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SUMMARY 

 Working memory is a mental system that is related to cognitive control and higher 

cognition. Although the topic of working memory is well researched, there is a great deal 

of debate about the mechanisms that drive individual differences in working memory 

capacity. Moreover, little is known about the direct relationships between different types 

of working memory tasks. The present study uses structural equation modeling to 

examine three varieties of working memory task: The complex span, running memory 

span, and visual arrays. It is found that, while complex and running span performance is 

directly predicted by immediate memory and retrieval from long-term memory, visual 

arrays is directly predicted by attention control. Despite these differences, all tasks are 

found to be united by executive attention, which is conceptualized as an executive 

process that is apparent across several types of attention and memory task. A second 

analysis examines the relationship between working memory and general fluid 

intelligence. It is concluded that, while executive attention accounts for the largest 

portion of the correlation between working memory and fluid intelligence, immediate 

memory and retrieval from long term memory are also critical to explaining this 

relationship.  

 

 

 

 



 

CHAPTER 1 

INTRODUCTION 

....working memory is not a memory system in itself, but a system for 
attention to memory.... 

Oberauer, Süß, Wilhelm, & Sander (2007) 
 
 Working memory is the cognitive system that allows people to retain access to a 

limited amount of information, in the service of complex cognition. More succinctly, as 

stated above, working memory allows people to attend to goal-relevant memories. While 

this perspective is generally accepted in one form or another (Conway et al., 2007; 

Miyake & Shah, 1999), the aspects of memory and attention that account for individual 

differences in working memory capacity remain unresolved.  

 Many tasks are available to researchers who study working memory. These 

include the complex span (Daneman & Carpenter, 1980), the running memory span 

(Pollack, Johnson, & Knaff, 1959), visual arrays (Luck & Vogel, 1997), the n-back 

(Kirchner, 1958) and any number of specialized tasks designed for testing specific 

hypotheses (Oberauer, Süß, Wilhem, & Wittman, 2003), or elucidating specific executive 

processes (Miyake et al., 2000; Unsworth, Miller et al., 2009). This abundance of tasks 

poses daunting problems for the study of working memory. Beyond the question of 

whether any given task truly reflects working memory (or a separate construct; e.g., 

Engle et al., 1999), an ever present concern regards the cognitive processes that account 

for task performance. Answers tend to vary based upon the surface features of the task 

(e.g., simple retention, interruption) and the processes that a given researcher assumes to 

be important to working memory (e.g., attention, storage, retrieval).  

1 



 The present study adopts the position that working memory is best understood by 

studying the relationships between working memory tasks, rather than by studying the 

tasks themselves. That is, working memory is construed as an ability that accounts for the 

correlations between disparate types of task. Thus, understanding these correlations 

provides a more concrete understanding of the fundamental processes of working 

memory. The present study specifically (1) assesses the degree to which performance on 

several types of working memory task is best represented by common or distinct latent 

factors, (2) accounts for relationship between these factors in terms of memory and 

attention, and (3) applies a similar analysis to the correlation between working memory 

and novel reasoning ability (i.e., general fluid intelligence).  

The Structure of Working Memory 

 There are many proposed models of working memory (Conway et al., 2007; 

Miyake & Shah, 1999). Presently, Cowan's (1988; 1999) embedded process model is 

preferred due to its simple, yet developed, structure. This model assumes that working 

memory functions within several levels of memory and attention. Although Cowan 

proposes that working memory is largely defined by one aspect (focal attention; Cowan, 

1999; 2001) his model allows for the possibility that working memory is actually 

composed of several mechanisms that function in concert. Thus, while different 

researchers bring different assumptions to the embedded process model, it has proven 

influential and flexible structure in which many perspectives of working memory are 

discussed (cf. Colom et al., 2008; Cowan et al., 2005; Engle et al., 1999; Oberauer et al., 

2007). However, it should be noted that while I conceptualize working memory within 

the general embedded process structure, I do not strictly adhere to Cowan's specific 

 2



assumptions. Instead, the present discussion is also influenced by the perspectives of 

Unsworth and Engle (2007a, 2007b, 2007c), Kane, Conway, Hambrick, and Engle (2007) 

and Oberauer, Süß, Wilhelm, and Sander (2007). 

Primary Memory 

 Within the embedded process model (Cowan, 1988; 1999) activated units of 

memory are referred to as short-term memory. There is no assumed limit to how many 

units of short-term memory may be activated at any moment. However, activation is 

assumed to constantly decay toward a baseline resting state, at which point the 

representation becomes inaccessible. This decay is counteracted by the focus of attention.  

 The capacity of focal attention is assumed to vary among people. The typical 

individual can ostensibly attend to between 3 and 5 fully-integrated items at any one 

point in time (Cowan, 2001). For present purposes, individual differences in this capacity 

limit will be referred to as primary memory (cf. Unsworth & Engle, 2007c; Unsworth & 

Spillers, 2010). Because attended information is assumed to be protected from decay 

toward inactivation, it is also protected from retrieval-based proactive interference. 

People with larger primary memories can therefore retain access to a larger number of 

disparate concepts, and are therefore capable of making a greater number of novel 

connections (Cowan et al., 2005; Oberauer et al., 2007).  

 Researchers disagree as to the exact properties of the primary memory component 

of working memory. While many endorse Cowan's multi-item storage perspective (e.g., 

Awh, Barton, & Vogel, 1997; Colom et al., 2008; Fukuda et al., 2010; Luck & Vogel, 

1997, Rouder et al., 2011; Unsworth & Engle, 2007c), others argue that attention has a 

one-item capacity. For instance, several studies have required test-takers to perform 
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either mental comparisons or updates on serially presented information (e.g., does the 

currently presented item match one that was presented n-items ago). In these tasks, 

response times are typically slowed for operations that are conducted on any item in the 

series, relative to the most recently presented item (Garavan, 1998; McElree, 2001; 

Verhaeghen & Basak, 2005). This slowing is interpreted as the time taken to reorient a 

one-item focus of attention, and thus contradicts the assumption that attention allows 

immediate access to 3-5 items: If people can simultaneously attend to multiple units of 

memory, then inflated response times (and decreased accuracy) would only be apparent 

after several items have intervened. 

 The 3-5 item capacity is therefore sometimes construed as a person's ability to 

form temporary associations between disparate memory units (Oberauer, 2002; Oberauer 

et al., 2007). These bindings provide facilitated access between discrete units of memory, 

though unlike Cowan's (2001) interpretation, a degree of interference is assumed to be 

present (Oberauer, 2001; Shipstead & Engle, 2012). This second perspective necessitates 

an assumption that the size of a person's primary memory is largely determined by the 

efficacy with which new bindings are created and dissolved. In other words, some type of 

executive process functions within primary memory.   

 Despite disagreements regarding the exact properties of primary memory, it is 

generally agreed that primary memory, in one form or another, is an important 

component of working memory (Colom et al., 2008; Fukuda, Vogel, Mayr, Awh, 2010; 

Luck & Vogel, 1997; Oberauer et al., 2007; Saults & Cowan, 2007; Unsworth & Engle, 

2007c). However, while some argue that it is parsimonious to construe working memory 

capacity in terms of this mechanism (Colom et al., 2008; Cowan, 1999), others assume 
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that working memory capacity is multiply determined (Conway, Getz, MacNamara, & 

Engel de Abreu, 2010; Miyake et al., 2000; Shipstead, Redick, Hicks, & Engle, 2012; 

Unsworth & Spillers, 2010). Thus I consider other relevant aspects of Cowan's (1988, 

1999) model. 

Secondary Memory 

 While it is parsimonious to assume that individual differences in working memory 

capacity are purely driven by individual differences in primary memory, many working 

memory tasks require test-takers to manage more than 3-5 units of information. Thus, 

regardless of the capacity of a person's primary memory, some to-be-remembered 

information is likely to be displaced and therefore require retrieval from long-term 

storage (Unsworth & Engle, 2007a). 

 The secondary memory component of the embedded process model (Cowan, 

1988; 1999) consists of inactive units of long-term memory. While there is no assumed 

limit to the amount of information that may be stored in long-term memory, its contents 

are not directly accessible. Instead, inactive secondary memory must be cued by the 

environment or by currently attended information.  

 Since many working memory tasks do not contain explicit retrieval cues, recovery 

of information from secondary memory requires self-generation of cues that are based on 

available context. For instance, test takers may cue secondary memory via temporal 

context (e.g., "most recent trial"; Baddeley, 1976; Unsworth & Engle, 2006; Watkins, 

1979) or by using associations between already recalled information and yet-to-be 

recalled information (Norman, 1968; Raaijmakers & Shiffrin, 1981; Spillers & Unsworth, 

2011). By the account of Unsworth and Engle (2006; 2007c) working memory capacity is 
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partially defined by the efficacy with which a person selects and uses these retrieval cues 

to circumscribe memory searches. Vague cues will recover several candidates, whereas 

specific cues will recover a limited set. To the degree that the context of a cue recovers an 

abundance of candidates, retrieval will be impeded by proactive interference (Watkins & 

Watkins, 1975; Wixted & Rohrer, 1994). That is, the probability of retrieving critical 

information will decrease as the number of irrelevant candidates increases. On the other 

hand, specific retrieval cues reduce the number of potential retrieval candidates. In turn, 

proactive interference is reduced and critical information is located with a greater 

probability. 

 Retrieval from secondary memory is not traditionally assumed to be a mechanism 

of working memory. Rather, it is often assumed (both implicitly and explicitly) that 

working memory is a maintenance system that reduces the need for retrieval of important 

information (e.g., Cowan, 2001; Luck & Vogel, 1997). Nonetheless, Unsworth and 

colleagues (Spillers & Unsworth, 2011; Unsworth & Engle, 2006; 2007b; 2007c; 

Unsworth & Spillers, 2010; Unsworth, Spillers, & Brewer, 2010) have provided abundant 

evidence that secondary memory retrieval is critical to the performance of at least some 

working memory tasks (in particular, complex span). This information will be discussed 

in turn. 

Executive Attention and Attention Control 

 Finally, the environment in which working memory operates may contain any 

number of distractions to which attention is drawn. This is reflected in the embedded 

process model through the assumption that the only capacity limit of short-term memory 

is decay-of-activation. In other words, there is no assumed limit to the number memories 
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or behavioral tendencies may be accessible at any point in time. The ability to select goal-

relevant information and responses is thus critical when the current environment (or a 

memory search) activates conflicting information or prepotent responses. 

  The embedded process model thus includes a central executive component (e.g., 

Baddeley, 1986; Posner & Snyder, 1975; Norman & Shallice, 1986) that directs attention 

to specific units of memory based upon current goals and motivations (Cowan, 1999). 

This component is at the heart of the executive attention theory of working memory 

capacity championed by Engle, Kane and colleagues (Engle, 2002; Engle & Kane, 2004; 

Engle et al., 1999; Kane et al., 2004; Kane, Conway, Hambrick, & Engle, 2007). From 

this perspective, individual differences in working memory capacity are primarily defined 

by the ability to proactively engage the processes that guide attention (e.g., Braver, Gray, 

& Burgess, 2007). 

 Executive attention is conceptualized as an interaction between memory and 

attention in the service of complex cognition. Some researchers propose that this 

interaction represents attentionally-guided search and selection of memory (e.g. Craik, 

Govoni, Naveh-Benjamin, & Anderson, 1996; Healy & Miyake, 2009; Kane & Engle, 

2000). Others have argued that executive attention represents the successful maintenance 

of attentional-relevant goals in a highly accessible state (e.g., Kane & Engle, 2003; Lavie, 

Hirst, de Fockert, & Viding, 2004). The present perspective is largely agnostic as to 

whether attention causes memory, or memory causes attention. Rather, I assume that 

either or both perspectives may be valid. 

 Individual differences in executive attention are typically studied using low-

memory-load attention control tasks (e.g., Roberts, Hager, & Heron, 1994). These tasks 
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require test takers to resolve competition between goal-relevant and inappropriate (often 

prepotent) responses. Relevant examples include (1) the anti-saccade task (e.g., 

Hutchison, 2007; Kane et al., 2001; Unsworth, Schrock & Engle, 2004) in which test 

takers override the reflexive response of looking toward a peripheral flash, and instead 

look in the opposite direction, (2) the flanker task (e.g., Heitz & Engle, 2007; Redick & 

Engle, 2006; Shipstead, Harrison, & Engle, 2012) in which test takers must rapidly report 

the central item from an array in which flanking items are potentially distracting (e.g., 

← ← → ← ←) and (3) the Stroop task (e.g., Hutchison, 2007; Kane & Engle, 2003; 

Miyake et al., 2000; Shipstead & Broadway, 2012; Unsworth & Spillers, 2010) in which 

test-takers must state the hue in which a word has been written, rather that overly reading 

the word (e.g., "BLUE" typed in red ink). 

 The relationship between working memory tasks and these types of attention 

control tasks has proven informative to general working memory research (Engle, 2002; 

Engle & Kane, 2004). At the same time, attention control tasks do not fully capture the 

essence of executive attention theory. Specifically, Kane, Conway, Hambrick, and Engle 

(2007) conceptualize executive attention as a domain-general process that is responsible 

for sustaining the activation of information outside of primary memory and guiding the 

retrieval of information to which access has been lost. While attention control tasks give 

researchers a good idea of the efficacy with which a person selects information from the 

environment, these tasks do not, in and of themselves, inform the researcher as to 

efficacy with which a person applies attention to "internal" events. For instance, 

maintaining critical information in primary memory or guiding searches of long term 
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memory. In effect, "executive" attention is a much broader concept than is captured by 

attention control tasks. 

 For present purposes, attention control will be construed as the ability to override 

prepotent responses that have been activated by the environment and will be represented 

through performance on attention tasks, as described above. This ability, however, is only 

one component of executive attention. The aspects of individual differences in attention 

control that are critical to executive attention (and therefore working memory in general) 

should be apparent across both attention control tasks and more basic memory tasks that 

are simply intended to measure primary and secondary memory.  

Working Memory Tasks 

 Given the assumptions made by the embedded process model, it is reasonable to 

assume that different working memory tasks may reflect different mechanisms of 

working memory. It is therefore understandable if different types of working memory 

task are not perfectly related. At the same time, due to their measurement of components 

of a common cognitive system, it is expected that these tasks will be strongly related.   

 This expectation is not always met. For instance, a great deal of research on 

working memory is conducted using either the complex span (i.e., memory for lists 

during distraction) or the n-back (i.e., recognizing that a currently presented item was 

also presented n-items ago). However, the correlation between individual differences in 

complex span and n-back performance is, at best, weak (Jaeggi, Buschkuehl et al., 2010; 

Kane, Conway, Miura, & Colflesh, 2007; Unsworth, Miller et al., 2009). Moreover, these 

tasks may not even predict the same aspects of higher cognition (Kane, Conway et al., 

2007). This is disparity is also apparent in the working memory training literature, where 
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training on n-back tasks has not been found to improve complex span performance 

(Jaeggi et al., 2008; Jaeggi, Studer-Luethi et al., 2010; Li et al., 2008; Redick et al., 2012; 

Shipstead, Redick, & Engle, 2012). Thus, when working memory is defined via the n-

back, it is unlikely that the results of a given study are applicable to working memory as 

defined by the complex span (or vice versa).   

 If working memory is to be conceptualized as an ability that drives the 

performance of several tasks (Engle, 1999; Kane et al., 2004; Oberauer, 2005), then such 

findings are disconcerting. In isolation, the absence of a strong relationship between two 

working memory tasks implies the absence of a common ability. Thus, the lack of 

correlation between complex span and n-back performance may be taken as evidence that 

either (1) one task is not a measure working memory or that (2) a general construct does 

not even exist. Fortunately, this second concern is mitigated by strong relationships 

between the complex span and other working memory tasks. In particular: The running 

Remember Remember Solve Recall 

 

(b) Symmetry 
Span 

Figure 1. Examples of complex span tasks. Operation span (a) presents a letter, then 
requires a participant to solve a simple mathematical equation. After several such 
pairings, the test-taker uses the “recall” screen to indicate the letters that had been 
presented, in the order that they were originally presented. The Symmetry span (b) 
presents a spatial location on a grid, followed by a picture that must be judged as 
symmetrical or asymmetrical. Following several such pairings, the test-taker uses the 
“recall” screen to indicate which locations had been presented, in the order that they 
were originally presented. 
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span and visual arrays tasks. 

Complex Span 

 The complex span task (Daneman & Carpenter, 1980) is a classic measure of 

individual differences in 'working memory capacity', particularly as these differences 

relate to complex cognition (cf. Engle & Oransky, 1999). Two variations, known as the 

operation and symmetry span, are depicted in Figure 1. Like many memory tasks, 

complex spans require test-takers to remember a series of serially-presented items (e.g., 

letters, words, spatial locations). Unique to complex span tasks, each to-be-remembered 

item is followed by a processing task that must be completed before the next item is 

shown. For the operation span task (Figure 1a), this is a mathematical equation that must 

be solved. For the symmetry span task (Figure 1b) this is a picture that must be judged as 

either symmetrical or non-symmetrical. After several pairs of items and processing tasks 

have been presented (generally 2-7), test-takers attempt to reconstruct the list of items in 

the order in which they were originally presented.  

 In general, high complex-span-performers outperform low-performers on 

attention control tasks (Engle, 2002). This association is interpreted as a reflection of the 

common need to engage executive attention when performing both complex span and 

attention control tasks (Engle, 2002; Kane et al., 2007). However, while complex span 

tasks predict a person's attention control, performance is likely multifaceted.  

 For instance, high performers on complex span are also less susceptible to 

buildups of proactive interference that occur over the course of several trials (Kane & 

Engle, 2000; Friedman & Miyake, 2004; see also May, Hasher, & Kane, 1999). More 

importantly, complex span tasks best predict performance on higher cognition tasks when 
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proactive interference is high (Bunting, 2006; Lustig, May, & Hasher, 2001). In other 

words, the predictive powers of complex span tasks seem to be partially determined by 

the ability to perform searches of secondary memory, particularly when the need to 

minimize proactive interference is at a premium (Unsworth & Engle, 2007c). 

 Although it might be argued that executive attention is responsible for guiding 

these searches, Unsworth and Spillers (2010) found that attention control and secondary 

memory are not only dissociable, but each also explains a portion of the relationship 

between complex span performance and fluid intelligence. At the same time, attention 

control and secondary memory did not fully explain the relationship between working 

memory and fluid intelligence. This residual relationship was attributed to primary 

memory (which was not measured by Unsworth & Spillers, 2010). Indeed, separate 

studies (Unsworth & Engle, 2007b; Unsworth, Spillers, & Brewer, 2010) have found that 

both the recency (i.e., primary memory) and pre-recency (i.e., secondary memory) 

components of free recall tasks independently predict complex span performance and 

contribute to explaining its relationship to higher cognition. Thus, at present it seems that 

complex span performance may require all three aspects of Cowan's embedded process 

model. 

Running Memory Span 

 Explanations of why complex span performance relates to higher cognition are 

varied but often take the interpolated processing task into account. For example, Cowan 

et al. (2005) proposed that constant interruption from the processing task prevents people 

from strategically grouping to-be-remembered information into "chunks" and thus allows 

for a purified measure of working memory capacity. Barrouillet, Bernardin, and Camos 
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Recall 

Figure 2. Example of the running memory span task. In this task as series of to-be-
remembered items are displayed, one at a time. In this case, it is three letters. After the 
last item, the recall screen cues the test-taker to remember a subset of these letters. In 
this case it is the last 2 items. 

(2004), on the other hand, argued that people with high working memory capacity are 

particularly skilled at alternating between solving the processing task and using attention 

to refresh the decaying traces of to-be-remembered information. Finally, Unsworth and 

Engle (2006; 2007c) proposed that the act of completing the processing task displaces to-

be-remembered information from primary memory, thus requiring retrieval from 

secondary memory. 

 Each of these explanations has its own intuitive appeal, and may elucidate 

important aspects of the complex span task. However, several recent studies have 

concluded that the same processes that are tapped by complex span tasks are also 

apparent in running memory span performance (Broadway & Engle, 2010; Cowan et al., 

2005; Shipstead, Redick, Hicks and Engle, 2012). Critically, the running span does not 

include an interpolated processing task (Figure 2). Instead, this task requires test-takers to 

attend to a series of serially presented items (e.g., letters, words), then recall a specified 

subset (e.g., the last 3-7 items in the series). Despite obvious differences between these 

tasks, both Cowan et al. (2005) and Broadway and Engle (2010; also Broadway, 2008) 

reported that complex and running span tasks predict the same variance in fluid 

intelligence. Furthermore Shipstead, Redick, Hicks, and Engle (2012) found that these 
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tasks load on the same latent factor. Such results indicate that inferences about complex 

span performance cannot be readily generalized to the concept of working memory 

capacity.  

 However, while the complex and running span are highly related at the latent 

level, the process that are critical to running span performance may be subject to certain 

aspects of task-administration. Specifically, studies such as Broadway and Engle (2010) 

and Shipstead, Redick, Hicks, and Engle (2012) used a running span in which items were 

presented at the rate of 2 per second. Bunting, Cowan, and Saults. (2006), however, have 

demonstrated that test-takers recall fewer items when the rate of item presentation is 

increased from 1 item per second to 4 items per second. Specifically, this occurs when 

test-takers are required to recall more information than can be maintained in primary 

memory. This manipulation, however, does not affect performance when test-takers need 

to recall an amount that can be readily stored in primary memory (i.e., 2-3 items). 

Bunting et al. (2006) interpret this trend as evidence that speeding the presentation rate 

affects rehearsal and chunking processes, but does not affect pure storage in primary 

memory. Whether this purification also prevents retrieval from secondary memory or the 

presence of executive attention is currently unknown. 

Visual Arrays  

 While the complex span task is often assumed to provide a strong reflection of  

the executive attention component of working memory (Engle, 2002; Kane et al., 2007), 

the visual arrays task is almost universally treated as a process-pure reflection of primary 

memory (Awh, Barton, & Vogel, 2007; Chuderski, Taraday, Nęcka, Smoleń, 2012; 

Cowan et al., 2005; Fukuda et al., 2010; Luck & Vogel, 1997; McNab & Klingberg, 
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Fixation Array ISI Probe 

Probe Cue Array ISI 

(a) 

(b) 

(c) 

(d) 

Figure 3. Examples of visual arrays tasks used in the present study. (a) and (b) begin 
with fixation, which is followed by a target array of to-be-remembered items, then an 
inter-stimulus interval (ISI). For (a) the test-taker must indicate whether the encircled 
box has changed colors. For (b) the test-taker must indicate whether any box has 
changed its orientation. (c) and (d) begin with a cue that indicates which information 
will be relevant. This is followed by the array of to-be-remembered items, along with 
distractors. After the ISI, the probe array appears with only cued information presented. 
For (c) the test-taker must indicate whether any box has changed color. For (d) the test-
taker must indicate whether the box with the white dot has changed orientation. 

2008; Rouder et al., 2011; Saults & Cowan, 2007). In the classic example of this task 

(Figure 3a), an array of items (e.g., colored squares) is briefly presented via computer. 

This is followed by an inter-stimulus interval (ISI), during which the display is blank. 

The array eventually reappears with one item encircled. The test-taker's task is to indicate 

whether or not this item has changed, relative to its initial presentation. 

 On trials in which arrays contain 4 or fewer items, change-detection accuracy is 

high (Luck & Vogel, 1997). However, beyond this 4-item limit, accuracy progressively 
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declines (Luck & Vogel, 1997; Vogel, Woodman & Luck, 2001). This is interpreted as 

evidence that to-be-remembered information has exceeded the capacity of primary 

memory storage. In other words, when the probed object is maintained in primary 

memory, responses will be accurate. When the probed object is not stored, responses 

reflect guessing. Assuming a fixed-capacity primary memory, the number of items that 

can be stored will remain stable across set sizes, while the probability of guessing will 

increase with set size. Taking these assumptions into account, statistical corrections have 

been developed that allow researchers to estimate a person's storage capacity, 

independent of the number of objects contained within an array (Cowan et al., 2005; 

Pashler, 1988; Rouder et al., 2011; see below, Chapter 2, Methods). Once these 

adjustments are made, it can be demonstrated that, even through overall accuracy 

declines as set size increases, the number of objects to which a person accurately 

responds (k) actually remains stable (cf. Cowan et al., 2005). 

 Although this explanation of visual array performance is generally accepted, there 

is evidence that controlled attention and retrieval from secondary memory are also 

important to performance. For instance, recent studies by Fukuda and Vogel (2009, 2011) 

have demonstrated that performance on the visual arrays task predicts the speed with 

which people recover from attentional capture. This implies that, despite the lack of any 

obvious selective component (i.e., in the basic task, all information is relevant; Figure 3a, 

3b), visual arrays predicts at least some aspects of attention control.  

 Additionally, several studies have reported that retrieval from secondary memory 

is also important to visual arrays performance. For instance, people have difficulty 

detecting changes when similar information appears on consecutive trials (Makovski & 
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Jiang, 2008; see also Hartshorne, 2008). This suggests that performance on visual arrays 

is partially constrained by a person's ability to manage proactive interference arising from 

no-longer-relevant information (but see Lin & Luck, in press). More directly, Shipstead 

and Engle (2012) demonstrated that when two trials are presented close to one another in 

time (relative to previous trials), estimates of storage capacity shrink. On the other hand, 

estimates of storage capacity increase when two trials are separated in time (relative to 

previous trials). That is, when time-based cuing (e.g. Unsworth & Engle, 2006) of 

memory is made difficult, less information can be recalled into immediate awareness. 

When time-based cuing of memory is made easy, more information can be recalled into 

immediate awareness. 

 Thus there is reason to believe that visual arrays performance reflects more than a 

3-5 item primary memory. Perhaps even the same set of cognitive mechanisms believed 

to function in the seemingly disparate complex span and running span tasks.   

Further Research and the Present Study 

 Two latent-level analyses of the same data set will be performed in order to 

examine the cognitive mechanisms that are common to several working memory tasks. 

Data Set A Data Set B 

.23 

.69 

.70 

WMspan

WMva.22 

.66 

.61 

WMspan 

WMva 

GfGf

Figure 4. Structural equation models reported by Shipstead, Redick, Hicks, and Engle 
(2012). WMspan = working memory as defined by span tasks; WMva = working 
memory as defined by visual arrays tasks; Gf = general fluid intelligence. Dashed lines 
were not statistically significant. 
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The first analysis is designed to clarify the similarities and differences between span-

based measures of working memory capacity and visual arrays. The second analysis is 

focused on extracting only the variance that is common to these tasks and examining its 

relationship to fluid intelligence. 

Analysis 1: The Common and Distinct Aspects of Working Memory Tasks 

 The first round of analyses expand on a recent study by Shipstead, Redick, Hicks, 

and Engle (2012) that examined the latent relationship between complex span and visual 

arrays tasks. In this study, confirmatory factor analysis determined that, while complex 

span and visual arrays are strongly related, they are nonetheless best described through 

separate latent factors.    

 Shipstead, Redick, Hicks, and Engle (2012) also examined the relationship of 

these working memory factors to fluid intelligence via structural equation model. The 

data were best described by a solution in which visual arrays and complex span were 

allowed to uniquely predict fluid intelligence (Figure 4)1. A subsequent regression 

analysis revealed that complex span performance accounted for 16-17% of the variance 

in Gf above-and-beyond processes shared with visual arrays, while, vice-versa, visual 

arrays performance uniquely accounted for 7% of the variance in Gf.   

 These results (Shipstead, Redick, Hicks, & Engle, 2012) indicate that complex 

span and visual arrays have both similarities and differences as measures of cognitive 

ability. However, there are important issues that these data cannot address. Most 

                                                 

 
 
1 Although it is clear in Figure 3 that the path from visual arrays to Gf is not significant for Data Set B, this 
was argued to be power-related. Note the consistency of the magnitude of the paths, between models. 
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Gf 

WMva

WMspan

Figure 5. Illustrative model of structural equation model used in Analysis 1. Predictor 
variables (P1, P2, P3) account for correlation between WMspan and WMva via 
common prediction of both variables. P1 = predictor 1; P2 = predictor 2; P3 = predictor 
3; WMspan = working memory as defined by span tasks; WMva = working memory as 
defined by visual arrays tasks; Gf = general fluid intelligence. Dashed lines were not 
statistically significant. 

P3 

P1 

P2 

 

obviously, what accounts for the correlation between these factors and how are they 

different? 

 The present study uses structural equation modeling to express the relationship 

between the two working memory factors via several potential mechanisms. This 

technique is made explicit in Figure 5. As can be seen, the rightmost aspect of this figure 

replicates the logic of Figure 4. The exception is that a new level of predictor variables 

has been added on the right hand side (i.e., P1, P2, and P32). Additionally, there is no 

explicit correlation between WMspan (working memory - span tasks) and WMva 

(working memory - visual arrays tasks). Rather the correlation is implied by the predictor 

variables. In this figure, P1 and P3 each have significant paths to both WMspan and 

WMva. Thus it could be confidently stated that they are common to both of the working 

memory factors and thus contribute to the correlation between the two. P2, on the other 

                                                 

 
 
2 From this point forward, abbreviations (e.g., WM, PM, Gf) will refer to factors presented in models, while 
the general concepts that these factors are intended to represent will continue to be referred to by proper 
names (e.g. working memory, primary memory, fluid intelligence) 
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hand, only predicts WMspan. While this factor describes variance in WMspan, it does not 

predict WMva. In effect, it does not account for the relationship between WMspan and 

WMva. 

 In place of P1, P2 and P3, three factors will be formed based upon current 

assumptions regarding the embedded process model. These will be PM (primary 

memory), SM (secondary memory) and either ATTN (attention control) or ExATTN 

(executive attention). Although many tasks will be used, PM and SM will be largely 

defined by the free recall scoring method of Tulving and Colotla (1970). The full 

procedure will be detailed below; however, primary memory roughly corresponds to the 

recency portion of recall, while secondary memory roughly corresponds to the pre-

recency portion. Attention control will be measured using traditional selective attention 

tasks that are believed to carry low memory loads (e.g., Roberts, Hager, & Heron, 1994). 

This factor will thus be construed as the ability to engage task-relevant behaviors, in the 

face of prepotent influence. The executive attention factor, on the other hand, will be 

formed by allowing the memory tasks to cross-load onto the attention factor. This will 

create a factor that represents attention as it operates in memory tasks. As a consequence, 

whenever ExATTN appears in a model, PM and SM will be memory variables that are 

independent of attention-related variance. 

 Shipstead, Redick, Hicks, and Engle (2012) created their visual arrays factor 

using a single type of visual arrays task (see Figure 3a). In the present analysis, four types 

of visual arrays task will be used. This allows for a greater variety of change detection 

demands and furthermore allows for a separate test of the hypothesized mechanisms of 

visual arrays. In particular, two visual arrays tasks (Figure 3c, 3d) include a selective 
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attention component (arrow pointing to critical information in one task, attending to only 

critical colors in another; see Luck & Vercera, 2002; Vogel, McCollough & Machizawa, 

2005; Vogel, Woodman, & Luck, 2005). The logic of this component is that, to the 

degree that a person is not able to use attention to selectively filter out irrelevant 

information, primary memory will be occupied by irrelevant information.  

 If the results of Fukuda and Vogel (2009; 2011) do indeed indicate that visual 

arrays performance reflects attention control, all four visual arrays tasks should be 

explained by one common factor: Attention will be important to task performance, 

regardless of whether selection is required. On the other hand, if standard visual arrays is 

a strict primary memory task, a two factor solution should obtain, with all four tasks 

loading a common factor (i.e., primary memory), but the selective versions also loading 

on a separate task-specific factor (i.e., attention control). 

Analysis 2: The Relationship of Common Variance to Fluid Intelligence 

 The second analysis is designed to extend the work of Cowan et al. (2005) who, 

unlike Shipstead, Redick, Hicks, and Engle (2012), report a complete overlap of 

predictive power among the complex span, running memory and visual arrays tasks. 

Although the first analysis of the present study does find that working memory span and 

visual arrays load on distinct factors, an alternate model will be created in which these 

tasks load on a common factor, along with separate task-specific factors. Key to this 

analysis will be the inclusion of a rapid running digit span task (Cowan et al., 2005; 

Bunting, Cowan, & Saults, 2006). 

 The rapid running digit span displays to-be-remembered items at a rate of four-

per-second, via headphones. After up to 20 digits have been played, the test-taker is cued 
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to remember the last 6. This contrasts with a slower running letter span that is used in the 

first analysis, which features shorter lists and a slower presentation rate (2 items per 

second). By the account of Bunting et al. (2006), the rapid running digit span should be 

less subject to the influence of task-specific strategies and thus provide a relatively pure 

estimate of the mechanisms involved in working memory capacity. 

 Cowan et al. (2005) found that the inclusion of rapid running digits in a regression 

analysis produced a result in which running digits, visual arrays and complex span all 

predicted the same variance in several aptitude measures (e.g., ACT scores, high school 

grades). Shipstead, Redick, Hicks, and Engle (2012) argued that this result may have 

been produced by the inclusion of the visual array and running span in one step of the 

regression and the complex span tasks in another. Since complex span and running span 

apparently measure the same latent processes, this would lead to redundancy of 

prediction. However, if rapid running digits does indeed represent a purified measure of 

working memory capacity, then its inclusion in the second analyses would not only 

facilitate the formation of a common working memory factor, but may necessitate it. 

 Following formation of the common factor, its relationship to fluid intelligence 

will subsequently be analyzed through PM, SM, and ExATTN factors. This will involve 

techniques similar to those used to examine the relationship between WMspan and 

WMva in Analysis 1.   
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CHAPTER 2 

METHOD 

Participants 

 All participants were between the ages of 18-30, had normal or corrected-to-

normal vision and had learned English by age 5. Participants were recruited from 

undergraduate psychology classes at Georgia Tech and Georgia State University, and 

from the general Atlanta community via Craigslist and newspaper ads. Participants were 

compensated with $30 per session. Georgia Tech students were given the option of 

receiving credit toward course requirements. 

 In total, 273 people consented to participate in a two session study. Twenty-seven, 

either did not return for a second session or requested to drop out of the study. Twenty-

nine were either removed from a session or from further analysis for reasons including 

disruptive behavior, copying of to-be-remembered items and not following instructions 

on one or more tasks. Finally, two participants who completed both sessions were 

removed from further analysis because their demographics sheets indicated that they did 

not meet our inclusion criteria.   

 In the final sample of 215 participants the mean age was 22.31 years (SD = 3.70). 

One hundred four (48%) were female. One hundred twenty nine (60%) indicated that 

they were currently attending or had graduated from college. Seventy five were from 

Georgia Tech, 35 were from Georgia State, and the remaining 19 students were from 

other colleges. 
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Table 1

1 2
Task OSpan SymSpan

RunLett RunDigit
Reasoning Mix Raven

VA1 VA3
LetterSets NumbSeries
FRword FRnumb

VA2 VA4
Anti-Saccade Flanker

CPA Split Span
Digit Span Stroop

Beauty Contest

Session
Order in which tasks were performed .

note. Ospan = operation span; RunLett = running letter span; 
VA1 = visual arrays task 1; Frword = free recall of words; 
VA2 = visual arrays task 2; CPA = continuous paired 
associates; SymSpan = symmetry span; RunDigit = running 
digit span; Raven = Raven's Advanced Progressive Matrices 
(odd set); VA3 = visual arrays task 3; NumbSeries = Number 
Series; FRnumb = free recall of numbers; VA4 = visual 
arrays task 4; Flanker = arrow flanker task.

Procedure 

 The study was conducted in two 2-hour sessions that were run on separate days. 

On average, approximately 6 days passed between sessions. All but 4 participants 

completed the study within a month of the first session. Participants were run in groups of 

1-5. 

 Table 1 provides the order in which tasks were administered. This study doubled 

as a general screening procedure. As such, two tasks (i.e., ReasoningMix and Beauty 

Contest) were part of separate projects and are not discussed further. All tasks were 

administered via computer. 18" CRT monitors were used. 
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Working Memory Tasks (Span Tasks) 

 In all working memory span tasks, participants provided responses via mouse-

click. In three tasks (operation span, symmetry span and running letters), items were 

presented visually. In running digits, items were presented auditorally, via headphones. In 

all tasks the dependent variable was the number of items recalled in their correct serial 

positions. Abbreviated names are provided for reference against figures and tables.  

 Operation span (Ospan). The automated operation span (Unsworth et al., 2005) 

required participants to remember a series of letters while alternately solving simple 

mathematical equations. Lists lengths ranged between 3-7 items and were randomly 

presented. Each list length occurred 3 times.  

 Symmetry span (SymSpan). The automated symmetry span (Unsworth, Redick et 

al., 2009) task required participants to remember a series of spatial locations while 

alternately deciding whether a pattern of blocks was symmetrical. List lengths ranged 

between 2-5 items. Each list length occurred 3 times.  

 Running letter span (RunLett). The automated running letter span (Broadway & 

Engle, 2010) presented a series of 5-9 letters and required participants to remember the 

last 3-7. Participants were informed of how many items they would need to remember at 

the beginning of a block of three trials. Blocks were randomly presented. There were a 

total of 15 trials. Items were presented for 300 ms followed by a 200 ms pause.   

 Running digit span (RunDigit). The automated digit span (Cowan et al., 2005) 

presented a series of 12-20 digits and required participants to remember the last 6. 

Participants performed 18 critical trials. Digits were presented at the rate of four per 

second via headphones.  
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Working Memory Tasks (Visual Arrays) 

 Four variations of the visual arrays task were used. Two tasks explicitly involved 

a selective attention component (VA3 and VA4) which required participants to ignore 

specific distractor items. Two did not (VA1 and VA2). In calculating the dependent 

variable, k, "N" was always defined as the number of valid target-items on a screen. Thus, 

if ten targets-items are presented, but 5 are to-be-ignored, then N equaled 5.  

 Two tasks required test-takers to respond as to whether a relevant characteristic of 

a probed item had changed (VA1 and VA4). For these tasks, k was calculated using the 

partial report correction of Cowan et al., (2005): k = N * (hits + correct rejections - 1). 

Two tasks required test-takers to decide whether a relevant characteristic of any item had 

changed (VA2 and VA3). For these tasks, k was calculated using the whole report 

correction of Pashler (1988): k = N * (hits - false alarms / 1 - false alarms). In all cases, k 

was first computed for each set size, and then the set sizes were averaged. 

 In all tasks, participants responded via keypress. 'S' (same) and 'D' (different) 

stickers were placed on the keyboard keys 'f' and 'j'. Set sizes, as well as change and no-

change trials were randomly distributed. At a distance of 45 cm items were presented 

within a silver 19.1° × 14.3° field. Items were separated from one another by at least 2° 

and were all at least 2° from a central fixation point.  

 VA1 (color judgment; Figure 3a). Array sets were 4, 6, or 8 colored blocks. 

Possible colors included white, black, red, yellow, green, blue, and purple. Arrays were 

presented for 250 ms followed by a 900 ms ISI. Participants responded as to whether or 

not one encircled item had changed color. 28 trials of each set size were included. 14 

were no-change, 14 were change.   
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 VA2 (orientation judgment; Figure 3b). The orientation judgment task was based 

on one of the conditions used by Luck and Vogel (1997). Arrays consisted of 5 or 7 

colored bars, each of which was either horizontal, vertical, or slanted 45° to the right or 

left. Participants needed to judge whether any bar had changed orientation. Colors 

included red and blue, and did not change within a trial. 40 trials of each set size were 

included. 20 were no-change, 20 were change.  

 VA3 (selective color judgment; Figure 3c). This task was based on Experiment 2 

of Vogel, Woodman & Luck (2005). In order to minimize eye movements, the sequence 

of events in VA3 was speeded, relative to other tasks. Each trial began with a left- or 

right-pointing arrow at the center of a computer monitor for 100 ms, followed by a 100 

ms interval. Next, two equally-sized arrays of colored blocks were presented on the right 

and left sides of the screen for 100 ms. Each array contained either 4, 6, or 8 items. After 

a 900 ms delay, the boxes reappeared on the side of the screen to which the arrow had 

pointed. Participants indicated whether any of these relevant boxes had changed color. 28 

trials of each set size were included. 14 were no-change, 14 were change. Seven of each 

occurred each side of the screen.  

 VA4 (selective orientation task; Figure 3d). This task is similar to the orientation 

task listed above. Partial report of an item was used. This item was presented with a white 

dot superimposed on it. Each trial began with an instruction to attend to either the red or 

blue items (200ms), followed by a 100 ms interval. Next, 10 or 14 bars were presented 

for 250 ms. Half of all bars were compatible with the to-be-attended color. Following a 

900 ms delay, the to-be-attended bars returned. 40 trials of each set size were included. 

20 were change and 20 were no-change.  
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Primary and Secondary Memory Tasks 

 Free recall of words (PM_Word; SM_Word). Participants saw a series of 12 

nouns, each of which was presented for 750 ms, followed by a 250 ms delay. Following 

the 12th word, participants were signaled to recall as many words as possible. The end of 

the recall period (30 seconds) was signaled by a beep that was played via headphones. 

Due to concern that community participants might have less typing experience than 

college students, responses were written on a sheet of paper. Participants were not 

required to recall the words in any order, however, the instructions stressed that recall 

should begin from the end of the list. Two practice trials were followed by 10 critical 

trials.  

 Using the methods of Tulving and Colotla (1970), two dependent variables were 

extracted from these tasks. If seven or fewer items (either presented or recalled) 

intervened between the presentation and recall of a given word it was deemed to have 

been recalled from primary memory (PM_Word). All other correct responses were 

deemed to have been recalled from secondary memory (SM_Word). Both dependent 

variables were the average number of words recalled from primary and secondary 

memory across all critical lists. 

 Free recall of three-digit numbers (PM_Numb;  SM_Numb). This task was the 

same as FRword, with the exception that participants saw three-digit numbers, rather than 

words.  

  Split span free recall (SSblue; SSred). In this task participants (1) saw a series of 

to-be-remembered grid locations, (2) were momentarily distracted by a mental rotation 

task, then (3) saw a second series of to-be-remembered locations (see Appendix A).  
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 Each trial began with a 4 × 4 grid in which squares were highlighted in red one-at-

a-time. Each item was highlighted for 750 ms, followed by a 250 ms delay. Following the 

fifth red square, participants saw a capital letter ('F', 'G', 'J', or 'R') that had been rotated 

by between 45 and 315 degrees. Participants needed to indicate whether the letter was 

facing in the appropriate direction, or was mirror reversed. Following 1-3 rotation trials a 

6 × 6 grid appeared. Squares within the grid were highlighted in blue one-at-a-time. Each 

item was highlighted for 200 ms, followed by a 50 ms delay.  

 After the 5th blue item was presented, an empty grid appeared on the screen with 

either the word "RED" (4 × 4 grid) or "BLUE" (6 × 6 grid) above it. This was a signal to 

recall either the red or the blue squares. Participants used the mouse to indicate which 

squares had been highlighted on the most recent trial. In order to prevent liberal 

responding, participants were only allowed 5 responses per trial. Recall could occur in 

any order. 

 The intent of the rotation task was to increase the likelihood that red items would 

be displaced into secondary memory. The number of rotations was varied to prevent 

participants from anticipating the presentation of the blue items, and thus minimize 

strategic grouping of these items. The faster presentation of blue items on a larger grid 

was also intended to minimize strategic grouping. Finally, instructions requested that 

participants begin their recall of blue items with the final item.  

 Thus, it was predicted that recall of red items would largely reflect secondary 

memory, while the recall of blue items would largely reflect primary memory. 20 trials 

were performed, half of which required recall of red items. The mix of red and blue recall 
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was pre-randomized in order to prevent participants from anticipating the critical demand 

of a trial. 

 Digit Span (DigitSpan). In the digit span task participants saw a series of digits 

presented at the rate of 4 per second (200 ms presentation; 50 ms interval). Participants 

began with three trials. Each of these trials consisted of a 2-item list. If two of the three 

lists were correctly recalled, then three more trials were performed with 3-item lists. This 

continued until participants either completed three trials with 9-item lists, or were unable 

to correctly recall 2 lists of a given length (at which point testing ended). 

 Participants received one point per fully-recalled list. The intent of this all-or-

none scoring method (i.e., rather than the method used with the above WM span tasks) 

was to minimize retrieval from secondary memory (cf. Unsworth & Engle, 2007b). 

Responses were entered via mouse-click. The dependent variable was the number of lists 

correctly recalled. 

 Continuous paired associates (CPA). This task included two types of trial. On 

"study" trials participants saw a two-digit number paired with an upper case letter (e.g., 

"18 - Q"). On "test" trials participants saw a previously presented two-digit number above 

5 upper case letters (B, N, Q, T, X). Participants used the mouse to click on the letter that 

had been paired with the given number. 

 Numbers were not reused within a session. Any previous pairings of a given letter 

with a number were nullified by the letter's most recent appearance in a study trial. Study 

to testing of a specific number-letter pairing was separated by 0-5 events (e.g., Lag 0-5). 

Events could be either study or test trials.  
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 Each lag was tested 5 times. The dependent variable was accuracy at lags of 2-5. 

This was done with the intent of maximizing the roll of secondary memory in responding 

(cf. Rowe & Smith, 1973; Unsworth, Brewer, & Spillers, 2011).  

Attention Control Tasks 

 Antisaccade task (AntiSacc). The antisaccade task (Hallet, 1978) was a modified 

version of the one used by Hutchison (2007; see Appendix B). Each trial began with a 

"+" fixation which lasted for either 1,000 or 2,000 ms. This was immediately followed by 

a "*" that flashed on either the right or left hand side of the screen for 300 ms. 

Participants were required to divert their gaze to the opposite side of the screen where an 

O or Q was displayed for 100 ms and then masked by "##". The participant was given 

5,000 ms to indicate which letter was presented. Responses were made via keypress.  

 Participants performed 16 practice trials in which the critical letter was presented 

for 500 ms, followed by 16 practice trials at normal speed. The dependent variable was 

accuracy on 48 critical trials.  

 Stroop task. The Stroop (1939) task was based on the task used by Unsworth and 

Spillers (2010). This task included 486 trials in which participants quickly indicated the 

hue in which a word was printed (e.g., ink hue: red; word: "BLUE"). Blue, green, and red 

were used. On 66% of all trials the hue and word were congruent. On the remaining 33% 

of trials the hue and word were incongruent. Each color and word was used with equal 

regularity. A self-paced rest break was given every 162 trials. Participants responded by 

pressing one of three colored stickers that were affixed to keypad keys 1 (green), 2 (blue), 

and 3 (red). Incorrect responses were followed by a beep played via headphones. The 
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dependent variable was response time differences between congruent and incongruent 

trials. 

 Flanker task. The arrow flanker task was based on the task used by Unsworth and 

Spillers (2010). A fixation point was presented for 900 ms, after which an array of five 

items was shown. The middle item was always an arrow. The participant's task was to 

indicate which direction this arrow was pointing. Flanking characters were congruent 

arrows (e.g., → → → → →), incongruent arrows (e.g., ← ← → ← ←) or neutral items 

(e.g., ─ ─ → ─ ─). Participants responded with the "z" and "." keys, on which arrow-

stickers had been placed. Three blocks of 72 trials were run, giving a total of 72 

congruent, 72 incongruent and 72 neutral trials. The dependent variable was incongruent 

RT minus neutral RT. 

General Fluid Intelligence 

 Raven's advanced progressive matrices (Raven; Raven, 1990; Odd problems). 

Participants saw a 3×3 matrix in which 8 abstract figures have been placed. Participants 

chose which of several options belonged in the ninth box. Ten minutes were given to 

complete 18 problems. The dependent variable was the number of correct responses.  

 Letter sets (LetterSet; Ekstrom et al., 1976). Participants saw five sets of four-

letter sequences. They needed to discover the rule that was common to four of the sets 

and then indicate which set does not belong. Five minutes were given to complete 30 

problems. The dependent variable was the number of correct responses. 

 Number series (NumSer; Thurstone, 1938). Participants saw a series of numbers 

and selected which of several options completed the series. Five minutes were given to 

complete 15 problems. The dependent variable was the number of correct responses. 
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Data Pre-Screening and Preparation 

 Response times for the Stroop and flanker tasks were examined for outliers using 

the non-recursive method of Van Selset and Jolicoeur (1994). Only trials on which a 

correct response was provided were included. Outliers were replaced with a cutoff score 

that was based on the total number of valid trials.  

 For all tasks, univariate outliers were defined as an individual mean score that 

exceeded 3.5 standard deviations from the respective grand mean. Out of a total of more 

than 4,700 observations, 12 met this criterion. These scores were replaced with the cutoff 

value. Multivariate normality was tested using Maridia's PK. This test indicated that 

multivariate kurtosis was 1.01, which is considered normal (Byrne, 2008).  

 Finally, there were a total of 15 missing values. This was attributable to 

equipment malfunction and experimenter error. Because these values totaled less than 1% 

of the entire matrix of scores (typical cutoff is < 10%; Kline, 1998) and because there 

was no reason to believe that missing values were systematically related to a specific 

portion of the distribution (i.e., Missing Completely At Random; Allison, 2002), multiple 

imputation was used to replace the missing values. Imputation was favored over deletion 

in order to preserve power. 

Exploratory Factor Analysis 

 Although the present models were theoretically motivated, exploratory factor 

analysis (EFA) was conducted in order to allow for observations and hypotheses that 

were independent of preexperimental assumptions. Principal axis factoring was used for 

extraction, along with varimax rotation. Varimax was preferred due to its tendency to 
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distribute variance across factors, rather than applying it to a general factor (Loehlin, 

2004).  

Fit Statistics 

 Several fit statistics are reported for each model. In addition to reporting chi-

square (χ2) and remaining degrees of freedom (df), χ2/df served as a "badness-of-fit" 

statistic. Values above 2 are assumed to reflect a significant difference between the 

observed and reproduced covariance matrices. Additional statistics include root mean 

square error of approximation (RMSEA), which estimates the model fit to the population, 

and standardized root mean square residual (SRMR), which reflects average deviation of 

the reproduced covariance matrix from the observed. For these indices, values below .05 

are ideal, but up to .08 is acceptable (Browne & Cudeck, 1993; Kline, 1998). Non-

normed fit index (NNFI) and comparative fit index (CFI) compare the hypothesized 

model relative to one in which observed variables are assumed to be uncorrelated. For 

these statistics, values above .95 represent a good fit (Hu & Bentler, 1999). Model 

parsimony was assessed through Akaike's (1987) information criterion (AIC), which 

takes in account both goodness-of-fit and number of to-be-estimated parameters. Smaller 

values are preferred. 



CHAPTER 2 

RESULTS AND DISCUSSION 

Table 2
Descriptive Statistics

Task M SD Range Skew Kurtosis I.C.
1. OSpan 56.11 13.64 9.00 - 75.00 -.94 .66 .84a

2. SymSpan 26.46 8.74 3.00 - 42.00 -.50 -.30 .84a

3. RunLett 39.57 12.20 9.00 - 73.00 -.16 -.14 .81a

4. RunDigit 53.60 18.12 3.00 - 94.00 -.45 .18 .88a

5. VA1 3.52 1.18 -.65 - 5.71 -1.17 1.86 .78a

6. VA2 3.04 1.34 -1.66 - 5.45 -.73 .55 .74a

7. VA3 2.01 1.44 -3.31 - 4.91 -.63 .76 .54a

8. VA4 1.66 1.23 -.80 - 4.88 .15 -.39 .70a

9. PM_Word 2.63 .67 .60 - 4.20 -.32 -.07 .80a

10. PM_Numb 1.54 .43 .03 - 3.00 -.36 .73 .68a

11. DigitSpan 13.37 4.06 3.00 - 23.00 -.17 .10 .80a

12. SSblue 25.43 8.40 4.00 - 45.00 -.11 -.35 .86a

13. SM_Word 1.90 .85 .00 -4.92 .75 1.06 .78a

14. SM_Numb .67 .43 .00 - 2.18 .88 .69 .65a

15. CPA .43 .18 .00 - .90 .31 -.06 .80a

16. SSred 27.82 6.94 11.00 - 48 .11 -.32 .73a

17. AntiSacc .74 .15 .21 - 1.00 -.67 -.16 .85a

18. Flanker 96.88 49.23 12.73 - 273.52 1.23 1.74 .81b

19. Stroop 138.96 85.37 -39.66 - 453.54 .90 .86 .92b

20. Raven 8.92 3.77 1.00 - 17.00 -.24 -.82 .80a

21. LetterSet 15.12 4.54 3.00 - 25.00 -.38 -.22 .82a

22. NumSer 8.73 3.08 1.00 - 15.00 -.37 -.22 .76a

note. Ospan = Operation Span; SymSpan = Symmetry Span; RunLett = Running Letter 
Span; RunDigit = Running Digit Span; VA1 = Visual Arrays 1; VA2 = Visual Arrays 2; 
VA3 = Visual Arrays 3; VA4 = Visual Arrays 4; PM_Word = Primary Memory, Free 
Recall, Words; PM_Numb = Primary Memory, Free Recall, Numbers; SSblue = Split Span, 
Blue Squares; SM_Word = Secondary Memory, Free Recall, Words; SM_Numb = 
Secondary Memory, Free Recall, Numbers; CPA = Continuous Paired Associate; SSred = 
Split Span Red; AntiSacc = Antisaccade; Flanker = Arrow Flanker; NumSer = Number 
Series; I.C. = Internal Consistency; a = Cronbach's Alpha; b = Odd-Even Split-Half 
Reliability.
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Table 3
Correlations among all tasks

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1. OSpan ‐
2. SymSpan .52 ‐
3. RunLett .49 .45 ‐
4. RunDigit .42 .36 .65 ‐
5. VA1 .30 .39 .30 .40 ‐
6. VA2 .27 .38 .29 .39 .59 ‐
7. VA3 .21 .32 .27 .35 .50 .42 ‐
8. VA4 .23 .36 .36 .42 .44 .59 .54 ‐
9. PM_Word .31 .40 .54 .47 .38 .35 .27 .38 ‐
10. PM_Numb .23 .34 .34 .42 .31 .24 .35 .31 .42 ‐
11. DigitSpan .30 .29 .65 .54 .37 .26 .30 .30 .41 .33 ‐
12. SSblue .29 .59 .41 .43 .53 .54 .42 .49 .49 .32 .33 ‐
13. SM_Word .24 .25 .28 .18 .27 .25 .21 .22 .11 .13 .17 .20 ‐
14. SM_Numb .21 .21 .19 .14 .16 .16 .21 .14 ‐.03 ‐.03 .22 .12 .27 ‐
15. CPA .26 .29 .39 .36 .34 .33 .30 .42 .41 .28 .37 .38 .30 .30 ‐
16. SSred .32 .54 .31 .32 .45 .38 .33 .43 .35 .27 .21 .50 .33 .30 .34 ‐
17. AntiSacc .23 .40 .33 .34 .41 .42 .44 .45 .39 .28 .31 .46 .23 .12 .39 .43 ‐
18. Flanker ‐.18 ‐.23 ‐.16 ‐.18 ‐.25 ‐.21 ‐.25 ‐.22 ‐.19 ‐.19 ‐.06 ‐.24 ‐.11 ‐.06 ‐.24 ‐.23 ‐.28 ‐
19. Stroop ‐.17 ‐.24 ‐.12 ‐.04 ‐.12 ‐.09 ‐.14 ‐.22 ‐.08 ‐.03 ‐.03 ‐.15 ‐.07 ‐.01 ‐.07 ‐.15 ‐.13 .23 ‐
20. Raven .34 .49 .51 .51 .45 .41 .39 .43 .41 .30 .34 .54 .33 .18 .38 .41 .44 ‐.23 ‐.07 ‐
21. LetterSet .29 .41 .50 .48 .36 .34 .30 .37 .49 .38 .40 .44 .28 .11 .37 .36 .37 ‐.09 ‐.10 .54 ‐
22. NumSer .30 .41 .51 .43 .38 .37 .31 .36 .42 .32 .39 .47 .30 .20 .39 .34 .36 ‐.15 ‐.08 .58 .54 ‐

note. Ospan = Operation Span; SymSpan = Symmetry Span; RunLett = Running Letter Span; RunDigit = Running Digit Span; VA1 = Visual Arrays 1; VA2 = Visual 
Arrays 2; VA3 = Visual Arrays 3; VA4 = Visual Arrays 4; PM_Word = Primary Memory, Free Recall, Words; PM_Numb = Primary Memory, Free Recall, Numbers; 
SSblue = Split Span, Blue Squares; SM_Word = Secondary Memory, Free Recall, Words; SM_Numb = Secondary Memory, Free Recall, Numbers; CPA = 
Continuous Paired Associate; SSred = Split Span Red, AntiSacc = Antisaccade; Flanker = Arrow Flanker; NumSer = Number Series; NumSer = Number Series. 
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 Descriptive statistics are displayed on Table 2 and correlations among tasks are 

available on Table 3. Extreme skew is indicated by a value greater than 3 and extreme 

kurtosis is indicated by a value greater than 10 (Kline, 1998). None of the values 

exceeded these cutoffs.  

 Cronbach's alpha was calculated for OSpan, SymSpan, and RunLett using the 

procedure of Kane et al. (2004) in which the first, second, and third presentations of each 

list length were summed and then entered into the analysis. For the visual arrays tasks, k 

at each set size was entered into the analysis. Across tasks, internal consistency was 

generally good, with the exception of VA3 (Table 1). However, the simple correlations 

between VA3 and all other tasks were generally similar to the other three visual arrays 

tasks. Moreover, a consistency score was generated across all four visual arrays tasks, 

which produced a Cronbach's alpha of .83. Thus, it is apparent that even though one task 

is somewhat unstable, all four tasks are united by a common factor. VA3 was therefore 

retained for further analysis.  

 One potential concern regards minimum scores on the visual arrays tasks 

(particularly VA2 and VA3). Extremely negative values (< -1) on these tasks may 

indicate that certain participants had misunderstood instructions and reversed the 

response keys. These participants would thus be candidates for removal from further 

analysis. The data were searched for cases in which a participant had consistently 

negative k values across all four visual arrays scores (all four tasks < -1). No participant 

met this criterion. Negative k values were therefore interpreted as random noise 

associated with participants whose true k score is at, or near, zero (i.e., more prone to 

guessing; see Shipstead, Redick, Hicks, & Engle, 2012).
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Figure 6. Confirmatory factor analyses for primary memory (PM), secondary memory 
(SM) and executive attention (ExATTN).  PM_Word = Primary memory, free recall, 
words; PM_Numb = Primary memory, free recall, numbers; SSblue = Split span, blue 
squares; CPA = Continuous paired associates; SM_Word = Secondary memory, free 
recall, words; SM_Numb = Secondary memory, free recall, numbers; SSred = Split 
span red squares; AntiSacc = antisaccade; Dashed lines are not significant at the .05 
level. Models inside the box were retained for further analysis. 
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Table 4
Modeling Memory and Attention

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
Traditional 88.56 41 2.16 .07 .06 .92 .94 138.56
SplitSpanCrossload 71.35 39 1.83 .06 .06 .94 .96 125.35
CPACrossload 32.96 23 1.43 .05 .05 .96 .97 76.96
ExecutiveAttention 31.33 21 1.49 .05 .05 .95 .97 79.33
note . CPACrossload = Continuous paired associates crossloaded. Models in bold are preferred.  



 

 

Initial Confirmatory Analyses 

 Before commencing the main analyses, models of memory and attention were 

developed. These models served as the predictor variables in subsequent structural 

equation models (i.e., P1, P2, and P3 in Figure 5). The first series of models (Figure 6a-c) 

delineated primary memory, secondary memory, and attention control. The second 

(Figure 6d) introduced an executive attention factor by allowing the memory tasks to load 

on the attention factor (cf. Friedman et al., 2008; McVay & Kane, 2012). 

Primary Memory, Secondary Memory, and Attention Control 

 The model labeled Traditional on Figure 6a displays the primary memory, 

secondary memory and attention tasks distributed among three factors. The initial 

division of memory tasks was specifically based upon the traditional assumption that 

primary memory reflects the amount of information a person can simply maintain at any 

one instant, while secondary memory reflects retrieval from beyond primary memory, or 

following a distraction (e.g., Tulving & Colotla, 1970; Unsworth & Engle, 2007c; 

Unsworth, Spillers, & Brewer, 2010; Waugh & Norman, 1965). The fit statistics (Table 

4), however, were sub-optimal. 

 The model was thus adjusted within two a priori constraints. First, since the 

primary and secondary memory components of free recall are the traditional measures of 

these memory systems (Tulving & Colotla, 1970; Watkins, 1974), they were required to 

load on separate factors. Second, primary and secondary memory components of free 

recall generally show little-to-no correlation (Engle, 1999; Unsworth, Spillers, & Brewer, 

2010). This trend can be seen in the present data by examining the relationship of 
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PM_Word and PM_Numb to SM_Word and SM_Numb on Table 3. Thus, weaker 

correlations between the primary and secondary memory factors are preferred.  

 On these points, the EFA (Table 5) is informative. The first factor largely 

reflected primary memory, as indicated by the loadings of PM_Word and PM_Numb. 

The second factor reflected secondary memory, as indicated by the loadings of SM_Word 

and SM_Numb. Finally, antisaccade, flanker and Stroop loaded on the third factor, 

indicating that it reflected attention control. 

  The first adjustment to the model allowed SSblue and SSred to cross load  

on attention, which is consistent with the EFA. The resulting model is displayed in Figure 

6b (SplitSpanCrossload). Both tasks loaded more strongly on the attention factor than 

either of their respective memory factors. Although, the fit of this model was good (Table 

Table 5

Task Factor 1 Factor 2 Factor 3
PM_Word .74 ‐.02 .21
PM_Numb .54 .00 .15
DigitSpan .59 .27 ‐.08
SSblue .53 .18 .42
SM_Word .14 .40 .19
SM_Numb ‐.01 .75 ‐.02
CPA .47 .39 .20
SSred .33 .39 .47
AntiSaccade .45 .20 .42
Flanker ‐.15 ‐.06 ‐.45
Stroop ‐.01 ‐.02 ‐.34

Exploratory Factor Analysis for Primary Memory, Secondary 
Memory and Attention Control

note.  PM_Word = Primary memory, free recall, words;  
PM_Numb = Primary memory, free recall, numbers; SSblue = 
Split span blue squares; SM_Word = Secondary memory 
word; SM_Numb = Secondary Memroy Number; CPA = 
Continous paired assoiates; SSred = Split  span red squares.
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4), it creates conceptual confusion. Specifically, the split span tasks do not contain a 

component of selection in the face of distraction. Thus, loading these tasks on the ATTN 

would blur the distinction between memory and attention, and prevent extraction of an 

unqualified attention control factor. The split span tasks were therefore dropped from the 

model.  

 Dropping the split span tasks led to an acceptable fit to the data (model not 

presented; χ2/df  = 1.69; RMSEA = .06). However, the EFA (Table 5) also indicated that 

CPA and SSred reflect primary and secondary memory to roughly equal extents. Both of 

these tasks had been designed to minimize the role of a primary memory system that 

reflected simple storage. Specifically (and as outlined in the Methods section), lags of 0 

and 1 were removed from the CPA, meaning that between the study and test of a given 

number-letter pair, 2-5 pairs were either studied or tested (4-10 items). SSred, on the 

other hand, was followed by a letter rotation task and 5 more to-be-remembered items 

(i.e., SSblue). In both cases, intervening information should have been sufficient to 

displace the contents of limited-capacity primary memory.  

 The relationship between primary memory and CPA is, therefore, curious if one 

assumes that primary memory is a passive storage system. However, this relationship is 

principled within perspectives that assume primary memory actively maintains access to 

critical information (rather than passively storing the most recent information; e.g., 

Oberauer et al., 2007). CPA was therefore allowed to cross load on both the primary and 

secondary memory factors. As can be seen on Figure 6c (CPACrossload), both loadings 

were significant and the fit was good (Table 4). Moreover, CPA loaded evenly on both 
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PM and SM, suggesting that both of these aspects of memory are important to CPA, even 

at longer lags. 

  Relative to the initial model (Figure 6a), the correlation between PM and SM is 

noticeably reduced to the point of non-significance (from .78 to .24). Thus, this path 

brings the correlation between PM and SM in line with previous studies involving latent-

level analysis of primary and secondary memory (Unsworth & Engle, 2007b; Unsworth, 

Spillers, & Brewer, 2010). CPACrossload was therefore the preferred model for 

examining the relationships between primary memory, secondary memory and attention 

control. 

Primary Memory, Secondary Memory, and Executive Attention 

 Executive attention is conceptualized as a synergistic relationship between 

attention and memory processes (cf. Kane et al., 2007), and should thus be present in 

both attention control and memory tasks. In Figure 6c this is represented through the 

strong correlations between ATTN and the two memory factors.   

 From an operational perspective, the model in Figure 6d forms an executive 

attention factor by allowing all memory tasks to cross-load both on the attention factor 

(ExATTN) and their respective PM or SM factors. This method is consistent with 

previous studies conducted by McVay and Kane (2012) and Friedman et al. (2008). The 

resulting model fit well (Table 4) and was thus retained for further analyses3.   

                                                 

 
 
3 Note in Figure 9d that SM_Numb did not load significantly on ExATTN and this path was thus excluded. 
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Table 6

Task Factor 1 Factor 2
OSpan .17 .63
SymSpan .35 .52
RunLett (slower) .17 .81
RunDigit (rapid) .34 .64
VA1 .67 .26
VA2 .73 .22
VA3 .63 .19
VA4 .70 .25

Exploratory Factor Analysis for Working Memory Tasks.

note . OSpan = Operation Span; SymSpan = Symmetry Span; 
RunLett = Running Letter Span; RunDigit = Running Digit Span; 
VA = Visual Arrays. Loadings above .3 are in bold.

Analysis 1: The Common and Distinct Aspects of Working Memory Span and 

Visual Arrays tasks 

 The first series of structural equation models examined the relationship between 

working memory span tasks and visual arrays tasks in terms of the memory and attention 

models in Figure 6c and 6d. The first steps in this analyses (Figure 7a-c) were to verify 

that, within the present data set, working memory span and visual arrays tasks do indeed 

load on separate factors (Shipstead, Redick, Hicks, & Engle, 2012). Secondarily, I tested 

whether the introduction of filtering components to the visual arrays tasks introduced 

processes that were otherwise absent (Figure 7d). 

Confirmatory Analysis of the Two-Factor Working Memory Model 

 The EFA that included all working memory tasks resulted a two-factor solution 

(Table 6). All visual arrays tasks loaded on the first factor, while the span tasks loaded 

more strongly on the second factor. Of present interest, VA3 and VA4 did not load 

separately from VA1 and VA2. This suggests that the inclusion of an attention-filtering 
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(b) 2-Factor (a) 1-Factor

component did not introduce any processes that are absent from the more basic visual 

arrays tasks (i.e., attention control is either present or absent in all).    

 The confirmatory analysis verified that WMspan and WMva tasks formed 

separate factors. On the basis of previous research (Broadway & Engle, 2010; Shipstead, 

Redick, Hicks, & Engle, in press), OSpan, SymSpan, and RunLett were loaded onto one 

factor, while the four visual arrays tasks loaded on a second (rapid RunDigit will be 

examined in Analysis 2).  
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Figure 7. Confirmatory factor analyses involving working memory span (WMspan) and 
visual arrays tasks (WMva). OSpan = Operation Span; SymSpan = Symmetry Span; 
RunLett = Running Letter Span; VA = Visual Arrays; 2-FactorsCE = Two Factors 
Correlated Errors; VAattnFact = Visual Arrays Attention Factor; VAattn = Visual 
Arrays Residual Attention. Dashed lines are not significant at the .05 level. The box 
indicates a model that was retained for further analysis. 
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Table 7
Confirmatory Factor Analyses for Working Memory Tasks

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
1-Factor 106.60 14 7.61 .18 .09 .83 .88 134.60
2-Factors 30.99 13 2.38 .08 .04 .95 .97 60.99
2-FactorsCE 13.85 12 1.15 .03 .03 .99 1.00 45.85
VAattnFact 14.70 10 1.47 .05 .03 .99 .99 50.70
note .  2-FactorsCE = Two Factors, Correlated Errors; VAattnFact = Visual Arrays Attention Factor.

 In the first model (1-Factor; Figure 7a) the path between WMspan and WMva 

was fixed at 1. This simulated a 1-factor solution, while maintaining the structure of a 2-

factor model. Across all statistics, 1-Factor provided a poor fit to the data (Table 7). 

Examination of the task loadings reveals lower loadings for the WMspan tasks than for 

the WMva tasks. This implies that there are aspects of WMspan that are not captured by 

variance that is common to WMva. Moreover, it replicates Shipstead, Redick, Hicks and 

Engle (2012) who found that these tasks are best described by separate factors. 

 Thus, the path between WMspan and WMva was freed (2-Factors; Figure 7b; 

Table 7). The model fit was improved, as indicated by a significant decrease in χ2 (Δχ2 = 

75.61; p < .001) and a lower AIC. Moreover, the loadings for WMspan tasks were 

noticeably higher. However, while many fit statistics were acceptable, others were less 

than optimal (e.g., χ2/df > 2; RMSEA of .08).  

 Although the EFA indicated that SymSpan may load on both factors4, LISREL 

indicated the presence of negative correlations between the error residuals of VA1 and 

VA4 as well as VA2 and VA3. These task-pairs contain the same report-type 

(respectively, partial- and whole-report), but differ in terms of change detection (color vs. 

                                                 

 
 
4 A model with SymSpan cross-loaded on both factors was examined, but did not lead to an appreciable 
change in the fit statistics, relative to the model in Figure 7b. 
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angle) and selective filtering requirements (no-filter vs. filter). This may be an indication 

that attention demands (i.e., the need to select within a report-type) interacted with 

change-detection type. 

 2-Factors was subsequently re-run with correlated errors between the negatively-

related tasks (2-FactorsCE; Figure 7c). The relationship between VA1 and VA4 was 

significant. In the interest of removing this influence from subsequent analyses, this 

correlated error was retained. The resulting fit statistics for this model were excellent 

(Table 7) and improved relative to 2-Factors (Δχ2 = 17.14; p < .001). 

Confirmatory Analysis of Selective vs. Non-Selective Visual Arrays 

 Although the EFA indicated that the visual arrays tasks were explained via one 

factor, VAattnFact (Figure 7d) tested whether the addition of a selective-filtering 

requirement in VA3 and VA4 introduced a selective attention component that was absent 
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Figure 8. Structural equation model in which working memory span (WMspan) and 
visual arrays tasks (WMva) predict fluid intelligence (Gf). OSpan = Operation Span; 
SymSpan = Symmetry Span; RunLett = Running Letter Span; VA = Visual Arrays; 
Raven = Raven’s Advanced Progressive Matrices; NumSer = Number Series.  

Table 8
Replication of Shipstead et al. (2012)

χ2 df χ2/df RMSEA SRMR NN
2-FactsPredictGf 38.23 31 1.23 .03 .04 .
note .  2-FactsPredictGf = Two working memory factors predicting general fluid intell

FI CFI AIC
99 .99 86.23
igence.
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from VA1 and VA2. While the fit statistics (Table 7) indicated this model may be 

tenable, neither VA3 nor VA4 loaded significantly on the new factor (Table 7d; due to 

relatively high standard error). Moreover, the new factor was not related to WM span, 

further indicating that this variance is not critical to the prediction of WM capacity. 

VAattnFact was therefore not retained: The attention-filtering requirement did not 

introduce new processes to visual arrays performance. Further analysis will conclude that 

this is due to the presence of attention control in all visual arrays tasks. 

Relating WMspan and WMva to Gf 

 Before exploring the relationship between WMspan and WMva, I verified that the 

present data replicated the model of Shipstead, Redick, Hicks, and Engle (2012). As can 

be seen in Figure 8 (relative to Figure 4), the same basic pattern was present. Both 

WMspan and WMva predicted Gf. The path from WMspan to Gf was stronger than the 

path from WMva to Gf. Finally, the two WM factors were strongly correlated. The model 

fit was good (Table 8). 

Memory and Attention as Explanations of the Relationship between WMspan and 

WMva  

 Although working memory span and visual arrays tasks load on separate factors, 

these factors are correlated (Figures 7 & 8) and each predicts Gf (Figure 8). Thus, the 

next step in this analysis was to understand which memory and attention components best 

describe each working memory factor and, by extension, explain the correlation between 

WMspan and WMva. 

 Both models in Figure 9 are conceptual expansions of Figure 8, and each fit the 

data well (Table 9). Note that the three rightmost factors (WMspan, WMva, and Gf) 
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replicate the basic structure of Figure 8. The leftmost factors, on the other hand, clarify 

the cognitive mechanisms that are present within WMspan and WMva.  

 Examining Figure 9a (PMsmATTNpredictWM), the significant paths from both 

PM and SM to WMspan in indicate that span task performance is most directly explained 

by both primary and secondary memory (e.g., Unsworth & Engle, 2007c). The significant 
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Figure 9. Structural equation models in which primary memory (PM), secondary 
memory (SM) and either attention control (ATTN), or executive attention (ExATTN) 
predict working memory span (WMspan) or working memory visual arrays (WMva). 
OSpan = Operation Span; SymSpan = Symmetry Span; RunLett = Running Letter 
Span; RunDig = Running Digits; VA = Visual Arrays; NumSer = Number series; 
PM_Word = Primary memory, free recall, words; PM_Numb = Primary memory, free 
recall, numbers; SSblue = Split span, blue squares; CPA = Continuous paired 
associates; SM_Word = Secondary memory, free recall, words; SM_Numb = 
Secondary memory, free recall, numbers; SSred = Split span red squares; AntiSacc = 
antisaccade; Dashed lines are not significant at the .05 level. 
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Table 9
The Relationship between WMspan and WMva

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
PMsmATTNpredictWM 202.99 138 1.47 .05 .05 .98 .98 306.99
ExATTNpmSMpredictWM 204.51 148 1.38 .04 .06 .98 .98 288.51
note . PMsmATTNpredictWM = Primary memory, secondary memory and attention control predict working 
memory; ExATTNpmSMpredictWM = Executive attention, primary memory and secondary memory predict 
working memory.

path from ATTN to WMva, on the other hand, indicates that visual arrays performance is 

strongly related to attention control (e.g., Fukuda & Vogel, 2011). However, while each 

of the leftmost factors had one significant path to either WMspan or WMva, none was 

directly related to both working memory factors. Thus, neither PM, SM, nor ATTN 

provide a direct account of the correlation between WMspan and WMva. Rather, it is the 

relationship of PM and SM to ATTN (and vice versa) that accounts for the correlation 

between WMspan and WMva. In other words, these working memory factors are united 

by the executive processes that are apparent across attention and memory tasks. 

 The executive attention factor (ExATTN), which represents these common 

processes was therefore included in Figure 9b (ExATTNpmSMpredictWM). In contrast 

to the first model, significant paths extend from ExATTN to both WMspan and WMva. 

This not only indicates that executive attention is a strong predictor of both WMspan and 

WMva, but it also explains a sizeable portion of the correlation between these two types 

of working memory task.   

 It is also noteworthy that in Figure 9b both PM and SM retained significant 

relationships to WMspan. That is, even after attention has been removed from primary 

and secondary memory, these variables continue to be related to working memory span 

tasks. This explains why the path from WMspan to Gf is consistently stronger than the 

path from WMva to Gf: Complex- and running span tasks reflect important aspects of 
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memory, above-and-beyond executive attention, while visual arrays tasks do not (at least 

not to the same degree). 

Correlated Disturbance Terms 

 Both models in Figure 9 include disturbance terms for WMspan and WMva (i.e., 

numbers in boxes next to the factors). Disturbance terms represent the portion of a factor 

that is not explained by the current model. Correlations between disturbance terms further 

represent between-factor correlations that are not explained by the current model.  

 In essence, if mechanisms other than primary memory, secondary memory and 

attention were needed to explain the relationship between WMspan and WMva, the 

disturbance terms between these two factors would have been correlated. This was not 

the case. Of note, the disturbance term for WMspan was not significant in either model. 

Stated simply, primary memory, secondary memory and executive attention provide a 

complete account of working memory capacity as it is measured by complex- and 

running span tasks. 

Summary 

 Different types of working memory task can reveal different mechanisms of 

working memory. Tasks such as the complex- and running memory span are more 

strongly associated with the memorial aspects of working memory than the attention 

aspects (e.g., Colom et al., 2008; Cowan et al., 2005; Unsworth & Engle, 2007a; 2007b; 

2007c). Visual arrays performance, on the other hand, is strongly related to attention 

control. However, in keeping with the traditional definition of working memory as a 

system in which memory and attention interact to produce complex cognition (cf. Miyake 
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& Shah, 1999) these tasks were mutually explained by ExATTN, a factor that represented 

attention as it operates within memory (and vice versa). 

 The finding that working memory span tasks are explained by primary and 

secondary memory fits within the perspective of Unsworth and Engle (2007a; 2007b; 

2007c). These researchers argue that working memory is the product of stable 

maintenance in primary memory and effective recall from secondary memory. In 

particular, they contend that attention control stems from stable maintenance of goals in 

primary memory. This view is not contradicted by the present results. Interestingly, the 

work of Unsworth and Engle (2007a; 2007b; 2007c) was conducted using complex span 

tasks as measures of working memory capacity. Thus, their view of working memory 

may be guided by the type of task that was employed.  

 The finding that visual arrays is strongly associated with controlled attention 

supports the work of Fukuda and Vogel (2009; 2011) who have used visual arrays tasks 

to predict individual differences in the ability to recover from attention capture. This 

topic will be further explored in the General Discussion. 

 Finally, it is noteworthy that SM emerged as a common predictor of WMspan and 

WMva in the second model (i.e., Figure 9b). This finding is supported by previous 

research that argued for the presence of retrieval in visual arrays tasks (Hartshorne, 2008; 

Makovski & Jiang, 2008; Shipstead & Engle, 2012). Although it is curious that this path 

was not significant in Figure 9a, it may indicate that secondary memory retrieval in visual 

arrays is primarily guided by attention control (which acted as a mediator in that model). 
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Analysis 2: The Variance that is Common to Working Memory Tasks 

 The second analysis examined the relationship between working memory capacity 

and fluid intelligence. The first step in this analysis was to integrate the rapid running 

digits task into the present framework of working memory (i.e., Figure 7). To preview the 

results, although running digits was found to be more strongly related to WMspan than to 

WMva, it nonetheless maintained a significant relationship to both factors. Thus, in the 

interest of exploring working memory capacity from a general perspective, a common 

Table 10
Confirmatory Factor Analysis with Running Digits

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
RunDigToBoth 17.15 16 1.07 .02 .03 1.00 1.00 57.15
CommonWMfactor 13.49 11 1.23 .03 .03 .99 1.00 63.49
note. RunDigToBoth = Running digits loads on both working memory  factors; CommonWMfactor = Common 
and residual working memory factors formed.
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= Running Digits; VA = Visual Arrays; Dashed lines are not significant at the .05 level. 
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working memory factor was extracted. A subsequent structural equation model 

demonstrated that it is this common variance that relates working memory capacity to 

fluid intelligence. Finally, the correlation between working memory and fluid intelligence 

was decomposed into primary memory, secondary memory, and executive attention, all 

of which explained a significant portion of the relationship. 

Confirmatory Analysis of a Common Working Memory Model 

 The first step in understanding the relationship between working memory and 

fluid intelligence involved extracting a common working memory factor. This process 

also allowed for validation of the rapid running digits task's place among working 

memory measures. In the initial model (Figure 10a), RunDigit was allowed to 

simultaneously load on both WM factors. In order to control for task-specific demands, a 

correlated error was allowed between RunLett and RunDigit. The resulting model fit the 

data well (RunDigitToBoth; Table 10).  

 As can be seen in Figure 10a, RunDigit loaded on both WMspan and WMva. This 

contrasts with the slower RunLett task, which singly loads on WMspan5. This provides 

empirical evidence that speeding the running memory task changes its psychometric 

properties (Bunting et al., 2006). 

                                                 

 
 
5 In the present model, cross loading allowing RunLett results in a non-significant path to WMva (path 
loading = .05). This replicates Shipstead et al. (in press) who also report a non-significant loading of slower 
running letters on a visual arrays factor (path loading in that study = .08). 
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 Although RunDigit had a lower loading on WMva than on WMspan, both paths 

were significant. This observation is consistent with the working memory EFA (Table 6) 

in which RunDigit loaded on both working memory factors. An attempt to remove the 

path from RunDigit to WMva (model not included) resulted in a significant inflation of χ2 

(Δχ2 = 11.98; p < .001). This suggests the presence of a common working memory factor, 

which may be obscured by the task-specific differences between working memory span 

and visual arrays tasks. In the final model (Figure 10b), RunDigit was singly loaded on 

the common factor (CommWM), while all other tasks cross loaded on CommWM and 

their respective task-specific factors.  

Figure 11. Structural equation model in which working memory span (WMspan) and 
visual arrays tasks (WMva) as well as common variance (CommWM) predict fluid 
intelligence (Gf). OSpan = Operation Span; SymSpan = Symmetry Span; RunLett = 
Running Letter Span; RunDig = Running Digits; VA = Visual Arrays; NumSer = 
Number series; Dashed lines are not significant at the .05 level. 
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Table 11
Three Factor Working Memory Model Predicts Fluid Intelligence

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
WMpredictsGf 42.58 46 .93 .00 .04 1.00 1.00 82.58
note .  WMpredictsGf = Working memory predicts general fluid intelligence.
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 Although the fit for this three-factor model was slightly reduced relative to 

RunDigitToBoth, it was nonetheless good (CommonWMfactor; Table 10). Importantly, 

the CommWM factor allows for examination of working memory as it exists across 

several varieties of working memory task. This model was therefore retained for further 

analyses. 

The Relationship of Common and Residual Working Memory to Fluid Intelligence 

 Figure 11 presents a structural equation model designed to test which of these 

three working memory factors (common and two residual) predict fluid intelligence. As 

can be seen, CommWM and Gf are strongly related, sharing approximately 76% of their 

variance (obtained by squaring the path). WMspan and WMva, on the other hand, did not 

predict Gf above-and-beyond their shared variance. Fit statistics were excellent (Table 

11). 

 It should be noted that the factor labeled "CommWM" in Figure 11 is quite 

similar to a factor that Kane et al. (2004) termed "Executive Attention". This name 

change is not intended to represent an assumption that this factor is fundamentally 

changed. Similar to Kane et al. (2004), I assume that CommWM represents modality-

independent, executive working memory processes (e.g., the central executive; Baddeley, 

1986). The change in name is simply intended to distinguish CommWM from the present 

ExATTN factor, which was designed to approximate executive attention as it is 

conceived by Kane et al. (2004). That is, ExATTN is intended to reflect the "synergy" of 

attention and memory processes. The next analysis allowed for a test of whether this 

perspective of executive processes is interchangeable with CommWM.  
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Memory and Attention Explaining the Relationship between Working Memory and 

Fluid Intelligence 

 With this relationship in mind, the next step involved explaining the correlation 

between CommWM and Gf in terms of PM, SM, and ExATTN. The rightmost factors in 

Figure 12. Structural equation model with primary memory (PM), secondary 
memory (SM) and executive attention (ExATTN) predicting the relationship 
between variance that is common to all working memory tasks (CommWM) and 
fluid intelligence (Gf). OSpan = Operation Span; SymSpan = Symmetry Span; 
RunLett = Running Letter Span; RunDig = Running Digits; VA = Visual Arrays; 
NumSer = Number series; PM_Word = Primary memory, free recall, words; 
PM_Numb = Primary memory, free recall, numbers; SSblue = Split span, blue 
squares; CPA = Continuous paired associates; SM_Word = Secondary memory, 
free recall, words; SM_Numb = Secondary memory, free recall, numbers; SSred = 
Split span red squares; AntiSacc = antisaccade; Dashed lines are not significant at 
the .05 level. 
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Table 12

χ2 df χ2/df RMSEA SRMR NNFI CFI AIC
ExATTNpmSMpredict 243.59 172 1.42 .04 .07 .98 .98 319.59
note . ExATTNpmSMpredict = Executive attention, primary memory and secondary memory predict working 
memory and general fluid intelli

Explaining the Relationship between Common Working Memory Variance and Fluid Intelligence
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Figure 12, represent the same factors included in Figure 11. However, Gf is now 

displayed below the working memory factors. Additionally, residual WMspan and WMva 

are included in Figure 12 in order to account for task-specific variance6. No paths extend 

to these factors, as they are not related to Gf (i.e., Figure 11), and thus there is no 

relationship to explain. As with the first analysis, any significant paths from either PM, 

SM or ExATTN to both CommWM and Gf is interpreted as explaining a portion of the 

correlation between CommWM and Gf.  

 As can be seen in Figure 12, ExATTN was strongly related to CommWM, and 

thus these factors are extremely similar. Moreover, ExATTN was also strongly related to 

Gf, indicating that executive attention (as it is presently operationalized) explains a large 

portion of the relationship between working memory and fluid intelligence.  

 However, executive attention does not fully explain this relationship. Both PM 

and SM had significant relationships to CommWM and Gf. Thus, above-and-beyond 

executive attention, primary and secondary memory are both critical to explaining 

working memory capacity, as well as its relationship to fluid intelligence. The fit for this 

model was good (Table 12).  

Correlated Disturbance Terms 

 Similar to the first analysis, the models in Figure 12 included correlations 

between the disturbance terms for CommWM and Gf. In neither model was this 

                                                 

 
 
6 It can be argued that the inclusion of these variables introduces unnecessary complexity to the models. 
The SEMs in Figure 9 were therefore run two additional times using simplified versions of the model: One 
in which WMspan and WMva were simply excluded and one in which the need for residual factors was 
obviated by the exclusion of RunLett, VA2 and VA3. Neither case resulted in substantial changes to the 
paths from the predictors to CommWM and Gf. 
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relationship significant, thus indicating that the relationship between working memory 

capacity and fluid intelligence is fully explained by primary memory, secondary memory 

and executive attention. Similar to the first analysis, this is due to a non-significant 

disturbance term for CommWM, which indicates that the predictor variables provide a 

complete account of individual difference in working memory capacity.  

Summary 

 Analysis 2 found that a common working memory factor can be extracted from 

complex span, running span and visual arrays. Prior to extracting this factor, it was 

revealed that the fast running digit span related to both WMspan and WMva. This is 

consistent with the argument of Cowan and collaborators (Bunting et al., 2006; Cowan et 

al., 2005) that the rapid presentation of running digits items prevents test-takers from 

engaging task-specific strategies, and thus allows for a purified measure of the processes 

responsible for working memory capacity. In turn this would make running span a more 

general working memory task.  

 However, while Cowan et al. (2005; Bunting et al., 2006) contend that this 

purified measure represents primary memory (or more specifically, the focus of 

attention), the present analyses indicate that working memory capacity and its 

relationship to fluid intelligence is multiply determined. As represented in Figure 12, 

ExATTN, PM, and SM uniquely contribute to CommWM and to explaining its 

relationship to Gf.  

 Finally, the present analyses indicate that it is the interaction of attention control 

and memory (i.e., executive attention) that is chiefly responsible for producing working 

memory capacity and relating it to fluid intelligence. However, both primary- and 

secondary memory make contributions above-and-beyond this interaction. This indicates 
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that the "executive" processes of working memory are not strictly reflective of attention 

control but also represent memory that functions independently of attention control (at 

least as it is reflected by the present tasks). 



 

CHAPTER 4 

General Discussion 

 The first analysis indicated that the processes that define working memory are 

dependent upon the type of task that is used to measure working memory. Span tasks 

(complex span and slower running letter span) are more strongly associated with the 

primary and secondary memory aspects of working memory capacity (e.g., Unworth & 

Engle, 2007a; 2007b; 2007c). Visual arrays tasks, on the other hand are more strongly 

associated with the attention control aspects of working memory capacity (e.g., Fukuda & 

Vogel, 2008; 2011). However, while these different types of working memory tasks are 

associated with different mechanisms, they are united by executive attention. This factor 

may be interpreted as attention-related guidance of memory search (e.g. Craik, Govoni, 

Naveh-Benjamin, & Anderson, 1996; Healy & Miyake, 2009; Kane & Engle, 2000), or 

memory-related maintenance of attention-relevant goals (e.g., Kane & Engle, 2003; 

Lavie, Hirst, de Fockert, & Viding, 2004), or perhaps both. 

 The second analysis examined the relationship of working memory capacity to 

fluid intelligence and found that a factor that is common to span and visual arrays tasks is 

closely related to fluid intelligence. Separate task-specific factors, however, do not. This 

is consistent with the findings of Cowan et al. (2005) who reported a one-factor solution 

when relating a variety of working memory tasks to several measures of achievement. 

However, while Cowan et al. (2005) interpreted this factor as the focus of attention, the 

present analyses indicate that the relationship of common working memory variance to 

fluid intelligence is explained via common relationships to at least three factors: (1) A 

primary memory factor that represented the amount of information to which a person 
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could maintain access, (2) a secondary memory factor that represented retrieval of 

information to which access could not be maintained and (3) an executive attention 

factor, that represented attention as it operates in memory tasks. 

 At a glance, it is curious that this common working memory factor reflects 

primary memory, secondary memory and executive attention: Analysis 1 determined that 

the individual working memory factors are not directly represented by all three of these 

components. However, it is important to reiterate that Analysis 1 did not find that span 

tasks are independent of simple attention control. Nor did it find that visual arrays tasks 

are independent of primary and secondary memory. Rather, it found span tasks related to 

attention through memory and visual arrays tasks related to memory through attention 

(Figure 6c). Thus it is not completely surprising that, once task-specific variance was 

stripped away, working memory was related to both the memory and executive attention 

variables. 

What Does Visual Arrays Performance Represent? 

 The present analyses indicate that performance on visual arrays tasks is strongly 

related to a person's attention control. Although such proposals have been made (Cusack, 

Lehman, Veldsman, & Mitchell, 2009; Fukuda and Vogel, 2009; 2011), they are at odds 

with the traditional view that visual arrays performance purely represents limited-

capacity storage. Thus, the specific relationship between visual arrays and attention was 

further examined. 

Visual Arrays, Attention, and Fluid Intelligence 

 A follow-up analysis was performed in which models were created based upon an 

analysis performed by Unsworth, Spillers, and Brewer (2009). In their study two complex 
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Model A: Complex Span 

span tasks were cross-loaded on a working memory factor as well as a factor composed 

of three attention tasks. The relationship between these factors was constrained to zero, 

thus forcing all attention control-related variance to the attention factor. This study 

(Unsworth, Spillers, and Brewer, 2009) found that both executive attention and working 

memory independently predicted fluid intelligence. I replicated this model using the 

present data (Figure 13; Model A: Complex Span) and the fit was good (Table 13). 
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Figure 13. Structural equation models with executive attention (ExATTN) and complex 
span (WMspan) tasks predicting fluid intelligence (Gf), or (Model B) executive 
attention and visual arrays (WMva) predicting fluid intelligence. OSpan = Operation 
Span; SymSpan = Symmetry Span; VA = Visual Arrays; NumSer = Number series; 
Dashed lines are not significant at the .05 level. 

Table 13

χ2 df χ2 /df RM SEA SRM R N N FI C FI AIC
M odel A: C omplex Span 20.87 16 1.30 .04 .04 .99 .99 60.87
M odel B: Visual Arrays 22.65 28 .81 .00 .03 1.01 1.00 76.65

W ork ing M em ory, E x ecutiv e A ttention and F luid Intelligence
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Complex span tasks predict fluid intelligence, even after all variance associated with 

attention control was removed. 

 Extending this analysis, working memory was redefined as performance in the 

four visual arrays tasks (Figure 13; Model B: Visual Arrays). As with the previous 

analysis, visual arrays was cross loaded on the attention factor, thus forcing attention-

related variance from visual arrays. The model fit was good (Table 13).  

 The visual arrays factor that was formed separately from attention control did not 

predict fluid intelligence. Instead, the entire relationship between visual arrays and fluid 

intelligence was explained by executive attention. Moreover, as indicated by the non-

significant loading of VA3 on WMva and the non-significant correlated error between 

VA1 and VA4, the removal of attention control seems to have compromised the integrity 

of the visual arrays factor. 

 This finding contrasts with the view of visual arrays as a measure of passive 

working memory storage (Cowan et al., 2005; Chuderski et al., 2012; Luck & Vogel, 

1997). Rather, the present data support recent evidence that visual arrays performance is 

associated with the ability to control attention. Specifically, Fukuda and Vogel (2009, 

2011) found that individual differences in visual arrays performance predict people's 

ability to recover from attention capture. In the present models, antisaccade was the task 

that most strongly loaded on ATTN, and was thus the task that most strongly defined 

attention control. Critically, proper performance of this task requires that attention first be 

captured by a peripheral flash. It is a person's ability to transform this information into 

the appropriate behavior (e.g., the flash is on the right, look left) that drives performance. 

Unlike the flanker and Stoop task, efficient early selection (e.g., inhibiting the flanking 
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arrows or activation of the word's semantic representation) would not plausibly improve 

antisaccade performance. Therefore, the present attention control factor, which is largely 

defined by the antisaccade task, is particularly well suited to the view of Fukuda and 

Vogel (2009, 2011), and thus extends their findings. 

Visual Arrays, Attention, and Memory 

 The present results constrain studies that detected proactive interference in visual 

arrays performance (Hartshorne, 2009; Makovski & Jiang, 2008; Shipstead & Engle, 

2012). Evidence of proactive interference has thus far been interpreted as evidence of 

secondary memory retrieval in visual arrays. However, the present data strongly imply 

that, to the degree that these studies have detected memory retrieval, it should be 

interpreted as memory retrieval that is guided by attention (e.g., Craik et al., 1996; Healy, 

& Miyake, 2009; Kane & Engle, 2000)    

 Examination of Figure 9a reveals that ATTN is strongly related to PM and SM. 

From a causal perspective, it might be asserted that attention control contributes to 

immediate awareness by selecting and maintaining information in primary memory and 

guiding retrieval from secondary memory. Thus, visual arrays performance may reflect a 

similar process: Test-takers use selective attention to maintain access to as many items as 

possible (during the ISI), but also use attention to guide recovery of information to which 

access could not be maintained. Manipulations that increase the difficulties of such 

retrievals (e.g., Hartshorne, 2009; Makovski & Jiang, 2008; Shipstead & Engle, 2012) do 

not influence the difficulty of secondary memory retrieval processes, per se, but influence 

the challenge that certain contexts pose to attention-guided retrieval. 
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Visual Arrays, Attention, and Whole Report 

 Another attention-related account of visual arrays performance to which the 

present analyses can speak is that of Cusack, Lehman, Veldsman, and Mitchell (2009). 

These researchers report that visual arrays tasks that require test-takers to recognize 

changes to specific items (i.e., partial report) predict fluid intelligence, while tasks that 

require memory for all items (i.e., whole report) tasks do not. These researchers 

hypothesize that this trend reflects test-takers ability to use attention control to constrain 

their memory of an array to only a few items. When partial report is used, people with 

strong attention control (or those who engage appropriate strategies) tend to create stable 

memories for a few items. People with weak attention control create ephemeral memories 

for several items. Whole report, on the other hand, requires attending to all information 

and thus eliminates these differences. 

 The present study is inconsistent with this hypothesis in two ways. First, although 

VA1 and VA4 used partial report and VA2 and VA3 used whole report, all tasks 

generally had equivalent correlations to the fluid intelligence and attention tasks (Table 

2). Second, the factor they formed (i.e., the common variance) was predictive of ATTN, 

ExATTN and Gf. Thus, visual arrays reflects attention and fluid intelligence, regardless 

of report-type. 

 A major difference between the present tasks and those of Cusack et al. (2009) is 

that the present whole report tasks were change-detection based, while Cusack et al. 

(2009) required participants to report letters that had been displayed in the array. That is, 

the present study required information to be bound to a specific position (cf. Wheeler & 

Treisman, 2002), and relied on detection of change, rather than explicit recall. These 
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aspects likely account for the differences in between-study findings. Nonetheless, the 

current results found a strong relationship between whole-report and attention control. 

This indicates that attention control does not function in visual arrays by limiting the 

number of items that are encoded into memory.  

The Generality of Visual Arrays 

 Setting aside the present attention control perspective of visual arrays, this task is 

often assumed to reflect storage in working memory. However, the generality of that 

storage system is subject to debate. By Cowan's (1988; 1999; 2001) model, the focus of 

attention is domain-general and is therefore similarly occupied by both verbal and visuo-

spatial information. However, Luck and Vogel (1997; also Vogel, Woodman, & Luck, 

2001) argue that visual arrays performance specifically reflects a form of visuo-spatial 

working memory that is functionally independent of verbal working memory. Luck and 

Vogel (1997) tested this assumption by requiring participants to remember two digits 

during certain trials. In short, if visual arrays performance reflects a domain-general 

mechanism, then requiring test-takers to actively remember a 2-digit number should 

decrease the number of visual objects that can be stored in working memory during the 

ISI. It did not. Working memory capacity for visuo-spatial information was stable, thus 

favoring the dual-storage perspective.   

 Morey and Cowan (2004; 2005) challenged this interpretation under the 

assumption that people rely on code-specific storage (e.g., the articulartory loop; cf. 

Baddeley, Thomson & Buchanan, 1974) when to-be-maintained lists are short. It is only 

when longer lists must be maintained (about 6 list items) that domain-general resources 

are depleted (Baddeley & Hitch, 1974). Morey and Cowan (2004) subsequently 
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replicated Luck and Vogel (1997) by again showing that a 2-digit load did not affect 

visual arrays accuracy. However, when the load was composed of 7 random digits, visual 

arrays accuracy did decrease. It was concluded that visual arrays performance reflects 

domain-general attention capacity, rather than modality-specific storage.  

 Shipstead, Redick, Hicks and Engle (2012) also argued in favor of the domain 

generality of visual arrays on the basis of the correlation between visual arrays 

performance and fluid intelligence.  Specifically, these researchers defined fluid 

intelligence via four tasks: Two with a visuo-spatial bias and two with a verbal bias. The 

correlation between visual arrays and fluid intelligence was strong (in the range of .6-.7). 

Next, Shipstead, Redick, Hicks, and Engle (2012) employed a method developed by 

Kane et al. (2004) in which fluid intelligence was redefined as either two visual or two 

verbal tasks. It was found that, relative to the balanced fluid intelligence factor, the direct 

relationship between k and fluid intelligence was slightly stronger for the visual factor 

and slightly weaker for the verbal factor. Though this trend might, in isolation, signal a 

visuo-spatial bias, the majority of the relationship between visual arrays and fluid 

intelligence was mediated by a memory factor that was composed of both verbal and 

visuo-spatial memory tasks. This latter relationship was largely unaffected by the changes 

to the composition of the fluid intelligence factor. Thus, while the visual arrays task may 

contain a visuo-spatial storage component (Saults & Cowan, 2007), its relationship to 

higher cognition seems to be primarily domain-general. 

 The present data provide further support for this domain-general perspective, at 

least as the task relates to fluid intelligence. Specifically, Figure 11 indicates that only 

CommWM predicts Gf. This factor is composed of a variety of tasks, with a variety of 
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demands, not the least of which was memory for verbal information in some tasks 

(OSpan, RunLett; RunDigit) and visuo-spatial information in others (VA1-4; SymSpan). 

Thus it is variance that is common to both domains that predicts the relationship between 

visual arrays and fluid intelligence. 

 However, the lack of a direct relationship between WMva, and PM and SM may 

reflect the fact that these memory factors are verbal in nature, while visual arrays is 

visuo-spatial. This reveals a limitation of the present data that must be resolved. Further 

research is required to determine whether visual arrays truly reflects only attention 

control or whether visuo-spatial primary and secondary memory tasks would also 

contribute to its prediction. 

 This concern is mitigated by the relationship of WMva to ExATTN, which 

contained variance that was extracted from the verbal memory tasks. Nonetheless, this 

limitation would have been eliminated by the inclusion of the split span tasks in the 

primary and secondary memory factor. However, these tasks had strong relationships to 

attention, rather than memory, and were thus removed from the analysis. 

Primary Memory 

 In the present study, primary memory was largely defined via the maintenance 

component of free recall (Tulving & Colotla, 1970). Examination of Table 2 indicates 

that, on average this represented memory for less than two words and less than one three-

digit number. Nonetheless, primary memory seems to reflect more than passive retention 

of a limited amount of information.  

 In particular, CPA loaded as strongly on PM as it did on SM. In this task 

participants first studied digit-letter pair (e.g., 35 - X) and were then tested (e.g., 35 - ?), 
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following 0-5 interruptions. Despite the fact that lags of 0 and 1 were not included in the 

CPA variable (which should bias the variable toward secondary memory; Rowe & Smith, 

1973; Unsworth, Brewer, & Spillers, 2011), CPA loaded as strongly on PM as it did on 

SM. This strongly suggests that primary memory is not simply storage of recently 

encountered information, but includes executive processes that actively retain 

associations between the present context and highly-relevant information (e.g., Oberauer 

et al., 2007), even when interference is high. 

 It is unlikely that attention control alone can account for the apparent executive 

aspects of primary memory. In particular, the loading of CPA on PM remained intact 

when the memory tasks were cross loaded on ExATTN (e.g., Figure 9). That said, 

attention control did account for a reasonable portion of the relationship between PM and 

working memory. In Analysis 1, the regression path between PM and WMspan was .88 

before variance associated with attention control was removed (Figure 9a). When the 

memory tasks were cross loaded on ExATTN, the path from PM to WMspan dropped by 

.25 (Figure 9b).   

 Thus, executive attention is an important component of working memory-related 

memory (Kane, Conway, Hambrick, & Engle, 2007). However, it does not fully account 

for working memory capacity. Rather, there are likely a number of critical processes that 

require further elucidation (cf. Miyake et al., 2000; Oberauer et al., 2003; Unsworth, 

Miller et al., 2009). That said, in the absence of direct observation, the presence of other 

executive processes (e.g., updating, intentional forgetting) in the current data remains 

speculative. It cannot, therefore, be ruled out that primary memory is also determined by 
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a more traditional (and more passive) storage mechanism, similar to those proposed by 

Cowan (2001) or Luck and Vogel (1997).    

Elimination of Task-Specific Variance and the Relationship of Working Memory 

Capacity to Fluid Intelligence 

 The relationship between working memory capacity and fluid intelligence was 

defined strictly via CommWM (i.e., Figure 11). A related observation is noteworthy. 

Specifically, Oberauer, Schulze, Wilhelm and Süß (2005) argue that when working 

memory is defined through tasks that share similar demands (e.g., all complex span), the 

correlation between working memory capacity and fluid intelligence will be 

underestimated. This is because task-specific variance will obscure the true relationship. 

On the other hand, a diverse set of working memory tasks will eliminate task-specific 

variance and allow for an accurate estimate of the relationship. 

 Oberauer et al. (2005) estimate that working memory capacity and fluid 

intelligence share at least 70% of their variance. More conservative estimates place this 

relationship closer to 50% (Kane, Hambrick, & Conway, 2005) or even less (Ackerman, 

Beier,  & Boyle, 2005). The present data set included three types of working memory 

task with a wide variety of demands and, as previously noted, CommWM and Gf shared 

76% of their variance. Thus the present results support the estimate of Oberauer et al. 

(2005) in which working memory and fluid intelligence, while not isomorphic, share the 

majority of their variance.  

Diversity of Sample 

 While the strong relationship between working memory and fluid intelligence was 

likely produced by the variety of working memory tasks that were presently employed, it 
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may also reflect the diversity of participants that were run. While many studies rely on 

students from a single university, the present sample not only included students from 

several schools, but also a large number of community participants (40%). Thus the range 

of participants' cognitive abilities was likely more diverse than the average study of this 

kind. 

 It is therefore noteworthy that in Figure 9 the relationship between primary 

memory and WMspan was very strong. This has not been the case in other studies 

involving the latent relationships between primary memory and complex span 

performance. For instance, a recent study by Unsworth, Spillers, and Brewer (2010) 

reported that the relationship was .34 (see also Unsworth & Engle, 2007b). One 

difference between the present study and that of Unsworth, Spillers and Brewer (2010) 

was the way that primary memory was measured. The latter study used only free recall of 

words, while the present study used free recall of words, free recall of three-digit 

numbers, a rapid digits span and continuous paired associates. Thus the present 

measurement of primary memory was highly diverse. 

 This diversity of tasks may account for a portion of the difference between these 

studies, however, it should also be noted that Unsworth, Spillers, and Brewer (2010) 

drew their participants from a fairly selective school (i.e., University of Georgia; cf. 

Redick et al., in press). Thus the relatively small relationship these researchers found 

between primary memory and working memory may also be attributable to a relatively 

restricted range. 

 This observation introduces another factor that may affect the detectability of 

specific mechanisms in working memory: Sample diversity. For instance, primary 
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memory, which ostensibly ranges between 3-5 items, is a rather coarse measure of 

working memory capacity. That is, there is not a tremendous range of scores that 

participants may obtain. This restriction is likely exacerbated when participants are of 

similar cognitive ability.  

 Retrieval from secondary memory, on the other hand, is not as restricted and thus 

may provide a finer grained analysis of working memory capacity when participants are 

similar in their cognitive abilities. That is, if secondary memory is not subject to the same 

capacity limits as is primary memory, test-takers can likely vary to a greater extent on 

measures of this ability. While these statements require further research, the critical point 

is that before making definitive statements regarding the mechanisms that drive 

individual differences in working memory capacity, researchers should not only consider 

the tasks that were used to measure working memory capacity, but also the diversity of 

participants who contributed to the data. 

 



 

CHAPTER 5 

CONCLUSIONS 

 Individual differences in working memory capacity can be largely construed as 

individual differences in three sub-factors that roughly correspond to different 

components of Cowan's (1988; 1999; 2001) embedded process model: Primary memory, 

secondary memory and executive attention. However, while these processes are 

important to explaining working memory and its relationship to fluid intelligence, span-

based tasks were found to be more strongly related to memory, and visual arrays tasks 

reflected attention control. Thus, it is important to note that working memory is not only 

multiply determined, but the mechanisms of working memory are differently reflected in 

different types of working memory task. 

 

73 



 

APPENDIX A 

THE SPLIT SPAN TASK 

 

Response 

1-3 times 

5 times 

5 times 

The split span task begins with 5 squares in a 4 X 4 grid being highlighted one at a 
time (1,000 ms each). Next, the participant must decide if a rotated letter is facing in 
the appropriate direction or is mirror-reversed. After 1 to 3 of these decisions are 
made, the participant sees 5 more squares on a 6 X 6 grid (250 ms each). Finally, the 
participant is signaled to remember the locations of either the red or the blue squares. 

74 



 

 

APPENDIX B 

THE ANTISACCADE TASK 

 

1,000 - 2,000 ms 

## 

Q 

* 

+ 
300 ms 

100 ms 

The antisaccade task begins with a central fixation that is displayed for either 1,000 or 
2,000 ms. Next a star flashes on either the right or left hand side of the screen. The test 
taker must look to the opposite side of the screen where either and “O” or “Q” is 
displayed, and then rapidly masked. 
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