nerve in the leg to reset the rhythm of fictive locomotion (Frigon, 

Sirois, and Gossard 2010). 
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2.3.5.6. Afferent-Population/Stimulus-Intensity Dependence 

As the stimulation strength increases, the largest myelinated afferents (Aα/Aβ) are 

recruited first. These large afferents carry the signals for vibration and non-painful skin 

stretch. The next set of thresholds recruit the smaller myelinated afferents (Aδ) that 

include the signals associated with hair movement on the skin and “first-pain”. If 

stimulation strength is increased further, the stimulation will also recruit the unmyelinated 

afferents (C) that transduce “second-pain”, temperature, itch, and additional mechanical 

information from the skin. With each additional population, the cutaneous reflexes 

change. 

Stimulation of low-threshold (Group I or Aα/Aβ) tends toward increasing extension in 

either the current stance phase or following stance phase, while stimulation of high-

threshold myelinated afferents (Group II/III or Aδ) tends towards more flexion. In an 

intact cat model, noxious stimulation (mechanical stimulation) consistently produced 

increased flexion, while non-noxious stimuli produced flexion during swing and extension 

during stance (Forssberg 1979). In a decerebrate cat model, both types of stimulation 

extended stance if applied during stance, but the responses diverged during swing, with 

low-intensity stimulation producing earlier extension and high-intensity stimulation 

producing increased flexion (Duysens 1977b). In a fictive locomotion cat model, low-

intensity stimulation (Group I) tends to prolong the extension phase during the late 

extension phase, or initiate an extensor burst during flexion. Stronger stimulation (Group 

II or III) produced a mix of results – sometimes resetting to flexion, other times to 

extension. (Schomburg et al. 1998). Results in human subjects are similar, where a mix 

of responses were found from low intensity stimulation, while high intensity stimulation 

tended toward suppression of extension activity (Duysens et al. 1992) or increased 
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flexion (Duysens et al. 1990), with some differences depending on precisely when during 

gait stimulation was applied. 

The differences in responses have also been explored in terms of the phases of the 

cutaneous reflex. As might be expected with the additional recruitment of slower 

afferents (i.e. it takes longer for the signal to reach the nervous system), the latter 

phases of the reflex are affected more than the earlier phases. In a study on 

anesthetized cats, researchers found that stimulation of the higher threshold afferents 

caused the later parts of the response to become stronger – i.e. they made the late 

inhibitory phases more inhibitory, and the late excitatory phases more excitatory 

(LaBella, Kehler, and McCrea 1989). Similar results were found in human SCI subjects 

(Roby-Brami and Bussel 1987), with the additional observation that increased intensity 

(increased recruitment of afferents) led to an increase in the latency of the late phase of 

the cutaneous reflex. 

The afferents that can produce flexion when stimulated are sometimes referred to as 

flexor reflex afferents. However, flexion can be produced by a wide range of afferents 

under different circumstances (including both cutaneous and proprioceptive afferents), 

as discussed above. Many afferents that can produce flexion are also active in normal 

locomotion, leading some researchers to disagree with the use of the term “flexor reflex 

afferents” to describe these populations (Lundberg 1979, Hultborn 2001). 

2.3.5.7. Task Dependence 

Cutaneous reflexes depend on the task being performed. One of the earliest reports 

(Lisin, Frankstein, and Rechtmann 1973) studied stroke patients, uninjured humans, and 

decerebrate cats. The study found that the sural nerve, which normally evoked flexion 

during standing, could evoke extension during walking. This result has been followed by 
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a substantial body of work, reviewed in Zehr and Stein (1999) and Dietz (2002). I will 

briefly review the relevant findings. 

There are differences in reflex responses between static positions and dynamic movement 

(Brooke et al. 1997). During standing (in cats), low-strength stimulation often results in 

extension (stabilizing), while the responses during walking can change based on when the 

stimuli is applied (Duysens and Pearson 1976), and similar results have been found with 

mechanical stimulation (Forssberg, Grillner, and Rossignol 1977). In another study, 

standing reflex responses showed a lack of nerve specificity (Komiyama, Zehr, and Stein 

2000). Among the cutaneous reflex phases, the most reproducible response in humans 

was the middle latency response (50-90 ms), which was not reproducible in standing 

(Yang and Stein 1990). Standing reflexes and walking reflexes have differences, but the 

greatest similarity is between reflexes during standing and reflexes during the stance 

phase (Yang and Stein 1990). Some of these task differences are likely due to the addition 

of the CPG during dynamic movements (Dietz 2002). 

However, the task-based differences in cutaneous reflexes are not limited to whether or 

not the CPG is recruited. In human hand studies, the responses change depending on 

what task is being performed, based on whether the fingers were used together or the 

fingers were isolated (Evans, Harrison, and Stephens 1989, Datta, Harrison, and 

Stephens 1989, Nakajima, Sakamoto, Endoh, et al. 2006). There are differences in human 

cutaneous responses in the feet between running and walking (Duysens et al. 1993). In 

humans, even tasks like standing on one foot or a tilted platform can change the reflex 

responses (Burke, Dickson, and Skuse 1991). Another study exploring human foot 

reflexes found that at least some of the changes in foot reflexes are dependent on ankle 

muscle activation (Nakajima et al. 2009). 
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2.3.5.8. Gait Phase Dependence 

There is an extensive literature on the dependence of cutaneous reflexes on the phase 

of gait in both animals and humans. The changes in cutaneous reflexes during gait go 

beyond the basic differences based on where the foot is (local sign) or task-dependency 

of responses (Zehr and Stein 1999). I will briefly review the major findings in this section. 

As with many subtopics of research on walking, gait phase dependence is better-studied 

in cats than in humans. In the late 1970s and early 1980s, the first major studies on the 

subject documented that reflexes changing during gait in animals. They found that 

stimulation during stance prolongs extension, and stimulation during swing prolonged 

flexion – in both cases resulting in changes to the gait cycle (Duysens and Pearson 

1976, Duysens 1977b). In a particularly dramatic example (using a spinalized cat 

model), they were able to show completely opposite recruitment (reflex reversal) in 

different parts of the gait cycle depending on when a mechanical stimulus (a small straw) 

was applied to the paw. Agonists were recruited in one phase of the gait cycle, and the 

antagonists in the other phase (Forssberg, Grillner, and Rossignol 1975). When higher 

intensity stimulation is used (recruiting smaller cutaneous afferents), the balance shifted 

towards more shortening of the extensor bursts, and more prolonging of the flexor bursts 

(Duysens 1977b). 

Gait phase dependence is at least partially caused by the CPG. Gait phase dependence 

remains during fictive locomotion (i.e. no leg movement, therefore no sensory inflow) 

(Andersson et al. 1978, Rossignol, Julien, and Gauthier 1981, Schomburg et al. 1998), 

even when the fictive cat is also decerebrated (limited supraspinal combined with a lack 

of sensory inflow) (LaBella, Niechaj, and Rossignol 1992). Later research confirmed that 

these results were not just limited to electromyography (EMG) through the study of gait 
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phase dependence in the kinematic response to cutaneous stimulation (Drew and 

Rossignol 1987). In addition, although there are differences between the nerves in terms 

of the amplitudes of responses in different muscles, the modulation of those responses 

tend to be similar (LaBella, Niechaj, and Rossignol 1992).  

Gait phase dependence does not just affect the ipsilateral response; it also affects the 

contralateral response. Classically, when the ipsilateral leg is stimulated to induce 

flexion, the contralateral leg will extend. However, if the ipsilateral leg is stimulated 

during swing and the contralateral leg is therefore in stance, the contralateral leg will 

yield (Duysens and Stein 1978). Other researchers have noticed similar contralateral 

reflex reversals, calling the reversed reflex the crossed flexion reflex (Duysens, Loeb, 

and Weston 1980, Rossignol, Julien, and Gauthier 1981). 

There has been some argument about whether the reflexes are only modulated or truly 

reversed (Duysens and Loeb 1980). Although this debate is partially a semantics issue, 

the fact remains that neurologically impaired animals show much stronger phase-

dependence of their reflexes than uninjured animals (Forssberg, Grillner, and Rossignol 

1975, Duysens and Loeb 1980), such that true reflex reversals can be observed in some 

cases. 

The study of gait phase dependence in human cutaneous reflexes quickly followed the 

animal work, beginning with an observation that the nociceptive version of the cutaneous 

reflex was phase-dependent (Crenna and Frigo 1984). In the 1990s, substantially more 

work was completed, including observations of reflex reversal (Yang and Stein 1990, 

Zehr, Komiyama, and Stein 1997), differences between high and low intensity phase 

dependence (Duysens et al. 1990), and comparisons of stimulating different cutaneous 

nerves (Duysens et al. 1990, Van Wezel, Ottenhoff, and Duysens 1997, Zehr, 

Komiyama, and Stein 1997, Zehr and Duysens 2004).  
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Although cutaneous reflexes are phase dependent, they are uncoupled from background 

EMG. This uncoupling is different from the H-reflex (Zehr, Hesketh, and Chua 2001), 

which is known to be coupled to motor neuron excitability (Schieppati 1987). Similar 

results have been found in neurologically normal humans (Komiyama, Zehr, and Stein 

2000, Zehr et al. 2007). 

Some researchers have attempted to answer why there is gait phase dependency in the 

reflexes – i.e. what purpose does it serve. During swing, the primary goal of the reflexes 

is most likely obstacle avoidance (Eng, Winter, and Patla 1994, Zehr, Komiyama, and 

Stein 1997, Schillings et al. 2000). During stance, the primary role is probably gait 

stabilization (Zehr, Komiyama, and Stein 1997). Other researchers have put forward 

arguments that the obstacle avoidance hypothesis is oversimplified, and that the open 

and closing of reflex circuits is more about CPG involvement than stumble correction 

(Duysens et al. 1992). It has also been shown that gait phase dependence occurs 

among interneuronal networks, and motoneurons are either facilitated or depressed 

together (De Serres, Yang, and Patrick 1995). 

Although most of these studies have been performed during walking tasks, gait phase 

dependency affects many other rhythmic tasks that humans and animals perform. 

Studies have found similar (but not identical) gait phase dependence of the cutaneous 

reflexes between human walking and running (Duysens et al. 1992, Tax, Van Wezel, 

and Dietz 1995) and between overground walking and walking in a robotic orthosis 

(Nakajima, Kamibayashi, and Nakazawa 2012). There is phase dependence in 

cutaneous reflexes with human backward walking (Duysens et al. 1996), cycling (Brown 

and Kukulka 1993, Zehr, Hesketh, and Chua 2001), and modified forms of walking (Zehr 

et al. 2007). 
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2.3.5.9. Other Dependencies 

In addition to local sign, nerve-specificity, afferent-population-dependence, task-

dependence, and gait-phase-dependence, there are other factors that have been 

observed to affect cutaneous reflex responses. 

Cutaneous reflex responses can change with age. A study of hand reflexes in humans 

showed age-based differences in children both with and without cystic fibrosis (Gibbs et 

al. 1999). In a study comparing human babies, children, and adults, they found that 

longer-latency phases of cutaneous finger reflexes tend to become more dominant with 

age, and that these longer-latency phases are also related to the ability to perform rapid 

finger movements (Evans, Harrison, and Stephens 1990). 

Cutaneous reflexes are affected by the length of the pulse train applied, but only a few 

studies have explored this dependency. In one study, longer pulse trains had a similar 

effect as stronger pulse trains – they both delayed the late (P3) motor response to the 

stimulation (Roby-Brami and Bussel 1987). In fictive locomotion preparations, there have 

been mixed results.  In chemically-induced locomotion (Conway, Hultborn, and Kiehn 

1987) and “spontaneous locomotion” (Frigon, Sirois, and Gossard 2010), prolonged 

stimulation maintained muscle activity, impairing locomotion. However, in MLR-

stimulated locomotion, prolonged stimulation did not show the same result (Gossard et 

al. 1994). 

Frequency dependence has been noted extensively in the pain literature, but it is poorly 

studied in the reflex and locomotion literature. For example, wind-up is a well 

documented phenomenon in the literature (Mendell and Wall 1965), defined by (Herrero, 

Laird, and Lopez-Garcia 2000) as “a progressive, frequency-dependent facilitation of the 

responses of a neuron observed on the application of repetitive (usually electrical) 
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stimuli of constant intensity.” Wind-up is often observed at frequencies above 5-10 Hz in 

the flexor reflex (Arendt-Nielsen et al. 1994). Aside from noting that frequency-

dependence exists, there are no studies reporting on the relative efficacy of using 

different high frequencies in sensory stimulation. 

2.3.5.10. Cutaneous Reflexes and the CPG 

Cutaneous reflexes are thought to be closely coupled to the CPG. Cutaneous reflexes 

can affect the gait pattern, even initiating it in some cases. In addition, the CPG can 

affect cutaneous reflexes, modulating the reflexes through the gait cycle.  

Cutaneous reflexes can modulate, and even initiate, the CPG. Cutaneous afferents, 

among others, can initiate/prolong extension or initiate/prolong flexion, depending on 

when and how they are applied, resetting the CPG rhythm (Schomburg et al. 1998, 

McCrea 2001). Cutaneous reflexes can initiate locomotion in some cases. In early 

experiments (Jankowska et al. 1967, Lundberg 1979), single pulse trains on flexor reflex 

afferents (including cutaneous afferents) were shown to evoke brief periods of 

alternating activity in a cat model with dopamine. It has been proposed that flexor 

reflexes have direct access to the flexor-half-center part of the CPG (Duysens and Van 

de Crommert 1998). 

The CPG modulates cutaneous reflexes. During walking tasks, longer-latency reflex 

responses can appear, and are likely caused by the sensory inputs on the CPG (Bussel 

et al. 1996, Quevedo, Stecina, and McCrea 2005). Cutaneous reflex reversal, the 

complete reversal of the reflex between gait phases, demonstrates that the CPG can 

strongly modulate the reflex pathways (Nakajima, Kamibayashi, and Nakazawa 2012). 

Gait phase dependence remains during fictive locomotion (i.e. no leg movement 

therefore no sensory inflow) (Andersson et al. 1978, Rossignol, Julien, and Gauthier 
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1981, Schomburg et al. 1998), even when the fictive cat is also decerebrated (limited 

supraspinal combined with the lack of sensory inflow) (LaBella, Niechaj, and Rossignol 

1992). Later research confirmed that these results were not just limited to EMG through 

the study of gait phase dependence in the kinematic response to cutaneous stimulation 

(Drew and Rossignol 1987). In addition, although there are differences between the 

nerves in terms of the amplitudes of responses in different muscles, the modulation of 

those responses tend to be similar (LaBella, Niechaj, and Rossignol 1992). 

Cutaneous reflex responses demonstrate a coupling with the CPG. The timing of the 

reflex phases in fictive, pharmacological, and lesion preparations suggests involvement 

of the CPG (Burke 1999). During walking tasks, there is a long-latency contralateral 

facilitation (from cutaneous stimulation) during walking, similar to the half-center 

oscillator model of the CPG (Bussel et al. 1989). 

2.3.5.11. Clinical Use of Cutaneous Nerve Stimulation 

Clinicians and clinical researchers have made use of cutaneous nerve stimulation in 

studies. It is either used as part of a functional electrical stimulation approach (Granat et 

al. 1993, Ragnarsson 2008), or independently of other stimulation (Ladouceur and 

Barbeau 2000b, Ladouceur and Barbeau 2000a). Clinical approaches have often used 

very short pulse trains (<=6 pulses) at high frequency (>=200 Hz) (Tax, Van Wezel, and 

Dietz 1995, Van Wezel, Ottenhoff, and Duysens 1997, Zehr, Komiyama, and Stein 1997, 

Zehr, Hesketh, and Chua 2001). 

The combination of functional electrical stimulation (FES) and cutaneous afferent 

stimulation has a long history, going back to the first paper on FES (Liberson et al. 

1961). In the context of FES, there are no non-invasive ways to stimulate the hip flexors 
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directly, so cutaneous nerve stimulation is a convenient way to produce hip flexion 

(Granat et al. 1993, Ragnarsson 2008). 

Some researchers have also explored the combination of classical physical-therapy-

based training with cutaneous nerve stimulation. It was found that training with sensory 

stimulation outperformed training without stimulation across multiple performance 

metrics (Ladouceur and Barbeau 2000b, Ladouceur and Barbeau 2000a). 

2.3.6. Time-Varying Effects in the Nervous System from Stimulation 

Most studies on sensorimotor responses assume that the subject’s responses will 

remain basically the same for an entire experimental session. In many cases though, 

humans and animals undergo changes that are relevant at the timescale of experimental 

studies. The best studied of these phenomena are sensitization and habituation. 

Habituation is the reduction in a response to a repeated, identical stimulus (Harris 1943). 

Habituation affects a great range of reflexes, across a great range of species, with 

examples documented from amoebas to insects to mammals (Harris 1943). Habituation 

is dependent on how fast the stimulus is repeated (Lombard 1887, Dimitrijevic and 

Nathan 1969, Schindler-Ivens and Shields 2000), and habituation is greater after SCI 

(Prosser and Hunter 1936, Schindler-Ivens and Shields 2000, Dimitrijevic and Nathan 

1969). 

A specific type of habituation documented in humans after severe SCI is EMG 

exhaustion (Dietz and Müller 2004). It consists of the decline and eventual elimination of 

EMG during an assisted motor task (such as walking). It has been observed in 

individuals with severe SCI walking in a robotic orthosis for as little as ten minutes (Dietz 

and Müller 2004). EMG exhaustion in specific subjects is also associated with reflex 

differences, such as the loss of the early phase of the flexor reflex (Dietz et al. 2009). 
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Reflexes can also undergo sensitization (or potentiation), an increase in the amplitude of 

the response to an otherwise identical stimulus. A well-known example is post-tetanic 

potentiation, where a reflex pathway can be amplified for a few minutes after the 

cessation of a tetanic (constantly on) stimulus (Lloyd 1949). Several types of potentiation 

occur in pain-related pathways, including wind-up (Herrero, Laird, and Lopez-Garcia 

2000), hyperalgesia, and allodynia (Woolf 2011).  

There are also other more complicated short-term changes in neural responses. In a 

human infant study, infants continued to step high even after removal of an electrical 

stimuli that was previously applied phasically. It took several steps before they reverted 

to normal (Pang, Lam, and Yang 2003). 

These short-term changes occur at the timescale of seconds to minutes, which will 

cause subjects’ responses to vary in time within experimental sessions. The responses 

will vary in time even more after SCI. 

2.4. Optimization 

Optimization is the branch of applied mathematics that attempts to solve how to best 

achieve some goal. The goal must be defined mathematically, then a search algorithm 

will move through the input space (i.e., tweak “dials”) to get the best output.  

Because of the relative brevity of this section, whole classes of optimization algorithms 

are necessarily ignored, including evolutionary methods (with the exception of genetic 

algorithms), temporal difference methods, stochastic, linear, and convex programming, 

and many more. Despite this, I attempted to cover the relevant approaches for this 

dissertation. 



56 
 

2.4.1. Derivative-Based Optimization 

In the simplest formulation, the optimization algorithm has access to an objective 

function as well as the gradient of that objective function with each sample. There is only 

one minima (or maxima). There is no noise, and the system is time-invariant. 

A popular and representative algorithm for this type of problem is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Broyden 1970, Fletcher 1970, Goldfarb 1970, 

Shanno 1970). BFGS uses estimates of both the 1st derivative (the gradient) and the 2nd 

derivative (the convexity) to estimate where to check the algorithm next. BFGS (and its 

variants) can optimize in systems with >1,000 variables, but they only solve single-

minima/no-noise/time-stationary/gradient-available systems. 

2.4.2. Derivative-Free Optimization 

Although derivative-based algorithms (discussed above) are fast and scalable, there are 

many cases where the derivatives are unavailable. In some of those cases, derivatives 

can be calculated from finite differences, but if the function evaluations are expensive, 

the cost may be prohibitive. If function evaluations are noisy, derivatives based on finite 

differences will tend to be useless (Conn, Scheinberg, and Vicente 2009). 

Derivative-free optimization (DFO) has been developed to address these types of 

problems, but it is very limited compared to derivative-based optimization. Derivative-

based algorithms can scale to problems with 1000’s of variables, or even 100,000’s of 

variables in specific problem types. With derivative-free optimization, the scale of the 

problems can only go up to a few hundred variables in the easiest cases (Conn, 

Scheinberg, and Vicente 2009). 
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In addition, the solutions from derivative-free approaches tend to be of lower quality than 

those produced by derivative-based optimization, as the knowledge of a derivative of 

zero (or very close to zero) will give strong evidence of being at or near a minimum. 

Without that check, it is more difficult to be certain of how close a near-optimal solution is 

to the actual optimum. 

The most well-known historical algorithm in this class is downhill simplex (Nelder and 

Mead 1965). Downhill simplex is easy to understand and implement, but suffers from 

several flaws, such as lacking a guarantee of convergence. In fact it is known to not 

converge in specific classes of problems (Woods 1985, McKinnon 1998).  

Modern DFO algorithms are often based on trust-regions, which form an estimate of 

local curvature in a region (Conn, Scheinberg, and Toint 1998, Powell 2006).  

2.4.3. Global Optimization 

The central goal of global optimization is to find the best solution in a system that may 

have multiple local optima. It is generally applied in constrained or bounded systems. 

There are many approaches to global optimization. Some are limited to specific problem 

classes, such as branch-and-bound, which requires a convenient way to calculate the 

upper and lower bound of a region of the space. For the purposes of this dissertation, I 

will limit the discussion to those that can be used without prior knowledge of the function. 

Some examples of popular global optimization algorithms in this class include simulated 

annealing (Kirkpatrick, Gelatt, and Vecchi 1983, Černý 1985), differential evolution 

(Storn and Price 1997), and particle swarm optimization (Eberhart and Kennedy 1995, 

Shi and Eberhart 1998).  
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Global optimization algorithms tend to require a large number of function evaluations to 

achieve a given level of performance. Particle Swarm optimization, for example, 

generally requires 10-100 function evaluations per iteration (Kennedy 2010). Good 

results from differential evolution (Storn and Price 1997) and simulated annealing 

(Dekkers and Aarts 1991) generally 1,000’s of function evaluations – even for relatively 

low dimensional systems. 

In general, global optimization algorithms have few guarantees regarding how quickly or 

even if they will actually find the optimum. Simulated annealing is one of the few with any 

guarantees at all, with only a weak guarantee that it will converge in finite time for a finite 

system under a very slow cooling schedule (Granville, Křivánek, and Rasson 1994). 

2.4.4. Optimization with Noise 

Optimization in the presence of noise has a rich literature. Because of the relative brevity 

of this section, whole classes of algorithms must be left out, but I hope to give a rough 

overview of the highlights of the field, with a particular focus on the algorithms’ 

applicability to on-line/real-time optimization. One of the main difficulties with 

optimization in the presence of noise is that the error in the estimate at a specific point in 

space goes down by 1/√𝑁 where 𝑁 is the number of evaluations near that point (Conn, 

Scheinberg, and Vicente 2009). 

The simplest class of algorithms that are robust against noise are coordinate searches 

(or pattern searches). These algorithms are often not designed with noise in mind, but 

their simplicity causes them to be reasonably robust against noise. The most well-known 

example of this class is downhill simplex (Nelder and Mead 1965). 

Another branch of algorithms for optimizing noisy systems is called stochastic 

approximation. Stochastic approximation attempts to directly address the issue of 
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estimating the derivatives of noisy systems, and perform a gradient descent approach 

(Spall 2005). Early versions used a finite difference approach, requiring many function 

evaluations per iteration (Kiefer and Wolfowitz 1952), but later versions attempt to 

estimate the gradient with only two samples per iteration, regardless of the 

dimensionality (Spall 1992), and achieve this goal with very little loss of performance 

(Spall 2005). This approach makes them primarily a local optimizer, but it is possible to 

extend stochastic approximation to global optimization approaches (Maryak and Chin 

2001). 

Genetic algorithms are a type of stochastic optimization that attempts to mimic a weak 

form of genetics (Golberg 1989). At each iteration there exists a group of possible 

solutions (called “individuals” or “chromosomes”). Depending on each solution’s fitness 

(performance with respect to an objective function), it increases the likelihood of 

producing “offspring” in the next generation through either a cross with another “fit” 

solution, or just mutation on the original solution. The cross and mutation processes are 

implemented using stochastic variables to add randomness to the process. Eventually, 

the process will terminate due to either running out of function evaluations or because 

some performance metric was achieved (Mitchell 1998). Genetic algorithms can be 

robust against noise, but they assume that multiple identical scenarios are available, 

which may not be possible in a real-life, time-varying system. 

Another approach that shares many similarities with genetic algorithms is particle swarm 

optimization (PSO). PSO starts with a randomly placed set of particles with random 

velocities. In each iteration, all points are tested, and they are “accelerated” towards both 

that particles best and the global best achieved by any particle with a random weight 

(Kennedy and Eberhart 1995, Poli, Kennedy, and Blackwell 2007). The “vanilla” version 

of PSO is reasonably robust against noise, despite a lack of being explicitly designed for 
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that purpose (Parsopoulos and Vrahatis 2001). A version of PSO has been developed to 

explicitly handle noise, with better performance as a result (Pugh, Zhang, and Martinoli 

2005). However, PSO is not frugal with function evaluations, and will often test tens of 

points per iteration. 

2.4.5. Response Surface Based Optimization 

Response surfaces are a type of model to estimate how a complex system responds to 

a set of input parameters. When used in optimization, “the technique often requires the 

fewest function evaluations of all competing methods” (Jones, Schonlau, and Welch 

1998). 

The idea behind response surface-based methods is to fit a stochastic model to the data 

(globally), then optimize within that model to identify the next point to test. During the first 

step, the model-fitting step, the algorithm approximates the space. Then, in the second 

step, the algorithm uses that model to estimate where to sample next. 

The use of stochastic models for optimization started in the 1960s in several different 

disciplines independently: mathematical geology, global optimization, and statistics. In 

mathematical geology, the approach (called “kriging” in that literature) began in 1963 

(Matheron 1963, Cressie 1990). In mathematical geology, these approaches were 

designed to find a mineral in a 2- or 3-dimensional space, generally with the assumption 

of noise in the measurements. In the field of global optimization, the approach also 

began in the early 1960s with “Bayesian global optimization” (Kushner 1964). Kushner’s 

approach used a stochastic process based on Brownian motion to guide sampling of an 

unknown function. It even included an early concept of time-variance in the response 

function. Kushner’s approach has been expanded on by many authors in the years 

following (for example: (Mockus, Tiesis, and Zilinskas 1978, Žilinskas 1992, Betró 1992, 
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Jones, Schonlau, and Welch 1998). Lastly, in the early 1970s a similar approach was 

developed in the statistics literature to model complex functions (Sacks and Ylvisaker 

1970, Sacks et al. 1989). 

2.4.5.1. Gaussian Process Models 

A Gaussian process model is a model where all points are modeled as Gaussian 

random variables with a structured covariance (discussed below). These models have 

the advantage of easily incorporating concepts of uncertainty, standard deviation, and 

noise. There are two analogies that may help understand them. First, Gaussian process 

models are designed to interpolate or extrapolate untested points from tested points. 

Therefore, they therefore are a type of regression model. In fact, there is a direct 

relationship between the expected value at each point and a spline representation 

(Jones, Schonlau, and Welch 1998). Second, Gaussian process models estimate the 

objective function from previously-tested, nearby points. Thus, Gaussian process models 

can be interpreted as an extension to the simple nearest neighbors algorithm. In the 

nearest neighbor algorithm, the median of a set of the nearest points (often 7 or 9 points) 

are used to estimate the value of a point. Gaussian process models also estimate the 

value based on an estimate of the correlation between the test point and the nearby 

points. 

2.4.5.2. Efficient Global Optimization 

A popular optimization algorithm within the class of response surface methods is 

Efficient Global Optimization (EGO). It was designed to optimize computationally 

expensive computer models using Gaussian processes (Jones, Schonlau, and Welch 

1998). EGO uses a DACE (Design-and-Analysis-of-Computer-Experiments) model 

(Sacks et al. 1989) at its core, and optimizes the maximum likelihood of improvement 
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(with respect to the objective functions) to select the next test point. EGO recently was 

proved to converge (Vazquez and Bect 2010), although the proof did not guarantee a 

specific rate of convergence. 

Modifications have been made to EGO allowing it be robust against noise (Huang et al. 

2006, Forrester, Keane, and Bressloff 2006) through regularization of the covariance 

matrix (discussed below). More recently, modifications have also been proposed to 

make it robust against time-variance (Desautels 2014, Morales-Enciso and Branke 

2015), through the addition of time as an uncontrolled input variable. 

2.4.5.3. Covariance Functions 

For every pair of random variables, you can define a covariance. If the random variables 

are completely unrelated to one another (in statistical terms: independent), this 

covariance will be set to zero. Positive values mean that the two random variables tend 

to move in the same direction, negative values mean that the two variables tend to move 

in opposite directions. 

To estimate covariance from data, the classic approach is to test multiple samples from 

each random variable, and calculate the covariance directly. In Gaussian process 

models, every data point comes from different, but related Gaussian probability 

distributions. Therefore, the majority of data point pairs will have nonzero covariances, 

leading to a requirement to estimate 𝑁2/2 covariances, where 𝑁 is the number of data 

points. In the most general case, it is impossible to directly estimate more parameters 

than data points, so a smaller set of parameters must be used to construct a function 

that models all potential covariances in the input space. 

A covariance function can be defined that models how any two random variables relate 

to one another in a space, and satisfies the requirement of having relatively few 
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parameters as compared to the number of data points. There are many choices of what 

covariance function to use in the model. In EGO, the model used is derived from kriging 

(Sacks et al. 1989), using an approach that has relatively few parameters to estimate, 

but can flexibly model many different covariance structures.  

There has been substantial work on alternative covariance functions. This covariance 

model has been extended to allow for noisy responses by incorporating a regularization 

term into the covariance matrix (Huang et al. 2006, Forrester, Keane, and Bressloff 

2006). Some of this work has focused on functions that are nonstationary in space 

(Xiong et al. 2007, Toal and Keane 2012) (e.g. a chirp function has high frequency 

content in one part of space, and low frequency content in another).  

2.4.5.4. What Metric to Use in the Selection of the Next Point 

In stochastic-model-based optimization, there is a question of what quantity to maximize 

(or minimize) when searching for the next point. There are many choices. One obvious 

answer is to minimize expected value, but this approach can lead the algorithm to get 

stuck in local minima (Jones, Schonlau, and Welch 1998). There are many alternatives, 

and each one may be more or less appropriate, depending on the context in which the 

algorithm needs to work. One popular choice is the maximum expected improvement as 

compared to the current best (Mockus, Tiesis, and Zilinskas 1978, Jones, Schonlau, and 

Welch 1998). Maximum variance and “minimizing surprises” (minimize the maximum 

probability that a true value deviates from the prediction) can help the algorithm search 

the most unknown areas (Sasena, Papalambros, and Goovaerts 2002). The knowledge 

gradient approach attempts to maximize the expected improvement in the estimate of 

the best point (Ryzhov, Powell, and Frazier 2012). Other approaches have attempted to 
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minimize “regret”, which is the cumulative loss from not sampling at the optimal point 

(Srinivas et al. 2009). 

In a modified version of EGO (Huang et al. 2006), the maximum expected improvement 

was augmented to encourage “in-searching” or searching in areas near points previously 

sampled. It is important to test multiple times in these areas, as the first point may have 

been corrupted by noise. This augmented expected improvement (Huang et al. 2006) 

has excellent properties when optimizing noisy, multi-modal systems. 

2.4.6. Time-Varying Optimization 

Time-varying optimization is comparatively less well-studied than other types of 

optimization, and the research that has been done is split across several subfields, 

including stochastic optimization, optimal control, machine learning, and operational 

research. 

Some of the earliest work on time-varying algorithms was pursued by Harold Kushner in 

the 1960s (Kushner 1962, 1964).  His approach was to increase the estimate of the 

standard error of previously sampled points dependent on how long it had been since 

they were sampled. This algorithm was limited to one variable. He extended this work to 

a stochastic-process-based sampling approach for one-dimensional problems. 

Dynamic optimization (or optimal control) is the optimization of a system in the context of 

a (known) dynamic system (Chiang 2000). In general, dynamic optimization assumes 

the agent optimizing the system knows quite a bit about how the system functions (and 

how it might change with time). In cases where the dynamics are unknown, the 

approaches cannot be easily applied  (Conn, Scheinberg, and Vicente 2009). System 

identification could be used, but it may take a substantial portion of the experimental 

budget, leaving few experiments to optimize. 
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Within machine learning, there is a subfield called active sensing that has explored time-

varying systems. Active sensing is the study of how an artificial agent might choose to 

pursue sensory tests (run experiments) from a set of options in such a way to most 

efficiently learn about a system or context. This question of how to most effectively 

decide on which sensory tests to pursue is not identical to optimizing an objective 

function, but it is closely related. One of the classic problems in this field is the multi-

armed bandit problem. In this problem, an agent must choose from a finite set of choices 

which may benefit the agent to different degrees, but the agent does not know in 

advance which choice is best. Some researchers have explored how an algorithm might 

approach this problem if the measure changed with time (Hazan and Kale 2010). The 

same research group has extended this approach to portfolio optimization (e.g. when to 

buy/sell stocks) as well (Hazan and Kale 2009, 2015). 

There are few algorithms designed to work explicitly in general time-varying systems 

where the dynamics may be completely unknown (i.e. black-box time-varying systems). 

Some local optimization functions work reasonably well, but they often have steps in 

their algorithms that reduce the search space to a smaller region when the algorithm 

believes it is close to the objective. This type of focus may backfire in a time-varying 

system. Towards that end, a version of the downhill simplex algorithm was created for 

time-varying system, created by removing the step that shrunk the simplex (Xiong and 

Jutan 2003). 

Recently, there have been recommendations and attempts to extend response-surface-

methodology approaches to time-varying systems. Generally, the best approach has 

been to add time as an uncontrolled variable (Desautels 2014, Morales-Enciso and 

Branke 2015). However, these approaches were not designed to be robust against noise 

in the system as well. 
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Another problem with time-varying objective functions is how to define classes of 

problems or success of the algorithm. Previous tests have used very specific functions, 

such as the moving peaks function, to explore how well time-varying optimization worked 

(Morales-Enciso and Branke 2015), but such an approach cannot be easily generalized 

to larger problem classes. Time-series analysis includes tests to decide if a time series is 

stationary or not (Dickey and Fuller 1979, Priestley 1981) based on a time-series of a 

specific value, but those tests do not quantify precisely how much time-variance there is 

in a system. In the machine learning literature, one approach has been to put upper 

limits on total variance of a set of values to delineate problem classes (Hazan and Kale 

2009). 

2.4.7. Closed-Loop Experimentation in Neuroscience 

One of the earliest, and most famous, examples of closed-loop experimentation in 

neuroscience was Hodgkin and Huxley’s efforts to learn about membrane conductances 

using a voltage clamp (Hodgkin and Huxley 1952), a circuit which adjusted the current to 

maintain a constant voltage. There has been a great body of work since then using 

voltage clamps, patch clamps (Zhao et al. 2008), and more recently, dynamic clamps 

(Prinz, Abbott, and Marder 2004). Control loops like those above have become more 

common, and approaches which attempt to not only maintain a value in real-time, but 

optimize the system in real-time with respect to some metric have begun to be explored. 

In order to retain brevity and relevance for this dissertation, I will limit my discussion to 

approaches which used pulse-like stimulation of neural structures. 

2.4.7.1. Closed-Loop Stimulation 

In the context of neural stimulation, experimental preparations (within the same study) 

are rarely truly identical, and to make matters worse, their response may drift over the 
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course of an experiment. In other cases, more accuracy may be desired than can be 

achieved with an open-loop approach. Therefore, closed-loop approaches to neural 

stimulation have been developed, often using the formalism of control theory. I will briefly 

review the literature, for a more thorough review, please consult Sun and Morrell (2014) 

or Lynch and Popovic (2008). 

Within the neuroscience community, the FES literature has explored the use of closed-

loop stimulation for the longest time. FES is a natural fit, as it is similar to the types of 

approaches used in robotics. The earliest reports on closed-loop FES focused on 

electrical stimulation of agonist/antagonist pairs to control the elbow joint (Vodovnik, 

Crochetiere, and Reswick 1967), followed by the ankle muscles (Stanic and Trnkoczy 

1974, Crago, Mortimer, and Peckham 1980). Later approaches have expanded upon 

what information the controller had access to, including gait phase (Pappas et al. 2001, 

Mansfield and Lyons 2003) and EMG (Sinkjaer et al. 2003, Dutta, Kobetic, and Triolo 

2008). The earliest reports relied on simplistic bang-bang or proportional control 

(Vodovnik, Crochetiere, and Reswick 1967, Stanic and Trnkoczy 1974, Crago, Mortimer, 

and Peckham 1980). More recent approaches have begun to use more robust 

techniques, including sliding mode control (Jezernik, Wassink, and Keller 2004, 

Nekoukar and Erfanian 2011) and adaptive control (Blaya and Herr 2004) 

Closed-loop stimulation has begun to be explored in spinal cord stimulation. One pair of 

studies used a relatively simple approach of measuring body position in order to judge 

when to apply spinal cord stimulation to reduce chronic pain (Schade et al. 2011, Schultz 

et al. 2012). Another approach for reducing chronic pain with SCS relied on measuring 

compound action potentials to close the loop (Parker et al. 2012). Closed-loop epidural 

spinal cord stimulation to locomotion has also been explored using a simple EMG-based 

metric (Desautels 2014, Desautels et al. 2015). 
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There has been a lot of interest in using closed-loop feedback to improve the termination 

of epileptic seizures. The first approaches relied on large, cumbersome systems external 

to the body (Peters et al. 2001, Kossoff et al. 2004, Osorio et al. 2005), but more recent 

approaches have begun to explore the closed-loop systems on implanted devices 

(Morrell 2011, Heck et al. 2014).  

In addition to the above, other subfields of neurology, neuroengineering, and 

neuroscience have begun to make use of closed-loop stimulation. In Parkinson’s 

Disease, some early results for closed-loop stimulation have shown positive results 

(Rosin et al. 2011, Little et al. 2013). In addition, some work has pursued simulations in 

preparation for future closed-loop deep-brain stimulation (Santaniello et al. 2011). In the 

neurophysiological literature, closed-loop approaches have been explored in the 

vestibular system (Micera et al. 2010), the whisker barrel cortex (Venkatraman et al. 

2009), and motor axon stimulation (Bostock, Cikurel, and Burke 1998). 

2.4.7.2. On-line/Real-time Optimization in the Neuroscience 

One important subcategory of closed-loop approaches is on-line optimization. On-line 

optimization attempts to go beyond just leveraging the state of the system to use that 

state to find the best possible input to get the best output – where “best” is defined by an 

objective function. These type of approaches are sometimes called continuous 

optimization, real-time optimization, or dynamic optimization, adaptive sampling, active 

sensing, or active learning, depending on what algorithm is used and how the 

optimization is setup. Within these approaches, there is often little separation between 

understanding how the system responds to inputs and finding the optimal response. 

Generally, both system identification and optimization must be done at the same time. It 

is also important to note that it is impossible to cleanly separate studies into closed-loop 
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control, on-line system identification, and on-line optimization. Many studies fall into 

more than one category. With that caveat in mind, I will briefly discuss the history of on-

line optimization in neuroscience. 

On-line optimization is still relatively rare in neuroscience, but it has begun to gain 

traction in the last two decades, with most of the work in the last 10 years. As with 

closed-loop studies, the FES literature has produced some of the earliest studies 

(Kostov et al. 1995, Lynch and Popovic 2008). In neurophysiology research, various 

approaches have been pursued to find the best stimulus to get a specific response 

(Földiák 2001, Edin et al. 2004, O'Connor, Petkov, and Sutter 2005, Benda et al. 2007, 

Lewi, Butera, and Paninski 2008). In the study of brain-computer-interfaces (BCI), also 

called brain-machine-interfaces (BMI), several studies have used on-line optimization to 

improve how the system interacted with the user (Gürel and Mehring 2012, Fruitet et al. 

2012, Fruitet et al. 2013). Lastly, some recent studies have explored the use of on-line 

optimization in epidural spinal cord stimulation (Desautels 2014, Desautels et al. 2015). 

Although on-line optimization is not strictly new in neuroscience, neuro-engineering, or 

neurology, it is still quite rare, and the best approaches are still being explored. Beyond 

this dissertation, I expect there to be many studies on this subject in the near future. 
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CHAPTER 3: A SYSTEM TO OPTIMIZE SENSORY STIMULATION IN HUMANS 
AFTER SPINAL CORD INJURY 

This chapter presents an approach and system I developed to optimize sensory 

stimulation for maximally assisting human walking after spinal cord injury (SCI). The 

apparatus includes a robotic gait orthosis (the Hocoma Lokomat) to record force output 

during standardized stepping with variable assistance. In order to validate the system, 

detailed results from a representative motor-incomplete SCI subject is presented. The 

system optimized the distal tibial nerve stimulation, a predominantly cutaneous nerve. 

The objective function (i.e. the variable that the algorithm was optimizing) was 

minimizing the assistive force required from the Lokomat – maximizing the contribution 

from the subject. 

The chapter is organized into an introduction, system design, results, and discussion. 

The introduction section presents an abbreviated summary of current research and 

motivation for this chapter. The system design discusses the components of the system, 

the derivation of the objective function, and the optimization algorithm. The results 

present the one-subject in-depth validation, and the discussion interprets and 

extrapolates the findings. 

3.1. Introduction 

Spinal cord injury (SCI) damages the pathways connecting spinal neural networks to the 

brain, impairing the nervous system’s ability to produce the correct motor output for 

many motor tasks, including walking. 

Sensory connections to the spinal cord often remain intact after injury. These sensory 

input are very important in walking, and become even more important after an SCI. 



71 
 

While an SCI damages the descending pathways to spinal neural networks, the sensory 

connections to those networks generally remain intact below the injury site. Sensory 

inputs from the legs have both numerous and substantial effects on walking (Rossignol, 

Dubuc, and Gossard 2006). Hip afferent activity can change the stance-to-swing 

transition in cats (Pearson 2008), human infants (Pang and Yang 2000), and humans 

with SCI (Dietz, Müller, and Colombo 2002). Extensor loading affects gait transitions 

(Rossignol, Dubuc, and Gossard 2006), can assist in generating a walking pattern even 

with only partial rhythmic sensory inputs (Ferris et al. 2004), and can increase 

appropriate EMG during walking (Dietz, Müller, and Colombo 2002). The large role of 

sensory feedback in walking is even more pronounced after SCI (Rossignol and Frigon 

2011). 

Cutaneous reflexes can modulate, and even initiate, the CPG. Cutaneous afferents, 

among others, can initiate/prolong extension or initiate/prolong flexion, depending on 

when and how they are applied, resetting the CPG rhythm (Schomburg et al. 1998, 

McCrea 2001). Cutaneous reflexes can initiate locomotion in some cases. In early 

experiments (Jankowska et al. 1967, Lundberg 1979), single pulse trains on flexor reflex 

afferents (including cutaneous afferents) were shown to evoke brief periods of 

alternating activity in a cat model with dopamine. It has been proposed that flexor 

reflexes have direct access to the flexor-half-center part of the CPG (Duysens and Van 

de Crommert 1998). Cutaneous reflex responses also demonstrate a coupling with the 

CPG. The timing of the reflex phases in fictive, pharmacological, and lesion preparations 

suggests involvement of the CPG (Burke 1999). During walking tasks, there is a long-

latency contralateral facilitation (from cutaneous stimulation) during walking, similar to 

the half-center oscillator model of the CPG (Bussel et al. 1989). 
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Clinical researchers have made use of cutaneous nerve stimulation in various studies to 

assist with walking. It is either used as part of a functional electrical stimulation approach 

(Granat et al. 1993, Ragnarsson 2008), or independently of other stimulation (Ladouceur 

and Barbeau 2000b, Ladouceur and Barbeau 2000a). Clinical approaches have often 

used very short pulse trains (<=6 pulses) at high frequency (>=200 Hz) (Tax, Van Wezel, 

and Dietz 1995, Van Wezel, Ottenhoff, and Duysens 1997, Zehr, Komiyama, and Stein 

1997, Zehr, Hesketh, and Chua 2001). The combination of functional electrical 

stimulation (FES) and cutaneous afferent stimulation has a long history, including the 

first paper on FES (Liberson et al. 1961). In the context of FES, there are no non-

invasive ways to stimulate the hip flexors directly, so cutaneous nerve stimulation is a 

convenient way to produce hip flexion (Granat et al. 1993, Ragnarsson 2008). Some 

researchers have also explored the combination of classical physical-therapy-based 

training with cutaneous nerve stimulation. It was found that training with sensory 

stimulation outperformed training without stimulation across multiple performance criteria 

(Ladouceur and Barbeau 2000b, Ladouceur and Barbeau 2000a). 

Although sensory stimulation has proven to be useful, there is a substantial variability in 

motor patterns after SCI. Spinal reflexes can change in amplitude (Little and Halar 1985) 

or latency (Roby-Brami and Bussel 1987).  Inappropriate motor activation can appear, 

often classified clinically under the umbrella term “spasticity”, including hyperreflexia 

(Schurch et al. 2000), hypertonia (Woolacott and Burne 2006), dyssynergias (Dykstra et 

al. 1988), and spasms (Young 1994, Noreau et al. 2000).  To further complicate issues, 

sensorimotor responses vary significantly from individual to individual based on athletic 

history (Gruber et al. 2007, Wolpaw and Tennissen 2001, Maffiuletti et al. 2001), SCI 

level (Poirrier et al. 2004, Dietz et al. 1999), SCI severity (Rossignol et al. 1996), and 

time since injury (Hiersemenzel, Curt, and Dietz 2000). When studying how SCI subjects 
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motor patterns are reorganized after an intervention, it has been observed that no two 

individuals show equivalent patterns of coordination (Field-Fote and Tepavac 2002). All 

of these sources of variability imply that the optimal stimulus pattern for functional benefit 

may be highly individualized, and may even change over time within a given individual. 

One way to resolve highly individualized sensorimotor-processing is to use closed-loop 

approaches that measure and change the input real-time based on the output. The 

earliest reports on closed-loop stimulation focused on functional electrical stimulation 

(FES) of agonist/antagonist pairs to control the elbow joint (Vodovnik, Crochetiere, and 

Reswick 1967), followed by the ankle muscles (Stanic and Trnkoczy 1974, Crago, 

Mortimer, and Peckham 1980). Later approaches have expanded upon what information 

the controller had access to, including gait phase (Pappas et al. 2001, Mansfield and 

Lyons 2003) and EMG (Sinkjaer et al. 2003, Dutta, Kobetic, and Triolo 2008). The 

earliest reports relied on simplistic bang-bang or proportional control (Vodovnik, 

Crochetiere, and Reswick 1967, Stanic and Trnkoczy 1974, Crago, Mortimer, and 

Peckham 1980). More recent approaches in FES have begun to use more robust 

techniques, including sliding mode control (Jezernik, Wassink, and Keller 2004, 

Nekoukar and Erfanian 2011) and adaptive control (Blaya and Herr 2004). Closed-loop 

stimulation has begun to be explored in spinal cord stimulation. One pair of studies used 

a relatively simple approach of measuring body position in order to judge when to apply 

spinal cord stimulation to reduce chronic pain (Schade et al. 2011, Schultz et al. 2012). 

Another approach for reducing chronic pain with SCS relied on measuring compound 

action potentials to close the loop (Parker et al. 2012). Closed-loop epidural spinal cord 

stimulation to locomotion has also been explored using a simple EMG-based metric 

(Desautels 2014, Desautels et al. 2015). In Parkinson’s Disease, some early results for 

closed-loop stimulation have shown positive results (Rosin et al. 2011, Little et al. 2013). 
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In addition, some work has pursued simulations in preparation for future closed-loop 

deep-brain stimulation (Santaniello et al. 2011). In the neurophysiological literature, 

closed-loop approaches have been explored in the vestibular system (Micera et al. 

2010), the whisker barrel cortex (Venkatraman et al. 2009), and motor axon stimulation 

(Bostock, Cikurel, and Burke 1998). Although these closed-loop approaches leverage 

the actual state of the systems, they do not generally improve their performance as more 

is learned about the system or model the system in an individualized way. 

On-line optimization is a closed-loop approach that continuously improves as the 

algorithm’s model of the system improves. These approaches are still relatively rare in 

neuroscience, but they have begun to gain traction in the last two decades, with most of 

the work in the last 10 years. As with closed-loop studies, the FES literature has produced 

some of the earliest studies (Kostov et al. 1995, Lynch and Popovic 2008). In 

neurophysiology research, various approaches have been pursued to find the best 

stimulus to get a specific response (Földiák 2001, Edin et al. 2004, O'Connor, Petkov, and 

Sutter 2005, Benda et al. 2007, Lewi, Butera, and Paninski 2008). In the study of brain-

computer-interfaces (BCI), also called brain-machine-interfaces (BMI), several studies 

have used on-line optimization to improve how the system interacted with the user (Gürel 

and Mehring 2012, Fruitet et al. 2012, Fruitet et al. 2013). Lastly, some recent studies 

have explored the use of on-line optimization in epidural spinal cord stimulation (Desautels 

2014, Desautels et al. 2015). However, as far as these authors could find, no optimization 

work has been completed in peripheral sensory stimulation, nor sensory stimulation as 

applied to walking. 

To address this gap, I developed a system that can apply sensory stimulation to 

someone with incomplete SCI and analyze walking performance in real-time. The 

system addresses the variability of neural circuit function by individually optimizing the 
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intervention. Individual optimization of sensory stimulation allows for targeted exploration 

of many sensory stimulation patterns in an automated experimental paradigm. I tested 

this system against one subject to show that it can work, and performed confidence and 

sensitivity analysis on this subject’s optimal stimulation parameters. 

3.2. System Design 

Conceptually, this system (Figure 3-1) consists of three major components: (1) 

intervention (electrically stimulating the distal tibial nerve), (2) assessment (measuring 

the reduction in assistive force), and (3) optimization (selecting the intervention 

parameters with the efficient global optimization algorithm). The intervention and 

assessment components interact directly with the subject, who is walking in the Lokomat 

(a robotic gait orthosis made by Hocoma Inc.). The optimization component closes the 

loop, allowing for continuous improvement. 
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Figure 3-1: Overview of the optimization approach. Each iteration consisted of the 
algorithm completing one loop. In the Assessment stage, force and angle data from each 
step in the Lokomat was converted into a measure of the quality of stepping (the force 
metric). In the Optimization stage, a maximum likelihood model was fit, and the optimum 
was found within that model. In the Intervention stage, the identified model-optimal 
stimulation parameters were converted into a pulse train which was then applied to the 
individual in the Lokomat (at the distal tibial nerve), and measurements were made 
again, starting a new iteration. 

3.2.1. Intervention: Sensory Electrical Stimulation 

Many interventions can assist SCI subjects walk. Our approach required that the 

intervention be parameterized in a low dimensional space, that the parameters could be 

changed quickly (e.g. every four steps) during an experiment, and that it could be 

controlled by an automated system implementing the optimization algorithm. Sensory 

electrical stimulation meets all of those requirements, and it has shown promise in 

physical therapy and FES research. The distal tibial nerve, a mostly cutaneous nerve, 

was selected as a good candidate: It is easy to stimulate in the Lokomat, it can produce 

hip flexion, and it innervates the cutaneous surface of the bottom of the foot (an area 

important for walking). 

The stimulation subsystem sends a pulse train (figure 3-2) to the distal tibial nerve once 

per complete step (steps are divided at swing-to-stance on the right foot). A real-time 
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embedded system (National Instruments CompactRIO) triggers a constant current 

stimulator (DS7A from Digitimer Ltd.) to produce the pulses. Pulse width is set to 1 ms 

and amplitude is set to the minimum that would produce a consistent flexion reflex. The 

pulse train is applied at the same time on each leg relative to the leg’s phase of gait (e.g. 

stance or swing). For example, if the pulse train is applied on the left leg in stance, it will 

be applied on the right leg in stance as well, even though the right leg’s stance is one 

second delayed from the other leg’s stimulation. 

 

 

Figure 3-2: Pulse Train Parameterization. The pulse train was parameterized by three 
parameters: the frequency (stimuli per second), the duration (length of the pulse train, as 
a percentage of the gait cycle), and the gait phase (time in the gait cycle at the start of 
the pulse train). Steps were defined as beginning at the swing-to-stance transition on the 
right foot. 

To parameterize pulse trains, I chose the following parameters (Fig. 2): gait phase (time 

within the gait cycle) at the start of the pulse train (e.g. mid-stance), stimulation 

frequency (e.g. 68 Hz), and pulse-train duration (e.g. 32% of the gait cycle). Using 

phase, frequency, and duration of the pulse train is common in many studies involving 
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sensory stimulation (e.g. (Perreault et al. 1995, Zehr, Komiyama, and Stein 1997, Field-

Fote and Tepavac 2002)). For each of the parameters, I chose bounds based on the 

technical limitations of our system. Frequency is limited to 0-100 Hz. Pulse train duration 

is limited to 0-50% of the gait cycle. Phase forms a rotationally symmetric space, and we 

defined the space as one step-cycle mapping to 0-2π. Together, gait phase, stimulation 

frequency, and pulse-train duration form a three-dimensional input space, from which a 

mapping to the output space is calculated. 

3.2.2. Assessment: A Real-Time Walking Metric 

In order to be part of an optimization loop, I needed to measure the quality of walking 

quantitatively (i.e. a walking metric). Our choice of walking metric was limited by two 

requirements: (1) the metric must be computed every step, and (2) the metric must 

produce viable results in people with even only minimal walking ability. Clinically, it is 

common to measure how far someone can walk within a time limit or how fast they can 

walk a specific distance, but such metrics do not meet the every-step requirement. 

Initially, I explored EMG-based metrics, but four issues proved difficult to resolve. (1) 

Surface EMG is limited in what muscles are accessible. For example, the most important 

hip flexors, the iliopsoas, are inaccessible to surface EMG, particularly when the subject 

is wearing a body weight support harness over their pelvis. (2) EMG is sensitive to 

nearby electrical stimulation. EMG requires a large amount of amplification (500x), and 

the voltages of the stimuli are frequently >1,000 times the amplitude of the EMG signals, 

leading to amplifier saturation. This effect is distance-dependent, such that the closer the 

EMG electrode is to the stimulating electrode, the larger the effect. Therefore, even 

among the muscles that were recorded from, some had stimulation artifacts that were 

too large to be reliably removed by post-processing. (3) Surface EMG recordings are 
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poor predictors of muscle force or kinematic trajectories (De Luca 1997). (4) I found 

substantial inconsistencies in EMG patterns even in normal individuals in the Lokomat 

during our preliminary studies on this approach. With all of these downsides, I opted not 

to use EMG as our primary walking metric. 

I chose, instead, to minimize the assistive force from the Lokomat as our primary 

outcome metric. To achieve a walking pattern, the Lokomat provides robotic assistance, 

applying varying amounts of force depending on what is required to get a limb segment 

to the correct place in space at the correct time. This assistive force is negatively related 

to the muscle force that the person is producing, thus it can be considered an error 

metric (i.e. the less force the person produces, the more force the Lokomat must 

produce). Incidentally, this force-error-analogy is still accurate even if the subject has 

spasticity, which the Lokomat would have to counter or resist in order to achieve the 

desired walking pattern. In addition, the use of the Lokomat’s assistance allowed people 

with only minimal walking ability to participate. To create the walking metric, the assistive 

force is summarized with a mean-squared approach across all four actuated joints (hip 

and knee on left and right). I normalize this metric to have a value of 1 for the average 

response to the no stimulation condition, providing an intuitive visualization for which 

stimulation patterns are better or worse than no stimulation. 

3.2.3. Optimization: Closing the Loop 

To complete the loop (figure 3-1), an optimization algorithm was required that could 

explore the sensory-input-to-motor-output mapping as efficiently and thoroughly as 

possible. Most optimization algorithms are computationally efficient but not efficient in 

terms of “function calls” (i.e. individual tests of a set of parameters within a data 

collection session). For example, particle swarms, genetic algorithms, and simulated 
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annealing can require thousands of function calls. In our case, computational resources 

were not significantly limited. Each iteration lasts 4 steps, allowing the algorithm 

approximately 8 seconds to find the next stimulation pattern to test. However, the 

number of function calls is limited by both the number of steps a person can take in 15-

20 minutes (450-600 steps), and patient safety issues (i.e. before they might develop 

pain, fatigue, or other clinical issues related to their SCI or being in the robotic orthosis). 

There are good algorithms for local optimization in the presence of measurement noise 

(e.g. (Barton and Ivey Jr 1996)), but they require assumptions regarding the shape of the 

space (e.g. no multiple minima). A priori, there was no way guarantee only a single local 

minimum, so I pursued global optimization approaches. In addition, most optimization 

algorithms require gradients, which are not readily available in a black-box system like a 

human subject, and the system cannot spare the extra function calls required to 

compute the derivatives. 

I chose an algorithm based on Efficient Global Optimization (EGO) (Jones, Schonlau, 

and Welch 1998), incorporating a modification to deal with measurement noise (Huang 

et al. 2006). I also made other modifications specific to our problem (rotationally 

symmetric space and time-variance, discussed below). Our optimization approach 

creates a meta-model (or response surface) of the space. Response surface 

approaches are effective when function calls (experiments) are limited in some manner 

(e.g. financially expensive, time consuming, etc.) and gradients are not available (Jones, 

Schonlau, and Welch 1998). 

The optimization algorithm has two periods: an open-loop randomized sampling period 

(to initialize the parameter space), and a closed-loop optimized sampling period. At the 

beginning of the randomized sampling period, the algorithm generates 60 randomized 

stimulation parameters (inputs, or x-points) across the 3 input-dimensions (i.e. gait 
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phase of the start of the pulse train, stimulation frequency, and pulse-train duration), 

using a Latin hypercube (McKay, Beckman, and Conover 1979) to initially seed the 3D 

input space. The system tests these randomized x-points against the SCI subject in the 

Lokomat, producing force metric values (outputs, or y-points). Each x-point is repeated 4 

times, but the first (the parameter-changing transition step) is removed from further 

analysis, yielding 3 tests per x-point.  

After the randomized x-points are tested, the closed-loop optimization period begins. In 

each iteration, the algorithm constructs a Design-and-Analysis-of-Computer-Experiments 

(DACE) stochastic model (Sacks et al. 1989) of the space using the distance and 

correlation of the data gathered previous to that iteration. Our approach diverges from 

the classic DACE model by allowing the space to be rotationally symmetric in the gait-

phase dimension (the 2nd dimension), because gait is periodic. To account for the 

rotationally symmetry, I calculate the minimum of the distance (𝑑𝑘) in either rotational 

direction (the min-term for 𝑘 = 2 in equation 1).  

 
𝑑𝑘(𝒙𝑖, 𝒙𝑗) =

{
 
 

 
 
min(

|𝑥𝑖(𝑘) − 𝑥𝑗(𝑘) + 1|

|𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)|

|𝑥𝑖(𝑘) − 𝑥𝑗(𝑘) − 1|

) , k = 2

|𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)|, k ≠ 2

  (1) 

The min statement is equivalent to finding the closest distance between one point and 

the other point in a rotationally symmetric space. This approach also diverges from the 

classic DACE model by allowing the system to be time-variant. I model time as an 

uncontrolled, but measureable input, thus treating it like another stimulus-parameter 

dimension. Therefore, the temporal distance (𝑑𝑡, equation 2) is calculated as the amount 

of steps that have passed between the two x-points (𝑖 and 𝑗) being compared, 

normalized to a scale of 0 → 1 by dividing by the total steps (𝑁𝑥).  
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𝑑𝑡(𝑖, 𝑗) =

|i − j|

𝑁𝑥
 (2) 

Aside from the two modifications discussed above (in equations 1 and 2), the remainder 

of the algorithm follows the standard approach (Huang et al. 2006, Jones, Schonlau, and 

Welch 1998). Briefly, the combined distance (𝑑) is calculated between two x-points (𝑥𝑖 

and 𝑥𝑗). The input-dimension-specific distances (𝑑𝑘) and the time-dimension distance 

(𝑑𝑡) are exponentiated by parameters 𝑝𝑘 and 𝑝𝛿 respectively, then multiplied by 𝜃𝑘 and 𝛿 

respectively. These parameters, as discussed later, are used to adjust the importance of 

the input- and time-dimensions to achieve the best model fit possible (discussed later). 

 
𝑑(𝒙𝑖, 𝒙𝑗) =  ∑ 𝜃𝑘 (𝑑𝑘(𝒙𝑖, 𝒙𝑗))

𝑝𝑘
3

𝑘=1

+ 𝛿(𝑑𝑡(𝑖, 𝑗))
𝑝𝛿

 (3) 

Once the combined distances (𝑑) are calculated, I create a correlational matrix 𝑹 where 

the element at 𝑖, 𝑗 is 𝑟(𝒙𝑖, 𝒙𝑗), as described in equation 4. The diagonal of the matrix 

(𝑟(𝒙𝑖 , 𝒙𝑗) for 𝑖 = 𝑗) is set to 1. The off-diagonal terms utilize the exponential distance, 

which will range from 0 → 1. An additional regularization parameter (𝑔) is added, 

allowing for measurement noise. 

 
𝑟(𝒙𝑖, 𝒙𝑗) = {

1, 𝑖 = 𝑗

𝑔 e−𝑑(𝒙𝑖,𝒙𝑗) , 𝑖 ≠ 𝑗
 (4) 

From these individual terms (𝑟(𝒙𝑖, 𝒙𝑗)) for every pairwise combination of x-points, the 

correlation matrix 𝑹 is created. This matrix (𝑹) is used to estimate the mean (𝜇̂) and 

variance (𝜎̂2) of the model using generalized least squares (equations 5 and 6). In those 

equations, “𝒚” is a vector containing the measurements, and “𝟏” is a vector of ones. 
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 𝜇̂ =
𝟏𝑻𝑹−1𝒚

𝟏𝑻𝑹−1𝟏
 (5) 

 
𝜎̂2 =

(𝒚 − 𝟏𝜇̂)𝑇𝑹−1(𝒚 − 𝟏𝜇̂)

𝑁𝑥
 (6) 

Once the mean (𝜇̂) and variance (𝜎̂2) are estimated, the algorithm computes the model 

likelihood, 𝑝(𝒚|𝑹). For convenience the algorithm maximizes a value proportional to the 

model likelihood (equation 7), instead of directly computing the model likelihood. It 

maximizes this measure by varying the model parameters (i.e. 𝑔, 𝜃𝑘, 𝑝𝑘, 𝛿, 𝑝𝛿) to select 

the best model. 

 
𝑝(𝒚|𝑹) ∝

1

det(𝑹)
1
𝑁𝑥 𝜎̂2

 (7) 

After the algorithm identifies the model with the maximum likelihood given the observed 

data, as in (7), the algorithm must find the point that improves most on the current 

optimum, using the model (equations 8–12). However, this approach is complicated by 

the fact that same input may produce different outputs (i.e. measurement noise). Our 

algorithm, like the Sequential Kriging Optimization (SKO) (Huang et al. 2006), defines a 

utility function 𝑢(𝒙), in equation 11, to find the current optimum (𝒙∗∗). 

In the first step (equation 8) of finding the next sample, estimates are made of the actual 

values (𝑌̂(𝒙)) for each x-point tested thus far, without measurement noise.  

 
𝑌̂(𝒙) = 𝜇̂ + 𝑔𝒓𝑹−1(𝒚 − 𝟏𝜇̂) (8) 

In equation 9 and 10, the error in the estimate of 𝑌̂(𝒙) is calculated. First, the 

“controllable” variance (𝜎̂𝑍
2, i.e. the variance from changes in the input- or time-

dimensions), as opposed to the total variance (𝜎̂2) or noise variance (𝜎̂𝐸
2) is calculated 

from the parameter 𝑔. As discussed previously, 𝑔 defines the relationship between the 
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total variance (𝜎̂2) and the “controllable” variance by controlling the regularization of the 

correlation matrix. Then the expected error in 𝑌̂(𝒙) is calculated, denoted 𝑠2(𝒙). 

 

𝜎̂𝑍
2

𝜎̂2
=

𝜎̂𝑍
2

𝜎̂𝑍
2 + 𝜎̂𝐸

2 = 𝑔 (9) 

 𝑠2(𝒙) = 𝜎̂𝑍
2 − [

1
𝜎̂𝑍
2𝒓(𝒙)

]
𝑇

[0 𝟏𝑇

𝟏 𝜎̂2𝑹
] [

1
𝜎̂𝑍
2𝒓(𝒙)

] (10) 

Then, a utility function (𝑢(𝒙)) is calculated for every x-point tested thus far in equation 

11. This utility function combines both our estimates of which points produce better 

values (𝑌̂(𝒙)), and our uncertainty in those estimates (𝑠(𝒙)). The parameter 𝑐 allows for 

a tradeoff between predicted objective values and predicted uncertainty. Following the 

SKO algorithm (Huang et al. 2006), our algorithm uses a value of 1 for the parameter 𝑐. 

The current optimum, 𝒙∗∗, is the 𝒙 that maximizes that utility function is calculated in 

equation 12. 

 
𝑢(𝒙) = −𝑌̂(𝒙) − 𝑐𝑠(𝒙) (11) 

 
𝒙∗∗ = arg max

𝐱1,𝐱2,…,𝐱N

(𝑢(𝒙)) (12) 

Once the current optimum is identified, the expected improvement (𝐸𝐼(𝒙)) can be 

estimated for any point in the space, including previously untested points, as shown in 

equations 13 and 14. Equation 14 is only an expanded version of equation 13, showing 

how the probability density function (PDF) and the cumulative distribution function (CDF) 

are used to calculate the expected improvement (𝐸𝐼(𝒙)). Following SKO (Huang et al. 

2006), I also augmented the expected improvement to reduce the avoidance of selecting 

points near previous samples (equation 15). 
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𝐸𝐼(𝒙) = 𝐸[max(𝑌̂(𝒙∗∗) − 𝑌̂(𝒙), 0)] (13) 

 

𝐸𝐼(𝒙) = (𝑌̂(𝒙∗∗) − 𝑌̂(𝒙))𝑃𝐷𝐹 (
𝑌̂(𝒙∗∗) − 𝑌̂(𝒙)

𝑠(𝒙)
)

+  𝑠(𝒙)𝐶𝐷𝐹 (
𝑌̂(𝒙∗∗) − 𝑌̂(𝒙)

𝑠(𝒙)
) 

(14) 

 
𝐴𝐸𝐼(𝒙) = 𝐸𝐼(𝒙) ∗ (1 − √

𝜎̂𝐸
2

𝑠2(𝒙) + 𝜎̂𝐸
2) (15) 

Now that the expected improvement of any potential point in the space can be 

calculated, the algorithm maximized that metric. I followed Huang et al.’s example of 

using a genetic algorithm to maximize the expected improvement (Huang et al. 2006). 

Although a branch-and-bound algorithm could also be use and is faster than a genetic 

algorithm (Jones, Schonlau, and Welch 1998), it required the parameter 𝑝𝑘 to be 

constrained. 

In some cases, the algorithm will select a point close to the current optimum; in other 

cases, it will select a point far from the current optimum.  The goal of the algorithm that 

selects the next test point is to maximize the likelihood of improvement through 

measuring both uncertainty and expected values. 

Once the next x-point is selected, it is applied to the system (three steps sequentially), 

and new outputs, or y-points, are recorded. Every fourth step, the stimulation parameters 

change, and the step on which the parameters change is removed from the data.  

The algorithm here (with our modifications) has been validated with simulations in 

Chapter 6. 
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3.3. Experimental Results 

In order to validate the system, I tested it with one spinal-cord-injured volunteer (32 

years old, male, C6, motor incomplete, 5 years post-injury). The subject had a Lower 

Extremity Motor Score (LEMS) of 0: they could produce voluntary movement in a non-

key muscle greater than 4 segments below the injury, but had no other voluntary control. 

The experiment was conducted at the Shepherd Center, an Atlanta-based rehabilitation 

hospital, with the approval of Shepherd Center’s Institutional Review Board. Physical 

therapists confirmed the subject could participate safely in the study and the subject 

provided informed consent. 

3.3.1. Experimental Protocol 

A pair of bipolar stimulating electrodes were placed over the distal tibial nerve while the 

subject was supine on a mat. The stimulation current was set to the lowest level that 

could produce a consistent flexion reflex on each leg (20 mA on the right leg, 25 mA on 

the left leg). Pulse width was set to 1 ms. 

The subject’s legs were ace-wrapped to protect the skin from the Lokomat straps. The 

Lokomat body-weight-support harness was placed on the subject’s torso and adjusted 

as appropriate. Then, the subject entered the Lokomat. The subject’s pelvis was 

secured, the body-weight-support harness was attached to the body weight support 

system, the exoskeletal actuators were attached to the thigh and calf, and the front of 

the foot was lifted with a spring-loaded strap to avoid toe catch on the treadmill. Dynamic 

body weight support was set to 60% (the minimum level such that the subject could walk 

in the Lokomat). Walking speed was set to 2 kilometers per hour, which corresponded to 

approximately one complete step every two seconds. The experiment was begun once 

the subject was comfortable and ready. 
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The experiment was divided into four consecutive periods: 10 steps of no stimulation, 

251 steps of randomized-stimulation parameters, 226 steps of the optimized-stimulation 

parameters, and 9 more steps with no stimulation (figure 3-3). In both the randomized-

stimulation and optimized-stimulation periods, the stimulation parameters changed every 

4 steps. In each group of 4 steps, the first step (the parameter-changing, transition step) 

was removed from further analysis to avoid artifacts. During the optimization period, the 

system automatically selected the stimulation parameters based on the closed-loop 

algorithm described previously (see optimization section above).  
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Figure 3-3: Experimental validation. The experiment consisted of a human SCI subject 
walking 496 steps in the Lokomat. The first half of all plots (first 261 steps, uncolored 
background) is the randomized-sampling period, which initialized the space for the 
optimization period (“optimizing” in the right half, consisting of the final 245 steps, gray 
background). The top panel (panel A) shows the frequency, phase, and du-ration of the 
pulse train vs the step number, the tested values are colored according to their metric 
value (i.e. how good the output was) in the bottom panel. The middle panel (panel B) 
shows the actual pulse trains (each hash is a pulse in the pulse train) from the 
stimulation parameters in the top panel. The pulse trains are shown with individual 
stimuli represented as hash marks. Every pulse train was repeated four times, but 
shown only once in the plots above (for ease of visualization). The bottom panel (panel 
C) shows the force metric in response to the pulse trains vs the step number, with only 
the median for each iteration shown. In the force metric, a value of 1.0 corresponds to 
the average response for no stimulation. Most pulse trains reduced the force metric 
(improved stepping), but some combinations increased the force metric to above 1 
(worse than no stimulation). 

Each step, the system applied pulse trains to each leg at the same gait phase for each 

leg. For example, if the right leg was stimulated at mid stance, the left leg was also 

stimulated at mid stance. 



89 
 

3.3.2. Randomized Sampling vs Optimized Sampling 

There were qualitative differences between the randomized-sampling and optimized-

sampling periods (figure 3-3). During randomized sampling, the sampling was spread 

(uniformly) across the entire parameter space without focus on any specific region of the 

parameter space. Most sets of stimulation parameters reduced the force metric 

(improved stepping), but some combinations increased the force metric to above 1 

(worse than no stimulation). During optimized sampling, the system focused its sampling 

on stimulation parameters that produced better force metric values (i.e. lower force 

metric values), which tended to be stimulation patterns applied during the early swing 

phase. The algorithm did not always stay near the last iteration’s sample. Instead, it 

always tried to maximize the likelihood of improvement over the entire space. As more 

samples were selected near the stance-to-swing transition, the chances that some 

hypothetical point will be better than all previous points in that area diminishes, and a 

point in a less explored region became more attractive to explore. In figure 3-3, as more 

data samples were gathered, the algorithm estimate of the optimum was near early 

swing in the phase space, and frequencies and durations in the top half of the frequency 

range. 

The qualitative differences between the randomized-sampling and optimized-sampling 

periods were compared statistically (t-test) to determine if the optimization period 

sampled in a significantly better way that randomized sampling. The difference was 

statistically significant (p<0.001), meaning that the optimization algorithm identified and 

sampled a better region (according to the force metric) of the stimulation-parameter 

space than a randomized sampling did. 
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The optimal pulse train begins just before the stance-to-swing transition (9% earlier) is 

high frequency (97 Hz), and lasts 36% of the gait cycle (~0.7 seconds). This optimum 

had the lowest (i.e. best) expected value for the force metric in the entire space. 

3.3.3. Confidence Analysis 

To quantify the accuracy of this optimum, I created confidence regions for both 95% and 

99% confidences (Fig. 4a). To create the regions, the space was cut into 2.5% 

increments (40 divisions in each dimension), and used the model to estimate the 

response and standard deviation at every point. I also calculated the covariance 

between those points using the model. To increase the applicability and interpretability of 

this analysis, time-variance was ignored, so these values can be considered to represent 

the optimal stimulation parameters across the entire experiment. The estimates, 

standard deviations, and covariances at every increment created a large Gaussian 

process (40*40*40=64,000). Then, a Monte Carlo simulation was run, with 2,000,000 

experiments. In each Monte Carlo experiment, I instantiated every point in the 3D space, 

and ordered the points by the force metric, constructing a probability distribution of the 

global minimum. This probability distribution was used to create confidence regions for 

both 95% and 99% confidences (Fig. 4a). 
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Figure 3-4. The optimal stimulation parameters, confidence regions, and input-to-output 
mapping. A model was created from the experimental data, including the expected value 
and standard deviation at every point in space, and the covariance between every 
combination of two points in the space. From this stochastic model, confidence regions 
(95% and 99%) of the location of the global minimum were calculated using a Monte 
Carlo simulation (Panel A on the left). To visualize the space near the optimal stimulation 
parameters, a 2D slice of the expected value space was made (Panel B on the right). A 
du-ration of 36% was chosen, as it is the optimal duration. The areas with better (i.e. 
lower) force metrics are concentrated at the highest frequency tested (top part of panel B 
has both the lightest colors), with starting times (phases) near the stance-to-swing 
transition. While most areas in the parameter-space reduced the force metric (improved 
stepping), some combinations increased the force metric to above 1 (worse than no 
stimulation). 

The confidence showed a complicated distribution. There was one region focused on 

slightly shorter pulse-trains (e.g. 36% duration) starting later (e.g. 9% before the stance-

to-swing transition), and another region with longer pulse-trains (e.g. 50% duration) 

starting earlier (~19% before the stance-to-swing transition). The maximum likelihood 

estimate of the global optimum is in the first region. Both regions are focused on the 

highest frequencies that the experiment tested. 

In order to gain a better understanding of the input-to-output mapping, I calculated the 

expected value at every point. A slice was extracted from that 3D space at the optimal 
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duration (figure 3-4b) to focus on the frequency and phase relationship (those two 

parameters were identified the most sensitive in the next section). In addition to showing 

the good areas, this slice-visualization also shows the worst values. These worst values 

in the force metric were greater than 1, revealing that these stimulation parameters were 

worse than no stimulation at all. The worst pulse was a high frequency pulse train 

applied just before the swing-to-stance transition (~180 degrees away in the phase 

space). 

3.3.4. Sensitivity Analysis 

In order to test the quality of the hypothetical optimum I performed a series of tests, 

exploring both the optimum as compared to the rest of the space, and the local area 

near the optimum. In all cases, the estimates relied on the stochastic DACE model. 

I analyzed the sensitivity of the optimum and model through perturbation analysis. The 

DACE model (the input-output model) was leveraged to perform a second-derivative test 

of the stimulation parameters at the optimum (figure 3-5). The second derivative 

evaluated at the optimum can be used to understand how tight the optimum is (i.e. how 

much better the optimum is than some other point near to the optimum) with respect to 

each stimulation parameter. Our analysis (figure 3-5) demonstrates that the sensitivity of 

the optimum (for at least this one test subject) using normalized units (normalized by the 

range of the stimulation parameter) and physical units (e.g. Hz for frequency). For our 

comparisons, normalized units were used, as they allow for easier comparison between 

different stimulation parameters. 
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Figure 3-5. Sensitivity of the optimum. The optimum is shown with the large dot. The solid 
line shows the estimated response, the shaded area above and below the dark line shows 
the standard deviation. The dotted red line shows the second derivative, calculated at the 
optimum, and the values shown above the optimum report the sensitivity in both 
normalized (by the range of allowed values), and by standard units (e.g. Hz for frequency). 

The analysis identified phase as the most sensitive parameter (37 in normalized units), 

followed by frequency (17 in normalized units), with duration of the pulse-train as the 

least sensitive parameter (4 in normalized units). These results (figure 3-5) mean that a 

small change in phase may make a big difference, but changes in duration do not affect 

the outcome variable (the force metric) very much.  

3.4. Discussion 

This chapter presented a novel approach: real-time modification of the walking pattern 

through optimizing sensory stimulation, demonstrating that individually optimized 

protocols for humans with SCI is feasible. Our approach dealt with the noisy, time-

varying system embodied by a real human subject, and showed it can find a candidate 

optimum. Through the global optimization algorithm, I developed a stochastic nonlinear 

mapping of the space, allowing for confidence and sensitivity validations. 
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On-line optimization (or optimal experimentation) is a relatively new improvement on 

closed-loop approaches. It allows researchers to focus their experiments automatically 

on whatever they define as the most interesting subspace of their stimulation-parameter 

space. The approach detailed here worked in an actual system with a real human 

subject. The model allowed for time-variance, noise, and multiple local minima. More 

importantly, the approach identified a candidate optimum for this specific subject, which 

could be used in a rehabilitation setting on this specific subject. 

3.4.1. Optimization was Successful 

The optimal pulse train was a medium length pulse train (35% of the gait cycle) at a high 

frequency, starting just before the stance-to-swing transition. The majority of previous 

studies (e.g. Field-Fote and Tepavac (2002) and Granat et al. (1993)) utilize high-

frequency, short-duration pulse trains starting at or slightly before the stance-to-swing 

transition. Our algorithm figured out a similar solution without previously being told what 

an effective pulse train would look like. The previous results have validated our approach 

(in one subject). 

In addition to the pulse train discussed above, there was an additional local optimum of 

longer pulse trains, starting earlier (closer to mid-stance). These two local minima can be 

seen in the confidence and sensitivity plots. Although these two local minima represent 

pulse trains that start at different times, the timing of the middles of those pulse trains 

are similar, suggesting that the nervous system may “perceive” the middle of the pulse 

train as the independent parameter, rather than “perceiving” the starting of the pulse 

train as the independent parameter. However, this result is based on only one subject, 

and a detailed exploration of how the nervous system “perceives” pulse trains will be left 

to future studies. 
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I validated the protocol in two ways: confidence regions in the stochastic mapping and a 

sensitivity analysis exploring perturbations. The confidence regions and sensitivity are 

tight in the phase and frequency axes, but looser in the duration axis. In the frequency 

space, there was only a slight reduction in the performance from reducing the frequency, 

suggesting that the system is not particularly sensitive to the precise stimulation 

frequency, so long as it is high. Overall, these results suggest that when a pulse train is 

applied during the gait cycle is the most important, so long as the pulse train is high 

frequency. How long the pulse train lasts is a secondary consideration – with all 

associated caveats that, at this point, I can only say this is true for a single subject. 

3.4.2. Limitations of Study 

First, this study is meant to demonstrate a new system and show proof of principle – it 

was conducted in only one SCI subject. Second, the Lokomat affects the walking pattern 

through the constraints it puts on pelvic movements and ankle plantar flexion. Despite 

these constraints, I chose the Lokomat due to its advantages in a research setting. It 

allows people who cannot walk to achieve a stable walking pattern. The Lokomat also 

produces highly repeatable steps, which are very amenable to experimental 

optimization. Lastly, and most importantly for this work, the Lokomat outputs joint angles, 

joint forces, and body weight support in real time. 

It is difficult to measure anything as complicated as walking on a 1-dimensional scale. I 

chose a force-based metric, because it was simple, easy to implement/understand, and 

it worked well for our purposes. In future work, I hope to explore other metrics, including 

those based on electromyography and/or kinematic descriptions of leg movements. 

Although our choices of stimulation parameterization and walking metrics made the 

system approachable, they also affected what optimal stimulation patterns could be 
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found. However, the advantage of the methodology demonstrated in this paper is that it 

can be used with any low-dimensional parameterized intervention and any walking 

metric that can be defined on a step-by-step basis.  

The approach detailed in this paper is ideal for a safe training environment where both 

the best and worst stimulation patterns can be explored safely. In the real world, an on-

line optimization algorithm would need to be extrinsically safe – not allowing for 

occasional falls while walking across a street. Therefore, an additional term would need 

to be added to the optimization algorithm to encourage the next iteration to stay 

relatively local to its previous iteration, and to stay clear of known bad areas. 

3.5. Conclusions 

Our approach shows that real-time optimization of a human subject to assist their 

walking is feasible, even in the context of the noisy, nonlinear system that a human with 

SCI represents. 
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CHAPTER 4: OPTIMIZING SENSORY STIMULATION WAS SUCCESSFUL 

This chapter presents the results of an optimized-stimulation study across a range of 

SCI subjects, across multiple sensory stimulation sites, and with different stimulation 

parameterizations. As in chapter 3, the algorithm optimized the stimulation parameters to 

minimize the force assistance required to maintain a walking gait. Across all subjects 

and stimulation sites, the optimal stimulation protocol produced better walking than three 

alternative stimulation protocols: an industry-standard stimulation condition, a no-

stimulation condition, and a random-stimulation condition. 

The chapter is organized into an introduction, methods, results, and discussion, following 

the traditional paper format. The introduction section presents an abbreviated summary 

of current research and motivation for this chapter. The methods section describes the 

subjects, subject preparation methods, and stimulation protocols. The results section 

presents the details of the findings across the subject population in the multiple 

stimulation sites, and the discussion section interprets the results. 

4.1. Introduction 

Typically, walking relies on three parts of the nervous system: central-pattern-generator 

(CPG) neural circuits in the spinal cord, supraspinal input, and sensory feedback. The 

CPG provides the basic motor pattern of walking (Duysens and Van de Crommert 1998). 

Communication with the brain initiates (Jordan 1998) and modulates locomotion 

(Marple‐Horvat and Armstrong 1999). Sensory signals modulate the walking pattern by 

conveying information about biomechanical interactions between the body and the 

environment (Rossignol, Dubuc, and Gossard 2006). 
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Spinal cord injury (SCI) disrupts the pathways between the brain and the central pattern 

generator (CPG), impairing or eliminating the ability to walk. Despite substantial 

improvement from modern clinical interventions, most SCI subjects are not satisfied with 

the recovered level of ambulation they achieve post-injury.(Anderson 2004) For those 

with the most severe injuries, current treatments are generally not effective for the 

recovery of ambulation. 

Sensory stimulation can initiate, control, and modulate locomotion in nearly all species 

examined (Kiehn et al. 1998). Two types of sensory stimulation have recently shown 

promise. First, cutaneous nerve stimulation has been used in conjunction with both 

functional electrical stimulation (Liberson et al. 1961, Granat et al. 1992) and with 

physical therapy to assist with training (Ladouceur and Barbeau 2000a, Ladouceur and 

Barbeau 2000b). Cutaneous reflexes are associated with the central pattern generator 

(Bussel et al. 1989, Burke 1999, Nakajima, Kamibayashi, and Nakazawa 2012), and 

studies have identified correlations between cutaneous reflexes and the recovery of 

locomotion after SCI (Dietz et al. 2009). Second, spinal-cord stimulation can assist the 

spinal cord to produce walking and walking-like behaviors (Gerasimenko et al. 1996, 

Herman et al. 2002, Harkema et al. 2011). Transcutaneous spinal cord stimulation 

(TSCS) has been developed as a non-invasive variety of spinal cord stimulation, and it 

has been shown to produce similar results as epidural stimulation (Ladenbauer et al. 

2010, Danner et al. 2011, Hofstoetter et al. 2013). In both epidural  (Rattay, Minassian, 

and Dimitrijevic 2000, Holsheimer 2002) and transcutaneous (Minassian, Persy, Rattay, 

Dimitrijevic, et al. 2007, Danner et al. 2011) spinal cord stimulation, the dorsal roots 

(sensory afferents) are activated at lower thresholds than any other spinal structures. 

Sensorimotor processing is highly individualistic. Even in neurologically normal 

individuals, there is substantial variability in reflex responses based on age  (Evans, 



99 
 

Harrison, and Stephens 1990, Gibbs et al. 1999), level of activity (Loeb 1993), athletic 

history (Wolpaw and Tennissen 2001, Gruber et al. 2007), and other variables (Brooke 

et al. 1997). A number of studies have found further divergence in sensorimotor 

responses after SCI, depending on SCI level (Dietz et al. 1999, Poirrier et al. 2004), SCI 

severity (Rossignol et al. 1996), and time since injury (Hiersemenzel, Curt, and Dietz 

2000). In one study, all animals received identical injuries, but half had increases in 

extensor EMG, while the other half had reductions (Belanger et al. 1996), demonstrating 

individuality in even the most controlled conditions. In a human SCI study, the 

relationship between the early part of a reflex and a late part of that reflex varied 

significantly across the subject population (Roby-Brami and Bussel 1987). In studies of 

human rehabilitation after SCI, one study observed that no two individuals showed 

similar patterns of coordination after an intervention (Field-Fote and Tepavac 2002), and 

another study showed that individuals with SCI did not use consistent strategies to 

engage in an incline walking task (Leroux, Fung, and Barbeau 1999). There have been 

observations of individual SCI subjects in whom flexor stretches led to excitation of 

extensors instead of flexors, reversing the normal relationship (VanHiel 2012). 

Real-time optimization can be applied to find the best sensory stimulation for an 

individual SCI subject by iteratively adjusting the sensory stimulation parameters to 

improve a walking metric. Real-time optimization has been applied to neurological 

applications previously. One of the early reports compared two approaches to 

algorithmically develop stimulation protocols for functional electrical stimulation (Kostov 

et al. 1995). Some neurophysiological studies have utilized real-time optimization to 

identify the best stimulus to get a specific response (Edin et al. 2004, O'Connor, Petkov, 

and Sutter 2005, Benda et al. 2007, Lewi, Butera, and Paninski 2008). Optimization and 

machine learning algorithms have been used to improve how brain-computer interfaces 
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interact with the user (Fruitet et al. 2012, Gürel and Mehring 2012). A recent study has 

used optimization to improve epidural spinal cord stimulation (Desautels 2014).  

The goal of this work is to evaluate the performance of real-time optimization of sensory 

stimulation to assist walking in SCI subjects. I developed a system to optimize 

stimulation in real-time (Chapter 3), applied it to a group of SCI subjects, and tested 

multiple sensory stimulation sites. In each session, the system optimized the parameters 

to maximally improve walking in each subject individually. I hypothesized that this 

approach would produce optimal stimulation parameters that would outperform no-

stimulation, random-stimulation, and clinical-standard stimulation protocols. 

4.2. Methods 

Sensory stimulation was optimized in real-time in a group of SCI subjects during a 

walking task in a Lokomat (Hocoma Inc.). Forces and joint angles were recorded (Figure 

4-1). Lokomat-based walking is similar to normal walking, but not identical (Colombo, 

Wirz, and Dietz 2001). However, the Lokomat had three major advantages that allowed 

our study. (1) Assistive walking allowed us to recruit those subjects whose SCI was too 

severe to walk independently. (2) The Lokomat standardizes the step pattern, creating 

more favorable experimental conditions for testing different stimulation patterns. (3) Our 

Lokomat was equipped was an analog output box to access force traces in real-time, 

allowing analysis of how much assistance the SCI subjects required under different 

conditions. 

The experiments were conducted at the Shepherd Center, an Atlanta-based 

rehabilitation hospital, with the approval of Shepherd Center’s Institutional Review 

Board. 
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Figure 4-1. Conceptual Overview. The subject was walking in the Lokomat, and I 
recorded the amount of force assistance applied to maintain the walking pattern. This 
force assistance was summarized into the force metric.  A model was created of all 
previous stimulation parameter tests and the next test point was selected via an 
optimization within the model. The next test point was translated into individual stimuli, 
depending on the parameterization being used (tonic or pulse-train stimulation). The 
stimuli were delivered to one stimulation site in each session (on both legs in the case of 
pulse-train stimulation), and more force metrics data points were recorded, beginning the 
loop again. The angles of the limbs were used to define the step cycle, and the steps 
were divided at the beginning of stance on the right leg. Pulse trains were parameterized 
using the gait phase of the beginning of the train, the frequency of stimuli, and the 
duration (as a percentage of one complete step cycle). Tonic stimulation was 
parameterized by the frequency of stimuli. 

4.2.1. Subjects and Preparation 

Subjects were recruited from the SCI population affiliated with Shepherd Hospital in 

Atlanta, consented on the study, and screened for safety in the Lokomat. Our subjects 

(Table 1) included both males and females, ranged from 18-57 years old, and were 

between 6 months and 10 years post-injury. Most of the subjects’ injuries were AIS C’s, 

but AIS A, B, and D were also included. The spinal level of the injuries ranged from C5 

to T10.   
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After the subjects gave consent, they laid supine on a raised mat. EMG electrodes were 

applied (described in “Data Collected”). Stimulation electrodes were applied (described 

in “Stimulation”). Then, the subjects’ legs were wrapped to protect their skin from the 

Lokomat straps. The body weight support (BWS) harness was placed around their pelvis 

and torso and adjusted to fit. Then, they entered the Lokomat and their pelvis was 

secured. The BWS harness was attached to support system, and set to between 40–

60%, aiming for the minimum BWS such that the subject could still walk in the Lokomat 

without exceeding the safety tolerances in the required force assistance. The Lokomat 

was augmented with a dynamic BWS system, which was used in all sessions to give 

smoother support. The actuators were attached to the thigh and calf. In order to prevent 

the subject from catching their foot on the treadmill, foot supports were attached, 

maintaining the angle of their ankle joint at slightly above 90 degrees with springs. 

Walking speed was set to ~2 kilometers per hour, which corresponded to approximately 

one complete step every two seconds. Guidance force was set to 100%. 

4.2.2. Stimulation 

Stimulation was applied to three different sensory stimulation sites: transcutaneous 

spinal cord stimulation (TSCS), posterior tibial nerve stimulation, and common peroneal 

nerve stimulation. For all stimulation sites, pulse width was set to 1 ms in order to be 

slightly more selective for sensory afferents (Veale, Mark, and Rees 1973). In all cases, 

the stimulation was applied with a DS7A (Digitimer Ltd.), triggered by a CompactRIO 

(National Instruments), running custom software. The number of experimental sessions 

was limited, so I prioritized posterior tibial nerve stimulation and transcutaneous spinal 

cord stimulation. 
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Transcutaneous spinal cord stimulation: TSCS was conducted per established 

protocol (Hofstoetter et al. 2013). Briefly, a pair of 2” bipolar stimulating electrodes was 

placed over the T11–T12 interspinous space, manually identified by palpation, with one 

electrode on either side of the spine, connected together to act as a single larger 

cathodal electrode.  Before application of the electrodes, the area was rubbed with an 

abrasive gel to reduce the skin resistance. A ring of conductive gel was placed around 

the edge of the cathodal electrode to help eliminate skin problems from high-current 

stimulation. An additional larger pair of rectangular electrodes were placed over the 

lower anterior abdomen equidistant from the umbilicus. These were also connected 

together to act as a single larger anode. A constant-current stimulator (Digitimer DS7A) 

delivered monophasic rectangular pulses (1 ms pulse-width). Electrode placement was 

confirmed by eliciting posterior root-muscle reflexes in all EMG channels while the 

subject relaxed in a supine position. Amplitude was set to >60% of the current required 

to produce a reflex response in all EMG channels (the common mode action potential – 

CMAP).  In our subject population, that amplitude range was from 22–110 mA, with most 

subjects at ~60 mA. The frequency of stimulation was optimized by the protocol 

discussed in the “Optimization” section. 

Posterior Tibial Nerve: A pair of 1” stimulating electrodes was placed over the posterior 

tibial nerve while the subject was supine on a mat after the stimulation site was rubbed 

with an abrasive gel. The site was found by a trained physical therapist manually 

palpating the medial ankle, and confirmed with stimulation. The cathode (-) was always 

placed caudally, and the anode (+) was always placed rostrally. Setting stimulation 

current posed some difficulties. In many cutaneous reflex studies, stimulation current is 

often set to some multiple of the minimum perceptive threshold, but many of our subjects 

had impaired sensory perception, so an alternate approach was required. The 
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stimulation current (Table 1) was set to the lowest level that could produce a robust 

flexion reflex (while the subject was supine). This approach resulted in a range of 6–25 

mA, with most subjects at ~12 mA. 

Posterior tibial nerve and common peroneal nerve stimulation was applied using a pulse 

train, lasting less than 50% of the gait cycle.  The pulse train was allowed to start at any 

arbitrary point in the gait cycle, last 10–50% of the gait cycle (duration), and stimulation 

between 1–100 Hz. Stimulation was applied to both legs at the same respective time in 

their gait cycles (out of phase in absolute time). 

Common Peroneal Nerve: The procedure was very similar to that of the posterior tibial 

nerve, using the same electrodes, pre-rubbed with an abrasive gel, and applied while the 

subject was supine on a mat. The site was found by locating the lateral hamstring 

tendons on the lower thigh, and palpating slightly lateral to that tendon until the nerve 

was found. In some cases the electrodes had to be placed slightly lower in the popliteal 

fossa (crease in the back on the knee). In all cases the placement was confirmed with 

test stimuli. As with the posterior tibial nerve, I could not rely on perceptive threshold and 

instead found the lowest stimulation current (Table 1) that would produce a robust 

flexion reflex. The range of stimulus current used was 3–12 mA, with most subjects at ~8 

mA. 

PTNS and CPNS were applied using pulse trains (figure 4-1). The pulse train started at 

any arbitrary point in the gait cycle (phase), lasted 10–50% of the gait cycle (duration), 

with frequencies of 0–100 Hz. Both legs were stimulated at the same respective time in 

their gait cycles. 

The clinical-standard stimulation protocols were defined based on previous reports in 

literature. For TSCS, effective stimulation frequencies are reported as 20-50 Hz 
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(Hofstoetter et al. 2013, Danner et al. 2015, Hofstoetter et al. 2014, Minassian et al. 

2004).  Therefore, I defined 35 Hz as clinical-standard. For PTNS and CPNS, studies 

generally utilize short, high-frequency stimulation, applied just before the stance-to-

swing transition (Field-Fote and Tepavac 2002, Granat et al. 1993, Zehr, Komiyama, and 

Stein 1997). I defined “short” as 10% of the gait cycle, “high-frequency” as 85 Hz, and 

the clinical-standard gait phase as 50% of the gait cycle after heel strike (10% before 

swing). 

 

4.2.3. Data Collected 

Our system recorded the force that the Lokomat applied to the hip and knee joint on 

either side. The Lokomat was equipped with an analog output box, which enabled the 

recording of Lokomat-applied forces, body-weight-support (BWS), and joint angles. The 

CompactRIO was configured to receive these signals, along with the EMG channels. 

Our post-processing algorithms low-pass filtered the force, BWS, and angle signals at 20 

Hz. 
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Table 4-1. Subject Details and Stimulation Sites tested on each subject. LEMS: Lower 
extremity motor score. AIS: ASIA Impairment Scale. 1This subject was able to get 
voluntary movement in a non-key muscles greater than 4 segments below the injury, but 
had no other voluntary control. 2LEMS was unavailable for these subjects.TSCS: 
Transcutaneous Spinal Cord Stimulation. PTNS: Posterior Tibial Nerve Stimulation. 
CPNS: Common Peroneal Nerve Stimulation. 

ID Gender Age 
(years) 

Time 
since 
Injury 
(years) 

AIS Neuro- 
logical 
Level 

LEMS TSCS 
Sessions 

PTNS 
Sessions 

CPNS 
Sessions 

1 Female 30.2 1.5 A T1 0 1   

2 Female 22.9 1.4 B T4 0 1   

3 Male 32.1 5.0 C C6 01 1 3 1 

4 Male 57.1 3.5 C T10 3 3 3  

5 Female 21.3 1.1 C T3 6 1 1 1 

6 Male 18.1 1.5 C C6 7 1 4  

7 Male 21.1 0.6 C T1 9 1 2  

8 Male 51.5 0.8 C C7 15 2 2  

9 Male 41.5 4.1 C C5 15 2 1 1 

10 Male 42.4 9.5 C T10 20  2 2 

11 Male 40.6 1.6 C T3 -2 1 2 1 

12 Male 49.5 1.9 D C5 -2 1 1  

 Ratio: 
9M:3F 

Mean: 
35.7 

Mean: 
2.7 

Range: 
A–D 

Range: 
C5–T10 

Range: 
0–20 

Total: 
15 

Total: 
21 

Total: 
6 

4.2.4. Force Metric 

Our primary walking metric was to measure the amount of force the Lokomat required to 

maintain the subject in a walking gait. The choice of walking metrics was limited by two 

requirements: (1) the metric must be computed every step, and (2) the metric must 

produce viable results in people with even only minimal walking ability. To achieve a 

walking pattern, the Lokomat provides robotic assistance, applying varying amounts of 

force depending on what is required to get a limb segment to the correct place in space 

at the correct time. This assistive force is negatively related to the muscle force that the 

person is producing, thus it can be considered an error metric (i.e. the less force the 

person produces, the more force the Lokomat must produce). Incidentally, this force-
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error-analogy is still accurate even if the subject has spasticity, which the Lokomat would 

have to counter or resist in order to achieve the desired walking pattern. 

The use of the Lokomat’s assistance allowed people with only minimal walking ability to 

participate in our study. The assistive force was chosen as our primary outcome metric, 

with less assistive force defined as better walking. The assistive force was summarized 

with a mean-squared operator across all four actuated joints (hip and knee on left and 

right) for every complete step (left-right). This metric was normalized to have a value of 1 

for the average response to the no stimulation condition, providing an intuitive 

visualization for which stimulation patterns are better or worse than no stimulation. For 

statistical comparisons, I also corrected for time-variance through maintaining the 

average no stimulation near 1.0 through the experimental session using a Gaussian 

process model (the same model used for optimization). 

4.2.5. Optimization 

Our approach is discussed in detail in previously (Chapter 3). Briefly, our approach 

utilized a modified form of the sequential kriging optimization (SKO) algorithm (Huang et 

al. 2006). Our modification allows the use of time as an uncontrolled variable, thereby 

allowing time-variance in the optimization, in a similar manner as the N+1 approach 

described in (Morales-Enciso and Branke 2015). 

Each experimental session began with open-loop sampling to seed the model space. 

Then, the optimization period began, and continued until the conclusion of the session. 

The same stimulation pattern was applied for 4–10 steps, corresponding to one iteration. 

Four steps were used for the three-parameter pulse-train stimulation patterns (PTNS 

and CPNS). Ten steps were used for the single-parameter tonic stimulation pattern 

(TSCS). Steps were divided at the onset of stance on the right leg (figure 4-1). 
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In post-processing, steps were divided into no-stimulation, random, clinical-standard, 

and optimal stimulation conditions. Each experimental protocol began with random 

stimulation patterns. Steps were identified as clinical-standard if they fell within a 

Cartesian distance of 0.33 in a normalized parameter space (all parameter ranges 

transformed to 0–1). For example, a 70 Hz, 20%-of-the-gait-cycle duration pulse train, 

with a gait phase of 40% (towards the end of stance) has a distance of 0.21 to the 

clinical-standard parameters (85 Hz, 10% duration, 50% gait phase), but a pulse train 

with a gait phase of 80% (during swing) would not be included. Optimal-stimulation steps 

were defined in the same way, but based on the distance to the optimum identified by 

the algorithm for that individual during that step. In some cases, individual steps could be 

considered in more than one protocol (e.g. if the algorithm identified 0 Hz as optimal for 

that step, the step would count as both a “no-stimulation” step and an “optimal” step). 

4.2.6. Statistics 

The data distributions often demonstrated skew, so Student T-Tests could not be used 

to test significance. Instead, the Wilcoxon Rank-Sums was used for all significance tests. 

Due to skew in the data distributions, Cliff’s Delta was chosen to measure effect size 

(Macbeth, Razumiejczyk, and Ledesma 2011). A Cliff’s Delta of 1 means every data 

point in the “better” group is better than every point in the other group. A Cliff’s Delta of 0 

means that about the same number of points are better as are worse. A Cliff’s Delta of 

between 0 and 1 mean that most, but not all, points are better. 

To estimate probability distributions the kernel density estimation function in Python’s 

scikit-learn library (v0.16.1) was used. For phase, the distribution was wrapped around 

the edge (i.e. the left-edge of the distribution was copied and placed beyond the bounds 

on the right). For other datasets, the data was reflected at the bounds to give more 
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accurate distribution-estimates for edge conditions (Cline and Hart 1991, Schuster 1985, 

Silverman 1986). 

4.3. Results 

Sensory stimulation patterns were tested at multiple sites in 12 subjects across 42 

experimental session. In each session, our system recorded the force metric for every 

step and the stimulation parameters that produced each force metric value (figures 4-2A 

and 2B). The algorithm identified the optimal stimulation parameters that maximally 

reduced the force metric (described in methods). I quantified the probability distributions 

of the optimal stimulation patterns, in addition to no, random, and standard stimulation 

patterns. These protocols were then compared to identify the improvement due to 

individual optimization. To illustrate the optimal stimulation patterns, I reported the 

probability distributions of those parameters. Examples of time-variance in our 

responses are highlighted, and an analysis is shown that individual differences in the 

quality of optimization could not be easily derived from injury characteristics. 

4.3.1. Comparison of Stimulation Protocols 

In this analysis, our goal was to determine if on-line optimization produced better walking 

(as defined by a lower force metric) than no stimulation, random stimulation, or standard 

stimulation patterns. Our experiments included a random sweep of stimulation patterns 

for the first half of each session, allowing us to explore hypotheses on whether arbitrary 

stimulation patterns were equal or worse than the stimulation pattern identified by 

optimization (in terms of the force metric). The probability distribution of the force metric 

was analyzed (figure 4-2C) for each condition and statistically tested the differences. 
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The standard stimulation pattern was based on previous reports in the literature. For 

TSCS, the standard stimulation parameters was 35 Hz tonic stimulation. For common 

peroneal and posterior tibial stimulation, the standard stimulation was defined as short 

(<20% of the gait cycle), high-frequency (>70 Hz) pulse trains applied just before the 

stance-to-swing transition. 

In all conditions (figure 4-2C), individually optimized stimulation produced statistically 

lower (better) force metrics than all other conditions, but the effect sizes varied based on 

which site was stimulated and what was being compared. In all three conditions, the 

median of random stimulation was nearly the same as that of no stimulation, but random 

stimulation tended to have a greater spread of values. 

The improvement (effect size) from using optimal stimulation differed based on which 

stimulation site was being used (e.g. distal tibial vs TSCS). The improvements (from 

optimization) for common peroneal and posterior tibial nerves were much larger than 

those for TSCS (0.44–0.71 vs 0.12–0.22), as can be seen in figure 4-2C. Posterior tibial 

nerve stimulation showed slightly greater effect sizes than common peroneal nerve 

stimulation (0.47–0.71 vs 0.44–0.68). 
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Figure 4-2. Optimal Stimulation as compared to no, random, and standard stimulation. 
Panel A shows an example step (Step #388), from subject #6, with a TSCS frequency of 
100 Hz. Hip and knee forces are shown. Dark blue shows the current step, with portions 
of the previous and next step shown in light blue. This steps are combined (in order) with 
the other 488 steps from the same session in panel B. The bottom plot of panel B shows 
the TSCS frequencies which produced the force metric values in the main panel. The 
right plot of panel B shows the distribution of force metric values according to stimulation 
condition, where pink is optimal stimulation. In the top plot of panel C, the session from 
panel B is combined with 14 other TSCS sessions to produce the force metric 
distribution for the entire dataset. The second plot in panel C shows the distribution 
across all posterior tibial stimulated steps and sessions. The third plots in panel C shows 
the distribution across all common peroneal stimulated steps and sessions. In all three 
stimulation sites the optimal stimulation (colored shading) was statistically significantly 
lower than all three other conditions (no, standard, and random stimulation). The number 
of steps in each set was 6,740 (TSCS), 8,165 (posterior tibial stimulation), and 2,640 
(common peroneal stimulation). I tested significance using a Wilcoxon Rank Sums test, 
and quantified effect size (“d” in the above) using Cliff’s Delta (range of -1 to 1, with 1 
being the largest difference).  Std. = Standard, Rnd. = Random.  



112 
 

4.3.2. Optimal Stimulation Parameters 

Our goal in this analysis was to estimate the global probability distribution of optimal 

parameters for each sensory stimulation site. As part of the process of optimization, the 

algorithm estimates optimal stimulation parameters at every step. These parameters can 

be combined across the entire session to form a distribution of optimal parameters for 

that session. The distributions from each session can then be combined into global 

distributions of optimal stimulation parameters (figure 4-3). For the purposes of analyzing 

the distribution of these parameters, the complete model (future and past tests) was 

used to estimate the optimal stimulation parameters for every step in the experimental 

session.  

The optimal parameters varied across subjects, and within the same subject it varied 

with time. However, when the distributions of all subjects’ optimal stimulation parameters 

were combined, there was clustering in the data (peaks in figure 4-3).  

Optimal stimulation parameters for TSCS were divergent (figure 4-3). A substantial 

minority (36%, subject IDs: 3, 4, 9, and 12) showed no stimulation or very low frequency 

stimulation as optimal, which was a permitted solution in the algorithm. Other subjects 

showed a spread across the non-zero frequencies. 

The optima associated with posterior tibial stimulation also demonstrated clustering 

(figure 4-3). The optimal pulse trains tended to be high-frequency, with a peak 

distribution at 100 Hz. The optimal pulse trains tended to start in the late stance phase, 

with a peak at 44% of the gait cycle – approximately 2/3rds through the stance phase. 

Optimal pulse trains tended to be longer pulse trains, with the peak of the distribution at 

pulse trains that lasted 50% of the gait cycle (the highest value permitted by the 
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algorithm). Common peroneal nerve stimulation (figure 4-3) showed a similar 

distribution, with the peak of the phase of stimulation at 41% instead of 44%. 

 

Figure 4-3. Distribution of Optimal Stimulation Parameters. The time-varying optima from 
each session were used to estimate the probability distribution of the optimal stimulation 
parameters in that session (the colored lines in the background of each plot). Then, the 
average of the distributions of all sessions was calculated to estimate the global 
distribution of optimal stimulation parameters (black line in the foreground in each 
panel). Transcutaneous spinal cord stimulation is on the top row. Posterior tibial nerve 
stimulation is on the second row. Common peroneal nerve stimulation is on the third 
row. The first column shows frequency of stimulation for all three stimulation sites. The 
second and third columns show phase of stimulation and duration of the pulse train 
respectively. 

4.3.3. Time-Variance 

In some of our subjects, the same input would produce different outputs at different 

times within a single experimental session (time-variance in the response). The 

qualitative types of time-variance differed between subjects. Examples of the types of 
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time-variance are shown in figure 4-4. In figure 4-4A, a non-time-varying example is 

shown – the same frequency of stimulation produces similar results at different times 

(with some noise in the process). Two of our subjects with the most severe injuries (AIS 

A and B) showed phenomena like that displayed in figure 4-4B. In figure 4-4B, there is a 

dynamic response to different stimulus frequencies in the first 50 steps, but after step 

100, the responses slowly revert to the pre-experimental values, as the response is less 

and less affected by what frequency of stimuli is applied (i.e. habituation). In figure 4-4C, 

the subject requires more and more robotic force from the Lokomat to achieve a walking 

gait. In figure 4-4D, the subject requires less and less robotic force. 

The response of most subjects changed only slightly with time. In those with time-

variance, the only clear trend was that the most severely injured individuals (AIS A and 

B) tended towards habituation. For the less severely injured (AIS C and D) the trends 

were unclear. Regardless of the type of time-variance, our optimization algorithm 

accounted for these changes through the use of a non-stationary model. 
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Figure 4-4. Examples of Time-Variance. Stimulation Frequency is shown by the color of 
the circles, black is zero or low frequency stimulation, yellow is high frequency 
stimulation. These plots show different ways that subjects may vary their response in 
time. In all the plots pay special attention to the same color circles (same frequency of 
stimulation) at different times. In the top left, an example plot shows a non-time-varying 
dataset. The top right shows a habituating subject. The bottom left plot shows a subject 
requiring more and more force assistance. The bottom right shows a subject requiring 
less and less force assistance. 

4.3.4. Model Fit: Sensory Site and Injury Details 

The quality of the model fit was analyzed to ascertain whether there were trends in 

optimizability with respect to injury types or sensory stimulation sites. The fit of the model 

provides a quantitative metric for this purpose, as the fit of the model determines how 

well the model can predict the output. Therefore, the fit of the model can tell how well the 

model can optimize and how confident we can be in any optimum produced. 
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There was substantial variability in our model’s ability to predict the output (figure 4-5), 

with the percentage of variance explained ranging from 0.2–0.9 (20%–90%). The quality 

of the model fit was worse in the TSCS case (1D input) than in the posterior tibial or 

common peroneal nerve stimulation cases (3D input).  

I found no statistically significant trends in our data as to the effects of injury type on the 

model fit (figure 4-5). In addition to plotting the data along AIS and LEMS, I also explored 

injury location (spinal segment) and time-since-injury, neither analysis demonstrated a 

statistically significant trend (data not shown). 

 

Figure 4-5. Model performance compared to injury type. The performance of the 
optimization algorithm is limited by the ability to model the data. Percent variance 
explained is a standard measure of the quality of a model. The left scatter plot shows the 
results for all three stimulation sites organized by injury details (AIS classification, 
followed by LEMS). In some subjects, LEMS was not available, and they were excluded 
from this figure. The right three plots show the distribution of explained variance based 
on the sensory stimulation site. TSCS: Transcutaneous spinal cord stimulation. PTNS: 
Posterior Tibial Nerve Stimulation. CPNS: Common Peroneal Nerve Stimulation. AIS: 
ASIA Impairment Scale. LEMS: Lower Extremity Motor Score. 

4.4. Discussion 

This study validated a novel approach to optimizing sensory stimulation to assist walking 

after spinal cord injury across twelve subjects and three stimulation sites. Our analyses 
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compared four different stimulation protocols at each sensory stimulation site, and 

identified the optimal stimulation parameters across the population for each site and 

evaluated the time-variation of the subject’s response to stimulation. 

Optimized stimulation produced lower (better) force-metric values than alternate 

stimulation protocols. I compared optimized stimulation, no stimulation, random 

stimulation, and a standard stimulation protocol, and found that the optimized stimulation 

protocol was statistically better than all alternatives, but the degree of improvement 

depended on the stimulation site. The two peripheral nerve stimulation sites 

demonstrated larger improvement that the TSCS site (figure 4-2). This difference can be 

partially explained by the poorer quality of the model fit for TSCS (figure 4-5). Model fit 

constrains how well the algorithm can predict the value of untested stimulation 

parameters.  

For both posterior tibial and common peroneal nerve stimulation, the optimal stimulation 

parameters were similar. The best time to stimulate (for both sites) was to start pulse 

trains after ~2/3rds of the stance phase had passed, using a high-frequency, long-

duration pulse train. The vast majority of previous studies (e.g. Field-Fote and Tepavac 

(2002) and Granat et al. (1993)) utilize pulse trains starting at or slightly before the 

stance-to-swing transition (starting ~15–20% of the gait cycle later than our optimal 

trains), using high-frequency, short-duration pulse trains. Our results can be considered 

a refinement of previous results, as the ideal duration of pulse trains is rarely ever 

studied. If a longer pulse train starts earlier that a shorter pulse train, the middle of the 

two pulse trains will be at approximately the same time. 

For TSCS, our results demonstrate that our subjects fall into two groups (figure 4-3). In 

one group (~36% of subjects), no TSCS was best – TSCS only made the walking worse. 

In the other group (~64% of subjects), more stimulation was better. There were no 
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statistically significant trends from injury details that would predict which group a subject 

would fall into. Some previous studies have found that TSCS frequencies in the 20-60 

Hz range have demonstrated positive effects on walking (Dimitrijevic, Gerasimenko, and 

Pinter 1998, Herman et al. 2002, Minassian et al. 2004), which is similar to our second 

group. Our discovery of people who do not benefit from TSCS could be due to the larger 

subject population we recruited as compared to many previous studies. 

The time-variance of the sensorimotor responses was qualitatively analyzed, and I found 

divergent patterns in our subject population. Some subjects required more and more 

force assistance, some subjects required less and less force assistance, and some 

subjects’ responses remained stationary during the experimental session. In those with 

the most severe SCI (AIS A and B), there was a habituation-like effect where the 

dynamic range of the sensorimotor response followed an exponential-like decay towards 

having no response to any stimuli. Other researchers have noted similar behaviors after 

severe SCI, and referred to it as EMG exhaustion (Dietz and Müller 2004). 

There are many ways that this approach could be improved with future work, including 

applying it to overground walking, utilizing multiple sensory sites simultaneously, and 

incorporating it into a wearable device. The Lokomat offers many advantages for our 

study, including standardized-stepping, assisting weak stepping, and outputting the 

required assistive force to calculate a force metric. However, it would be more powerful if 

this approach could be applied to overground walking. Overground walking would 

require the development of new walking metrics that measured the quality of walking in 

real-time (i.e. step-by-step walking metrics). Although our results suggest that it may be 

more useful to stimulate phasically (using pulse trains) than tonically (TSCS), the gains 

from using both stimulation types at the same time are likely better than either sensory 

stimulation site alone. Lastly, this approach could be incorporated into wearable devices. 
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It could optimize the subject’s walking on an ongoing basis, continually learning about 

the subject and devising better stimulation patterns.  
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CHAPTER 5: INSIGHTS FROM SENSORY STIMULATION 

In this chapter, I analyzed a set of gait features to determine a more nuanced view of 

how stimulation parameters affected gait. During the optimization process, a random 

sampling initialized the space, and that random sampling included approximately 10,000 

stimulated-steps across all stimulation sites and the subject population, providing an 

opportunity for data mining from an unbiased dataset. As in Chapter 4, three sensory-

stimulation sites were included: (1) transcutaneous spinal-cord stimulation (TSCS, 

targets the dorsal roots), (2) posterior tibial nerve stimulation (PTNS), and (3) common 

peroneal nerve stimulation (CPNS). Tonic stimulation (variable-frequency) was used for 

TSCS, and pulse-train stimulation (variable frequency, phase, and duration) was used 

for the two cutaneous nerves. Assistive force was recorded from the Lokomat, and a 

separate system recorded electromyography (EMG). TSCS frequency had divergent 

effects on the stance and swing phases, high frequencies tended to assist with swing, 

but low stimulation frequencies tended to assist with stance. The cutaneous nerve 

stimulation (pulse trains) demonstrated that higher frequency and longer durations were 

better for almost all gait features. The optimal phase for the pulse trains was after mid-

stance and before early swing, with some variability depending on which feature is 

examined. History (i.e. time spent walking/time spent being stimulated) was as important 

a predictor as any stimulation parameters for every stimulation site. In addition, I found a 

previously uncharacterized onset response to cutaneous nerve stimulation. 

The chapter is organized into an introduction, methods, results, and discussion, following 

the traditional paper format. The introduction section presents an abbreviated summary 

of current research and motivation for this chapter. The methods section describes the 

subjects, subject preparation methods, and stimulation protocols. The results section 
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presents the details of the findings with respect to different times in gait, forces, EMG, 

and the onset response. The discussion section interprets the results. 

5.1. Introduction 

Typically, walking relies on three parts of the nervous system: descending pathways 

from the brain, central-pattern-generators (CPGs) in the spinal cord, and sensory signals 

from the periphery. The descending connections from the brain initiate (Jordan 1998) 

and modulate locomotion (Marple‐Horvat and Armstrong 1999). The CPGs provide the 

basic motor pattern of walking (Duysens and Van de Crommert 1998). The sensory 

signals convey information on the biomechanical interactions between the body and 

environment to the nervous system, allowing for closed-loop control of the walking 

pattern (Rossignol, Dubuc, and Gossard 2006). 

Spinal cord injury (SCI) disrupts the descending pathways from the brain, impairing or 

eliminating the ability to walk. Although clinical interventions have improved substantially 

in the last twenty years, most SCI subjects are not satisfied with the recovered level of 

ambulation they achieve post-injury (Anderson 2004), and for those with the most severe 

injuries, current treatments are generally not effective for the recovery of ambulation. 

Sensory stimulation can initiate, control, and/or modulate locomotion in nearly all species 

examined (Kiehn et al. 1998). Two types of sensory stimulation have recently shown 

particular promise. First, cutaneous nerve stimulation has been used in conjunction with 

both functional electrical stimulation (FES) to induce hip flexion (Liberson et al. 1961, 

Granat et al. 1992) and with physical therapy to assist with training (Ladouceur and 

Barbeau 2000b, Ladouceur and Barbeau 2000a). Cutaneous reflexes have long been 

known to be associated with the walking-CPGs (Lundberg 1979, Bussel et al. 1989, 

Burke 1999, Nakajima, Kamibayashi, and Nakazawa 2012), and recent studies have 
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found the normalization of the longer-latency phase of the reflex is associated with 

recovery of locomotion after SCI (Dietz et al. 2009). Second, spinal-cord stimulation to 

assist locomotion has been the subject of several recent studies showing that it can 

assist the spinal cord to produce walking and walking-like behaviors (Harkema et al. 

2011, Ichiyama et al. 2005a, Herman et al. 2002, Gerasimenko et al. 1996). 

Transcutaneous spinal cord stimulation (TSCS) has recently been developed as a non-

invasive variety of spinal cord stimulation (SCS), and it has been shown to produce 

similar results as epidural SCS (Ladenbauer et al. 2010, Danner et al. 2011, Hofstoetter 

et al. 2013). In both epidural SCS (Coburn 1985, Holsheimer 1998, 2002, Rattay, 

Minassian, and Dimitrijevic 2000) and transcutaneous SCS (Minassian, Persy, Rattay, 

Dimitrijevic, et al. 2007, Danner et al. 2011), the dorsal roots (sensory afferents) are the 

primary neural structure activated, as the dorsal roots are activated at lower thresholds 

than any other part of the nervous system. 

Sensory stimulation can affect features of gait in a stimulation-parameter-specific 

manner. The response to cutaneous nerve stimulation changes depending on when in 

the gait cycle they are applied (Forssberg 1979, Yang and Stein 1990, Zehr, Komiyama, 

and Stein 1997), what stimulus strength is used (Roby-Brami and Bussel 1987, LaBella, 

Kehler, and McCrea 1989, Duysens et al. 1990), how long the stimulation is applied 

(Roby-Brami and Bussel 1987), and which cutaneous nerve was stimulated (Duysens et 

al. 1990, Van Wezel, Ottenhoff, and Duysens 1997, Zehr, Komiyama, and Stein 1997, 

Zehr and Duysens 2004). Cutaneous nerve stimulation can induce both flexion and 

extension. Non-noxious stimulation tends to  produce ipsilateral flexion during stance, 

and ipsilateral extension during swing (Yang and Stein 1990, Zehr, Komiyama, and Stein 

1997). Noxious stimulation biases the ipsilateral response towards flexion (Forssberg 

1979, Duysens et al. 1990) or suppression of extension (Duysens et al. 1992). Flexion 
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and extension can also be induced on the contralateral leg (contralateral to the 

cutaneous nerve stimulation) (Duysens, Loeb, and Weston 1980, Rossignol, Julien, and 

Gauthier 1981). Cutaneous nerve stimulation can modify the timing of gait, prolonging 

extension or beginning extension earlier (Schomburg et al. 1998). SCS is less well-

studied than cutaneous nerve stimulation, but it has been shown to have a frequency-

dependent effect on gait. Frequencies above 22.5 Hz were more conducive for walking 

(Danner et al. 2015). Stimulation frequencies above 50 Hz reduced EMG activity 

(Gerasimenko et al. 2003a), and can correct some motor pathologies (Hofstoetter et al. 

2014). Another study found slower EMG bursts with increasing frequency in the 30-70 

Hz range (Dimitrijevic, Gerasimenko, and Pinter 1998). 

Despite the observed dependency of the responses on stimulation parameters, the best 

stimulation pattern to achieve specific effects is generally unknown. The optimal 

frequency of pulse trains is poorly studied, despite well-known frequency-dependent 

effects in the central nervous system, such as long-term potentiation (Randic, Jiang, and 

Cerne 1993) and wind-up (Herrero, Laird, and Lopez-Garcia 2000). The optimal duration 

of pulse trains is also poorly studied, despite observed differences in responses based 

on the duration (Roby-Brami and Bussel 1987, Conway, Hultborn, and Kiehn 1987, 

Gossard et al. 1994, Frigon, Sirois, and Gossard 2010). Even the phase of the 

stimulation in the gait cycle has not been optimized – forcing our clinical approaches to 

rely on approximate descriptions rather than quantitative comparisons of efficacy. SCS is 

much newer by comparison, but what frequency will optimally improve a specific feature 

of gait is unknown. 

To answer how stimulation parameters affected different gait features, I collected data 

from twelve SCI subjects with a range of injuries (AIS A–D) using three stimulation sites. 

Electromyography and the variable assistive force were recorded from a robotic orthosis 
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during a walking task. I hypothesized that analyzing this data would allow us to learn 

what stimulation parameters were most effective for which gait features. 

5.2. Methods 

Subjects were stimulated using random stimulation-parameters during a walking task in 

a robotic orthosis (Lokomat, Hocoma Inc.). I recorded electromyography, force traces, 

and joint angles (figure 5-1). Robotic-orthosis-based walking is similar (but not identical) 

to normal walking in terms of the EMG pattern (Hidler and Wall 2005), the evoked 

responses (Nakajima, Kamibayashi, and Nakazawa 2012), and kinematic trajectories 

(Hidler, Wisman, and Neckel 2008). However, the Lokomat had two major advantages 

that allowed our study: (1) the use of assisted-walking allowed us to recruit those 

subjects whose SCI was too severe to walk independently, and (2) our Lokomat was 

modified to output force traces, allowing analysis of how much assistance the SCI 

subjects required to walk under different stimulation conditions. 

The experiment was conducted at the Shepherd Center, an Atlanta-based rehabilitation 

hospital, with the approval of Shepherd Center’s Institutional Review Board. 
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Figure 5-1. Overview of methods. In each experimental session, one stimulation site was 
studied. Tonic stimulation was applied to the transcutaneous spinal cord stimulation 
(TSCS) site. Pulse train stimulation was applied to the common peroneal and posterior 
tibial nerve stimulation sites. The subject walked in the Lokomat while each set of 
stimulation parameters was applied for 4–10 steps. The angles of the Lokomat joints and 
the amount of force the Lokomat applied were recorded, along with electromyography 
from four muscles on each leg. Each session included 130–200 random-stimulation-
parameter steps. EMG: Electromyography. Quad: Quadriceps muscle. Ham: Hamstring 
muscle. Tib Ant: Tibialis Anterior. Tri Sur: Triceps Surae. 

5.2.1. Subject Recruitment and Preparation 

Subjects were recruited from the SCI population affiliated with Shepherd Hospital in 

Atlanta, consented on the study, and screened for safety in the Lokomat. Our subjects 

(Table 1) included both males and females, ranged from 18–57 years old, and were 0.5–

10 years post-injury. Most of the subjects’ injuries were AIS C’s, but subjects were also 

included with injuries of AIS A, B, and D severities. The spinal level of the injuries was 

C5–T10.   
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Table 5-1. Subject Details. LEMS: Lower extremity motor score. AIS: ASIA Impairment 
Scale. 1This subject was able to get voluntary movement in a non-key muscles greater 
than 4 segments below the injury, but had no other voluntary control. 2LEMS was 
unavailable for these subjects. 

Subject ID Gender Age 
(years) 

Time since 
Injury 
(years) 

AIS Neuro-
logical 
Level 

LEMS 

1 Female 30.2 1.5 A T1 0 

2 Female 22.9 1.4 B T4 0 

3 Male 32.1 5.0 C C6 0* 

4 Male 57.1 3.5 C T10 3 

5 Female 21.3 1.1 C T3 6 

6 Male 18.1 1.5 C C6 7 

7 Male 21.1 0.6 C T1 9 

8 Male 51.5 0.8 C C7 15 

9 Male 41.5 4.1 C C5 15 

10 Male 42.4 9.5 C T10 20 

11 Male 40.6 1.6 C T3 - 

12 Male 49.5 1.9 D C5 - 

 Ratio: 
9M:3F 

Mean: 
35.7 

Mean: 
2.7 

Range: 
A–D 

Range: 
C5–T10 

Range: 
0–20 

After the subjects consented, the subject laid supine on a raised mat. EMG electrodes 

were applied (described in the “Data Collected and Post Processing” section). 

Stimulation electrodes were applied (described in “Sensory Stimulation” section). Then, 

the subjects’ legs were wrapped to protect their skin from the Lokomat straps. The body 

weight harness was placed around their pelvis and torso and adjusted to fit. Then, they 

entered the Lokomat and their pelvis was secured. The body weight support harness 

was attached to support system.  Body weight support (BWS) was set to 40–60%, 

aiming for the minimum BWS such that the subject could still walk in the Lokomat 

without exceeding the Lokomat’s maximum force tolerances for the required force 

assistance. Our Lokomat had a dynamic BWS addition, which was used in all sessions 

to give smoother support. The actuators were attached to the thigh and calf. In order to 

prevent the subject from catching their foot on the treadmill, I attached foot supports that 

held their ankle at slightly above 90 degrees with springs. Walking speed was set to 2 
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kilometers per hour, which corresponded to approximately one complete step every two 

seconds. 

5.2.2. Sensory Stimulation 

Stimulation was applied to three different sensory stimulation sites: transcutaneous 

spinal cord stimulation (TSCS), posterior tibial nerve stimulation (PTNS), and common 

peroneal nerve stimulation (CPNS). For all stimulation sites, pulse width was set to 1 ms. 

One-millisecond pulses are more selective for sensory afferents than shorter pulses 

(Panizza, Nilsson, and Hallett 1989, Lagerquist and Collins 2008, Kitano and Koceja 

2009, Wu et al. 2011). In all cases, the stimulation was applied with a Digitimer DS7A, 

triggered by a CompactRIO (National Instruments), running custom LabVIEW software. 

In general, I prioritized posterior tibial stimulation and TSCS, utilizing common peroneal 

nerve only when there was additional time. PTNS and CPNS are similar, and it was 

important to have as much data as possible in one of the two. The result that part of the 

posterior tibial nerve reflex response had been correlated with SCI recovery (Dietz et al. 

2009), and that the posterior tibial nerve innervates the bottom of the foot (as opposed to 

the top of the foot) convinced us that it might be a better choice. 

Transcutaneous spinal cord stimulation (TSCS): A pair of 2” bipolar stimulating 

electrodes was placed over the T11–T12 interspinous space, manually identified by 

palpation, with one electrode on either side of the spine, connected together to act as a 

single large cathodal electrode.  Before application of the electrodes, the area was 

rubbed with an abrasive gel to reduce the skin resistance. A ring of conductive gel was 

placed around the edge of the cathodal electrode to dilute the precipitous drop off in 

conductivity at the edge. In previous studies in the lab, this approach helped to eliminate 

skin problems from electrical stimulation. An additional larger pair of rectangular 
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electrodes were placed over the lower anterior abdomen equidistant from the umbilicus 

(the “belly button”). These were also connected together to act as a single larger anode. 

A constant-current stimulator (Digitimer DS7A) delivered monophasic rectangular pulses 

of 1 ms pulse-width. Electrode placement was confirmed by eliciting posterior root-

muscle reflexes in all EMG channels while the subject relaxed in a supine position. 

Amplitude was set to >60% of the current required to produce a reflex response in all 

EMG channels (the common mode action potential – CMAP). One subject showed a 

motor response to TSCS at a lower threshold (22% of CMAP), and I chose to include 

their data. The frequency of stimulation was optimized by the protocol discussed in the 

remainder of this section. 

Posterior Tibial Nerve Stimulation (PTNS): A pair of 1” bipolar stimulating electrodes 

was placed over the posterior tibial nerve while the subject was supine on a mat after the 

stimulation site was rubbed with an abrasive gel. The site was found by a trained 

physical therapist manually palpating the medial ankle, and confirmed with stimulation. 

The cathode (-) was always placed caudally, and the anode (+) was always placed 

rostrally. Setting stimulation current posed some difficulties. In many studies, stimulation 

current is set to some multiple of the minimum perceptive threshold, but many of our 

subjects had impaired sensory perception, so an alternate approach was required. The 

stimulation current (Table 2) was set to the lowest level that could produce a robust 

flexion reflex while the subject was supine. 

Common Peroneal Nerve Stimulation (CPNS): The procedure was very similar to that 

of the posterior tibial nerve. I used the same electrodes, pre-rubbed the skin with 

abrasive gel, and applied the electrodes while the subject was supine on a mat. The 

cathode (-) was always placed caudally, and the anode (+) was always placed rostrally. 

The site was found by locating the lateral hamstring tendon on lower thigh, and palpating 
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until the nerve was found. In some cases the electrodes had to be placed slightly lower 

in the popliteal fossa (crease in the back on the knee). In all cases the placement was 

confirmed with test stimuli. As with the PTNS, I could not rely on perceptive threshold 

and instead found the lowest stimulation current (Table 2) that would produce a robust 

flexion reflex. 

Pulse trains were used in both PTNS and CPNS. The pulse train was allowed to start at 

any arbitrary phase (time) in the gait cycle, with a duration of 10–50% of the gait cycle 

and a frequency of 0–100 Hz. Stimulation was applied to both legs at the same 

respective time in their gait cycles (out of phase in absolute time). 
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Table 5-2. All experimental sessions completed, organized by subject and site 
stimulated. *This subject had a substantial response to tonic stimulation, despite the 
stimulus amplitude being set to only 22% of the CMAP. Params: Parameters. Stim: 
Stimulation. BWS: Body weight support. CMAP: Common motor action potential (the 
amplitude at which all muscles are recruited). 
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1 48/60 60%, 2.0 59             

2 65/100 50%, 2.1 75             

3 

90/120 60%, 2.0 268 25/20 60%, 2.0 261 15/15 60%, 2.0 249 

      25/20 60%, 2.0 261       

      25/20 60%, 2.0 261       

4 

90/150 40%, 2.0 310 12/8 50%, 2.0 261       

110/160 50%, 2.0 310 12/15 40%, 2.0 261       

110/160 50%, 2.0 233 12/8 50%, 2.0 214       

5 50/70 50%, 2.0 267 20/17 60%, 1.7 261 5/5 60%, 1.7 261 

6 

22*/100 60%, 2.0 310 20/20 40%, 2.0 261       

      20/20 40%, 2.0 261       

      20/20 40%, 2.0 170       

      9/18 60%, 2.0 261       

7 
45/65 40%, 2.0 310 6/6 40%, 2.0 262       

      6/6 40%, 2.0 173       

8 
60/100 40%, 2.0 135 10/10 40%, 2.0 262 15/15 40%, 2.0 262 

80/130 50%, 2.0 141             

9 
75/110 40%, 2.0 310 10/8 40%, 2.0 261       

60/100 40%, 2.0 309 13/7 40%, 2.0 261       

10 
      6.5/6.5 40%, 2.0 261 4/4 40%, 2.0 262 

      7/9 40%, 2.0 262 5/3 40%, 2.0 262 

11 
40/75 60%, 2.0 309 16/16 60%, 2.0 261 12/12 60%, 2.0 261 

      16/16 60%, 2.0 262       

12 86/140 40%, 2.1 135 20/20 40%, 2.0 262       

                   

  Total Steps: 3604 Total Steps: 5260 Total Steps: 1557 
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5.2.3. Data Collected and Post Processing 

Electromyography (EMG), hip/knee force (including body-weight support), and hip/knee 

angles were recorded. 

EMG electrodes were placed over the quadriceps muscles (above the rectus femoris), 

the hamstring muscles (equal coverage of biceps femoris and semitendinosus), the 

tibialis anterior, and the triceps surae (equal coverage of the lower medial gastrocnemius 

and the soleus). I also attempted to record from hip adductors (aiming at the gracilis) 

and the gluteus maximus, but our results were inconsistent in those two muscles, so I 

did not report EMG from those muscles. I selected these muscle groups in order to get a 

representative flexor and extensor from each accessible joint. The major hip flexors (e.g. 

the iliopsoas) are difficult to access via surface recordings – only the femoral triangle 

exposes any part of the iliopsoas to surface EMG – and even that small area is 

inaccessible while the subject is wearing a weight bearing harness. 

The recordings were made using a Motion Lab Systems MA300 EMG recording system.  

Each EMG site was recorded using a 20x preamplified bipolar electrode (500x total gain 

with the main amplifier). The amplifier included a hardware low-pass filter at 1 KHz to 

prevent aliasing. The system recorded the EMG traces using a National Instruments 

CompactRIO at 2 KS/s, 14 bits/sample.  In software the signals were high-pass filtered 

at 100 Hz, and stimulus artifacts were removed by subtracting an estimate of the 

stimulus artifact. This estimate was created from the average post-stimulus response 0–

10 ms after each pulse.  Then, to produce the EMG waveforms, the filtered signals were 

full-wave rectified and decimated to 100 samples/step. 

Our system recorded the force that the Lokomat applied to the hip and knee joint on 

either side. Our Lokomat was equipped with an analog output box, which enabled the 
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recording of Lokomat-applied forces, body-weight-support (BWS), and joint angles. The 

CompactRIO was configured to receive these signals, along with the EMG channels. 

The post-processing algorithms low-pass filtered the force, BWS, and angle signals at 

20 Hz using a Butterworth filter (applied both forward and backwards in time to 

eliminated phase artifacts). 

5.2.4. Experimental Protocol 

Once the subject was in the Lokomat and walking at the correct speed and body-weight 

support, I began the study.  The stimulation patterns were chosen from a uniform, 

sparse sampling of the stimulation-parameter space (a Latin Hypercube). This sampling 

approach had the additional advantage of temporally unbiasing the results.  

Each stimulation pattern was applied for 4–10 steps before changing.  Four steps were 

used for 3-dimensional pulse-train stimulation patterns, applied at the posterior tibial 

nerve and common peroneal nerve. Ten steps were used for the simpler 1-dimensional 

tonic stimulation pattern, applied at the TSCS site. For the purposes of both changing 

the stimulation patterns every 4–10 steps, and for analysis, steps were cut at the onset 

of stance in the right leg. 

5.2.5. Features 

To quantify the improvement in different aspects of walking, features were identified and 

quantified. These features include both EMG and force features, with varying degrees of 

granularity. The features all consisted of combining one or more channels (e.g. hip and 

knee forces) over a specific time-range of the gait phase (e.g. 10–50% of the gait cycle) 

with a mean-squared operator. 
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The primary force-features were hip-stance, hip-swing, knee-stance, and knee-swing. In 

all cases, stance was defined as the first 60% of the gait cycle, and swing was defined 

as the last 40%. The gait cycle was defined by hip angle, approximating the time when 

the heel struck the treadmill. Other force features (e.g. short-term force-features) 

included both channels (hip and knee) at specific times in the gait cycle. 

Defining the EMG features proved to be more difficult. Our goal was to measure EMG at 

times in the gait cycle when muscles should be active, but there is a large variability in 

what constitutes normal EMG (Arsenault, Winter, and Marteniuk 1986, Winter and Yack 

1987). Instead, I identified periods when muscles were active across the whole 

population. These included quadriceps-early-stance, quadriceps-stance-to-swing 

transition, hamstring-swing-to-stance, tibialis-anterior-early-swing, and triceps-surae-

stance features. Superficially, some of these features seem counterintuitive (e.g. 

quadriceps-stance-to-swing), but other researchers have observed similar EMG activity 

in the same muscles at similar gait-times during overground, treadmill, and Lokomat-

based walking (Hidler and Wall 2005, Lee and Hidler 2008, Nymark et al. 2005).  

The feature-values were collected for every session-leg combination (e.g. session 23, 

left leg). These sets of feature-values were z-score-normalized (mean was subtracted, 

then the value was divided by the standard deviation). 

5.2.6. Statistics 

Our input-to-output model was a 4D-to-1D mapping (3 stimulation patterns and history). 

It is difficult to model every combination of the 4 parameters to estimate the output (a 

forward mapping), so I modeled the input with respect to the output (a reverse mapping), 

in other words, our analysis was focused on what combinations of stimulation 
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parameters produced the best and worst feature-values (described in the “Features” 

section). 

In order to identify the best stimulation parameters for each feature, the dataset was split 

into the 20% best for that feature, and the remainder (80%). In some figures, the 20% 

worst data-points (with respect to the feature) were also separated. From these subsets, 

I cross-referenced stimulation-parameters for the included steps, and created probability 

distributions from the set of stimulation-parameters for each session. Then, the resulting 

distributions were averaged to create the population-as-a-whole distribution. In all cases, 

I normalized the 20%-best distribution by the overall distribution to form a marginal 

probability density. The marginal probability density eliminates any sampling bias, 

representing the actual relationship between stimulation-parameters and features more 

accurately. All distributions were calculated using the kernel density estimation routine in 

Python’s scikit-learn library (v0.16.1). The data was reflected at the bounds to give more 

accurate distribution-estimates for edge conditions (Cline and Hart 1991, Schuster 1985, 

Silverman 1986). 

If the reader is unfamiliar with these techniques, the plots can be read in the following 

manner: If the resulting distribution is flat (uniform), the parameter had no predictive 

value (i.e. it did not affect the feature).  If the peaks and valleys were large, the 

parameter had a large predictive value (i.e. a strong effect on the feature). 

5.3. Results 

To quantify the improvement in specific aspects of walking, EMG and force features 

were identified and quantified. These features summarized the activity at specific joints 

(e.g. hip) or specific muscle groups (e.g. quadriceps) over a functionally defined period 

of the walking gait (e.g. phase). The optimal (with respect to each feature) stimulation-
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parameters from each stimulation site were identified. I also explored the timing of force 

assistance in gait using short-term force features to differentiate specific periods of gait. 

EMG and force features were compared to better understand how muscle activation 

affected the amount of assistive force required. Then, major sources of variability both 

within subjects (history) and across subjects (individuality) were identified and 

characterized. Lastly, I identified a previously-uncharacterized onset-response to 

cutaneous nerve stimulation. 

5.3.1. Forces 

The first analysis was designed to better understand how stimulation parameters 

affected specific joints at specific times during the gait cycle. The force traces for hip and 

knee were divided into different temporal segments (e.g. hip-stance). These features 

allowed us to quantify changes in specific aspects of the required robotic assistance 

(force), and what stimulation parameters were most effective. 

First, it is necessary to clarify that the force measured was robotic assistance. The best 

walking occurred when the subject required the minimal assistance. Therefore, lower 

values of force at either joint during any phase of gait were better than higher values. 

For TSCS, the best values (least force assistance) during stance and swing showed 

divergent behaviors with respect to frequency (figure 5-2C). Both hip-stance and knee-

stance forces showed the best values at lower frequencies, peaking at 0 Hz. Both hip-

swing and knee-swing showed the best values at higher frequencies, peaking at 100 Hz, 

the highest frequency our experimental protocol included. 

Across all force features, the best values (least force assistance) for both cutaneous 

nerve stimulation sites (PTNS and CPNS) were similar (figure 5-2C). The ideal phase of 

stimulation peaked in the region between latter half of the stance phase and the early 
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third of swing phase for all force features for both cutaneous nerve stimulation sites. The 

ideal stimulation phase (peaks in phase plots in figure 5-2C) was earliest in the gait cycle 

for knee-stance (approximately 50% through the stance phase), and latest for hip-stance 

(following the stance-to-swing transition). Both hip-swing and knee-swing had similar 

peaks. For posterior tibial nerve stimulation, hip-stance force-assistance was minimized 

by stimulation that begun during the stance-to-swing transition ipsilaterally 

(corresponding to early stance contralaterally).  Both hip-swing and knee-swing forces 

were minimized by pulse trains beginning approximately at mid-stance. Higher-

frequency and longer-duration pulse trains tended to produce better (lower) force-feature 

values. 
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Figure 5-2. Force Features vs Stimulation Parameters. Panel A shows how distributions 
were created. First, the feature was calculated (mean-squared) for each step for each 
sensory stimulation site. The best and worst 20% of the feature-values were collected 
separately. For each feature-value, I cross-referenced the stimulation-parameters, and 
created best-20% and a worst-20% probability distributions of stimulation parameters for 
each feature. The left column of the lower plots (panel B) shows the specific force 
features calculated for each row. The dark blue shows when the force is included in the 
feature. The light blue shows when it is excluded from the feature. The black line shows 
the joint angle. In panel C, each column shows one stimulation parameter. The best and 
worst 20% are plotted with a blue fill and a dotted red line, respectively. In all cases the 
distribution of the best and worst 20% were normalized to the overall dataset to eliminate 
sampling bias. To interpret these plots, flatter distributions mean less predictive power. 
Larger peaks and lower valleys mean more predictive power. As in other plots, stance 
was defined to be the first 60% of gait, and swing was defined to be the last 40%. 
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5.3.2. Short-Term Force Analysis 

In order to better understand the effects of stimulation on the timing of forces in gait, I 

split the gait cycle into 20 small, overlapping time-windows. This analysis can explore 

both the gait-phase dependence of the stimulation and possibly suggest the underlying 

mechanisms of the stimulation. 

In figure 5-4, the TSCS results show that lower-frequency stimulation tended to assist 

more during stance, but higher frequency stimulation tended to assist near the stance-to-

swing transition. The results in late swing were mixed. There are also qualitative 

differences between three periods: (1) stance phase, (2) stance-to-swing transition to the 

early swing phase, and (3) late swing phase. 

The waveforms from PTNS demonstrated four distinct periods. The short-term force 

features from mid-stance to immediately before the stance-to-swing transition showed a 

peak in late stance that gradually delayed with the force-features. The peaks shifted 

quickly earlier for the short-term force features that included the stance-to-swing 

transition. Then, the peaks slowly delayed again during the swing phase, before 

becoming flat (i.e. ineffective) for short-term force features at the swing-stance transition. 

The slowly delaying peaks during the stance phase are actually after the force-feature 

they are measuring ipsilaterally, but just before the force-features contralaterally. 
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Figure 5-3. Short-term Force Features. I created short-term force-features to analyze the 
effect of TSCS frequency and cutaneous nerve stimulation phase on specific 
times/phases of gait. The force from the hip and knee were combined, and a distribution 
of the stimulation parameters for the best-20% was created (panel A) for both TSCS-
frequency and PTNS-phase. The profile of that distribution was extracted for every 
feature and plotted in panel B. In the left column of Panel B, the black line shows the 
timing of each of the 20 overlapping, short-term force-features (each delayed 5% in the 
gait cycle from the preceding one). The second column of panel B shows TSCS-
frequency distributions for each feature. The third and fourth columns show the PTNS-
phase distributions for each feature. The two columns show the same data, with the 
contralateral phase shown delayed by half of the gait cycle. On the bottom of panel B, 
there are 4 icons of people, to clarify the stimulated leg as compared to the measured 
leg. A red, dotted line was added to assist the reader visualize the peaks. St: Stance. 
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5.3.3. Multiple Feature Analysis 

In real scenarios, it is generally necessary to optimize against multiple parameters 

simultaneously. This section demonstrates an example of finding stimulation frequencies 

that produce good outcomes for both hip-stance and hip-swing forces. 

Hip stance forces tend to be better at lower TSCS frequencies (figure 5-4).  Hip swing 

forces tend to be better at higher frequencies. I tested whether there were TSCS 

frequencies that produced good (lowest 33%) values in both hip-stance and hip-swing 

forces. The distribution of those “good” frequencies peaked at approximately 52 Hz.  

 

Figure 5-4. TSCS Frequency vs both hip-swing and hip-stance forces. The left column 
shows the two force features compared (hip-swing and hip-stance force features). The 
middle column on the top and bottom rows show the distribution of those two features 
individually. They are combined in the middle column center plot to show how the hip-
stance and hip-swing forces relate to one another. In the cases where both features 
have good values (bottom 33%), the stimulation frequency required to produce those 
points are plotted on the right column. 
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5.3.4. Muscle Activation (EMG) 

Muscle activation (via EMG) was analyzed in order to understand how muscle groups 

were affected by stimulation parameters. For this analysis, I identified specific times in 

gait when the muscle groups were active, and explored which stimulation parameters 

were most effective in increasing the activity during those times. This analysis was 

complicated by two factors: (1) surface EMG is limited in what muscles are accessible. 

For example, the most important hip flexors, the iliopsoas, are inaccessible to surface 

EMG, particularly when the subject is wearing a body weight support harness over their 

pelvis. (2) EMG is sensitive to nearby electrical stimulation. EMG requires a large 

amount of amplification (500x), and the voltages of the stimuli are frequently >1,000 

times the amplitude of the EMG signals, leading to amplifier saturation. This effect is 

distance-dependent, such that the closer the EMG electrode is to the stimulating 

electrode, the larger the effect. Therefore, even among the muscles that were recorded 

from, some had stimulation artifacts that were too large to be reliably removed by post-

processing. 

For TSCS, stimulation affects flexors and extensors differently (figure 5-5). The triceps 

surae showed a negative relationship with frequency: higher TSCS frequencies tended 

to produce less triceps surae EMG. The results for tibialis anterior were mixed, and did 

not show a clear dependence on frequency. 

For cutaneous nerve stimulation (figure 5-5), most channels demonstrated that there 

was more EMG when pulse trains were applied in the region between mid-stance and 

early swing, and higher-frequency, longer-duration pulse trains led to better muscle 

activation. These longer pulse-trains are much longer than pulse trains normally used 
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clinically. PTNS demonstrated stronger (larger peaks in the distribution) frequency-

dependence and duration-dependence than CPNS did. 

The cutaneous nerve stimulation sites showed that muscle groups were affected 

differently (figure 5-5). Hamstring muscles demonstrated the best response was from 

pulse trains applied in early swing. These pulse trains corresponded to stimulating 

during the period in which hamstring-feature was tested. Tibialis anterior and quadriceps 

muscles showed a similar effect from PTNS. Quadriceps showed divergent behavior 

between the two cutaneous nerve sites. CPNS was the most effective in generating 

quadriceps activation at stance-to-swing transition. PTNS and CPNS showed opposite 

phase distributions for quadriceps activation in early stance. 
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Figure 5-5: Selected EMG features. The left column (panel A) shows the feature being 
calculated. In each case a time-window is applied to one EMG channel. Each row shows 
one feature. On the feature plot, dark blue shows the portion of the EMG channel that is 
included in the calculation, and light blue shows the excluded EMG data. The columns to 
the right (panel B) show the stimulation parameter distribution of the best and worst 20% 
of the data with respect to each feature (row), calculated in the same manner as the 
force distributions in the previous figures, with one difference – EMG features are 
“better” when they are larger (assistive force features are “better” when they are 
smaller). In the columns showing the stimulation parameters, some plots were excluded 
due to too much stimulation artifact on those channels while recording EMG (marked 
with an ‘X’). These excluded channels were identified empirically. On the distribution 
plots, dark-blue fill shows the best 20%, and red, dotted line shows the worst 20%.  As in 
other plots, stance was defined to be the first 60% of gait, and swing was defined to be 
the last 40%. EMG: Electromyography. Quad: Quadriceps muscle. Ham: Hamstring 
muscle. TBA: Tibialis Anterior. TrSu: Triceps Surae.  

5.3.5. Assistive Force vs EMG 

In this analysis, our goal was to understand whether less assistive force was associated 

with more or less muscle activation. This analysis is complicated by the limits of surface 

EMG and the difficulties of recording EMG while stimulating on a nearby location on the 
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body. Therefore, the analysis had to test EMG locations far from the joints at which the 

force was measured (e.g. hip force compared to triceps surae activation), or EMG on 

muscles which cross multiple joints (e.g. rectus femoris). 

The results are mixed, even within each stimulation site. Lower TSCS frequencies are 

both associated with better (lower) forces during stance, and better (higher) triceps 

surae EMG during stance (data not shown). Tibialis anterior results are inconclusive. 

Better forces during the stance-to-swing transition were associated with lower EMG in 

the tibialis anterior (figure 5-6B). 

For PTNS, better (more) EMG tended to increase in parallel with better (less) force 

across most features. In figure 5-6C, the best (lowest) 20% of force values at the stance-

to-swing transition were associated with the highest tibialis anterior EMG results. The 

quadriceps-stance force (data not shown) followed a similar trend, i.e. the best 20% in 

the force feature tended to have high quadriceps EMG values during stance. The 

hamstring-swing-to-stance EMG-feature followed the reverse relationship. 

In common peroneal nerve stimulation (data not shown), the tibialis anterior results were 

reversed as compared to the posterior tibial nerve stimulation data – the best 20% of 

force values tended to have lower EMG in the tibialis anterior. However, the results for 

the quadriceps-stance-EMG feature were similar to that of the posterior tibial nerve 

stimulation. 
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Figure 5-6. Force-to-EMG Comparison. In Panel A, the tibialis-anterior EMG-feature and 
combined-joint force feature are shown. The EMG feature summarizes the early swing 
activation of the tibialis anterior. The force was calculated from the same time-period in 
the gait cycle to compare whether lower force and higher EMG tended to be associated. 
In panel B, the results for TSCS are shown. In the first plot of panel B, the scatter plot 
comparing the EMG metric (TBA early-swing EMG) to the force metric (both joints, early-
swing force) is shown. The 20% best (lowest) points in the force metric are extracted 
(blue) from the rest of the dataset (grey), and the resulting distribution of those 20%-best 
points is shown in the 2nd plot in terms of the EMG metric. Panel C shows the results 
from posterior tibial nerve stimulation. TBA: Tibialis Anterior. 

5.3.6. History Dependence 

In this study, history had as large an effect on the features as the current stimulation 

pattern. In this context, history refers to the number of steps the subject has been in our 

experimental setup, subject to sensory stimulation and walking in the Lokomat. In order 

to explore this phenomenon I analyzed history as though it were a stimulation pattern. 
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In figure 5-7, the best feature output was analyzed to how many steps the subject had 

been walking in the experiment. I compared history to the stimulation parameters for 

both posterior tibial nerve stimulation and TSCS, using hip-swing force as an example 

feature. In TSCS, the “good” hip-swing force-values (or more accurately, the 

concentration of the lowest hip-swing force-values) showed a steep decline with respect 

to history.  As more experimental time accrued, it was less and less likely that the hip-

swing force would be “good”. In TSCS higher frequencies tended to produce better hip-

swing forces. However, the differences between frequency and history show that (for at 

least this feature) history-as-a-stimulation-parameter was more salient than frequency. 

The results from PTNS showed that history was also important. The distribution of 

“good” hip-swing forces demonstrated differences with respect to history, but phase was 

the most salient parameter (larger peaks and valleys). For the hip-swing force feature, 

history was approximately as predictive as frequency or duration. 

Other features (not shown) demonstrated the importance of history. In some features, 

history was the most important parameter, and in others it was not. However, in all, 

history demonstrated that the response to stimulation was time-variant. 
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Figure 5-7. Comparison of Stimulation parameters to History as a parameter. Panel A, at 
the top, shows the feature I compared (hip-swing force). In Panel B (the bottom two 
rows), TSCS (row 1) and posterior tibial nerve stimulation (row 2) are shown, along with 
the distribution of the best feature values with respect to experimental history. History, in 
the far right column of Panel B, was measured by the number of steps the subject had 
already performed. 

5.3.7. Individual Differences 

The previous analyses focused on the entire population as a single group. I also 

observed individual differences, and this section demonstrates specific examples of how 

subjects diverge from the responses of the population as a whole. Our results show that 

there is a high degree of individuality in the data. I present three examples of subjects, 

demonstrating how they differ from one another, and how they differ from the population-

as-a-whole. 



148 
 

In figure 5-8, the population distribution showed a negative relationship between TSCS 

frequency and hip-stance force (i.e. better hip-stance forces tended to be lower 

frequency). Subject 12 showed a divergent response, with “good” values at both 

extremes, while subjects 5 and 11 showed good responses from frequencies between 

25-70 Hz, and subject 11 showed a particularly salient peak at approximately 40 Hz. 

Hip-swing and knee-swing forces showed an opposite relationship as hip-stance in the 

population as a whole, and in the individuals (figure 5-8). The population distribution 

showed a positive relationship with higher frequencies. In the results from Subject 5 and 

11, mid-frequencies produced bad feature-values, but in the results from subject 12, low-

frequencies produced bad feature-values. 

The EMG features for individuals also diverged from the population’s distribution (figure 

5-8).  Triceps Surae EMG was better at lower frequencies, while tibialis anterior showed 

mixed results in the population. However, the individual subjects showed more salient 

results.  Subject 5 showed that both EMG features were at their best at TSCS 

frequencies of 35-50 Hz. Subjects 11 and 12, however, showed divergent patterns 

between better (higher) EMG output at the triceps surae and tibialis anterior. 

Although this analysis was focused on TSCS, there are similar types of divergences in 

other stimulation sites (data not shown). PTNS demonstrates that stimulation phase is 

good for most features when applied in the region from mid-stance to the stance-to-

swing transition. However, there were subjects whose “best” phase stimulate at was 

either earlier or later in this time period. 
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Figure 5-8. Individual Variation. Panel A (left column) shows the features. The top 4 
features are force features (hip-stance, hip-swing, knee-stance, and knee-swing), and 
the bottom 2 features are EMG features (tibialis-anterior-early-swing and triceps-surae-
stance). Panel B (2nd column) shows the distribution of TSCS frequency from the subject 
population as whole. Panel C (3rd–5th columns) show three example of individual 
distribution of TSCS frequency that differ from the population distribution.  

5.3.8. Onset Response 

In this analysis, our objective was to characterize the data from the perspective of the 

evoked responses (i.e. with respect to the timing of the pulse train), instead of from the 

perspective of steps (how the previous analyses were performed). This perspective is 

relevant, as different phases of the evoked response have been associated with the 
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central pattern generator, nervous system development, and recovery from spinal cord 

injury. Therefore, I identified and characterized the equivalent P1 and P2 phases of the 

evoked responses in the tibialis anterior.  

The results (figure 5-9) demonstrate that there is an onset response and a termination 

response. The onset response peaks at approximately 57 ms after the pulse train 

begins. The termination response peaks at approximately 64 ms after the pulse train 

ends. 

The onset response appears to be frequency-independent, but the termination response 

appears to be frequency-dependent. The onset response is visible at frequencies in the 

0–10 Hz range, but the termination response is not visible at those frequency ranges. 
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Figure 5-9. Onset and termination response of tibialis anterior posterior EMG evoked 
from PTNS (pulse trains). In panel A, it shows the onset response.  The red, striped bar 
shows the timing of the beginning of the pulse train. The median and 75th percentile are 
shown. Panel B shows the termination response. The red, striped bar in panel B shows 
the end of the pulse train. Panel C shows the onset response compared to the 
frequency. 10 Hz bands of frequency were collected, forming 10 bands between 0 and 
100 Hz (e.g. a band including 20-30 Hz stimulation). Panel D shows the termination 
response versus stimulation frequency. All waveforms were normalized prior to 
combining into percentiles. 

5.4. Discussion 

In this study, 10,000 random-parameter stimulated-steps were collected across three 

stimulation sites, two stimulation protocols, and twelve subjects. I analyzed how 

stimulation parameters affected specific features in gait, leveraging both EMG- and 

force-based analysis. The effect of history, and how different individuals were within the 

population proved to be significant factors in the results. Lastly, I characterized an onset-

response to cutaneous nerve stimulation. 
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5.4.1. Reductions in Assistive Force 

Our analysis included exploring how stimulation could reduce the required assistive 

force from a robotic orthosis (the Lokomat). This assistive force maintained the walking 

pattern, so less assistive force meant that the subject was either doing more correct 

muscle activation or less incorrect muscle activation. 

The results show that TSCS frequency has a divergent effect on forces. Higher 

frequencies produce better swing phases, but lower frequencies produce better stance 

phases (figure 5-2). To get both good stance and swing forces, a frequency in the middle 

(approximately 50 Hz) produced the best response (figure 5-5) across both gait phases. 

When TSCS was compared to short-term force-features (figure 5-3), there were three 

distinct regions in gait. Early-stance to the stance-to-swing transition demonstrated the 

lower-frequency-is-better phenomenon. The early-swing to mid-swing demonstrated a 

higher-frequency-is-better phenomenon. Late-swing to swing-to-stance demonstrated 

mixed results, with weaker tendencies than the other time-periods. At first, these results 

may seem to suggest stimulating differently during swing and stance, but such an 

approach is complicated by the bilaterality of TSCS. If one leg is in the stance phase, the 

other is in the swing phase. Therefore, a modification to TSCS that allowed for unilateral 

stimulation may be most effective. 

Cutaneous nerve stimulation showed a less divergent distribution. All force-features 

demonstrated peaks when the stimulation phase was between late stance and early 

swing. Of particular note was that stance forces could be improved by stimulation during 

the stance-to-swing transition. On the surface, this result would seem to violate causality 

(the stance-to-swing transition is immediately after the stance phase), but it is important 

to note that the contralateral leg was also being stimulated, and that stimulation was 180 
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degrees out of phase with the ipsilateral leg. The stimulation from contralateral leg would 

have reached the nervous system prior to the stance phase improvement. This 

phenomenon was likely due to the contralateral extension reflex. Swing forces could be 

assisted most by late stance pulse-trains. 

The effects of stimulation frequency and pulse train duration on cutaneous nerve 

stimulation has not been thoroughly studied. Our results demonstrate that higher 

frequencies and longer pulse trains tended to produce better (lower) forces. Our 

experiments did not test pulse trains longer than 50% of the gait cycle, and there may be 

diminishing returns above 50% as the pulse-train-stimulation approaches tonic 

stimulation. Most previous studies are already using high-frequency stimulation, but 

long-duration stimulation is not widely implemented. 

The short-term force features demonstrated that the best stimulation phase showed two 

periods of peaks delaying with their respective short-term force features (figure 5-3): 

during the stance phase and the early swing phase. The stance-phase delay 

phenomenon was likely due to the contralateral extension reflex, and the swing-phase 

delay was likely due to the ipsilateral flexion reflex. 

5.4.2. Muscle Activation and Force 

In order to better understand how stimulation affected muscle activation I tested EMG-

features for all three stimulation sites. The EMG waveforms are much less consistent 

between people than the force waveforms were, and other researchers have found 

substantial variability in what constitutes “normal” EMG activation (Arsenault, Winter, 

and Marteniuk 1986, Winter and Yack 1987).  

Muscle-activation features demonstrated the same types of divergences as the force 

features (figure 5-4). For TSCS, triceps surae (an extensor active during stance) 
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produced better EMG with low stimulation frequencies, similar to the stance force-

features. The only flexor tested for TSCS (tibialis anterior) did not show clear results – 

TSCS may be ineffective for the tibialis anterior muscle. 

Muscle activation from cutaneous nerve stimulation demonstrated similar results as 

force features (figure 5-4). The best phase to stimulate at was late-stance to early swing 

in almost all the features across both sites. The quadriceps-early-stance feature from 

CPNS was an exception to this rule, but this exception may be explained by two issues: 

(1) Quadriceps-muscle activation has been found previously to change during walking in 

the Lokomat – it is much more active at the stance-to-swing transition than in treadmill 

walking (Hidler and Wall 2005). The same stance-to-swing peak was evident in the 

quadriceps muscle activity in our data. (2) The CPNS proved to be more effective in 

generating a quadriceps-stance-to-swing feature than a quadriceps-early-stance feature. 

This difference could be due to the effects of gait phase dependence on the changes to 

walking induced by the Lokomat. 

I also compared whether EMG activation was associated with force reduction, or was the 

relationship reversed. Our results were mixed. Some features showed that better (less) 

force led to better (more) EMG, and some showed the better (less) force led to worse 

(less) EMG. The triceps-surae-stance EMG evoked from TSCS is an example where 

better EMG and better force are seen together. Tibialis-anterior-stance-to-swing EMG 

evoked from TSCS is an example were better EMG and better force were divergent. 

However, the same feature and force combination (tibialis-anterior-stance-to-swing EMG 

and force at the same time) proved to be associated with PTNS. 

Conclusions are difficult to draw from these mixed results, except that perhaps more 

EMG is not always better EMG. 
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5.4.3. Individuality and History 

The response to stimulation varies both across individuals within a population, and within 

the same individual during the course of an experimental session.  

Our results show that there is a large diversity within the population as to how 

stimulation affects specific features of gait. Some subjects had opposite responses to 

TSCS frequencies. Individuality in clinical populations is known, and there have been a 

number of sources of sensorimotor-response variability identified. In neurologically 

normal individuals, there is variability in reflex responses based on age (Evans, 

Harrison, and Stephens 1990, Gibbs et al. 1999), level of activity (Loeb 1993), and 

athletic history (Gruber et al. 2007, Wolpaw and Tennissen 2001, Maffiuletti et al. 2001). 

A number of studies have found a further divergence after SCI in the sensorimotor 

responses, including SCI level (Poirrier et al. 2004, Dietz et al. 1999), severity 

(Rossignol et al. 1996), and time since injury (Hiersemenzel, Curt, and Dietz 2000). 

There have also been uncharacterized sources of variability. In one human SCI study, 

no two individuals showed similar patterns of coordination after an intervention (Field-

Fote and Tepavac 2002), and in another human SCI study, individuals did not use 

consistent strategies to engage in an incline walking task (Leroux, Fung, and Barbeau 

1999).   

The implications of the variability in the SCI population complicates the study of 

sensorimotor responses. Fortunately, the population-as-a-whole still demonstrated 

trends in the data. 

Within a given experimental session, the number of steps already completed affects the 

sensorimotor responses as much as the stimulation parameters do. This time-variant 

effect was observable in as few as 130 steps. Some specific types of time-variance have 
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been characterized previously, including habituation (Harris 1943) and EMG exhaustion 

(Dietz and Müller 2004). However, in some cases our results showed potentiation in the 

results, or biphasic behaviors which cannot be explained with habituation or habituation-

like phenomena. This time-variance has many implications, potentially affecting how 

experiments should be designed for SCI subjects, and how analysis should be 

performed. 

These sources of variability give strong incentive for the use of optimization approaches 

to individualize an intervention, and algorithms that are robust against time-variance. 

5.4.4. Onset-Response and Termination-Response 

In our results, pulse trains produce both on onset response and a termination response. 

Although long-duration pulse-trains have not been well-studied, two other papers have 

recorded onset-responses after the beginning of long pulse trains (Roby-Brami and 

Bussel 1987, Pearson and Collins 1993).  

Classically, cutaneous nerve stimulation responses are divided into P1, P2, and 

(sometimes) P3 (Roby-Brami and Bussel 1987) phases, all occurring after the 

stimulation has concluded. Previous studies have found differences between the P1 and 

P2 phases. The P1 and P2 phases are modulated differently during gait (Baken, Dietz, 

and Duysens 2005, Rossignol, Dubuc, and Gossard 2006). The P1 phase is thought to 

be purely spinal (Baken, Dietz, and Duysens 2005), and it is difficult to elicit in human 

adults (Yang and Stein 1990, Van Wezel, Ottenhoff, and Duysens 1997, Baken, Dietz, 

and Duysens 2005). P2 is the most reproducible in human adults (Yang and Stein 1990, 

Baken, Dietz, and Duysens 2005), and equivalent of P2 in the hands (E2) has been 

linked to the development of skilled hand movements during adolescence (Evans, 
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Harrison, and Stephens 1990). P3 is more likely to be produced by higher-stimulation 

strength, longer-duration pulse trains (Roby-Brami and Bussel 1987). 

Most previous studies have used very short pulse trains, such that it was impossible to 

differentiate the onset-response from the termination-response. I propose that the P1 

response is actually an onset-of-stimulation response. The latency of our onset-

response (~57 ms after the first stimulus) is consistent with the latency of the P1 

response, as observed by other researchers (~50-60 ms: (Roby-Brami and Bussel 

1987), ~70 ms latency: (Zehr and Stein 1999), <65 ms after the first stimulus: (Brooke et 

al. 1997), ~50-60 ms: (Shahani and Young 1971), ~50-60 ms: (Pedersen 1954)). 

Researchers have observed that the P1 response was inconsistent in human adults 

(Yang and Stein 1990, Van Wezel, Ottenhoff, and Duysens 1997, Baken, Dietz, and 

Duysens 2005), and this inconsistency could be due to an inhibitory phase related to the 

termination-response overlapping with an excitatory phase related to the onset-

response.  

I also propose that the P2 response is a termination-of-stimulation response. The 

latencies of P2 in the literature are less consistent, but tend include 75-100 ms post-

stimulus (75-100 ms: (Roby-Brami and Bussel 1987), 70-120 ms: (Brooke et al. 1997), 

~80 ms (Tax, Van Wezel, and Dietz 1995), 70-80 ms (Duysens et al. 1996), and 80-85 

ms (Van Wezel, Ottenhoff, and Duysens 1997)). However, those latency measurements 

are measured from the beginning of a pulse train that often lasts 10-30 ms. A time-

period of 75-100 ms after the first pulse would be ~60-85 ms measured from the end of 

the pulse train, in line with our measured latency of ~64 ms after the termination. The 

termination response can also be seen in Roby-Brami and Bussel (1987), but that study 

did not explicitly compare their responses to the P1 or P2. 
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In our data, the termination-response was frequency-dependent, but the onset-response 

was not. As far as I found, no previous study has explored the multiphasic response to 

cutaneous nerve stimulation in terms of frequency-dependence. This difference will need 

to be further studied, but it suggests an interesting modulation of frequency-dependent 

processes in the nervous system. 

5.4.5. Conclusions 

I have demonstrated the optimal stimulation parameters for multiple features of gait, as 

evoked from multiple stimulation sites, across multiple subjects. I discovered that TSCS 

affects stance and swing differently, giving support for the development of bilateral 

TSCS. Through analysis of pulse trains, I found evidence that pulse trains during late-

stance and early swing can assist both legs, through ipsilateral and contralateral reflex 

pathways. I identified an unappreciated source of intrasubject variability (history) and 

compared its predictive power to that of the actual stimulation parameters. Lastly, I 

proposed (and gave evidence for) and re-categorization of the classic model of evoked 

responses from cutaneous nerve stimulation may actually be driven by the onset and 

termination of the pulse train separately, and that those responses differ in their 

frequency-dependence. 
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CHAPTER 6: EFFICIENT GLOBAL OPTIMIZATION OF TIME-VARYING AND NOISY 
SYSTEMS 

In this chapter, I present a novel approach for globally optimizing noisy, time-varying, 

black-box systems. This algorithm optimized the sensory stimulation to assist walking, 

as discussed in the previous chapters. It is based on modification of a previously existing 

algorithm, called efficient global optimization (EGO), which itself was derived from 

Kriging and Gaussian process models. I combined previously published modifications to 

EGO for noise and time-variance into a single algorithm, referred to as time-varying, 

noisy efficient global optimization (TVN-EGO). TVN-EGO was empirically validated with 

a set of test functions. The tests included nine test functions (representing problems with 

1–4 dimensions) with multiple noise-levels and multiple time-variance-levels to identify 

the effective limits for time-varying, noisy optimization. As part of this validation, I 

proposed a new measurement of time-variance, based on the L2-norm of the derivative 

with respect to time. This time-variance metric was normalized by the spatial standard 

deviation (SSD). One-dimensional optimization proved to be successful when the time-

variance was <5% of SSD, and when the noise standard deviation was <50% of the 

SSD. In higher dimensions, the performance was lower, but the algorithm was still 

successful in a 4 dimensional test function with noise of 5% of the SSD and time-

variance of 0.5% of the SSD. In all cases, TVN-EGO outperformed the two local 

optimization algorithm by at least an order of magnitude (10x) in the systems with noise, 

time-variance, and both noise and time-variance. 

The chapter is organized into four sections: the introduction, an overview of the 

approach, simulated experiments, and a discussion. The “overview of the approach” 

details how the algorithms were formulated, and the modifications that were 

implemented to previous versions of EGO. Then, the algorithm is compared to two other 
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standard optimization algorithms across a range of test functions to determine the limits 

of effectiveness. 

6.1. Introduction 

There are many costly-to-test systems with noise, time-variance, and unknown 

dynamics, and optimization in these systems could improve outcomes. Implanted 

electrodes for stimulating or recording the nervous system have to deal with the 

increasing presence of scar tissue and possibly changing neural connections nearby 

(Polikov, Tresco, and Reichert 2005). Agriculture must deal with difficult-to-predict 

climate changes that occur on a multi-year scale (Kurukulasuriya and Rosenthal 2013). 

In recent years, the macroeconomic environment for business regularly undergoes 

difficult-to-predict structural changes (D'Agostino, Gambetti, and Giannone 2013). These 

changes are occurring at timescales relevant to the speed at which new hypotheses can 

be tested against those systems. 

There are many algorithms that exist for optimizing time-varying, noisy systems, but only 

when the dynamics are known. These approaches are generally classified as dynamic 

optimization or optimal control (Chiang 2000). The systems in these problems are 

sometimes colloquially called “white-box” or “gray-box” systems, to differentiate them 

from systems where the dynamics (and gradient) are unknown (“black-box” systems). In 

black-box optimization, algorithms based on dynamic optimization cannot be easily 

applied (Conn, Scheinberg, and Vicente 2009). 

This author could find no other optimization algorithms explicitly designed for black-box, 

time-varying, noisy systems. There are relatively few optimization algorithms designed 

for just time-varying, black-box systems, even without noise, costly-to-test, or global-

optimization requirements.  
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Particle swarm optimization (PSO) is a global optimization algorithm (Kennedy and 

Eberhart 1995, Poli, Kennedy, and Blackwell 2007), based on accelerating particles 

towards the measured optimum. The “vanilla” version of PSO is reasonably robust 

against noise, despite a lack of being explicitly designed for that purpose (Parsopoulos 

and Vrahatis 2001), and a version of PSO has been developed to explicitly handle noise, 

with better performance as a result (Pugh, Zhang, and Martinoli 2005). However, it 

appears that no variants of PSO have been designed for time-varying optimization. In 

addition, PSO is not frugal with function evaluations, and will often test 10-100 points per 

iteration (Kennedy 2010), which may be very expensive in some systems. 

Genetic algorithms  (Golberg 1989) can be robust against noise, but they assume that 

multiple identical scenarios are available (to test an entire generation at the same time), 

which may not be possible in a real-life, time-varying system. Good results from 

differential evolution (Storn and Price 1997) and simulated annealing (Dekkers and Aarts 

1991) generally require thousands of function evaluations – even for relatively low 

dimensional systems. None of these approaches are easily used in time-varying 

problems. 

Coordinate search (or pattern search) algorithms fulfill many of the requirements – they 

are designed for black-box systems, and algorithms exist for time-varying optimization. 

Although coordinate search algorithms were not generally designed for noisy 

measurements, their large step size makes them robust against small levels of noise. A 

version of the popular downhill-simplex algorithm (Nelder and Mead 1965) has been 

created to address time-varying systems (Xiong and Jutan 2003) through resampling 

and eliminating the shrinkage phase. Coordinate searches tend to be frugal with respect 

to function evaluations as well (Conn, Scheinberg, and Vicente 2009), but they are not 

global optimizers. 
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Stochastic approximation (SA) attempts to directly estimate the derivatives of noisy 

systems, and perform a gradient descent (Spall 2005). Early versions used a finite 

difference approach, requiring many function evaluations per iteration (Kiefer and 

Wolfowitz 1952). A later version, called simultaneous-perturbation stochastic 

approximation (SPSA), estimates the gradient with only two samples per iteration, 

regardless of the dimensionality (Spall 1992), and achieves this goal with very little loss 

of performance (Spall 2005). SPSA can handle noise, and is frugal with respect to 

sampling the space, but is not a global optimizer, nor can it handle time-varying systems. 

However, SPSA can be a global optimizer under certain conditions (Maryak and Chin 

2001). For the purposes of the comparisons this chapter, I modified SPSA to improve its 

robustness to time-variance by eliminating the decay in the coefficients, similar to the 

modification made to downhill simplex to create dynamic simplex (Xiong and Jutan 

2003). 

Response-surface-based optimization algorithms are designed for both global 

optimization and frugality in the use of experiments. These approaches build a model of 

the response, and optimize within that model to guide sampling. They "often requires the 

fewest function evaluations of all competing methods.”  (Jones, Schonlau, and Welch 

1998). Efficient global optimization (EGO) is a popular example of response-surface-

based optimization algorithms. EGO relies on a stochastic model, specifically a 

Gaussian process model, and it has recently been proven to converge (Vazquez and 

Bect 2010), although the proof did not guarantee a specific rate of convergence. 

Modifications have been made to EGO allowing it be robust against noise (Huang et al. 

2006, Forrester, Keane, and Bressloff 2006), and  more recently, modifications have 

also been proposed to make it robust against time-variance (Desautels 2014, Morales-

Enciso and Branke 2015), through the addition of time as an uncontrolled input variable. 
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I propose to combine these modifications to make a global optimization algorithm that is 

robust against both noise and time-variance: time-varying, noisy efficient global 

optimization (TVN-EGO). 

Optimization algorithms can be robust against some quantity of noise and some quantity 

of time-variance, but the limits as to how much noise or time-variance they can handle 

are unknown. It is also unknown how different algorithms compare in their robustness to 

noise and time-variance. I set out to answer these questions with a series of simulations 

testing multiple levels of noise, multiple levels of time-variance, and different test 

functions. I compared TVN-EGO with Dynamic Simplex and SPSA to determine which 

algorithm was most robust to noise and time-variance. 

6.2. Overview of Approach 

This section presents the measurement of noise and time-variance, followed by a brief 

overview of time-varying efficient global optimization (TVN-EGO), and an illustrated 

example of a few iterations. 

6.2.1. Measuring Time-variance 

There is no standard way to measure how an entire input-output mapping function 

changes in time. For time-series models there are many approaches, such as continuity 

(i.e. how many orders of derivatives are well-defined, for example: C1, C∞), or tests to 

determine if a time series is stationary or not (Dickey and Fuller 1979, Priestley 1981). In 

the machine learning literature, one approach has been to put upper limits on total 

variance of a set of values to delineate problem classes (Hazan and Kale 2009). 

Norms of the derivative with respect to time appear to be the most intuitive metric. 

Mathematical norms are functions that assign a distance to a multidimensional vector, 
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for example: Cartesian distance (as the bird flies) and “Manhattan” distance (driving 

between two points on a grid). A time-variance metric based on the L∞ norm (i.e. 

max
𝑖
(𝑥𝑖)) would identify the largest single change between two iterations (similar to the 

approach in Hazan and Kale (2009)). A metric based on the L1 norm (i.e. ∑|𝑥𝑖|, 

“Manhattan” distance) would give any deviation (even small ones) an equal weighting. I 

chose to use the L2 norm (i.e. (∑ 𝑥𝑖
2)
1/2

, Cartesian distance), for many of the reasons 

that make it ideal for other applications. It is intuitive that larger “jumps” between 

iterations should be weighted more heavily, and very small changes should not matter 

as much. 

An ideal property for the time-variance metric is scale-and-shift independence. The 

optimization algorithm modifies the data by shifting the mean or scaling the values as it 

is convenient, and the time-variance metric should remain constant through these shifts. 

Therefore, a normalization factor was needed based on the spatial variance of the 

function. There were two obvious choices for normalization of the time-variance metric: 

the range of the function, and the standard deviation of the function. As the standard 

deviation is similar to the L2 norm, and it includes more information of the input space 

than the range does. 

 
𝑻𝑽𝒖𝒏𝒏𝒐𝒓𝒎 = √

𝟏

𝑵𝒕 − 𝟏
∑

𝟏

𝑵𝒙
∑(𝒙𝒊(𝒕𝒋) − 𝒙𝒊(𝒕𝒋 − 𝟏))

𝟐

𝒙𝒊𝒕𝒋

 (16) 

 
𝝁(𝒕𝒋) =

𝟏

𝑵𝒙
∑𝒙𝒊(𝒕𝒋)

𝒙𝒊

 (17) 

 
𝒌𝒏𝒐𝒓𝒎 = √

𝟏

𝑵𝒕
∑

𝟏

𝑵𝒙
∑(𝒙𝒊(𝒕𝒋) − 𝝁(𝒕𝒋))

𝟐

𝒙𝒊𝒕𝒋

 (18) 
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𝑻𝑽𝒏𝒐𝒓𝒎 =

𝑻𝑽𝒖𝒏𝒏𝒐𝒓𝒎
𝒌𝒏𝒐𝒓𝒎

 (19) 

In the above equations, 𝑇𝑉𝑢𝑛𝑛𝑜𝑟𝑚 is the unnormalized time-variance metric, 𝑇𝑉𝑛𝑜𝑟𝑚 is the 

normalized time-variance metric, 𝑘𝑛𝑜𝑟𝑚 is the constant of normalization (a standard-

deviation-based metric of spatial variance), 𝑁𝑥 is the number of x-points used in the 

summation, 𝑁𝑡 is the number of iterations used in the summation, 𝑡𝑗 refers to the jth 

iteration, 𝑥𝑖 refers to the ith x-point, and is 𝜇(𝑡𝑗) the mean at time 𝑡𝑗. Due to the 

normalization by spatial variance, 𝑇𝑉𝑛𝑜𝑟𝑚 is robust again scaling or shifting of the space. 

6.2.2. Measuring Noise 

In the simulated tests, Gaussian noise was added to each measurement. The variance 

of that noise is 𝜎𝑢𝑛𝑛𝑜𝑟𝑚
2  and the standard deviation is 𝜎𝑢𝑛𝑛𝑜𝑟𝑚. For the purposes of 

comparison, the noise measure was normalized with respect to the spatial standard 

deviation. This normalized noise measure is robust against scaling or shifting. Also, this 

measure is related to signal-to-noise ratio (SNR) – it the reciprocal of the square root of 

SNR. 

 
𝝈𝒏𝒐𝒓𝒎 =

𝝈𝒖𝒏𝒏𝒐𝒓𝒎
𝒌𝒏𝒐𝒓𝒎

 (20) 

6.2.3. Time-varying, Noisy, Efficient Global Optimization (TVN-EGO) 

Time-varying, noisy, efficient global optimization is a modification of a previously 

published algorithm, Efficient Global Optimization, or EGO (Jones, Schonlau, and Welch 

1998). The modifications allow the algorithm to effectively optimize time-varying, noisy 

systems. The general approach is to form a probabilistic model of the input-output space 

using estimated correlations between data points. Then, using that model, the algorithm 
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will locate the point with the maximum likelihood of improving on the current best, among 

all potential points in the input space. TVN-EGO also includes a parameter to make it 

robust against measurement noise, utilizing the same matrix regularization approach as 

sequential kriging optimization (SKO) (Huang et al. 2006). In order to make the algorithm 

allow for time-variance, time was set as a uncontrolled input parameter (Morales-Enciso 

and Branke 2015). 

In order to assist the reader understand this algorithm, it is presented here briefly in 

pseudocode: 

data = Initialize_Space() // Sample a number of points 

while (!finished) { // iterate 

 model = Create_Model (data) 

 next_point = Select_Next_Point (model) 

 new_value = Test_against_system(next_point) 

 data.append(next_point, new_value) 

 finished = Check_if_finished() 

} 

 

6.2.3.1. Initialization 

To start, 11 ∗ 𝑥𝑑𝑖𝑚 open-loop x-points (inputs) are selected. For each 11 open-loop 

points, 9 are unique, and 2 are copies. This choice reflects the same approach used in 

SKO (Huang et al. 2006), but with two copies, instead of one. Two copies allows an 

initial estimate of both noise and time-variance in the open-loop period. The unique 

points are selected using a Latin hypercube to sparsely (and uniformly) fill the input 

space, with the duplicates chosen randomly. In practice, I created 200 potential Latin 

hypercubes, and chose the one with largest minimum-distance between points (i.e. 

“maximin”). 

The open-loop test points are produced in a range of 0 to 1, and an affine mapping will 

scale and shift them to whatever range is required for the actual system. Then these 
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open-loop x-points were tested against the system one-by-one, producing y-points 

(outputs). Once the initial sparse sampling is complete, the algorithm begins iterations. 

Table 6-1. Summary of variables used in TVN-EGO. Each variable is shown with a brief 
description. 

 

Variables Description 

𝑔 Ratio of accounted-for variance to all variance. 

0.5 ≤ 𝑔 ≤ 0.95 
𝜃𝑘 Correlation constant in the along the kth input 

dimension. 0 ≤ 𝜃𝑘 ≤ 10 

𝑝𝑘 2nd Correlation parameter along the kth input 
dimension. 1 ≤ 𝑝𝑘 ≤ 2 

  

𝑁𝑥 Number of iterations 

𝒙𝑖 Vector of input variables for the ith iteration, both 
controlled and uncontrolled input variables 

𝑦𝑖 Output for the ith iteration 

𝒚 Vector of 𝑦𝑖 ’s 
𝑑 Distance in the input space 

𝑟(𝒙𝑖 , 𝒙𝑗) Correlation between 𝒙𝑖 and 𝒙𝑗 

𝒓(𝒙) Vector of correlations between 𝒙 and all previous 
inputs 

𝑹 Correlation Matrix 

𝟏 Vector of ones 

𝜇̂ Estimate of the mean 

𝜎̂2 Estimate of the variance 

𝜎̂𝑍
2 Estimate of accounted-for variance (from model) 

𝜎̂𝐸
2 Estimate of variance from noise 

𝑝(𝑦|𝑹) Probability of the model given 𝑹 
  

𝐸𝐼(𝒙𝑝) Expected Improvement for point 𝒙𝑝 

𝑌̂(𝒙𝑝) Estimate of system output from model at point 𝒙𝑝 

𝒙∗∗ Effective best previous solution (from historical 
data). 

𝑠2(𝒙) Mean squared error of prediction at 𝒙 

𝐴𝐸𝐼(𝒙𝑝) Augmented Expected Improvement for point 𝒙𝑝   

6.2.3.2. Each Iteration: Model building 

The first step in each iteration is to build a model of the input-to-output mapping from the 

data collected up to this point. As with EGO, TVN-EGO starts with a Design-and-

Analysis-of-Computer-Experiments (DACE) stochastic model (Sacks et al. 1989) of the 

space, constructed using the distance (equation 21) and correlation between the data 

points. I augmented the classic model with time as an additional uncontrolled variable. It 

is scaled to a range of [0, 1] in the same manner as the other inputs. 
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𝒅(𝑥𝒊, 𝑥𝒋) =  ∑ 𝜽𝒌|𝒙𝒊(𝒌) − 𝒙𝒋(𝒌)|

𝒑𝜽𝒌

𝒙𝒅𝒊𝒎

𝒌=𝟏

 (21) 

 
𝒙𝒊,𝒕𝒊𝒎𝒆 =

𝒕𝒊𝒎𝒆𝒊
𝒓𝒂𝒏𝒈𝒆(𝒕𝒊𝒎𝒆) 

 (22) 

Theoretically, 𝜃𝑘 should be bounded only to [0,∞), but I found better performance by 

bounding 𝜃𝑘 to [0.01, 10], as it reduced the chances of overfitting. In EGO (Jones, 

Schonlau, and Welch 1998) and SKO (Huang et al. 2006), 𝑝𝜃𝑘 was bounded either to 

[0,2] or just 2.  The best results were found by bounding 𝑝𝜃𝑘 to [1,2]. 

Using the distance function defined above, a correlational matrix (𝑹) was created, 

defining the correlation between every data point tested thus far. Each element in the 

matrix is defined by the following equation (23): 

 
𝒓(𝑥𝒊, 𝑥𝒋) = {

𝟏, 𝒊 = 𝒋

𝒈 𝐞−𝒅(𝑥𝒊,𝑥𝒋) , 𝒊 ≠ 𝒋
 (23) 

This correlational matrix sets the diagonal to 1’s, while the off diagonal elements are 

symmetrically set in the same manner as in SKO (Huang et al. 2006), with 𝑔 acting to 

model the noise in the system and regularize the matrix. 

In preparation to compute the likelihood of the model, the mean (equation 24) and 

variance (equation 25) were calculated using a generalized least square approach: 

 𝝁̂ =
1′𝑅−𝟏𝑦

1′𝑅−𝟏1
 (24) 

 𝝈̂𝟐 =
(𝑦 − 1𝝁̂)′𝑅−𝟏(𝑦 − 1𝝁̂)

𝒙𝒍𝒆𝒏
 (25) 
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These estimates are used to create a model likelihood metric 𝐿𝑀 (equation 26), which is 

proportional to the actual model likelihood 𝑝(𝑦|𝑹). The model parameters are adjusted in 

order to maximize 𝐿𝑀, similar to the approach was proposed in the original Design-and-

Analysis-of-Computer-Experiments paper (Sacks et al. 1989). 

 
𝒑(𝒚|𝑅) ∝ 𝑳𝑴 =

𝟏

𝐝𝐞𝐭(𝑅)
𝟏
𝑵𝒙 𝝈̂𝟐

 (26) 

A multi-start local optimization routine was used to maximize the model likelihood metric, 

but other approaches should work equally well. In the maximization of the model 

likelihood, some potential 𝑹 matrices will be poorly conditioned. These potential models 

were rejected by giving them a (−∞) for their model likelihood. 

6.2.3.3. Each Iteration: Select Next Point 

After the model was created, the algorithm selected the next point to test against the 

system. There are multiple ways of approaching this selection process, including 

selecting areas with maximal variance in the estimate (Sasena, Papalambros, and 

Goovaerts 2002), minimizing cumulative regret (Srinivas et al. 2009), following a 

“knowledge” gradient (Ryzhov, Powell, and Frazier 2012), or maximizing the expected 

improvement (Jones, Schonlau, and Welch 1998). I chose to follow SKO’s approach 

(Huang et al. 2006) of augmenting EGO’s expected improvement to allow for balancing 

areas of high variance and maximizing expected improvement. 

Using the maximum likelihood model, the value of the output can be estimated at any 

point within the bounds using the following equation (27): 

 
𝒀̂(𝑥) = 𝝁̂ + 𝒈𝑟𝑅−𝟏(𝑦 − 1𝝁̂) (27) 
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The model also includes an estimate of the standard deviation at every potential point in 

the input space. In order to calculate it, the variance attributable to spatial transitions, 𝜎̂𝑍
2 

(as opposed to measurement error: 𝜎̂𝐸
2), must first be calculated (equation 28). Then the 

standard deviation of the estimate of the potential points can be calculated (equation 

29). 

 
𝝈̂𝒁
𝟐 = 𝒈(𝝈̂𝒁

𝟐 + 𝝈̂𝑬
𝟐) = 𝒈𝝈̂𝟐 (28) 

 𝒔𝟐(𝑥) = 𝝈̂𝒁
𝟐 − [

𝟏
𝝈̂𝒁
𝟐𝑟(𝑥)

]
𝑻

[𝟎 1𝑻

1 𝝈̂𝟐𝑅
] [

𝟏
𝝈̂𝒁
𝟐𝑟(𝑥)

] (29) 

In order to find the next point that will maximize improvement, the algorithm must first 

identify the current best, 𝒙∗∗. This best-point estimate is complicated by the 

measurement noise in the system. I followed the same approach as the SKO algorithm, 

which defined a utility function 𝑢(𝒙) (equation 30) to identify the current best, 𝒙∗∗. 

 
𝒖(𝑥) = −𝒀̂(𝑥) − 𝒄𝒔(𝑥) (30) 

The utility function contains a parameter, 𝑐, allowing for a tradeoff between predicted 

objective values and prediction uncertainty. Following the SKO algorithm, I selected a 

value of 1 for 𝑐. Then, the utility function was maximized over the previously tested 

points (equation 31): 

 
𝑥∗∗ = 𝐚𝐫𝐠 𝐦𝐚𝐱

x𝟏,x𝟐,…,x𝐍

(𝒖(𝑥)) (31) 

Once the current best is defined, the value which maximally improves on that best can 

be calculated using the expected improvement (EI, equation 32). As in SKO (Huang et 

al. 2006), I opted for an augmented expected improvement (AEI), which will allow the 

algorithm to select replicates near the current best (equation 34). 
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𝑬𝑰(𝑥) = 𝑬[𝐦𝐚𝐱(𝒀̂(𝑥∗∗) − 𝒀̂(𝑥), 𝟎)] (32) 

 
𝑬𝑰(𝑥) = (𝒀̂(𝑥∗∗) − 𝒀̂(𝑥))𝑷𝑫𝑭(

𝒀̂(𝑥∗∗) − 𝒀̂(𝑥)

𝒔(𝑥)
) + 𝒔(𝑥)𝑪𝑫𝑭(

𝒀̂(𝑥∗∗) − 𝒀̂(𝑥)

𝒔(𝑥)
) (33) 

 
𝑨𝑬𝑰(𝑥) = 𝑬𝑰(𝑥) ∗ (𝟏 − √

𝝈̂𝑬
𝟐

𝒔𝟐(𝑥) + 𝝈̂𝑬
𝟐
) (34) 

I followed SKO’s approach of using a genetic algorithm to maximize AEI (Huang et al. 

2006). Branch-and-Bound may be more effective if the parameters 𝑝𝜃𝑘 and 𝑝𝛿 are 

constrained (Jones, Schonlau, and Welch 1998), and may be computationally faster 

than genetic algorithms for this step. 

Once the next candidate point is identified, it is applied to the system. The response 

from the system is recorded, and a new iteration with one more data point to fit the 

model begins (section 6.2.3.2). 

6.2.3.4. Stop Conditions 

In EGO and SKO, the proposed stop conditions related to the estimated error remaining 

in the system. In a time-varying system that approach no longer makes sense, as the 

optimum can move, increasing the error at any point. In most cases, stop conditions will 

be driven by external factors, such as the end of a period of study. 

6.2.1. Illustrative Example 

Figure 6-1 demonstrates three iterations of the algorithm, showing the model fit, the 

expected improvement, the selection of the next point, and the new set of samples. The 

function used is a low-pass-filtered Gaussian process. 
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Figure 6-1 shows how a function changes with time in each iteration (after each sample), 

and demonstrates the process of fitting a model, and optimizing within that model to 

select the best point. In the specific example shown, iteration 14 has a much larger 

model uncertainty than the two previous iterations, due to the larger deviation between 

the two points near an input-value of zero. Previous deviations were smaller. Therefore, 

the model revised its estimate of both time-variance and noise. 

 

Figure 6-1. Illustrative example of TVN-EGO across 3 iterations during optimization of a 
1D function. The first column show iteration 1, the second column shows iteration 2, and 
the third column shows iteration 3. The plots in the top row show the current function 
(dark blue line), the noise (filled light blue area), and the previous iteration’s function (red 
line). The second row shows the samples thus far, along with the actual function. The 
third row shows the model’s estimate of the function (dark red line) at the current time 
and the standard deviation in the estimate (filled pink area). The actual function is shown 
in the background (dark blue line). The fourth row shows the estimate of expected 
improvement for all points, with the selected maximum highlighted with a circle. That fifth 
row shows new sample of the function, in terms of both the estimate of what the value 
would be, and the actual amount measured. 
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6.3. Simulated Experiments 

The performance of TVN-EGO and two alternative optimization algorithms (Dynamic 

Simplex and Simultaneous Perturbation Stochastic Approximation) were quantified in a 

series of experiments. Multiple levels of noise and time-variance were tested across nine 

test-functions, with coverage of problems with 1–4 input dimensions. This analysis 

demonstrated that TVN-EGO outperformed the alternatives, and the analysis identified 

the limits at which TVN-EGO can be effective in terms of noise and time-variance. 

6.3.1. Alternative Algorithms 

As discussed in the introduction, there are not any good alternatives for globally 

optimizing black-box, time-varying, noisy systems. Therefore, I compared TVN-EGO with 

two local optimization algorithms. Dynamic simplex is a time-varying version of the 

Nelder-mead downhill simplex algorithm. Simultaneous perturbation stochastic 

approximation (SPSA) attempts to follow the gradient, despite noise. I also proposed a 

minor modification to SPSA to allow it to handle time-varying systems, and test the 

resulting algorithm. 

6.3.1.1. Dynamic Simplex 

The dynamic simplex algorithm is a time-varying local optimization algorithm (Xiong and 

Jutan 2003), based on a modification of the popular downhill simplex algorithm (Nelder 

and Mead 1965).  The major differences are that the simplex does not contract, and that 

there is no predefined stop condition. 

A full summary of the algorithm can be found in the original paper (Xiong and Jutan 

2003). Briefly, it is a non-derivative, local-optimization algorithm for time-varying 

systems. It is not explicitly robust against noise, but coordinate search algorithms tend to 
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have good noise robustness due to their design (Conn, Scheinberg, and Vicente 2009). 

Dynamic simplex begins by initializing the first simplex, with a defined step size (defined 

edge length for the simplex). In each iteration, multiple new simplexes are created by 

replacing the worst point in the previous simplex with a mirror-image across the other 

points in the simplex.  All points in these multiple new simplexes are tested, and the best 

simplex is stored for the next iteration. 

In order to test the dynamic simplex algorithm, a few possible parameter choices were 

explored, and the following parameters worked best. In each iteration, two additional 

simplexes were tested (as recommended in Xiong and Jutan (2003)). The space was 

scaled to bounds of 0 to 1. The initial simplex was set to a random equilateral simplex 

within the bounds of 0.1 to 0.9 in all dimensions, and the step size was set to 0.025. A 

small step size (0.025) will not converge as fast in the beginning, but it should increase 

the possibility of staying near the optimum as it moves. 

6.3.1.2. Simultaneous Perturbation Stochastic Approximation 

Stochastic approximation (SA) attempts to directly use gradient-descent in noisy 

systems through estimating the derivative (Spall 2005). There are two version of SA, one 

uses finite-differences in all dimensions in every iteration (Kiefer and Wolfowitz 1952), 

and the other uses one perturbation (2 points) in every iteration, regardless of the 

dimensionality (Spall 1992). This latter version, called simultaneous perturbation 

stochastic approximation (SPSA), is capable of following the gradient with very little 

performance loss per iteration as compared to the finite-difference version (Spall 2005). 

However, due to SPSA’s 2 tests per iteration, it is much more frugal with experiments 

than finite-difference SA. As there are only two points tested to estimate the gradient, 

SPSA does not follow a strict gradient descent, instead it follows a more random course.  



175 
 

There are two coefficients in SPSA that normally decay (become progressively smaller) 

during the optimization session: (1) the distance of the jump to estimate the derivative 

(often called “𝑐𝑘” in the SA literature), and (2) the velocity coefficient for gradient descent 

(often called “𝑎𝑘” in the SA literature). In order to optimize time-variant systems, I 

eliminated the decay in those coefficients, leaving the values constant for the entire 

session. This approach resulted in a time-varying SPSA. The bounds for our test 

problem are always scaled to 0–1. The constant coefficient were 0.025 for the derivative-

estimating jump (𝑐𝑘) and 0.1 for the gradient velocity (𝑎𝑘). 

6.3.2. Test Functions 

The three optimization algorithms were tested against a suite of test-functions at multiple 

dimensions, noise levels, and time-variance. There are a great number of test functions 

in the literature, but there is no standard set to test time-varying optimization function. 

Therefore, I selected standard test functions, and set one input-dimension to time in 

each case, leaving the remainder of the dimensions to the input space. In order to vary 

the levels of time-variance, I modified how fast the time-value changed in the time-

dimension of the test function. The maximum time-variance tested for each function was 

achieved when the samples covered entire range of the time-dimension. In all cases the 

bounds for both input and time were set to [0, 1], and a scaling-correction (𝑦𝑐), in some 

cases specific to the number of input dimension (𝑦𝑐,𝑑), is multiplied by the output to scale 

the spatial variance to 1. 

 
𝟎 ≤ 𝒙𝒊 ≤ 𝟏 (35) 

 
𝟎 ≤ 𝒕 ≤ 𝟏 (36) 
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Shifting Quadratic: The shifting quadratic is a simple test function, consisting of a 

convex quadratic with a minimum moving from 0.1 to 0.9 (in all input-dimensions) during 

the course of the optimization test. This test function is one of the simplest cases for 

systems that vary in time, so it was important to see how well TVN-EGO and the other 

algorithms would perform in this case. 

 
𝒅𝒊𝒎𝒔𝒙 ∈ [𝟏, 𝟐, 𝟑, 𝟒] (37) 

 
𝒙𝒄𝒆𝒏𝒕𝒆𝒓 = 𝟎. 𝟖𝒕 + 𝟎. 𝟏 (38) 

 
𝒚 =∑(𝒙𝒊 − 𝒙𝒄𝒆𝒏𝒕𝒆𝒓)

𝟐 (39) 

 
𝒚𝒄 = [𝟎. 𝟎𝟐𝟑𝟒𝟖𝟕, 𝟎. 𝟎𝟒𝟕𝟐𝟓𝟒, 𝟎. 𝟎𝟕𝟎𝟒𝟗𝟖, 𝟎. 𝟎𝟗𝟒𝟑𝟕𝟗] (40) 

 
𝒚𝒄,𝒅 = 𝒚𝒄(𝒅𝒊𝒎𝒔𝒙) (41) 

 
𝒚 =

𝒚

√𝒚𝒄,𝒅
 (42) 

Brannin:  The Brannin function has two local minima for most of the time range. It is 

shaped roughly like a valley, and the global minimum moves from lower values to higher 

values as time progresses. The 2nd input-dimension was set to the time-dimension. 

 
𝒅𝒊𝒎𝒔𝒙 ∈ [𝟏] (43) 

 
𝒙𝟏 = 𝟏𝟓𝒙𝟏 − 𝟓 (44) 

 
𝒙𝟐 = 𝟏𝟓𝒕 (45) 

 𝐚 = 𝟏, 𝐛 =
𝟓. 𝟏

𝟒𝛑𝟐
, 𝐜 =

𝟓

𝛑
, 𝐫 = 𝟔, 𝐬 = 𝟏𝟎, 𝐮 =

𝟏

𝟖𝛑
 (46) 
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 𝐲𝟏 = 𝐚 (𝐱𝟐 − 𝐛𝐱𝟏
𝟐 + 𝐜𝐱𝟏 − 𝐫)

𝟐
 (47) 

 
𝐲𝟐 = 𝐬(𝟏 −  𝐮)𝐜𝐨𝐬(𝐱𝟏) (48) 

 
𝒚 = 𝐲𝟏 + 𝒚𝟐 + 𝒔 (49) 

 
𝒚𝒄 = 𝟏𝟗𝟖𝟖. 𝟑 (50) 

 
𝒚 =

𝒚

√𝒚𝒄
 (51) 

Six-hump Camelback: In the time-varying case, the Six-hump Camelback function has 

a global minimum in the center, and local minima closer to the edges depending on the 

specific time-value under examination. The second input dimension was set to the time-

dimension. 

 
𝒅𝒊𝒎𝒔𝒙 ∈ [𝟏] (52) 

 
𝒙𝟏 = 𝟒𝒙𝟏 − 𝟏. 𝟔 (53) 

 
𝒙𝟐 = 𝟐𝒕 − 𝟎. 𝟖 (54) 

 𝐲𝟏 = 𝐱𝟏
𝟐(𝟒 −  𝟐. 𝟏𝐱𝟏

𝟐 +
𝐱𝟏
𝟒

𝟑
) (55) 

 
𝐲𝟐 = 𝐱𝟏𝐱𝟐 (56) 

 
𝐲𝟑 = 𝐱𝟐

𝟐(−𝟒 + 𝟒𝐱𝟐
𝟐) (57) 

 
𝒚 = 𝐲𝟏 + 𝒚𝟐 + 𝒚𝟑 (58) 

 
𝒚𝒄 = 𝟕. 𝟖𝟓𝟖𝟓 (59) 
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𝒚 =

𝒚

√𝒚𝒄
 (60) 

Levy: The levy function has multiple local minima, very steep sides, and can be a 

variable number of dimensions. The final input-dimension was set to be time-dimension. 

 
𝒅𝒊𝒎𝒔𝒙 ∈ [𝟏, 𝟐, 𝟑] (61) 

 
𝒙𝒊 = 𝟏𝟎𝒙𝒊 − 𝟓 (62) 

 
𝒕 = 𝟏𝟎𝒕 − 𝟓 (63) 

 
𝑵 = 𝒅𝒊𝒎𝒔𝒙 + 𝟏 (64) 

 𝒘𝒊 = 𝟏 +
𝐱𝐢 − 𝟏

𝟒
 (65) 

 𝒘𝑵 = 𝟏 +
𝐭 − 𝟏

𝟒
 (66) 

 
𝐲𝟏 = 𝐬𝐢𝐧(𝛑𝐰𝟏)

𝟐 (67) 

 
𝐲𝟐 = ∑(𝐰𝐢 − 𝟏)

𝟐(𝟏 + 𝟏𝟎 𝐬𝐢𝐧(𝝅𝒘𝒊 + 𝟏)
𝟐

𝑵−𝟏

𝒊=𝟏

 (68) 

 
𝐲𝟑 = (𝐰𝐍 − 𝟏)

𝟐(𝟏 + 𝐬𝐢𝐧(𝟐𝝅𝒘𝑵))
𝟐 (69) 

 
𝒚 = 𝐲𝟏 + 𝒚𝟐 + 𝒚𝟑 (70) 

 
𝒚𝒄 = [𝟔. 𝟗𝟗𝟐𝟗, 𝟏𝟒. 𝟓𝟕𝟓, 𝟐𝟐. 𝟏𝟖𝟒] (71) 

 
𝒚𝒄,𝒅 = 𝒚𝒄(𝒅𝒊𝒎𝒔𝒙) (72) 
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𝒚 =

𝒚

√𝒚𝒄,𝒅
 (73) 

Hartman 4: The Hartman 4 function is a multimodal function with 4 input dimensions. 

The final dimension was set to time, leaving 3 input dimensions. 

 
𝒙𝟒 = 𝒕 (74) 

 
𝜶 = [𝟏. 𝟎, 𝟏. 𝟐, 𝟑. 𝟎, 𝟑. 𝟐] (75) 

 
𝑨 = [

𝟏𝟎 𝟑 𝟏𝟕 𝟑. 𝟓 𝟏. 𝟕 𝟖
𝟎. 𝟎𝟓 𝟏𝟎 𝟏𝟕 𝟎. 𝟏 𝟖 𝟏𝟒
𝟑 𝟑. 𝟓 𝟏. 𝟕 𝟏𝟎 𝟏𝟕 𝟖
𝟏𝟕 𝟖 𝟎. 𝟎𝟓 𝟏𝟎 𝟎. 𝟏 𝟏𝟒

] (76) 

 
𝒑 = 𝟏𝟎−𝟒 [

𝟏𝟑𝟏𝟐 𝟏𝟔𝟗𝟔 𝟓𝟓𝟔𝟗 𝟏𝟐𝟒 𝟖𝟐𝟖𝟑 𝟓𝟖𝟖𝟔
𝟐𝟑𝟐𝟗 𝟒𝟏𝟑𝟓 𝟖𝟑𝟎𝟕 𝟑𝟕𝟑𝟔 𝟏𝟎𝟎𝟒 𝟗𝟗𝟗𝟏
𝟐𝟑𝟒𝟖 𝟏𝟒𝟓𝟏 𝟑𝟓𝟐𝟐 𝟐𝟖𝟖𝟑 𝟑𝟎𝟒𝟕 𝟔𝟔𝟓𝟎
𝟒𝟎𝟒𝟕 𝟖𝟖𝟐𝟖 𝟖𝟕𝟑𝟐 𝟓𝟕𝟒𝟑 𝟏𝟎𝟗𝟏 𝟑𝟖𝟏

] (77) 

 
𝒚 = −∑𝜶𝒊 𝐞𝐱𝐩(−∑𝑨𝒊𝒋(𝒙𝒋 − 𝑷𝒊𝒋)

𝟐
𝟒

𝒋=𝟏

)

𝟒

𝒊=𝟏

 (78) 

 
𝒚𝒄 = 𝟎. 𝟕𝟐𝟕𝟏 (79) 

 
𝒚 =

𝒚

√𝒚𝒄
 (80) 

Sine-Wave Quadratic Bowl: The sine wave parabola function is a stationary convex 

quadratic function with low-frequency waves moving along it. The global minima shifts 

from trough to trough. 

 𝒚 = ∑ (𝒙 − 𝟎. 𝟓)𝟐

𝐝𝐢𝐦𝒙 

𝒊=𝟏

+ 𝐬𝐢𝐧(𝟐𝝅(𝟎. 𝟓 ∗ 𝒕 + 𝒙𝟏)) (81) 
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𝒚𝒄 = [𝟎. 𝟓𝟔𝟖𝟔, 𝟎. 𝟓𝟕𝟑𝟓] (82) 

 
𝒚𝒄,𝒅 = 𝒚𝒄(𝒅𝒊𝒎𝒔𝒙) (83) 

 
𝒚 =

𝒚

√𝒚𝒄,𝒅
 (84) 

6.3.3. Empirical Comparisons 

Any global optimization algorithm for noisy, time-varying systems must have limits on its 

potential effectiveness.  I measured the limits empirically with a series of simulations, 

involving multiple test functions, different numbers of dimensions, multiple levels of 

noise, and multiple levels of time-variance. All tests in this section are taken from the 

80th–120th iterations in simulated runs. This choice allowed the ongoing performance of 

the algorithm to be analyzed, as opposed to the transients that occur in the early portion 

of an optimization run. In addition, it allowed direct comparisons between 1D and 2-4D 

optimization simulations, as the higher dimensional simulations required a longer 

initialization period (discussed in the “Approach” section).  

6.3.3.1. Performance Metric 

Classically, the performance of optimization algorithms are judged with respect to how 

close their estimated optimum is to a known optimum after a specific number of 

iterations or function evaluations. This approach is more complicated in time-varying 

optimization because the optimum can move, resulting in sudden increases in the error. 

Therefore, I chose to measure the results over a period of time (the 80th – 120th function 

evaluations). This period allows the initial settling period for each algorithm to complete, 

so the performance metric primarily judges how well the algorithm can follow a moving 

optimum. Ten percent was specified as the maximum allowable error between the 
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estimated optimum and actual optimum as a “success” for a specific iteration. This 10% 

error was computed from Cartesian distance in the multidimensional systems. This 10% 

bound may appear loose by non-time-varying standards, but optimization in a system 

that is changing is much more challenging than optimizing in stationary systems. 

An important observation about a distance-based performance metric is that it will 

become much harder in higher dimensional problems.  In 2D systems, a 10% error is 

<1% of the area. In 3D system, it is <0.1% of the volume. Strictly speaking, it depends 

on whether the optimum is on an edge, in a corner, or in the middle of the space, but the 

geometric trend of increasing difficulty exists in all cases. Considering that the algorithm 

only has the opportunity to test 120 samples, finding a moving spot that is only 1/1000th 

of the volume (in 3D) is difficult. 

6.3.3.2. Time-variance Limits 

In order to determine the effective limits of time-varying optimization, a series of 

simulated experiments were conducted to determine at what time-varying-level 

optimization algorithms “break”. Success was defined based on the performance metric 

described previously. 

In these experiments, the time-variance was varied by changing how fast the time-

dimension changed in the test function (with zero noise). Practically, this mean the 120 

samples covered a smaller time-range of the test function when time-variance was less. 

In all cases, the time-variance is reported in the normalized form (normalized by the 

spatial standard deviation), as described in the section on “Measuring Time-Variance”. 

Nine test functions were examined, across all three optimization algorithms (Figure 6-2). 

For each combination, 8 levels of time-variance were tested, and for each time-variance 

level, 10-13 experiments were performed at every level of time-variance tested. The data 
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was fit to the logistic function, 1/(1 + 𝑒−𝑥), where x was mapped into the logarithmic 

space that the tests for time-variance were performed in. 

The results (Figure 6-2) demonstrate that TVN-EGO outperformed the other two 

optimization algorithms by a large margin. For the 1D problems, Dynamic Simplex and 

SPSA performed well in the shifting quadratic function, but they had difficulty with the 

other two 1D functions due to the multiple local minima. TVN-EGO performed well on all 

1D test functions, producing excellent results (approximately 100% success) even at the 

highest levels of time-variance tested. TVN-EGO even outperformed the other two 

algorithms on the shifting quadratic, which was the best case for those algorithms, 

considering the test function only has one minimum. 

In the higher dimensional problems, the differences between the algorithms became 

more apparent (Figure 6-2). Both Dynamic simplex and SPSA demonstrated good 

results on the shifting quadratic in 2D, but both performed poorly on Levy-2D and the 

Sine-wave quadratic bowl. In both of these latter two test functions, multiple local minima 

played a role in the failures of Dynamic simplex and SPSA. In 2D, TVN-EGO 

outperformed the other two algorithms even for the single optimum case (shifting 

quadratic). In the 3D and 4D test functions, Dynamic Simplex produced very poor results 

(0% success in most cases), and SPSA only produced marginally better (<50% success 

in all cases). TVN-EGO continued to produce good results and time-variance levels of 

1%–5%, depending on the test function. In the maximum time-variance case for the 

shifting quadratic, the optimum moves from one corner to the opposite corner in 120 

samples, and TVN-EGO was still able to track the optimum with 80% success. 
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Figure 6-2. Performance of optimization algorithms in the context of increasing time-
variance. The rows show different test functions, with the number of dimension labeled. 
The columns show the three optimization algorithms. In each plot, individual experiments 
(simulations) are shown as black circles, and the trend line, calculated from logistic 
function, is fit. The trend line is shown in blue. In all cases, the time-variance is 
normalized with respect to the spatial standard deviation (as discussed in the “Approach” 
section). The performance is the percentage of time the estimated best is within 10% of 
the actual best across all input dimensions between the 80th and 120th iterations. 
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6.3.3.3. Noise Limits 

There has been a significant amount of research of optimization in noisy systems. 

Stochastic approximation (Spall 1992) and the modification to EGO (Huang et al. 2006) 

that I incorporated to handle noise are two examples. However, in these algorithms, it 

has been shown that they are robust against some noise, but the limits as to how much 

noise in what test function at what dimensionality have not been reported or compared. 

Therefore, a series of simulated experiments were conducted to determine the limits of 

effectiveness with respect to noise. 

The noise was varied by adding Gaussian noise to each of the test functions (with zero 

time-variance). In all cases, the noise is reported in the normalized form (normalized by 

the spatial standard deviation), as described in the section on “measuring noise”. As with 

the experiments on time-variance, nine test functions were examined, across all three 

optimization algorithms (Figure 6-3). For each test-function/algorithm combination, 7 

levels of noise were tested, and for each noise-level, 10-13 experiments were 

performed. The levels of noise tested are high, and in the most difficult tests, the 

standard deviation of the noise is approximately equal (100) to the standard deviation of 

the function itself. As in the time-variance figure, the data was fit to the logistic function, 

1/(1 + 𝑒−𝑥), where x was mapped into the logarithmic space that the levels of noise 

were represented in. 

In the 1D test functions, TVN-EGO demonstrated good performance at noise-levels >10x 

higher than the max noise-levels at which the other two algorithms showed good 

performance (Figure 6-3). This result is true for multiple definitions of “good 

performance”, including the noise-level at which success drops below 50%, 90%, or 

100%. In the shifting quadratic test function, Dynamic Simplex and SPSA were above a 
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90% success rate at approximately 2% noise. TVN-EGO were above 90% success at 

50% noise in the 1D shifting quadratic function. Dynamic simplex and SPSA had poor 

results with the other two 1D test functions.  

At higher dimensions, the divergence between TVN-EGO and the other two algorithms 

was larger. In the 2D test functions, Dynamic Simplex and SPSA demonstrated 90% 

success only at noises below 0.1%. In the same test function, TVN-EGO demonstrated 

good performance at 20% noise. With the addition of noise, Dynamic Simplex and SPSA 

generally had poor performance at higher dimensions with the limited budget of samples 

our simulations allowed. TVN-EGO produced good results (90% success) even in the 4D 

test function with a noise level of 5%. 
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Figure 6-3. Performance of optimization algorithms in the context of increasing noise. 
The rows show different test functions, with the number of dimension labeled. The 
columns show the three optimization algorithms. In each plot, individual experiments 
(simulations) are shown as black circles, and the trend line (blue), calculated from 
logistic function, is fit. The noise is normalized (as discussed in the “Approach” section). 
The performance is the percentage of time the estimated best is within 10% of the actual 
best across all input dimensions between the 80th and 120th iterations. 
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6.3.3.4. Noise and Time-Variance 

In the previous two sections, time-variance-based and noise-based failures were 

analyzed independently. In this section, the performance of TVN-EGO is analyzed in 

conditions with both noise and time-variance, as would be encountered in a real system. 

For each test function, 7 levels of noise and 8 levels of time-variance were tested. For 

each noise-level/time-variance-level combination, 10-13 experiments were performed. 

The levels of noise and time-variance used were the same as in the previous two 

sections on noise and time-variance respectively. The data was fit with a multiplicative 

logistic function, 1/(1 + 𝑒−𝑥1) ∗  1/(1 + 𝑒−𝑥2), where the x’s were mapped into 

logarithmic spaces. 

Figure 6-4 demonstrates that TVN-EGO can be successful in the context of both noise 

and time-variance. In the 1D test functions, results from shifting quadratic bowl 

demonstrate that TVN-EGO can perform well (>90% success) at time-variance levels on 

the order of 1% with noise levels at 10%. In practice that means that TVN-EGO can be 

successful in simpler 1D spaces, even if every location in the input-to-output mapping is 

changing by 1% after each sample, and each measurement is perturbed by 10% noise. 

The results are slightly worse in the higher dimensions, and slightly worse in the test 

functions with multiple local minima or more complicated structure. In the 4D shifting 

quadratic, TVN-EGO performs well (>90% success) at 3% noise and 0.5% time-

variance.  
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Figure 6-4. Performance in the context of noise and time-variance across multiple test 
functions and dimensions. Each plot shows a heat map of a specific test function. One-
dimensional test functions are on the top row, two-dimensional test functions are on the 
second row, three- and four-dimensional test functions are on the bottom row. In all 
cases success was defined based on the performance metric of the number of iterations 
in which the estimated optimum was within 10% of the actual optimum. 

6.4. Discussion 

This chapter presents a validation of a novel optimization algorithm for noisy, time-

varying systems, based on modifications to the EGO algorithm. These modifications 

allow for optimization in the presence of noise and time-variance. I proposed scale-and-

shift-invariant measures of time-variance and noise, and compared the results of TVN-

EGO to other algorithms at multiple levels of noise, time-variance, and dimensionality 

across several test functions. Through these simulations, I determined that TVN-EGO 

can produce good results at high levels of noise, time-variance, or both noise and time-

variance. 
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In time-varying optimization, the amount of time-variance is very important. If the change 

in the function between iterations is much larger than the spatial variance of the function, 

it can be impossible to optimize. If there is no time-variance, traditional approaches, 

such as the initial EGO algorithm (Jones, Schonlau, and Welch 1998) or the noise-

resistant version (Huang et al. 2006), can be used. In all test functions, the TVN-EGO 

algorithm produced good results at time-variance levels of 5% for 1D optimization, 1% at 

2D, 0.5% at 3D/4D. In all cases, TVN-EGO outperformed the two local optimization 

algorithms. Dynamically simplex was specifically designed for time-varying systems, and 

SPSA was modified to handle time-varying systems. TVN-EGO even outperformed the 

local optimization algorithms in a simple shifting-quadratic test function that did not 

require global optimization. 

In the optimization of noisy systems, TVN-EGO produced good results at very high 

levels of noise. In the 1D case, TVN-EGO was highly successful with noise at 

approximately 10% of the standard deviation of the function being optimized. TVN-EGO 

outperformed the two local optimization algorithms, often producing good results at 1-2 

orders of magnitude more noise than either of the other two algorithms could. Dynamic 

simplex was not designed specifically for noise, but many coordinate search algorithms 

are robust against small amounts of noise. SPSA was designed explicitly for noise. 

Through empirical testing the SPSA parameters were set to constant values that 

produced the best results, and the test functions were scaled in order to minimize any 

need to fine-tune those parameters. The differences in the performance of the local 

optimization algorithms and TVN-EGO are due to how the local optimization algorithms 

“forgets” previous points, but TVN-EGO continues to use the previous points to build a 

better model. There has been a significant amount of work on variants of EGO that are 

robust against noise (Huang et al. 2006, Forrester, Keane, and Bressloff 2006, Picheny, 
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Wagner, and Ginsbourger 2013), but most of these previous studies have only reported 

testing 1-2 noise levels. So far as this author is aware, this work represents the most 

thorough noise characterization of any algorithm based on EGO. 

In systems with both noise and time-variance, TVN-EGO substantially outperformed the 

two local optimization functions. For 1D test functions, TVN-EGO could produce good 

results at noise levels of 50% of the spatial standard deviation, and time-variance levels 

of 3%. For higher dimensional test functions, TVN-EGO was still capable of producing 

good results with substantial noise (20%) and time-variance (1%) in systems with more 

than three input dimensions. 

An important validation of any algorithm is to show how well it handles a real problem. 

The results of applying this algorithm to sensory stimulation are presented in chapters 3 

and 4. 

6.4.1. Dimensional Scalability 

Dimensional scalability is a major issue in optimization, and time-varying optimization is 

no exception. In general, our results for similar test functions (e.g. shifting quadratic), 

showed that each dimension reduced performance in noise by a factor 0.5. The reduced 

performance from increased time-variance was less clear, but also evident. This 

reduction in performance is partially the result of the metric chosen, which represented a 

geometrically smaller volume with each additional dimension (e.g. ≤10% in 1D case, 

≤1% in 2D, ≤0.1% in 3D, etc.). To put it another way: there are simply more places to 

look in higher dimensional functions. In addition, the number of model parameters to 

estimate in TVN-EGO increases linearly (2n) with the number of dimensions, causing the 

model fit to be more difficult with each additional dimension. 
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Our results demonstrate that the best performance can be seen in 1D functions (success 

at 1% time-variance and 10% noise). If there are slightly lower levels of noise and time-

variance (e.g. 0.5% time-variance and 3% noise), TVN-EGO can be successful at 

optimizing test functions up to 4 dimensions. 

6.4.2. Computational Efficiency 

Much of the focus of this paper has been on the high-degree of efficiency this algorithm 

has with regards to tests or experiments. It is also important to understand the 

computational requirements to run this algorithm, particularly if the reader is interested in 

real-time performance (as the application example required). 

The major limiting factor for computational performance is fitting the model. It requires 

decompositions (generally Cholesky decompositions due to the symmetric, positive-

definite matrix) to efficiently solve several equations of the form 𝑥 = 𝐴−1𝑏. During a 

single iteration’s worth of model-fit computation, hundreds or thousands of Cholesky 

decompositions need to be performed on NxN matrices, where N is the number of points 

tested thus far.  Cholesky decompositions for dense matrices scale at 𝑂(𝑛3) (Trefethen 

and Bau III 1997),  which means the number of potential model fits that can be tested 

will become limited. On a recent (2013) Dell Precision workstation, an iteration involving 

400 test points was completed in 4 seconds in MATLAB. 

Both local optimization algorithms presented as alternatives in this paper are >1,000x 

more computationally efficient than TVN-EGO is, but their performance is 10-100x worse 

with respect to noise and time-variance. Specific use cases will need to determine their 

ideal tradeoff between these advantages. 
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6.4.3. Possible Extensions 

There are extensions to TVN-EGO that could improve this algorithm, but will be left to 

future work. These extensions include (1) extending the approach to time-variance to 

multiple uncontrolled, but measureable inputs, (2) combining the time-variance approach 

with other modifications to EGO, (3) improving the computational performance, or (4) 

increasing the number of dimensions that can be handled by this approach. 

Our approach to time-variance was to treat time as an uncontrolled, extrinsic input. The 

approach could be easily generalized to handle multiple uncontrolled extrinsic inputs, 

and our current equations are already written to handle such an approach. 

A rich literature has developed regarding ways to improve EGO and closely related 

algorithms such as Gaussian process modeling and kriging. These modifications are 

generally designed to modify the sampling criteria (e.g. Sasena, Papalambros, and 

Goovaerts (2002)) or improve performance when the function has certain types of input-

dimension non-stationarities (e.g. Xiong et al. (2007)). These modifications could be 

combined with our approach.  

As mentioned previously, the major limiting factor in computational performance is the 

matrix decomposition (i.e. Cholesky decomposition) required to solve terms like 𝐴−1𝑏 in 

the maximum likelihood estimate of the model. In order to handle larger quantities of test 

points, changes to the covariance matrix to take advantage of sparsity in the matrix 

could greatly reduce the computational burden. The number of operations in sparse 

Cholesky decomposition increases much slower than 𝑂(𝑛3), depending on precisely 

how sparse the matrix is (Davis and Hager 1999). Alternative approaches could also 

include mapping a large number of test points to a smaller kernel, and using that kernel 

in the model. 
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Lastly, this chapter only presented results up to 4 input-dimensions (and 1 time-

dimension). Models could be constructed from problems with tens or hundreds of input-

dimensions if the model-parameters were shared across input variables, similar to the 

approach used in convolving neural networks (LeCun and Bengio 1995, Simard, 

Steinkraus, and Platt 2003). Sharing could be applicable if a large subset of those 

dimensions were all of the same type or same types. For example, if they were values of 

a waveform after an event occurred (i.e. voltage measures in time), they could be 

considered to be the same measurement type, despite the waveform consisting of 10’s 

or 100’s of dimensions. 

6.5. Conclusions 

This chapter has introduced TVN-EGO, an optimization algorithm designed for noisy, 

time-varying, black-box systems. TVN-EGO proved to have good performance across 

test functions at high levels of both noise and time-variance in multi-dimensional 

systems with multiple local minima. The analysis has identified the limits of TVN-EGO, 

providing guidance on when it should be applied. 

 

  



194 
 

CHAPTER 7: CONCLUSIONS 

In summary, I developed a novel approach to optimize a medical intervention in real-

time. I showed that this approach outperformed open-loop approaches across multiple 

subjects, multiple stimulation sites, and multiple stimulation paradigms. 

Algorithmic optimization of interventions represents a major shift in how medicine is 

practiced. This research is among the first steps in this direction. The approaches 

detailed in this dissertation can be adapted to most types of interventions, so long as the 

outcome can be measured quickly, and the intervention can be manipulated in closed-

loop. 

In the process of developing this system, I discovered that the human system is black-

box, noisy, and time-varying. There were no pre-existing algorithms specifically designed 

for globally-optimizing noisy, time-varying, black-box systems. Therefore, I created the 

first such algorithm I am aware of, through the modification of an efficiency-focused 

optimization algorithm (“Efficient Global Optimization”, designed for systems with 

expensive experiments). A focus on efficiency allowed my algorithm to maximize the 

gain per experiment, and handle time-variance at a higher level than other more targeted 

algorithms (e.g. local optimizers). In order to quantitatively test this algorithm, I created a 

novel metric for the time-variance in entire functions, building on work from time-series 

analysis. Optimization problems are common across disciplines. Therefore, this 

algorithm has the potential to impact many fields. Similar systems (i.e. expensive, noisy, 

time-varying, and black-box) exist across many fields, including medicine, economics, 

agriculture, and engineering. 

The system that I developed was novel in several ways. The system was capable of 

measuring inputs related to gait, and acting on those inputs algorithmically in real-time. 
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The Lokomat is generally considered to be an intervention, but in this research, it was 

demonstrated that it can also be a quality-of-walking-measurement device. 

The results from my studies have demonstrated several novel and significant findings 

with respect to the current clinical practice of sensory stimulation. For example, across 

nearly all gait features, longer-duration pulse trains produced better results, in contrast to 

the current approach of using short-duration pulse trains. History (i.e. how long the 

subject had participated in the experiment) proved to be as important a predictor as the 

stimulation parameters that were being used. The data generated from the stimulation 

parameter sweeps allowed me to produce a guide for how to maximally improve specific 

features of gait (muscle activation or force). This guide should assist clinicians with 

better ways to address specific shortcomings. Through the analysis of these features, I 

identified a novel gait-phase dependence from transcutaneous spinal cord stimulation, 

and better characterized how cutaneous nerve stimulation can assist gait. These 

discoveries have direct application to guide current clinical treatment and future research 

in SCI. 

The specific approach of optimizing sensory stimulation to assist people with walking 

after SCI could be extended to wearable devices and overground locomotion. Sensory 

stimulation has already been combined with physical therapy and functional electrical 

stimulation with positive results, and optimizing that sensory stimulation can only 

improve those results. These explorations will continue to further the state of SCI 

medicine. 

There are other neurological injuries that should be just as amenable to the optimized 

sensory stimulation. For example, stroke, traumatic brain injury, and multiple sclerosis 

share many similarities with SCI in how they affect motor control. The optimization of 

sensory stimulation could assist people with those conditions as well. 
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There are many minor ways in which my research may have impact. This study 

represents the largest clinical study of transcutaneous spinal cord stimulation. I 

developed a new metric for measuring the quality of walking after SCI, and this walking 

metric could be applied to other walking pathologies (e.g. Stroke, Parkinson’s, etc.). I 

characterized the onset response to cutaneous stimulation, which had only been 

observed in two other papers before, without any analysis. My approach to modeling 

rotationally symmetric spaces is a novel way to represent this type of input-to-output 

mapping, and it could have application to many problems both inside and outside 

biology. 
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