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This paper contains a review of certain 
majorization inequalities in multivariate 
analysis and a discussion of their applica-
tions. The results apply to a large class 
of distributions (including the multi-
variate normal distribution), and have 
implications in estimation, hypothesis 
testing, and other related problems. 

1. Introduction and Summary 

Let X = (X1 ,:..,Xn ) be an n-dimensional random vari-

able with density f(x) that is absolutely continuous 

w.r.t. the Lebesgue measure, and let A c Rn  be a mea-

surable subset. In many problems in multivariate 

analysis the probability content of the form 

P[X E A] = flif(x)dx 	 (1.1) 

is of great importance. For example, 
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n 
Wwhen,A=x(-co,a.

1 ],the probability content in i=1 
(1.1) is the cumulative distribution function of 

X. 

(ii) When A = x [-a1.,ai  ], it is the probability i=1 
content of a n-dimensional rectangle, and is the 

cumulative distribution function of IXI = 

(iii) When A = {x = (x i ,...,xn ) E (x.1/a.1) 2 5 Al, it is 
i=1   

the probability content of an ellipsoid (or 

sphere). 

Under the normal theory, the confidence region in 

estimation and the acceptance region in hypothesis 

testing for the mean vector are usually of the form 

given in (i)-(iii) so the probability in (1.1) is 

directly related to the confidence probability and the 

power of a test. 

In many such applications, the numerical evaluation of 

the probability content is complicated (even for the 

normal distribution). Thus probability inequalities 

become useful. In particular, if a lower (or upper) 

bound on the true probability can be obtained and if 

the numerical value of the bound can be easily computed 

or is immediately available from an existing table, 

then a conservative (or liberal) solution for the esti-

mation or hypothesis-testing problem can be obtained 

without knowing its true value. In addition, inequa-

lities often provide certain monotonicty properties of 

the confidence probability function and the power func-

tion of a test, this in turn provides a better under- 

( IX 1 1 • • • 	I Xn 1 ) • 
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standing of the nature of the underlying statistical 

procedure. 

In this paper we provide a survey of probability in-

equalities in multivariate analysis via the notion of 

majorization, and discuss their applications. In order 

not to overload the paper, the proofs of the theorems 

are not given here. Instead the references from which 

the original proofs can be found are listed. 

The notion of majorization involves the diversity (or 

dispersion) of the components of a vector, and plays an 

important role in the theory of inequalities. A con-

venient reference on this subject is, of course, the 

monograph by Marshall and Olkin (1979), and a brief 

treatment of the fundamental concepts in connection 

with Schur functions is given in Section 2. 

Section 3 reviews certain existing majorization inequa-

lities for exchangeable random variables which can be 

applied for the reduction of dimensionality in multi-

variate analysis. For instance, a special form of 

Theorem 3.3 says that if X1 ,...,X
n are exchangeable, 

then the inequalities 

P[X.:5a, i = 1,...,n] > {P[X i 	a, i = 1,...,r
]ln/r, 

P[IX.' 5a, i = 1,...,n] 	{P[IX.I5a, i = 1,...,r]} n/r 1 	 1 

hold for all a. Thus, the dimensionality involved is 

reduced from n to r. If in a given application the 

table value for the joint probability of r such vari-

ables is already available, then the numerical value of 

a lower bound on the joint probability of n variables 
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can be obtained. 

Section 4 deals with probability contents of certain 

classes of geometric regions when the density of X is 

a Schur-concave function. The inequalities generally 

state that, when the underlying geometric region 

becomes less asymmetric in a certain fashion via 

majorization, then the probability content becomes 

larger. For example, Theorem 4.2 implies the fol-

lowing special result: 

P[IXi lai , i = 1,...,n] 	 i = 1,...,n], (1.2) 

where a = 1 E ai , for all Schur-concave random vari-
i=1 

ables X = (X1 ,...,Xn ). Note that the l.h.s. of (1.2) 

is the probability content of an n-dimensional rectan-

gle and the r.h.s. is that of a cube while the peri-

meter is kept fixed. The probability content on the 

r.h.s. of (1.2) is easier to tabulate because it 

involves only the parameters n and a instead of n and 

al ,a 2 ,...,an , and certain table values are already 

available for the cubes. Thus, once again, the numeri-

cal value of the (upper) bound on the true probability 

content of such an asymmetric geometric region can be 

rapidly obtained. 

Section 5 contains other majorization inequalities 

which seem useful in multivariate analysis. The first 

result concerns peakedness in multivariate distribu-

tions, and yields a monotonicity property for the con-

vergence of the sample mean vector to the population 

mean vector. The second result depends on the concept 

of arrangement increasing functions which is closely 
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related to majorization. 

Finally, in Section 6 we discuss briefly some of the 

applications of those inequalities in multivariate 

analysis, with special reference to the multivariate 

normal distribution. 

2. Majorization and Schur Functions 

For fixed k > 1, let 

a = (a l ,...,ak ), 	b = 	 (2.1) 

denote two real vectors, and let 

a(1) 	a(2) 	a (k) , 	b (1) 	b (2) >°— ?-b(k) (2.2) 

be their ordered components. a is said to majorize b, 

in symbols, a 	b, if 
m 	 m 
E a

(i) 	
E b

(i) 

	

1=1 	i=1 	 (2.3) 

holds for m = 1,2,...,k-1 
k 	k 

and E ai = E bi . This notion provides a partial 
1=1 	1=1 

ordering of the diversity of the components of a vec-

tor, namely, a >- b implies that (for a fixed sum) the 

a.'s are more diverse than the bi 's. In particular, 

it is known that: (i) a >- for all a, where 

a = 1  E ai ; (ii) a >- b implies that the variance of k i=1 
theai 'sis?_thatofthebi 's, and straight inequality 

holds unless b is a permutation of a. 

There exist many results concerning (necessary and 

sufficient) conditions for the partial ordering of two 

vectors a,b via majorization. One such result is that 
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a > b if and only if b = aQ for some doubly stochastic 

matrix Q. Thus one may regard such a linear transfor-

mation as an averaging process. That is, by multi-

plying a vector a and a doubly stochastic matrix Q the 

components of the new vector (b) are less diverse and 

in the meantime the sum (or arithmetic mean) of the 

components is unchanged. 

A function cp: Rk 	R is said to be a Schur-concave 

(Schur-convex) function if a > b implies fla) Mcp(b)., 

Intuitively speaking, the functional value of cp 

becomes larger (smaller) when the components of a vec-

tor in Rk are less diverse given their sum. Conse-

quently, once a function is shown to be a Schur func-

tion, then a chain of inequalities may be obtained from 

the partial ordering of vectors via majorization. For 

a comprehensive reference on majorization and Schur 

functions, see Marshall and Olkin (1979). 

3. Majorization Inequalities and Reduction of 
Dimensionality for Exchangeable Random Variables 

Let X = (X1 ,...,Xn ) denote an n-dimensional random 

variable. In a number of applications one is 

interested in the following probabilities: 

13 1 (n) Ei P[X. <_ a, i = 1,...,n], 	(3.1) 

	

R 2 (n) E P[IXil <_ a, i = 1,...,n]. 	(3.2) 

If X has a multivariate normal distribution with means 

0, variances a
2
, and correlations p > 0, then it is 

well-known that 6 1 (n) a 2 (n) can be expressed as 

	

a 1 (n) = I (I)n ((/  +6)/1/7--p)d(1)(z), 	(3.3) 
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(n) = f:.(4)((iz+6)/1/1=(71. ) 

- 	( (4-z - 8)/ 	 J r-i d(D(z) 
(3.4) 

where 6 = a. /0 and (1) is the N(0,1) c.d.f. Using 

those expressions the probability functions 13 1 (n),13 2 (n) 

can be calculated numerically and tables are now avail-

able. However, no matter how extensive the tables are, 

there is always a possibility that, in a given applica-

tion, the true dimensionality n involved is outside the 

range of the table values. An earlier theorem of Tong 

(1970) says that, in that case, one can always obtain 

the numerical value of the lower bound on the basis of 

existing table values. 

Theorem 3.1. Let f3 1 (n),132 (n) denote the multivariate 

normal probabilities defined in (3.3) and (3.4) where 

m and a 2 are arbitrary but fixed. If p 0, then for 

all integers r,n satisfying 1 5 r < n 

f3.(n) 	(yr)]n/r 	j = 1,2. 

Furthermore, the inequalities are straight unless p =0. 

The proof of this result depends on a simple argument: 

Defining the random variable 	W = (I)
r
((47z+6) / Jr---713- ) 

which is nonnegative, the r.h.s. of (3.3) is then the 

expectation of Wn/r . 	Since w
n/r

is a convex func- 

tion of w for w 	0 and n 	r, the proof for (3.3) fol- 

lows from Jensen's inequality. The proof for (3.4) is 

similar. 

Sidak (1973) adopted this argument to obtain a genera-

lization of Theorem 3.1. His result is for any 

exchangeable random variables instead of just the 
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positively-correlated normal variables. An infinite 

sequence X1 ,X2 ,... of random variables is said to be 

exchangeable if, for every finite n and every subset of 

positive integers {i 1 ,...,in }, (X 1 ,...,X
n
) and 

(X. ' 	) are identically distributed. A finite 
1n 

subset (X 1 ,...,Xn ) of such an infinite sequence is 

called exchangeable. A well-known theorem of De 

Finetti says that X 1 ,...,Xn  are exchangeable random 

variables if and only their joint distribution is a 

mixture of the form 

F(xl ,...,xn ) = I fl 
Gz 	1 

 (x.)dH(z) 
i=1 

(3.5) 

where H(z) is a c.d.f. and G z (x) a conditional c.d.f. 

for every given z. Thus, using the same argument for 

proving Theorem 3.1, Sidak (1973) obtained 

Theorem 3.2. Let X1 ,X2 ,...,Xn  be exchangeable random 

variables, let B c R be any given measurable subset, 

and define 

y(n) = P[Xi  E B, i = 1,...,n]. 	(3.6) 

Then, for all 1 	r < n, 

y(n) 	y(r)y(n-r), 	Y(n) 	[Y(r)] n/r . 	' 	(3.7) 

Note that if (X 1 ,...,Xn ) has a multivariate normal dis-

tribution with equal means, equal variances and equal 

correlations p, then the components are exchangeable 

iff p 	0. 

Now if one defines y(0) E 1, then by the notion of 

majorization one can clearly see that, from (3.7), 

(i) (n,0) y (r,n-r) and y(n)y(0) 	y(r)y(n-r), 
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(ii) (n,...,n,0,...,0) 	(r,r,...,r) and 

	

(y(n)) r (y(0)) n-r 	(y(r)) n .  

(The vectors in (ii) are 1 xn and the first r compo-

nents in the first vector take the value n.) A 

natural question one might ask is whether (a 1 ,...,ak )>. 

	

k 	 k 
(b...,bk) implies II y(a,) a II y(b j  ). This ques- 

j=1 	j=1 
tion was answered in Tong (1977), and the proof of this 

theorem depends on an application of a moment inequa-

lity due to Muirhead (see e.g., Tong (1980), p. 119)). 

Theorem 3.3.  Let X1 ,...,Xn  be exchangeable random 

variables and let B c R be any given measurable subset. 

Then, for y(n) defined in (3.6), (a,,...,a k )),- 
k 

	

(b i ,...,bk ) implies H 	y(a.) a II 	y(b.). 
j=1 	j=1 

Theorem 3.3 is a generalization of Theorem 3.2. To 

consider an application of Theorem 3.3 for which 

Theorem 3.2 does not apply, simply consider the inequa-

lity 

P[X. E B, 1 = 1,...,5]P[X 6 E B] 

a P[Xi  E B, i = 1,...,4]P[X i  E B, i = 5,6]. 

This inequality follows because (5,1) >- (4,2). 

A routine generalization of Theorem 3.3 to random 

vectors can be made following a simple notation change. 

That is, if X 1 ,...,Xn  are each m-dimensional random 

vectors and their joint density is a mixture of the 

form (3.5), where Gz (x) is the distribution of an 

m-dimensional random variable, and if B c Rm  is a mea-

surable subset, then the statement in Theorem 3.3 

11 
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remains true. Such an inequality can be applied for 

the reduction of dimensionality of m-dimensional ran-

dom variables. 

4. Majorization Inequalities for Asymmetric Geometric 
Regions 

This section concerns majorization inequalities for the 

probability contents of a certain class of geometric 

regions. As an example, consider the probability con-

tents of rectangles when the underlying distribution 

of X = (X1' X2 ) is bivariate normal with equal means and 

equal variances. Let 

A(a1 ,a2 ) = {(x1 , x2 ) !Xi ' 5 al , Ix2 1 5 a2} 

  

denote a rectangle with perimeter 4 (a l  +a2 ) . Now if 

(a 1 ,a2 ) 	(bb2 ), then al 
+ a2 = b l + b2 and 

la i  a2  I z I 	b2 I hold. Thus, A(a1 ,a2) and A(b i ,b2 ) 

have common perimeter and A(a l ,a2 ) is more asymmetric 

(or 	
' 

A(b .
l  b2  ) is closer to being the square 1 a = 7  (a l  +a2 ) ) . Consequently, since the joint density 

function of X is permutation symmetric and unimodal, 

one might expect that the probability content of 

A(bi ,b2 ) is larger than that of A(a l ,a 2 ). From Theorem 

4.2 stated below we see that this indeed is true. In 

addition to rectangles, majorization can be used to 

provide a partial ordering of the asymmetry of other 

geometric regions. For example, a region 

A(a1 ,a2 ) = f(x1 ,x2 ) (x1
/a

1
) 2 + (x2 /a2 ) 2  5 x} 

defines an ellipse. If (a l ,a 22  ) 	(bi ,b22  ) then, for 

fixed c = a 2
1 
 + a2

2  
1 = b2 	b2, + b2  A(bb2 ) is closer to 2 

being a circle. Thus, one may expect that the 
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probability content of A(b i ,b 2 ) is larger for a permu-

tation symmetric bivariate normal distribution. This 

again is true, as we shall see in Theorem 4.3 stated 

below. 

The geometric regions considered in this section 

include (one-sided and two-sided) n-dimensional rectan-

gles, ellipsoids, and a class of convex sets. The con-

dition imposed on the density function of X is Schur 

concavity. As stated in Section 2, a Aensity function 

f(x) is a Schur concave function of x E Rn  if a > b 

implies f(a) 	f(b). It is known that all Schur func- 

tions are permutation symmetric. Furthermore, it is 

known that the densities of most random variables which 

are permutation symmetric are Schur concave. In parti-

cular, the following statements are true: 

(i) If f(x) is permutation symmetric and if log f(x) 

is a concave function of x, then it is a Schur-

concave function of x. 

(ii) If f(x) is permutation symmetric and unimodal 

(i.e., the set {x1f(x) 	c} is a convex set for 

every c > 0), then f(x) is a Schur concave func-

tion of x. 

In particular, an n-dimensional multivariate normal 

density function with equal means, equal variances and 

equal correlations is a Schur-concave function. 

In one of the earlier papers on majorization inequali-

ties in multivariate analysis, Marshall and Olkin 

(1974) considered the probability contents of one-

sided n-dimensional rectangles 



a = 1— E a.. n i=1  

n 	 (4.3) 
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A0  (a) Ei 	5.; ai , i = 1,...,n}. 	(4.1) 

where a = (a 1 ,...,at ). Applying a fundamelltal convolu-

tion theorem in their paper they obtained 

Theorem 4.1. If f(x) is a Schur-concave function of x, 

then 

(1) 0 (a) = P[X E A0 (0] 	
(4.2) 

= P[Xi  5 ai , i = 1,...,n] 

is a Schur-concave function of a; that is, a y b 

implies (00 (a) 5 (1) 0 (b). 

This theorem yields a chain of inequalities for the 

distribution function of random variables with Schur 

concave density functions and an extreme case is that 

P[X. s a., i = 1,...,n] 5 P[X.< a, i = 1,...,n] 

Motivated by their result, Tong (1982) considered prob-

ability contents of two-sided rectangeles of the form 

A (a) = {x 

and proved - 

1x1 1 < a., i = 1,...,n}, (4.4) 

  

Theorem 4.2. If f(x) is a Schur-concave density func-

tion of x, then 

cp.(a) = P[IXi l 5 ai , i = 1,...,n] 	(4.5) 

is a Schur-concave function of a. 

A special case of this theorem is that, among all 
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n-dimensional rectangles with a fixed perimeter, the 

probability content is maximized when the region is a 

cube. 

Tong (1982) also considered probability contents of 

ellipsoids of the form 
n 

A2 (a) = {xl E 	(x./a.)
2 5 A), 	A > 0 fixed. 	(4.6) 

1=1 
Applying a similar argument he obtained 

Theorem 4.3. If f(x) is a Schur-concave function of x, 

then 
n 

cp 2 (a) = P[X E A2 (a)] = P[ E 	(Xi/ai )
2 

5 A] 	(4.7) 
i=1 2 1  is a Schur-concave function of (a

2
,a2 " 2'" an'' 

After proving Theorems 4.2 and 4.3, Tong (1982) then 

considered a larger class of geometric regions 
n 

Am 	 1 (a) = {x E 	(x./ai )
m 5 Al, 	A > 0 fixed 	(4.8) 

i=1 
for m = 2,4,6,...,00, and conjectured that the probabi-

lity content of Am (a) is a Schur concave function of 

(al
/(m-1)  ,...,an/(m-1 )). This conjecture was shown to 

be true by Karlin and Rinott (1983). 

Theorem 4.4. If f(x) is a Schur concave function of x, 

then 

	

(I)m (a) = P[X E A m (a)] = PC E 	(X./a.) m  5 A] 	(4.9) 
i=1 

m/ (m-1) is a Schur-concave function of (am/(m-1) 
1 

for every positive even integer m and for m = 00. 

The majorization inequality in Theorem 4.2 deals with 

n-dimensional rectangles centered at the origin. A 
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result for arbitrary n-dimensional rectangles was 

obtained independently by Karlin and Rinott (1983) and 

Tong (1983), and the result is giVen via multivariate 

majorization. 

Theorem 4.5. Assume that f(x) is a log-concave density 

function of X (i.e., log f(x) is a concave function); 

let 

al= (all""" aln" 	= (a21"'" a2n" 

321 = (b11"— " bin ) ' 	122 = (b21""" b2n )  

denote n-dimensional real vectors and define 

A( 1 '2) ={xlall 5 x1 5 a21 1— " aln 5 Xn 5 a2n } " 

If there exists a doubly stochastic matrix Q such that 

b 1  = a1 
 Q and b2  = a2  Q, then 

P[X E A(al ,a2 )] 	P[X E A(01 ,b2 )]. 

To illustrate an application of this theorem, consider 

the simple example given below: 

Example. If (X 1 ,X2 ) has a bivariate normal distribu-

tion with equal means and equal variances then, by 

taking Q to be the 2 x2 matrix with elements 1/2, one 

has 

P[1 s X1 	
8, 5 	X2 5 10] 5 P[3 5 X1 

 5 9, 3 	X2 	9]. 

For the rectangular and elliptical regions defined in 

(4.4) and (4.6), their volumes (vol) are multiples of 
n 
II a.

1
. 	Thus if (a l ,...,an ) > (b 1 ,...,bn ) and 

i=1  
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2 	2 (a
1n

) 	(b2 ,...,b
2 ) hold, then 

vol(A.(a)) S vol(A.(b)), 	vol(A2 (a)) 	vol(a2 (b)), 

with strict inequality if a is not a permutation of b. 

Consequently, in the inequalities stated in Theorems 

4.2 and 4.3 the difference in probability contents 

could be partially due to the difference in the volumes 

of the subsets. In view of this fact Perlman (1982) 

suggested that a corresponding result would be of 

interest if the volumes of the subsets are kept fixed. 

This can be accomplished by inequalities via the 

majorization 

(log a1 ,...,log an ) y. (log b i ,...,log bn ). 

Such a majorization inequality depends on the diversity 

of the elements of a when the geometric mean (instead 

of the arithmetic mean) is kept fixed. 

Shaked and Tong (1985) studied this problem for a class 

of geometric regions. They first showed in a counter-

example that such a corresponding result is impossible 

under the sole assumption of Schur concavity of f(x). 

Then, using certain basic properties of the arrangement 

increasing functions obtained by Hollander, Proschan 

and Sethuraman (1977), they obtained the following 

theorem for the bivariate case: 

Theorem 4.5. If (X 1 ,X2 ) has a density f(x 1 ,x2 ) that is 

Schur concave and monotone unimodal, and if f(x 1 ,-x 2 ) 

is Schur concave, then P[(Xl/al , X2/a 2 ) E A] is a 

Schur-concave function of (log a l , log a2 ) for all mea-

surable subsets A c R
2 
which are convex, permutation 
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symmetric, and symmetric about the origin. 

After finding a proof for this theorem, they conjec-

tured that an n-dimensional version of this statement 

is true. But a proof for the general case is not yet 

available. Note that Theorem 4.5 implies the result 

of Kunte and Kattihalli (1984) as a special case, and 

that the main theorem in Das Gupta and Rattihalli 

(1984) deals with a special case of this conjecture. 

5. Other Related Inequalities 

A few other majorization inequalities have been 

obtained recently. In this section we briefly review 

a partial ordering result on peakedness in multivariate 

distributions (Olkin and Tong (1984)) and certain geo-

metric inequalities via the applications of arrangement 

increasing functions (Boland, Proschan and Tong (1985)). 

Peakedness provides one of the principle descriptive 

indices of a distribution. In the univariate case, a 

random variable Y is said to be more peaked than X if 

P[IYI 5- X] 	P[IXI 5- X] 

holds for all A. Now consider a sequence of i.i.d. 

random variables Z 1 ,Z 2 ,... with density g(z) and mean 
n  p. For n = 1,2,... let Zn 	

1 = — E Zi . The question of n i=1 

interest is whether or not P[IE n 0 5 A] converges to 

1 monotonically in n for all A. This question can be 

1 	11 
rephrased as whether or not En  p is more peaked than 
Zn-1 	

p. In an earlier paper Proschan (1965) proved 

the following theorem (for convenience we assume that 
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= 0). 

Theorem 5.1. Let Z 1 , Z 2, ... be a sequence of i.i.d. 

univariate random variables with density g(z). If 

(i) g(z) = g(-z), (ii) log g(z) is a concave function 

of z, and (iii) 	 (13 1 ,...,bn ), then 
n 	 n 

b.Z is more peaked than E a.Z. for all n. Con- i i=1 	 1=1 
sequently (by taking a l  = 	= an-1 = 
and b 1 = 	= bn = 1/n) Zn is more peaked than Zn-1. 

For N-dimensional random variables X and Y, Y is said 

to be more peaked than X if 

P[Y E A) 	P[X E A) 

holds for all measurable, compact, convex, and symme-

tric (about the origin) subsets A c RN . Adopting this 

definition Olkin and Tong (1984) obtained a multi-

variate generalization of Theorem 5.1. Its proof 

depends on an application of Anderson's theorem and is 

different from Proschan's original proof. 

Theorem 5.2. Let Z 1' Z2" .. be i.i.d. N-dimensional 

random variables with density g(z). If (i) g(z) = 

g(-z), (ii) log g(z) is a concave function of z, and 

(iii) 	 (bi ,...,bn ), then E b ili  is more 
n 	 i=1 	n 

i 
peaked than E1 

1 
 a.Z.. Consequently, E n 	n = 1 - E Z. 

=-1 	 - i=1 1  
is more peaked than En_ i ° 

This theorem deals with linear combinations of i.i.d. 

random vectors. The next theorem (Olkin and Tong 

(1984)) generalizes Theorem 5.1 from combining i.i.d. 

random variables to combining dependent variables. 

1/(n-1) , an  = 0 
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Theorem 5.3. For fixed n let Z 1 ,...,Zn  have a density 

g(z i ,...,zn ) which is permutation symmetric, and assume 

that (a ...' a n
) 	(b

1"
..,b

n ). If the conditional 

density of 

c(Z 1 +Z 2
) + E aiZiIZ1 - Z 2 = v i=3 

is unimodal and symmetric about the origin for all 

fixed c, v, and a 3 ,...,an , then E b Z is more peaked i=1 
than E a Z.. 

i=1 

Certain closure properties of peakedness are also given 

in their paper. For example, it is shown there that 

the partial ordering of peakedness is preserved in the 

marginal distributions and the limiting distributions. 

Some geometric and moment inequalities given by Boland, 

Proschan and Tong (1985) depend on a convolution result 

of arrangement increasing (AI) functions. (Such func-

tions are closely related to majorization and Schur 

functions, and were treated extensively by Hollander, 

Proschan and Sethuraman (1977) and Marshall and Olkin 

((1979), Chapter 6.) A main result in their paper 

states that 

Theorem 5.4. Let X = (X 1 ,...,Xn ) have density f(x) 

that is permutation symmetric. Let h (1) ,h (2)  be AI 

functions on Rn  x Rn  and 4) 1 ,4) 2 : R 	R be nondecreasing. 

Then, provided that the expectation exists, 

tP(a,b) E E[qh (1) (a,X))(1) 2 (h (2) (b,X))] 

is an AI function in (a,b) E Rn  xRn . 

A special application of this theorem yields the 
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following fact: 

Fact. Let the density f(x) of X = (X 1 ,...,Xn ) be per-

mutation symmetric. Let 

(a l ,a 2 ,...,an ), 	(bl ,b 2 ,...,bn ) 

be given real vectors with ordered components 

a 	a - a 	a 	.>a 	b 	>b (2) 	 , (n) 	(1) 	(2) 	"' *?' b  (n) .  

Then 

P[a (i)  5 Xi  5 b (n_i+1) ,i = 1,...,n] 

5 P[ai  5 Xi  5 bi , i = 1,...,n] 

5 P[a (i)  5 Xi  5 b (i) , i = 1,...,n]. 

This inequality again deals with probability contents 

of n-dimensional rectangles, and was obtained pre-

viously by Boland (1985). 

6. Some Applications 

In this section we outline a few applications of these 

inequalities in multivariate analysis. They are pre-

sented for the purpose of illustration; so obviously 

the list is not complete. 

(a) In many applied problems the probability function 

involves exchangeable random variables. A simple 

example is the problem of selection and ranking. 

Another example is the confidence probability of a 

permutation symmetric confidence region. In this 

situation an application of the theorems in Section 3 

results in a reduction of the dimensionality, and in 

certain cases the numerical value of a lower bound can 
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be obtained from existing tables. 

(b) . In the estimation of the mean vector of a multi-

variate normal population, if the confidence region is 

rectangular or elliptical, then an upper bound on the 

confidence probability can be obtained from applying 

Thedrems 4.1-4.3, and the numerical values of the upper 

bounds can be found from existing tables. 

(c) Inequalities in Theorems 4.1-4.3 can be applied to 

obtain optimal solutions for allocation of sample sizes 

in estimation problems. One such application appeared 

in Tong (1982). 

(d) When applying to the multivariate normal distri-

bution, Theorem 4.3 yields the following inequality for 

convex combinations of dependent chi-squared variables: 

Let (Z 1 ,Z 2 ,...,Z n ) have a multivariate normal distribu- 

tion with means u,  variances a2 , and correlates 

p E (- 17177.  ,1). Then for ci  > 0 (i = 1,...,n) and 

arbitrary but fixed A > 0 the probability 

PE E c.Z.
2  
 A] is a Schur-concave function of 

i 1 

(ci 1  ,...,c
-1 ). When taking p = 0, this yields a bound 

for convex combinations of independent chi-squared 

variables. Note that this result is similar to, but 

different from, the Okamoto-Marshall-Olkin inequality 

(Marshall and Olkin (1979), p. 303). 

(e) An application of Theorem 4.5 to the normal dis-

tribution yields another inequality for convex combina-

tions of chi-squared variables: If (Z 1 ,Z2
) has a 

n 
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I 
bivariate normal distribution with means 0, variances 

a
2 > 0, and any correlation p, then 

P[c 1 Z
2 
+c2 Z

2 
5 A] 5 	

1 
P[iE

2  (Z
2 +Z 2 ) s A].  2 

When p = 0, then the same result also follows from the 

Okamoto-Marshall-Olkin equality. 

(f) In most problems in multivariate analysis under 

the normal theory, the confidence region for the mean 

vector k involves a subset that is compact, convex, and 
symmetric about the origin. Furthermore, in most 

hypothesis testing problems about k the acceptance 
region involves a subset that is also compact, convex, 

and symmetric. Applying Theorem 5.2, one concludes 

that in this case the confidence probability is an 

increasing function of the sample size, and the type I 

error of such a test is a decreasing function of the 

sample size. 
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