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Abstract

This paper describes a probabilistic design
approach which has been formulated from an
affordability viewpoint for the assessment of rotorcraft
systems.  This method places emphasis on the
ability to rapidly examine the design space, identify
constraint violations and provides insight as to how
the feasible design space could be enlarged through
the infusion of new technologies.  The paper also
provides a rationale as to why a probabilistic design
approach is needed to properly examine and facilitate
these assessments.  The steps required to assess and
provide for a technically feasible and viable design
space are also outlined.  Furthermore, thoughts as to
how this technique could be used to investigate and
account for tool fidelity modeling, technology
readiness impact and benefit/risk/cost tradeoffs are
also presented.  Descriptions of candidate statistical
and probabilistic techniques such as the Response
Surface Method, Robust Design Simulation and Fast
Probability Integration are provided as needed.
Finally, the steps needed for the implementation of
this methodology are presented for the design of a
notional Civil Tiltrotor Transport.

Definitions

Since many of the topics discussed in this paper
represent concepts with which the reader may not be
familiar, a few key definitions are offered for clarity:
Ambiguity: The un-described and vague

(linguistically) portion of a design [1].
Ambiguity occupies the space complement to
knowledge.

Decision Maker: Someone (a professional), or a team
of professionals, who has authority to allocate
resources and has responsibility for the output
decision.

Decision Making: An intelligent activity aimed at
allocating resources in order to develop a system

to meet the customerÕs expectations and
requirements.  

Fast Probability Integration (FPI) [ 2, 3, 4]: A
family of probabilistic analysis techniques
characterized by better efficiency and transparency
rather than Òbrute forceÓ probabilistic techniques
such as the Monte Carlo (MC) Simulation.

Feasible Alternative: A design alternative which
satisfies all imposed constraints (i.e. it is
physically realizable).  

Metamodel: An approximation of a complex analysis
model.  Typical metamodels include regression
models of complex computer programs based on
experimental designs (e.g., the Response Surface
Method), artificial neural networks, fuzzy sets, or
other metamodel building methods [ 5, 6].

Metric: A Figure of Merit that characterizes a
discipline or function or their related
technologies (e.g., L/D for aerodynamics or SFC
for propulsion).

Probabilistic Analysis: Analysis which allows for the
examination of systems with imprecise or
incomplete information (i.e., uncertainty and
ambiguity).  In other words, a means of forming
relationships between input and output variables,
including the variability of the inputs.

Risk: Risk can be defined as the probability or chance
of achieving an unfavorable outcome.

Robust Design: A design which is least sensitive to
influence of uncontrollable factors.  A solution
that optimizes affordability while reducing
associated variability.

Stochastic Process: Uncertain history of response
over the range of time values.

Uncertainty: An estimate of the difference between
models and reality.  Uncertainty is manifested
when quantities associated with the product can
not be determined exactly, and is a term
describing the imprecision in establishing the
value of a variable.



Viable Alternative: A design alternative which is
feasible and meets or exceeds the customer
objective(s) (i.e., it is physically realizable and
affordable).

Introduction

The concepts of feasibility and viability and the
methodology to assess and enlarge their design
spaces, as presented in this paper, come with the
implicit assumption that the design environment in
which the decision maker is working is probabilistic
or stochastic in nature.  The elements of this
uncertainty, ambiguity and risk are key factors in
formulation of a Òmodern design theoryÓ which also
embraces the paradigm shift present in industry and
government today, to shift emphasis from design for
performance at all costs to design for affordability.
This new paradigm has prompted a re-evaluation of
the design process itself and a corresponding shift in
the way complex systems will be designed in the
future.  Forecasting, with a high probability of
success, the economic viability of the system in the
early design phases appears to be now  the key
driving indicator of success.  Due to the life-cycle
implications to this approach a need exists for a
formulation which accurately designs in a virtual
manner, tests, certifies, manufactures, and operates the
system, while accounting for design ambiguity,
uncertainty and risk.

It is thus evident that these requirements cannot
be handled by a deterministic top-down design
approach.  Instead, a probabilistic approach is needed
where ranges and shapes for all contributing inputs
are chosen either objectively, when the statistics are
known or subjectively, Òfuzzy probabilisticÓ, when
data is unavailable and ranges are determined based
on expert opinion.  Furthermore, through the
realization that uncertainty varies with time, as
knowledge increases about the design, it becomes
evident that a time varying probabilistic problem
needs a stochastic treatment.  An appropriate
comprehensive formulation referred to as the Virtual
Stochastic Life Cycle Design (VSLCD) environment
has been created by the authors and the reader is
referred to References 7,8,9, for a more in depth
treatise of this subject.

Traditional design methodologies and techniques
are limited in several crucial areas:

•   Feasibility is not established upfront but it is
assumed.  The existence and reliance on well
documented and correlated historical databases as
well as the incremental improvement/variation
mindset which dominates the industry makes
feasibility an unimportant part of the design process.

However,  the jump to revolutionary designs or to
new technologies which lack the historical databases
or even appropriate analysis capabilities mandate the
thorough establishment of a feasible design space.  A
feasible space must exist before viability can be
addressed.  

 
•   They are unable to effectively handle the

variability associated with economic uncertainty,
operational uncertainty, tools fidelity, requirements
ambiguity, etc.  The infusion of new technologies, in
particular, requires new analysis capability not
appreciated by other design methods.  In this case, no
available analysis tools linking elementary design
variables to system responses exist.  Thus, this new
approach calls for and provides a means to link
discipline metrics to system responses to enable
opening of the feasible design space, assessment of
the impact on viability, benefit/cost assessment and
risk/readiness assessment of new technologies.

 
•   They are unable to handle the dimensionality

issues presented by multi-objective, multi-constraint
problems associated with rotorcraft design.  This
limitation deals directly with the creation and use of
metamodels at the system level in the probabilistic
design environment.  Multiple constraints/objectives
requiring different sets of design parameters limit the
approximations of complicated analyses under
traditional statistical analysis codes/methods.  This
leads to an enabling technology, in the context of
probabilistic design, called Fast Probability
Integration which allows for efficient analysis with a
significantly larger number of design variables.

The methodology presented in this paper is the
link between an appropriate probabilistic design
formulation and providing a robust affordable product
to the customer.  This paper will provide a detailed
discussion of the methodology to determine and open
feasible and viable design space.  Probabilistic
techniques and enabling technologies such as
Response Surface Methodology (metamodels),
Robust Design Simulation and Fast Probability
Integration will be introduced and briefly explained
where appropriate.  A discussion on benefit/cost
assessment and risk/readiness assessment for new
technologies is also presented.

Probabilistic Design Essentials

In probabilistic design, the outcome sought is
either a cumulative distribution function (CDF) or a
probability density function (PDF) for each design
objective or constraint.  These distributions represent
the outcomes of every possible combination of
synthesized designs so it is a representation of the
feasible design space against which the decision



maker can now compare a desired target value.  Based
on these results, decisions concerning relaxation of
targets, relaxation of constraints or infusion of new
technologies can be made. The generation of these
distributions entails the linking of complex computer
codes with statistical techniques.  Fox[10] lists three
methods that incorporate such complex computer
programs in a probabilistic systems design approach:

1. Link a sophisticated design code directly to a
random number generator such as a Monte Carlo
Simulation to obtain the PDF or CDF of all
desired code outcomes

2. Approximate the sophisticated analysis code
with a metamodel (e.g. Response Surface) and
link it with a Monte Carlo Simulation

3. Link the sophisticated analysis code with an
approximation of the Monte Carlo Simulation

 Method 1 is considered to yield the most
accurate representation of the probabilistic behavior
for a given objective.  Since the Monte Carlo
Simulation requires 5000 - 106 cases (depending on
the dimensionality of the problem and the desired
accuracy at the tails of the distribution) to
approximate the CDF or PDF (for the level of
accuracy needed at the system level) linking it
directly with the analysis code (Method 1) is found to
be both time consuming and computationally
intense.

Method 2 proposes the approximation of the
analysis code with a metamodel such as a Response
Surface leading to significantly reduced execution
time.  Response Surface Methodology (RSM) is a
multivariate regression technique developed to model
the response of a complex system using a simplified
equation.  RSM is based on a design of experiments
methodology.  Typically, the response is modeled
using a second order quadratic which includes cross
product terms.  When this model fails to accurately
predict the behavior of the complex analysis code
other methods such as independent or dependent
variable transformations or artificial neural networks
based metamodeling can be used.  When the number
of design variables is manageable (12-15), as in the
case of single discipline formulations, this process
provides excellent results.  However, as mentioned
previously,  rotorcraft design and for that matter the
design of any complex system is viewed as a multi-
attribute, multi-constraint, multi-objective problem
requiring different sets of design parameters.  Thus
this method is limited in its use for systems level
design.

Method 3 takes a different approach.  It avoids
the simplification of the sophisticated analysis and it
attempts to approximate the Monte Carlo Simulation

results so as to yield results similar in fidelity while
using only a handful of calculations  These
calculations are based on the exact analysis code, not
on approximations (i.e. metamodels).  This approach
is greatly facilitated through the use of a method
referred to as the Fast Probability Integration
technique.  This probability estimation method is
based on the Most Probable Point (MPP) analysis
technique, and it is very efficient in assessing multi-
attribute and multi-constraint problems.  A brief
description of the technique is provided below and
the reader is referred to References 2, 3 and 4. for
more information on the theory and application of
FPI.

FPI [3] may be viewed as a tool box of
probabilistic algorithms developed by researchers at
the Southwest Research Institute (SwRI) for the
NASA Lewis Research Center for use in structural
reliability analysis.  The aforementioned MPP
analysis utilizes a desired response Z(X) (which in
this case is obtained analytically) that is a function of
several random variable distributions (Xi). Each point
in the design space spanned by the XiÕs has a specific
probability of occurrence according to their joint
probability distribution function. Thus, each point in
the design space corresponds to one specific response
value Z(X) which has a given probability of
occurrence.

In problem formulations involving random
variables, it is often desirable to find the probability
of achieving response values below a critical value of
interest z0. This critical value can be used to form a
limit-state function (LSF),

g(X) = Z(X) - z0 (1)

where values of g(X) ≥ 0 are undesirable. The MPP
analysis calculates the cumulative probability of all
points that yield g(X) ≤ 0 for the given z0.

g(u)

FIGURE 1: MOST PROBABLE POINT LOCATION [3]

Since the LSF Òcuts offÓ a section of the joint
probability distribution (Figure 1), a point with
maximal probability of occurrence can be identified
on that LSF.  This point is called the Most Probable



Point. Figure 1 shows the joint probability
distribution in the U-space where the FPI code
actually determines the MPP.  FPI employs a
transformation of the original random vector X to a
standard, uncorrelated normal vector U to take
advantage of the properties of the standard normal
space.  In U-space, the joint probability distribution
function is rotationally symmetric about the origin
and decays exponentially with the square of the
distance from the origin.

MPP

g(x)=0

x1

x2
g(x)<0

g(x)>0

FIGURE 2: VISUALIZATION OF MPP [3]

Figure 2 provides a simple two dimensional
illustration of the Most Probable Point location in
the random vector space.  Once the MPP for a given
probability is identified, the process can be repeated
for several z0 values allowing construction of a
cumulative probability distribution (CDF).

When constructing a cumulative probability
distribution, the Advanced Mean Value (AMV)
method option in the Fast Probability Integration
code is employed.  The Advanced Mean Value
method utilizes the following procedure to calculate
the CDF which is illustrated in Figure 3:

1. Run center-point case [1 case]
2. Perturb one variable at a time to calculate

point sensitivities to create linear metamodel
[n cases]

3. At user specified p-levels (z0) use the actual
design code to calculate responses and adjust
the CDF to account for non-linear effects [m
cases]

The sensitivities calculated in Step 2 are used to
construct a linear approximation (metamodel) of the
cumulative probability distribution (Equation 2).
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The additional cases are run at user specified p-levels
(zo)  and use the actual design code to provide
responses to better fit the CDF created in Step 2.

Thus the AMV method approximates the exact
cumulative probability distribution using (n + m + 1)
function calls for n random variables and m p-levels
(Equation 3).
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Figure 3: Creating CDF With AMV Method

The shifting of the linear approximation, as shown in
Figure 4, accounts for the higher order terms
(H.O.T.)  or non-linear effects included in Equation
3.  Notice in Figure 4 that the CDFs are pivoted
around the mid-point corresponding to the 50% p-
level.  This occurs since this process is a Taylor
series expansion around the mid-point.  Thus one
would expect no effects  from higher order terms.
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FIGURE 4:  T HE EFFECT OF HIGHER ORDER TERMS

This method provides a significant time and
resource savings over Response Surface Equation
(RSE) /Monte Carlo Simulation methods for multi-
disciplinary, multi-constrained problems where
hundreds of cases are needed to create the RSEs.
However, RSEs serve a valuable complementary tool
that can be used to gain information about the
behavior of the underlying design space.  Once the
CDF is created it can be differentiated to obtain the
probability density function (PDF) of the response.



Technical Feasibility and Viability

Technical feasibility is a measure of a systemÕs
ability to meet performance goals and satisfy imposed
performance constraints.  It is assessed by varying
control variables only and generating cumulative
distribution functions for each performance
objective/constraint.  Economic viability is a measure
of a systemÕs ability to achieve affordability goals and
satisfy  imposed economic constraints.  It is assessed
by varying control and noise variables and generating
cumulative distribution functions for economic
objectives/constraints.  Technical feasibility must be
established before economic viability is assessed.
The steps required to determine if feasible and viable

design space exists and open these design spaces, if
necessary, is presented in Figure 5.  The steps in this
methodology are:  

1.   Problem Definition
2.   Determine System Feasibility
3.   Examine Feasible Space
4.   Infuse New Technologies
5.   Robust Design Simulation

The following discussion describes each step in
the methodology in detail and provides information
on the actual implementation process.
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Problem Definition

The first step in the process calls for the
identification of objectives, constraints, design
variables (including ranges), suitable analytical tools
for each discipline, and metrics (if known) pertinent
to the design problem (Step 1 in Figure 5).  As in
any engineering design problem,  the setup of the
problem is perhaps the most important step.  The

casting of customer requirements into appropriate
objectives, constraints and design variables in the
early stages of the design avoids problems down the
line and may avoid some cases of requirement
ambiguity.  

Suitable objectives for rotorcraft  applications
will include economic considerations to reflect the
emphasis on the life-cycle and the interests of the



manufacturer, airline and the passenger, and design
considerations which account for all customer
requirements and/or desirements and
regulatory/design constraints.

The selection of design variables must be
consistent with the objectives and the analysis code
being used.  Design variables will fall into two
categories: control variables and noise variables.
Noise variables are those variables that the designer
has no control over such as fuel prices, utilization,
load factors, etc.  These variables tend to be
economic variables.  The choice of metrics becomes
important for the infusion of new technologies to
open the design space.  Often the metrics needed to
represent the effect of a new technology are unknown
or unavailable since the need for the new technology
has not yet been established.   

Tables 1-4 provide an example of this step for a
notional Civil Tiltrotor Transport.  The objectives
include both system and subsystem level attributes.
In this case the subsystem chosen for illustration is
the propulsion system.  An abbreviated list has been
given for the control variables but the example serves
its purpose. This formulation is used later in the
paper to provide a sample of the results expected for
subsequent steps in the methodology.

TABLE 1: OBJECTIVES AND CONSTRAINTS

Objectives Target
   System Level  

Takeoff Gross Weight (TOGW) minimize
Weight Empty minimize
Weight Fuel minimize

Horsepower (VROC,HOGE) minimize
Cruise Speed maximize

Noise minimize
   Subsystem level (Propulsion)  

Specific Fuel Consumption (SFC) minimize
Engine Power Loading (Cont,IRP,MCP) minimize

Weight Engine minimize
R & D Cost minimize

Development Cost minimize
Support Cost minimize
Dimensions minimize

    Economic System    
R&D Cost minimize

Acquisition Cost minimize
O $ S Cost minimize

TABLE 2: SYSTEM AND SUBSYSTEM METRICS

System Level Metrics
ω Disk Loading

W/S Wing Loading
L/DCR Aerodynamic Efficiency
ηPROP Propeller Propulsive

Efficiency
FM Hover Rotor Figure of Merit

WWING/ft2 Wing Areal Weight
WFUES/ft

2 Fuselage Areal Weight
SFC Specific Fuel Consumption

SHP/WENG (Cont)
SHP/WENG (IRP)

SHP/WENG (MCP)

Engine Power Loading for
Various Power Settings

∆ R & D Cost Change in R & D Cost
∆ Prod Cost Change in Prod Cost

∆ O & S Cost Change in O & S Cost

Subsystem Level Metrics
PREC Inlet Press Recovery @ Inlet

ηcomp ηcomb η turb Component Efficiencies
% Cooling Cooling Percentage

KSFC KMTBF KMTTR

KMMH/FH KRD etc.
Technology Factors

TABLE 3: CONTROL VARIABLES

Variable minimum maximum
Blade Solidity .10 .13
Number of Blades 3 5
Blade t/c .11 .125
Blade Tip Speed
(ft/sec)

680 750

Wing Span (ft) 50 60
Wing Chord (ft) 5.5 7.0
Wing t/c .18 .25
Number of
Passengers

30 50

Range (nm) 200 700
HT AR 3.6 4.4
HT Sweep (degrees) 6.0 7.5
HT Area (ft2) 100 125
VT AR 1.6 2.0
VT Area (ft2) 110 135
VT Sweep (degrees) 12 15



TABLE 4: ECONOMIC (NOISE) VARIABLES

Variable minimum maximum
Airline ROI 5% 15%
ManufacturerÕs ROI 10% 20%
Economic Range (nm) 200 600
Fuel Cost $.54/gal $.88/gal;
Mfg. Learning Curve 74% 84%
Production Quantity 300 600
Utilization (trips/year) 2000 3000
Passenger Load Factor 45% 85%
Insurance Rate .5% 1.5%

Determining System Feasibility

Next, one must investigate the entire design
space for occurrence of combinations of design
parameters which result in the satisfaction of all
constraints (Step 2 in Figure 5).  The designer is
searching for an estimate of the percentage of the
design space which contains feasible alternatives.
This is formulated as a reliability problem, utilizing
fault tree analysis.  Uniform distributions are assigned
for each control variable, so no bias is introduced
since no uncertainty exists in these parameters.  The
constraints are applied to each sampling of the design
space to determine the feasible design space.  The
result is a single number expressed as the Probability
of Feasibility, P(feas).

P feas
of

( )
#

=
 configurations satisfying constraints

total #  of configurations in design space

This step can be implemented in two ways using
the probabilistic methods described earlier.  Using
the Response Surface Methodology with a suitable
design of experiments,  a metamodel (response surface
equation) is created which represents each objective
and constraint as a function of the control variables.
The statistical validity of these metamodels is
checked and the models are valid within the ranges of
the control variables set by the designer in Step 1.  A
sufficiently large sampling of the design space is
taken via a Monte Carlo Simulation and the P(feas)
determined.  Normally, this task could be
computationally expensive for large numbers of
design variables.  However, through the use of the
Adaptive Importance Sampling (AIS) technique from
the FPI family described in Reference 3, the search
can be done relatively quickly.  Thus, the Fast
Probability Integration (AIS) technique can provide
an estimate of the feasible design space efficiently and
it may provide information as to the optimum
configuration.  In the case of the metamodels, the
response surface equations can be used in the next

step in order to create the cumulative distribution
functions needed for active constraint isolation.

Examine Feasible Space

The threshold tolerance for the Probability of
Feasibility is at the discretion of the designer.  If the
current system achieves a high P(feas), this indicates
a sufficiently large feasible design space for robust
solutions to exist and one can proceed to robust
optimization (Step 5 in Figure 5).  If the current
system achieves a low or zero Probability of
Feasibility, an investigation must be performed to
isolate the active constraints.  This is done through,
what will be called here, component feasibility
problem.  Unlike the system feasibility problem,
component feasibility is concerned with only open
responses.  There is no fault tree structure.  The
control variables are once again given uniform
distributions and a cumulative distribution function
for each objective/constraint is formed.  

As mentioned above, the CDFs can be
constructed using the metamodels created in Step 2
subjected to a Monte Carlo Simulation.  The AMV
technique, as discussed previously, provides a more
efficient and powerful approach by linearizing the
problem and finding response values for given
probability levels.  It then runs several more cases to
adjust the cumulative distribution function for any
non-linear effects.  Once the CDFs are constructed the
designer can overlay the constraint values and
immediately determine the active constraints.  Figure
6 provides a generic illustration of the results of this
step.

Objective

P(feas)

Target

0%

100%

FIGURE 6: CONSTRAINT VIOLATION

By overlaying the constraint, the percentage of
the design space satisfying this constraint becomes
evident.   Once this identification is made, there are
two avenues available to Òopen the feasible spaceÓ:
1) relax the active constraints and/or 2) infuse new
technologies.  In the case of the latter option, the
power of the Fast Probability Integration technique is
exploited since this technique not only constructs the
CDFs but provides probabilistic sensitivity
derivatives.  These sensitivity derivatives provide



insight into the most important variables for each
constraint and a starting point for the decision maker
in choosing a new technology aimed at a specific
constraint.

Infusing New Technologies

The need for the infusion of a technology is
required when the manipulation of the variable ranges
has been exhausted, optimization is ineffective,
constraints are relaxed to a minimum, and the
maximum performance attainable from a given level
of technology is achieved. The maximum level of a
given technology is essentially the natural limit of
the benefit, displayed in Figure 7.  This implies that
the maturation variation with time remains constant.
When this limit is reached, there is no other
alternative but to infuse a new technology.
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FIGURE 7: TECHNOLOGY INFUSION

Formulation of new technologies in terms of
elementary variables does not lend itself to
disciplinary or multidisciplinary technology
assessment.  Hence, the assessment of new
technologies must be addressed through the metrics
they affect since sizing/synthesis tools are typically
based on regressed historical data, limiting or
removing their applicability to exotic concepts or
technologies and  higher fidelity tools cannot always
capture the physics associated with a new technology.
The solution is to model and define technology
metrics for the new technologies as a delta with
respect to current technology based on subjective
experience.  In practical terms, technology metric ÒkÓ
factors are introduced into the analysis or sizing tool
to infuse a hypothetical enhancement or degradation
associated with the new technology.  In effect, the
ÒkÓ factors simulate the discontinuity in benefits or
penalties associated with the addition of a new
technology.

The cumulative distribution functions are now
re-evaluated with the metric ÒkÓ factors as additional
control variables.  The CDF Òshift to targetÓ is

illustrated in Figure 8.  This figure shows the
opening of the design space caused by the infusion of
the new technology as an increase in the P(feas) with
the same constraint value overlaid.  As previously
discussed though, the ÒkÓ factors are introduced to
produce beneficial as well as degradatory effects.  The
result in  Figure 8 would be typical of the results for
the objective or constraint at which the new
technology is directed.  However, new technologies
cannot be assessed from a benefit viewpoint alone.
The effect on other disciplinary metrics must be
included to see how the new technology penalizes the
various objectives and constraints and how it affects
the design space.  

Objective

P(feas)

Target

New Technology
Conventional

FIGURE 8: NEW TECHNOLOGY IMPROVEMENT

As an example, one can examine the impact of the
Variable Diameter Tiltrotor (VDTR) on conventional
tiltrotor technology.  This Ònew technologyÓ may be
used to provide improvement in the propeller
propulsive efficiency.  However this isolated
improvement would be misleading if the effect  of this
new technology on other objectives was not included.
The effects on weight, R&D cost, production cost,
maintenance hours, availability must be factored into
the equation by degrading the other metrics
accordingly.  Thus the improvement from a new
technology can be qualified while ensuring that its
penalties do not make the new technology
prohibitively expensive. If a ÒkÓ factor for a given
technological metric is shown to improve the system
objectives and constraints with minimal penalties,
that technology impact can be identified as worthy of
further investigation. An actual technology must be
identified which can provide the ÒkÓ factor
projections. This method is essentially forecasting
the impact of a technology. This technique provides a
very efficient  means of identifying design alternatives
around concept Òshow-stoppersÓ. As a result,
technologies capable of counteracting the show-
stoppers aid in the correct allocation of resources for
further  research and development of the project.



Technology Impact Forecasting

In the above discussion on new technology
infusion the Fast Probability Integration technique is
described for implementation of this step.  Although
computationally more expensive, the implementation
of this step using the Response Surface Method
provides analysis capabilities not available when
using FPI.  In this step, response surface equations
are created which relate each objective and constraint
to the metric Ò k Ò factors.  Using this formulation
the impact of ÒkÓ factors on the system objectives
and constraints can be assessed qualitatively through
a linear or higher order sensitivity analysis depending
on the level of detail desired. The analysis can be
performed with the prediction profile feature of the
JMP statistical package [11].  

This example shows the ability of this
methodology to be applied at all levels of the design
process.  In Figures 9-11,  the Civil Tiltrotor
example has been decomposed down to the
component level.   These profiles are interactive
allowing the decision maker to adjust the ÒkÓ factors
in any combination and immediately see the effect on
the various objectives/constraint.  The factors at the
component level (e.g. KPROD) can be fed to the
subsystem level to determine the effects in real time.
At the subsystem level, factors such as specific fuel
consumption can be fed to the system level analysis
and the cascade from component to system level is
complete.  This is a powerful tool for resource
allocation and new technology decision making.
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FIGURE 9: S AMPLE PREDICTION PROFILE - SYSTEM LEVEL

Note : All trends are for illustration purposes only.
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The value of this tool for Technology Impact
Forecasting is readily apparent when viewing the
Department of DefenseÕs Technology Development
Approach (TDA).  The TDA sets goals in the form of
discipline and system level metrics.  Until now there
has been no methodology that allows the horizontal
integration of the goals across the disciplines or the
vertical integration of the discipline goals to the
system level.  This new methodology provides a
means to accomplish these integrations.

Another important analysis capability using the
Response Surface Methodology  is the determination
assessment of variability due to forecast confidence.
To this point of the discussion the metric ÒkÓ factors
have been treated as fixed values when injected into
the assessment of new technologies.  Once the proper
ÒkÓ factor level is set by the decision maker (i.e.
enough feasible design space exists),  there will be
some uncertainty associated with this ÒkÓ level.  By
using the relations created between the



objectives/constraints and the metrics,  the metrics
can be described with a step change in the mean value
as well as an associated variability which reflects the
uncertainty defined by the decision maker.  Thus for

each technology,  a cumulative probability
distribution can be generated for each objective which
reflects the variability due to forecast confidence.

Create functional relationships through Response Surface Methodology.

Objectives =  f(   ω,    W/S,  L/Dcruise ,    ηprop,   FM, ... , SFCcruise,   SHP/Weng,  ∆ R&D, ...)   
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Incr. Max Vcruise

Red. Acq. $
Red. O&S $
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FIGURE 12: ASSESSING VARIABILITY DUE TO FORECAST CONFIDENCE

Robust Design Simulation (RDS) [12]

Steps 1-4 above are concerned with feasibility,
since only constraints are considered.  Once a large
enough feasible space is found,  the space is searched
for robust solutions.  Robust Design Simulation is a
systematic procedure for finding settings of design
variables which maximize the probability of meeting
or surpassing a target for the objective, while
satisfying the constraints.  RDS is the part of the
probabilistic design environment where the system
level analysis takes place, while accounting for
uncertainty business practices, economics, synthesis
and sizing, technology and environmental
constraints.  It is through RDS that the uncertainties
associated with noise variables (i.e. economic
variables ) are applied in order to determine system
viability.  This process is much like the search for
feasible design space and may require the relaxation of
economic constraints and/or infusion of new
technologies to enhance the affordability of the
system.

Risk/Readiness Assessment

To this point, the discussion of new
technologies has avoided the subject of risk.  For
complex systems, the ability to accurately predict the
tradeoffs between alternative technologies from a
benefit, risk, and affordability viewpoint is of
tremendous value to the decision maker.  The
creation of Response Surface Equations in Step 4
allows the decision maker to account for the risks
associated with technology readiness and fidelity

uncertainty.  Benefit/Risk/Cost investigations for new
technologies can now be carried out, in a
probabilistic manner, by providing probability
distributions for the metric ÒkÓ factors which are
based on technology readiness.  This yields targets
for the metrics which must be met for a feasible
design space to exist.

Concluding Remarks

This paper provides a methodology for the rapid
and inexpensive assessment of technically feasible
and viable design spaces in the context of
probabilistic or stochastic design.  This methodology
is motivated by the belief that affordable rotorcraft
systems can only be assessed through the inclusion of
uncertainty, ambiguity and conflict which permeates
the design environment when design for affordability
is emphasized.  This paper has provided an in depth
explanation of the steps required to determine the
existence of a feasible design space as well as an
outline of the steps needed to open the design space if
required.  This space of feasible designs can now be
searched for viable alternatives using Robust Design
Simulation.  The outcome of the described process is
a probabilistic search methodology for feasible design
alternatives and a technique for creating design
feasibility where it did not exist through the
introduction of new technologies. The means by
which new technologies may be assessed in a more
realistic manner was also outlined.  Finally, several
steps in the methodology were highlighted through
the example of a notional Civil Tiltrotor Transport.
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