
Network-centric Access Control: Models and Techniques

Ting Wang∗ Mudhakar Srivatsa† Dakshi Agrawal‡

September 21, 2010

Abstract

In both commercial and defense sectors a compelling need is emerging for rapid, yet secure, dissem-
ination of information to the concerned actors. Traditional approaches to information sharing (such as
Multi-Level Security (MLS)) adopted a node-centric model wherein each user (social subjects) and each
object (information object) is treated in isolation (e.g., using clearance levels for subjects and sensitivity
levels for objects in MLS). Over the last two decades information sharing models have been enriched to
partially account for relationships between subjects (e.g., Role-based Access Control (RBAC)), relation-
ships between objects (e.g., Chinese-wall model), and relationships between subjects and objects (e.g.,
Separation of Duty (SoD) constraints).

In this paper, we present a novel network-centric access control paradigm that explicitly accounts
for network-effects in information flows, and yet offers scalable and flexible risk estimation regarding
access control decisions. The goal of this paper is not to prescribe a risk-model for information flows;
instead we enable a class of risk-models by developing scalable algorithms to estimate prior and posterior

information flow likelihood using the structure of social and information networks. For instance, our
network-centric access control model answers questions of the form: Does subject s already have access
(via her social network) to object o? If subject s is given access to object o, what is the likelihood that
subject s

′ learns object o
′ (where the subjects s and s

′ are related via the social network and the objects
o and o

′ are related via the information network)?
This paper makes three contributions. First, we show that several state-of-the-art access control

models can be encoded using a network-centric access control paradigm, typically by encoding relation-
ships as network edges (subject-subject, object-object and subject-object). Second, we present a suite
of composable operators over social and information networks that enable scalable risk estimation for
information flows. Third, we evaluate our solutions using the IBM SmallBlue dataset that was collected
over a span of one year from an enterprise social network of size over 40,000.

1 Introduction

The emerging popularity of social network systems (SMS) has profound influence over today’s information
collecting, processing and disseminating infrastructures. As an example, the global social networking website
facebook now has more than 300 million active users; 50% of active users log on the website in any given
day; and among them, more than 2 billion pieces of contents (web links, news stories, blog posts, notes,
photos, etc.) are shared each week [2]. Information sharing infrastructures constructed atop such social
networking systems pose a set of critical challenges for access control mechanisms: 1) the access-control
decision should now take account of underlying networking relationships among subjects and objects in
estimating access risks; 2) the access risk estimation should be sufficiently computationally efficient in order
to handle massive volume of access requests in a stream manner; 3) the estimation should also take into
consideration the evolution of underlying social or information networks.

∗Georgia Institute of Technology {twang@cc.gatech.edu}
†IBM T.J. Watson Research Center {msrivats@us.ibm.com}
‡IBM T.J. Watson Research Center {agrawal@us.ibm.com}

1

In facing such challenges, the traditional node-centric access control paradigm, however, has demonstrated
its severe limitations. For example, the grant of access privilege should no longer be solely determined by
simple comparison between the classification of the object o and the trustiness of the subject s; rather, one
has to take account of the networking relationships among s and relevant subjects N(s), and that among o

and relevant objects N(o):
• 1) prior information flow estimation: does s already have potential access to o through the channels

between s and N(s) and that between o and N(o)?
• 2) posterior information flow estimation: how would the decision of granting or denying access of o to

s potentially affect the access privileges with respect to objects N(o) and subjects N(s)?
• 3) evolved information flow estimation: how would the evolution of social or information network

possibly affect the access risks?

The node-centric access control paradigm are inherently unable to answer these questions.
Therefore, in this paper, we advocate a shift from the node-centric paradigm to a network-centric

paradigm: 1) we use networks to model both the relationship among objects (information network) and
that among subjects (social network), and the inter-network links between information and social networks
indicate the access-control level between objects and subjects; 2) on deciding granting or denying an request
of accessing o from s, the networking influence from (and to) N(s) and N(o) before (and after) granting
or denying this request is carefully evaluated; 3) the evolution of information or social network (e.g., the
classification level of an object o degrades, or the relationship between two subjects s and s′ changes) propa-
gates through both intra-network and inter-network links. Equipped with such enriched semantics, this new
paradigm is able to perform prior, posterior and evolved information flow estimation.

While enabling the network-centric paradigm to desirably capture the networking influence of both infor-
mation and social networks, the enriched semantics also brings non-trivial technical challenges: for real-life
networks comprising of thousands or even more nodes, 1) how to efficiently evaluate the networking influence
of N(s) and N(o) to s and o? 2) how to efficiently update the access level with respect to N(s) and N(o)
after a request to o from s is granted? 3) how to efficiently propagate the evolution of a part of the network
to the whole network?

We address this set of scalability problems in a fully distributed manner. We present a suite of composable
operators over social and information networks that enable scalable risk estimation for information flows. We
show that, both theoretically and empirically, our solutions are distributed, scalable, and quality-guaranteed.
It is worth emphasizing that all our experiments were performed over two real datasets, one corresponding
to the social network of a subset of IBM employees who participated in the SmallBlue project [18], which
involving more than 40,000 individuals, the other corresponding to the information network of archived
bookmarks tagged by the individuals appearing in the first dataset, which contains 20,870 bookmark records,
relevant to 7,819 urls.

The remainder of the paper is organized as follows. Section 3 formalizes the model of network-centric
access control and the library of basic operations. Section 4 details our solution to implementing the basic
operators. Section 5 introduces a set of operations that can be readily constructed by composing the set of
basic operators. An experimental evaluation regarding our solution is presented in Section 7. The paper is
concluded in Section 8.

2 Background

In this section, we give an overview of our network-centric access control model. We start with introducing
fundamental concepts underlying risk-based access control, present the variety of traditional node-centric
models, and discuss their limitations in facing the ever increasing complexity of social and information
networks. We then present the mathematical model of network-centric access control model and the set
of basic operations. Finally, we show how the variety of traditional models can be expressed in this new
framework.

2

2.1 Node-Centric Access Control

Access control is a mechanism used to manage the leakage of sensitive information through human users in
information systems. One of its major design objectives is to balance the need of the information consumers
in order to perform their jobs and the need of the information owner to protect their sensitive information. An
access control system concerns about administrating individuals’ access behavior to its managed information.
We term the individuals who request access as subjects, and the requested information as objects. Without
loss of generality, we model subjects and objects using discrete sets S and O; we use q(s → o) to denote
the request of a subject s ∈ S to access an object o ∈ O. An access control policy encodes the rules used to
evaluate the qualification of s regarding o. In composing access control policies, conventional models view s

and o as individual nodes, i.e., node-centric access control.
In its simplest form, node-centric access control can be enforced as multilevel security model (MLS), e.g.,

Bell-La Padula model [6]. Each object o is associated with a classification level class(o) indicating its con-
fidentiality; while each subject s is associated with a clearance level clear(s) indicating her trustworthiness
level. The binary “allow/deny” decision can be statically and independently determined for each object o

and subject s by comparing their corresponding confidentiality and clearance level.
The increasing complexity of users’ information needs necessitated understanding the roles of different

users and the relationships among these roles. An alternative model, role-based access control (RBAC), has
been proposed. In its typical form, RBAC encodes the relationships among roles using role hierarchies, and
places restrictive rule on the potential inheritance of permission from opposing roles using constraints. Here,
the clearance level clear(⋅) is essentially the partial order encoded by the role hierarchy and constraint. The
use of RBAC to manage user privileges within a single system has been widely accepted, e.g., Microsoft
SQL Server, FreeBSD and Solaris.

Meanwhile, the increasing complexity of information objects spurred the research on understanding and
modeling relationships of objects in access control. A variety of well known models, e.g., Chinese Wall [9],
were introduced. These models were designed to provide control that mitigate conflict of interest in commer-
cial organizations; that is, no information can flow between the subjects and objects in a path that would
create a conflict of interest. In such models, the classification level class(⋅) is dynamically determined.

More recently, fuzzy logic-based MLS [10] and risk-based information sharing [21] frameworks have been
proposed to support risk-based access control, which are designed to adapt the classification level class(⋅)
and clearance level clear(⋅) to the dynamic environment. In a typical setting, a subject is charged certain
risk tokens for an access, based on the classification level of the object and the trustiness level of the subject;
each subject is periodically (say, monthly) allotted a risk budged of certain amount of tokens. The onus is
on the subject to best leverage the risk budget; fixed risk-budget also offers bounds on information leakage.
It has also been pointed out that the risk estimation should take account of the past access (or leakage)
behaviors of the subjects; towards this end, history-based access control (HBAC) model, e.g., [14], has been
proposed that accommodates such history information.

Despite the plethora of node-centric access control models, none of the notions above simultaneously
model the relationships among objects (information network), that among subjects (social network), and that
between objects and subjects (access/leakage history). In this paper, we attempt to propose a general access
control model that incorporates all these factors in a single framework, and provide better understanding
regarding the trade-off between information need and risk control.

3 Network-Centric Access Control Model

This section presents an overview of our network-centric access control model. We start with introducing
fundamental operations underlying this model, then show how the variety of conventional access control
models can be expressed in the new framework, and finally sketch the implementation of network-centric
access control.

3

object network

s1

s2

s3 s5

o5

o6

o3

subject network

s6 s7
s4

o1

o2
o4

Figure 1: Model of information and social networks.

3.1 Fundamental Operations

The network-centric access control model revolutionizes conventional node-centric model by centering around
the perspective of networking relationships among subjects and objects. The access risk estimation is no
longer simply based on individual subject or object; rather, it depends on all (i) networked subjects, (ii)
networked objects and (iii) relationships between them (e.g., social relationship, information inference rela-
tionship, and access relationship from subject to object). Figure 1 illustrates the model of information and
social networks. Given such multi-layered network as context, evaluating the risk of an access request of a
specific subject regarding a specific object should take into consideration the profound networking influence
from (and to) relevant subjects and objects before (and after) granting the access privilege. Towards this
end, we propose the following two fundamental operations, prior- and posterior-flow estimation.

Prior-Flow Estimation Prior to deciding on an access request (s→ o), we intend to evaluate the latent
information leakage risk1 from o to s before the access is granted, via their networked objects and subjects.
In the following, we use f(o → s) to denote the latent information flow (leakage) from object o to subject
s. Prior-flow estimation provides information regarding the risk of such latent leakage; if the risk is already
above certain threshold, it might be more suitable to grant the access than to deny it for saving on access
control resources. Conceivably, in addition to directly evaluating the qualification of the subject respect to
the object, prior-flow estimation provides an important risk-based exception handling mechanism.

For example, in Figure 1, on evaluating (s5 → o1), one may notice that a 2-hop neighbor (friend-of-
friend) of s5, s6, has access (indicated by the inter-network link o5s6) to an object o4, which is semantically
proximate to o1 (indicated by the inference relationship o1o4). The path o1 → o4 → s6 → s5 may carry
sufficient information for s5 to completely infer o1, which makes direct comparison of class(o1) and clear(s5)
non-informative.

Posterior-Flow Estimation While prior-flow captures the potential leakage before an access (s → o) is
granted, posterior-flow estimation evaluates once granted, how this access would impact the information flow
f(o′ → s′) for objects o′ ∈ N(o) relevant to o, and subject s′ ∈ N(s) relevant to s. Formally, let f(o′ → s′)
and f(o′ → s′) denote the prior and posterior information flows, before and after access (s → o) is granted,
respectively. A large difference between f(o′ → s′) and f(o′ → s′) implies that the access would significantly
affect the flow f(o′ → s′). Hence, if s′ is restricted to access o′, the grant of (s → o) results in a violation.
Essentially, posterior-flow estimation measures the potential risk of approving an access request.

As an example, in Figure 1, the approval of access (s3 → o4) may significantly change flow f(o6 → s6),
given the close social relationship between s6 and s3, and the inference relationship between o6 and o4. If
clear(s6) < class(o6), the increased leakage results in a severe violation of access control policy.

Also note that social and information networks are subject to frequent updates, i.e., network evolu-
tion [16], which may easily invalidate posterior-flow estimation based on existing social and information
networks. It is, therefore, necessary to equip posterior-flow estimation with the capability of incorporating
predicted evolution in risk-estimation process, which we refer to as evolved-flow estimation.

1In the following, without ambiguity, we use “information flow” and “information leakage” exchangeably.

4

3.2 Modeling of Networks

In the following, we introduce the mathematical modeling of basic elements of network-centric access control.
We use networks to model both the relationships among objects (information network) and that among
subjects (social network), and the inter-network links between social and information networks to model the
relationships between subjects and objects (e.g., access or leakage history).

Specifically, the information network is represented as a directed graph GI = (VI , EI) with the vertices VI

and edges EI representing the set of objects and their relationships, respectively. Each edge is associated
with type information indicating the relationship between the adjacent objects. Concrete examples include
“mutually exclusive” relationships as in Chinese-wall policy, and semantic similarity (distance) indications
between two objects.

Similarly, the social network is modeled as a direct graph GS = (VS , ES), with VS and ES representing
the set of subjects and their social connections, respectively. We assume that each relationship is associated
with a type. More specifically, it could be assigned from a finite set of relationship types, e.g., {friend-friend,
advisor-advisee, employer-employee}, or indicates the interaction of subjects, e.g., they belong to the same
corporate. Each relationship is also associated with a disclosure rate indicating the possibility that one
subject shares (leaks) its information with the other. Conceivably, this leakage rate is correlated with the
corresponding relationship type; closer relationship tends to imply higher chance of leakage. For example,
in a cover story of Reuters, the wife of the head of Britain’s spy agency posted information of her husband,
family and friends on Facebook, details which could compromise security [1]. In general, such disclosure
rate might be discriminative with respect to specific objects and subjects under consideration, i.e., a function
of information metadata [22] and the corresponding social relationship type. The exact modeling of leakage
rate is beyond the scope of this paper.

Each inter-network link between a subject s in the social network and an object o in the information
network encodes (i) the clearance/classification level of s regarding o, and (ii) the access/leakage history of
s regarding o. Note that in our model the clearance/classification level is dynamically determined based on
the characteristics of o and s, and the networking influences from objects N(o) relevant to o and subjects
N(s) relevant to s.

3.3 New Looks of Conventional Models

Next, we show how a variety of representative conventional access control models can be expressed under
the general framework of network-centric access control. Note that we are not arguing to completely replace
conventional node-centric models with network-centric model; rather, we believe that conventional access
control models would be greatly enhanced under this general framework in terms of access risk estimation.
Due to space constraints, we use three well-known node-centric models as concrete examples to show the
compatibility of our network-centric paradigm with conventional node-centric models; more complicated
models, e.g., FuzzyMLS [10] can also be readily composed under this general framework, with details referred
to our technical report [5].

Multi-Level Security (MLS) Model Here, we use Bell-LaPadula (BLP) model, a classic MLS access
control model, as a concrete example. In its simplest form, the policies in BLP are described by two terms,
the security attributes of the objects concerned and the rules for access, in respect of simple-security and
*-property. BLP attaches security labels to both objects (classification level) and subjects (clearance level);
the clearance/classification scheme is described in terms of a lattice. BLP also has a simple-security and a
*-property rule, which can be characterized as “no read up, no write down”:

• Simple security. Read access is granted only if the subject’s clearance is above the object’s classification.

• ∗-property. Write access is granted only if the subject’s clearance is below the object’s classification.

Under the network-centric framework, the implementation of BLP is straightforward:

5

• 1) The social and information networks encode the hierarchies of clearance/classification levels of all
subjects and objects, respectively.

• 2) The prior-flow estimation always returns 0.

• 3) The posterior-flow estimation function returns 0 if class(o) ≤ clear(s) or 1 otherwise.

• 4) The risk estimation for an access request (s → o) raises an alarm on f(o → s) − f(o → s) = 1 for a

read access, on f(o→ s) − f(o→ s) = 0 for a write access.

Role-based Access Control (RBAC) Model A standard RBAC [13] model uses the following con-
ventional notations: S, the set of subjects, R, the set of roles, which describe authority levels, and P, the
set of permissions, which represent the approval of access to specific objects. Access control policy can be
described by the following three mappings:

• Subject assignment SA ⊆ S ×R which is a many to many subject to role assignment relation;

• Permission assignment PA ⊆ P ×R which is a many to many permission to role assignment relation;

• Role hierarchy PH ⊆ R × R which is a partially ordered role hierarchy. Two elements x ≥ y means x

inherits the permissions of y.

Under the network-centric model, we intend to encode these three mappings in the social and information
networks and the inter-network relationships. One implementation could be as follows:

• 1) In the social network, in addition to the set of subjects S, for each role r ∈ R, we create a corresponding
node nr. For each s ∈ S, a link Ð⇀nrs indicates that s is assigned the role r, i.e., SA mapping. The sub-
network over the node set {nr}r∈R encodes the partially ordered role hierarchy, i.e., PH mapping: two

nodes nr and nr′ are adjacent over the link ÐÐÐ⇀nrnr′ iff r and r′ are adjacent over the link
Ð⇀
rr′ in PH.

• 2) The information network is a node set O, each o ∈O corresponding to an object.

• 3) The inter-network relationships between the information network and the sub-network over {nr}r∈R
encode the permission assignment PA. Each link Ð⇀onr between o and nr indicates that the role r has
access to o, and the specific access mode is contained in the type information of Ð⇀onr.

• 4) The flow (both prior and posterior) estimation function f(o → s) returns 1 if there is a directed
path (the type of inter-network link must be equivalent to the requested access mode) from o to s in
this two-layered network. Note that the posterior-flow estimation always returns 1 under this setting.

• 5) The risk estimation for an access request (s→ o) raises an alarm on f(o→ s) − f(o→ s) = 1.

Chinese-wall and Variants Unlike other conventional access control models, Chinese-wall model [9]
and its variants futher take into consideration temporal information, such as the access history of subjects
regarding the objects concerned. In a simplified Chinese-wall model, each object o is associated with two
label xo indicating the commercial database holding o, and yo indicating its conflict of interest class. The
basic Chinese-wall policy essentially states that subjects are only allowed to access object that is not held
to any other objects they have accessed. The access control policies can be described as:

• Simple security. An access (s → o) is granted only if o has the same label xo as an object o′ already
accessed by s, i.e., within the wall, or has an entirely different label yo to all the objects already
accessed by s.

6

• ∗-property. Write access is granted only if the simple security rule is honored, and no accessible object
o′ contains unsanitized information and has a different label xo′ to the requested one o.

Under the network-centric framework, one implementation of Chinese-wall model could be as follows:

• 1) The social network is a set of nodes S, each corresponding to a subject.

• 2) In the information network, a pair of objects o and o′ are adjacent iff (i) xo ≠ xo′ and (ii) yo = yo′ .

• 3) Once a subject s has accessed an object o, an inter-network link so is added to the two-layered
network.

• 4) The flow (both prior and posterior) estimation function f(o→ s) returns 1 if there is a path between
o and s, and 0 otherwise. Note that the posterior-flow estimation always returns 1 under this setting.

• 5) The risk estimation for an access request (s → o) raises an alarm on f(o→ s)−f(o→ s) = 0. Further,
if it is a write access, an alarm is raised if there exists an object o′ such that f(o′ → s) = 0 and xo ≠ xo′ .

3.4 A Library Like Implementation

In this paper, we provide a comprehensive library of operations to support the network-centric access control
paradigm. In a nutshell, this library of operations essentially support estimating latent information flow in
existing networks, updating intra-/inter-network links, and adding new network nodes. It is worth empha-
sizing that this library is not meant to be complete; nevertheless, we intend to utilize this library to show
the rich expressiveness power of the network-centric access-control paradigm. As we will reveal in the next
section, these set of operations are implemented by composing a set of even more fundamental operations,
called atom operators, which are neutral to the types of networks. We will show that our library is readily
extendible and new operations can be constructed atop the atom operations. In the next section, we first
introduce the set of atom operators that serve as the building blocks of our library.

4 Atom Operators

In this section, we detail our implementation of the basic operation defined in Section 3. The objectives
Our design carries the following key objectives. 1) Scalability. The operations should be able to support
large-scale networks (up to thousands of nodes), and handle stream-manner updates. 2) Modularity. The
implementation should be self-inclusive and reusable by different operations, and even supports operations
to be defined. We achieve this by defining a set of atom networking operations which are composable to
form higher-level operation. Note that this set of atom operations are neutral to the types of underlying
networks; they are therefore interesting in their own right.

4.1 Operations for Static-Flow Network

We start with discussing the atom operations for Information Network, which is assumed to be a static-flow
network. By “static-flow”, we mean that once the network is fixed, including the topology of the network
and the properties of vertices and edges, the information flow in the network is static. In Section 4.2, we will
contrast this concept with a dynamic-flow network, e.g., social network, where the information flow tends to
change depending on nodes’ dynamic behaviors. The distinct characteristics of static-flow and dynamic-flow
networks necessitate different treatment in measuring information flows.

In an information network GI = (VI , EI), for a given object i, we are particularly interested in studying
the residual information of i in another object j, or a set of objects J , formally

Definition 1 (Residual Information). With respect to a given object i, the residual information of i in
another object i, rij, is defined as the probability of i that is inferable from j.

7

Clearly, one can have a variety of instantiations of this abstract definition. For example, one can define
rij base on the Kullback-Leibler divergence between i and j. We do not make specific assumption regarding
the instantiation, but assume that rij is a real number within the interval [0, 1].

The concept of residual information can be generalized to a set of objects with respect to a source i; in
particular, we define the operation of union, denoted by ⊕, for a set of objects. The residual information of
i at a set of objects J , riJ , is formalized as follows:

riJ =⊕
j∈J

rij

Here, the ⊕ operation combines all the information appearing in the objects in J . In real applications, it
might not be feasible to directly calculate this quantity; instead, we are interested in establishing its upper
and lower bounds. A straightforward bound for riJ might be

max
j∈J

rij ≤ riJ ≤min{∑
j∈J

rij ,1} (1)

Intuitively, the residual information about i in a set of objects J is above the maximum residual information
in any single object in J , while is also below the sum of the residual information in all the objects of J .
Later, we will refine this bound by incorporating network structure information.

Next, we proceed to discussing the calculation of rij for different network topologies. First, we need to
re-formalize the concept of information network from the perspective of a specific object i.

Definition 2 (Viewpoint Information Network). A viewpoint Information Network Gi
I = (Vi

I , E
i
I) with

respect to a node i is a sub-graph of the information network GI . It is constructed as follows: each vertex
j ∈ Vi

I represents an object with non-zero residual information of i, i.e., rij > 0; a directional edge Ð⇀jk represents
the dependency of k on j with respect to the information regarding i, and the weight wkj indicates the fraction
of residual information of i at j passed through the dependency to k2.

While the information network GI could be of arbitrary topology, we assume that a viewpoint information
network Gi

I is a directed acyclic graph, where the directed edges encode dependency relationships among
objects with respect to residual information of i. Such dependencies prevail in real networks, in the form of
temporal dependency, functional dependency, etc. For a concrete example, in a blog network, each node could
represent a blog, while a link could represent the reference between two blogs. Further, we can consider the
edge weight as an indication of information degradation, i.e., the information originated at a source object
gradually fades as it passes along the edges in the network.

In its simplest form, Gi
I could be a chain. In this case, the estimated residual information of i at an

object j is trivial, i.e., the information originated at an object i gradually fades as it passes along the edges
in the network. Let (v0, v1, v2, . . . , vn) denote the sequence of nodes between i and j (v0 and vn correspond
to i and j, respectively), the residual information rij can be estimated as

rij =

n−1∏
i=0

wvivi+1

Now, let us consider the case that multiple paths exists between i and j. Figure 2 illustrates an example.
The source object i passes its information through several overlapping paths to the destination object j.
Before discussing in detail our estimation method, we begin with introducing a set of fundamental concepts.

Definition 3 (Ancestor). Given a viewpoint information network Gi
I , an object k is an ancestor of another

object j if there exists a directed path from k to j in Gi
I . We use Aj to denote the set of all the ancestors of

j; in particular, we use Pj to denote the set of direct ancestors (parents) of j.

We further introduce the concept of flow.

2Without ambiguity, we omit the referred object i in the notation of wjk .

8

j(v6)

v3

v4

v5

v2

v1

i(v0)

Figure 2: Information degradation in viewpoint information network.

Definition 4 (Flow). In a viewpoint network G
i
I , the flow of an directed edge Ð⇀

kj, fkj is the residual
information regarding i passes through Ð⇀kj. Further, we use PFk and CFk to denote the parent (incoming) and
child (outgoing) flows of the object k, respectively.

For a given edge Ð⇀kj, the residual information of i carried by the flow fkj , fkj , is estimated by:

fkj = rik ⋅wkj

J-operator

To estimate the residual information at a given object, we introduce the join operator (J-operator) over a
set of flows.

Definition 5 (Join). In a viewpoint network Gi
I , for a given set of flows F = {fk1j1 , fk2j2 , . . ., fknjn

}. The
join operator ⊕ over F, denoted by ⊕F = fk1j1 ⊕ fk2j2 ⊕ . . . ⊕ fknjn

, estimates the residual information of i

in the union of these flow.

Now, we are ready to formalize the problem of estimating the residual information rij ; we re-define it in
an iterative manner:

{ rij =⊕k∈Pj
fkj

fkj = rik ⋅ wkj
(2)

Clearly, the J-operator is the key to estimating rij . Following, we detail its implementation. As we
have discussed above, applying the J-operator over a set of flows F returns the estimation of the residual
information of i in the union of these flows. First notice that we can establish the following bounds. Note
that we use f to denote a flow and f its carried residual information.

max
f∈F

f ≤ ⊕F ≤min{∑
f∈F

f,1} (3)

We note that the lower bound is tight, as proved in the next theorem:

Theorem 1. The lower bound of ⊕F, maxf∈F f, is tight.

Proof. Without loss of generality, we use an interval to represent the residual information of the object i.
Initially, the complete information is [0,1].

We construct a viewpoint information network G
i
I as follows. At each object k, we let the residual

information of i passed to a direct descent j of k along the edge Ð⇀kj be [0, rik ⋅wkj].
It can be derived that under this setting, for any two flows, we can strictly compare them based on their

residual information, i.e., one contains the other. Therefore, the union of these flows carries the same amount
of information as the maximum flow f∗ = argmaxf∈F f.

While the lower bound is tight, one can essentially obtain better upper bound based on the following
observation: for two flows f and f ′ going out of an object k, clearly, the residual information of the union

9

original

c1 c2 c1 c2

p1 p2 p1 p2 p1 p2

k

ǩ

split

ǩ

k̂k̂ k̂

ǩ

detach merge

c1 c2

Figure 3: Operations for estimating effective flows, where the effective flows on blue links are materialized,
and those on red links are being updated.

of fkj1 and fkj2 can not exceed that of k; hence, fkj1 ⊕ fkj2 ≤ min{rik, fkj1 + fkj2}. We intend to establish
tighter upper bound by exploiting this observation.

We would like to contrast the J-operator with that of estimating maximum flow in a regular flow network.
(1) In a regular flow network, each link is associated with a capacity, the maximum allowed flow through this
link; while in an information network, instead, each link is associated with a degradation rate. (2) In a flow
network, one aims at maximizing the flow from a source to a destination; while in an information network,
we attempt to estimate the maximum residual information of a source object at a destination object, based
on the network topology. (3) The flows in our setting are duplicable. For an incoming flow to an object,
one may create an identical copy of it for each outgoing link. (4) The flows in our setting are joinable; each
incoming flow can be considered a subset of a universe, and a set of flows can be joined into a new flow. To
the best of our knowledge, no previous work has studied the present problem.

We first introduce a fundamental concept, cut.

Definition 6 (Cut). In a viewpoint information network Gi
I , for a set of flows F containing no inheritance

relationship between any pair of flows, let all the flows in F inject into a virtual sink j. A set of edges are
called a cover of F if they separate i and j.

Intuitively, all the flows of F injected into j must go through a cut of F; particularly, F itself is a cut for F.
Under this framework, estimating the upper bound of ⊕F can be re-formulated as finding a cut that carries
the minimum effective flows with respect to F. By effective flow, we refer to the amount of information that
is responsible for generating F. We use f to denote the effective part of a flow f . Clearly, for each f ∈ F, f = f.
Next, we show how to estimate the upper bound of effective flow carried by each other edge.

We achieve this objective in a bottom-up manner; starting from F, we chase back to the root i. At each
step, we consider the following three operations, as illustrated in Figure 3:

• detach. For each object k encountered in the computation, we detach k into two nodes k̂ and ǩ, and
connect them with an edge

Ð⇀
k̂ǩ; k̂ is connected to the parent flows of k while ǩ is connected to the child

flows of k. The flow on
Ð⇀
k̂ǩ, f

k̂ǩ
, is set as rik.

• merge. Given a set of flows going out of an object k (now ǩ), {fkc1
, fkc2

, . . . , fkcn
} whose effective parts

have been estimated, we update the effective flow of
Ð⇀
k̂ǩ using the following rule:

f
k̂ǩ
=min{f

k̂ǩ
,

n

∑
l=1

fkcl
}

That is, the effective flow on
Ð⇀
k̂ǩ can not exceed the sum of the effective parts in all its child flows.

• split. Given a set of flows injected into an object k (now k̂), {fp1k, fp2k, . . . , fpmk}, we update the
estimation regarding their maximum effective flows using the rule as follows:

fplk
=min{fplk, f

k̂ǩ
} (1 ≤ l ≤m)

Intuitively, the effective flow on each incoming link can not exceed that on
Ð⇀
k̂ǩ.

10

Clearly, if the effective flows on all the links have been estimated, finding the upper bound of ⊕F is
equivalent to finding a minimum cut of this effective-flow graph, where the weight of an edge is defined as
its effective flow. Now, we show how to construct such an effective-flow graph using the operations we have
defined above.

Algorithm 1 sketches the construction of J-operator. It mainly consists of two parts: (1) constructing
the effective-flow graph, and (2) finding the minimum cut of the graph. It iterates over the source objects of
the flows in F which is subjected to update. At each iteration, it picks the source object k with the largest
topological order (the head of the list); it first detaches k, merges the flows going out of k in the current
list F, and then splits the flows injected into k; it then updates the set of source objects S and the current
flow list F. In the second phase, it invokes the process of finding the minimum i − j cut of the network.
It is noticed that in the first phase, the algorithm visits each flow (each link) at most once, and in the
second phase, a max-flow min-cut procedure, e.g., Edmonds-Karp algorithm [12], features a complexity of
O(∣Vi

I ∣ ⋅ ∣E
i
I ∣

2), which therefore dominates the overall complexity.

Input: viewpoint network G
i
I , a set of flows F

Output: upper bound of ⊕F
create a virtual object j in G

i
I collecting all flows in F;

S ← sources of F;
// topological sorting
sort S in a decreasing order;
while S ≠ ∅ do

k ← pop the head of S;
// detach + merge + split operation

detach k;

V
i
I ← V

i
I ∖ {k} ∪ {k̂, ǩ};

merge CF k ∩F;
split PF k;
// update S and F

F ← F ∖ CF k ∪ PF k;
S ← S ∪ sources of PF k;

// remove irrelevant objects

remove from G
i
I all unvisited objects;

// min-cut process

find the minimum i − j cut w;
output w as the upper bound of ⊕F;

Algorithm 1: J-operator.

E-operator

In addition to the upper and lower bounds of the union of a set of flows F, we might also be interested in
the expected value of ⊕F. Unfortunately, exact evaluation of E(⊕F) is equivalent to solving a maximization
problem in a graphical model. It is known that performing exact or approximately (at least for relative
error) inference in a graph beyond tree is NP-hard [7]. Here, we present a simple yet effective sampling
based solution, which we refer to as the E-operator.

The construction of E-operator is sketched in Algorithm 2. First, for the set of flows F with no inheritance
relationship, we create a virtual sink j, and attempt to estimate the residual information at j, rij = ⊕F.
One initializes a N-bit vector with all ones at i, and passes the vector through the network following a
breath-first-search paradigm. At each node k, one unions the vectors sent through each incoming link as
the residual information at k; one then duplicates the residual information for each outgoing link of k,
flips certain one-bits according to the degradation probability, and passes the residual information to the
corresponding descent. The amount of residual information at the target object j is estimated by the number
of one bits received by j. It is clear that each edge is visited at most once following the breath-first-search
paradigm, thus leading to the overall complexity as O(∣Ei

I ∣ ⋅ N).
The following theorem establishes the bound of number of bits needed to guarantee sufficiently accurate

estimation.

Theorem 2. For a set of flows F with a virtual sink j, let rij and r̂ij be the exact and estimated residual

11

Input: viewpoint network G
i
I , a set of flows F, N

Output: expectation E(⊕F)
create a virtual object j absorbing F;
initialize a N-bit one vector vi at i;
A ← {i};
// breach-first-search

k ← pop the head of A;
while true do

if k has ancestor then vi ← N-bit zero vector;
for each incoming link

Ð⇀
hk do

vk = vk ∪ vhk;

if k = j then break;
for each outgoing link

Ð⇀
kh do

vkh ← vk;
flip “one” bits in vkh with probability (1 −wkh);
pass vkh to h;
if h has not been visited then push h to A;

k ← pop the head of A;

output number of one-bits in vj divided by N as E(⊕F);

Algorithm 2: E-operator.

information, respectively. One needs N ≥
1

2ǫ2
ln(2

δ
) bits in order to guarantee that the probability that ∣̂rij−rij ∣ ≥

ǫ lies below δ.

Proof. Consider each bit Xi in the vector vj as a random variable. Clearly, E(Xi) = rij , and Xi ∈ {0,1}.
Therefore, applying the Hoeffding’s inequality, we have

p[∣̂rij − rij ∣ ≥ ǫ] ≤ 2 exp(−
2ǫ2N

2

N
) = 2 exp(−2ǫ2N)

Let p[∣̂rij − rij ∣ ≥ ǫ] ≤ δ, one can thus obtain the lower bound for N: 1
2ǫ2

ln(2
δ
).

4.2 Operations for Dynamic-Flow Network

Now, we proceed to examining the atom operators necessary to support the operation for dynamic-flow
networks, e.g., social network. Compared with a static network, e.g., information network, a dynamic
network demonstrates several critical features. 1) The information propagation behavior of each node is not
deterministic; rather, it only statistically follows certain pre-defined formations. 2) The network structure
is subjected to frequent updates, e.g., new individuals (subjects) are injected into the network, or the social
relationships among existing individuals are frequently updated; clearly, the network evolution should be
taken account in designing and implementing the atom operators.

We start with introducing the detailed modeling of social network. In contrast with the information
network, the social network is a more “free-style” graph; for example, no strict dependency relationships
exist in such a network. Formally,

Definition 7 (Social Network). We model a social network as a general graph GS = (VS , ES) with VS

representing the collection of individuals (subjects) and ES representing the social relationships among them.
We assume that the relationship between any two individuals i and j, denoted by rij is drawn from a finite
set R. Also, note that the relationship between two individuals could be symmetric, e.g., friend-to-friend, or
asymmetric, e.g., advisor-to-advisee, in which case, rij ≠ rji.

Further, we assume that each type of relationship r ∈ R is associated with a information-disclosure
possibility, denoted by weight(r). For two individuals i and j with relationship r, weight(r) indicates the
possibility that i passes its possessed information to j. Note that in this paper, we focus on studying
the statistical behavior of the information propagation in the social network; hence, we define the leakage
quantity as a statistical quantity.

Now, we intend to model the information propagation behavior at a specific individual i. It is noted that
here we treat each piece of information as indifferent, while it is feasible to define finer granularity models

12

that take account of the classification levels of the information under consideration. Let N i be the set of
(outgoing) neighbors of the individual i. In addition, we consider a special neighbor, i itself.

For each j ∈ N i, let rij denotes the relationship type of the edge ij. We specify that the probability that
i passes the information through edge ij to another subject j, pij as:

pij =

⎧⎪⎪
⎨
⎪⎪⎩

weight(rij)
W

(j ∈ N i)
W−∑j′∈N i

weight(rij′)

W
(j = i)

(4)

where W is a global constant, which is specified in this way such that W ≥ maxi∈VS ∑j∈N i
weight(rij). The

quantity pij indicates the possibility that the information is propagated (leaked) from the edge ij; pii presents
the probability that i keeps the information to him/herself. Intuitively, if i has a number of “channels” to
propagate the information, then the probability that i keeps the secrets to him/herself would be low. We
will discuss in detail the optimal setting of W in Section ??. It is noted that, under this model, for a specific
type of relationship r, the probability of information propagation is fixed: weight(r)/W .

We attempt to estimate the probability that the information possessed by a subject i propagates (leaks)
to another subject j also belonging to the social network GS . Note that it is infeasible to exactly measure
this quantity, which depends on the subjects’ personalized behaviors and the contents of the information;
instead, we intend to study the statistical property of this quantity, based solely on the relationship types
and the network topologies.

We apply the concept of random walk to capture the leaking probability; ideally, if two subjects have many
common neighbors with good relationships, or they belong to a small yet tight community, the probability
that the information propagates from one to the other would be high. A rather intuitive way of capturing
this is the expected path length from one subject to the other during a random walk, which is called the
hitting time [4]. It tells how long it takes on average to hit the target subject from the source subject. This
measure is inherently robust to noise and exploits the inherent information encoded in the network structure.
It has been successfully applied in a variety of applications, including ranking in recommender network [8],
link prediction in social network [17], and image segmentation [19].

Nevertheless, for our purpose, hitting times suffer two major drawbacks, as observed in [17] : 1) they
tend to be small whenever one of the nodes has a high outgoing degree, and 2) they are sensitive to parts of
the graph that are far away from the nodes even when short paths between the nodes exist. Therefore, we
are interested in a truncated variant of random walks [20], which emphasizes the influence of “short-range”
neighbors. Specifically, a T -truncated hitting time considers only paths of length less than T .

Definition 8 (T -Truncated Hitting Time). The T -truncated hitting time between two nodes i and j,
denoted by hT

ij, measures the expected steps taken by a random walk starting from i to hit j for the first time.
It can be defined in the following recursive form:

h
T
ij = 1 + ∑

k∈N i

pik ⋅ h
T
kj (5)

where hT
ij is defined to be zero if i = j or T = 0.

Similar to the static-flow network, here, we are interested in two types of atom operators, merge and
diffuse. Intuitively, the merge operator calculates the propagation probability from all the possible sources
to a given destination; while the diffuse operator measures the propagation probability from a given source
to all the possible destinations.

M-operator

In the context of social network, for a given target subject j, the M -operator measures the information prop-
agation probability from a set of possible source subjects to j. More specifically, we define the propagation
probability between two subjects i and j, prop(i, j), reversely proportional to the hitting times between i

and j, formally

prop(i, j) =
T − hT

ij

T
(6)

13

w2
N (j,

−→
T)

←−
T

w3

w1

−→
T

k1

k2

i j

Figure 4: Decomposition of a walk from i to j.

Furthermore, we focus our attention to neighbors within L hops of j3. This formation therefore points to
measuring the hitting times from the subjects within L hops to the target one j. Formally, let HT denote
the hitting-time matrix, where an entry (i, j) indicates the T -truncated hitting time between the subjects i

and j. The M -operator for a target subject j essentially calculates the j-th column of HT , denoted by HT
⋅j .

We construct the M -operator based on the formulation of Equation (5). Let P denote the transition
matrix with each entry (i, j) as defined in Equation (4), and N

L
j be the neighbors within L hops of i.

Algorithm 3 sketches the structures of M -operator: it iterates for T rounds, and computes HT
⋅j based on

HT−1
⋅j and P .

Input: transition matrix P , target subject j

Output: j-th column of T -truncated matrix H
T
⋅j

// initialization

if i ≠ j then hold

ij ← T else hold

ij ← 0;

for h from 1 to T do

for i ∈ NL
j do

// iteration

hnew

ij = 1 +∑k∈Ni
p

ik
⋅ hold

kj ;

copy hnew

ij to hold

ij for i ∈ NL
j ;

set the i-th entry of HT
⋅j as hnew

ij for i ∈ NL
j ;

Algorithm 3: M -operator.

It can be proved that the computational complexity of Algorithm 3 is O(T∆∣NL
j ∣) where ∆ is the average

outgoing in the social network. We intend to cache partial reusable results for the D-operator that will be
introduced next while also take account of frequent updates. To this end, after the calculation of HT

⋅j , we
cache the results for subjects with hitting times below ↽Ð

T . This caching strategy enjoys a set of advantages:
1) the cached result is directly reusable to calculate HT

j ; it is insensitive to local change; further, we will
show in Section ?? that this strategy is amenable to indexing and pattern-based acceleration.

The subjects with hitting times less than ↽ÐT to the target j are referred to as the ↽ÐT -incoming neighbors
of j, denoted by N(j,↽ÐT), which will be reused in the construction of D-operator.

D-operator

For a given source subject the D-operator essentially intends to evaluate the i-th row in the hitting-time
matrix HT , denoted as HT

i⋅ . Similar to the M -operator, here, we pose the constraint that the paths only
consist of nodes within L hops to the target subject.

In contrast of the M -operator, however, there is no straight solution to evaluate one row in the hitting-
time matrix. In order to exactly evaluate HT

i⋅ , one is potentially forced to compute the entire matrix HT ,
which features the computational complexity af O(∣VS ∣3).

Here, we introduce an efficient construction of D-operator based on a random sampling scheme and
the cached result generated by the M -operator. Recall that for a given target subject j, the M -operator

3We pose this constraint to make both M -operator and D-operator computationally feasible. We need to give some expla-

nations here.

14

generates and caches the truncated hitting times for the (incoming) neighbors with hitting times below ↽Ð
T to

j. Now, let us consider measuring the hitting time for a given source subject i to a given target j. Clearly,
if i has the hitting time to j below ↽Ð

T , the information could be simply looked up in the cache; we focus on
the case that hT

ij >
↽Ð
T .

Let us consider a T -step walk w starting from i: we divide w into two parts, a part with length Ð⇀T which
satisfies Ð⇀T +↽ÐT = T and the rest part with length ↽ÐT . The following two cases apply: 1) w hits j in the first Ð⇀T
steps; 2) w hits a node k (k ≠ j) at the Ð⇀T -step. We define the following hitting probability, pt

ik: 1) if k = j,
pt

ik represents the probability that w hits j for the first time at the t-th step; 2) if k ≠ j, pt
ik indicates the

probability that w does not hit j in the first Ð⇀T steps, and lands at k at the Ð⇀T -th step. It is clear that the
hitting probability satisfies that

Ð⇀
T

∑
t=1

p
t
ij + ∑

k≠j

p
Ð⇀
T
ik = 1

We can then reformulate Equation 5 in the following form:

h
T
ij =

Ð⇀
T

∑
t=1

t ⋅ pt
ij + (1 −

Ð⇀
T

∑
t=1

p
t
ij) ⋅

Ð⇀
T + ∑

k≠j

p
Ð⇀
T
ik ⋅ h

↽Ð
T
kj (7)

It is noted that in the formation above, the quantity h
↽Ð
T
jk has been generated an cached by the M -operator

for all k: if k ∈ N (j,↽ÐT), the result is cached; if k /∈ N (j,↽ÐT), it is regarded as ↽ÐT . The key to this formation
is therefore to estimate pt

ik for every k ∈ N (j,↽ÐT) and t ∈ [1,
Ð⇀
T]. Next, we present a sampling scheme that

achieve this with results reusable for all j ∈ VS . Algorithm 4 sketches the sampling process, which we refer
to as the S-operator. Essentially, it runs N

Ð⇀
T -step independent walks, and truncate a walk if it hits j; then,

it counts the number of walks that hit a specific node, and the taken steps. Clearly, the set of walks W is
reusable for all j ∈ VS .

Input: start node i, end node j, step limit Ð⇀T , neighborhood N(j,↽ÐT)
Output: pt

ik for every k ∈ N(j,↽ÐT) and t ∈ [1,
Ð⇀
T]

run N
Ð⇀
T -step walks W starting form i;

for each walk w ∈ W do
truncate w at hitting j;

// initialization

ht

ij ← 0 for t ∈ [1,
Ð⇀
T − 1];

h
Ð⇀
T

ik ← 0 for k ∈ N (j,↽ÐT);
// e(w) denotes the last node of a walk w

for each w ∈ W do

if ∣w∣ = Ð⇀T then

if e(w) ∈ N (j,↽ÐT) then h
Ð⇀
T

ie(w) = h
Ð⇀
T

ie(w) + 1/∣W ∣;

else

h∣w∣
ik

= h∣w∣
ik

+ 1/∣W ∣;

Algorithm 4: S-operator.

Now, we provide the bound on the number of samples needed in order to obtain sufficiently accurate
estimation.

Theorem 3. For any node k ∈ N (j,↽ÐT) and t ∈ [1,
Ð⇀
T], let p̂

t
ik be the estimation value of pt

ik. One needs
N ≥ 1

2ǫ2
ln(2

δ
) samples in order to guarantee that the probability of ∣p̂t

ik − pt
ik ∣ ≥ ǫ lies below δ.

Proof. Let Xr be a random variable such that Xr = 1 if the r-th walk hits k at the t-th step, or 0 otherwise.
It is noted that E(Xr) = pt

ik for r ∈ [1,N] and p̂
t
ik = ∑

N
r=1 Xr/N . Applying the Hoeffding bound, one has

p[∣p̂t
ik − p

t
ik ∣ ≥ ǫ] ≤ 2 exp(−

2ǫ2N2

N
)

Let p[∣p̂t
ik − pt

ik ∣ ≥ ǫ] ≤ δ, which gives us the lower bound of N : 1
2ǫ2

ln(2
δ
).

15

Bij

i j

Figure 5: Pattern-guided hitting time estimation.

We then examine how the error of hitting probability estimation impacts the estimation of the hitting
time hT

ij . Assume that the error ∣p̂t
ik − pt

ik ∣ is bounded by ǫ. From Equation 7, it can be derived that the

maximum influence occurs when ht
ij for all t ∈ [1,

Ð⇀
T] is decreased or increased by ǫ. We have the following

derivation:

∣ĥ
T

ij − h
T
ij ∣ ≤ −

Ð⇀
T

∑
t=1

t ⋅ ǫ + ǫ ⋅ Ð⇀T 2 + ǫ ⋅ Ð⇀T ⋅ ↽ÐT

= [(T −
1

2
) ⋅ Ð⇀T −

Ð⇀
T

2

2
] ⋅ ǫ

It can be derived that this error bound is monotonically increasing as ↽ÐT varies within the range of
[0, T − 1]. It also reveals a trade-off between the storage (maintenance) cost and the estimation accuracy of
hitting time: at one extreme of the spectrum, if one caches the hitting time for all nodes with hitting times
below T to every j ∈ VS (Ð⇀T = 0), the estimation error is minimized; at the other extreme of the spectrum, if
one completely relies on on-line estimation (Ð⇀T = T − 1), the storage cost is minimized, while the estimation
error also reaches its maximum. The optimal setting of Ð⇀T will be discussed in Section ??.

Now, we are ready to introduce the construction of D-operator, which is composed by two steps: 1) apply
S-operator to obtain the estimation of pt

ik for every k ∈ N (j,↽ÐT) and t ∈ [1,
Ð⇀
T]; 2) apply Equation 7 to the

estimated probabilities and cached results to estimate hT
ij .

4.3 Pattern-Guided Estimation

It is noted that D-operator developed in Section 4.2 features fairly low computational complexity; for large
graphs, however, one may expect even more efficient solutions that could roughly tell us if the information
leakage between a source and a sink is above certain threshold, based on certain local information only. Here,
we introduce local-pattern-based estimation which leverages the local graph patterns of the source and sink,
and gives quick estimation of the hitting time.

Intuitively, for given source i and sink j, we intend to find a set of “hot spots” Bij such that a walk from
i tends to go through each node k ∈ Bij with high probability; we then base the estimation of hT

ij on this set
of hot-spot nodes. This scenario is illustrated in Figure 5: three walks (all of length 3) hit the three nodes
in Bij , respectively.

More formally, let W be a set of walks starting from i, all of length of Ð⇀T (allowed to contain self-loops).
Assume that w ∈ W sequentially consists of the nodes w = (nw

0 , nw
1 , . . . , nw

Ð⇀
T
) where nw

0 = i. The occurrence

probability of w, p(w), is defined as: p(w) = ∏
Ð⇀
T
k=1 pnw

k−1nw
k
. Let e(w) be the last node of w. We have the

following bounds, derived from Equation (7):

h
T
ij ≤ ∑

w∈W

p(w) ⋅ (Ð⇀T + h
↽Ð
T
e(w)j) + (1 − ∑

w∈W

p(w)) ⋅ T (8)

Note that for clarity, we assume that none of the walks hit j; while it is fairly easy to remove this assumption
following the formation of Equation (7).

A moment of reflection shows that the sampling procedure of D-operator essentially attempts to enu-
merate all such possible walks and estimate their occurrence probabilities according to the numbers of their

16

appearances. To ameliorate the complexity of enumerating all possible walks, we intend to pick a set of
walks W such that every walk w ∈ W features high occurrence probability p(w), i.e., e(w) is a hot spot, then
we can obtain fairly tight estimation regarding hT

ij without strictly following the construction of D-operator.
We introduce a learning-based framework: 1) one first learns a set of walk patterns that feature high

occurrence probability and high appearance frequency in the network; 2) one then caches such patterns in a
fast lookup table structure; (3) on selecting the walks for a given source, one leverages the table as the guide
to efficiently find high-probability walks. We first introduce the concept of walk pattern.

Definition 9 (Walk Pattern). A walk pattern p is a sequence of relationship types (rp
1 , r

p
2 , . . . , r

p
Lp
), where

Lp (Lp ≤
Ð⇀
T) is its length. The occurrence probability of p, p(p), must be above a predefined threshold. A walk

w = (nw
0 , nw

1 , . . . , nw
Lp
) is an instance of p, if rnw

i−1nw
i
= r

p
i for all i ∈ [1, Lp]. The frequency of p is the number

of its instances in the network, which must be above a minimum support.

Note that a walk pattern does not include any self-loops; after obtaining a walk as guided by a pattern,
one needs to populate the walk to satisfy the expected length (Ð⇀T) by incorporating self-loops.

Discovering frequent substructures in graphs has been a prominent topic in graph mining, with a plethora
of tools available [11, 15, 23]; instead of re-inventing the wheels, here, we focus our discussion on how to
leverage the discovered walk patterns to perform fast estimation.

Like a set of strings, a set of walk patterns can be organized in a trie, with each edge representing a
relationship type. It is clear that each path (a set of edges) from the root to a (non-)leaf node represents a
pattern. At each node, we store the occurrence probability of the corresponding pattern. For a given source i,
following a breath-first search paradigm, we match the trie with the sub-network rooted at i. If a path from i

to k, (n0, n1, . . . , nLp
), matches a walk pattern p. Let p(ne) (e ∈ [0,Lp]) denote the probability of self-loop at

node ne. We increase the hitting probability hp
Ð⇀
T
ik by the following quantity (

Ð⇀
T −1
Lp−1
) ⋅p(p) ⋅(mine p(ne))(

Ð⇀
T −Lp).

Essentially, here we populate the pattern with (Ð⇀T − Lp) self-loops to satisfy the expected length Ð⇀
T , and

count all possible ways of adding self-loops as (
Ð⇀
T −1
Lp−1
). This formation provides a lower bound for the sum

of probabilities that the instances of p hit k. After enumerating all the matched patterns, we estimate hT
ij

based on Equation (8). We refer to this procedure as P-operator.

Input: source subject i, walk pattern trie T
Output: a walk with high occurrence probabilities
// initialization

w ← ∅, n ← i, t ← root of T ;
// ↔ denotes correspondence

while ∣w∣ < Ð⇀T do

if n↔ t in T then

// pattern guided sampling
// Rt denotes descendent relationships of t

for each n+ ∈ Nn do
if rnn+ appears in Rt then adjust p

nn+ ;

normalize outgoing probabilities {p
n⋅} if necessary;

sample n+ among Nn according to p
nn+ ;

append n+ to w;
// update current nodes

if n↔ t and n+ ↔ t+, a descendent of t then

t ← t+;

n ← n+;

output w;

Algorithm 5: P -operator (pattern-guided sampling).

The pattern-guided sampling procedure, which we referred to as the P -operator, is sketched in Al-
gorithm 5. It differentiates itself from the regular S-operator in that as walking in the network, it also
descends down the walk-pattern trie if possible (i.e., the walk so far follows certain pattern in the trie). On
selecting (sampling) an outgoing link, it favors those with relationship types appearing in the outgoing links
of the corresponding node in the trie, by adjusting their weights.

17

5 Implementation of Library

In this section, we show how to implement the library of operations based on the set of atom operators
introduced in Section 4. We are not arguing that this library is comprehensive; however, it is readily
extensible: new operations can be constructed by composing the atom operators.

operator input output

J (join) source i, sink(s) j(J) residual information of i at j(J)
M (merge) sink j sources I with high leakage to j

D (diffuse) source i sinks J with high leakage from i

X (cross) subjects J objects I accessible to J
A (alarm) subjects J alarms associated with J

R (refer) object j objects I depending (transitively) on j

R (refer) object j objects I depended (transitively) by j

Table 1: List of atom operators.

Following, we show how to compose these atom operators to form high-level operations. Using these
atom operators, we propose an expressive algebra framework. We use i, j, k to denote individual node, I,J,K

to represent sets of nodes. In addition to the atom operators introduced in Section 4, we further introduce
three simple operators, X-operator (cross), which returns accessible objects for given subjects following inter-
network links, R-operator (refer), which returns the referred (or referring) objects by a given object, and
A-operator (alarm), which returns the set of alarms associated with a set of subjects. Also, we use ⊗ to
denote the composition of two operators, and ⊙ to denote an iterator which iterates over the set of elements.
The list of operators is shown in Table 1.

Operation 1: Prior-Flow Estimation

J(i, X⊗ M(j))

For given object i and subject j, the operation of prior-flow estimation determines the potential infor-
mation leakage existing in the current socio-information network before an access request (j → i) is granted.
The estimation is implemented by composing J-, X- and M-operator. (1) One first applies M-operator to de-
termine the set of source subjects Ks featuring high information leakage measures to the sink subject j. (2)
One then applies X-operator over Ks to find the set of objects Ko accessible to Ks. (3) Taking Ko and i as
input, J-operator estimates the residual information of i at Ko. If the residual information is above certain
threshold, the flow is considered as informative enough for j to learn i via the network.

Operation 2: Posterior-Flow Estimation

J(i, X⊗ M(⊙D(j)))

For a given access request (j → i), the operation of posterior-flow estimation identifies the set of subjects
who possess potential access to i because of j. This operation is implemented in the following steps. (1)
One first applies D-operator to j to identify the set of sink subjects Ks featuring high leakage measures from
j. (2) For each k ∈ Ks, one follows the procedure of prior-flow estimation (without the inter-network link ij)
to estimate the flow between i and k. (3) One then removes those whose prior-flow estimations are above
certain threshold; that is, they have potential access to i even without j’s help.

Further, one might intend to evaluate if the grant of access will trigger any alarm, a violation of classi-
fication/clearance rule. Intuitively, if the posterior-flow estimation indicates that a subject k ∈ Ks now has
potential access to i, while class(i) > clear(k), an alarm is raised.

The second set of operations are designed to support updating social and information networks. In
particular, we focus our discussion on incremental update, e.g., new subjects/objects are added, new social
relationships are created, etc., and similar discussion applies to decremental update.

18

Operation 3: Adding A New Object

J(⊙R(j), j)

It is noted that each object may involve in multiple viewpoint information networks depending on its
dependency on other objects, e.g., one blog refers to multiple blogs; hence, on inserting a new object, one
needs to update all these affected networks. Here, we assume that the objects are inserted according to
their orders of dependency; that is, an object can be inserted only after all its dependent objects have been
inserted.

(1) Let j be the object to be inserted, one first applies R-operator over j to identify all objects Ko directly
or indirectly depended by j (closure). (2) For each object i ∈ Ko, one applies J-operator to estimate the
residual information of i at j. (3) Meanwhile, one creates a new viewpoint network with j as the single
node (root). Note that this operation affects the existing information flow between objects and subjects only
through adding new access upon j, which is implemented mainly by Operation 2.

Operation 4: Updating A Link in Information Network

J(i,⊙R(j))

This operation updates the degradation rate on a link Ð⇀lj of a viewpoint information network Gi
I . Clearly,

this will affect the estimation of residual information of i at all the objects dependent on this link. Starting
from j, one incrementally applies J-operator to update the estimation of residual information at affected
objects.

Operation 5: Adding A New Subject

A(D(j))

This operation differs from that of adding a new object in that in social network, information flows are
estimated dynamically; instead, we focus on evaluating if any access-control alarms are triggered. Specifically,
an alarm is an object-subject pair, which specifies that the subject must not access the object.

(1) One first applies D-operator over the to-be-inserted subject j to identify the set of subjects Ks with
high leakage measures from j. (2) One applies A-operator over Ks which returns a set of alarms A. (3) One
further evaluates if any alarm in A is triggered by following the procedure of prior-flow estimation.

Operation 6: Updating A Relationship in Social Network

This operation updates an existing relationship or adds in a new relationship in the existing social network.
Clearly, updating a link could potentially affect the estimation of information leakage for subjects within
T -step walk distance. The implementation of this operation is similar to that of Operation 5. The details
are omitted here.

6 Exploiting Network Evolution

So far, we have been focusing our discussion on estimating information flows for static snapshots of infor-
mation and social networks; while the actual networks may evolve over time, which makes it imperative to
take account of such dynamics in risk estimation. Typically, the evolution of information network is much
less evident, compared with that of social network; therefore, we simply apply Operation 3 and 4 introduced
in Section 5 to accommodate the update of information network, and concentrate on the impact of social
network evolution [16, 17]. In particular, in this paper, we focus on social link creation, given its much higher
frequency than other types of evolution.

To take account of the impact of network evolution, one needs to have the prediction model for the link
creation process. While studying the concrete prediction model is beyond the scope of this paper; in our
experiments, we adopt the model developed in [16], which focuses on predicting “triangle-closing” links that

19

0 100 200 300
0

1

2

3

4

degree of objects

fr
eq

ue
nc

y
(lo

g 10
)

0 100 200 300
0

1

2

3

4

degree of subjects

fr
eq

ue
nc

y
(lo

g 10
)

0 10 20 30 40 50
0
1
2
3
4

(lo
g 10

)

300 400 500 600
0

1

2

Figure 6: Degree distributions in information and social networks.

connect two-hop-away nodes. A missing mosaic that is imperative for our purpose is the determination of
relationship type for the newly created link. We intend to determine the relationship type based on the
types of the two links which it “shortcuts”. Specifically, we intend to estimate the probability that the link
ik takes on type r (r ∈ R) given the types of links ij and jk as rij and rjk, respectively, p(rik = r∣rij , rjk)
(r ∈ R).

In current implementation, we assume that p(rik ∣rij , rjk) follows a Multinomial distribution, with a Dirich-
let prior. Specifically, consider the social network GS at a specific point. Among triangles with two neigh-
boring (directed) links as rij and rjk, let αr denote the number of triangles with the rest link as r (r ∈ R).
The parameters µ of the Multinomial distribution is determined by the following Dirichlet distribution:

p(µ∣GS) =
Γ(α0)
∏r Γ(αr)

∏
r

µαr−1
r

where α0 = ∑r αr and µr corresponds to type r in the Multinomial distribution. As the network GS evolves,
one updates α accordingly.

With the help of this prediction model, we can now incorporate network evolution in estimating potential
information leakage. Specifically, when performing an atom operator at time-stamp t0, in addition to the
current materialized social network, we also consider all implicit links that could be potentially created in a
future time window W ; the information leakage measure, however, is temporally discounted. One possible
scheme could be: for a link that would be created at the time-stamp (t0 + t), its weight is discounted by a
multiplier of exp(1 − W

W−t
).

7 Empirical Evaluation

This section presents an empirical study of our network-centric access control model. The experiments
are specifically designed with the following three objects: 1) we intend to measure the potential risk of
information leakage incurred by ignoring the networking relationships among social subjects and information
objects; 2) we aim at evaluating the execution efficacy of the library of network-centric access control
operations; 3) finally, we attempt to show the impact of network evolution over access control risks and
how well our model responds to such network dynamics. We start with describing the datasets and the setup
of the experiments.

7.1 Experimental Setting

Our experiments used three datasets collected from real-life social and information networks.
The first dataset is an archive of tweet messages collected from the Twitter site, over the period of October

and November, 2009, which contains 18,617,827 tweets, involving 203,222 users.
The second dataset is the social network corresponding to a subset of IBM employees who participated in

the SmallBlue project [18]. The dataset consists of two snapshots of the social network as of January 2009
and July 2009, involving 41,702 and 43,041 individuals, respectively. The personal information regarding

20

Attribute Description

email email address of user s (identifier of subject)
url url o bookmarked by s (identifier of object)
tags bookmark tags made by s regarding o

time time-stamp that s accesses o

Table 2: Attributes and descriptions.

each individual includes his/her (i) work location, (ii) managerial position, and (iii) social connections with
other employees. We consider that such information in combination encodes the social relationships among
individuals. Specifically, for two individuals sharing a social connection, we define their relationship type
based on (i) if they share a same work location and (ii) their managerial relationship. The degree distribution
of the social network is shown in the right plot of Figure 6. It is noticed that the distribution follows a power
law-like function fairly strictly.

The third dataset is an archive of bookmarks tagged by the individuals appearing in the first dataset,
collected by Dogear [3], a personal bookmark management application that as well supports sharing the
community’s bookmarks. The archive contains 20,870 bookmark records, relevant to 7,819 urls. Attributes
of interest to us are listed in Table 2; in particular, email and url uniquely identifies a user (a subject) and
a webpage (an object), respectively, and tags encode the semantics of the object. Let Ti be the collection
of tags suggested by users regarding i. We consider the set of objects Oi = {j∣Tj ∩ Ti ≠ ∅} as the objects
depending on i. For a given object i, we construct its viewpoint information network Gi

I as a multi-layered
network, the objects of each layer corresponding to a maximum possible cover of Ti, and the objects are
selected in a greedy manner to maximize the current cover. There is a directed link between two objects k

and j at two adjacent layers if Tk ∩ Tj ≠ ∅, and the weight wkj is defined as wkj = ∣Tk ∩ Tj ∣/∣Tk∣. The degree
distribution in such viewpoint networks is shown in the left plot of Figure 6. Compared with social network,
this distribution demonstrates more irregular patterns; certain high degrees appear with high frequencies.

All the core algorithms (the library of operations) are implemented in Java. The experiments are con-
ducted on a workstation with 2.80GHz Intel Celeron CPU and 512 MB RAM, running Windows XP.

7.2 Experimental Results

Validity of Leakage Model

In the first set of experiments, we use the Twitter dataset to validate the covert flow model on real subject
and object network platform. We set up the experiments as follows. On Twitter, the subject network is
constructed according to the following/followed relationships: one user (subject) si opts to follow another
user sj if si wishes to receive messages (tweets) from sj ; also, si can “leak” (re-tweet) the tweets from sj ,
which may be further leaked by followers of sj . Clearly, such leakage can happen between two remotely
connected subjects due to the network effects. We intend to apply the covert flow model to quantify the
likelihood that the information (tweets) possessed by one subject leaks to another subject in the network,
and compare the estimated covert flow with actually measured leakage (number of re-tweets). We use the
data corresponding to October, 2009 to collect the overall statistics regarding each subject, particularly the
number of received tweets and among them the number of re-tweets, which we use to set up the parameters
{w} and {c} in Section ??. We apply the model to predict the leakage likelihood for the period of November,
2009.

For a specific pair of users si and sj , we consider the severity of leakage as the number of re-tweets sj

posts with original tweets from si during the period of November, 2009. For each observed leakage severity,
Figure ?? shows the corresponding estimated covert flow (leakage likelihood) averaged over pairs of users
demonstrating such severity. One can notice the high correlation between the estimated flow and the actual
leakage severity, indicating that the covert flow model captures the essence of leakage patterns. Further, we
look at individual level comparison of estimated covert flow and observed leakage severity. We randomly

21

0

1

2
(User 50838183)

0

1

2

0
1
2
3

(User 69765279)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0
1
2
3

User id space

measured leakage

estimated flow

estimated flow

measured leakage

Figure 7: Individual level comparison of estimated covert flow and observed leakage severity.

0.2
0.4

0.6
0.8

1

1.21
1.22

1.23
1.24

1.25

x 10
12

0

0.02

0.04

0.06

0.08

Leakage likelihoodTime−stamp (ms)

A
ve

ra
ge

 c
ov

er
t f

lo
w

Figure 8: Covert information flows measured at different time-stamps.

pick two (sources) users, measure the leakage severities to the rest users, and compare the results with the
suggested likelihood by our model. As shown in Figure 7, it is noticed that the predicted “peaks” match well
with the actually measured results. Note that we are not attempting to model the actual leakage quantity
(e.g., the number of re-tweets here); instead, our model strives to offer commensurate leakage indication
which may be configured to fit application-dependent semantics. The concrete mechanism is beyond the
scope of this paper.

Impact of Covert Flow

Next, we intend to evaluate the impact of covert flow existing in the social and information networks over
the risk estimation in access control, more specifically, the risk of information leakage that would be under-
estimated if ignoring the network effects among subjects and objects.

We use the SmallBlue and Dogear datasets to construct the subject-object networks (details in Sec-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

Covert flow (likelihood 0.05)

F
re

qu
en

cy

Figure 9: Distribution of covert flows of 5K randomly generated requests (leakage likelihood 0.5).

22

1.21 1.22 1.23 1.24 1.25

x 10
12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

po
te

nt
ia

l i
nf

or
m

at
io

n
flo

w

time−stamp (ms)

average flow
quadratic fitting
deviation

Figure 10: Potential information flows measured at different time-stamps.

tion ??). We consider an bookmarking action as an access; hence, each access request q is associated with a
time-stamp, tq. At each specific time-stamp t∗, we assume that the set of requests with time-stamp smaller
than t∗, {q∣tq ≤ t∗}, have been granted. At each t∗, we randomly generate a set of access requests, and
evaluate the covert flows with respect to these requests.

More concretely, we consider the history from 12/01/2005 to 07/20/2009, 20,870 access requests in total.
At a step of 1,000 access requests, we evaluate the covert flows for 5K randomly generated requests. The
trend of average covert flow with respect to time-stamp and leakage likelihood is plotted in Figure 10. It is
noticed that as more requests are granted, the average covert flow increases significantly. This is explained
by that the newly-created inter-network links between object and subject networks generally increase the
covert flow capacity between the two networks, which also implies the non-negligible impact of the network
effects among subjects and objects over access control risk estimation.

We look further into the distributions of covert flows of subject-object pairs. For the time-stamp
07/20/2009, we measure the covert flows for 5K randomly generated requests. Figure 11 shows the re-
sult. The distribution demonstrates a long tail, which is attributed to the heterogeneity of subject and
object networks; that is, there exist “hot” spots in both networks, which feature large covert flows; the
existence of “hot” spots necessitate careful risk estimation before making access control decisions.

Risk of Potential Information Leakage

In this set of experiments, we intend to evaluate the impact of potential information flow existing in the
social and information networks over the risk estimation in access control infrastructure, more specifically,
the risk of information leakage that would be under-estimated if ignoring the networking relationships among
social subjects and information objects.

Specifically, each access request q is associated with a time-stamp, tq. For each specific time-stamp t∗,
we assume that the set of requests with time-stamp smaller than t∗, Qt∗ = {q∣tq ≤ t∗}, have been granted.
At each t∗, we randomly generate a set of access requests; with respect to these requests, we evaluate the
potential information flows (in the scale [0,1]).

More concretely, we consider the access history from 12/01/2005 to 07/20/2009, 20,870 access requests
in total. At a step of 1,000 access requests, ‘we evaluate the potential information flows for 0.5k randomly
generated requests. The trend of average information flow and its deviation are plotted in Figure 10. It
is noticed that as more requests are granted, the average potential information flow increases significantly.
This is explained by the fact that the newly-created inter-network links between information and social
networks generally increase the flow capacity between the two networks, which also demonstrates the non-
negligible impact of the networking relationships among information and social networks over access-control
risk estimation. It is also interesting to notice the increasing deviation of potential information flow, which
is attributed to the heterogeneity of social and information networks. That is, there appear “hot” spots in
both networks, which feature large incoming or outgoing information flows; while, correspondingly, “cold”

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

nu
m

be
r

of
 o

bj
ec

ts

outgoing information flow

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

nu
m

be
r

of
 s

ub
je

ct
s

incoming information flow

Figure 11: Distributions of outgoing information flows (for objects) and incoming information flows (for
subjects).

2 3 4 5 6 7 8 9

0.1

0.15

0.2

number of target objects

ex
ec

ut
io

n
tim

e
of

 J
 (

m
s)

2 3 4 5 6 7

0.1

0.15

0.2

number of hop radius

2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

number of target objects

re
la

tiv
e

es
tim

at
io

n
er

ro
r

2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

maximum hop radius

Figure 12: Average execution time and relative estimation error per operation for varying maximum hop
radius and number of objects. Default parameter setting: maximum hop radius 6, number of target objects
5.

spots feature insignificant flows.
To validate our conjecture, we look further into the distributions of outgoing (for objects) and incoming

(for subjects) information flows. In specific, for the time-stamp 07/20/2009, we evaluate the potential
information flows for 2,000 randomly generated access requests, and calculate the average information flows
for the involved objects and subjects. Figure 11 shows the distributions of outgoing and incoming information
flows. It is clear that both distributions feature long tails, and the majority of the weights concentrate around
the flow rate of 0.35. The existence of “hot” spots necessitate careful risk estimation before making access-
control decisions.

Efficacy of Risk Estimation Operations

In the second set of experiments, we are interested in measuring the efficacy of the proposed risk-estiamtion
operations. We intend to study how these operations scale with (1) the network complexity (in terms of
intra-network and inter-network links), (2) the required estimation accuracy, and (3) the trade-off between
space and time complexities.

Each operation in the library is constructed by composing a set of atom operators; meanwhile, the three

24

0 1 2 3 4
0

0.01

0.02

0.03

0.04

cached walk length L
c

re
la

tiv
e

es
tim

at
io

n
er

ro
r

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

cached walk length L
c

ex
ec

ut
io

n
tim

e
(s

)P
P*
D

Figure 13: Average execution time and relative estimation error of D-operator and P-operator under varying
cached walk length Lc. Default setting: Lm = 5, N = 1000, minimum support = 0.05.

0.2 0.6 1.0 1.4 1.8
0

0.005

0.01

0.015

0.02

sample size N (103)

re
la

tiv
e

es
tim

at
io

n
er

ro
r

0.2 0.6 1.0 1.4 1.8
0.0

1.0

2.0

3.0

4.0

5.0

sample size N (103)

ex
ec

ut
io

n
tim

e
of

 D
 (

s)
Figure 14: Average execution time and relative estimation error of D-operator under varying sample size N

(Lc = 3).

factors above influence each atom operator in significantly different manners, making it fairly difficult to
directly characterize their overall impact over the scalability of each operation. Hence, instead of attempting
to directly study the efficacy of each operation, we focus our discussion on the level of atom operators. Due
to the space limitation, in the set of atom operators {J, E, M, D, P}, we particularly concentrate on J-, D- and
P-operator, given the more complicated trade-offs involved in their implementation.

We start with J-operator, which estimates the upper bound of residual information regarding a source
object i in a set of target objects J . We measure the scalability of J-operator along two orthogonal dimensions:
(1) the cardinality of J , i.e., the number of targets, and (2) the maximum hops of J to the source i. In
the first case, for a given i, we fix the maximum hops (6 in our current implementation), randomly generate
certain number (∣J ∣) of sinks, and perform J-operator. In the second case, for a given i, we fix the cardinality
of J (5 in our current implementation), but vary the maximum hops.

The result is shown in Figure 12. It is clear that the average execution time of J-operator is an increasing
function of both the number of target objects and maximum hop radius and ; however, the growth rates in
both cases are non-significant. For example, as the maximum hop radius grows from 2 to 7, which virtually
includes the whole information network, the average execution time only increases from 0.1 to 0.2 ms.

In both cases, we also measure the relative estimation error of J-operator. Given a source object i and

a set of target objects J , let TJ = ∪j∈J T j denote the set of tags associated with J . We use r =
∣TJ ∩T i ∣

∣T i∣
as

the exact residual information of i existing in J . Let r′ be the estimated upper bound of r. The relative
estimation error is measured by (r′ − r)/r. The bottom row of Figure 12 shows the relative estimation error
as functions of the number of target objects and maximum hop radius. It is noticed that the relative error is
a decreasing function of the cardinality of target objects, and the deviation shrinks as well. This is explained
by the fact that the set of target objects is selected at random, a larger cardinality implies more residual
information, i.e., the estimated upper bound appoximates the exact value better. Meanwhile, as expected,
the estimation upper bound tends to become looser as the maximum hop radius increases, though with
non-significant growth rate.

Given a social network and a given i, D-operator and P-operator essentially evaluate the i-th row in the
hitting-time matrix HT , HT

i⋅ . D-operator is constructed by composing a random sampling scheme and the
cached information generated by M-operator; while P-operator leverages the previous learned walk patterns

25

0.02 0.04 0.06 0.08 0.10
0

0.02

0.04

0.06

0.08

minimum support

re
la

tiv
e

es
tim

at
io

n
er

ro
r

0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

minimum support

ex
ec

ut
io

n
tim

e
of

 P
 (

s)

Figure 15: Average execution time and relative estimation error of P-operator under varying minimum
support (Lc = 3).

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

degree of attached subjects

to
ta

l #
 o

f n
ew

 li
nk

s

0 50 100 150 200 250
0

10

20

30

40

50

60

70

degree of attached subjects

av
g

of

 n
ew

 li
nk

s

0 10 20 30 40 50
0

1000

2000

3000 avg # of new links
linear fitting

Figure 16: Total and average number of new relationships with respect to the degrees of their connected
subjects.

to simulate the sampling procedure. In this set of experiments, we intend to evaluate the impact of the
following factors over the execution efficiency and estimation accuracy of D-operator: (1) for fixed maximum
walk length Lm, the cached walk length Lc (by M-operator), (2) the required estimation accuracy (ǫ, δ in
Theorem 3), which is transformed to the sample size N , and (3) the minimum support for the learned walk
patterns (for P-operator). The default setting of the parameters is: Lm = 5, ǫ = 0.02, δ = 0.2, Lc = 3, and
minimum support = 0.05.

The impact of Lc is shown in Figure 13, where P, P
∗ and D represent P-operator only, P-operator plus

cached information, and D-operator, respectively. As expected, for fixed walk length, the cached intermediate
result (Lc) significantly boosts up the estimation accuracy for both D and P. For example, for D-operator,
when Lc reaches 4, the estimation error is almost non-noticable. Meanwhile, its impact over the execution
time is less significant for D-operator than that for P-operator. This is explained by the fact that in D, each
walk is executed completely until it hits the target or the maximum walk length is reached, while in P, the
search stops once it hits a cached node. One can also notice that P-operator achieves estimation accuracy
comparable to that by D-operator, but with considerable saving on execution time.

Further, we study the influence of sample size N over the performance of D-operator. The sampling
operation dominates the complexity, which is demonstrated in Figure 14. Also, the sample size has non-
neglectable impact over estimation accuracy. We observed that in most cases, N = 2 ∼ 3k provides sufficient
sample size. The impact of minimum support over P-operator is shown in Figure 15. It is interesting to
notice that the estimation error demonstrates a “V” shape as the minimum support varies from 0.02 to 0.1.
It is explained by that when the support is extremely low, a large number of trivial patterns are preserved,
resulting in too many low-quality matches; while the support is overly high, only few extremely frequent
patterns are maintained, leading to a number of missing matches.

Incorporation of Network Evolution

One critical feature that makes our access control paradigm useful is its capability of incorporating predicted
network evolution in current risk estimation procedure. While measuring the accuracy of prediction model
is orthogonal to this paper, here, we measure the tolerance of our model against prediction error; that is,
given reasonable prediction accuracy, how well can our model produce accurate estimation in terms of overall

26

1%

51%

22%

16%

8%1%

infinity 2 3 4 5 6
0

0.002

0.004

0.006

0.008

0.01

hops of attached subjects

pr
ob

ab
ili

ty
 o

f a
tta

ch
m

en
th = inf

h = 2
h = 3
h = 4
h = 5
h = 6

exp fitting
h = infinity
h = 2 ~ 6

Figure 17: Fractions of new relationships with respect to the hops of their connected subjects and the
attachment probabilities, where ∞ indicates that two subjects are disconnected in the original network.

baseline 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

precision of prediction model

re
la

tiv
e

er
ro

r
of

 fl
ow

 e
st

im
at

io
n

baseline 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

recall of prediction model

re
la

tiv
e

er
ro

r
of

 fl
ow

 e
st

im
at

io
n

Figure 18: Relative estimation error with respect to the precision and recall of 2-hop link prediction model,
where no prediction is employed in the baseline approach.

information flow.
Specifically, we take two snapshots of the social network as of January 2009 and July 2009, and consider

the set of individuals appearing in both snapshots as the pool of subjects, which contains 32,028 individuals.
From January 2009 to July 2009, 81,592 new relationships were created among these subjects. Figure 16
demonstrates the characteristics of these newly created links. It is noticed that 1) a majority of new
relationships are attached to subjects with low degrees, which is possibly attributed to the power law-
like distribution of degrees, and 2) the average number of new links per subject grows approximately linearly
with respect to its current degree, i.e., “the rich get richer”. Further, we study the locality of edge attachment
with result shown in Figure 17. We measure the number of hops each new relationship spans, i.e., the length
of the shortest path between the attached subjects. The left plot shows the fraction of new relationships
corresponding to each hop distance h, and the right one normalizes this count by the total number of subjects
at h hops, which counters the impact that the number of long-range neighbors grows exponentially. It is
clear that in both plots, the fractions of new relationships decays exponentially in the hops, and a majority
(over 51%) of new relationships span 2 hops, i.e., triangle-closing relationships.

Given such a large fraction of triangle-closing relationships, we assume a prediction model, e.g., [16],
focusing on predicting 2-hop spanning relationships. We intend to study the robustness of our estimation
model against the prediction error incurred by the prediction model. Specifically, for 0.5K randomly gener-
ated access requests, we measure the latent information flow over the snapshot social network as of July 2009
(exact flow), and compare it with that measured over the snapshot social network as of January 2009, in
conjunction of the prediction model (estimated flow). We evaluate the relative estimation error as functions
of the precision and recall of the prediction model, with default recall and precision set as 0.5. The result
is shown in Figure 18. In both cases, the estimation made by baseline approach (without prediction) over
the snapshot of January 2009 considerably deviates from that over the snapshot of July 2009; the relative
estimation error reaches around 0.9. Employing the prediction model significantly improves the accuracy
of information flow estimation; even with recall as 0.2, the average error is reduced around 0.2. However,
as the precision (or recall) increase, the further accuracy improvement is slow; this is explained by that the
model only considers 2-hop links, while other types of links account for 49% of new relationships.

27

8 Conclusion

In this paper we have described a novel network-centric access control paradigm that explicitly accounts for
network-effects in information flow. We have shown that our approach is flexible and scalable by developing a
suite of composable operators that can estimate prior and posterior information flow on social and information
networks. We believe that examining access control models in terms of prior and posterior flows offers
fundamentally new insights and opens up new possibilities in risk-based access control.

While our approach is rich and flexible, several challenges need to be addressed before it can be readily
adopted. (1) Measures of information flow on each network edge (subject-subject and object-object). We
have shown that several traditional access control models (such as MLS, RBAC, Chinese-wall like policies,
etc.) may be encoded by suitably introducing 0/1 edge weights in our model; however, in order to meet our
ambitious objective of risk estimation, it may be required to assign fractional edge weights (say, based on
the rate of information diffusion between two subjects in the social network). While there may be several
measures that can be used to derive such fractional weights, it is challenging to quantify such measures and
to identify which of these measures are most effective. (2) Sensitivity to social network. We believe that our
proposed approach is robust against small errors inherent in social network data; however, formal robustness
analysis of our proposal is essential to quantify the efficacy of our approach when social/information network
may be corrupted by an adversary. (3) Risk estimation usage. While our approach facilitates risk estimation,
it may be quite challenging to use such risk estimates in performing access control decisions (e.g., do we use
a threshold policy on risk estimates, if so, what is the right threshold; do we use a budget based policy that
attempts to bound aggregate risk estimates, etc.).

References

[1] British spy chief’s cover blown on Facebook: http://www. reuters.com/article/internetnews/idustre56403820090705.

[2] facebook - Press Room: http://www.facebook.com/press.

[3] Lotus Connections - Dogear: http://www.ibm.com/dogear.

[4] D. Aldous and J. A. Fill. Reversible markov chains, 1994.

[5] Anonymous. Network-centric access control - technical report, 2009.

[6] D. E. Bell and L. J. LaPadula. Secure computer system: unified exposition and multics interpretation.
In MITRE Corporation, 1976.

[7] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., 2006.

[8] M. Brand. A random walks perspective on maximizing satisfaction and profit. In SIAM’05: Proceedings
of SIAM Conference on Optimization, 2005.

[9] D. D. F. Brewer and D. M. J. Nash. The chinese wall security policy. IEEE Symposium on Security
and Privacy, 0:206, 1989.

[10] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S. Reninger. Fuzzy multi-level
security: An experiment on quantified risk-adaptive access control. In SP ’07: Proceedings of the 2007
IEEE Symposium on Security and Privacy, 2007.

[11] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical compounds.
AAAI Press, 1998.

[12] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow
problems. J. ACM, 19(2):248–264, 1972.

28

[13] D. Ferraiolo and R. Kuhn. Role-based access control. In 15th NIST-NCSC National Computer Security
Conference, 1992.

[14] K. Krukow, M. Nielsen, and V. Sassone. A logical framework for history-based access control and
reputation systems. J. Comput. Secur., 16(1):63–101, 2008.

[15] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM ’01: Proceedings of the 2001
IEEE International Conference on Data Mining, 2001.

[16] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks. In
KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, 2008.

[17] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In CIKM ’03:
Proceedings of the twelfth international conference on Information and knowledge management, 2003.

[18] C.-Y. Lin, N. Cao, S. X. Liu, S. Papadimitriou, J. Sun, and X. Yan. Smallblue: Social network analysis
for expertise search and collective intelligence. In ICDE ’09: Proceedings of the 2009 IEEE International
Conference on Data Engineering, 2009.

[19] H. Qiu and E. R. Hancock. Image segmentation using commute times. In BMVC’05: Proceedings of
British Machine Vision Conference, 2005.

[20] P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental proximity search in large graphs. In ICML
’08: Proceedings of the 25th international conference on Machine learning, 2008.

[21] M. Srivatsa, S. Balfe, K. G. Paterson, and P. Rohatgi. Trust management for secure information flows.
In CCS ’08: Proceedings of the 15th ACM conference on Computer and communications security, 2008.

[22] M. Srivatsa, P. Rohatgi, S. Balfe, and S. Reidt. Securing information flows: A metadata framework. In
QoISN’08: 1st IEEE Workshop on Quality of Information for Sensor Networks, 2008.

[23] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD ’03: Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003.

29

