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Activities and Findings

Research and Education Activities: (See PDF version submitted by PI at the end of the report)
This collaborative research represents the joint efforts from two
universities, Northwestern University (NU) and Georgia Tech (GT), for
the development of a model validation approach that provides
quantitative assessments of uncertainty in using predictive models in
engineering design. During the first year of this project, the focus
has been on implementing the following two research tasks: (1)
Development of a Bayesian approach to assess the uncertainty in model
prediction by combining data from both physical experiments and the
computer model; and (2) Development of a design-oriented model
validation metric to guide designers for achieving high confidence of
using predictive models in making design decision.  The two teams at
NU and GT have worked very closely on the above two tasks while each
team takes the lead on one subject, i.e., GT for task (1) and NU for
task (2).  The research results have been documented in two joint
publications [1, 2], which are highlighted in the attached file on 'research findings'.

During the second year of this project, the two teams focused on two specific research tasks, (1) Develop a sequential design procedure to
sequentially choose testing sites for running physical experiments to meet pre-specified prediction accuracy requirement; (2) Develop
validation procedures for validating computer models with profile (functional) outputs. The two teams at NU and GT have worked very closely
on the above two tasks while each team takes the lead on one subject, i.e., NU for task (1) and GT for task (2).  The research results have been
documented in two joint publications [4, 5, 6], which are highlighted in the attached file on 'research findings'.

During the third year and the extended year of the project, we have focused on developing new modeling tools for more complex validation
problems with functional response data.  We have developed a maximum likelihood estimation approach for modeling the combined data from
physical experiments and computer model outputs.  In addition, we developed a regression based approach for modeling and validating the
functional output from computer models and actual physical experiments.  An automotive transmission example was used to investigat and test
the feasibility of the developed approach.  The results have been reported and published in two joint publications, which are highlighted in the
former attached file on 'research findings'.

Regarding the education activities, the research results have directly
benefited the teaching of ISyE 6413 - Design and Analysis of Experiments, ISyE 6414 - Regression Analysis and Statistical Modeling, ISyE
7400 - Advanced Design of Experiments, and ISyE 7416 - Data Mining and Statistical Learning, all graduate level courses. Model validation
and analysis methods are some of the new topics added to these courses.



Findings: (See PDF version submitted by PI at the end of the report)
This collaborative research represents the joint efforts from two universities, Northwestern University (NU) and Georgia Tech (GT), for the
development of a model validation approach that provides quantitative assessments of uncertainty in using predictive models in engineering
design. During the past two years of this project, the focus has been on implementing the following four research tasks: (1) Development of a
Bayesian approach to assess the uncertainty in model prediction by combining data from both physical experiments and computer model; (2)
Development of a design-oriented model validation metric to guide designers for achieving high confidence of using predictive models in
making design decision; (3) Development of objective-oriented sequential experiment design strategy; and (4) Modeling and validating
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computer models with functional responses.  The two teams at NU and GT have worked very closely on all tasks.  The research results have
been documented in six joint publications.

(1) A Bayesian Approach to Model Uncertainty Quantification
Most research in validating computer models had focused on estimating prediction bias and improving accuracy of a computer model.  Much
less work had been done on characterizing prediction uncertainty and prediction bias under general situations.   In this research we have
developed a Bayesian approach to assess the uncertainty in model prediction by combining data from both physical experiments and computer
model outputs, which will provide more accurate prediction than the existing methods.  We also develop a step-by-step procedure for validating
the computer model based on the prediction from the Bayesian approach.

(2)Design Validation Metric
Different from the existing validation metrics that assess the predictive capability (accuracy) of a model, the design validation metrics MD has
been developed in our work to provide a probabilistic measure of whether the real outcome of a candidate design is better than other design
choices. Such metric is developed to provide a direct measure of how reliable is the decision of choosing one design candidate versus the other
design alternatives, therefore to provide the confidence associated with a design decision with the consideration of model uncertainty.  In
addition, such metric provides useful guidance for validation activities. 

(3) Sequential Experiment Design
A sequential sampling strategy is first developed for computer experiments in variable fidelity optimization [3]. We applied the Bayesian
approach developed in the model validation research to model fusion for integrating high fidelity (HF) and low fidelity (LF) models into the
predicative surrogate model, over which design optimizations are performed. The developed sequential sampling strategy is intended to
overcome existing sequential sampling methods. 

(4) Computer Validation with Functional Responses
Previous work on computer validation had been focused on problems with single output (response).  In reality, performance output of a system
can be represented as a profile (functional form), such as a response over time.  Our research team has worked with the General Motors Global
Performance Integration Group on a project on modeling and validating computer models with functional responses.  In particular, we have
focused on a computer model on simulating the profile of acceleration over time at different input conditions of tire coefficient, drag
coefficient, road grade, and throttle position.  An experiment of 64 runs (two replications at each of 32 combinations of input conditions) have
been conducted to collect the acceleration profiles of  both the physical experiments and computer simulation outputs.  The objectives are to
build reliable empirical models to (i) predict acceleration profile at untested conditions, (ii) predict ending acceleration and shift time, and (iii)
validate the computer model with physical experiments.

Training and Development:
Graduate students supported under this grant had the opportunity to
learn how to conduct collaborative research with researchers from a
different research institution and with different background. 
Students were exposed to various issues related to probability and
statistical analyses, engineering design, uncertainty modeling, etc. 
The project also provides the learning opportunity of presenting and
publishing research results.  Shuchun Wang, who worked on the project in the first year, had graduated and received her Ph.D. in summer of
2006.  Xuyuan Liu, a Ph.D. student, was working on this project in 2007 and 2008.  Sung Won Han, another Ph.D. student was working on the
project in 2009.

Outreach Activities:
In the course of this project, the research team has exchanged research ideas with many other research groups that have similar interests in the
topic of model validation, which helps identify the research needs of the proposed project. Examples of these research groups include the
Optimization and Uncertainty Estimation group at the Sandia National Laboratory, the design methodology group at Ecole Central Paris, the
Safety Engineering group in the Scientific Research Lab of Ford Motor Company, and the Global Performance Integration Group at General
Motors. Research results have been presented at the Stochastic Modeling workshop at University of Notre Dame (March 24-26, 06), the Panel
Session on 'Transition of Non Deterministic Approaches from Academic and National Lab Research to Industrial Design and
Decision-Making', at the SAE congress (April 6th, 06), the 2006, 2007, 2008, 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference., the 7th World Congress on Structural and Multidisciplinary Optimization, the 2008
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, the 2006, 2007, 2008 INFORMS Annual
Conference, and the First, Second, and Third Pre-Conference Workshop of Data Mining.   Professors Chen and Tsui have also delivered invited
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talks on the research subject at a number of university seminars (e.g., Purdue University, University of Florida, University of Texas-Arlington,
Virginia Tech, Chinese University of Hong Kong, City University of Hong Kong, Hong Kong University of Science and Technology, Shanghai
Jiao Tong University, Tong Ji University, University of Electronic Science and Technology of China) and industry visits (e.g., Ford Motor,
General Motors, Boeing, and General Electric).

Journal Publications

Chen, W., Tsui, K-L., Xiong, Y., and Wang, S., "A Design Driven Validation Approach Using Bayesian Predictive Models", ASME Journal of
Mechanical Design, p. , vol. 130, (2008). Published,  

Wang, S., Chen, W., and Tsui, K, "Bayesian Validation of Computer Models", Technometrics, p. , vol. , (2009). Accepted,  

Xiong, Y., Chen, W., Tsui, K.-L., "A New Variable Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented
Sequential Sampling", Journal of Mechanical Design, p. , vol. 130, (2008). Published,  

Xiong, Y., Chen, W., Tsui, K-L., and Apley, D., "A Better Understanding of Model Updating Strategies in Validating Engineering Models",
Journal of Computer Methods in Applied Mechanics and Engineering, p. 1327, vol. 198, (2009). Published,  

Books or Other One-time Publications

Chen, W., Tsui, K.-L., Xiong, Y., Wang, S., "Metric and a Bayesian Procedure for Validating Predictive Models in Engineering Design",
(2006). Book, Accepted
Bibliography: Sept. 10-13, Philadelphia, PA, conerence paper 2006 ASME Design Technical Conference. Design Automation Conference

S. Wang, "Data Mining, Forecasting, and Computer Model Validation", (2006). Thesis, Submitted
Bibliography: School of ISyE, Georgia Tech

Xiong, Y., Chen, W., Tsui, K-L, "A New Variable Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented
Sequential Sampling", (2007). Conference Proceeding, Accepted
Bibliography: ASME Design Engineering Technical Conference, Design Automation Conference, September 4-7, Las Vegas, Nevada, 2007

Liu, X., Chen, W., Tsui, K.-L., "Regression Modeling for Computer Model Validation with Functional Responses", (2008). Conference paper,
Published
Bibliography: Paper No. DETC2008-49662, Proceedings of the ASME 2008 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, August 3-6, 200

Web/Internet Site

Other Specific Products

Contributions

Contributions within Discipline: 
Compared to the existing work, our work focuses on a Bayesian model for predicting computer model bias and true model output, that are
accurate, flexible and economically sound. In engineering applications where it is too expensive to obtain experimental data, the Bayesian
inference approach offers much flexibility as additional design knowledge and information can be easily incorporated through prior
distributions. With the Bayesian approach, uncertainty in prediction related to the lack of experiment data can be captured by the magnitude of
uncertainty of the bias function, which offers rigorous and flexible methods for quantifying the model uncertainty in an intended design domain
that may interpolate as well as extrapolate from a validation domain. Since we have developed the analytical results in implementing the
Bayesian approach, the Bayesian approach we proposed can be economically implemented in multidimensional problems.
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Based on the Bayesian approach we proposed, our research is the first work that provides theoretical discussion on the significance of
combining computer outputs and physical, which can improve the prediction of the real system output over using only computer outputs or only
physical observations. 
Our research is one of the pioneering works that provide quantitative means to define and to assess model validity from the perspective of
design decision making with the consideration of various sources of uncertainties. It offers a new and improved way of viewing model
validation by relating its definition to a specific design choice. The proposed metric for assessing design validity provide probabilistic
measurements with regard to the confidence of using a model for making a specific design choice; they can be used to overcome the limitations
of many existing model validation approaches while providing direct estimate of the global impact of uncertainty sources on the confidence in a
design decision. 
Our research also clarified the role that model validation should play in decision making under uncertainty and developed strategies for making
tradeoffs based on both product design and model validation. Unlike most of the existing model validation works that focus on the assessment
of model accuracy, model validation in our research is viewed as a process to improve designer's confidence in making a design choice using
the improved predictive model, which is the augmented model that includes both the original computer model as well as the estimate of the bias
function. The research directly addressed the needs of Engineering Design programs that seek improvement on validation of models, increased
emphasis on treatment of uncertainty, and improvement on computational tools needed to implement the theory.
Our research proposed a new and effective strategy of sequential experiment design in variable fidelity optimization, which is immediately
extendable to the model validation. Using decision validation metrics for assessing the confidence of the optimum design, we are able to
enhance the predictive capability of a computer model for the purpose of design decision making. By treating model uncertainty separately
from design variable/parameter uncertainty, we are able to effectively design the physical experiments, to sequentially eliminate the model
uncertainty.
	There is a growing recognition that a model needs to be updated to better reflect the physical experiment observations that are collected in
model validation.  Our research provides a better understanding of the various model updating strategies, which utilize mathematical means to
update a computer model based on both physical and computer observations.  The Maximum Likelihood Estimation (MLE) method proposed
provides a better interpretation of the observed dispersion of experimental data.  Uncertainty in model prediction is quantified to account for
various sources of uncertainty in a validation process. Since our approach is applied to the widely used benchmark thermal challenge problem,
other researchers who are interested in this topic can further compare our results with those from their studies.   The research provides more
insights into the benefits and limitations of using the MLE method versus the Bayesian approach.  Insights into various model updating
strategies are also obtained through this study and can serve as the guideline in engineering practice.
Following the classical nonparametric regression framework, our proposed method for modeling and validating functional response uses a
single step procedure which is shown to be easily implemented and computationally efficient.

Contributions to Other Disciplines: 
Our research has offered a generic model validation approach that can be applied to many domestic and military applications for making
reliable decisions when using predictive models as a replacement of expensive physical part deployment.  Our research has leveraged the
results from existing model validation work in the computational modeling community and extended their use in engineering design.  Results
are broadly disseminated throughout mechanical engineering, industrial engineering, simulation, and applied statistics communities. The strong
collaborations between the research teams, industrial partners, and government agencies has ensured that the technology is transferred and the
results are successfully implemented. The research has contributed to education in the areas of model-based simulation, modeling and
optimization of engineering systems under uncertainty, statistical analysis, engineering design, and information technology as well as provide
training to minority and women engineering students.

Contributions to Human Resource Development: 
Three graduate students have benefited from working on the project through literature search, methodology development, and computer
programming. S. Wang, X. Liu, and SW Han have received support from this project.  Wang's thesis was on Bayesian Validation of Computer
Models and has graduated in 2007.  Liu's thesis is on Bayesian Modeling of Computer Experiments with Functional Output, and is expected to
finish in the summer of 2010.  Han's thesis is on a different topic but has contributed to developing software and computer programs for the
research methods in this project.

Contributions to Resources for Research and Education: 
Graduate students supported under this grant had the opportunity to learn how to conduct collaborative research with researchers from a
different research institution and with different background.  Students were exposed to various issues related to probability and statistical
analyses, engineering design, uncertainty modeling, etc.  The project also provides the learning opportunity of presenting and publishing
research results. 

The research results have directly benefited the teaching of ISyE 6413 - Design and Analysis of Experiments, ISyE 6414 - Regression Analysis
and Statistical Modeling, ISyE 7400 - Advanced Design of Experiments, and ISyE 7416 - Data Mining and Statistical Learning, all graduate
level courses. Model validation and analysis methods are some of the new topics added to these courses.
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Collaborative Research: Validating Predictive Models in Engineering Design 
 

Wei Chen 
Northwestern University 

 
Kwok Tsui 

Georgia Institute of Technology 
 

Abstract 
This collaborative research represents the joint 
efforts from two universities, Northwestern 
University (NU) and Georgia Tech (GT), for the 
development of a model validation approach that 
provides quantitative assessments of uncertainty 
in using predictive models in engineering design. 
During the past year of this project, the focus has 
been on implementing the following two research 
tasks: (1) Achieving a better Understanding of 
Model Updating Strategies in Validating 
Engineering Models; and (2) Modeling and 
validating computer models with functional 
responses.  The two teams at NU and GT have 
worked very closely on all tasks.  The research 
results have been documented in two conference 
papers, both are under preparation for joint 
publication.. 

Research Findings  
1. A better Understanding of Model Updating 
Strategies in Validating Engineering Models 

 
In this task, we examine various model 

updating strategies as an integral part of the 
model validation process.   The existing model 
updating strategies differ in their formulations, 
the solution method used, and the physical 
interpretations.  The two most widely used 
categories of formulations include bias-correction 
and calibration.   

 
Through our examination, we found there are 

several limitations when applying the traditional 
Bayesian calibration approaches to update a 
computer model using either bias-correction, 
calibration, or a combination of both.  Besides the 
numerical difficulty in implementation, one 
major limitation of the Bayesian approach is that 
the calibration parameters are treated as uncertain 
due to lack of knowledge, not accounting for 
sources of variability in a validation process. 

Besides, the choice of the prior distribution in 
Bayesian analysis is often arbitrary. 

 
As an alternative approach to the traditional 

Bayesian approach, we examine in this task a 
new model updating strategy, in which a 
computer model is updated to better interpret the 
observed dispersion of experimental data. The 
Maximum Likelihood Estimation (MLE) method 
is used to estimate the model updating parameters 
as shown in Figure 1. Unlike the traditional 
Bayesian approach which accounts for the 
experimental uncertainty by a single error term, 
the MLE based model updating approach 
accounts for experimental uncertainty through a 
subset of model updating parameters. In contrast 
to the Bayesian approach, the MLE based 
approach does not rely on the prior distributions 
of calibration parameters, instead, it seeks 
optimal distribution parameters underlying model 
updating parameters through maximizing the 
likelihood function based on the physical 
experiment data (Figure 2).   
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Figure 1. Model updating parameters Θ  in 

formulation  ' ( , )my Θx
 

Through the thermal challenge example, we 
demonstrate that model updating can be treated as 
an integral part of a model validation process 
which improves a model based on the physical 
observations gathered.  We illustrate that without 
running into numerical complexity, the model 
updating method we proposed is easier to 
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implement and interpret compared to the existing 
Bayesian methods.   
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Figure 2. Likelihood value indicates the 

agreement between the output distribution of the 
updated model and the dispersion of physical 

experiments 
 
Using the newly developed u-pooling method 

by Ferson et al, we show that the metric can be 
applied to both the original and the updated 
models to assess the accuracy and predictive 
capability of different model updating 
formulations. Through in-sample and out-sample 
tests (Figure 3) based on different data sets, we 
find that the proposed model updating approach 
improves the agreement between the model and 
the physical experiment data. However, when 
applying the updated model at a region that is far 
from the domain of data used for model updating, 
the extrapolation capability of the updated model 
is not guaranteed.  

By comparing our approach to the existing 
works on the thermal challenge problem, we 
observe the differences of various methods in 
utilizing available data, the model updating 
formulations adopted, and the solution method 
employed. Even though our method is different, 
we find the conclusion we reach on device failure 
probability is identical to other methods in 
literature. As for which model updating 
formulation is the most appropriate, unless it can 
be specified based on the pre-existing knowledge, 
we think it is problem dependent and should be 
selected by exercising the model validation 
metrics as demonstrated.  

While model updating is shown to be useful 
for improving the accuracy of a model, as the 
process is fully data-driven, we believe the 
method should be used with caution when used 
for extrapolation. 
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out-sample test

Figure 3. Example of In-Sample and Out-
Sample Test  

 
Due to the nature of the MLE method, the 

effectiveness and accuracy of the MLE based 
model updating approach could be downgraded 
when data amount is extremely small. In our test 
with the ‘low level’ data sufficiency for the 
thermal challenge problem, it is found that the 
bandwidth of the prediction uncertainty could be 
degenerated to fairly small values, unable to 
reflect the condition of lack of data. To mitigate 
this problem, prior knowledge may be used to 
specify more conservative bounds of model 
updating parameters to prevent them from 
running into ‘absurd’ values. Another potential 
weakness of the MLE based model updating 
approach might be associated with the numerical 
instability during the optimization of the 
likelihood function, especially when a complex 
model updating formulation that involves many 
parameters is considered. To mitigate this issue, 
sensitivity analysis could be performed prior to 
optimization, by leaving out parameters that are 
insensitive to model output and the likelihood 
function. 
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(2) Modeling and validating computer models 
with functional responses. 

 
Statistical analysis of functional responses 

based on functional data from both computer and 
physical experiments has gained increasing 
attention due to the dynamic nature of many 
engineering systems. However, the complexity 
and huge amount of functional data bring many 
difficulties to apply traditional or existing 
methodologies. The objective of the present study 
is twofold: (1) prediction of functional responses 
based on functional data and (2) prediction of 
bias function for validation of a computer model 
that predicts functional responses. 

 
A single step functional regression modeling 

approach is developed under this task to analyze 
functional outputs of physical and computer 
experiments. Traditional methods for modeling 
functional data generally involve two steps. 
Models are first fit at each individual setting of 
the input to reduce the dimensionality of the 
functional data. Then the estimated parameters of 
the models are treated as new responses, which 
are further modeled for prediction. Alternatively, 
pointwise models are first constructed at each 
time point and then functional curves are fit to the 
parameter estimates obtained from the fitted 
models. We propose a single model to relate the 
functional response to both the input and the time 
variables.  To overcome the high correlation 
between the shift (ending) response and the shift 
time, a sequential procedure is proposed to model 
the shift time as a function of the inputs and the 
shift response. We find the proposed model may 
be easier to interpret and implement for certain 
applications.  Through a comparison with the 
existing Gaussian process modeling approach 
using a real industrial example provided by 
General Motor, we demonstrate that the proposed 
method yields sufficient accuracy, performs 
efficiently and achieves satisfactory accuracy in 
global prediction. 

 

 
Figure 4: Predictions of two untested conditions: 

Observed (solid line), Predicted (dashed line) 

 
Figure 5: Bias Function and Updated Computer 

Outputs (Prediction: Dashed; Physical (or real bias 
function): Solid; Computer: Dotted) 

Summary of Contributions 
1. Intellectual Contributions 
There is a growing recognition that a model 
needs to be updated to better reflect the physical 
experiment observations that are collected in 
model validation.  Our research provides a better 
understanding of the various model updating 
strategies, which utilize mathematical means to 
update a computer model based on both physical 
and computer observations.  The Maximum 
Likelihood Estimation (MLE) method proposed 
provides a better interpretation of the observed 
dispersion of experimental data.  Uncertainty in 
model prediction is quantified to account for 
various sources of uncertainty in a validation 
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process. Since our approach is applied to the 
widely used benchmark thermal challenge 
problem, other researchers who are interested in 
this topic can further compare our results with 
those from their studies.   The research provides 
more insights into the benefits and limitations of 
using the MLE method versus the Bayesian 
approach.  Insights into various model updating 
strategies are also obtained through this study and 
can

mplemented and computationally 
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 serve as the guideline in engineering practice. 
Following the classical nonparametric 

regression framework, our proposed method for 
modeling and validating functional response uses 
a single step procedure which is shown to be 
easily i
efficient. 

ignificance (Impact) 
Our research has offered a generic model 

validation approach that can be applied to many 
domestic and military applications for making 
reliable decisions when using predictive models 
as a replacement of expensive physical part 
deployment.  Our research has leveraged the 
results from existing model validation work in the 
computational modeling community and 
extended their use in engineering design.  Results 
are broadly disseminated throughout mechanical 
engineering, industrial engineering, simulation, 
and applied statistics communities. The strong 
collaborations between the research teams, 
industrial partners, and government agencies has 
ensured that the technology is transferred and the 
results are successfully implemented. The 
research has contributed to education in the areas 
of model-based simulation, modeling and 
optimization of engineering systems under 
uncertainty, statistical analysis, engineering 
design, and information technology as well as 
provide training to
engineering students. 

3. Research and 
erience Provided 
Graduate students supported under this grant 

had the opportunity to learn how to conduct 
collaborative research with researchers from a 
different research institution and with different 
background.  Students were exposed to various 
issues related to probability and statistical 
analyses, engineering design, uncertainty 
modeling, etc.  The project also provides the 

ning opportunity of presenting and publishing 
research results.  

Regarding the education activities, the 
research results have directly benefited the 
teaching of ME495-Advanced Computational 
Methods for Engineering Design, a course t

e graduate level.  Model Validation is one of 
the several new topics added to this course. 

The project has provided graduate studen
the opportunit
problems through collaborations with industry. 

4. Outreach 
In the course of this project, the research team 
has exchanged research ideas with many other 
research groups that have similar interests in the 
topic of model validation, which helps identify 
the research needs of the proposed project. 
Examples of these research groups include the 
Optimization and Uncertainty Estimation group 
at the Sandia National Laboratory, the Safety 
Engineering group in the Scientific Research Lab 
of Ford Motor Company, and the Global 
Performance Integration Group at General 
Motors. Research results have been presented at 
the Stochastic Modeling workshop at University 
of Notre Dame (March 24-26, 06), the Panel 
Session on “Transition of Non Deterministic 
Approaches from Academic and National Lab 
Research to Industrial Design and Decision-
Making”, at the SAE congress (April 6th, 06), the 
2006, 2007, 2008 ASME Design Technical 
Conferences, the 7th World Congress on 
Structural and Multidisciplinary Optimization, 
the 2008 49th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials 
Conference, and the ASME 2008 International 
Design Engi
C
Conference. 
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Abstract: This collaborative research represents the 
joint efforts from two universities, Northwestern 
University (NU) and Georgia Tech (GT), for the 
development of a model validation approach that 
provides quantitative assessments of uncertainty in 
using predictive models in engineering design. During 
the first year of this project, the focus has been on 
implementing the following two research tasks: (1) 
Development of a Bayesian approach to assess the 
uncertainty in model prediction by combining data 
from both physical experiments and computer model; 
and (2) Development of a design-oriented model 
validation metric to guide designers for achieving high 
confidence of using predictive models in making 
design decision.  The two teams at NU and GT have 
worked very closely on the above two tasks while each 
team takes the lead on one subject, i.e., GT for task (1) 
and NU for task (2).  The research results have been 
documented in two joint publications. 

 
1. A Bayesian approach to Uncertainty 
Quantification 

 
Most research in validating computer models had 

focused on estimating prediction bias and improving 
accuracy of a computer model.  Much less work had 
been done on characterizing prediction uncertainty 
and prediction bias under general situations.   Using x 
to represent design variables and y stand for design 
performance, the relationship between the 
experimental observations ( )eY x , the true behavior 

( )rY x , and the prediction generated by a computer 
model ( )mY x  can often be generalized as follows: 
 ( ) ( ) ( ) ( ) ( ) ( )e r mY Y Yε δ ε= + = + +x x x x x x ,       (1)               
where ( )ε x  is the random variable representing the 
experimental error (relating to both experimental setup 
and measurement) that may depend on x , and ( )δ x  is 
the error of the model , or called the prediction bias, 
i.e.,  

                     ( ) ( ) ( )r mY Yδ = −x x x ,            (2)                                  
which captures the model inadequacy.  The prediction 
bias ( )δ x  is more closely related to the assessment of 

model accuracy, while the prediction of the true model 
output ( )rY x  is essential to assess the confidence of 
using model for decision making, measured by the 
probability that a design alternative will produce an 
outcome that is preferred to or indifferent to other 
alternatives. 
 

We developed a Bayesian approach to provide 
uncertainty quantification of both ( )δ x  and ( )rY x .  
Due to the lack of experimental data in most 
engineering design applications, we find that the 
Bayesian inferences may be preferred as they require 
fewer assumptions and are more flexible for 
applications, i.e., additional information can be 
incorporated through prior distributions.   The 
proposed Bayesian procedure for model validation 
includes six major steps:  
 
(1) Collect both physical and computer model data;  
(2) Determine priors of Gaussian process parameters;  
(3)  Compute the posterior of computer model;  
(4) Compute the posterior of prediction bias;  
(5) Compute the prediction of the true behavior; and  
(6) Evaluate predictive capability and design validity.    
 

Mathematical details of uncertainty quantification 
of both ( )δ x and ( )rY x can be found in Wang et al. 
(2006). 

 
To illustrate this procedure, an engine piston 

design case is studied. The goal of the design is to 
optimize the skirt profile (SP, one of the key geometric 
parameters) of the engine piston to obtain the minimal 
piston slap noise. Over the considered design range, 
34 hypothetical physical experiments (the circles in 
Figure 1) and 10 computer experiments (the triangles 
in Figure 1) are considered. Figures 1~ 3 show the 
results obtained from Steps (3)~(5), respectively.  
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Figure 1.  Posterior of computer model ˆ ( )mY x  
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Figure 2.  Posterior of prediction bias ˆ( )δ x  
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Figure 3.  Prediction of the true behavior ˆ ( )rY x  

 
2.  Design Validation Metric 
Different from the existing validation metrics that 
assess the predictive capability (accuracy) of a model, 
the design validation metrics MD has been developed 
in our work to provide a probabilistic measure of 
whether the real outcome of a candidate design is 
better than other design choices.  Such metric is 
developed to provide a direct measure of how reliable 
is the decision of choosing one design candidate 
versus the other design alternatives, therefore to 
provide the confidence associated with a design 
decision with the consideration of model uncertainty.  

In addition, such metric provides useful guidance for 
validation activities.  If large uncertainty exists in 
predicting design outcome, e.g., because the design 
sites are far from the tested region, the achieved MD 
may be too low to meet the design validity 
requirements, forcing designers to add new 
experiments to reduce model uncertainty or to lower 
the validity requirement. 
 

We have developed a design validation metric for 
choosing a particular design alternative by comparing 
it to a finite number (k) of other design alternatives 
[2]. The following three forms of the design validation 
metric are considered: 

 
(1) The Multiplicative Metric: ( )Multip

D iM x  

1,

( ) { ( ) ( )}
k

Multip r r
D i i j

j j i
M P f f

= ≠

= <∏x x x             (3)                       

(2) The Average (Additive) Metric: ( )Average
D iM x  

1,

1( ) { ( ) ( )}
1

k
Average
D i i j

j j i
M P f f

k = ≠

= <
− �x x x            (4)                    

(3) The Worst-Case Metric: ( )Worstcase
D iM x  

1,..., ,
( ) min { ( ) ( )}Worstcase

D i i jj k j i
M P f f

= ≠
= <x x x                         (5)                             

 
In Eqns. (3)~(5), ( )r

if x stands for the prediction 
of the true design objective value, considering model 
uncertainty.  Figure 4 illustrates the uncertainty 
quantification for a complex design objective in robust 
design that involves the assessment of both the mean 
and variance of performance.  As shown in Figure 2, 
uncertainty in prediction can be reduced by adding 
more physical experiments.   The results of design 
validation metric for each design alternative are 
provided in Table 1.  For each alternative metric 
formulation used, 

4( )DM x  for alternative 
4x  continues 

to be the largest one among the five alternatives, 
indicating the highest confidence of using the 
predictive model for selecting alternative 

4x . 

    
Figure 4.  Uncertainty Quantification for Robust 

Design Objective, 
ˆ ˆ( ) ( ) ( )r rY Yf kµ σ= +x x x ; Cluster of 

lines show realizations of ˆ ( )rY x ; dark solid lines show 
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95% confidence interval ( ) 2 ( )f fµ σ±x x  for the robust 
design objective  

 
                           

  
Figure 5.  Uncertainty Quantification after Adding 

More Physical Experiments 
 

Table 1  Design Validation Metric Values for Each 
Alternative 

 
 
 
 
 
 
 
 
 
 
 
 
                          
 

 
 
 
 
 
 
 
 

Figure 6.  Identified inferior design region 
{ }| { ( *) ( )} 0.95P f f< >x x x  with respect to the optimal 

deign x4 
 

As shown in Figure 6, besides providing the 
confidence of accepting a design solution, we can also 
use the information of pair-wise comparison 
probability Pij to rule out the inferior design region, 
therefore narrowing the sampling space in sequential 
samplings of physical and computer experiments. 
 
 
 

3. Summary of Contributions 

Compared to the existing work, our work results 
in a full Bayesian analysis model for predicting 
computer model bias and true model output, that are 
both accurate and economically sound.  Our approach 
provides quantitative means to define and to assess 
model validity from the perspective of design decision 
making with the consideration of various sources of 
uncertainties. Our work offers a new and improved 
way of viewing model validation by relating its 
definition to a specific design choice.  The proposed 
metric for assessing design validity provides 
probabilistic measurements with regard to the 
confidence of using a model for making a specific 
design choice; they can be used to overcome the 
limitations of many existing model validation 
approaches while providing direct estimate of the 
global impact of uncertainty sources on the confidence 
in a design decision. 

Acknowledgement:  Support from DMI- #0522662 
and #0522366 are gratefully acknowledged. 
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Abstract 
This collaborative research represents the joint efforts 
from two universities, Northwestern University (NU) 
and Georgia Tech (GT), for the development of a 
model validation approach that provides quantitative 
assessments of uncertainty in using predictive models 
in engineering design. Five major tasks have been 
implemented during the course of this project: (1) 
Development of a Bayesian approach to assess the 
uncertainty in model prediction by combining data 
from both physical experiments and computer model; 
(2) Development of a design-oriented model validation 
metric to guide designers for achieving high 
confidence of using predictive models in making 
design decision; (3) Development of objective-
oriented sequential experiment design strategy;  (4) 
Achieving a better Understanding of Model Updating 
Strategies in Validating Engineering Models; and (5) 
Modeling and validating computer models with 
functional responses.  The two teams at NU and GT 
have worked very closely on all tasks.  The research 
results have been documented in eighteen (18) 
journal/conference papers. 

Research Findings  
1. A Bayesian Approach to Model Uncertainty 
Quantification 

 
Most research in validating computer models had 

focused on estimating prediction bias and improving 
accuracy of a computer model.  Much less work had 
been done on characterizing prediction uncertainty 
and prediction bias under general situations.   Using x 
to represent design variables and y stand for design 
performance, the relationship between the 
experimental observations , the true behavior 

, and the prediction generated by a computer 
model  can often be generalized as follows: 

( )eY x
( )rY x

( )mY x
 ( ) ( ) ( ) ( ) ( ) ( )e r mY Y Yε δ ε= + = + +x x x x x x ,       (1)  

where ( )ε x  is the random variable representing the 
experimental error (relating to both experimental setup 
and measurement) that may depend on , and x ( )δ x  is 
the error of the model , or the prediction bias, i.e.,  

( ) ( ) ( )r mY Yδ = −x x x ,                    (2) 
which captures the model inadequacy.  The prediction 
bias ( )δ x

rY

 is more closely related to the assessment of 
model accuracy, while the prediction of the true model 
output  is essential to assess the confidence of 
using model for decision making, measured by the 
probability that a design alternative will produce an 
outcome that is preferred to or indifferent to other 
alternatives. 

( )x

 
We developed a Bayesian approach to provide 

uncertainty quantification of both ( )δ x  and .  
Due to the lack of experimental data in most 
engineering design applications, we find that the 
Bayesian inferences may be preferred as they require 
fewer assumptions and are more flexible for 
applications, i.e., additional information can be 
incorporated through prior distributions. The proposed 
Bayesian procedure for model validation includes six 
major steps:  

( )rY x

 
(1) Collect both physical and computational data;  
(2) Determine priors of Gaussian process parameters;  
(3)  Compute the posterior of computer model ; mY ( )x
(4) Compute the posterior of prediction bias ( )δ x ;  
(5) Compute the prediction of the true behavior 

; and  ( )rY x
(6) Evaluate predictive capability and design validity.    
 

Mathematical details of uncertainty quantification 
of both ( )δ x  and can be found in Wang et al. 
[1]. We have provided a clear decomposition of the 
uncertainty of . This decomposition explains 
why and how combining computer outputs and 
physical experiments can provide more accurate 
prediction than using only computer outputs or only 
physical experiments. 

( )rY x

( )r xY

 
To illustrate the above six-step procedure, an 

engine piston design case is studied. The goal of the 
design is to optimize the skirt profile (SP, one of the 
key geometric parameters) of the engine piston to 
obtain the minimal piston slap noise (unit: dB). Over 
the considered design range, 6+3 physical experiments 
(the circles in Figure 1) and 9 computer experiments 

 1 



(the triangles in Figure 1, where the first 6 physical 
experiments are used) are considered. Figures 1~3 
show the results obtained from Steps (3)~(5), 
respectively.  

 
Figure 1.  Posterior of computer model ˆ ( )mY x  

 
Figure 2.  Posterior of prediction bias ˆ( )δ x  

 
Figure 3.  Prediction of the true behavior

 
2.  Design Validation Metric 

validation metrics that 

We have developed a design validation metric for 
choo

(1) The Multiplicative Metric: 

ˆ ( )rY x  

Different from the existing 
assess the predictive capability (accuracy) of a model, 
the design validation metrics MD has been developed 
in our work to provide a probabilistic measure of 
whether the real outcome of a candidate design is 
better than other design choices. Such metric is 
developed to provide a direct measure of how reliable 

is the decision of choosing one design candidate 
versus the other design alternatives, therefore to 
provide the confidence associated with a design 
decision with the consideration of model uncertainty.  
In addition, such metric provides useful guidance for 
validation activities.  If large uncertainty exists in 
predicting design outcome, e.g., because the design 
sites are far from the tested region, the achieved MD 
may be too low to meet the design validity 
requirements, forcing designers to add new 
experiments to reduce model uncertainty or to lower 
the validity requirement. 

 

sing a particular design alternative by comparing 
it to a finite number of other design alternatives [2]. 
The following three forms of the design validation 
metric are considered: 

 

{ }
0

,

1

( *) ( *) ( )
i d i

K
M
D i

X

M P f f
∈Ω ∉

⎧ ⎫⎪ ⎪= <⎨ ⎬
⎪ ⎪⎩ ⎭
∏

x x

x x x     (3) 

(2) The Average (Additive) Metric:  

    {1( *) (A }
0

,

*) ( )
i d i

D i
X

f
K ∈Ω ∉x x

x       (4) 

(3) The Worst-Case Metric:  

M P f= <∑x x

{ }
0

,

( *) ( )
i d i X

f
∈Ω ∉x x

x( *) minW
D iM P=x f< x            (5) 

The probability { }( *) ( )iP f f<x x is evaluated for 

com  individually eaparing x* against ch other design 
alternatives, where xi (i=1,2,..,K) belongs to the set of 
feasible design alternatives Ωd , excluding those in a 
indifferentiable region X0. The concept of 
indifferentiable region X0 is introduced to consider the 
fact that, with the consideration of model uncertainty, 
distinguishing designs with identical mean values 
might not be possible.  

 

 
Figure 4.  Prediction of ˆ ( )f x (dB) and 95% 

co hysinfidence interval (w/ 6 p cal experiments) 
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Figure 4 illustrates the uncertainty quantification 

for a complex design objective ( )f x  

( ) ( )kˆ ˆr rY Y
μ σ= +x x  in a typical robust design  

t of both the mean and variance 
of performance. Thin lines show three examples of 
realizations of ˆ ( )rY x ; dark dashed lines show 95% 
confidence interv ( ) 2 ( )σ±x x  for ( )

that

involves the assessmen

al 
f fμ f x . 

We apply the ation etrdecision valid  m ics DM  
prop wo

Scenario 1. Discrete Design Alternatives 
 prediction 

inte

osed to the robust engine piston design. T  
design scenarios, namely, discrete design alternatives 
and continuous design space, are considered 
separately.  

 

Figures 5 shows the mean and 95%
rval of ( ) ( ) ( *)i iZ f f= −x x x , at five candidate 

points ={0.2ix Note both the mean 
and variance  zero at x*=x4. 

, 0.4, 0.5, 0.65, 0.7} . 
 of  ( )iZ x  reduces to

 
Figure 5. Mean and 95% CI of (dB) at five design 

Tables 1 and 2 show the results of decision 
vali

 ( )iZ x
al expcandidates (w/ 6 physic eriments) 

 

dation metrics DM  with 6 and 6＋3 physical 
experiments. Compar  Tables 1 and 2, we find that 
values of 

ing
M
DM  and W

DM are higher in Table 2 than 
Table 1, ecting e improved confidence of 
claiming x4 as the optimal design. In Table 2, with the 
reduced uncertainty in ( )iZ x  by the inclusion of 3 
additional experiments, s found 

refl  th

it i 5[ ( ) ]P Z H<x  = 
0.9799, indicating that 5x  should ed 
indifferentiable to x*=x4, an excluded for calculating 

D

 be claim
d 

M . Because x5 is considered as indifferentiable to 
x4, x3 becomes the most competing design to x* 

under the worst-case metric. 
Among the three types 

x*=

of validation metrics, we 
found that the Worst-Case Metric W

DM  holds the most 
straightforward meaning to reflect the confidence of 
claiming an optimal design x*, because it only 
concerns the most competitive design (2nd best design 
xi) to x*, outside the indifferentiable region X0. 

Besides, W
DM is the easiest to implement for problems 

with a con uous design space. Optimization could be 
used to locate the worst-case point xi, by taking 

[ ( ) 0]P Z >x  as the objective to minimize and 

tin

treating [P ( ) ]Z H c< <x  (i.e., 0X∉x ) and d∈Ωx as 
the cons

 
trai

Table 1.

nts.  

 Calculation of the decision validation metrics 
(H=0.5, c=95%, 6 physical experiments)  

ix  1x  2x  3x  4x  5x  
[ ( )iP Z H<x 0.1968 0.4152 0.5568  0.9114 

0 ?i X∈x  No No No  No 
0.9544 0.8742 0.7981 0.6204 [ ( )iP Z >x 0]  

M
DM  0.8017 
A
DM  0.8118 
W
DM  0.6204 (worst-case point: 5x ) 
 

Table 2. Calculation of the decision validation metrics 
 (H=0.5, c=95%, 6+3 physical experiments)  

ix  1x  2x  3x  4x  5x  
0.1910 0.3790 [ (P Z H)ix < 0.6111  0.9799 

0 ?i X∈x No No No  Yes 
0.9616 0.9034 0.7826 [ ( ) 0iP Z >x ]   

M
DM  0.9080 
A
DM   0.6619 
W
DM  0.7826 (worst-case point: 3x ) 
 

Scenario 2. Continuous Design Space 
Calculating DM  in a continuous design space is 

more challenging an in a discrete design space. 
Figures 6(a) and 6(b) show respectively the mean and 
95% confidence interval of ( )Z x for two experimental 
sizes, 6 and 6+3, where the so bold portions indicate 
the indifferentiable region X0 in the small 
neighborhood of x* (identified by minimizing ˆ ( )if x ).  

Table 3 provides the calculated 

 th

lid 

DM  valu he es. T
increased DM  values with more phys  experiments 
reflect the im roved confidence of claiming x* as the 
optimal design after the resolution of ( )

ical
p

f x  is 
improved. Table 3 also provides the calculated DM  
values when the tolerance H is set at a higher va , 
0.9 (dB). 

lue
M
DM  and W

DM  increase as a result of the less 
strict tolerance: whe  larger tolerance H is specified 
by a designer, it implies that lower resolution of the 
model is demanded. 

Table 3. Calculation

n a

 of decision validation metrics at 
different tolerance H and experiment size (w/ c=95%) 

 H=0.5(dB) H=0.9(dB) 
Phy. p. # ex 6 6+3 6 6+3 

M
DM  0.8953 0.9203 0.9281 0.9535 
A
DM  0.8122 0.8161 0.7516 0.7457 
W
DM  0.5947 0.6289 0.6706 0.7341 
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WC point x=0.69 x=0.59 x=0.73 x=0.53 
Min SLB(k=0), i.e. Max Var

Min SLB (k=5.0) 

Min SLB (k=3.0) 

Min SLB (k=1.0) 

 
Figure 6. Mean and 95% confidence interval of 

3.  Sequential Experiment Design 
rst developed 

for 

1)N

( )Z x (dB) (H=0.5, c=95%) 
 

A sequential sampling strategy is fi
computer experiments in variable fidelity 

optimization [3]. We applied the Bayesian approach 
developed in the model validation research to model 
fusion for integrating high fidelity (HF) and low 
fidelity (LF) models into the predicative surrogate 
model, over which design optimizations are 
performed. The developed sequential sampling 
strategy is intended to overcome existing sequential 
sampling methods. A periodical switching criteria 
(PSC) strategy is proposed, which is depicted in 
Figure 7. To locate the next computer experiment xN+1, 
the Statistical Lower Bounding (SLB) criterion is used 
with the form 

SLB 1 1( ) ( ) (s sN Ny ykμ σ+ +≡ −x x x + .      (6) 

Compared with the conventional Expected 
Improvement (EI) method, The SLB criterion is easier 
to control by adjusting k, a parameter interpreted as a 
weight placed for reducing interpolation uncertainty 
against enhancing the local accuracy around the 
current optimum. 

 
Figure 7. The proposed periodical switching  

criteria (PSC) strategy for sequential experiment design 
 
The developed methodology of sequential 

sampling in variable fidelity optimization can be 
extended to model validation, by treating LF 
simulation as computational experiments, HF 
simulations as physical experiments with diminished 
experiment error. In our proposed design-driven model 
validation framework (Figure 8), single/multiple 
physical experiment(s) could be identified by PSC 
strategy and added sequentially. The sequential 
validation process is repeated until the validity 
requirement is satisfied, which is determined by 
examining if the achieved decision validation metric 
MD has reached a prespecified threshold Pth. With the 
proposed validation metric, we are able to enhance the 
predictive capability of a computer model for the 
purpose of design decision making. One important 
feature of the proposed sequential experiment design 
is that, by treating model uncertainty separately from 
design variable/parameter uncertainty, we are able to 
effectively design the physical experiments, to 
sequentially eliminate the model uncertainty. 

 
Figure 8. The proposed design-driven 

validation framework with sequential experiment design 

Min SLB(k=∞), i.e. Min Mean 

Start
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4. A better Understanding of Model Updating 
Strategies in Validating Engineering Models 

 
In this task, we examine various model updating 

strategies as an integral part of the model validation 
process [13].   The existing model updating strategies 
differ in their formulations, the solution method used, 
and the physical interpretations.  The two most widely 
used categories of formulations include bias-correction 
and calibration.   

 
Through our examination, we found there are 

several limitations when applying the traditional 
Bayesian calibration approaches to update a computer 
model using either bias-correction, calibration, or a 
combination of both.  Besides the numerical difficulty 
in implementation, one major limitation of the 
Bayesian approach is that the calibration parameters 
are treated as uncertain due to lack of knowledge, not 
accounting for sources of variability in a validation 
process. Besides, the choice of the prior distribution in 
Bayesian analysis is often arbitrary. 

 
As an alternative approach to the traditional 

Bayesian approach, we examine in this task a new 
model updating strategy, in which a computer model is 
updated to better interpret the observed dispersion of 
experimental data. The Maximum Likelihood 
Estimation (MLE) method is used to estimate the 
model updating parameters as shown in Figure 9. 
Unlike the traditional Bayesian approach which 
accounts for the experimental uncertainty by a single 
error term, the MLE based model updating approach 
accounts for experimental uncertainty through a subset 
of model updating parameters. In contrast to the 
Bayesian approach, the MLE based approach does not 
rely on the prior distributions of calibration 
parameters, instead, it seeks optimal distribution 
parameters underlying model updating parameters 
through maximizing the likelihood function based on 
the physical experiment data (Figure 10).   

 

 

Figure 9. Model updating parameters Θ  in 
formulation  ' ( , )my Θx

 
Through the thermal challenge example, we 

demonstrate that model updating can be treated as an 

integral part of a model validation process which 
improves a model based on the physical observations 
gathered.  We illustrate that without running into 
numerical complexity, the model updating method we 
proposed is easier to implement and interpret 
compared to the existing Bayesian methods.   
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Figure 10. Likelihood value indicates the 
agreement between the output distribution of the 

updated model and the dispersion of physical 
experiments 

 
Using the newly developed u-pooling method by 

Ferson et al, we show that the metric can be applied to 
both the original and the updated models to assess the 
accuracy and predictive capability of different model 
updating formulations. Through in-sample and out-
sample tests (Figure 11) based on different data sets, 
we find that the proposed model updating approach 
improves the agreement between the model and the 
physical experiment data. However, when applying 
the updated model at a region that is far from the 
domain of data used for model updating, the 
extrapolation capability of the updated model is not 
guaranteed.  

By comparing our approach to the existing works 
on the thermal challenge problem, we observe the 
differences of various methods in utilizing available 
data, the model updating formulations adopted, and 
the solution method employed. Even though our 
method is different, we find the conclusion we reach 
on device failure probability is identical to other 
methods in literature. As for which model updating 
formulation is the most appropriate, unless it can be 
specified based on the pre-existing knowledge, we 
think it is problem dependent and should be selected 
by exercising the model validation metrics as 
demonstrated.  

1 1,

 
While model updating is shown to be useful for 

improving the accuracy of a model, as the process is 
fully data-driven, we believe the method should be 
used with caution when used for extrapolation. 
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Figure 11. Example of In-Sample and Out-Sample 

Test  
 
Due to the nature of the MLE method, the 

effectiveness and accuracy of the MLE based model 
updating approach could be downgraded when data 
amount is extremely small. In our test with the ‘low 
level’ data sufficiency for the thermal challenge 
problem, it is found that the bandwidth of the 
prediction uncertainty could be degenerated to fairly 
small values, unable to reflect the condition of lack of 
data. To mitigate this problem, prior knowledge may 
be used to specify more conservative bounds of model 
updating parameters to prevent them from running into 
‘absurd’ values. Another potential weakness of the 
MLE based model updating approach might be 
associated with the numerical instability during the 
optimization of the likelihood function, especially 
when a complex model updating formulation that 
involves many parameters is considered. To mitigate 
this issue, sensitivity analysis could be performed 
prior to optimization, by leaving out parameters that 
are insensitive to model output and the likelihood 
function. 
5. Modeling and validating computer models with 
functional responses. 

 
Statistical analysis of functional responses based 

on functional data from both computer and physical 

experiments has gained increasing attention due to the 
dynamic nature of many engineering systems. 
However, the complexity and huge amount of 
functional data bring many difficulties to apply 
traditional or existing methodologies. The objective of 
the present study is twofold: (1) prediction of 
functional responses based on functional data and (2) 
prediction of bias function for validation of a computer 
model that predicts functional responses. 

 
A single step functional regression modeling 

approach is developed under this task to analyze 
functional outputs of physical and computer 
experiments [11]. Traditional methods for modeling 
functional data generally involve two steps. Models 
are first fit at each individual setting of the input to 
reduce the dimensionality of the functional data. Then 
the estimated parameters of the models are treated as 
new responses, which are further modeled for 
prediction. Alternatively, pointwise models are first 
constructed at each time point and then functional 
curves are fit to the parameter estimates obtained from 
the fitted models. We propose a single model to relate 
the functional response to both the input and the time 
variables.  To overcome the high correlation between 
the shift (ending) response and the shift time, a 
sequential procedure is proposed to model the shift 
time as a function of the inputs and the shift response. 
We find the proposed model may be easier to interpret 
and implement for certain applications.  Through a 
comparison with the existing Gaussian process 
modeling approach using a real industrial example 
provided by General Motor, we demonstrate that the 
proposed method yields sufficient accuracy, performs 
efficiently and achieves satisfactory accuracy in global 
prediction. 

in-sample test 

out-sample test 

 

 
Figure 12: Predictions of two untested conditions: 

Observed (solid line), Predicted (dashed line) 
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Figure 13: Bias Function and Updated Computer 

Outputs (Prediction: Dashed; Physical (or real bias 
function): Solid; Computer: Dotted) 

Summary of Contributions 

1. Intellectual Contributions 
Compared to the existing work, our work focuses 

on a Bayesian model for predicting computer model 
bias and true model output, that are accurate, flexible 
and economically sound. In engineering applications 
where it is too expensive to obtain experimental data, 
the Bayesian inference approach offers much 
flexibility as additional design knowledge and 
information can be easily incorporated through prior 
distributions. With the Bayesian approach, uncertainty 
in prediction related to the lack of experiment data can 
be captured by the magnitude of uncertainty of the 
bias function, which offers rigorous and flexible 
methods for quantifying the model uncertainty in an 
intended design domain that may interpolate as well as 
extrapolate from a validation domain. Since we have 
developed the analytical results in implementing the 
Bayesian approach, the Bayesian approach we 
proposed can be economically implemented in 
multidimensional problems. 

Based on the Bayesian approach we proposed, our 
research is the first work that provides theoretical 
discussion on the significance of combining computer 
outputs and physical, which can improve the 
prediction of the real system output over using only 
computer outputs or only physical observations.  

Our research is one of the pioneering works that 
provide quantitative means to define and to assess 
model validity from the perspective of design decision 
making with the consideration of various sources of 
uncertainties. It offers a new and improved way of 
viewing model validation by relating its definition to a 
specific design choice. The proposed metric for 
assessing design validity provide probabilistic 
measurements with regard to the confidence of using a 
model for making a specific design choice; they can be 
used to overcome the limitations of many existing 

model validation approaches while providing direct 
estimate of the global impact of uncertainty sources on 
the confidence in a design decision.  

Our research also clarified the role that model 
validation should play in decision making under 
uncertainty and developed strategies for making 
tradeoffs based on both product design and model 
validation. Unlike most of the existing model 
validation works that focus on the assessment of 
model accuracy, model validation in our research is 
viewed as a process to improve designer’s confidence 
in making a design choice using the improved 
predictive model, which is the augmented model that 
includes both the original computer model as well as 
the estimate of the bias function. The research directly 
addressed the needs of Engineering Design programs 
that seek improvement on validation of models, 
increased emphasis on treatment of uncertainty, and 
improvement on computational tools needed to 
implement the theory. 

Our research proposed a new and effective 
strategy of sequential experiment design in variable 
fidelity optimization, which is immediately extendable 
to the model validation. Using decision validation 
metrics for assessing the confidence of the optimum 
design, we are able to enhance the predictive 
capability of a computer model for the purpose of 
design decision making. By treating model uncertainty 
separately from design variable/parameter uncertainty, 
we are able to effectively design the physical 
experiments, to sequentially eliminate the model 
uncertainty. 
 There is a growing recognition that a model needs 
to be updated to better reflect the physical experiment 
observations that are collected in model validation.  
Our research provides a better understanding of the 
various model updating strategies, which utilize 
mathematical means to update a computer model 
based on both physical and computer observations.  
The Maximum Likelihood Estimation (MLE) method 
proposed provides a better interpretation of the 
observed dispersion of experimental data.  Uncertainty 
in model prediction is quantified to account for 
various sources of uncertainty in a validation process. 
Since our approach is applied to the widely used 
benchmark thermal challenge problem, other 
researchers who are interested in this topic can further 
compare our results with those from their studies.   
The research provides more insights into the benefits 
and limitations of using the MLE method versus the 
Bayesian approach.  Insights into various model 
updating strategies are also obtained through this study 
and can serve as the guideline in engineering practice. 

Following the classical nonparametric regression 
framework, our proposed method for modeling and 
validating functional response uses a single step 
procedure which is shown to be easily implemented 
and computationally efficient. 
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3. Significance (Impact) 
Our research has offered a generic model 

validation approach that can be applied to many 
domestic and military applications for making reliable 
decisions when using predictive models as a 
replacement of expensive physical part deployment.  
Our research has leveraged the results from existing 
model validation work in the computational modeling 
community and extended their use in engineering 
design.  Results are broadly disseminated throughout 
mechanical engineering, industrial engineering, 
simulation, and applied statistics communities. The 
strong collaborations between the research teams, 
industrial partners, and government agencies has 
ensured that the technology is transferred and the 
results are successfully implemented. The research has 
contributed to education in the areas of model-based 
simulation, modeling and optimization of engineering 
systems under uncertainty, statistical analysis, 
engineering design, and information technology as 
well as provide training to minority and women 
engineering students. 

3. Research and Teaching Skills and Experience 
Provided 

Graduate students supported under this grant had 
the opportunity to learn how to conduct collaborative 
research with researchers from a different research 
institution and with different background.  Students 
were exposed to various issues related to probability 
and statistical analyses, engineering design, 
uncertainty modeling, etc.  The project also provides 
the learning opportunity of presenting and publishing 
research results.  

Regarding the education activities, the research 
results have directly benefited the teaching of ME495-
Advanced Computational Methods for Engineering 
Design, a course taught at the graduate level at 
Northwestern University.  Model Validation is one of 
the several new topics added to this course.  Based on 
the research results, Professor Chen also developed the 
teaching materials on model validation and uncertainty 
quantification for a newly founded interdisciplinary 
doctoral cluster on 'Predictive Science & Engineering 
Design (PSED) at Northwestern University. As the 
topic of validating engineering models based on both 
computer simulations and physical experiments has 
become the core issue of using science-based 
predictive models across multiple engineering and 
science fields, this research has helped to establish the 
theoretical foundation for teaching the principles of 
model validation and uncertainty quantification across 
multiple fields. 

The project has provided graduate students the 
opportunity of working on real world problems 
through collaborations with industry. 

 

4. Outreach 
In the course of this project, the research team has 
exchanged research ideas with many other research 
groups that have similar interests in the topic of model 
validation, which helps identify the research needs of 
the proposed project. Examples of these research 
groups include the Optimization and Uncertainty 
Estimation group at the Sandia National Laboratory, 
the design methodology group at Ecole Central Paris, 
the Safety Engineering group in the Scientific 
Research Lab of Ford Motor Company, and the Global 
Performance Integration Group at General Motors. 
Research results have been presented at the Stochastic 
Modeling workshop at University of Notre Dame 
(March 24-26, 06), the Panel Session on 'Transition of 
Non Deterministic Approaches from Academic and 
National Lab Research to Industrial Design and 
Decision-Making', at the SAE congress (April 6th, 
06), the 2006, 2007, 2008, 2009 International Design 
Engineering Technical Conferences & Computers and 
Information in Engineering Conference., the 7th 
World Congress on Structural and Multidisciplinary 
Optimization, the 2008 49th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics, and Materials Conference, the 2006, 2007, 
2008 INFORMS Annual Conference, and the First, 
Second, and Third Pre-Conference Workshop of Data 
Mining.   Professors Chen and Tsui have also 
delivered invited talks on the research subject at a 
number of university seminars (e.g., Purdue 
University, University of Florida, University of Texas-
Arlington, Virginia Tech, Chinese University of Hong 
Kong, City University of Hong Kong, Hong Kong 
University of Science and Technology, Shanghai Jiao 
Tong University, Tong Ji University, University of 
Electronic Science and Technology of China) and 
industry visits (e.g., Ford Motor, General Motors, 
Boeing, and General Electric). 
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